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Incorporating Subsampling into Bayesian
Models for High-Dimensional Spatial Data

Sudipto Saha∗ and Jonathan R. Bradley†

Abstract. Additive spatial statistical models with weakly stationary process as-
sumptions have become standard in spatial statistics. However, one disadvantage
of such models is the computation time, which rapidly increases with the number
of data points. The goal of this article is to apply an existing subsampling strategy
to standard spatial additive models and to derive the spatial statistical properties.
We call this strategy the “spatial data subset model” (SDSM) approach, which
can be applied to big datasets in a computationally feasible way. Our approach has
the advantage that one does not require any additional restrictive model assump-
tions. That is, computational gains increase as model assumptions are removed
when using our model framework. This provides one solution to the computational
bottlenecks that occur when applying methods such as Kriging to “big data”. We
provide several properties of this new spatial data subset model approach in terms
of moments, sill, nugget, and range under several sampling designs. An advantage
of our approach is that it subsamples without throwing away data, and can be
implemented using datasets of any size that can be stored. We present the results
of the spatial data subset model approach on simulated datasets, and on a large
dataset consists of 150,000 observations of daytime land surface temperatures
measured by the MODIS instrument onboard the Terra satellite.

Keywords: Bayesian hierarchical model, big data, curse of dimensionality,
subsampling method, Gibbs-within-composite sampler, Markov chain Monte
Carlo, spatial data.

1 Introduction
A usual inferential task for spatially referenced data is to predict a spatial process at
observed and unobserved locations (i.e. spatial prediction). The classical approach to
perform spatial prediction is known as “Kriging”. Taking a Bayesian approach for param-
eter estimation and spatial prediction is a well-established and widely used approach
in spatial statistics (e.g., see More et al., 1989; Omre and Halvorsen, 1989; Cressie,
1993; Handcock and Stein, 1993; Banerjee et al., 2014 for standard references). Classi-
cal spatial statistical models assume that a latent spatial process is weakly stationary
with known covariogram, e.g. Matérn, exponential etc. (Banerjee et al., 2014). Although
Bayesian prediction in this setting is possible and provides accurate spatial predictions
for small datasets, the processing time rapidly increases with the increase in the size of
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dataset. This is a well-known problem that has motivated several methodologies (Vec-
chia, 1988; Nychka, 2000; Cressie and Johannesson, 2008; Rue et al., 2009; Xu et al.,
2013; Nychka et al., 2015; Rue et al., 2017; Vigsnes et al., 2017). In this article, we pro-
vide a computationally feasible solution to analyze big data using a classical Bayesian
spatial model with standard weakly stationary or non-stationary process assumptions.
In particular, we develop a new “spatial data subset model” approach by applying the
use of a recently introduced “data subset model” approach (Bradley, 2021) to spatial
data. We also provide inferential properties of the data in terms of its moments, and
spatial properties in terms of sill, nugget and range, under two sampling designs that
are natural for spatial data.

We extend the use of data subset model (Bradley, 2021) and develop the spatial
data subset model that allows one to implement classical Bayesian spatial models for
analyzing big data quickly. To achieve this, we redefine the data model of a classical
Bayesian spatial model using subsamples, without imposing any additional model as-
sumptions. This is different than what has been done in the existing literature. For
example, Byers and Gill (2022) presented a similar work where they used a Bootstrap
Random Spatial Sampling (BRSS) method to estimate the full Bayesian-Kriging model
over large samples. They independently generated B bootstrap subsamples of size n,
and estimated model parameters independently for each of B bootstraps. In our pro-
posed model, we redefine the full data model of the classical Bayesian spatial model
to be semi-parametric using subsamples and we add a subset model to the hierarchical
structure, rather than estimating model parameters independently for each bootstrap
subsamples or approximating the full data model using the subsamples. This is the
primary difference between our exact approach, and the other exact and approximate
approaches (Vecchia, 1988; Stein et al., 2004; Gunawan et al., 2017; Quiroz et al., 2019;
Katzfuss and Guinness, 2021; Byers and Gill, 2022). Moreover, adding a subset model
to the hierarchical structure itself provides the flexibility to choose a sampling method
(from the survey sampling literature) inside the model.

There are many existing approaches for subsampling spatial data. One approach is
to divide the spatial domain into overlapping subblocks which are obtained by mov-
ing a subsampling window over sequences of increasing index sets (Guan et al., 2004),
and draw the subsamples from these subblocks. One disadvantage of this approach is
that the overlapping subblocks can introduce unnecessary complexity into the model.
To overcome this issue, a common approach is to divide the spatial domain into sev-
eral partitions or subshapes (Possolo, 1991; Sherman and Carlstein, 1994; Lahiri, 1999;
Ekström and Luna, 2004). One can partition a spatial domain using one of many par-
titioning methods. For example, equal area partition (Sang et al., 2011), hierarchical
clustering based partition (Heaton et al., 2017), tree based partition (Konomi et al.,
2014), partition based on cluster centroids (Knorr-Held and Raßer, 2000; Kim et al.,
2005), partition based on mixture model (Neelon et al., 2014) etc. However, all these
spatial partitioning approaches assume independence across partitions (blockwise inde-
pendence), which can be a strong assumption (Bradley et al., 2015) in certain scenarios.
To avoid any additional assumption, we choose the sampling method for our spatial data
subset mode from the survey sampling literature (Lohr, 2010; Nassiuma, 2001). In par-
ticular, we consider simple designs, like simple random sampling (SRS) and stratified
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random sampling, that are natural for spatial data. Cluster sampling is another natural
choice for spatial data. However, in the survey literature it has been shown to be less
efficient than stratified random sampling (Lohr, 2010), and hence, we do not consider
it here.

Possolo (1991) is an example of a method that uses a single subsample of size n and
discards (N−n) spatial observations, where N is the size of the entire dataset. Of course
this is a standard data pre-processing step for whenever a method is not scalable (e.g.,
a subset of the data is used). Several in the more general Gaussian process literature
have given this strategy a name, i.e., the “Subset of Data” (SoD) method (Lawrence
et al., 2002; Seeger, 2003; Keerthi and Chu, 2005; Chalupka et al., 2013; Hayashi et al.,
2020; Liu et al., 2020). Our proposed method is different from using a single subsample,
as the Data Subset Model approach iteratively re-samples the data, and if one runs
the MCMC long enough, all data is used for inference. We define such method that
makes use of all N observations without discarding them as “fully scalable”. To our
knowledge, there is no such Bayesian spatial model to analyze large spatial data that is
fully scalable (for large enough length of the Markov chain) to datasets of any size that
can be stored.

Outside of subsampling there are several other strategies to make a Gaussian Pro-
cess (GP) scalable in Bayesian and non-Bayesian contexts. For example, reduced rank
methodologies reduce the parameter space to speed up computations (Cressie and Jo-
hannesson, 2008). Sparse GPs similarly reduce the parameter space via sparsity (e.g.,
see Besag (1974); Besag et al. (1991) in the spatial context, and Hensman et al. (2013)
in a more general GP context). Approximate Bayesian strategies approximate the likeli-
hood to aid with computations, for example, the Vecchia approximation (Katzfuss and
Guinness, 2021) writes the likelihood as a product and truncate the product to fewer
terms, and integrated nested Laplace approximations (INLA, Rue et al., 2009) use Gaus-
sian approximations of the marginal posterior to aid with inference. Some apply spatial
statistical models to spatial partitions or for a given prediction location adaptively to
create a partition based on nearest neighborhoods (e.g., see Heaton et al., 2019, and
the local GP approach of Gramacy and Apley, 2015 for examples). For a broad discus-
sion on the available strategies in spatial statistics see Bradley (2021), Heaton et al.
(2019) and in the generic GP context see Liu et al. (2020). In general, all of the fully
Bayesian strategies involve additional parametric assumptions, or approximations. The
data subset model, does not add assumptions, but rather removes assumptions; that is,
the hold-out sample in the data subset model approach is assumed to follow its true
nonparametric distribution instead of some parametric density enforced to have sparsity
or dimension reduction structure. Furthermore the data subset model approach does not
involve approximations used in approximate Bayesian strategies.

Our proposed spatial data subset model has a hyperparameter, subsample size (n),
that can be set to a value to achieve a computational goal, rather than determining an
optimal subsample size. There are several ways to choose an optimal subsample size.
For example, one can choose an optimal subsample size by minimizing the mean square
error of variance estimation of the blocked sample variance (Politis and Romano, 1993),
or by minimizing the combined expansions for the bias and the variance parts of the
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subsample variance estimator (Nordman and Lahiri, 2004). A limitation of both of these
approaches is that they both demand an approximation to the full likelihood. However,
in our model, we redefine the full likelihood to be semi-parametric (or more flexible)
based on the subsamples instead of approximating it. So, we keep the subsample size
as a hyperparameter for the users to choose based on their computational goal, which
makes our model flexible to demand. This is particularly exciting because our model
scales with the subsample design, and not with the size of the entire dataset. Hence,
one can scale our model to a dataset of any size that can be stored by choosing the
subsample size small enough.

While n can be chosen to achieve a computational goal, this is not necessarily a
positive. Ideally, we would choose n for inference, and choosing n in this manner, is to
make an admission that a given model is not fully scalable. The main goal of this article
is to apply the data subset approach to standard spatial models (i.e., kriging). It is well
known that kriging is not fully scalable, which leads to a natural restriction on n, since
kriging is known to break down computationally when n ≥ 10, 000 (e.g., see Rullière
et al., 2018), and can be extremely slow at n = 10, 000. In our empirical results we
often see that n � N produces similar answers compared to kriging based on N . This
is consistent with results in Bradley (2021) and results in the SoD literature (Chalupka
et al., 2013, §5).

The choice of the sampling method affects the fundamental properties of the model.
In particular, we are interested in the changes in the first and second moments, and the
spatial properties of the data as we change the sampling design. Hence, we present a
detailed discussion on the inferential, as well as the spatial properties of the data under
two sampling strategies – SRS and stratified random sampling. That is, we investigate
several spatial properties like sill, nugget and (effective) range (Cressie, 1993; Banerjee
et al., 2014), including the mean, variance and covariance (Casella and Berger, 2021)
of the data for SRS and stratified random sampling. One exciting feature of our model
is that our model retains the stationarity of the true data model, i.e. our model be-
comes weakly/intrinsically stationary or non-stationary when the true data model is
respectively weakly/intrinsically stationary or non-stationary.

The remainder of the article is organized as follows. In Section 2, we provide an
extensive review of the existing data subset model in a generic GP setting. In Section 3,
we present the proposed spatial data subset model, along with the inferential and spatial
properties under the mentioned two sampling designs and the MCMC implementation.
In Section 4, we demonstrate the performance of our model by providing an illustration
through a simulated dataset, followed by a more extensive simulation study and an anal-
ysis on the scalability of the model. We demonstrate that the performance of our model
gets better as we increase the number of subsamples. We also show that the proposed
model is fully scalable (for large enough length of the Markov chain) to the datasets
of any size that can be stored. In Section 5, we apply our model to the benchmark
dataset from Heaton et al. (2019), that consists of Land Surface Temperature (LST)
captured by the Terra satellite. We find that our semi-parametric version of classical
Bayesian spatial models provides competitive inferential and computational results as
compared to several existing strategies (Heaton et al., 2019). Finally, a concluding dis-
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cussion is presented in Section 6. We provide the proof of all the technical results in the
supplementary material (Saha and Bradley, 2024) for convenience.

2 Review
In this section, we review general subsampling strategies. In particular, we review the
“data subset approach” in the generic GP Bayesian setting from Bradley (2021), and
the SoD method (Chalupka et al., 2013).

2.1 Review of Data Subset Model
Let, an N -dimensional data vector be y = (Y1, . . . , YN )′, the latent process vector be
ν, and a generic real-valued parameter vector be θ. In general, a Bayesian hierarchical
model can be written as the product of the following conditional and marginal distri-
butions:

Data Model:
N∏
i=1

f(Yi|ν,θ)

Process Model: f(ν|θ)
Parameter Model: f(θ). (2.1)

Bradley (2021) considered N to be so large that estimating ν and θ using (2.1) (referred
as “full parametric model”) directly is not possible. To solve this problem, Bradley
(2021) proposed to replace the data model in (2.1) with the data subset model (DSM)
in the following way:

Data Subset Model:
{

N∏
i=1

f(Yi|ν,θ, δ)δi
}

m(1N ,y)
m(δ,yδ)

Process Model: f(ν|θ)
Parameter Model: f(θ)

Subset Model: Pr(δ|n), (2.2)

where δ = (δ1, . . . , δN )′ be the N -dimensional random vector consists of ones and zeros,
1N (and 0N ) be the N -dimensional vector of ones (and zeros), and yδ = (Yi : δi = 1)′
be the n-dimensional random vector since they chose exactly n number of ones in the
δ vector by setting

∑N
i=1 δi = n. The subset model determines which n observations to

include in the likelihood through δi (= 0 or 1), which is treated as a parameter in the
hierarchical model. The marginal distribution, m(δ,yδ), is defined as

m(δ,yδ) =
∫ ∫ {

N∏
i=1

f(Yi|ν,θ, δ)δi
}
f(ν|θ)f(θ)dνdθ, (2.3)

where m(δ,yδ) is the marginal distribution of yδ from the full parametric model.
m(1N ,y) is the marginal distribution of the data associated with the full paramet-
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ric model. Hence, the data subset model in (2.2) re-weights the likelihood evaluated at
n(� N) observations by the ratio of marginal densities, m(1N ,y)/m(δ,yδ).

Bradley (2021) established several important theoretical results of the model in (2.2).
In particular, the model in (2.2) is proper given that the model in (2.1) is proper, and
the marginal distributions of data y are the same for the Bayesian models in (2.1) and
(2.2). Thus, the Bayesian models in (2.1) and (2.2) have the same expression of f(ν|θ),
f(θ) and m(1N ,y). This implies that, marginally, the distributional assumptions of the
data, process, and parameters are the same between (2.2) and (2.1). Sufficiency is a key
property in Bayesian analysis, and Bradley (2021) showed that yδ is a partial sufficient
statistic for ν and θ. Another important result is the data vector y and the δ vector are
independent. This result is particularly important from a computational perspective,
as it leads to an efficient sampler that we develop further in the spatial setting. In
particular, to sample from the posterior f(ν,θ, δ|y), one first samples from Pr(δ|n) and
then samples from the posterior using subsample yδ (i.e., p(ν,θ|yδ)). Note that, the
data are continually resampled in this sampling scheme, which is different from many
existing subsampling strategies that use a single subsample. Bradley (2021) explored
this sampler in truly high-dimensional settings (i.e., a dataset of size 10 Gigabytes and
a simulated dataset of size 100 million).

A semi-parametric interpretation of the model in (2.2) in the generic Bayesian GP
setting is also discussed in Bradley (2021), where the following model is considered.

Data Model: wδ(y−δ)
∏

{i:δi=1}
f(Yi|ν,θ, δ)

Process Model: f(ν|θ)
Parameter Model: f(θ)

Subset Model: Pr(δ|n), (2.4)

where wδ(·) is the true unknown unparameterized pdf for the (N −n)-dimensional ran-
dom vector y−δ for a given δ. Bradley (2021) referred this model as the semi-parametric
full model (SFM). When one assumes that y and δ are independent in (2.4), then
Bradley (2021) showed that (2.4) has many of the same properties as (2.2). Specifically,
yδ is a partially sufficient statistic for ν and θ. Furthermore, Bradley (2021) established
that fDSM (ν,θ|y, δ, n) = fSFM (ν,θ|y, δ, n) and fDSM (ν,θ|y, n) = fSFM (ν,θ|y, n),
where fDSM and fSFM be the posterior distributions under the model in (2.2) and
(2.4), respectively. These two results are particularly interesting because together they
show that the posterior distributions of DSM and SFM are equivalent when one adds
the assumption that y and δ are independent in (2.4).

2.2 Review of Subset of Data Method

It is important to understand that the data subset model does not use a single subsample
defined by δ. This is because δ is actively resampled in the Gibbs-within-composite
sampler. This is different from the setting where one makes use of a single subsample.
Some in the general GP literature call this approach the Subset of Data (SoD) method
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(Lawrence et al., 2002; Seeger, 2003; Keerthi and Chu, 2005; Chalupka et al., 2013;
Hayashi et al., 2020; Liu et al., 2020). The SoD method simply uses a single subsample
of size n(n � N) for inference. For reviews of SoD see Chalupka et al. (2013) and Liu
et al. (2020). The difference between SoD and the Data Subset Approach is important
because the data subset model scales to higher dimensions in a similar way that SoD
scales to higher dimension without discarding N − n observations. We say a method
is “fully scalable” if it can be implemented on N observations without discarding any
observations. Thus, the SoD method is not fully scalable by definition, and the data
subset model approach is fully scalable for large enough G, where G is the length of
the Markov chain. That is, as one continually samples from the Gibbs-within-composite
sampler, as long as each observation has a non-zero probability of being selected, all
data will be used when G is large enough.

Resampling in the SoD literature is sometimes based on n randomly selected points,
which has computational complexity of O(n), since one does not need to scan through all
N data-points to produce the subsample. Others in the SoD literature have considered
clustering algorithms, which are on the order of O(nN) or O(N log(n)) (Chalupka et al.,
2013). A fully Bayesian data subset model strategy is more restrictive here, since the
data cannot be used to select the n points from N (such a strategy would yield an
empirical Bayesian approach with unchecked variability). As a result, we make use of
random selected points and do not make use of any clustering algorithms.

3 Methodology
Suppose, we observe an N -dimensional spatial data vector y = (Y (s1), . . . , Y (sN ))′,
where the locations are {s1, . . . , sN} ∈ D ⊂ �d. Let, the corresponding N -dimensional
latent process of interest be ν = (ν(s1), . . . , ν(sN ))′ ∈ R

N , the N × p dimensional
matrix of known covariates be X ∈ R

N×p, and the p-dimensional unknown regression
parameter be β ∈ R

p. The additive model of the classical Bayesian spatial model is
defined as,

y = Xβ + ν + ε, (3.1)

where ε(si)
iid∼ N

(
0, τ2) ,∀i = 1, . . . , N is the white noise and w = Xβ + ν is known as

the latent process. Hence, the data model of classical Bayesian spatial model refers to
the conditional distribution f(y|ν,θ) =

∏N
i=1 f(Y (si)|ν,θ), where θ be a real-valued

parameter vector. However, we consider N to be so large that estimating ν and θ using
classical Bayesian spatial model directly is not possible in real time. As a solution,
we extend the data subset model (Bradley, 2021) by incorporating it into the classical
Bayesian spatial model and the resulting model is known as spatial data subset model.

3.1 Bayesian Hierarchical Model

We write the data subset model (Bradley, 2021) incorporating into the classical Bayesian
spatial model, where the resulting joint spatial data subset model (SDSM) is propor-
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tional to the product of the following conditional and marginal distributions,

Data Subset Model: wδ(y−δ)

⎧⎨⎩ ∏
{i:δ(si)=1}

f (Y (si)|ν,θ)

⎫⎬⎭ ,

Process Model: ν|σ2, φ ∼ N
(
0, σ2H(φ)

)
,

Parameter Model 1: β|σ2
β ∼ N

(
0, σ2

βIp
)
,

Parameter Model 2: τ2 ∼ IG(aτ , bτ ),
Parameter Model 3: σ2 ∼ IG(aσ, bσ),
Parameter Model 4: σ2

β ∼ IG(aβ , bβ),
Parameter Model 5: φ ∼ π(φ),

Subset Model: δ ∼ Pr(δ|n),

(3.2)

where f (Y (si)|ν,θ) is the probability density function (pdf) of a N
(
x(si)′β + ν(si), τ2)

distribution, δ = (δ(s1), . . . , δ(sN ))′ is an N -dimensional random vector consists of ones
and zeros, y−δ = (Y (si) : δ(si) = 0)′ consists of all such Y (si) where δ(si) = 0 for a given
δ, and wδ(y−δ) is a probability density that represents the true unknown unparameter-
ized pdf for y−δ. We define the real-valued parameter vector θ = (β, τ2, σ2, σ2

β , φ)′. A
general structure of an element of the matrix H(φ) = {hij(φ) : i, j = 1, . . . , N} ∈ R

N×N

is hij(φ) = ρc(si − sj ;φ), where ρc is a valid correlation function on �2 indexed by
the parameter φ. hij(φ) and the density function π(φ) both depends on the choice
of the function ρc. For example, if we choose exponential covariogram, i.e. hij(φ) =
exp(−φ‖si − sj‖), then a Gamma distribution might seem sensible for the choice of
π(φ) (Banerjee et al., 2014). N (μ,Σ) is shorthand for a multivariate Normal distri-
bution with mean vector μ and covariance matrix Σ. Similarly, IG(a, b) is used as
shorthand for inverse Gamma distribution with shape parameter a and scale parameter
b. Notice that, the hyperparameters of the IG distributions are different across τ2, σ2

and σ2
β . It is important to mention that one has the flexibility to consider other expres-

sions of the spatial data model. For example, one can marginalize across ν. This would
lead to one fewer block update of parameters in the sampler. We choose to include ν,
as it leads to conjugate updates, which helps with mixing of Markov chains (Banerjee
et al., 2014). Additionally, one has the flexibility to include other covariograms. We
often use the exponential covariogram for illustration.

The model in (3.2) shows that for a given δ, δ(si) = 1 includes Y (si) in the expression
of the parametric portion of the likelihood (proportionally), and δ(si) = 0 removes
Y (si) from the expression of the parametric portion of the likelihood (proportionally).
We sample δ from Pr(δ|n) for a given n such that

∑N
i=1 δ(si) = n � N , where n is

the “subsample size”. Therefore, for any sample of δ, only n number of Y (si) would
be included in the expression of likelihood (proportionally). This further means that,
the spatial data subset model only requires an n-dimensional data vector yδ = (Y (si) :
δ(si) = 1)′ (at a time), instead of the larger N -dimensional data vector y, to estimate
ν and θ. We choose n in a way that the model in (3.2) achieves computational goals
(Bradley, 2021). We specify Pr(δ|n) in a manner that it produces simple random samples
(SRS) without replacement and stratified random samples as described in Section 1.
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We assume that δ is independent of y, and Bradley (2021) showed that such a model
exists. This assumption leads to a very efficient composite sampling scheme for posterior
inference, where one first samples from Pr(δ|y, n) = Pr(δ|n), via independence, and then
samples from Pr(ν,θ|y, δ, n). The conditional distribution Pr(ν,θ|y, δ, n) only includes
n � N observations, and hence, one can choose n small enough so that sampling
from Pr(ν,θ|y, δ, n) is efficient. This composite sampling scheme iteratively re-samples
the data, so that every observation is included provided that the composite sampling
procedure runs long enough. In practice, sampling from Pr(ν,θ|y, δ, n) can require
MCMC, which leads to a Gibbs-within-Composite sampler. We provide more discussion
on this in Section 3.4.

3.2 Properties of Spatial Data Subset Model when the Sampling
Design is SRS Without Replacement

The properties of a classical Bayesian spatial model are well-established in numerous
literature (e.g., see Cressie, 1993; Banerjee et al., 2014, among several others). Enforcing
δ into the model does not change the process and parameter models, and hence it
does not change the inherent properties of the latent process. But it does change the
properties of the data since we are subsampling a smaller number of data points from
the entire dataset. Moreover, the properties vary with the choice of sampling technique
for δ. This leads us to the following propositions when Pr(δ|n) is defined by simple
random samples (SRS) without replacement.

In nonparametric statistics it is often assumed that the true measure that generated
y−δ is unknown and not parameterized (Hollander et al., 2013, pg. 2). We assume
that the true (unknown) distribution is absolutely continuous so that it has density w,
which is also unknown. Essentially, we assume that any given n-dimensional “training”
dataset yδ follows a parametric model, and the corresponding holdout y−δ is distributed
according to its true unknown data generating measure as one would in nonparametric
statistics. We call the mean computed using w the “true mean”, the variance computed
using w the “true variance”, and the covariance computed using w the “true covariance”.

Proposition 3.1. When Pr(δ|n) is defined by simple random samples without replace-
ment, the expectation, variance and covariance of the data Y (si) for i = 1, . . . , N given
the real-valued parameter vector θ = (β, τ2, σ2, σ2

β , φ)′ are given by

E[Y (si)|θ] = p{x(si)′β} + (1 − p)μ̃(si) = p{x(si)′β − μ̃(si)} + μ̃(si),
V ar(Y (si)|θ) = p(τ2 + σ2) + (1 − p)σ̃2 + p(1 − p){x(si)′β − μ̃(si)}2

= p(τ2 + σ2 − σ̃2) + p(1 − p){x(si)′β − μ̃(si)}2 + σ̃2,

Cov(Y (si), Y (sj)|θ) = aC̃(si, sj) + (b + p2)σ2hij(φ)
+ b{x(si)′β − μ̃(si)}{x(sj)′β − μ̃(sj)},

where p = n
N , a =

(
n
N

n−1
N−1 − 2 n

N + 1
)
, b = n

N

(
n−1
N−1 − n

N

)
, μ̃(si) is the true mean of

Y (si), σ̃2 is the true variance of Y (si), and C̃(si, sj) is the true covariance between
Y (si) and Y (sj).
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Proof: See Appendix A.1 of the supplementary material (Saha and Bradley, 2024).

Proposition 3.1 is useful to understand the characteristics of the spatial data subset
model in (3.2) from the perspective of its first and second moments. Notice that, the
expectation of Y (si)|θ is a weighted sum of the parametric mean and the true mean
(shown in the first expression of E[Y (si)|θ]). The second expression of E[Y (si)|θ] shows
that the true mean of Y (si)|θ is biased by the weighted difference between the para-
metric mean and the true mean. Furthermore, from the expression of the expectation
of Y (si)|θ we obtain

E[Y (si)|θ] =
{
μ̃(si) n = 0
x(si)′β n = N.

(3.3)

Equation (3.3) shows that Y (si)|θ achieves the true mean when we do not subsample,
and achieves the parametric mean when we subsample all observations. Proposition
3.1 provides two expressions for the variance. In the first expression, the variance of
Y (si)|θ is a weighted sum of the parametric variance and the true variance with an
additional component. The second expression of V ar(Y (si)|θ) shows that the true vari-
ance of Y (si)|θ is biased by two components – (a) the weighted difference between the
parametric variance and the true variance, and (b) the weighted square of the difference
between the parametric mean and the true mean. However, we still obtain

V ar(Y (si)|θ) =
{

σ̃2 n = 0
τ2 + σ2 n = N.

(3.4)

Again we see from Equation (3.4) that the variance of Y (si)|θ attains the true variance
when we do not subsample, and attains the parametric variance when we subsample
all observations. Lastly, Proposition 3.1 also provides the covariance between Y (si) and
Y (sj) given θ, which is a weighted sum of the true covariance, the parametric covariance,
and the cross-product between the difference between the parametric and true means.
Furthermore, we have

Cov(Y (si), Y (sj)|θ) =
{
C̃(si, sj) n = 0
σ2hij(φ) n = N.

(3.5)

Equation 3.5 shows that the covariance between Y (si) and Y (sj) given θ also attains
the true covariance when we do not subsample, and attains the parametric covariance
when we subsample all observations. Notice that, the joint spatial data subset model
from (3.2) becomes the true unparameterized model, wδ(y), when n = 0, and becomes
the full parametric classical Bayesian spatial model,

∏N
i=1 f (Y (si),ν,θ), when n = N .

Hence, Equations (3.3), (3.4) and (3.5) exactly show the characteristics that we expect
from the joint spatial data subset model derived from (3.2) under the conditions of no
subsampling and subsampling all observations.

Typically, the spatial properties of a data are considered for the “de-trended” data
process that has a zero mean. Hence, we define the de-trended version of Y (si),∀i =
1, . . . , N given θ and δ as

Z(si)|θ, δ =
{
Y (si) − x(si)′β δ(si) = 1
Y (si) − μ̃(si) δ(si) = 0.

(3.6)
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In a similar manner, we have that C̃ is the covariance of the true de-trended data process
Y (si) − μ̃(si),∀i = 1, . . . , N . This leads to Proposition 3.2.

Proposition 3.2 (Spatial Property). Under SRS without replacement, if the true de-
trended data process model is weakly and/or intrinsically stationary, then the de-trended
data model defined in (3.6) is respectively weakly and/or intrinsically stationary. If the
true de-trended data process model is non-stationary, then the de-trended data model
defined in (3.6) is also non-stationary.

Proof: See Appendix A.1 of the supplementary material (Saha and Bradley, 2024).

Proposition 3.2 implies that the de-trended data model defined in (3.6) retains the
spatial characteristics of the true de-trended data process model, since the covariance
between Z(si) and Z(sj) given θ depends on the true covariance between Y (si)− μ̃(si)
and Y (sj) − μ̃(sj) in the following way,

Cov(Z(si), Z(sj)|θ) = aC̃(si, sj) + (b + p2)σ2hij(φ), (3.7)

where C̃(si, sj) is the covariance of the true de-trended data process model, and p, a, b
are defined in Proposition 3.1 (see Appendix A.1 of the supplementary material (Saha
and Bradley, 2024) for the proof of Equation (3.7)). Notice that, the covariace between
Z(si) and Z(sj) given θ is also a weighted sum of the true and parametric covariances
of the de-trended data. In the case where the true de-trended data process model is
intrinsically stationary, we get the variogram as

2γ(si − sj) = 2{p(τ2 + σ2) + (1 − p)σ̃2} − 2
{
aC̃(si, sj) + (b + p2)σ2hij(φ)

}
, (3.8)

where p, a, b, σ̃2 are defined in Proposition 3.1, si − sj is the spatial lag between si
and sj , and 2γ(si− sj) is called the variogram (see Appendix A.1 of the supplementary
material (Saha and Bradley, 2024) for the proof of variogram). This helps us to visualize
the spatial properties of the model in (3.2). If we assume that the true de-trended data
process model is weakly stationary, i.e. if the true covariance C̃(si, sj) depends on the
lag between si and sj , then we have the usual definitions of the sill, nugget and range,

Sill = lim
‖d‖→∞

γ(d) = p(τ2 + σ2) + (1 − p)σ̃2,

Nugget = lim
‖d‖→0+

γ(d) =
[
pτ2 + (p− b− p2)σ2]+

[
(1 − p− a)σ̃2 + aτ̃2] ,

Range = inf
{
d : aC̃(d) + (b + p2)σ2ρc(d;φ) = 0

}
,

(3.9)

where d = si − sj is the spatial lag and τ̃2 is the nugget of the true de-trended data
process. Notice that, the nugget is dependent on both parametric nugget (τ2) and the
true nugget (τ̃2). Refer to Appendix A.1 of the supplementary material (Saha and
Bradley, 2024) for the proof of sill, nugget and range. Equation (3.9) reproduces the
sill, nugget, and range of the (true) parametric model when (n = 0) n = N . Thus, we
again achieve a type of balance between the true model and parametric model.
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3.3 Properties of Spatial Data Subset Model when the Sampling
Design is Stratified Random Sampling

In the case of stratified random sampling, the properties of the spatial data subset
model discussed in Section 3.2 change, which is important to explore. We start with the
moment properties when Pr(δ|n) is defined by stratified random samples.

Proposition 3.3. Let, D1, . . . , DR represent R disjoint strata such that the spatial
domain D = ∪R

r=1Dr. Let, Pr(δ|n) be defined by stratified random samples with R
strata. Then the expectation, variance and covariance of the data Y (si) for i = 1, . . . , N
given the real-valued parameter vector θ = (β, τ2, σ2, σ2

β , φ)′ are given by

When si ∈ Dr for r = 1, . . . , R,

E[Y (si)|θ] = pr{x(si)′β} + (1 − pr)μ̃(si) = pr{x(si)′β − μ̃(si)} + μ̃(si),
V ar(Y (si)|θ) = pr(τ2 + σ2) + (1 − pr)σ̃2 + pr(1 − pr){x(si)′β − μ̃(si)}2

= pr(τ2 + σ2 − σ̃2) + σ̃2 + pr(1 − pr){x(si)′β − μ̃(si)}2;

When si, sj ∈ Dr for r = 1, . . . , R,

Cov(Y (si), Y (sj)|θ) = arC̃(si, sj) + (br + p2
r)σ2hij(φ)

+ br{x(si)′β − μ̃(si)}{x(sj)′β − μ̃(sj)};

When si ∈ Dr, sj ∈ Dt and r �= t for r, t ∈ {1, . . . , R},

Cov(Y (si), Y (sj)|θ) = (prpt − pr − pt + 1)C̃(si, sj) + prptσ
2hij(φ),

where pr = nr

Nr
, pt = nt

Nt
, ar =

(
nr

Nr

nr−1
Nr−1 − 2 nr

Nr
+ 1
)
, br = nr

Nr

(
nr−1
Nr−1 − nr

Nr

)
, nr is the

number of subsamples drawn from stratum r with size Nr, nt is the number of subsamples
drawn from stratum t with size Nt, and μ̃(si), σ̃2, C̃(si, sj) are defined in Proposition
3.1.

Proof: See Appendix A.2 of the supplementary material (Saha and Bradley, 2024).

Notice that, the expectation of Y (si)|θ is a weighted sum of the parametric mean and
the true mean (shown in the first expression of E[Y (si)|θ]) like it was for SRS without
replacement. Also, the variance of Y (si)|θ is a weighted sum of the parametric variance
and the true variance with an additional component as shown in the first expression of
V ar(Y (si)|θ) (similar to SRS without replacement). On the other hand, the covariance
between Y (si) and Y (sj) depends on whether si and sj are in the same stratum or
not. In both the cases, the covariance is a weighted sum of the parametric covariance
and the true covariance (plus a weighted cross-product between the difference between
the parametric and true means, when si and sj are in same stratum). Furthermore, we
arrive at the same equations as (3.3), (3.4) and (3.5) from Proposition 3.3 under the
conditions nr = nt = 0, nr = Nr and nt = Nt. This implies that even if the sampling
design is different, the properties of the model in (3.2) are fully non-parametric when
we do not subsample and fully parametric when we subsample all observations.
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It is also noticeable that pr (and pt) is dependent on the number of subsamples
drawn from stratum r (and t) and size of the corresponding stratum. If the sizes of
all strata are same, and equal number of subsamples are drawn from each stratum,
then the probability of sampling one data point using SRS without replacement is same
as the probability of sampling one data point using stratified random sampling, since
p = n/N = n/R

N/R = nr/Nr = pr for r = 1, . . . , R (same relation can be found for pt). So,
pr (or pt) is different than p when the sizes of strata are different or unequal number
of subsamples are drawn from each stratum. Thus, the expectation and variance of
Y (si)|θ in Propositions 3.1 and 3.3 are the same when equal number of subsamples are
drawn from equal sized strata. However, the covariances between Y (si) and Y (sj) given
θ under two sampling techniques are unequal.

Proposition 3.4 (Spatial Property). Under stratified random sampling, if the true
de-trended data process model is weakly and/or intrinsically stationary, then the de-
trended data model defined in (3.6) is respectively weakly and/or intrinsically stationary.
Similarly, if the true de-trended data process model is non-stationary, then the de-trended
data model defined in (3.6) is also non-stationary.

Proof: See Appendix A.2 of the supplementary material (Saha and Bradley, 2024).

Proposition 3.4 also implies that the de-trended data model defined in (3.6) always
retains the stationary properties of the true data process model. Under stratified random
sampling, the covariance between Z(si) and Z(sj) given θ becomes

Cov(Z(si), Z(sj)|θ) =
{
arC̃(si, sj) + (br + p2

r)σ2hij(φ) when si, sj ∈ Dr

artC̃(si, sj) + prptσ
2hij(φ) when si ∈ Dr, sj ∈ Dt, r �= t,

(3.10)
where art = prpt − pr − pt + 1, C̃(si, sj) is the covariance of the true de-trended data
process model, and pr, ar, br, pt are defined in Proposition 3.3. Equation (3.10) (see
Appendix A.2 of the supplementary material (Saha and Bradley, 2024) for the proof)
shows that under stratified random sampling, the covariance between Z(si) and Z(sj)
given θ is again a weighted sum of the true and parametric covariances of the de-trended
data, but the weights change based on si and sj are in same stratum or not. If the true
data process model is assumed to be intrinsically stationary, then we get two different
variograms depending on whether si and sj are in the same stratum or not. When
si, sj ∈ Dr for r = 1, . . . , R, we obtain the variogram as

2γ(si−sj) = 2{pr(τ2 +σ2)+(1−pr)σ̃2}−2
{
arC̃(si, sj) + (br + p2

r)σ2hij(φ)
}
, (3.11)

where pr, ar and br are defined in Proposition 3.3. When si ∈ Dr, sj ∈ Dt and r �= t for
r, t ∈ {1, . . . , R}, the variogram becomes

2γ(si−sj) = (pr+pt)(τ2+σ2)+(2−pr−pt)σ̃2−2
{
artC̃(si, sj) + prptσ

2hij(φ)
}
, (3.12)

where art = prpt − pr − pt + 1. The proof of Equations (3.11) and (3.12) are shown in
Appendix A.2 of the supplementary material (Saha and Bradley, 2024). If the true de-
trended data process model is assumed to be weakly stationary, i.e. if the true covariance
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C̃(si, sj) depends on the lag between si and sj , then we have the usual definitions of
the sill, nugget and range,

Sill =
{
pr(τ2 + σ2) + (1 − pr)σ̃2 si, sj ∈ Dr
pr+pt

2 (τ2 + σ2) +
(
1 − pr+pt

2
)
σ̃2 si ∈ Dr, sj ∈ Dt, r �= t,

Nugget =

⎧⎪⎨⎪⎩
[
prτ

2 + (pr − br − p2
r)σ2]+

[
(1 − pr − ar)σ̃2 + ar τ̃

2] si, sj ∈ Dr[
pr+pt

2 τ2 + pr+pt−2prpt

2 σ2]+
[
pr+pt−2prpt

2 σ̃2 + artτ̃
2] si ∈ Dr, sj ∈ Dt,

r �= t,

Range =
{

inf
{
d : arC̃(d) + (br + p2

r)σ2ρc(d;φ) = 0
}

si, sj ∈ Dr

inf
{
d : artC̃(d) + prptσ

2ρc(d;φ) = 0
}

si ∈ Dr, sj ∈ Dt, r �= t,

(3.13)

where d = si − sj is the spatial lag and τ̃2 is the nugget of the true de-trended data
process. This is to emphasize that the spatial characteristics change based on whether si
and sj belong to same stratum or not (see Appendix A.2 of the supplementary material
(Saha and Bradley, 2024) for the proof of sill, nugget and range). Equation (3.13)
reproduces the sill, nugget, and range of the (true) parametric model when (nr = 0 and
nt = 0) nr = Nr and nt = Nt. Thus, we again achieve a type of balance between the
true model and parametric model.

Propositions 3.2 and 3.4 show that the SDSM assumes the data is stationary when
w implies a stationary process, and the SDSM assumes the data is nonstationary when
w implies a nonstationary process. This consequence is particularly important for moti-
vating the use of the SDSM. There are times when one would just prefer to implement a
standard model. This is because the properties of standard models (e.g., weak station-
arity, sill, nugget, and range) are well-known and easier to communicate to the general
public and collaborators in different fields. However, it is difficult to apply these models
in high-dimensional settings because of computational problems and the assumptions
on weak stationarity may be suspect in high-dimensions. Our proposed method allows
one to fit a traditional Kriging model (to each subsample) in a way that respects the sta-
tionary properties of the entire spatial dataset (via our propositions), without throwing
away data, and in a way that is fully scalable.

One important point to mention is that we can not use these propositions in prac-
tice. This is because w is the true nonparametric density associated with the measure
that generated the realization {Y (si)} and is generally unknown (a common assump-
tion in nonparametric statistics, see, Hollander et al., 2013). The main purpose of these
propositions is that it aids with interpretation (i.e., interpretation of model assump-
tions), which subsequently, motivates the use of our SDSM model. Specifically, we are
assuming the subsample (i.e., all Y (si) such that δ(si) = 1) follows a parametric model,
and the holdout data (i.e., all Y (si) such that δ(si) = 0) is assumed to be distributed
according to the actual data generating mechanism that produced it (assuming it has a
density), which is unknown, and this is true for every split of the data into training and
holdout. Moreover, we can strike a balance between these models through our choice
of n (i.e., when n = N we obtain a parametric model, and with n = 0 we obtain a
nonparametric model).
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One can plot the sill, nugget, and range associated with the covariance function
given by cov(Y (si), Y (sj)|θ, δ(si) = 1, δ(sj) = 1) = σ2hij(φ), where hij(φ) is the co-
variogram evaluated at si − sj . Note that cov(Y (si), Y (sj)|θ, δ(si) = 1, δ(sj) = 1) is
different than cov(Y (si), Y (sj)|θ). One cannot plot the sill, nugget, and range associ-
ated with the covariance function cov(Y (si), Y (sj)|θ), which contains the unknown w
in its expression. The fact that cov(Y (si), Y (sj)|θ, δ(si) = 1, δ(sj) = 1) is different from
cov(Y (si), Y (sj)|θ), restricts our interpretation of the sill, nugget, and range. Tradition-
ally, these parameters describe a covariance function at any two locations in the spatial
domain. For example, the traditional interpretation of the sill and nugget describes the
covariance function of the response at any two locations in the spatial domain as the
spatial lag goes to infinity and zero, respectively. In our model, these interpretations
hold only for the locations in the training set (i.e., δ(si) = δ(sj) = 1). That is, the sill
and nugget in our model describe the covariance function of the response at any two
locations with δ(si) = δ(sj) = 1 as the spatial lag goes to infinity and zero, respectively.

3.4 MCMC Implementation

The full-conditional distributions of νδ,νA,β, τ
2, σ2, σ2

β , and φ are derived (see Ap-
pendix B of the supplementary material; Saha and Bradley, 2024) using a standard
proportionality argument, and we reiterate that for any given δ the full-conditional
distribution is only implemented using a single dataset of size n � N . The prior distri-
bution for all the variance parameters (τ2, σ2, σ2

β) are chosen to be a non-informative
inverse Gamma distribution, IG(a, b), among different choices (Gelman et al., 1995;
Daniels, 1999; Gelman, 2006; Banerjee et al., 2014). A standard choice for the prior of
β is independent Normal distribution with mean 0 and variance σ2

β (Banerjee et al.,
2014). Learning the range parameter, φ, has been a challenge in spatial statistics over
decades (Berger et al., 2001; Paulo, 2005; Pilz and Spöck, 2008; Kazianka and Pilz,
2012). Berger et al. (2001) investigated that common choices of prior distribution for
φ, like a constant prior π(φ) = 1 or independent Jeffreys prior typically result in an
improper posterior distribution for θ = (β, τ2, σ2, σ2

β , φ)′. As a solution, they suggested
that a Jeffrey rule prior or a reference prior for φ yields a proper posterior distribution.
It is also often suggested to choose an informative prior for φ (Banerjee et al., 2014)
such as, a uniform distribution over a specified small interval, or a discrete uniform
distribution over a specific finite set of points. We specify π(φ) as a discrete uniform
distribution with a support of a finite set of points.

To sample from the joint distribution of random variables say X and Y , one can
first sample Y from its density f(Y ) and then sample X from the conditional density
f(X|Y ). This type of sampler is well-known (e.g., see Dunn and Shultis, 2022; Van Dyk
and Park, 2008), and we call this a “composite sampler” borrowing terminology from the
composite likelihood literature (e.g., see Varin et al., 2011). In our case, we first sample
from p(δ|y, n) = p(δ|n) and then sample from p(ν,θ|y, δ, n) using a Gibbs sampler.
We call this a “Gibbs-within-composite sampler”, since a Gibbs sampling step is used
within our composite sampler. This sampling approach is needed to avoid specifying
the value of the true density w. The density w does not contain θ and ν, and hence
is a proportionality constant when deriving the full-conditionals for θ and ν. As a
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result, those full-conditionals do not contain w in its expression. We also assume δ is
independent of the data y, where note, Bradley (2021) showed that there exists Bayesian
hierarchical models that allow δ to be independent of y. Consequently p(δ|y, n) =
p(δ|n), which does not contain w in its expression. This allows for one to adopt a
Gibbs-within-composite sampler strategy to avoid specifying the true density for the
holdout y−δ.

Bradley (2021) suggested to use a Gibbs sampler, which is reasonable to do when the
full-conditional distribution for δ has the following property, p(δ|ν,θ,y, n) = p(δ|n);
that is, if δ is independent of ν, θ and y. When p(δ|ν,θ,y, n) = p(δ|n), then the Gibbs-
within-composite sampler becomes a Gibbs sampler. This assumption is reasonable
when n is sufficiently large, so that the distribution p(ν,θ|y, δ, n) is roughly constant
over different values of δ, which occurs when the spatial statistical model is posterior
consistent. This can be seen through the following heuristic,

p(δ|ν,θ,y, n) = p(δ,ν,θ|y, n)
p(ν,θ|y, n) = p(δ|y, n)p(ν,θ|δ,y, n)

p(ν,θ|y, n)

= p(δ|y, n)p(ν,θ|δ,y, n)∑
δ∗ p(δ∗|y, n)p(ν,θ|δ∗,y, n)

= p(δ|y, n)∑
δ∗ p(δ∗|y, n) {p(ν,θ|δ∗,y, n)/p(ν,θ|δ,y, n)}

≈ p(δ|y, n)∑
δ∗ p(δ∗|y, n) = p(δ|y, n) = p(δ|n),

(3.14)

when limn→∞
p(ν,θ|δ∗,y,n)
p(ν,θ|δ,y,n) = 1 if the spatial statistical model is posterior consistent.

In practice, one needs to check that p(ν,θ|δ∗,y, n) approaches p(ν,θ|δ,y, n) if n is
sufficiently large, which can be checked empirically by comparing the replicates from the
Gibbs sampler shown in Algorithm 1 to the replicates from the Gibbs-within-composite
sampler. We provide examples of this empirical investigation for both our simulations
and application in Appendix C of the supplementary material (Saha and Bradley, 2024).
In both studies we find it reasonable to use a Gibbs sampler, but emphasize that this
assumption should be checked empirically (or theoretically) in practice.

4 Simulations
In this section, we use simulation to demonstrate the predictive and computational
performance of the proposed spatial data subset model in (3.2) under different model
specifications. The simulation setup is provided in Section 4.1. We specify Pr(δ|n) in a
way that it generates (a) SRS without replacement, and (b) stratified random samples.
We illustrate the results generated by the spatial data subset model under both sampling
techniques in Section 4.2. We also compare the spatial data subset model to the full
model by demonstrating a simulation study on a smaller dataset in Section 4.3. Finally,
we give a detailed analysis on the scalability of our proposed model in Section 4.4.
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Algorithm 1: Implementation of the model in (3.2) for a specific n.
1 Define n � N , G, g0 (burn-in), and a set of prediction locations A ⊂ D.

2 Initialize θ[0] =
(
β[0], τ2[0]

, σ2[0]
, σ2

β
[0]

, φ[0]
)′

.
3 for g = 1 : G do
4 Sample δ[g] ∼ Pr(δ|n).
5 Set the n-dimensional vector y[g]

δ =
(
Y (si) : δ(si)[g] = 1

)′.
6 Set the n× p matrix X[g]

δ =
(
x(si) : δ(si)[g] = 1

)′.
7 Calculate the n× n matrix Hδ

(
φ[g−1]) =

(
hjl

(
φ[g−1]) : j, l ∈ {i : δ(si)[g] = 1}

)
.

8 Sample νδ
[g] =

(
ν(si)[g] : δ(si)[g] = 1

)′ from

N
{(

In +
τ2[g−1]

σ2[g−1] H
−1
δ

(
φ[g−1]

))−1 (
y[g]
δ − X[g]

δ β[g−1]
)
,

(
1

τ2[g−1] In +
1

σ2[g−1] H
−1
δ

(
φ[g−1]

))−1
}
.

9 Sample β[g] from

N
{⎛⎝X[g]

δ

′
X[g]

δ +
τ2[g−1]

σ2
β

[g−1] Ip

⎞⎠−1

X[g]
δ

′ (
y[g]
δ − νδ

[g]
)
,

⎛⎝ 1
τ2[g−1] X

[g]
δ

′
X[g]

δ +
1

σ2
β

[g−1] Ip

⎞⎠−1}
.

10 Sample τ2[g] from

IG
{
aτ + n

2 , bτ + 1
2

(
y[g]
δ − X[g]

δ β[g] − νδ
[g]
)′ (

y[g]
δ − X[g]

δ β[g] − νδ
[g]
)}

.

11 Sample σ2[g] from IG
{
aσ + n

2 , bσ + 1
2νδ

[g]′H−1
δ

(
φ[g−1]) νδ

[g]
}
.

12 Sample σ2
β

[g] from IG
{
aβ + p

2 , bβ + 1
2β

[g]′β[g]
}
.

13 Sample φ[g] from its full-conditional distribution, where π(φ) is discrete uniform.
14 end
15 Prediction Steps:
16 for g = g0 : G do
17 Calculate Hm

(
φ[g−1]) =

(
hjl

(
φ[g−1]) : j ∈ A, l ∈

{
i : δ(si)[g] = 1

})
.

18 Calculate HA

(
φ[g−1]) =

(
hjl

(
φ[g−1]) : j, l ∈ A

)
.

19 Parallel computation at each i ∈ A:
20 Set h′

mi· = i-th row of Hm
(
φ[g−1]).

21 Set hAii = i-th diagonal element of HA

(
φ[g−1]).

22 Sample ν(si)[g] from
N
{
h′
mi·H

−1
δ

(
φ[g−1]) νδ

[g], σ2[g−1]
[
hAii − h′

mi·H
−1
δ

(
φ[g−1]) (h′

mi·
)′]}.

23 Compute W (si)[g] = x(si)′β[g] + ν(si)[g].
24 end
25 end
26 end
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Figure 4.1: Image plot of the simulated spatial data on a 100×100 grid over [0, 1]×[0, 1].
This data is simulated based on the simulation setup mentioned in Section 4.1.

4.1 Simulation Setup
We fix the spatial domain D ⊂ �2, where D is a 100 × 100 grid over [0, 1] × [0, 1].
Thus, there are 10,000 spatial locations in total, all equally spaced. First, we simulate
X, which is a 10, 000× 2 dimensional matrix, from an independent U(0, 1) distribution.
Then, we simulate the process model ν, a vector of size 10,000, from a non-stationary
model using NSconvo_sim function from convoSPAT library in R, with true β = (2, 3)′
and exponential covariance function, and calculate w = Xβ + ν. Finally, we simulate
the data vector y, a vector of size 10,000, from the latent process and choose τ2 so
that we have a signal-to-noise-ratio of 3 (SNR = Var(w)/Var(ε)). Figure 4.1 shows the
simulated spatial data y based on this simulation setup. We also enforce 20% missing
values at random, and 10% are enforced to be missing on an arbitrary 25 × 40 grid
(total number of missing locations = 3,000). In practice, missing data may occur over
large regions similar to our 25 × 40 grid specification. We consider two specifications
of Pr(δ|n): (a) SRS without replacement, and (b) stratified random sampling. For the
latter part, we define four strata: {si : x ≤ 0.5, y ≤ 0.5}, {si : x ≤ 0.5, y > 0.5},
{si : x > 0.5, y ≤ 0.5} and {si : x > 0.5, y > 0.5}. The same missing data structure is
used for both sampling designs.

4.2 An Illustration
We implement the spatial data subset model in (3.2) on the simulated data with missing
values defined in Section 4.1. We denote the locations of these missing values as A ⊂ D,
and we aim to make prediction at these locations. The covariogram for the model in (3.2)
is chosen to be exponential, i.e. hij(φ) = exp(−φ‖si − sj‖). We use standard conjugate
prior specifications (see Appendix B of the supplementary material (Saha and Bradley,
2024) for more details). The model in (3.2) is implemented in the Gibbs sampler using
Algorithm 1 (since stationarity reaches irrespective of using a Gibbs-within-composite
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Figure 4.2: We plot the density of MCMC replicates for β1 (left column) and β2 (right
column) for different subsample sizes when Pr(δ|n) is defined by SRS without replace-
ment (top row) and by stratified random sampling (bottom row). The red dashed lines
represent the true values β1 = 2 (left column) and β2 = 3 (right column).

sampler; see Appendix C of the supplementary material (Saha and Bradley, 2024) for a
detailed description) with G = 10, 000 iterations and a burn-in of g0 = 2, 000. Finally,
we predict the response at each location in A using Algorithm 1. We run the same
algorithm (Algorithm 1) when Pr(δ|n) is defined by (a) SRS without replacement, and
(b) stratified random samples. We use the author’s laptop computer with the following
specification to run the algorithm: 11 Gen Intel(R) Core(TM) i7-1165G7 CPU with
2.80GHz and 16 GB RAM.

To investigate the effect of subsample size on the estimates of β, we plot the density
of MCMC replicates for β1 and β2 for different values of n under both SRS without
replacement and stratified random sampling in Figure 4.2. We see that the densities
of MCMC replicates for both β1 and β2 have high variance, non-zero skewness and
platykurtic peak when n is small. As we increase n, the densities become sharper with
less variability, and become more symmetric about the corresponding true values of β1
and β2. The densities achieve least variability when n = 240. These properties show
that the posterior samples of β tend to have less variability with its mean approaching
to the true value as n grows, which is consistent with the results in Bradley (2021). We
see similar properties within the posterior samples of β across the sampling strategies.

To evaluate the inferential performance of our model, we compute the root mean
square error (RMSE) between the process W (si) and the prediction Ŵ (si) for each
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Figure 4.3: We plot the RMSE (top left panel), CRPS (top right panel), CPU time
for running the model (bottom left panel), and CPU time for prediction (bottom right
panel) at 3,000 missing locations over different subsample size, for both SRS without
replacement (red) and stratified random sampling (blue).

i ∈ A, using the following equation,

RMSE =
{∑

i∈A

[
W (si) − Ŵ (si)

]2
/3000

}1/2

, (4.1)

where W (si) represents the true process and Ŵ (si) represents the prediction at location
si. Since, we know the true process in case of simulated data, it is possible to use (4.1)
to calculate the RMSE. To evaluate the computational performance of our model, we
calculate the CPU time to run the model in (3.2) and perform predictions. We calculate
the CPU time for predictions separately because the CPU time increases linearly with
the number of missing locations for same subsample size. We compare RMSE and CPU
times across the sampling strategies for δ.

In Figure 4.3, we plot the RMSE, Continuous Rank Probability Score (CRPS; see
Gneiting et al., 2005, to incorporate uncertainty quantification in the metric), CPU time
to run the model, and CPU time for predictions over different subsample size, when
Pr(δ|n) is defined by (a) SRS without replacement, and (b) stratified random samples.
We choose n to be {12, 20, 32, . . . , 220, 232, 240} which are multiples of 4, since there
are four strata in this simulation setting, and we draw equal number of samples from
each stratum (in case of stratified random sampling). We keep n same for SRS without
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Figure 4.4: We plot the RMSE (left panel) and pairwise difference in predictions (right
panel) over different subsample size under SRS without replacement (red) and stratified
random sampling (blue). The elbow of pairwise difference in predictions is much sharper
in both sampling designs.

replacement to make a fair performance comparison between two sampling designs.
For both the sampling strategies, we see that the RMSE and CRPS decrease, and the
CPU times (for both running the model and prediction) increase as the subsample size
increases, and the RMSE (and CRPS) is at its smallest value when n = 240. Hence, it can
be inferred that if we increase n even further, the RMSE and CRPS are expected to keep
on decreasing, but at a very small rate. But at the same time, the CPU times increase
with n. It takes roughly 13 minutes for running the model and roughly 11.5 minutes
for prediction when n = 240 for SRS without replacement. In case of stratified random
sampling, it takes roughly 14 minutes for running the model and roughly 12 minutes
for prediction when n = 240. So, we see a trade-off between the model accuracy and the
CPU time as n changes. However, both RMSE and CRPS show an “elbow” pattern (in
the top row of Figure 4.3), i.e. the decreasing rate is very less as subsample size increases
after the elbow. Therefore, to get the best prediction, one should choose n to be a value
after the elbow seen in the RMSE (or in the CRPS). However, it is suggested by Bradley
(2021) to simultaneously look at the pairwise difference between ŵn and ŵn+1 (ŵn is
the vector of predictions for subsample size n) for n = n1, . . . , nB . In Figure 4.4, we plot
the pairwise difference between ŵn and ŵn+1, or (ŵn−ŵn+1)′(ŵn−ŵn+1) (in the right
panel) along with the RMSE (in the left panel), under both sampling strategies. Notice
that, the elbow of pairwise difference (for both sampling) is much sharper than it is
for RMSE. Considering the plots, when Pr(δ|n) is defined by SRS without replacement
(or stratified random samples) one choice of n can be around 100, for which it takes
roughly 2 minutes (or 2.5 minutes) to run the model, and roughly 3.6 minutes (or 3.5
minutes) for prediction.
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Figure 4.5: We plot the predictions {Ŵ (si) : i ∈ A} vs. the true process {W (si) : i ∈ A}
for different choices of n, when Pr(δ|n) is defined by SRS without replacement. The
straight line represents the 45° reference line. The corresponding R2 value is shown on
the title of each plot.

In Figures 4.5 and 4.6, we plot the predictions ({Ŵ (si) : i ∈ A}) vs. the true process
({W (si) : i ∈ A}) for different choices of n, when Pr(δ|n) is defined by SRS without
replacement and by stratified random sampling respectively. In both figures, we see
that the scatter plots are mostly aligned with the 45° reference line even for the smaller
values of n. This suggests that the model is able to predict accurately even with small
subsample size. We also see an increase in R2 value as n increases, which does indicate
that the predictions become more precise as we increase n. Thus in terms of prediction,
we see similar properties for both sampling designs in this simulation study.

4.3 Simulation Study
We now assess the performance of our proposed model over multiple simulated repli-
cates. Since the spatial data subset model is a semi-parametric model, it is important to
compare it with the full model using simulation study. By “full model” we mean n = N ,
which is the weakly stationary spatial model. This comparison is particularly interest-
ing, since the full model is misspecified and our spatial data subset model approach has
marginal distributions at any given subset (for the holdout) that are correctly specified.
Thus, we simulate a smaller dimensional dataset of size 900 on a 30 × 30 grid over
[0, 1]× [0, 1] the same way as we described in Section 4.1 so that we can implement the
full model. Here, we enforce 20% (or, 180) missing values at random locations over the
grid. Hence, we generate random subsamples of sizes 10, 20, . . . , 100, 200, . . . , 700 from
the remaining 720 data points and predict the response at the 180 missing locations
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Figure 4.6: We plot the predictions {Ŵ (si) : i ∈ A} vs. the true process {W (si) : i ∈ A}
for different choices of n, when Pr(δ|n) is defined by stratified random samples. The
straight line represents the 45° reference line. The corresponding R2 value is shown on
the title of each plot.

using Algorithm 1 with G = 5, 000 and g0 = 1, 000 under (a) SRS without replacement
and (b) stratified random sampling. We also run the full model using all 720 data points
and we predict the response at the missing locations using the full model. We compare
both models with respect to the RMSE between the true process and the predictions
at the missing locations. We generate 10 replicates of each of the mentioned results.

In Figure 4.7, we plot the Boxplots of the 10 replicates of RMSE that we get from
our proposed spatial data subset model using Algorithm 1. The results under SRS
without replacement and stratified random sampling are shown on the left and right
panel respectively. Also, the red horizontal line on both panels represents the average
RMSE of the 10 replicates that we get from the full model. As expected, the range of
the Boxplots decreases with increase in n. An interesting observation from Figure 4.7 is
that the spatial data subset model for n = 500, 600 and 700 performs even better than
the full model which was trained with all 720 data points. This may be because the
data is simulated from a non-stationary model whereas the full model is a stationary
model, but our proposed model becomes non-stationary because of its semi-parametric
nature.

4.4 Scalability of the Spatial Data Subset Model

In principle, our proposed approach can be applied to a spatial dataset of any size that
can be stored. A common target for complexity time for spatial models is O(N), where
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Figure 4.7: We plot the Boxplots of 10 replicates of RMSE that we get from the spatial
data subset model for each subsample size, and the average RMSE (the red horizon-
tal line) of 10 replicates that we get from the full model. The left and right panels
show the result under SRS without replacement and under stratified random sampling
respectively.

N is the size of the dataset (see Cooley and Tukey, 1965; Mallat, 1989; Cressie and
Johannesson, 2008 for standard references). In general, this goal of O(N) still can lead
to computational failures, since in the era of big data the size of N is continuously
increasing. But, our proposed spatial data subset model (which is also a fully Bayesian
model) uses n � N data points at a time (and all N for large enough G), which makes
it a O(n3G) spatial model. Thus, no matter what the value of N is, we can always
choose an n scalable in the presence of any data size N . To investigate this, we simulate
large datasets with different sizes and we fit the spatial methods for large dataset from
a benchmark study in Heaton et al. (2019). Our goal is to find the N such that the
methods from Heaton et al. (2019) crash the first author’s laptop or stop with an error
message regarding size allocation. We refer to this N as the “crash point”. For this
study, we use the author’s laptop computer with the same specifications mentioned
in Section 4.2 (11 Gen Intel(R) Core(TM) i7-1165G7 CPU with 2.80GHz and 16 GB
RAM).

We simulate large datasets of size N using an efficient spectral simulation method
(see Mejía and Rodríguez-Iturbe, 1974; Cressie, 1993, pg. 204; Yang and Bradley, 2021
for more details) with the exponential covariogram with range equals to 3 and spatial
domain as the unit square. An independent error component is included with an SNR
equals to 3. We also enforce 1,000 missing values to perform predictions. We keep this
number small to focus on the computation time on training the model. We fit the spatial
methods mentioned in Heaton et al. (2019) one by one to datasets with different sizes
until we reach the crash point. In Table 4.1, we list the crash points of each method.
We find that the methods crash at different data sizes, and LAGP scales to the largest
N at 20M. However, the proposed spatial data subset model is still able to process
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Spatial Method Crash Point
FRK 550 K

Gapfill 8 M
Lattice Kriging 110 K

LAGP 20 M
Metakriging 100 K

MRA 1 M
NNGP 5 M

Partition 600 K
Predictive Process 3 M

SPDE 150 K
Tapering 100 K

Table 4.1: Crash points (value of N at which a method crash) for different spatial
methods.

Figure 4.8: We plot the RMSE of predictions at 1,000 missing locations on the left panel,
and the total CPU time (in minutes) on the right panel for different subsample sizes on
a simulated dataset of size 20M.

that much data for different values of n. We provide the R code that generates the 20M
dimensional spatial dataset and fits the SDSM method to it on GitHub at https://
github.com/sudiptosaha/Spatial-Data-Subset-Model. The code to implement the
competing methods to the 20M observations can be found at https://github.com/
finnlindgren/heatoncomparison (Heaton et al., 2019). In Figure 4.8, we plot the
performance of the spatial data subset model on the same 20M data. On the left panel,
we plot the RMSE of the predictions at 1,000 missing locations for different subsample
sizes. On the right panel, we plot the total CPU time (CPU time to run the model and
to make predictions) in minutes for different subsample sizes. We see that, not only our
proposed model is able to fit a data of size 20M, it also takes less CPU time (at lower
values of n) to run and make predictions, and shows compelling performance, whereas
all the other methods crash for the same dataset.

We emphasize that we do not throw away any of 20M observations, and simply only
consider n � N at each step of our sampler. The crash point can be interpreted as the

https://github.com/sudiptosaha/Spatial-Data-Subset-Model
https://github.com/sudiptosaha/Spatial-Data-Subset-Model
https://github.com/finnlindgren/heatoncomparison
https://github.com/finnlindgren/heatoncomparison
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value of N such that the corresponding model can be fully scalable, where recall, we say
a method is fully scalable if it makes use of all N observations without discarding them.
For N = 20M, we have checked that 99.998% observations are used after G = 106K when
implementing in Algorithm 1. What we have observed is that our sampler for posterior
replicates of (θ,ν) reaches its stationary distribution well before G = 106K. That is,
it appears that one does not need to be fully scalable in order to appropriately search
through the parameter space. In practice, we suggest choosing G based on standard
MCMC diagnostic criteria (e.g., trace plots and Gelman-Rubin diagnostics) instead of
choosing G to obtain full scalability.

We reiterate that the crash points depend on the system that is used. Thus, if we
run the methods on a different system, the crash points will change. But, our proposed
method does not crash for any size of dataset for an n � N provided N observations
can be stored. We have also considered N = 30M and found that our method can still
produce posterior inferences in this case (i.e., the algorithm does not crash). To our
knowledge, there is no spatial model other than our proposed spatial data subset model
that is fully scalable (for large enough G) to a spatial dataset of any size that can be
stored.

5 Application
In this section, we present an analysis of a real dataset that consists of land surface
temperatures collected by MODIS, a remote sensing instrument onboard the Terra
satellite. We discuss the dataset in detail in Section 5.1, and we provide a detailed
analysis of the dataset in Section 5.2.

5.1 The Dataset
On December 18, 1999 the National Aeronautics and Space Administration (NASA)
launched the Terra satellite, which is the Earth Observing System (EOS) flagship satel-
lite orbiting at an altitude of 705 kilometers (https://terra.nasa.gov/; see Ranson,
2003). The Moderate Resolution Imaging Spectroradiometer (MODIS) is an important
remote sensing instrument onboard the Terra satellite. It primarily captures Earth’s at-
mospheric conditions which helps scientists in monitoring the changes in the biosphere.
MODIS measures several different variables including land and sea surface tempera-
tures. In particular, MODIS retrieves the Land Surface Temperature (LST) data daily
at 1 km pixels by using the generalized split-window algorithm (Wan and Dozier, 1996),
and at 6 km grids by using the day/night algorithm (Wan and Li, 1997). The pair of
daytime and nighttime LSTs are recorded by the day/night algorithm in seven Thermal
Infrared (TIR) bands. We observe the Level-3 (Wan et al., 2006; Hulley et al., 2016)
daytime LSTs as measured by MODIS on August 4, 2016. Heaton et al. (2019) consid-
ered this dataset as large spatial data and provided a comparative study among several
spatial methods applied on this dataset. The data were originally downloaded from the
MODIS reprojection tool web interface (MRTweb), and later made available at a public
repository at https://github.com/finnlindgren/heatoncomparison (Heaton et al.,
2019).

https://terra.nasa.gov/
https://github.com/finnlindgren/heatoncomparison
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Figure 5.1: We plot the overall LST data on the left panel, and the training LST data
on the right panel. The grey region on the left panel represents the missing data. The
grey region on the right panel represents the missing data and the test data together.

This benchmark dataset is particularly useful because it allows us to compare our
modification (i.e., using a data subset model) of a standard spatial model (i.e., based
on covariograms) to a large list of current spatial methods including FRK (Cressie and
Johannesson, 2008), Gapfill (Gerber et al., 2018), Lattice Kriging (Nychka et al., 2015),
Local Approximate Gaussian Process (LAGP; Gramacy and Apley, 2015), Metakriging
(Guhaniyogi and Banerjee, 2018), Multiresolution Approximations (MRA; Jurek and
Katzfuss, 2021), Nearest Neighbor Process (NNGP; Datta et al., 2016), Spatial Parti-
tioning (Sang et al., 2011), Predictive Process (Banerjee et al., 2008), SPDE (Lindgren
et al., 2011), Covariance Tapering (Furrer et al., 2006), Periodic Embedding (Guinness,
2019), and Multi-scale Vecchia (MSV) approximation (Zhang and Katzfuss, 2022). We
also compare our proposed model’s performance with SoD (Chalupka et al., 2013) for
subsample sizes 2,000 and 5,000. The author’s laptop computer crashed when we ran
SoD with n = 10, 000, which is not surprising because of kriging’s natural restriction on
n (Rullière et al., 2018). Our goal is to show that we can take a familiar standard spa-
tial model for low-dimensional stationary spatial data, and modify it with a data subset
model to make it produce similar predictions as the state-of-the-art methods. This is
particularly exciting, as the spatial data subset model can be scaled to effectively any
dataset that can be stored, and hence, similar predictive performance on a well-known
benchmark dataset would suggest that our approach would be reasonable to consider it
in extremely high-dimensional settings.

The dataset consists of LST observations on a 500×300 grid (150,000 observations in
total) ranging longitude values from −95.91153 to −91.28381, and latitude values from
34.29519 to 37.06811. The ranges of longitude and latitude, and also the date on which
the LST is measured are chosen because of the sparse cloud cover over the region on
that day. We have 1.1% missing data due to cloud cover, leaving 148,309 out of 150,000
observed values to be used. We use the same train and test dataset split as it is given
in Heaton et al. (2019). We keep 105,569 observations in the training set, and 42,740
observations in the out-of-sample test set. In Figure 5.1, we plot the entire dataset on
the left panel where the 1.1% missing observations are represented by the grey region.
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n MAE RMSE CRPS INT CVG CPU Time
to run

the model
(min.)

CPU Time
for

prediction
(min.)

96 2.35 2.71 1.63 11.37 0.80 0.42 31.18
208 2.25 2.59 1.62 14.73 0.72 1.85 115.75
512 2.13 2.47 1.60 19.48 0.59 16.16 457.56
1024 2.00 2.38 1.38 9.75 0.88 98.14 2304.19
2000 1.93 2.32 1.35 10.41 0.83 468.26 4183.77

Table 5.1: Model performance and CPU time on LST dataset over different subsample
size.

We also plot the training dataset on the right panel where the grey region represents
the missing data and the test data.

5.2 Analysis of Daytime LST Data Captured By MODIS
We implement Algorithm 1 (since stationarity reaches irrespective of using a Gibbs-
within-composite sampler; see Appendix C of the supplementary material (Saha and
Bradley, 2024) for a detailed description) on the training dataset, where we set G =
2, 000, g0 = 800, discrete uniform distribution with support {0.001, 0.0002, . . . , 0.1} for
the prior of φ and Pr(δ|n) is defined by stratified random samples with 16 equal sized
strata. Notice that we have 42,740 locations in the test set (and an additional 1,691
locations for the missing data) and the CPU time increases with the large number
of prediction locations. The algorithm takes comparatively longer time for prediction,
which also increases as the subsample size n increases. We run Algorithm 1 for different
values of n. For each n, we generate equal number of random samples (n/16) from each
of the 16 strata, and we predict the LST values on the grey region shown on the right
panel of Figure 5.1. We also calculate mean absolute error (MAE), root mean squared
error (RMSE), continuous rank probability score (CRPS; see Gneiting et al., 2005),
interval score (INT; see Gneiting and Raftery, 2007) and prediction interval coverage
(CVG) at α = 0.05 on the out-of-sample test dataset. We keep track of the CPU times
to run/fit the model and to perform prediction separately for each n. In Table 5.1, we
show these metrics for different values of n. The values of n are chosen in a way that
they are multiples of 16 (number of strata) so that we can draw equal number of samples
from each stratum. We see gradual decrease in MAE, RMSE and CRPS as n increases,
but simultaneously the CPU times for both running the model and prediction increase.
It takes very less time to run/fit the model than to predict because of the large test set.
We also check trace plots and credible intervals informally. We do not find any sign of
lack of convergence, and the credible intervals decrease as n increases.

In Figure 5.2, we plot the actual LST dataset on the left panel. Note that, the 1.1%
missing data are represented by the grey region in the plot. On the right panel, we
filled in the grey region of the “training dataset” plot of Figure 5.1 (represents the test
data and missing data together) with the predicted LSTs, from the spatial data subset
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Figure 5.2: We plot the actual LST dataset on the left panel. We filled in the grey
region of training set with the predictions, from the spatial data subset model, on those
locations with n = 2, 000 and plot that on the right panel.

model, on those locations using n = 2, 000. For a given computational goal, one can
choose a different value of n and that will produce a different set of predictions. We
see that the model correctly identifies the spatial property of the data, i.e. the nearby
locations have similar value than the locations at far.

In Table 5.2, we show a comparison of the performance of our proposed spatial
data subset model (SDSM) when n = 2, 000 with all the methods listed in Section 5.1
(methods described in Heaton et al., 2019; Zhang and Katzfuss, 2022 and Chalupka
et al., 2013). While our method does not consistently dominate all other methods in
all criteria, it is competitive. We find that in terms of RMSE, our proposed model does
perform better than FRK, Metakriging, Predictive Process, Tapering and SoD with just
n = 2, 000. In terms of both MAE and CRPS, our proposed model outperforms FRK,
Metakriging, Predictive Process and SoD. It is also noticeable that in terms of INT, our
proposed model outpeforms FRK, Gapfill, LAGP, Metakriging, Partition, Predictive
Process and SoD. However, in terms of CVG, it outperforms only FRK and Gapfill, and
it matches the performance of LAGP and Predictive Process. These results are particu-
larly exciting for spatial statisticians. Our model allows one to implement a traditional
spatial model (on subsamples) so that it can be implemented on high-dimensional data,
respecting the spatial properties of the entire dataset, and is competitive with several
state-of-the-art methods used in high-dimensional setting.

The total run time for our proposed model with n = 2, 000 is 4,652 minutes. But, the
run time depends on number of cores, RAM size, CPU speed and number of jobs running
in the system. The author’s laptop computer has different specification (mentioned in
Section 4.2) than what it was used for the methods in Heaton et al. (2019) and Zhang and
Katzfuss (2022), which is why the run time is not comparable. Moreover, in Section 4.4,
we show that our proposed method is fully scalable (for large enough G) to spatial
datasets of any size that can be stored, and the CPU time stays fixed (for an n) as N
increases. There is no other method that is scalable at this extent. Depending on the
system used, other methods will crash for large enough N , but the spatial data subset
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Method Reference MAE RMSE CRPS INT CVG Run time
(min)

Cores
used

SDSM – 1.93 2.32 1.35 10.41 0.83 4652.03 1

FRK
Cressie and
Johannesson
(2008)

1.96 2.44 1.44 14.08 0.79 2.32 1

Gapfill Gerber et al.
(2018) 1.33 1.86 1.17 34.78 0.36 1.39 40

Lat-
ticeKrig

Nychka et al.
(2015) 1.22 1.68 0.87 7.55 0.96 27.92 1

LAGP Gramacy and
Apley (2015) 1.65 2.08 1.17 10.81 0.83 2.27 40

Metakrig-
ing

Guhaniyogi and
Banerjee (2018) 2.08 2.50 1.44 10.77 0.89 2888.52 30

MRA Jurek and Katz-
fuss (2021) 1.33 1.85 0.94 8.00 0.92 15.61 1

NNGP Datta et al.
(2016) 1.21 1.64 0.85 7.57 0.95 2.06 10

Partition Sang et al.
(2011) 1.41 1.80 1.02 10.49 0.86 79.98 55

Pred.
Proc.

Banerjee et al.
(2008) 2.15 2.64 1.55 15.51 0.83 160.24 10

SPDE Lindgren et al.
(2011) 1.10 1.53 0.83 8.85 0.97 120.33 2

Tapering Furrer et al.
(2006) 1.87 2.45 1.32 10.31 0.93 133.26 1

Period.
Emb.

Guinness (2019) 1.29 1.79 0.91 7.44 0.93 9.81 1

MSV Zhang and
Katzfuss (2022) 1.11 1.42 – 7.32 0.88 – −

SoD with
n = 2000

Chalupka et al.
(2013) 50.48 75.37 32.64 145.8 0.97 796.95 1

SoD with
n = 5000

Chalupka et al.
(2013) 35.36 57.52 22.90 105.86 0.88 4822.23 1

Table 5.2: Comparison of spatial data subset model (when n = 2, 000) with the other
methods.

model will not. Although our proposed method does not outperform all the methods in
terms of performance, it is competitive and it has a big advantage in terms of scalability.

Each method in Table 5.2 used different computational resources. Thus, one should
be careful not to use the reported CPU times to rank value the methods computationally,
since each method could be made faster by capitalizing on improved computational
resources. For example, in Table 5.2 we provide the number of cores used, and not
all methods were implemented on more than one core. Moreover, SDSM uses one core
and was implemented on a different computer than the other methods. In Table 5.1,
metrics are provided for implementations of SDSM in our application as we vary the
choice of n. In Table 5.1, we see that SDSM is considerably faster when n = 512
(CPU time of roughly 32 minutes) than when n = 2, 000 (CPU time of 4652 minutes).
Previous applications of the data subset model approach in Bradley (2021) suggest
that the rate of increase of SDSM’s CPU time, as a function of n, would be smaller if
more computational resources (e.g., cores) were available. Thus, the use of additional
computational resources (e.g., cores) would allow one to choose larger values of n while
taking on a smaller computational cost.
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The results from Section 4.4 are particularly important for evaluating SDSM relative
to the state-of-the-art methods. In particular, when N is so large that it is beyond the
largest crash-point of the state-of-the-art methods, SDSM is the only approach that
is possible to compute that does not throw away data. This is because SDSM is fully
scalable in the limit. Moreover, the method that throws away data, i.e. SoD, performed
considerably worse than SDSM in terms of inferential metrics in Table 5.2.

There are times when one would just prefer to implement a standard spatial statis-
tical model. This is because the properties of standard models (e.g., weak stationarity,
sill, nugget, and range) are well-known and easy to communicate to the general public
and collaborators in different fields. Bayesian Kriging is the traditional spatial model
that we focus on in this article. However, in the big N case, it is unclear if the stan-
dard model assumptions are appropriate for such high-dimensional spatial data with
spatial domains with complicated terrains, and would ideally like to use all N observa-
tions. Propositions 3.1–3.4, show that when the data is generated from a model with
non-stationary covariances the SDSM is non-stationary, and when the data is generated
from a model with stationary covariances the SDSM assumes a stationary covariance.
Thus, the assumptions on the spatial properties of this SDSM model are well aligned
with the data, we obtain inferences on parameters that arise in traditional spatial mod-
els, and use all N observations in a fully Bayesian context. However, it is unclear how
well this SDSM performs in practice. In this section, we show that the SDSM performs
similar (i.e., does not produce the worst value of a metric, but not the best) to several of
the state-of-the-art methods. Thus, one is able to obtain reasonable inferential results
(i.e., the metrics considered are not always the best, but are not always the worst) when
assume a traditional model for subsamples of the data (scaling it to large N), without
necessarily throwing out data, and while still respecting the true spatial properties of
the data.

6 Discussion
In this article, we propose a new spatial data subset model (SDSM) that allows one to
implement the classical Bayesian spatial model on big data in a computationally feasible
way. We do this by redefining the full likelihood of the data model using subsamples
without imposing any additional restrictive assumptions. Also, we insert more levels to
the Bayesian hierarchical model to introduce subsampling inside the model. We see that
the subsampling changes the spatial properties of the dataset that is being used in the
model. These properties are also dependent on the subsampling strategy. Specifically,
we provide theoretical results which show that if the true spatial model is stationary
(or non-stationary) then the spatial data subset model in (3.2) is also stationary (or
non-stationary) under both SRS without replacement and stratified random sampling.
We also provide moment results under SRS without replacement and stratified random
sampling, and compare and contrast the models. Code to implement the SDSM is made
available at https://github.com/sudiptosaha/Spatial-Data-Subset-Model.

In our simulation study, we have found that the prediction errors decrease as n
(subsample size) increases, but the CPU time increases simultaneously. This suggests

https://github.com/sudiptosaha/Spatial-Data-Subset-Model
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that one should choose a value of n in a way that it achieves the computational goal (for
example, producing inference in 2 minutes) while getting reasonable predictions. This
performance is particularly exciting since the CPU time does not scale with N (total
number of observations), but rather n, which we can choose. The decrease in RMSE
have shown an elbow pattern which is why we have plotted the pairwise difference in
prediction as the RMSE decreases gradually. This helps us to choose n at which the
prediction error starts decreasing at a slower rate. Furthermore, we have analyzed the
scatter plots between the true process and the predictions, and saw that the predictions
get closer to the 45° reference line as n increases. We have also done a simulation study
where we compared the performance of our model with the full model using a smaller
dataset. It turns out that our proposed model performs even better than the full model
for large enough n, which may be due to the semi-parametric nature of our model. The
biggest advantage of our proposed model is scalability. Using simulation, we were able
to show that our model is scalable to such large value of N where other methods fail.
We also emphasize that our proposed model is fully scalable (for large enough G) to a
dataset of any size that can be stored and there is no model out there which is fully
scalable to any size of the data.

In practice, a model is sometimes chosen simply because it is a traditional choice,
and in spatial statistics a Gaussian process with a stationary covariogram is considered
a textbook model (Banerjee et al., 2014; Cressie and Wikle, 2015). However, this tradi-
tional spatial model does not scale naturally to high-dimensions and does not allow for
non-stationary covariance functions. Our proposed approach allows spatial statisticians
to apply traditional Bayesian spatial statistical models in a way that (i) is fully scalable
in the limit and (ii) removes assumptions from the traditional spatial model to allow
for the possibility of non-stationary covariance functions. This is achieved through the
data subset model framework, which allows one to assume a traditional spatial model
for all data with δ(si) = 1 such that

∑
i δ(si) = n � N . This is exciting solution for

those who wish to adopt the more traditional model assumptions because of its ability
to easily explain the spatial properties. However, it is important to clarify that while
Items (i) and (ii) are attractive features of our model, it does not mean the proposed
model will dominate estimation, prediction, and computational metrics. In our applica-
tion, we demonstrate that the proposed model performs similar to competing methods,
but not the best (i.e., our proposed method did not perform the best nor did it perform
worst for any of metrics). In particular, we illustrate the use of our model to a daytime
Land Surface Temperature (LST) data captured by the MODIS instrument onboard the
Terra satellite. We have found that our model outperforms several methods in terms
of MAE, RMSE, CRPS, INT, and CVG with n = 2, 000. We emphasize that although
our proposed model is not the best, we are able to take a standard spatial model for
low-dimensional stationary spatial data and modify it to be competitive for large data
and to be able to model even non-stationary data.

Although our proposed model does produce competitive results, it depends on the
choice of n. As n changes, the model performance also changes. Thus, the choice of n is
important and an open problem in our proposed framework. In our empirical results, we
see that posterior samples tend to have less variability as the subsample size n grows.
This is consistent with the results from Bradley (2021). Consequently, the best choice
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of n is the largest possible value that can be computed. In this article, we focus on
applying the data subset model to kriging, which is well-known to be computationally
feasible when n is on the order of thousands (e.g., see Rullière et al., 2018, where
n = 2, 000 appears reasonable). When implementing our model in practice, one should
simply choose an n = 2, 000, or if more computational resources are available than our
laptop, n = 10, 000. In this article we make use of elbow plots simply to demonstrate
the sensitivity of the choice of n, and we see that the “elbow” is often quite small (in the
simulations elbow appears at n = 300). Of course, in general, when one does not know
what n is practical a priori through historical usage, we suggest what is commonly used
in the SoD literature (Chalupka et al., 2013). That is, an “elbow plot” can be used,
where one selects an n from a sequence that “passes the elbow”.

Our proposed spatial data subset model is built on the classical Bayesian spatial
model. However, one can take the similar approach of applying the subsampling strategy
on some other spatial model. One important thing to note is that the data subset model
approach works on the Bayesian framework. So, one has to choose a Bayesian framework
of a spatial model to build a model using this strategy. Therefore, building different
spatial models on the data subset model framework can be a potential topic for future
research.

Supplementary Material
Supplementary Materials to “Incorporating Subsampling into Bayesian Models for High-
Dimensional Spatial Data” (DOI: 10.1214/24-BA1426SUPP; .pdf). Proof of the propo-
sitions, related results, and the full-conditional distributions are presented. Also, an
empirical investigation of the posterior consistency is demonstrated both for the simu-
lated data and LST data.
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