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Permutation tests are widely recognized as robust alternatives to tests
based on normal theory. Random permutation tests have been frequently em-
ployed to assess the significance of variables in linear models. Despite their
widespread use, existing random permutation tests lack finite-sample and
assumption-free guarantees for controlling type I error in partial correlation
tests. To address this ongoing challenge, we have developed a conformal test
through permutation-augmented regressions, which we refer to as PALMRT.
PALMRT not only achieves power competitive with conventional methods
but also provides reliable control of type I errors at no more than 2α, given
any targeted level α, for arbitrary fixed designs and error distributions. We
have confirmed this through extensive simulations.

Compared to the cyclic permutation test (CPT) and residual permutation
test (RPT), which also offer theoretical guarantees, PALMRT does not com-
promise as much on power or set stringent requirements on the sample size,
making it suitable for diverse biomedical applications. We further illustrate
the differences in a long-Covid study where PALMRT validated key findings
previously identified using the t-test after multiple corrections, while both
CPT and RPT suffered from a drastic loss of power and failed to identify any
discoveries. We endorse PALMRT as a robust and practical hypothesis test
in scientific research for its superior error control, power preservation, and
simplicity.

1. Introduction. Consider a linear regression model

(1) yi = xiβ + z�
i θ + εi, i = 1, . . . , n,

where features xi ∈ R, zi ∈ R
p and εi are random errors independent of (xi, zi ). Testing

whether the coefficient β is zero in this linear model, which equates to examining the partial
correlation between x and y, remains a fundamental statistical query and a prevalent approach
in applications like biological signature discovery. For instance, a key question in the recent
MY-LC study is whether long-COVID (LC) is associated with specific cell type proportions,
after adjusting for age, sex, and Body Mass Index (BMI) [24]:

(2) cell type frequency ∼ intercept + LC + age + sex + BMI + age × BMI + sex × BMI.

While the F/t-test is a standard approach [12–14], it may yield anticonservative p-values
under ill-behaved error distributions or limited sample sizes, compromising the reliability of
scientific discoveries. Therefore, there is a need for a valid hypothesis test that minimizes
assumptions on noise distribution and does not rely on asymptotic theory. Motivated by this,
we seek a robust and straightforward testing procedure for partial correlation under the sole
assumption of exchangeability.

ASSUMPTION 1.1. The noises ε1, . . . , εn are exchangeable with each other.
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The problem of testing for partial correlation has been intensively studied, with a focus
on developing various random permutation methods to increase robustness against diverse
noise distributions. Draper and Stoneman [7] introduced a permutation technique for partial
correlation testing, referred to as PERMtest, which involves shuffling x alone and disrupts
the relationship between x and Z. Subsequent methods better accounted for this relationship.
A family of methods, such as the Freedman and Lane test (FLtest) [15] and the Kenny test
[22], permutes response residuals obtained from a reduced model that regresses y on Z.
Another type of methods, such as the the Braak test [30], shuffles residuals from a full model
regressing y on both x and Z. These methods have demonstrated empirically robust type I
error control in various benchmark studies when using pivotal test statistics like t-test or F-test
statistics [1, 20, 35, 36]. However, finite-sample and assumption-free theoretical guarantees
for these random permutation tests remain elusive. This contrasts with permutation tests for
simple correlation, which are theoretically sound in terms of type I error control [8, 26, 28].
Indeed, even the widely examined and recommended FLtest can, under specific conditions,
yield drastically inflated type I error rates as we demonstrate later.

Recently, Lei and Bickel [25] introduced the cyclic permutation test (CPT), which offers
worst-case guarantees for controlling type I error. Given a sample size n and a total fea-
ture dimension p for z, CPT theoretically ensures type I error control at a target level α,
provided n > ( 1

α
− 1)p. This condition is often challenging to meet in biomedical studies.

For instance, in immunology research, sample sizes frequently hover around 100 or a few
hundreds, while investigating simultaneously hundreds or even more different biomarkers
for their partial correlations with a primary feature of interest. Although applying CPT with
a α = 0.05 cutoff may suffice with fewer concomitant covariates, the situation complicates
when multiple hypothesis corrections are applied, as smaller nominal p-value thresholds are
needed to maintain a reasonable false discovery rate (FDR). In an independent pursuit of ro-
bust partial correlation analysis with increased power and reduced sample size, Wen, Wang
and Wang [34] introduces the residual permutation test (RPT), defined under the condition
n > 2p. This test utilizes a sequence of specially designed permutation matrices, which, in
conjunction with the identity matrix, form a group. However, there’s a trade-off in the choice
of the size parameter K : a small permutation set size limits testing for small p-values, while
a large K reduces RPT power significantly by design (see Table 1). Obtaining a sequence of
well-designed permutation matrices with a reasonable size, such as (� 1

α
� − 1) as suggested

by Wen, Wang and Wang [34], remains challenging for small α. Following the proposed RPT
Algorithm [34], a nontrivial test requires α > 1

n
.

TABLE 1
Summary of representative existing permutation methods and PALMRT, on their construction, empirical

performance, theoretical guarantee, and dimension constraints for nontrivial rejection under the i.i.d. Gaussian
design. See Section 1.1 for more explanations

Method Original Model Permuted Model Empirical Worst-
Case

Restriction

PERMtest y ∼ x + Z y ∼ xπ + Z � α � α n > p

FLtest y ∼ x + Z [(I − Hz)y]π ∼ x + Z � α � α n > p

Kenny test y ∼ x + Z [(I − Hz)y]π ∼ (I − Hz)x � α � α n > p

Braak test y ∼ x + Z Hxzy + [(I − Hxz)y]π ∼ x + Z � α � α n > p + 1
CPT η�y η�y(kL+1):(kL+n) ≈ α ≤ α n

p > 1
α − 1

RPT min
Ṽ ∈{Ṽ1,...,Ṽm} |x�Ṽ Ṽ �y| |x�ṼkṼ

�
k yπk | � α ≤ α n > max(2p, 1

α )

PALMRT y ∼ x + Z + Zπ y ∼ xπ + Zπ + Z � α ≤ 2α n > 2p
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In this manuscript, we develop PALMRT, which stands for Permutation-Augmented Lin-
ear Model Regression Test, as a conformal test to examine the partial correlation relationships
in a linear model. Unlike traditional random permutation methods, PALMRT not only em-
pirically controls type I error but also theoretically guarantees a worst-case coverage of 2α

at any targeted error level α. It offers well-calibrated p-values for finite-sample type I error
control under arbitrary fixed designs or noise distributions.

In our empirical analyses, PALMRT not only maintains empirical Type I error rates be-
low the designated thresholds across diverse simulation settings but also exhibits comparable
power to established methods like FLtest when (n/p) is moderately large. It significantly
outperforms CPT and RPT in commonly encountered scenarios. Upon re-analyzing the MY-
LC study, PALMRT validates the top findings from the original study, while CPT and RPT
show reduced discoveries and fail to confirm any main findings after multiple test correc-
tions. Consequently, we recommend adopting PALMRT as the default robust procedure for
detecting significant partial correlations in our daily research.

1.1. Comparison of permutation tests for linear models. Table 1 summarizes various
methods in terms of their construction, empirical performance, theoretical guarantees, and
dimension constraints for nontrivial rejection under the i.i.d. Gaussian design. Let Hz and
Hxz represent the projection matrices onto the column spaces of the concomitant features Z

and all features (x,Z), respectively. Given a permutation π of (1, . . . , n), xπ and Zπ denote
the permuted versions of x and Z. The intercept term is omitted for brevity in Table 1.

The columns labeled “Original Model” and “Permuted Model” detail the models used to
generate the original and permuted test statistics, respectively. Specifically: (1) For CPT, η

is a length-n vector used to define valid cyclic permutations and generate m cyclic permu-
tation copies. Define L = 
 n

m
� as the cyclic step size. CPT requires η�Z(kL+1):(kL+n) to be

a constant vector for all 0 ≤ k ≤ m, where an index greater than n loops back to the begin-
ning (e.g., xkL+n = xkL). (2) Let V ∈ R

n×(n−p) be an orthonormal matrix orthogonal to the
column space of Z. RPT generates m permutations π1, . . . , πm based on a variant of cyclic
permutation to satisfy the group requirement, resulting in Vπk

as the row-permuted version of
V for k = 1, . . . ,m. RPT then constructs Ṽk ∈ R

n×(n−2p) as the orthonormal matrix belong-
ing to the intersection of the column spaces of V and Vπk

.
The “Empirical” column indicates empirical type I error control from previous studies (the

statement on PALMRT is based on our study). The “Worst-case” column indicates the finite-
sample and assumption-free theoretical guarantee for a given level α, with “� α” indicating
no established guarantee. The “Restriction” column specifies the minimum sample size when
a test is defined and can be nontrivial under the i.i.d. Gaussian design. For all methods except
CPT and RPT, F-statistics are used for comparison.

2. Conformal test via permutation-augmented regressions.

2.1. Construction of PALMRT. Let x ∈ R
n be the target feature, and Z the observation

matrix with rows z1, . . . , zn. Define [n] as the vector (1, . . . , n) and π as a permutation of
[n]. Denote xπ and Zπ as the row-permuted versions of x and Z, respectively. PALMRT is
a random permutation method for testing partial correlation. For each randomly generated
permutation π of [n], it constructs “original” and “permuted test” statistics based on a pair of
permutation-augmented regressions:

• Original test statistic Toriginal: the F-statistic for significance of x in the model y ∼ x +Z +
Zπ :

Toriginal = (∥∥(
I − Hzzπ

)
y
∥∥2

2 − ∥∥(
I − Hxzzπ

)
y
∥∥2

2

)
/
∥∥(

I − Hxzzπ
)
y
∥∥2

2.
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Algorithm 1 A conformal test for partial correlation via paired regression
1: procedure PALMRT(y, x, Z, B) � Test for partial correlation y ∼ x|Z using B

permutations
2: for b = 1, . . . ,B do
3: Generate a random permutation πb.
4: Construct a pair of statistics as in eq. (3) with π ← πb:

(T0b, Tb0) ← (Toriginal, Tperm)

5: Set ωb = 1
21{Tb0 = T0b} + 1{Tb0 > T0b}.

6: end for
7: Construct p-value for H0 : β = 0 as pval ← 1+∑B

b=1 ωb

B+1 .
8: return pval
9: end procedure

• Permuted test statistic Tperm: the F-statistic for significance of xπ in the model y ∼ xπ +
Z + Zπ :

Tperm = (∥∥(
I − Hzzπ

)
y
∥∥2

2 − ∥∥(
I − Hxπzzπ

)
y
∥∥2

2

)
/
∥∥(

I − Hxπzzπ
)
y
∥∥2

2.

Here, H(.) denotes the projection matrix onto the column space of its argument (.). For in-
stance, Hzπz represents the projection matrix onto the column space of (Zπ,Z), Hxzzπ onto
that of (x,Z,Zπ), etc. We have more confidence of having nonzero β if Toriginal is larger than
Tperm. One can easily verify that comparing Toriginal and Tperm is equivalent to comparing the
following simplified expressions on the fitted residuals:

(3) Toriginal = ∥∥(
I − Hxπzzπ

)
y
∥∥2

2, Tperm = ∥∥(
I − Hxzzπ

)
y
∥∥2

2.

We adopt eq. (3) to construct the original and permuted statistics for any given permutation.
Subsequently, we generate B random permutations {πb}Bb=1 of [n] uniformly and compare
the associated original and permuted statistics to compute the p-value for testing H0 : β = 0.
The complete procedure is outlined in Algorithm 1.

2.2. An example differentiating FLtest and PALMRT. We offer an illustrative example,
see Example 2.1, to demonstrate PALMRT’s superior robustness compared to FLtest. Al-
though FLtest has been lauded for its type I error control in prior studies, it may fail under
extreme noise and design configurations. In contrast, PALMRT consistently maintains type I
error control.

EXAMPLE 2.1. We set n = 100 and p = 1, and examine a special design where x =
(1,0, . . . ,0)�, z = (0,1,0, . . . ,0)�. We generate the response y under the global null as

y ∼ ε, where ε ∼ N(0, In×n) + 104 × Multinomial(1; 1
n
, . . . , 1

n
) × (−1)Bernoulli( 1

2 ), denoted
as “multinomial noise.” This extreme noise scenario serves as a robustness test. The fea-
ture design represents an imbalanced ANOVA setup with many control samples but only
one sample per treatment group. Even though exact permutation is feasible by shuffling
the zero rows, we employ standard FLtest and PALMRT to evaluate their empirical cov-
erage using 2000 random draws of y. Figure 1A shows the miscoverage ratio, defined
as

miscoverage ratio = Empirical miscoverage

Targeted miscoverage
.
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FIG. 1. Comparison between FLtest and PALMRT on a distinguishing example. Panel A shows the miscoverage
ratios using FLtest and PALMRT in Example 2.1 as we range α from 0.001 to 0.5. Panels B-C display the his-
tograms of p-values using the two tests.

As the targeted level α becomes small, FLtest encountered excessively inflated type I error
– more than 10-fold that of the targeted level when α = 0.001. In contrast, PALMRT con-
trols type I error for small α. Figures 1B-C are the histograms of p-values using FLtest and
PALMRT. The distribution of p-values from FLtest contains a spike close to 0, leading to its
type I error inflation.

Example 1 is a distinguishing example where FLtest suffers from being severely anticon-
servative for small α but PALMRT continues to offer robust type I error control. This ro-
bustness of PALMRT is universally true. In the next section, we will show that PALMRT,
as well as a family of other permutation tests based on paired constructions, guarantees
a maximum type I error of 2α, irrespective of the noise distribution, design, and sample
size.

3. Type I error control guarantee. In this section, we establish that PALMRT provides
finite-sample type I error guarantees under any design and exchangeable noise. This prop-
erty is generalized to a family of tests that performs comparisons with paired statistics as
realizations of a specially designed bi-variate function on permutation orders.

Under the null hypothesis H0, PALMRT essentially compares a bi-variate function across
two given permutations and their swaps. Specifically, for any two permutations π1 and π2 of
[n], we define a bi-variate function, which also incorporates data x, Z, and unobserved noise
ε as model parameters, as follows:

(4) T PALMRT(π1, π2;x,Z, ε) = ∥∥(
I − Hxπ2zπ2zπ1

)
ε
∥∥2

2.

Let π0 be the identity permutation of [n].

PROPOSITION 3.1. Under the null hypothesis H0, the statistic pair (T0b, Tb0) are real-
izations of T PALMRT(., .;x,Z, ε) evaluated at (π0, πb) and (πb,π0), respectively:

(T0b, Tb0) = (
T PALMRT(π0, πb), T

PALMRT(πb,π0)
)
.

Many existing random permutation tests, including FLtest and PERMtest, can be ex-
pressed as realizations of such bi-variate functions. For example, construct bi-variate func-
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tions T PERM(.) and T FL(.) defined below,

T PERM(π1, π2;x,Z, ε) = ‖(I − Hz)ε‖2
2 − ‖(I − Hxπ1z)ε‖2

2

‖(I − Hxπ1z)ε‖2
2/(n − p − 2)

,

T FL(π1, π2;x,Z, ε) = ‖(I − Hzπ1 )(I − Hz)ε‖2
2 − ‖(I − Hxπ1zπ1 )(I − Hz)ε‖2

2

‖(I − Hxπ1zπ1 )(I − Hz)ε‖2
2/(n − p − 2)

.

Let T0 denote the original statistic and {Tb}Bb=1 represent B permuted test statistics. Under H0,
it can be verified via direct calculation that (T0, Tb) are realizations at (π0, πb) and (πb,π0)

of T PERM(., .;x,Z, ε) or T FL(., .;x,Z, ε) for PERMtest and FLtest respectively, with the
second argument in the bivariate functions being inactive.

What sets T PALMRT(. . .) apart and enables its theoretical guarantee? The crucial distinction
between T PALMRT(. . .) and T FL(. . .) or T PERM(. . .) lies in the transferability of permutations
from the noise parameter ε to its permutation arguments. This property holds uniquely for
T PALMRT(. . .) across all noise realizations and designs. Let σ be an arbitrary permutation of
[n] and σ−1 its inverse, such that σ ◦ σ−1 = σ−1 ◦ σ = π0 with ◦ denoting composition.
Then, any permutation of the parameters ε in T PALMRT(. . .) can be expressed equivalently as
applying the inverse permutation σ−1 to the permutation arguments π1 and π2.

PROPOSITION 3.2. The application of a permutation σ to ε is equivalent to applying the
permutation σ−1 to π1, π2 in T PALMRT:

T PALMRT(π1, π2;x,Z, εσ ) = T PALMRT(
π1 ◦ σ−1, π2 ◦ σ−1;x,Z, ε

)
.

Proposition 3.2 is derived from simple term rearrangement, and we omit its proof here.
This transferability property is pivotal for establishing the type I error guarantees. In fact, for
any paired statistics T0b, Tb0 which can be considered as realizations of a bi-variate function
T (., .;x,Z, ε) at (π0, πb) and (πb,π0) under H0, the resulting p-value from comparing T0b

to Tb0 offers a theoretical guarantee as long as T (., .;x,Z, ε) satisfies the transferability
Condition 4, as outlined in Theorem 4.1.

CONDITION 4. For any permutations π1, π2, σ of [n], the function T (., .;x,Z, ε) satis-
fies

T (π1, π2;x,Z, εσ ) = T
(
π1 ◦ σ−1, π2 ◦ σ−1;x,Z, ε

)
.

THEOREM 4.1. Let π1, . . . , πB be B uniformly random permutations of [n], and
T (., .;x,Z, ε) be a bi-variate function satisfying Condition 4. Under the null hypothesis
H0, construct paired statistics (T0b, Tb0) as

T0b = T (π0, πb;x,Z, ε), Tb0 = T (πb,π0;x,Z, ε).

Substituting these into Algorithm 1, we obtain PH0[pval ≤ α] < 2α for all α > 0, where the
probability is marginalized over both noise and permutation randomness.

REMARK 4.2. Interestingly, the empirical version of RPT, discussed independently in
[34], is also a realization of paired constructions described in Theorem 4.1 when (Z0,Zπ−1

b
)

is full rank for different permutations πb, by setting

T (π1, π2;x,Z, ε) = ∣∣x
π−1

2

(
I − H

z
π

−1
1

z
π

−1
2

)
ε
∣∣.
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This leads to the comparison between T0b = |x(I − H
zz

π
−1
b )y| and Tb0 = |x

π−1
b

(I −
H

zz
π

−1
b )y|, which can be easily verified. In [34], the authors recognized the power issue with

RPT and introduced this empirical version to enhance power. However, it lacks theoretical
justification. Here, we demonstrate also that the empirical RPT has a strong theoretical foun-
dation as a special case of Theorem 4.1 and is a version of PALMRT by replacing the pivotal
statistics with residuals inner product, hence, the requirement on permutations by RPT is
unnecessary in its context.

The worst-case bound established in Theorem 4.1 aligns with the bounds for predic-
tion coverage established for multisplit conformal prediction methods including CV+,
Jackknife+, and ensemble conformal predictions [3, 18, 21, 23, 31]. However, our focus
diverges significantly as we concentrate on hypothesis testing for the true model parameter
β rather than an out-of-sample prediction. Traditional exchangeability arguments, applicable
when predicting on new samples, are inadequate for assessing the significance of β . To tackle
this, we employ new arguments exploiting the assumption of exchangeable noise. A proof
sketch for Theorem 4.1 is provided below.

PROOF SKETCH OF THEOREM 4.1. One key insight is that, when considering both
the randomness in the permutations and ε, the (B + 1) × (B + 1) matrix T , with its
(l, k)th entry as T (πl,πk;x,Z, ε), is distributionally equivalent to T̃ whose (l, k)th entry
is T (π̃l, π̃k;x,Z, ε) with (π̃l)

B
l=0 independently and uniformly generated from the permu-

tation space of [n]. This equivalence allows us to analyze the p-value from Algorithm 1 by
examining corresponding entries in T̃ .

Define f (l, T̃ ) = 1 + ∑
k �=l(1{T̃kl > T̃lk} + 1

21{T̃kl = T̃lk}). Then, f (0, T̃ ) corresponds
to the numerator when constructing pval, the p-value in Algorithm 1, upon substituting T

with T̃ . Since π̃l are i.i.d. generated, we expect {f (l, T̃ )}Bl=0 to be exchangeable for different
l. Thus, we can bound the probability of pval ≤ α by bounding the size of the index set
{l : f (l, T̃ ) ≤ α(B + 1)}, which can be obtained following similar arguments used in proving
prediction interval’s coverage for multisplit conformal prediction. �

REMARK 4.3. The analogy between PALMRT and Jackknife+ after constructing the
suitable comparison matrix T naturally leads to the question of whether we can draw a sim-
ilar analogy between RPT and Jackknifemm (the minmax version) proposed together with
Jackknife+ in Barber et al. [3]. The answer to this question is affirmative. While RPT re-
quires that the permutations form a group in Wen, Wang and Wang [34], by combining our
analysis framework and construction ideas used in Jackknifemm, we can show that RPT is
valid for any uniformly and independently generated B permutations. We refer to the re-
sulting algorithm as R̃PT to distinguish it from RPT. Although R̃PT does not alleviate the
over-conservativeness due to considering the worst-case, it does lead to algorithmic simplic-
ity as no special algorithm is needed for generating the permutations. Details of the connec-
tion between R̃PT and Jackknifemm are given in Appendix B of the Supplementary Material
[17].

Theorem 4.1 is the main theoretical result of this work, and we include its full proof in
Section 6. Combining Theorem 4.1 with Proposition 3.2, we concludes that Algorithm 1
theoretically controls type I error, albeit with a relaxed upper bound of 2α.

Of note, unlike existing random permutation tests where the use of pivotal statistics is of-
ten crucial, Theorem 4.1 generalizes beyond pivotal statistics, allowing for other nonpivotal
paired constructions. For example, T0b, Tb0 could be the absolute value of the regression co-
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Algorithm 2 Exact CI construction for PALMRT
1: procedure CI(y, x, Z, B , α) � Confidence interval at coverage level 1 − α.
2: Calculate the B × 4 matrix (cb1, cb2, cb3, cb4)

B
b=1 as defined in Lemma 5.3.

3: Calculate γ , {tl}Ml=1, (ms
l ,m

u
l )

M
l=1.

4: if γ < 0 then
5: CIα = (−∞,∞).
6: else
7: Set and record fA1(t1) = 1

2(ms
1 − mu

1).
8: for l = 2, . . . ,M do
9: Calculate and record fA1(t

+
l−1) and fA1(tl) as in eq. (7).

10: end for
11: if max(fA1(.)) ≤ γ then
12: CIα = ∅.
13: else
14: βmin = min{tl : fA1(tl) ∨ fA1(t

+
l ) > γ }.

15: βmax = max{tl : fA1(tl) ∨ fA1(t
+
l−1) > γ }.

16: CIα = [βmin, βmax].
17: end if
18: end if
19: end procedure

efficients of x and xπ in the models y ∼ x +Z +Zπb
and y ∼ xπ +Z +Zπb

respectively. For
directional tests, the test statistics may employ either the regression coefficients (for positive
effects) or their negations (for negative effects).

5. An exact confidence interval construction. In conjunction with the PALMRT
p-value, a confidence interval for β can be constructed by inverting the test. Define
(T0b(β), Tb0(β)) as the test statistics from replacing y by (y − xβ) in Algorithm 2 when

constructing (T0b, Tb0). Define f (β) as f (β) = 1+∑B
b=1 ωb(β)

B+1 , where ωb(β) = 1{T0b(β) <

Tb0(β)} + 1
21{T0b(β) = Tb0(β)}.

COROLLARY 5.1. Set CIα = [βmin, βmax] where βmin = inf{β : f (β) > α} and βmax =
sup{β : f (β) > α}. Then, we have minβ P[β ∈ CIα] > 1 − 2α, for all α > 0.

REMARK 5.2. The set obtained through directly inverting {β : f (β) > α}, is often an
interval, but not always guaranteed to be so. By taking the infimum and supremum of this
set, we obtain a confidence interval CIα with worst-case guarantee at least as strong as direct
inversion.

The pertinent question remaining is the efficient computation of the confidence interval
CIα as delineated in Corollary 5.1. Traditional methods for constructing the confidence inter-
val in permutation tests typically rely on normal theory, Bootstrap [4, 5, 9, 11], or grid search
[16]. Here, we provide an exact formulation of CIα via examining critical values, derived
from pair-wise comparisons at each permutation πb. First, we observe that the contribution
from the bth term to the numerator can be explicitly derived.
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LEMMA 5.3. Set cb1 = ‖(I − Hxπb
zπb

z)x‖2
2, cb2 = x�(I − Hxπb

zπb
z)y, cb3 = ‖(I −

Hxπb
zπb

z)y‖2
2, and cb4 = ‖(I − Hxπzπb

z)y‖2
2. Then, we have c2

b2 ≥ cb1(cb3 − cb4) and

(5) ωb(β) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
1{cb3 = cb4} + 1{cb3 < cb4}, if cb1 = 0,

1

2
1
{
β ∈ [sb, ub]} + 1

{
β ∈ (sb, ub)

}
, if cb1 > 0,

where sb = cb2−
√

c2
b2−cb1(cb3−cb4)

cb1
and ub = cb2+

√
c2
b2−cb1(cb3−cb4)

cb1
.

As a result, we first partition of index set of {0, . . . ,B} into three sets A1 = {b : cb1 > 0},
A2 = {b : cb1 = 0, cb3 < cb4}, and A3 = {b : cb1 = 0, cb3 = cb4}. The value of ωb(β) remains
constant as we vary β for b ∈ A2 ∪ A3. Hence, the requirement of f (β) > α is equivalent to
imposing a requirement on fA1(β) that captures the contribution of ωb(β) ∈ A1, as shown
below:

f (β) > α ⇔ fA1(β) = ∑
b∈A1

ωb(β) > (B + 1)α − 1 − |A2| − 1

2
|A3| := γ.

It can be shown that the function value of fA1(β) is characterized by comparing β to different
sb and ub values for b ∈ A1:

(6) fA1(β) = 1

2
#{b : sb ≤ β} + 1

2
#{b : sb < β} − 1

2
#{b : ub ≤ β} − 1

2
#{b : ub < β}.

Let t1 < · · · < tM denote the ordered values of M unique elements in
⋃

b∈A1
{sb, ub}, and let

(ms
l ,m

u
l ) represent the sizes of #{b : sb = tl} and #{b : ub = tl}, respectively. As we increase

β in fA1(β), the function value can only changes when we first hit {tl}Ml=1, or when β slightly
increases from these critical values. We represent the concept of increasing slightly from these
critical values by {t+l }Ml=1, where t+l indicates being infinitesimally larger than tl . Using these
new quantities introduced, we can re-express fA1(t1) = 1

2(ms
1 − mu

1) and identify induction
relations for the function values as we increase β to surpass the critical values tl , described
as follows:

(7) fA1(tl+1) = fA1

(
t+l

) + 1

2

(
ms

l+1 − mu
l+1

)
, fA1

(
t+l

) = fA1(tl) + 1

2

(
ms

l − mu
l

)
.

We can utilize eq. (7) to efficiently calculate all fA(tl) and fA(t+l ) in O(B) time, given
{tl}Ml=1 and (ms

l ,m
u
l )

M
l=1. Acquisition of the B × 4 matrix (cbl), {tl}Ml=1 and (ms

l ,m
u
l )

M
l=1 can

be done in O(Bnp + B logB) time if we record intermediate quantities from Algorithm 1.
Consequently, efficient comparisons between fA(.) with γ to determine βmin and βmax can
be achieved. Algorithm 2 presents full details of this implementation, and can provide exact
construction of CIα as stated in Theorem 5.4.

THEOREM 5.4. The confidence interval constructed by Algorithm 2 corresponds to the
CIα defined in Lemma 5.1, and guarantees a worst-case coverage of (1 − 2α) for a specified
mis-coverage level α.

REMARK 5.5. The confidence interval CIα can potentially be an empty set (∅). Although
this does not invalidate our assertion, an empty set offers limited information in practical
contexts and might not be desired. In such situations, we may pt to construct the confidence
interval using a normal approximation in the regression y ∼ x + Z whenever Algorithm 2
produces an empty set as the output for CIα .

Proofs of Lemma 5.3 and Theorem 5.4 are deferred to Appendix A of the Supplementary
Material [17].
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6. Proof of Theorem 4.1. Before conducting numerical experiments comparing
PALMRT and existing methods, we provide the full proof to Theorem 4.1 in this section.
We define Sn as the permutation space of [n], SB as the permutation space of (0, . . . ,B),
E = {ε1, . . . , εn} as the unordered value set of (ε1, . . . , εn) (duplicates are allowed). Proposi-
tion 6.1 is useful for establishing our exchangeability statement. Proposition 6.2 is a minor
modification of arguments for bounding “strange set” used in proving multisplitting confor-
mal prediction.

PROPOSITION 6.1. Let σ and (πb)
B
b=1 be generated independently and uniformly from

Sn. Then σ−1 and (πb ◦ σ−1)Bb=1 are also generated independently and uniformly from Sn.

PROOF. First, it is obvious that σ−1 is uniformly generated from Sn since the map σ �→
σ−1 is a bijection between Sn and itself. Hence, by definition, for any (B + 1) permutations
τ0, τ1, . . . , τB of [n], we have

P
(
σ−1 = τ0, π1 ◦ σ−1 = τ1, . . . , πB ◦ σ−1 = τB

)
= P

(
σ−1 = τ0, π1 = τ1 ◦ τ0, . . . , πB = τB ◦ τ0

)
= P

(
σ−1 = τ0

)
P(π1 = τ1 ◦ τ0) . . .P(πB = τB ◦ τ0)

= (1/n!)B+1,

(8)

where the last two steps have used the fact that σ−1 and (πb)
B
b=1 are independent and uni-

formly from Sn. Eq (8) is the definition for σ−1 and (πb ◦ σ−1)Bb=1 being independent and
uniformly generated from Sn. �

PROPOSITION 6.2. Let T be any (B +1)× (B +1) matrix, and W the (B +1)× (B +1)

comparison matrix where Wlk = 1{Tkl > Tlk} + 1
21{Tkl = Tlk} for l �= k and Wll = 1. Let Wl.

be the lth row sum of W . Then, for all α > 0, we have∣∣{l : Wl. ≤ (B + 1)α
}∣∣ < 2α(B + 1).

PROOF. Notice that (1) Wlk ≥ 0 for all l, k, and (2) Wlk + Wkl = 1 for all k �= l. For any
sub-square matrix of W constructed from selecting the same m columns and rows (denoted
the index set as Im), we have

∑
l∈Im

∑
k∈Im

Wlk = (m + 1)m

2
.

Set Sα = {l : Wl. ≤ (B + 1)α}. Suppose the size of Sα is s ≥ 0. The corresponding s rows in
W must implicate:

sα(B + 1) ≥ s(s + 1)

2
⇒ 0 ≤ s ≤ max

(
0,2α(B + 1) − 1

)
< 2α(B + 1).

This concludes our proof. �

6.1. Proof to Theorem 4.1. On the one hand, under Assumption 1.1 and conditional on
the value sets E = {ε1, . . . , εn}, generation of B random permutations (π1, . . . , πB) and new
realization of noises εσ can be characterized by generating σ,π1, . . . , πB,σ independently
and uniformly generated from Sn.
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On the other hand, by Condition 4 and denoting π0 as the identity permutation of [n], we
have (

T (π0, π1; εσ ), . . . , T (π0, πB; εσ ), T (π1, π0; εσ ), . . . , T (πB,π0; εσ )
)

= (
T

(
σ−1, π1 ◦ σ−1; ε)

, . . . , T
(
σ−1, πB ◦ σ−1; ε)

,(9)

T
(
π1 ◦ σ−1, σ−1; ε)

, . . . , T
(
πB ◦ σ−1, σ−1; ε))

.

Here, we have dropped the parameters x and Z in T (., .;x,Z, ε) for convenience.
Write π̃0 = σ−1, π̃1 = π1 ◦ σ−1, . . . , π̃B = πB ◦ σ−1, by eq. (9) and Proposition 6.1, the

marginalized joint distribution of the B pairs of statistics conditional only on E can be re-
expressed equivalently (in distribution) using (π̃b)

B
b=1:

(10) (T0b, Tb0)
B
b=1

d= (
T (π̃0, π̃b; ε), T (π̃b, π̃0; ε))Bb=1,

where π̃0, . . . , π̃B are independently and uniformly generated from Sn, and ε can be viewed
as fixed. Hence, setting (T̃0b, T̃b0) = (T (π̃0, π̃b; ε), T (π̃b, π̃0; ε)), to understand the behavior
of the constructed p-value using (T0b, Tb0)

B
b=1, we can equivalently consider the distribution

of p̃val:

p̃val = 1 + ∑B
b=1(1{T̃b0 > T̃0b} + 1

21{T̃b0 = T̃0b})
B + 1

.

Now, we complete the full T̃ matrix by setting T̃kl = T (π̃k, π̃l; ε) for all k, l = 0, . . . ,B .
We also set the comparison W matrix of T̃ as described in Proposition 6.2 and set Sα =
{l : Wl. ≤ α(B + 1)}. Then, by Proposition 6.2, the size of Sα is upper bounded and |Sα| <

2α(B + 1).
Note that the p-value constructed using T̃ is

p̃val = 1 + ∑B
b=1(1{T̃b0 > T̃0b} + 1

21{T̃b0 = T̃0b}})
B + 1

= W0.

B + 1
.

To avoid confusion, we use the lower case (wb)
B
b=1 to denote the observed row sums (Wb.)

B
b=1

given the current realizations (π̃0, . . . , π̃B) = (τ0, . . . , τB), and (Wb.)
B
b=1 be the random vari-

ables as we change the permutations (π̃0, . . . , π̃B). Then, conditional on the unordered set of
permutations {π̃0, . . . , π̃B} = {τ0, . . . , τB}, the observed permutations take the form π̃b = τζb

,
for b = 0, . . . ,B , where ζ is a permutation of (0, . . . ,B). Since π̃0, . . . , π̃B are i.i.d generated
from Sn, ζ is uniformly generated from the SB .

The above results can be used to derive the exchangeability among W0, . . . ,WB condi-
tional on E and {π̃0, . . . , π̃B} = {τ0, . . . , τB}. Notice that when π̃ = τζ is permuted according
to ζ , the row sum W0. = wζ0 is permuted accordingly:

W0 = 1 +
B∑

b=1

(
1
{
T (τζb

, τζ0; ε) > T (τζ0, τζb
; ε)} + 1

2
1
{
T (τζb

, τζ0; ε) = T (τζ0, τζb
; ε)})

= 1 +
B∑

b=1

(
1{Tζb,ζ0 > Tζ0,ζb

} + 1

2
1{Tζb,ζ0 = Tζ0,ζb

}
)

= 1 + ∑
b �=ζ0

(
1{Tb,ζ0 > Tζ0,b} + 1

2
1{Tb,ζ0 = Tζ0,b}

)

= wζ0 .

Combining the above display with the fact that ζ is uniform from SB , we conclude that
{Wb.}Bb=0 are exchangeable. Consequently, we have

P(W0 ∈ Sα) < 2α ⇒ P(p̃val ≤ α) < 2α.
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7. Numerical experiments. We evaluate the performance and type I error control of var-
ious methods through numerical experiments, setting the sample size at n = 100, and varying
the dimension of Z in {1,5,15}. We investigate four designs: i.i.d. Gaussian, i.i.d. Cauchy,
balanced ANOVA where each feature takes roughly an equal number of nonoverlapping 1’s,
and a paired design where each feature assumes a value of 1 at two entries and 0 elsewhere,
with one unique and one shared one-valued entry across all features. We also consider three
noise settings: Gaussian, Cauchy, and multinomial. The paired design and multinomial noise
distributions are atypical in real-world applications and are included as challenging test cases
for evaluating the robustness of FLtest, which has demonstrated commendable empirical per-
formance under more conventional design structures and noise distributions in existing liter-
ature.

We compare our proposed PALMRT against six existing methods:(1) F-test, (2) PERMtest,
(3) FLtest, (4) CPT with strong pre-ordering by the genetic algorithm as per Lei and Bickel
[25], (5) RPT, and (6) Bias-corrected and Accelerated Bootstrap, previously favored over
plain Bootstrap [5, 6, 9, 19]. All comparisons were conducted at the p-value cut-off α = 0.05
in the main paper; PALMRT’s type I error control is further explored for α = 0.01 and α =
0.001 in Appendix C of the Supplementary Material [17].

For random permutation tests (PALMRT, FLtest, PERMtest), we employed F-statistics as
the test statistics and set the permutation count B = 2000. Bias-corrected and Accelerated
Bootstrap and CPT can be more time-intensive. We used bcaboot R package with 500 boot-
straps and 20 jackknife blocks [10]. For CPT, we used the implementation from the authors’
GitHub, followed the strong ordering approach with 10,000 optimization steps via genetic
algorithms, and set the number of cyclic permutations as 19 (corresponding to α = 0.05)
[25]. For RPT, we used the implementation provided by the authors and set the the number
of permutation as 19 (corresponding to α = 0.05) as recommended [34].

We generated 2,000 independent noise instances ε for each experimental setting and used
them to compute empirical type I error, statistical power, and confidence intervals across
various signal-to-noise ratios. Sections 7.1 and 7.2 compare type I error and power among F-
test, PERMtest, FLtest, CPT, RPT, and PALMRT. Section 7.3 examines CI coverage for β and
their median lengths from independent runs using normal theory, Bootstrap and Algorithm 2.

7.1. Type I error control. To empirically assess type I error control, we simulate the
global null distribution with y = ε. Figure 2 displays type I errors from 50 independent repe-
titions for each setting using F-test, PERMtest, FLtest, CPT, RPT and PALMRT.

In the Gaussian noise or the Gaussian/Cauchy design contexts, all methods effectively
control type I errors. However, for ANOVA or Paired designs, Ftest, FLtest, and PERMtest
yield inflated type I errors when noise is non-Gaussian – especially pronounced in the Paired
design with multinomial errors. This underscores that not only F-test, but also FLtest and
PERMtest, lack distribution-free theoretical guarantees and can be anticonservative in finite-
sample settings.

In our numerical experiments, only PALMRT, CPT and RPT guarantee worst-case cover-
age across all experimental settings. Among them, CPT always provides type I error coverage
close to α, even when a nonconstant η does not exist in theory. This is because of CPT’s na-
ture, with the latter also due to the provided CPT implementation. For example, under the
Gaussian and Cauchy designs, CPT, with high probability, cannot construct a nonconstant η

that satisfies the required p × m linear constraints exactly for p = 15 and m = 1
α

− 1 = 19.
Further examination indicates that the cyclic-invariant constraints of CPT were not perfectly
satisfied in the implemented CPT in such settings, thereby permitting nonconstant η, which
led to close-to-random ordering for the test/permuted statistics and trivial tests providing both
type I error and power around α regardless of the signal size in our experiments. In contrast,
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FIG. 2. Empirical type I error using various methods, organized into boxplots by corresponding designs (row
names) and noise distributions (column names). Each boxplot displays the empirical type I error for different
methods, separately for different feature dimension p (color). The dashed horizontal line represents the targeted
type I error α = 0.05. Methods under a particular design and noise distribution were circled in red if the empirical
type I errors were noticeably higher than α for some p.

PALMRT demonstrates empirical type I errors close to or below target levels, while RPT,
as noted in its original paper, tends to be conservative, with the degree of conservativeness
varying based on design, noise distribution, and dimensionality.

Importantly, the conservative behavior of PALMRT does not sacrifice statistical power
when compared to CPT and is generally more powerful compared to RPT, as evidenced by
our subsequent power analyses.

7.2. Power analysis. In each experiment, we simulate data from the alternative setting
by varying the linear coefficient in front of x in eq. (11):

(11) y = xβ + ε.

We set β using Monte Carlo simulation to yield F-test powers of approximately 30%, 50%,
70%, 90%, 99%. Figures 3–5 display the median, as well as the 25% and 75% percentiles,
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FIG. 3. Power analysis for Gaussian design is presented, organized by baseline methods (row names) and noise
distributions (column names), with different colors indicate varying feature dimensions p. Each open circle rep-
resents the median ratio between PALMRT and a baseline method, plotted against the targeted F-test absolute
power for various signal sizes, with solid lines connecting the dots for overall trend visualization and associated
error bars indicating the 25% and 75% quantiles of the ratio’s empirical distributions. Additional comparisons
between PALMRT α

2
and CPT/RPT are also shown in open circles and connected by dashed lines.

of the relative power comparing PALMRT to F-test, PERMtest, FLtest, CPT and RPT for
varying signal strengths, noise distributions and feature dimensions under Gaussian, Cauchy,
and ANOVA designs. For visualization purposes, if a median ratio is greater than 20, it is
truncated at 20.

Under the Gaussian design, Ftest, PERMtest, and FLtest are most powerful across vari-
ous noise types and feature dimensions. PALMRT closely rivals them at p = 1 and its rela-
tive sensitivity to low signal strength decreases with increased feature dimensions. PALMRT
achieves higher power than CPT at p = 1 and substantially outperforms CPT at p = 5 and
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FIG. 4. Power analysis for Cauchy design is presented, organized by baseline methods (row names) and noise
distributions (column names), with different colors indicate varying feature dimensions p. Each open circle rep-
resents the median ratio between PALMRT and a baseline method, plotted against the targeted F-test absolute
power for various signal sizes, with solid lines connecting the dots for overall trend visualization and associated
error bars indicating the 25% and 75% quantiles of the ratio’s empirical distributions. Additional comparisons
between PALMRT α

2
and CPT/RPT are also shown in open circles and connected by dashed lines.

p = 15, despite being more empirically conservative for controlling the type I error. The gap
between CPT and PALMRT does not disappear for p = 5 and p = 15 as we increase the
signal strength. This is very different from the group bound method [27] which is also con-
servative but is powerless compared to CPT in a wide range of signal-to-noise ratios when
examined in Lei and Bickel [25]. PALMRT also shows much higher power compared to RPT
with different concomitant feature dimension p, especially among the regime with a low
signal-to-noise ratio.
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FIG. 5. Power analysis for Anova design is presented, organized by baseline methods (row names) and noise
distributions (column names), with different colors indicate varying feature dimensions p. Each open circle rep-
resents the median ratio between PALMRT and a baseline method, plotted against the targeted F-test absolute
power for various signal sizes, with solid lines connecting the dots for overall trend visualization and associated
error bars indicating the 25% and 75% quantiles of the ratio’s empirical distributions. Additional comparisons
between PALMRT α

2
and CPT/RPT are also shown in open circles and connected by dashed lines.

In the Cauchy design, the relative sensitivities of PALMRT trend similarly to the Gaus-
sian setting. However, F-test loses power with heavy-tailed noise distributions like Cauchy
or multinomial, and random permutation tests can outperform F-test at low signal strengths.
In the ANOVA design, results align with the Cauchy design when the noise is Gaussian or
Cauchy. When the noise is multinomial, although the overall pattern is difficult to character-
ize, CPT and RPT are both significantly worse than PALMRT. Note that due to the extreme
behavior of multinomial loss, when coupled with the ANOVA design, there is a huge discrep-
ancy between the achieved power and the targeted power, even for FLtest, which remained
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low for p ∈ {5,15} until the targeted F-test power reached 0.9 (see Appendix C of the Sup-
plementary Material [17]).

Overall, when (n/p) is large, PALMRT and FLtest perform similarly, but their relative
diverges as (n/p) decreases. PALMRT has consistently higher power than CPT in the Gaus-
sian, Cauchy, and ANOVA designs, despite becoming more conservative as p increases, and
is also more powerful than RPT. Recall that PALMRT was more conservative than CPT and
achieved lower empirical type I errors. The high power and low type I error of PALMRT rela-
tive to CPT might seem contradictory at first. However, CPT and PALMRT are very different
procedures, and there is no guarantee that CPT has higher power than PALMRT when CPT’s
empirical type I error is worse. For instance, in cases where an exact nonconstant η does not
exist, CPT reduces to a trivial test while PALMRT and RPT still have nontrivial power. CPT
also tended to have lower power in other settings when p is moderately large compared to
n. While rigorous reasoning for this is a separate question for further pursuit, we believe that
this could be related to the restrictive space of test/permuted statistics of CPT, which takes
the simple form η�

π y, linear with respect to permutation, whereas PALMRT and RPT allow
nonlinear transformations on the permutation operations.

As CPT and RPT provide worst-case theoretical guarantees at α while PALMRT provides
such a guarantee at 2α, we additionally include the comparison between PALMRT with a
p-value cutoff at α

2 (referred to as PALMRT α
2
) and CPT/RPT using the median of their power

ratios, despite the fact that PALMRT with an empirical p-value cutoff at α already achieves
empirical type I error control. The median of the relative power of PALMRT α

2
to CPT/RPT

is shown by dashed lines in the corresponding panels in Figures 3-5. Although the more
stringent cutoff reduces its power, PALMRT α

2
still has comparable or higher power compared

to CPT and RPT most of the time, especially for moderately sized dimensions of Z, for
example, p ∈ {5,15}.

7.3. Coverage evaluation of CIα . In this section, we evaluate the empirical coverage and
median length of confidence intervals (CIα) constructed using Algorithm 2 (“Inversion”),
Bootstrap, and normal approximation (“Normal”) across Gaussian, Cauchy, and Anova de-
signs for various β . We exclude the Paired design due to undefined Bootstrap CIs for all p.
As CI coverage and length are consistent across different β , for the sake of space, we focus
on results with a targeted F-test power of 50% and defer full results to Appendix C of the
Supplementary Material [17].

Figure 6A presents the achieved coverage. The CIs from Inversion consistently meet the
desired coverage. In contrast, the normal CIs exhibit slight under-coverage in the ANOVA de-
sign with Cauchy noise, and Bootstrap CIs show severe under-coverage for Cauchy noise. For
the ANOVA design with p = 15, Bootstrap CIs are undefined and thus omitted in Figure 6A.
Figure 6B shows the median CI lengths for each method. In line with previous findings, CIs
from Algorithm 2 are generally wider than Normal CIs, except for p = 1 with Cauchy noise.
Bootstrap CIs can exhibit greater variability when the designs are dominated by extreme
values, such as in the Cauchy design setting.

8. Robust identification of long-Covid biomarkers. The MY-LC dataset contains mea-
surements of 64 cell frequencies for 101 long-Covid (LC) participants and 84 controls (42
healthy samples, 42 convalescent samples without LC). A small percentage of measures are
missing, with the number of observed samples ranging from 169 to 177 across features. Sig-
nificant partial correlations between LC status and cell frequencies were identified by Klein
et al. [24], after controlling for age, sex, and BMI as described in eq. (2). Among the 64
features, 26 had p ≤ 0.05, and 5 survived multiple hypothesis correction using the BH pro-
cedure. In this work, we apply PALMRT, CPT, and RPT, which are theoretically guaranteed
and validated through simulations, for robust biomarker identification.
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FIG. 6. CI coverage and length comparisons, presented as boxplots, organized by designs (row names) and noise
distributions (column names). Panel A displays the boxplots of coverage (y-axis) for different CI construction
methods (x-axis). Panel B shows the boxplots of median CI length (y-axis) for different CI construction methods
(x-axis). Both panels are colored by the feature dimension p.

Figure 7A displays confidence intervals generated using Algorithm 2 for the 26 significant
biomarkers identified by the t-test, before multiple corrections, at α = 0.05. The center dot
in each CI represents the estimated LC coefficient in eq. (2). Solid dots indicate features
that were significant before correction; empty dots indicate otherwise. PALMRT confirmed
24 of these 26 biomarkers. In particular, all 5 top biomarkers, which were significant after
correction using the t-test, remained significant after correction using PALMRT (solid dot
with red circle). In general, the p-values from PALMRT and the t-test are highly concordant,
with ratios between them for the same feature ranging from 0.6 to 1.2, except for cDC1
and the central memory CD4+ T cell with positive PD1 (CD4+ T cell (PD1+Tcm)), which
achieved the smallest possible PALMRT p-values at B = 105 and also had smallest t-test
p-values � 10−5 (see Figure 7B).

Both CPT and RPT, in contrast, reduced discoveries before correction and yielded none
afterward. Increasing the number of cyclic permutations (m) from m = 19 to m = 
 n

p
� − 1

did not improve their power in CPT, as shown in Figure 7C. The nominal p-value cutoff at
0.05 resulted in 16 out of 26 t-test discoveries being confirmed when m = 19 and none being
significant when m = 
 n

p
�−1 (see Figure 7C). RPT achieved higher power compared to CPT

at the nominal p-value cutoff of 0.05, confirming 22 out of 26 t-test discoveries when m = 19.
However, even for RPT, no discoveries were retained after correcting for multiple hypothesis
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FIG. 7. Biomarker discovery using PALMRT and CPT. Panel A displays the estimated coefficient (center dot)
and constructed CI (segmented line)for PALMRT for the 26 significant t-test findings before correction, with the
x-axis label showing the feature name (ordered based on significance). The center dot is solid if p-value ≤ α

and empty otherwise using PALMRT. If a feature is significant after correction using PALMRT, the center dot is
further highlighted with red circle. Panel B shows the negative log10 of the PALMRT p-value against that from
the t-test for 64 features. Panel C shows the negative log10 of the CPT p-value against that from the t-test for 64
features, where a dot is colored red if CPT used m = 19 (CPT.m = 19) and blue if CPT used m = 
 n

p �−1 (CPT.m
= n/p). Panel D shows the negative log10 of the RPT p-value against that from the t-test for 64 features, where
a dot is colored red if RPT used m = 19 (RPT.m = 19) and blue if RPT used m = n − 1 (RPT.m = n − 1). The
vertical/horizontal dashed lines represent the p-value level of 0.05 in Panels B-D.

tests, whether using m = 19 or m = n − 1, the largest m allowed by the RPT algorithm (see
Figure 7D).

9. Discussions. We introduce a novel conformal test, PALMRT, designed for hypothe-
sis testing in linear regression. This test and its corresponding confidence intervals are effi-
ciently computed by evaluating statistic pairs, which are formed by augmenting the original
regression problem with row-permuted versions of (x,Z). PALMRT achieves little power
loss compared to conventional tests like the F/t-test and FL-test, and differs from CPT and
RPT which also enjoy a worst-case coverage guarantee. Unlike CPT, PALMRT eliminates
the need for complex optimization to construct the test and consistently outperforms CPT
in both simulated and real-data scenarios. In comparison to RPT, another recently proposed
method, developed independently to address the challenges in CPT, PALMRT does not re-
quire specially designed permutations that form a group, and its performance remains stable
and does not deteriorate as the number of permutations increases.
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FIG. 8. Power analysis in Anova design, presented as line plots, organized by methods (row names) and noise
distributions (column names). Each line plot shows the median power of a given method and dimension p, plotted
against the targeted F-test power for various signal sizes. Different colors indicate varying feature dimensions p.

Of note, the improvement over CPT is not universal. For example, in special designs like
the paired design where there are many duplicate rows in Z, CPT can be more powerful.
Figure 8 illustrates the comparative power of CPT and PALMRT in signal detection under
the paired design. While PALMRT generally matches or exceeds the power of CPT when
p = 1,5, it fails to detect signals at α = 0.05 when p = 15. CPT, conversely, successfully
identifies an effective pre-ordering and η to construct a nontrivial test. While such settings
are rare in practice, this observation raises an intriguing theoretical inquiry: Can the power
of PALMRT be enhanced by filtering the random permutations {xπb

,Zπb
} to avoid near co-

linearity among x, Z, xπb
, Zπb

? We earmark this question for future exploration.
Another potential direction for future exploration is to extend the idea underlying

PALMRT to settings beyond exchangeable noises, such as symmetric noises, by designing
suitable bivariate functions compatible with the noise assumptions. We believe the PALMRT
framework can be adapted to design and analyze test procedures in more general settings, as
key conditions like Condition 4 and Proposition 6.1 are not specific to permutations.

As a brief detour from our main discussion, the augmentation step in PALMRT is rem-
iniscent of the seminal work by Barber and Candès [2], which introduced the concept of
knockoffs. This approach generates a knockoff copy X̃ of the original feature matrix X, for
example, X ← (x,Z) in our notation with dimension n × (p + 1). The key requirement of
the knockoff copy is that swapping any pair (X̃j ,Xj ) leaves the covariance structure un-
changed. Consequently, important quantities in regression analysis—such as OLS or Lasso
coefficients (β̂1, . . . , β̂p+1, β̃1, . . . , β̃p+1)—are invariant under these swaps, provided the er-
ror terms ε1, . . . , εn are i.i.d. Gaussian. Knockoffs control the FDR by retaining features
Xj for which |β̂j | − |β̃j | is sufficiently large. Although both PALMRT and knockoffs oper-
ate under a fixed design and have similar sample size requirements, their objectives differ.
Knockoffs aim to control FDR across p + 1 features under the Gaussian noise assumption,
often in more complex model-fitting contexts, whereas PALMRT focuses on computing indi-
vidual p-values for partial correlations under a more relaxed exchangeability condition for the
residual errors. Recent advancements in derandomized knockoffs [29] allow for the compu-
tation of modified e-values [32, 33] through repeated runs with different X̃ copies. However,
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achieving small p-values or high e-values necessitates a large n > e-value or n > (1/p-value)
at least, a constraint not shared by PALMRT. This makes PALMRT particularly advantageous
for exploratory analyses aimed at uncovering partial correlations among a potentially large
set of response and primary feature pairs, after adjusting for a limited number of covariates.
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SUPPLEMENTARY MATERIAL

Supplement to “A conformal test of linear models via permutation-augmented re-
gressions” (DOI: 10.1214/24-AOS2421SUPP; .pdf). In the Supplementary Material, we pro-
vide (1) omitted proofs for theoretical results in the main paper. (2) Additional results from
numerical experiments.
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