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Model-X approaches to testing conditional independence between a pre-
dictor and an outcome variable given a vector of covariates usually assume
exact knowledge of the conditional distribution of the predictor given the co-
variates. Nevertheless, model-X methodologies are often deployed with this
conditional distribution learned in sample. We investigate the consequences
of this choice through the lens of the distilled conditional randomization test
(dCRT). We find that Type-I error control is still possible, but only if the
mean of the outcome variable given the covariates is estimated well enough.
This demonstrates that the dCRT is doubly robust, and motivates a compari-
son to the generalized covariance measure (GCM) test, another doubly robust
conditional independence test. We prove that these two tests are asymptoti-
cally equivalent, and show that the GCM test is optimal against (generalized)
partially linear alternatives by leveraging semiparametric efficiency theory.
In an extensive simulation study, we compare the dCRT to the GCM test.
These two tests have broadly similar Type-I error and power, though dCRT
can have somewhat better Type-I error control but somewhat worse power in
small samples or when the response is discrete. We also find that post-lasso
based test statistics (as compared to lasso based statistics) can dramatically
improve Type-I error control for both methods.

1. Introduction.

1.1. Conditional independence testing and the model-X assumption. Given a predictor
X ∈ R, response Y ∈ R and high-dimensional covariate vector Z ∈ Rp drawn from a joint
distribution (X,Y ,Z) ∼ Ln (potentially varying with n to accommodate growing p), con-
sider testing the hypothesis of conditional independence (CI)

(1) H0n : Y⊥⊥X|Z
at level α ∈ (0,1) using n data points

(2) (X,Y,Z) ≡ {
(Xi, Yi,Zi)

}
i=1,...,n

i.i.d.∼ Ln.

Throughout the paper, boldface (resp., regular) font indicates population (resp., sample) quan-
tities. In a high-dimensional regression setting, H0n is a model-agnostic way of formulating
the null hypothesis that predictor X is unimportant in the regression of Y on (X,Z) (Candès
et al. (2018)). In a causal inference setting with treatment X, outcome Y , observed con-
founders Z, and no unobserved confounders, H0n is the null hypothesis of no causal effect of
X on Y (Pearl (2009)).
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As Shah and Peters (2020) showed, the CI null hypothesis is too large in the sense that any
test controlling Type-I error on H0n must be powerless against all alternatives (if we assume,
e.g., that Z is continuously distributed). Therefore, additional assumptions must be placed on
Ln to make progress. One such assumption is the model-X (MX) assumption (Candès et al.
(2018)), which states that Ln(X|Z) is known exactly. Under the MX assumption, Candès
et al. (2018) propose the MX knockoffs and conditional randomization test (CRT) methodolo-
gies, which have elegant finite-sample Type-I error control guarantees. These MX method-
ologies have since exploded in popularity, undergoing active methodological development
and deployment in a range of applications.

One of the primary challenges in the practical application of MX methods is to obtain
the required conditional distribution Ln(X|Z). Outside the context of randomized controlled
experiments (Aufiero and Janson (2022), Ham, Imai and Janson (2022)), the MX assumption
is an approximation (Barber, Candès and Samworth (2020), Huang and Janson (2020), Li
and Liu (2023)). In genome-wide association studies, a realistic parametric distribution can
be postulated for this conditional law (Sesia, Sabatti and Candès (2019)), but the parameters
of this distribution must still be learned from data. In practice, the conditional law is usually
fit in sample on the same data that is used for testing, and then treated as if it were known
(Candès et al. (2018), Sesia, Sabatti and Candès (2019), Sesia et al. (2020), Bates et al. (2020),
Liu et al. (2022), Li et al. (2022), Sesia et al. (2021), Barry et al. (2021)). Such adaptations of
MX methodologies are widely deployed, but their robustness and power properties have not
been thoroughly investigated.

1.2. Our contributions. In this paper, we address this gap by investigating the properties
of MX methods with Ln(X|Z) learned in sample. This investigation leads us to establish
close connections between these methods and double regression approaches to CI testing,
and to explore the optimality of CI tests against semiparametric alternatives. We focus our
analyses on the distilled conditional randomization test (dCRT), a fast and powerful instance
of the CRT (Liu et al. (2022)), and the generalized covariance measure (GCM) test, a proto-
typical double regression approach to CI testing (Shah and Peters (2020)). Both tests involve
learning Ln(X|Z) and Ln(Y |Z) in sample. Our main contributions are outlined next:

1. The dCRT with Ln(X|Z) learned in sample can have poor Type-I error control if
Ln(Y |Z) is learned poorly. If L(X|Z) is known exactly, then the dCRT has finite-sample
Type-I error control regardless of L(Y |Z) or the quality of its estimate. This is no longer
the case once L(X|Z) is fit in sample, as we demonstrate in a numerical simulation and a
theoretical counterexample (Section 3).

2. The dCRT is doubly robust, in the sense that errors in Ln(X|Z) can be compensated
for by better approximations of Ln(Y |Z). The MX assumption shifts the modeling burden
entirely from Ln(Y |Z) to Ln(X|Z). When the latter is fit in sample, shifting the modeling
burden partially back toward Ln(Y |Z) helps recover asymptotic Type-I error control, as we
demonstrate theoretically (Section 4.2).

3. The dCRT resampling distribution approaches normality, making this test asymptoti-
cally equivalent to the GCM test. The dCRT is a resampling-based test, whereas the GCM
test is asymptotic. In large samples, however, the resampling-based null distribution of the
former converges to the N(0,1) null distribution of the latter (Section 2). We show that these
two tests are asymptotically equivalent against local alternatives (Section 4.1).

4. The GCM test is asymptotically uniformly most powerful against local non-interacting
alternatives. Optimality results are widely prevalent in the semiparametric literature, but not
in the CI testing literature. We leverage semiparametric optimality theory to prove that the
GCM is the optimal CI test against local (generalized) partially linear alternatives (Section 5),
a broad class of alternatives in which X and Z do not interact.
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5. In finite samples, the dCRT and GCM test have broadly similar Type-I error and power,
with some exceptions. The asymptotic equivalence between the dCRT and GCM test largely
carries over to finite samples, as we demonstrate in numerical simulations (Section 6). The
two tests have broadly similar Type-I error and power, although there is some divergence in
small samples or when Y is discrete: in these cases, dCRT can have somewhat better Type-I
error control but somewhat worse power.

6. In finite samples, replacing the lasso with the post-lasso markedly improves Type-I
error control for both dCRT and GCM test. In MX applications, the lasso is perhaps the most
common approach for learning both Ln(X|Z) and Ln(Y |Z). However, we demonstrate in
numerical simulations (Section 6) that the bias reduction offered by the post-lasso greatly
improves Type-I error control in the context of both GCM test and dCRT, though at some
cost in power.

On the way to making the aforementioned primary contributions, we make a few secondary
contributions of independent interest:

7. We reexamine numerical simulation setups from prior MX papers, finding that many
have only low levels of marginal dependence between X and Y . Prior works have used nu-
merical simulations to establish that MX methods are fairly robust when fitting Ln(X|Z) in
sample. However, we note that the conditional independence testing problem (1) is difficult to
the extent that Z induces spurious marginal dependence between X and Y (a “confounding”
effect). We find simulation setups in prior works have low levels of this marginal dependence
(Section 6.1), potentially leading to optimistic conclusions.

8. We collate a number of conditional analogs of classical convergence theorems (some
but not all novel). The dCRT involves resampling conditionally on the observed data, so its
asymptotic analysis requires reasoning about convergence after conditioning on a σ -algebra
that changes with n. We state and prove conditional analogs of Slutsky’s theorem, the law of
large numbers, the central limit theorem and other classical convergence theorems (Appendix
B of the Supplementary Material, Niu et al. (2024)). These results are not surprising, but at
least some appear novel.

9. We prove a sharpened theorem on optimality in semiparametric testing. In the literature
on semiparametric estimation, an estimator need only be regular in the vicinity of a point for
efficiency bounds to hold, whereas popular textbooks (van der Vaart (1998), Kosorok (2008))
state semiparametric testing optimality results globally: a test must control Type-I error on
the entire semiparametric null, rather than just in the vicinity of a point, for efficiency bounds
to hold. We address this gap by proving a stronger local optimality result for semiparametric
testing (Appendix E.1 in Niu et al. (2024)).

1.3. Related work. We split related works into three categories: those investigating the
robustness of the original MX methods (knockoffs and CRT) to misspecification of Ln(X|Z),
those proposing new variants of MX methods designed for robustness, and those investigating
the power of MX methods.

Robustness of original MX methods. One line of work investigates the Type-I error of
knockoffs (Barber, Candès and Samworth (2020)) and the CRT (Berrett et al. (2020)) when
Ln(X|Z) is misspecified, in the worst case over all possible test statistics and all possible
distributions Ln(Y |Z). In the context of the CRT, Berrett et al. (2020) proved that the excess
Type-I error is upper bounded by the total variation error in approximating

∏n
i=1 Ln(Xi |Zi),

alongside a matching lower bound. A similar style of result holds for knockoffs (Barber,
Candès and Samworth (2020)). These works do not allow for Ln(X|Z) to be fit in sample,
however. Even if they applied in this case, one could at most hope for the aforementioned TV
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distance to be O(1). For these worst-case bounds to guarantee asymptotic Type-I error con-
trol, one would need to learn the conditional distribution Ln(X|Z) on an additional unlabeled
sample of size N � n. For specific test statistics, however, MX methods may be more robust.
For example, Katsevich and Ramdas (2022) proved that the distilled CRT (an instance of the
CRT with a product-of-residuals test statistic) has asymptotic Type-I error control when only
the first two moments of Ln(X|Z) are correct but higher-order moments may be misspeci-
fied. Even this weaker assumption cannot be expected to hold when Ln(X|Z) is fit in sample,
however. Another line of work (Fan et al. (2020a, 2020b), Fan, Gao and Lv (2023)) probes
the robustness of MX knockoffs with imperfect covariate distribution for a variety of specific
test statistics and covariate distributions, with Fan et al. (2020b), Fan, Gao and Lv (2023)
allowing for the covariate distribution to be learned in sample while guaranteeing asymptotic
FDR control. The robustness aspects of the present work can be viewed as complementing
the latter two existing works; we focus on the CRT rather than on knockoffs.

New variants of MX methods designed for robustness. Modifications of the originally pro-
posed CRT and knockoffs have been designed specifically to have improved robustness to
misspecifications of Ln(X|Z). For example, if this law is known to belong to a parametric
family with a low-dimensional sufficient statistic, a variant of MX knockoffs can be carried
out conditionally on this sufficient statistic without needing to accurately estimate the pa-
rameters themselves (Huang and Janson (2020)). The former methodology enjoys a double
robustness property, related to but different from the one we state for the dCRT (see contri-
bution 2). Even in the absence of a low-dimensional sufficient statistic, Barber and Janson
(2022) proposed a variant of the CRT based on conditioning on an approximate sufficient
statistic. Another method, the conditional permutation test (Berrett et al. (2020)), is a variant
of the CRT based on conditioning on the order statistics of {Xi} rather than on a sufficient
statistic for Ln(X|Z). This test was shown to be more robust than the CRT to misspecifica-
tion of Ln(X|Z). Finally, the Maxway CRT (Li and Liu (2023)) has recently been proposed
as a doubly robust variant of the dCRT. In this manuscript, we argue that, in fact, the dCRT
itself is doubly robust. Overall, our goal is not to introduce new methodology but to study
the robustness of (a special case of) the originally proposed CRT. Despite the emergence of
several new variants of MX methods like those described above, the originally proposed CRT
and knockoffs remain the most widely deployed MX methods in practice.

Power of MX methods. A number of works have investigated the power of the CRT and
knockoffs (Weinstein, Barber and Candes (2017), Liu and Rigollet (2019), Weinstein et al.
(2023), Fan et al. (2020a, 2020b), Katsevich and Ramdas (2022), Spector and Fithian (2022),
Wang and Janson (2022)), although only Fan et al. (2020a, 2020b), Katsevich and Ramdas
(2022) do not assume that Ln(X|Z) is known exactly (the MX assumption). Beyond calculat-
ing power against certain alternatives, Katsevich and Ramdas (2022) and Spector and Fithian
(2022) discuss test statistic choices for the CRT and MX knockoffs, respectively, that yield
optimal power under the MX assumption. In the current work, we investigate not just optimal
statistics for certain methods but optimal CI methods against certain classes of alternatives,
and without assuming that Ln(X|Z) is known (see contribution 4). We defer the discussion
of further optimality-related work to Section 5.3.

1.4. Preliminaries: The dCRT and GCM tests. Here, we formally define two of the pri-
mary CI tests under investigation, the dCRT and the GCM test. For both of these, it will be
useful to define

(3) μn,x(Z) ≡ ELn[X|Z] and μn,y(Z) ≡ ELn[Y |Z].
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Algorithm 1: The conditional randomization test (CRT)
Input: Data (X,Y,Z), number of randomizations M , conditional law Ln(X|Z).

1 Compute Tn(X,Y,Z);
2 for m = 1,2, . . . ,M do
3 Sample X̃(m)|X,Y,Z ∼ ∏n

i=1 Ln(Xi |Zi) and compute Tn(X̃
(m), Y,Z);

4 end
Output: CRT p-value 1

M+1 (1 + ∑M
m=1 1{Tn(X̃

(m), Y,Z) ≥ Tn(X,Y,Z)}).

1.4.1. The dCRT and d̂CRT. A simple approach to CI testing under the MX assumption
is the conditional randomization test (CRT, Candès et al. (2018)), which controls Type-I error
not just asymptotically (28) but in finite samples as well. The CRT is based on constructing a
null distribution for any test statistic Tn(X,Y,Z) by resampling X conditionally on Z using
the known conditional law Ln(X|Z) (Algorithm 1). The test statistic Tn is usually a measure
of variable importance for the predictor X based on a predictive model of Y on (X,Z) trained
on the given data. In general, the CRT requires retraining this predictive model for each
resampled data set (X̃(m), Y,Z), and can therefore be computationally costly.

Motivated by the high computational cost of the CRT, a faster but similarly powerful dis-
tilled CRT (dCRT, Liu et al. (2022)) was proposed as a special case based on a test statistic
of the form

T dCRT
n (X,Y,Z) ≡ 1√

n

n∑
i=1

(
Xi − μn,x(Zi)

)(
Yi − μ̂n,y(Zi)

)
.

Here, μn,x is known under the MX assumption and μ̂n,y is trained in sample. The dCRT
is fast because it does not require retraining the predictive model μ̂n,y for each resampled
data set, as it depends on (Y,Z) only. Variants of the dCRT have now been deployed in
genetics (Bates et al. (2020)) and genomics (Barry et al. (2021)) applications. As discussed
in Section 1.1, MX methodologies (including the dCRT) are usually deployed by learning
Ln(X|Z) in sample. For clarity, we give the dCRT with Ln(X|Z) fit in sample a new name:
d̂CRT. This procedure is based on the test statistic

(4) T d̂CRT
n (X,Y,Z) ≡ 1√

n

n∑
i=1

(
Xi − μ̂n,x(Zi)

)(
Yi − μ̂n,y(Zi)

)
,

where μ̂n,x(Zi) ≡ EL̂n
[Xi |Zi]. The d̂CRT procedure is outlined in Algorithm 2; one of

the primary goals of this paper is to study this procedure. The resampled test statistics

T d̂CRT
n (X̃(m),X,Y,Z) (7) have four arguments instead of three in order to emphasize that

the conditional mean μ̂n,x(·) is not refit upon resampling.

1.4.2. The GCM test and double robustness. Another CI test is the GCM test (Shah and
Peters (2020)), defined as

(5) φGCM
n (X,Y,Z) ≡ 1

(
T GCM

n (X,Y,Z) > z1−α

)
,

where

(6)

T GCM
n (X,Y,Z) ≡ 1

ŜGCM
n

1√
n

n∑
i=1

(
Xi − μ̂n,x(Zi)

)(
Yi − μ̂n,y(Zi)

)
≡ 1

ŜGCM
n

T d̂CRT
n (X,Y,Z)
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Algorithm 2: The d̂CRT
Input: Data (X,Y,Z), number of randomizations M .

1 Learn L̂n(X|Z) based on (X,Z) and μ̂n,y(Z) based on (Y,Z);

2 Compute T d̂CRT
n (X,Y,Z);

3 for m = 1,2, . . . ,M do
4 Sample X̃(m)|X,Y,Z ∼ ∏n

i=1 L̂n(Xi |Zi) and compute

(7) T d̂CRT
n

(
X̃(m),X,Y,Z

) ≡ 1√
n

n∑
i=1

(
X̃

(m)
i − μ̂n,x(Zi)

)(
Yi − μ̂n,y(Zi)

);
5 end

Output: d̂CRT p-value 1
M+1 (1 + ∑M

m=1 1{T ̂dCRT
n (X̃(m),X,Y,Z) ≥ T

̂dCRT
n (X,Y,Z)}).

and (ŜGCM
n )2 is the empirical variance of the product-of-residual summands:

(8)
(
ŜGCM

n

)2 ≡ V̂ar
{(

Xi − μ̂n,x(Zi)
)(

Yi − μ̂n,y(Zi)
)}

.

It controls Type-I error if the following in-sample mean-squared error quantities are small
(Shah and Peters (2020)):

En,x ≡
(

1

n

n∑
i=1

(
μ̂n,x(Zi) − μn,x(Zi)

)2

)1/2

,

E′
n,x ≡

(
1

n

n∑
i=1

(
μ̂n,x(Zi) − μn,x(Zi)

)2 VarLn[Yi |Zi]
)1/2

,

En,y ≡
(

1

n

n∑
i=1

(
μ̂n,y(Zi) − μn,y(Zi)

)2

)1/2

,

E′
n,y ≡

(
1

n

n∑
i=1

(
μ̂n,y(Zi) − μn,y(Zi)

)2 VarLn[Xi |Zi]
)1/2

.

In particular, Shah and Peters (2020) require that

(SP1) En,xEn,y = oLn

(
n−1/2)

, E′
n,x = oLn(1), E′

n,y = oLn(1),

and, for some constants c1, c2, δ > 0,

inf
n
ELn

[(
X − μn,x(Z)

)2(
Y − μn,y(Z)

)2]
> c1,

sup
n

ELn

[∣∣(X − μn,x(Z)
)(

Y − μn,y(Z)
)∣∣2+δ]

< c2.
(SP2)

The GCM test is therefore doubly robust in the sense that it controls Type-I error if the
product of the estimation errors for E[X|Z] and E[Y |Z] (En,xEn,y ) converges to zero at
the oLn(n

−1/2) rate. Note that this is a rate double robustness property rather than a model
double robustness property; see Smucler, Rotnitzky and Robins (2019) for a discussion of
this distinction. Unless otherwise specified, we use the term “doubly robust” to refer to rate
double robustness of Type-I error control.
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2. d̂CRT resampling distribution converges to normal. To make it easier to analyze
the asymptotic properties of the d̂CRT, in this section we prove that it is asymptotically
equivalent to the resampling-free M̂X(2) F -test, a variant of the MX(2) F -test (Katsevich
and Ramdas (2022)) where the first two moments of Ln(X|Z) are estimated in sample. This
equivalence was already shown by these authors in the case when μn,x is known and μ̂n,y is
fit out of sample (see their Theorem 2). They conjectured that the equivalence continues to
hold when μ̂n,y is fit in sample. Here, we prove this conjecture, not just when μ̂n,y is fit in
sample, but also when the first two moments of μn,x are unknown and also fit in sample.

Note that the variance of the resampling distribution of T d̂CRT
n is

(9)
(
Ŝ d̂CRT

n

)2 ≡ VarL̂n

[
T d̂CRT

n (X̃,X,Y,Z)|X,Y,Z
] = 1

n

n∑
i=1

VarL̂n
[Xi |Zi](Yi − μ̂n,y(Zi)

)2
.

It will be convenient to reformulate d̂CRT as

φd̂CRT
n (X,Y,Z) ≡ 1

(
T d̂CRT

n (X,Y,Z) > Q1−α

[
T d̂CRT

n (X̃,X,Y,Z)|X,Y,Z
])

= 1
(

1

Ŝ d̂CRT
n

T d̂CRT
n (X,Y,Z) > Q1−α

[
1

Ŝ d̂CRT
n

T d̂CRT
n (X̃,X,Y,Z)|X,Y,Z

])

≡ 1
(

1

Ŝ d̂CRT
n

T d̂CRT
n (X,Y,Z) > C d̂CRT

n (X,Y,Z)

)
.

The conditional 1−α quantile C d̂CRT
n (X,Y,Z) is defined in the last line above. Note that this

test is obtained from that in Algorithm 2 by sending M → ∞; we focus our theoretical anal-
ysis here and throughout on this infinite-resamples limit of the d̂CRT. Here, the α conditional
quantile Qα[W |F] of a random variable W given a σ -algebra F is defined via

(10) Qα[W |F] ≡ inf
{
t : P[W ≤ t |F] ≥ α

}
.

One would expect, based on the central limit theorem, that the conditional distribution of

the ratio T d̂CRT
n (X̃,X,Y,Z)/Ŝ d̂CRT

n tends to N(0,1). This statement is complicated by the
conditioning event, which requires us to be careful to define conditional convergence in dis-
tribution.

DEFINITION 1. For each n, let Wn be a random variable and let Fn be a σ -algebra. Then
we say Wn converges in distribution to a random variable W conditionally on Fn if

(11) P[Wn ≤ t |Fn] p→ P[W ≤ t] for each t ∈R at which t → P[W ≤ t] is continuous.

We denote this relation via Wn|Fn
d,p−→ W .

Based on an extension of the Lyapunov central limit theorem to conditional convergence
in distribution (Theorem 5 in Niu et al. (2024)), we get the following result.

THEOREM 1. Suppose the sequences of true and learned laws Ln and L̂n satisfy the
following two nondegeneracy properties:

PLn

[(
Ŝ d̂CRT

n

)2 ≥ ε
] → 1 for some ε > 0,(NDG1)

VarL̂n
[Xi |Zi], (

Yi − μ̂n,y(Zi)
)2

,
(
Yi − μn,y(Zi)

)2
< ∞ almost surely.(NDG2)



902 NIU, CHAKRABORTY, DUKES AND KATSEVICH

If the conditional Lyapunov condition,

(Lyap-1)
1

n1+δ/2

n∑
i=1

∣∣Yi − μ̂n,y(Zi)
∣∣2+δEL̂n

[∣∣X̃i − μ̂n,x(Zi)
∣∣2+δ|X,Z

] p→ 0,

is satisfied for some δ > 0, then

(12)
1

Ŝ d̂CRT
n

T d̂CRT
n (X̃,X,Y,Z)|X,Y,Z

d,p−→ N(0,1)

and, therefore,

(13) C d̂CRT
n (X,Y,Z) ≡ Q1−α

[
1

Ŝ d̂CRT
n

T d̂CRT
n (X̃,X,Y,Z)|X,Y,Z

]
p→ z1−α.

This suggests that the d̂CRT is asymptotically equivalent to the M̂X(2) F -test, defined

(14) φM̂X(2)
n (X,Y,Z) ≡ 1

(
1

Ŝ d̂CRT
n

T d̂CRT
n (X,Y,Z) > z1−α

)
.

Indeed, we have the following corollary.

COROLLARY 1. Consider a sequence of laws Ln satisfying the assumptions (NDG1),
(NDG2) and (Lyap-1) of Theorem 1, and assume that the test statistic does not accumulate
near z1−α , that is,

(15) lim
δ→0

lim sup
n→∞

PLn

[∣∣T d̂CRT
n (X,Y,Z) − z1−α

∣∣ ≤ δ
] = 0.

Then the d̂CRT is asymptotically equivalent to the M̂X(2) F -test:

(16) lim
n→∞PLn

[
φd̂CRT

n (X,Y,Z) = φM̂X(2)
n (X,Y,Z)

] = 1.

This result extends Katsevich and Ramdas ((2022), Theorem 2) by allowing μ̂n,x and μ̂n,y

to be fit in sample, rather than assuming μn,x is known and μ̂n,y is fit out of sample. It is a

first indication that the d̂CRT approximates a test based on asymptotic normality.

3. d̂CRT is not robust for general μ̂n,y . One of the hallmarks of MX inference is that
it requires “no restriction on the dimensionality of the data or the conditional distribution of
[Ln(Y |Z)]” (Candès et al. (2018)). For the CRT, this means that Type-I error is controlled in
finite samples, regardless of the test statistic used or the distribution of the response variable.
If Ln(X|Z) is described by a parametric model with k unknown parameters and we have
N � n · k unlabeled samples to learn this model, then at least asymptotic Type-I error control
is still possible without assumptions on Ln(Y |Z) (Berrett et al. (2020)). By contrast, in this
section we show that when Ln(X|Z) is approximated in sample, we cannot expect Type-I
error control without assumptions on the response variable.

Let us consider a simple null model Ln with

(17) Ln(Z) = N(0, Ip), Ln(X|Z) = N
(
ZT β,1

)
, and Ln(Y |Z) = N

(
ZT β,1

)
.

Suppose we fit Ln(X|Z) via a ridge regression while using the trivial estimate μ̂n,y(Z) ≡ 0
for E[Y |Z]. To build intuition while avoiding technical difficulties, we loosely approximate
the ridge regression estimator as β̂n ≡ (1 − c√

n
)β , where the 1/

√
n error term reflects that we

are fitting β̂n in sample (and is optimistic in the sense that it ignores possible growth in p).
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Then consider the d̂CRT based on L̂n(X|Z) = N(ZT β̂n,1) and μ̂n,y(Z) ≡ 0. In this case,
the normality of L̂n(X|Z) leads to normality of the resampling distribution holding not just
asymptotically (12) but in finite samples as well. Therefore, the d̂CRT is equal to the M̂X(2)
F -test:

(18) φd̂CRT
n (X,Y,Z) = 1

(
1√

1
n

∑n
i=1 Y 2

i

1√
n

n∑
i=1

(
Xi − ZT

i β̂n

)
Yi > z1−α

)
.

On the other hand, it is easy to derive that

(19)
1√

1
n

∑n
i=1 Y 2

i

1√
n

n∑
i=1

(
Xi − ZT

i β̂n

)
Yi

d→ N

(
c‖β‖2√
‖β‖2 + 1

,1
)
.

Therefore, the limiting Type-I error of the d̂CRT in this case is

(20) lim
n→∞ELn

[
φd̂CRT

n (X,Y,Z)
] = 1 − �

(
z1−α − c‖β‖2√

‖β‖2 + 1

)
,

which can be made arbitrarily close to one as c → ∞. This issue is caused by a combination
of the O(1/

√
n) shrinkage bias in the estimator for μn,x and the failure to estimate μn,y . This

leaves an O(1/
√

n) correlation between X − μ̂n,x(Z) and Y induced by Z, which shifts the
mean of the null distribution of the d̂CRT test statistic away from zero by a nontrivial amount.

Numerical simulations (although with lasso instead of ridge regression) confirm this
phenomenon. We constructed a numerical simulation based on the null model (17) with
n = 1600, p = 400 and β having only s = 5 nonzero entries (see Section 6.2 below for more
on our data-generating model). In this setting, we applied the d̂CRT using the cross-validated
lasso and intercept-only models to estimate μn,x and μn,y , respectively. As we increased the
magnitude of the coefficient vector β , this test exhibited significant loss of Type-I error con-
trol (Figure 1). By contrast, using the lasso instead of the intercept-only model to estimate
μn,y reduced the Type-I error to nearly the nominal level.

FIG. 1. The Type-I error of two instances of the d̂CRT under the data-generating model (17), depending on
which method is used to estimate μn,y , when the lasso is used to estimate μn,x . Improved estimation of μn,y

leads to markedly reduced Type-I error.
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So, even when Ln(X|Z) is estimated at a parametric rate (albeit with regularization), the
d̂CRT can have inflated Type-I error rate for certain test statistics. A similar observation was
made by Li and Liu (2023) (see the discussion after Theorem 3). Similar phenomena have
been noted in the contexts of causal inference (Dukes and Vansteelandt (2020)) and doubly
robust estimation (Chernozhukov et al. (2018, 2022)); in the latter literature, this issue is
called “regularization bias.” We note that poor estimation of E[Y |Z], in conjunction with the
plug-in resampling scheme of the d̂CRT can also lead to conservative inference rather than
liberal inference. This happens in cases when β̂n is an efficient estimator of β , for example,
that derived from ordinary least squares. In the causal inference context, this conservatism is
a consequence of the fact that using estimated propensity scores can lead to more efficient
estimates than using known propensity scores (Robins, Mark and Newey (1992), Henmi and
Eguchi (2004)). If the propensity score is estimated but the standard error is constructed as
though it were known, then conservative inference would result.

As already alluded to, the Type-I error inflation in the above example stems from the fact
that

ELn

[(
μ̂n,x(Z) − μn,x(Z)

)(
μ̂n,y(Z) − μn,y(Z)

)] = O(1/
√

n),

a rate insufficient for Type-I error control. If we had at least consistency of μ̂n,y(Z), then this
rate would improve to o(1/

√
n) and Type-I error control would be restored. This intuition is

supported by the simulation results in Figure 1, where estimating E[Y |Z] via lasso brought
the Type-I error down to nearly the nominal level. This discussion suggests that, if Ln(X|Z)

is learned in sample (or on an external sample of similar size), then assumptions must be
placed not only on Ln(X|Z) but also on Ln(Y |Z) for Type-I error control. This motivates us
to investigate the double robustness of the d̂CRT and compare it to the GCM test.

4. d̂CRT is doubly robust and equivalent to GCM test. Of course, in practice μ̂n,y is
not fit as naively as in the counterexample from Section 3. The conditional mean E[Y |Z] is
usually approximated via a machine learning algorithm, as improved approximation of this
quantity improves the power of the dCRT (Katsevich and Ramdas (2022)). In the context
where Ln(X|Z) must be approximated, we claim that more accurate estimation of E[Y |Z]
can improve not just the power but also the Type-I error control of the d̂CRT. We formalize
this by showing that the d̂CRT is doubly robust (recall Section 1.4). This property is a con-
sequence of the fact that, under the null, the d̂CRT is asymptotically equivalent to the GCM
test, which itself is doubly robust. This equivalence also implies that the d̂CRT and GCM test
have the same asymptotic power against contiguous alternatives.

4.1. Equivalence between GCM test and d̂CRT. When comparing the GCM test (5) to
the M̂X(2) F -test (14), which is asymptotically equivalent to the d̂CRT (Corollary 1), the
only difference is the normalization term. Under the null hypothesis, this difference vanishes
asymptotically as long as the estimated variance VarL̂n

[X|Z] is consistent in the following
sense:

(21)
1

n

n∑
i=1

(
VarL̂n

[Xi |Zi] − VarLn[Xi |Zi])VarLn[Yi |Zi] p→ 0.

In preparation to state our equivalence result, we augment the assumption (SP1) as follows:

(SP1′)
En,xEn,y = oLn

(
n−1/2)

, E′
n,x = oLn(1),

E′
n,y = oLn(1), Ê′

n,y = oLn(1),
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where

(22) Ê′
n,y ≡

(
1

n

n∑
i=1

(
μ̂n,y(Zi) − μn,y(Zi)

)2 VarL̂n
[Xi |Zi]

)1/2

.

Furthermore, we denote by

(23) L 0
n ≡ {

Ln : Ln(X,Y |Z) = Ln(X|Z) ×Ln(Y |Z)
}

the set of laws satisfying conditional independence.

THEOREM 2. Suppose Ln ∈ L 0
n is a sequence of laws satisfying the assumptions (SP1′)

and (SP2), the nondegeneracy condition (NDG2), the variance consistency property (21) and
the Lyapunov condition

(Lyap-2)
1

n1+δ/2

n∑
i=1

ELn

[∣∣Yi − μn,y(Zi)
∣∣2+δ|Zi

]
EL̂n

[∣∣X̃i − μ̂n,x(Zi)
∣∣2+δ|X,Z

] p→ 0.

Then the d̂CRT and GCM variance estimates are asymptotically equivalent:

(24)
(Ŝ d̂CRT

n )2

(ŜGCM
n )2

p→ 1,

as are the d̂CRT and GCM tests themselves:

(25) lim
n→∞PLn

[
φd̂CRT

n (X,Y,Z) = φGCM
n (X,Y,Z)

] = 1.

The variance consistency property (21) is relatively easy to achieve, given the other as-
sumptions of Theorem 2. The following proposition states two sufficient conditions for this
property.

PROPOSITION 1. If the assumptions of Theorem 2 other than variance consistency (21)
hold, then the latter property holds in the following two cases:

1. VarL̂n
[Xi |Zi] ≡ (Xi − μ̂n,x(Zi))

2;
2. VarL̂n

[X|Z] ≡ f (μ̂n,x(Z)), if:

• VarLn[X|Z] = f (μn,x(Z)) for f Lipschitz on domain
⋃∞

n=1 Conv(supp(Ln(X))) and
supp(μ̂n,x(Z)) ⊆ Conv(supp(Ln(X))) almost surely for every n;

• supnELn[|Y − μn,y(Z)|2+δ] < ∞ for some δ > 0.

The first variance estimate given in the proposition can always be applied; the second
applies to cases when the mean-variance relationship for Ln(X|Z) is known and Lipschitz
on the convex hull of the support of X, denoted Conv(Ln(X)). This is the case, for example,
if X is binary and we define f (t) ≡ t (1 − t).

One consequence of Theorem 2 is that the d̂CRT and GCM test are also asymptotically
equivalent against local alternatives, so in particular have the same power.

COROLLARY 2. If L′
n is a sequence of alternative distributions that is contiguous to a

sequence Ln ∈ L 0
n satisfying the assumptions of Theorem 2, then the d̂CRT and GCM tests

are asymptotically equivalent against L′
n:

(26) lim
n→∞PL′

n

[
φd̂CRT

n (X,Y,Z) = φGCM
n (X,Y,Z)

] = 1
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and, therefore, have the same asymptotic power:

(27) lim
n→∞EL′

n

[
φd̂CRT

n (X,Y,Z)
] −EL′

n

[
φGCM

n (X,Y,Z)
] = 0.

By constructing a null distribution via resampling, the CRT allows for arbitrarily compli-
cated test statistics whose asymptotic distributions are not known. For the d̂CRT, however,
the resampling-based null distribution simply recapitulates the asymptotic normal distribu-
tion used by the GCM test (Theorems 1 and 2). Therefore, at least in large samples, the extra
computational burden of resampling is unnecessary as the equivalent GCM can be applied
instead.

4.2. Double robustness of d̂CRT. Another consequence of Theorem 2 is that the d̂CRT
is doubly robust under the variance consistency condition (21), since it is equivalent under
the null hypothesis to the doubly robust GCM test. We will formulate this result in terms of
a class of distributions Rn satisfying some regularity assumptions. For any regularity class
Rn, we consider testing the null hypothesis

H0n(Rn) : Ln ∈ L 0
n ∩ Rn.

A sequence of tests φn : (X,Y,Z) → [0,1] of this null hypothesis has asymptotic Type-I
error control if

(28) lim sup
n→∞

sup
Ln∈L 0

n ∩Rn

ELn

[
φn(X,Y,Z)

] ≤ α.

COROLLARY 3. Let Rn be a sequence of regularity conditions such that for any se-
quence Ln ∈ Rn, we have the nondegeneracy condition (NDG2), the Lyapunov condi-
tion (Lyap-2), the conditions (SP1′) and (SP2) and consistent variance estimates (21). Then
the d̂CRT has asymptotic Type-I error control over L 0

n ∩Rn in the sense of the definition (28).

Therefore, Type-I error control requires accuracy of only the first two moments of L̂n,
in parallel to Theorem 2 of Katsevich and Ramdas (2022). The condition on the second
moment of L̂n(X|Z) is needed because the variance of the resampling distribution must not
be smaller (asymptotically) than the true variance of the test statistic. This condition does not
require much more than accurate estimation of the first moments (Proposition 1). It can be
dropped altogether if we build normalization directly into the d̂CRT test statistic. We explore
this possibility in Appendix A in the Supplementary Material (Niu et al. (2024)).

Our double robustness result for the dCRT evokes the double robustness result proved for
a conditional variant of MX knockoffs by Huang and Janson (2020). We note that these two
results refer to two different notions of double robustness. Corollary 3 states that the dCRT
is rate doubly robust, while Huang and Janson (2020) finds that conditional knockoffs are
model doubly robust (Smucler, Rotnitzky and Robins (2019)). Our result requires a condition
on the product of the estimation rates for Ln(Y |Z) and Ln(X|Z), and accommodates high-
dimensional settings. The double robustness of conditional knockoffs requires that one of
Ln(Y |Z) and Ln(X|Z) belongs to a correctly specified, low-dimensional parametric family.
We leave the investigation of the CRT’s model double robustness to future work.

Our conclusion that d̂CRT is doubly robust initially appears at odds with the statement that
“the model-X CRT. . . does not pursue such double robustness through learning and adjusting
for both X|Z and Y |Z. . . ” (Li and Liu (2023)). This statement is in reference to the worst-
case performance of the CRT across all possible test statistics (Berrett et al. (2020)). We agree
that this worst-case performance can be poor when learning Ln(X|Z) in sample (Section 3).
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However, the test statistics applied in conjunction with the CRT (such as the dCRT statistic)
do usually involve learning and adjusting for Ln(Y |Z). In this sense, practical applications
of the (d)CRT do learn and adjust for both Ln(X|Z) and Ln(Y |Z); the former is learned
when approximating the “model for X” and the latter when computing the test statistic. If
the quality of these estimates is sufficiently good, then the d̂CRT will control Type-I error
(Corollary 3).

5. GCM test is optimal against certain alternatives. We have shown that, in large sam-
ples, the d̂CRT has the same power against local alternatives as the resampling-free GCM test.
Of course, other instances of the much more general CRT paradigm have better power than
the GCM test against certain alternatives. We show in this section, however, that this is not the
case for generalized partially linear models (GPLMs), a broad class of alternatives. In fact,
the GCM test is asymptotically most powerful against GPLM alternatives. We leverage clas-
sical semiparametric efficiency theory (Choi, Hall and Schick (1996), van der Vaart (1998),
Kosorok (2008)) to prove this result. We state our optimality result in Section 5.1, give an
example of its application in Section 5.2 and then compare it to existing semiparametric op-
timality results in Section 5.3.

5.1. Optimality result. To facilitate the link with semiparametric theory, in this section
of the paper we operate in a fixed-dimensional setting. Accordingly, we drop the subscript
n from L 0

n and Rn. For each value of n, we have (X,Y ,Z) ∈ R1+1+p for fixed p. We will
seek power against semiparametric GPLM alternatives of the form

(29) Lθ (X,Y ,Z) ≡ Lβ,η(X,Y ,Z) ≡ Lx,z(X,Z) × fη(Y |X,Z), η = Xβ + g(Z).

Here, Lx,z is a fixed law, fη is a one-parameter exponential family with natural parameter
η ∈R and log-partition function ψ , β ∈ R and

(30) g ∈ Hg ⊆ L2(
Lx,z(Z)

)
,

where Hg is a linear subspace of the L2 space of functions on Rp with the measure Lx,z(Z).
The alternatives (29) are those where Y |X, Z follows an exponential family distribution
with natural parameter linear in X and potentially nonlinear in Z. Note that GPLMs include
linear and generalized linear models as special cases and, therefore, cover a broad range of
alternative distributions.

We focus on power against local alternatives Lθn(h) near θ0 ≡ (0, g0), defined by

(31) θn(h) ≡ θn(hβ,hg) ≡ (hβ/
√

n,g0 + hg/
√

n) for h ≡ (hβ,hg) ∈ (0,∞) ×Hg.

We leave the dependence of θn(h) on g0 implicit. Next, we define asymptotic optimality
against such local alternatives following Choi, Hall and Schick (1996).

DEFINITION 2. For h ∈ (0,∞)×Hg , we say a test φ∗
n is the locally asymptotically most

powerful level α test of

(32) H0 : L ∈ R ⊆ L 0 versus H1n : L = Lθn(h)

if φ∗
n has asymptotic Type-I error control over R at level α and for any other test φn satisfying

the same property we have

(33) lim sup
n→∞

ELθn(h)

[
φn(X,Y,Z)

] ≤ lim inf
n→∞ ELθn(h)

[
φ∗

n(X,Y,Z)
]
.

If this is true for every h ∈ (0,∞) ×Hg , such a test is locally asymptotically uniformly most
powerful at g0, or LAUMP(g0). A test is LAUMP(S) against Lθn(h) for h ∈ (0,∞)×Hg if it
is LAUMP(g0) for each g0 ∈ S ⊆ Hg .
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Finally, define

(34) s2(θ0) ≡ ELθ0

[
VarLθ0

[X|Z]VarLθ0
[Y |Z]].

We are now ready to state our main optimality result.

THEOREM 3. Consider the conditional independence testing problem (32), with a col-
lection of null distributions R ⊆ L 0 satisfying some regularity conditions, a linear sub-
space Hg ⊆ L2(Lx,z(Z)) specifying possible values for the nonparametric component g in
the GPLM alternative model (29), and some subset S ⊆ Hg . If the following four assumptions
hold:

assumptions (SP1) and (SP2) hold for all L ∈ R,(35)

ψ̈ = K > 0 and ELx,z

[
X2]

< ∞ OR supp(X,Z) is compact and Hg ⊆ C
(
Rp)

,(36)

ELx,z[X|·] ∈Hg,(37)

∀g0 ∈ S, hg ∈Hg, Lθn(0,hg) ∈ R for large enough n,(38)

then φGCM
n is LAUMP(S) against Lθn(h) for h ∈ (0,∞) ×Hg , with

(39) lim
n→∞ELθn(h)

[
φGCM

n (X,Y,Z)
] = 1 − �

(
z1−α − hβ · s(θ0)

)
.

Let us discuss each of the four assumptions of Theorem 3:

• The assumption (35) is a set of regularity conditions on the null distributions R. It is the
same set of assumptions made by Shah and Peters (2020) to ensure Type-I error control of
the GCM test over R, including the assumption that the conditional means μn,x and μn,y

are fit accurately enough (SP1) and fairly mild moment assumptions (SP2).
• The assumption (36) is a set of regularity conditions on the alternative distribution (29).

These conditions are required for the semiparametric optimality theory to apply. These
assumptions allow for GPLMs based on the normal distribution (assuming X has second
moment) or any other exponential family (assuming (X,Z) is compactly supported and
the functions g are continuous).

• The assumption (37) states that the conditional expectation Z → ELx,z[X|Z] must belong
to the subspace Hg . It guarantees that the “least favorable” value of the nonparametric
component g is in the space Hg , yielding the optimality of the GCM statistic.

• The assumption (38) connects the semiparametric alternative hypothesis to the conditional
independence null hypothesis. In some sense, it requires Lθ0 ≡ L(0,g0) (derived from the
semiparametric alternative distribution (29)) to be an interior point of R (the conditional
independence null) for each g0 ∈ S .

We give an example of when these assumptions hold in the next section.

5.2. Example: Kernel ridge regression. We illustrate Theorem 3 with a kernel ridge re-
gression example, borrowed from Shah and Peters ((2020), Section 4). Suppose the condi-
tional expectations μx(Z) ≡ EL[X|Z] and μy(Z) ≡ EL[Y |Z] satisfy μx,μy ∈ Hk for some
reproducing kernel Hilbert space (Hk,‖ · ‖Hk

) with reproducing kernel k : R × R → R. In
particular, we consider Hk ≡ W 1,2([0,1]) ⊂ L2([0,1]), that is, the Sobolev space defined

W 1,2([0,1]) ≡ {
f : [0,1] → R|f (0) = 0, f is absolutely continuous with ḟ ∈ L2([0,1])},

equipped with the inner product

〈f,g〉W 1,2([0,1]) ≡
∫ 1

0
ḟ (z)ġ(z)dz.
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W 1,2([0,1]) is an RKHS with kernel k(x, y) = min{x, y} (Wainwright ((2019), Exam-
ple 12.16)). Consider the kernel ridge estimators

μ̂x ≡ arg min
μx∈W 1,2([0,1])

{
1

n

n∑
i=1

∣∣Xi − μx(Zi)
∣∣2 + λ‖μx‖2

W 1,2([0,1])

}
,

μ̂y ≡ arg min
μy∈W 1,2([0,1])

{
1

n

n∑
i=1

∣∣Yi − μy(Zi)
∣∣2 + λ‖μy‖2

W 1,2([0,1])

}
,

(40)

with λ tuned as described in Shah and Peters ((2020), Section 4). Using Shah and Peters
((2020), Theorem 11), the following result can be derived as a consequence of Theorem 3.

COROLLARY 4. Fix C > 0, and consider the following regularity class R ⊆ L 0:

R ≡ {
L(X,Y ,Z) = L(Z) ×L(X|Z) ×L(Y |X,Z) :

L(Z) = Unif
([0,1]),L(X|Z) = N

(
μx(Z),1

)
,L(Y |X,Z) = N

(
μy(Z),1

)
,

μx,μy ∈ BW 1,2(0,C)
}
,

(41)

where we define the W 1,2([0,1]) ball

(42) BW 1,2(0,C) ≡ {
f ∈ W 1,2([0,1]) : ‖f ‖W 1,2([0,1]) < C

}
.

Now, fix μ0x,μ0y ∈ BW 1,2(0,C) and for each h = (hβ,hg) ∈ (0,∞) × W 1,2([0,1]) consider
the set of local alternatives Lθn(h)(X,Y ,Z) given by

Lθn(h)(Z) ≡ Unif
([0,1]),

Lθn(h)(X|Z) ≡ N
(
μ0x(Z),1

)
,

Lθn(h)(Y |X,Z) ≡ N
(
Xhβ/

√
n + μ0y(Z) + hg(Z)/

√
n,1

)
.

(43)

Then the GCM test based on the kernel ridge estimators (40) is LAUMP(BW 1,2(0,C)) against
alternatives Lθn(h).

Hence, the GCM test based on kernel ridge regression does not just control Type-I error
(Shah and Peters ((2020), Theorem 11)); it is also optimal against local alternatives.

5.3. Discussion of Theorem 3. Theorem 3 states that the GCM test of Shah and Peters
(2020) is the optimal test of conditional independence against a broad class of semiparamet-
ric GPLM alternatives, including linear and generalized linear models. To our knowledge, it
is the first result at the intersection of conditional independence testing and semiparametric
optimality, although Shah and Peters (2020) have already noted the connection between the
GCM test and nonparametric estimation of the expected conditional covariance between X
and Y given Z. Our result complements another line of work on minimax optimality for con-
ditional independence testing (Canonne et al. (2018), Neykov, Balakrishnan and Wasserman
(2021), Kim et al. (2022)). In the related model-X context, few optimality results are avail-
able. Two existing works show optimality statements based on likelihood ratio statistics: one
in the context of the CRT (Katsevich and Ramdas (2022)) and the other in the context of
model-X knockoffs (Spector and Fithian (2022)).

Theorem 3 closely parallels results on estimation in semiparametric regression (Donald
and Newey (1994), Robinson (1988), Bickel et al. (1993), Härdle, Liang and Gao (2000),
Robins and Rotnitzky (2001), van de Geer et al. (2014), Ning and Liu (2017), Janková and
van de Geer (2018), Chernozhukov et al. (2018)). It follows from Bickel et al. (1993), Robins
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and Rotnitzky (2001) that the GCM statistic with the true conditional means μx and μy

is the efficient score under the null hypothesis β = 0 in the context of GPLMs based on
one-parameter exponential families with canonical link. Existing results on semiparametric
optimality for hypothesis testing state that tests based on optimal estimators are themselves
optimal (Choi, Hall and Schick (1996), van der Vaart (1998), Kosorok (2008)).

Despite the similarity between Theorem 3 and existing semiparametric optimality results,
we emphasize that this theorem is a statement about optimality for conditional independence
testing rather than for semiparametric testing. The semiparametric model (29) plays the role
of the alternative distribution with respect to which power is evaluated, and need not hold
under the null hypothesis. To bridge this gap, it suffices to find an open ball within the condi-
tional independence null hypothesis containing the semiparametric null hypothesis (38). This
allows us to reduce the conditional independence testing problem to a semiparametric testing
problem and, therefore, to leverage existing semiparametric optimality results (Appendix E
in Niu et al. (2024)).

Note that Theorem 3 gives the power against local alternatives of the GCM test with μx

and μy estimated in sample. This complements Shah and Peters ((2020), Theorem 8), where
these authors compute the power of the GCM test against nonlocal alternatives by resorting
to sample splitting, which is not required to show Type-I error control for the GCM test. This
sample splitting is necessary under nonlocal alternatives to avoid Donsker conditions; using
either sample splitting or Donsker conditions is also standard practice in the semiparametric
literature. By contrast, we avoid sample splitting by exploiting the special structure of the
conditional independence null and contiguity arguments to compute limiting power under
local alternatives.

While the Type-I error control results in Section 4 are stated in the high-dimensional set-
ting, Theorem 3 is stated only for fixed-dimensional covariate vectors Z. Indeed, semipara-
metric optimality theory is predominantly low-dimensional. A notable exception is the work
of Janková and van de Geer (2018), which provides a semiparametric theory of estimation
in high dimensions. Extending this theory to hypothesis testing is nontrivial, and beyond the
scope of the current work. Nevertheless, proving optimality statements for conditional inde-
pendence testing in high dimensions is an interesting direction for future work. We note in
passing that high-dimensional results for lasso-based estimators often assume exact sparsity
of the coefficient vector, which poses a problem for condition (38) requiring the regularity
class R to have interior points.

Finally, we note that Theorem 3 gives the optimality of the GCM statistic against alterna-
tive models for Y in which X and Z do not interact. For alternatives where the conditional
association between Y and X is modified by Z, the GCM test will no longer be optimal.
Variants of the CRT (Zhong, Kuffner and Lahiri (2021), Sesia and Sun (2022)), model-X
knockoffs (Li et al. (2022)) and the GCM test (Lundborg et al. (2022)) are designed to im-
prove power in the presence of effect modification are available, although their optimality
properties are not described. Optimal tests developed specifically for detecting interaction ef-
fects between X and Z (rather than main effects) may be constructed based on Vansteelandt
et al. (2008).

6. Finite-sample performance assessment. The results in the preceding sections are all
asymptotic. In this section, we complement these results with a comprehensive simulation-
based assessment of Type-I error and power in finite samples. Previous simulation-based
assessments of the Type-I error of MX methods have come to differing conclusions: Sesia,
Sabatti and Candès (2019), Romano, Sesia and Candès (2019), Sesia et al. (2020), Liu et al.
(2022) found broad robustness to misspecification of Ln(X|Z) while Li and Liu (2023) found
such misspecifications to cause marked Type-I error inflation. We show that differences in the



MODEL-X AND DOUBLY ROBUST CONDITIONAL INDEPENDENCE TESTING 911

level of marginal association between X and Y implied by the simulation design explain these
discrepancies, and then use this insight to inform our own simulation design in Section 6.2.
Then we present the results of our numerical simulations in Section 6.3. Numerical simulation
results and instructions to reproduce them are available at https://github.com/Katsevich-Lab/
symcrt-manuscript.

6.1. Revisiting prior simulations of robustness. The question of robustness of MX meth-
ods to the misspecification of Ln(X|Z) has been investigated starting from the paper in which
the model-X framework was originally proposed (Candès et al. (2018)). In this paper, the joint
distribution Ln(X,Z) was estimated in sample via the graphical lasso, which is similar to es-
timating the conditional distribution Ln(X|Z) via the ordinary lasso. These authors found
that

Although the graphical Lasso is well suited for this problem since the covariates have a sparse
precision matrix, its covariance estimate is still off by nearly 50%, and yet surprisingly the resulting
power and FDR are nearly indistinguishable from when the exact covariance is used. . . the nominal
level of 10% FDR is never violated, even for covariance estimates very far from the truth.

Similar conclusions have been drawn from numerical simulations in subsequent papers as
well (Sesia, Sabatti and Candès (2019), Romano, Sesia and Candès (2019), Sesia et al. (2020),
Liu et al. (2022)), the latter studying the dCRT specifically. On the other hand, the numerical
simulations of Li and Liu (2023) show that the dCRT can suffer significant Type-I error
inflation when Ln(X|Z) is inaccurately fit. These authors state that “for model-X inference,
the dependence of X on Z is not adequately characterized and adjusted [for] due to the
shrinkage bias of lasso.”

To resolve this apparent contradiction, we consider a common data-generating model used
in MX literature:

(44) Ln(X,Z) = N(0,), Ln(Y |X,Z) = N
(
Xθ + ZT β,σ 2

y

)
.

Often, (X,Z) are assumed to have a spatial structure (motivated by the GWAS application),
with  = (ρ) ∈ R(1+p)×(1+p) taken to be the AR(1) covariance matrix with autocorrelation
parameter ρ ∈ (−1,1). This covariance matrix roughly approximates linkage disequilibrium
structure among genotypes, where correlations among variables are local with respect to the
spatial structure. Conditional independence under this model (44) reduces to H0 : θ = 0.
Furthermore, the conditional distribution Ln(X|Z) implied by the normal joint distribution
is that of a linear model:

(45) Under H0, Ln(X|Z) = N
(
ZT γ, σ 2

x

)
, Ln(Y |Z) = N

(
ZT β,σ 2

y

)
.

In the context of this model, the conditional independence testing problem is nontrivial to the
extent that Z induces marginal association between X and Y even in the absence of condi-
tional association. In a causal inference context, this spurious marginal association would be
called a confounding effect of Z. This marginal association can be small or large, depending
on the correlation structure of Z and the extent to which the supports of β and γ overlap.
Properly adjusting for Z is important to the extent that Z induces marginal association be-
tween X and Y .

We claim that the simulation studies in much of the original MX literature had relatively
low levels of marginal association between X and Y , whereas the simulation studies in Li
and Liu (2023) were done in a regime with much more marginal association. To illustrate this
point, we quantify the level of marginal association in a given problem setup as the Type-I
error of the GCM test with intercept-only models for Ln(X|Z) and Ln(Y |Z). This test is
essentially a Pearson test of (marginal) independence between X and Y , and ignores the
variables Z altogether. We compute this Type-I error for the data-generating models used to
assess robustness by Candès et al. (2018), Liu et al. (2022), Li and Liu (2023) (Appendix

https://github.com/Katsevich-Lab/symcrt-manuscript
https://github.com/Katsevich-Lab/symcrt-manuscript
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FIG. 2. Comparing the marginal associations between X and Y in the robustness simulations of Candès et al.
(2018), Liu et al. (2022), Li and Liu (2023) (Appendix F.1 in Niu et al. (2024)). Top: Type-I error of the marginal
GCM test as a function of the position of null variables with respect to the nonnull variables (represented as green
ticks). Bottom: Histograms of the Type-I error across null variables. The solid blue line indicates the Type-I error
of the marginal GCM test for the robustness simulation of Li and Liu (2023), and the dashed red line the nominal
Type-I error level of the marginal GCM test (0.05).

F.1 in Niu et al. (2024)). The former two papers are framed in the variable selection context,
where several explanatory variables W j are considered, and the hypothesis H0 : Y⊥⊥W j |W -j
is tested for each j . Therefore, X ≡ W j for each j . On the other hand, Li and Liu (2023)
considered a conditional independence testing framework, where X was a single variable of
interest.

For the data-generating models used by Candès et al. (2018), Liu et al. (2022), we evaluate
the Type-I error of the marginal GCM test for each hypothesis H0 : Y⊥⊥W j |W -j , plotting
these as a function of j (Figure 2, top row). We superimpose onto these plots a blue horizontal
line indicating the Type-I error of the marginal GCM test (fitting the intercept only model)
for the data-generating model used by Li and Liu (2023) (equal to 0.99, suggesting strong
marginal association), and a red dashed horizontal line indicating the nominal level of this
marginal test (equal to 0.05). The green ticks indicate the locations of the nonnull variables.
As expected for a setting where variable correlation is local, we see that Type-I error is
inflated for null variables near the signal variables. The extent of this inflation depends on
the autocorrelation parameter (set at 0.3 by Candès et al. (2018) and 0.5 by Liu et al. (2022))
and the locations of the signal variables. Most null variables, however, are not near signal
variables and, therefore, the marginal GCM test shows no inflation. This is reflected by the
histograms of the Type-I error inflations (Figure 2, bottom row). The median Type-I error of
the marginal GCM test is near the nominal level of 0.05 in all three of the simulation setups
from Candès et al. (2018), Liu et al. (2022).

6.2. Simulation design.

Data-generating model. As discussed in the previous section, appropriately setting the
marginal correlation between X and Y in a given data-generating model is crucial to prop-
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TABLE 1
The values of the sample size n, covariate dimension p, sparsity s, autocorrelation of covariates ρ, signal

strength θ and marginal association strength ν used for the simulation study. Each of the parameters n, p, s, ρ

was varied among the values in the first table while keeping the other three at their default values, indicated in
bold. For example, p = 400, s = 5, ρ = 0.4 were kept fixed while varying n ∈ {100,200,400,800,1600}. The

second and third tables denote the values of (θ, ν) used for the null and alternative simulations. Each
combination of (n,p, s, ρ) was paired with each of the five values of (θ, ν) displayed for null and alternative

simulations

n p s ρ

100 100 5 0
200 200 10 0.2
400 400 20 0.4
800 800 40 0.6

1600 1600 80 0.8

θ (null) ν (null)

0 0
0 νmax/4
0 νmax/2
0 3νmax/4
0 νmax

θ (alt) ν (alt)

0 νmax/2
θmax/4 νmax/2
θmax/2 νmax/2
3θmax/4 νmax/2
θmax νmax/2

erly evaluate the impact of inaccurate estimation of Ln(X|Z) on the Type-I error control of a
model-X method. Keeping this in mind, we propose the following data-generating model:

(46)
Ln(Z) = N

(
0,(ρ)

)
, Ln(X|Z) = N

(
ZT β,1

)
,

Ln(Y |X,Z) = N
(
Xθ + ZT β,1

)
.

We set the first s coefficients of β to be equal to ν and the rest to zero. Therefore, the entire
data-generating process is parameterized by the six parameters (n,p, s, ρ, θ, ν) (Table 1).
For both null and alternative simulations, we vary each of the first four across five values
each, setting the remaining three to the default value indicated in bold. The fifth parameter
θ controls the signal strength and the sixth parameter ν controls the extent of marginal as-
sociation between X and Y . For the null simulation, we set θ ≡ 0, and for each setting of
(n,p, s, ρ), we choose five values of ν equally spaced between 0 (no marginal association)
and νmax (computed so that the marginal GCM method has Type-I error 0.99). Note that νmax
depends on the parameters (n,p, s, ρ), so not exactly the same values of ν were used across
settings of these four parameters. For the alternative simulation, we kept ν fixed at νmax/2
while for each setting of (n,p, s, ρ) we choose five values of θ equally spaced between 0 (no
signal) and θmax (computed so that the GCM method with oracle settings of μ̂n,x and μ̂n,y

has power 0.99). Finally, we complement the linear regression data-generating model (46)
with an analogous one based on logistic regression.

Methodologies compared. In Section 4, we found that the GCM test and the d̂CRT are
equivalent when applied with the same estimation methods for μn,x and μn,y . Using this

equivalence, we also showed that the d̂CRT is robust to errors in μ̂n,x if they are compensated
for by accurate estimates μ̂n,y . In our simulation to assess Type-I error, we wish to probe

the finite-sample Type-I error control of the GCM and the d̂CRT. We apply both of these
methods with the lasso to estimate μn,x and μn,y , as this is the most common choice in the
MX literature.

In addition to the GCM test and the d̂CRT, we apply the Maxway CRT (Li and Liu (2023)),
designed specifically to improve the Type-I error control of the dCRT in the context when
μn,x must be estimated. The Maxway CRT is inherently a semisupervised method, assuming
the existence of an auxiliary unlabeled data set containing observations of X and Z but not
of Y . The methodology (specifically, “Maxwayin example 1”) proceeds—roughly—by fit-
ting L̂n(X|Z) on the unlabeled data via the post-lasso (i.e., selecting active variables via the
lasso and then refitting via ordinary least squares, Belloni and Chernozhukov (2013)), fitting
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μ̂ny(Z) on the labeled data via post-lasso and then applying dCRT on the labeled data based
on these two models.

Since the primary focus of this paper is the setting when no auxiliary unlabeled data are
available, we implement the Maxway CRT by randomly splitting the data into two equal
pieces, using the first as the unlabeled data (in particular, ignoring the response data) and
the second as the labeled data. This strategy is consistent with the real data analysis in Li
and Liu ((2023), Section 6). We also consider a bonafide semisupervised setup, in order to
compare the GCM test and d̂CRT to the Maxway CRT in the setting originally considered
by Li and Liu (2023). However, in the semi-supervised setting we use all of the available
data on (X,Z) (i.e., both unlabeled and labeled data) to fit Ln(X|Z). By contrast, Li and Liu
(2023) used only the unlabeled data to learn Ln(X|Z) in their implementation of the d̂CRT
for semisupervised data.

Finally, we noted in Section 4 that the d̂CRT already has a built-in doubly robust property.
Therefore, we conjectured that the Type-I error inflation observed in the simulations of Li
and Liu (2023) is attributable to poor estimation of μn(X|Z) and/or μn(Y |Z) and that the
d̂CRT can achieve Type-I error control if used in conjunction with better estimators of these
conditional means. Taking inspiration from Li and Liu (2023), we also considered versions
of the d̂CRT and the GCM test based on the post-lasso in addition to those based on the
usual lasso. In summary, we compared five methods: lasso and post-lasso based GCM, lasso
and post-lasso based d̂CRT and Maxway CRT (Table 2). As a point of reference for the null
simulation, we also included the GCM test with intercept-only models for μn,x and μn,y ; the
Type-I error of this test quantifies the degree of marginal association in the data-generating
model (Section 6.1). As a point of reference for the alternative simulation, we also included
the GCM test with μn,x and μn,y set to their ground truth values; the power of this test is the
maximum power achievable by any test and, therefore, quantifies the signal strength in the
data-generating model.

Evaluation of power in the presence of Type-I error inflation. The methodologies compared
control Type-I error to differing extents across the variety of simulation parameters in Table 1.
This makes it challenging to compare power across methods, since some control Type-I error
while others do not. To address this challenge, we chose to compare the power of the test
statistics underlying the methods, each under oracle calibration to ensure Type-I error control.

TABLE 2
The five methodologies compared, how they estimate μn,x and μn,y and what data they use for each in the

context of semisupervised or fully supervised data. Note that in the fully supervised case, data is split in half to
form “unlabeled” and labeled sets for Maxway CRT. In this case, the d̂CRT and GCM tests still use all of the
data available for estimating μn,x and μn,y . Two additional tests were used for reference purposes: the GCM

test with intercept-only models for μn,x and μn,y and the GCM test with μn,x and μn,y set to their ground truth
values

Method name Estimating μn,x Data for μ̂n,x Estimating μn,y Data for μ̂n,y

GCM (LASSO) lasso all lasso all/labeled

d̂CRT (LASSO) lasso all lasso all/labeled
GCM (PLASSO) post-lasso all post-lasso all/labeled

d̂CRT (PLASSO) post-lasso all post-lasso all/labeled
Maxway CRT post-lasso unlabeled post-lasso labeled

GCM (marginal) intercept-only all intercept-only all/labeled
GCM (oracle) ground truth – ground truth –
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Given the composite null, exact oracle calibration is computationally intractable. Therefore,
we instead calibrated each test with respect to the point null given by

Ln(Z) = N
(
0,(ρ)

)
, Ln(X|Z) = N

(
ZT β,1

)
,

Ln(Y |X,Z) = N
(
E[X|Z]T θ + ZT β,1

)
.

This is the “closest” point in the null to the alternative (46) under consideration; therefore
ensuring Type-I error control at this point null should be a decent proxy for ensuring Type-I
error control over the whole null. To calibrate two-sided tests with respect to this point null,
we generate samples of a test statistic from the null and then define lower and upper critical
values as the 2.5% and 97.5% quantiles of this distribution. Using potentially asymmetric
lower and upper critical values is necessary, as the null distribution may not be symmetric
and centered at zero (Liu et al. (2022)).

6.3. Simulation results. We conducted simulations for Gaussian and binary models for
the response Y , each within the supervised and semisupervised settings. We present the Type-
I error and power for Gaussian responses in the supervised setting in Figures 3 and 4, respec-
tively, while deferring the other cases to Appendix F.3 in Niu et al. (2024). Note also that
for the sake of brevity Figures 3 and 4 only present three out of the five values for the four
parameters n, p, s, ρ; the complete results are presented in Appendix F.3 in Niu et al. (2024).

Next, we list the main conclusions regarding Type-I error based on the results including
figures in main text (Figure 3 (Gaussian supervised)), and figures in the Supplementary Ma-
terial (Figure 4 (Gaussian semisupervised), Figure 6 (binary supervised) and Figure 8 (binary
semisupervised) in Niu et al. (2024)):

FIG. 3. Type-I error control for Gaussian supervised setting: we vary only one parameter in each column and
there are five values of the marginal association strength ν in each subplot. Each point is the average of 400 Monte
Carlo replicates. All the standard errors are less than 0.026.
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FIG. 4. Power for Gaussian supervised setting: we vary only one parameter in each column and there are five
values of the signal strength θ in each subplot. Each point is the average of 400 Monte Carlo replicates. All the
standard errors are less than 0.026.

• As one would expect, across all simulation settings, all methods have poorer Type-I error
control as sample size n decreases, dimension p increases, number of nonzero coefficients
s increases, autocorrelation ρ increases or marginal association strength ν increases.

• For Gaussian responses, the d̂CRT and GCM methods based on the same test statistics have
very similar Type-I error control, echoing the asymptotic equivalence of the two methods
(Theorem 2). For binary responses, the lasso-based d̂CRT has somewhat lower Type-I
error than the lasso-based GCM test (Figure 6 in Niu et al. (2024)). The discreteness of
binary responses likely slows down the convergence to normality of the GCM statistic,
rendering the resampling-based null distribution of the d̂CRT a better approximation to
the null distribution. We explore this phenomenon further in Appendix G.2 in Niu et al.
(2024).

• Across all simulation settings, the d̂CRT and GCM methods based on the post-lasso have
dramatically better Type-I error control than their lasso-based counterparts. This is because
the post-lasso tends to more fully regress the confounders Z out of the response Y ; see also
Appendix F.2 in Niu et al. (2024).

• Across all simulation settings, Maxway CRT has better Type-I error control than the lasso-
based d̂CRT (in line with the results of Li and Liu (2023)), but worse Type-I error control
than the post-lasso-based d̂CRT. The latter is likely due to the fact that Maxway CRT uses
only half of the available data on (X,Z) to fit Ln(X|Z) and, therefore, does not adjust for
Z as accurately.

Next, we list the main conclusions regarding power based on the results including figures
in the main paper (Figure 4 (Gaussian supervised)), and figures in the Supplementary Material
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(Figure 5 (Gaussian semisupervised), Figure 7 (binary supervised) and Figure 9 (binary semi-
supervised) in Niu et al. (2024)):

• Across all simulation settings, GCM-based methods have somewhat higher power than
their d̂CRT-based methods. This may have to do with the stabilizing effect of the GCM
normalization, compared to the unnormalized d̂CRT statistic. The difference between the
two tends to vanish as sample size grows, reflecting the asymptotic equivalence of the two
methods (Corollary 2).

• Across all simulation settings, the d̂CRT and GCM methods based on the lasso have lower
power than their post-lasso-based counterparts. This is because the post-lasso introduces
more variance into the estimation of μn,y ; see also Appendix F.2 in Niu et al. (2024).

• Across Gaussian and binary supervised simulation settings (Figures 3 and 7 in Niu et al.
(2024)), Maxway CRT has the lowest power among all methods compared. The reason
for this is that Maxway CRT relies on data splitting and, therefore, has half the effective
sample size of the other methods. On the other hand, for semisupervised settings (Figures 5
and 9 in Niu et al. (2024)), Maxway CRT has power comparable to or better than those of
the post-lasso-based methods, but still worse than the lasso-based methods. This is due to
the additional variance introduced by the refitting step in the post-lasso.

In summary, the methods with the best Type-I error control across all simulation settings
are the d̂CRT and the GCM test based on the post-lasso, although this improved robustness
does come with a cost in terms of power when compared to the lasso-based methods. We
investigate the associated trade-off in Appendix F.2 in Niu et al. (2024).

7. Conclusion. We conclude by summarizing our main findings and highlighting direc-
tions for future work.

Model-X inference with L(X|Z) fit in sample can be doubly robust. Model-X inference
(Candès et al. (2018)) is presented as a mode of inference where the assumptions are trans-
ferred entirely from L(Y |Z) to L(X|Z); no restrictions are made on the former law (or the
test statistic used, at least in the context of the CRT), while the latter law is assumed ex-
actly known. In practice, however, the law L(X|Z) is often fit in sample. In the context of the
dCRT, we show that Type-I error control cannot be guaranteed without restrictions on L(Y |Z)

or the test statistic used (Section 3). On the other hand, test statistics based on decent esti-
mates of E[Y |Z] can compensate for errors in the estimation of L(X|Z) and restore Type-I
error control (Corollary 3), a double robustness phenomenon. This result brings model-X in-
ference more in line with double regression inferential methodologies: The conditional mean
E[X|Z] is estimated in the context of in-sample approximation to the “model for X,” and
the conditional mean E[Y |Z] is estimated when computing the model-X test statistic. Relat-
edly, a double robustness property was noted for conditional model-X knockoffs (Huang and
Janson (2020)). A doubly robust version of the dCRT has also been recently proposed (the
Maxway CRT; Li and Liu (2023)), although we argue that the original dCRT is itself doubly
robust.

The GCM test has broadly similar Type-I error and power as the dCRT for large enough
sample sizes, but requires no resampling. When fitting L(X|Z) in sample, the dCRT is
essentially a double regression methodology. This prompts a comparison to the GCM test
(Shah and Peters (2020)), another conditional independence test based on double regression.
We established that the two tests are asymptotically equivalent under the null (Theorem 2)
and under arbitrary local alternatives (Corollary 2). This suggests that the dCRT and the GCM
test—when applied with the same estimators for E[X|Z] and E[Y |Z]—should have similar
Type-I error control and power. Our numerical simulations (Section 6) largely confirm this
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behavior in finite samples. An exception to this conclusion is the case when small samples
or discreteness in the data slows down the convergence of the GCM null distribution to nor-
mality. In such cases, we observed that the d̂CRT can in fact have better Type-I error control
than the GCM based on the same estimators (Figures 6 and 10 in Niu et al. (2024)) thanks
to a better approximation to the null distribution in finite samples. Nevertheless, the broad
similarity between the performances of the GCM test and the dCRT and the fact that the for-
mer test requires no resampling suggest that the GCM test may be preferable to the dCRT in
practical problems with relatively large sample sizes.

The post-lasso yields much better Type-I error control than the lasso. Double robustness
results for the GCM test and the dCRT apply only insofar as the estimation methods used in
conjunction with these tests are accurate enough (SP1). The default estimation method for
E[X|Z] and E[Y |Z] in many model-X applications is the lasso. As was demonstrated by Li
and Liu (2023), the shrinkage bias of the lasso leads to inadequate adjustment of X and Y for
Z, which in turn leads to inflated Type-I error. The same authors proposed the Maxway CRT,
an extension of the dCRT involving the identification of coordinates of Z impacting X and Y
via the lasso followed by least squares refitting. Inspired by this work, we applied the original
dCRT with post-lasso estimates for E[X|Z] and E[Y |Z]. We found vastly improved Type-I
error control (Figure 2 in Niu et al. (2024)), compared not just to the lasso-based dCRT but
also to the Maxway CRT itself. The decreased bias of the post-lasso helps adjust for Z more
fully, although we found that the extra variance incurred by refitting does come at a cost
in power. Nevertheless, our results suggest that applying the post-lasso in conjunction with
model-X methodologies can lead to significant improvements in robustness.

The GCM test is the optimal conditional independence test against alternatives without in-
teractions between X and Z. It is widely known in the semiparametric literature that the
GCM test is the efficient score test for (generalized) partially linear models. The connec-
tion between the GCM test and semiparametric theory was noted briefly by Shah and Peters
(2020), though not explored in depth; presumably because the GCM test is a conditional in-
dependence test rather than a test of a parameter in a semiparametric model. Nevertheless,
we find that if the semiparametric null hypothesis can be embedded within the conditional in-
dependence null hypothesis (38), semiparametric optimality theory can be carried over fairly
directly to conditional independence testing to establish optimality against semiparametric
alternative distributions (Theorem 3). Thanks to this connection, we find that the GCM test
has optimal asymptotic power among conditional independence tests against local general-
ized partially linear model alternatives (29). On the other hand, we leave open the question
of optimality against alternatives where X and Z are allowed to interact. We also leave open
whether our optimality result can be extended to the high-dimensional regime.

Future work: The proportional regime, other test statistics, and the variable selection prob-
lem. Our results about the equivalence between the GCM test and the dCRT, and the double
robustness of the latter, require estimates of E[X|Z] and E[Y |Z] that are individually con-
sistent and whose rates of convergence are sufficiently fast (SP1). In the case of sparse linear
models, we can get such rates if E[X|Z] and E[Y |Z] depend on at most s = o(

√
n/ log(p))

of the coordinates of Z. Such assumptions are common in other lines of work on high-
dimensional / semiparametric / doubly robust inference, including the debiased lasso (van
de Geer et al. (2014), Zhang and Zhang (2014), Javanmard and Montanari (2014), Ning and
Liu (2017), Janková and van de Geer (2018)) and doubly robust causal inference (Belloni,
Chernozhukov and Hansen (2014), Chernozhukov et al. (2018)). On the other hand, consis-
tent estimates are typically not available in the regime when n, p and s grow proportionally
(Bayati and Montanari (2011)), causing a failure in traditional debiased estimates (Celentano
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and Montanari (2021)). An additional limitation of the current work is that we prove double
robustness of the CRT for only one test statistic, namely the dCRT statistic. A natural ques-
tion to ask is whether this property is enjoyed by a broader class of test statistics. This may be
accomplished by proving equivalence of the CRT based on other doubly robust test statistics
to the corresponding asymptotic tests. However, this would likely entail deriving the limit-
ing CRT resampling distribution (analogously to Section 2), which may be harder for test
statistics whose dependence on X is more complex than that of the dCRT statistic. Finally,
we did not directly consider the variable selection problem or the MX knockoffs procedure
in the current work. We conjecture that MX knockoffs also enjoys some notion of double
robustness; indirect evidence for this was presented recently (Fan, Gao and Lv (2023)). It
would also be interesting to explore whether MX knockoffs enjoys any optimality properties
as a variable selection procedure, though this is a complex question because its power is a
function of not just the test statistic choice but also of the knockoff filter multiple testing
procedure.
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