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Abstract: In this paper, we propose a general framework for stochastic on-
line convex optimization that allows for achieving fast-rate stochastic regret
bounds. Specifically, we demonstrate that certain algorithms, including on-
line Newton steps and a scale-free variant of Bernstein online aggregation,
achieve the best-known rates in unbounded stochastic settings. To illustrate
the usefulness of our approach, we apply it to calibrating parametric proba-
bilistic forecasters of non-stationary sub-Gaussian time series. Importantly,
our fast-rate stochastic regret bounds are valid at any time, providing a flex-
ible and robust performance metric for sequential algorithms. Our proofs
rely on combining self-bounded and Poissonian inequalities for martingales
and sub-Gaussian random variables, respectively, under a stochastic exp-
concavity assumption.
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1. Introduction

We present a stochastic version of the Online Convex Optimization (OCO) anal-
ysis proposed by Zinkevich (2003) to calibrate sequential parametric forecast-
ers and evaluate their effectiveness in stochastic environments. Our approach,
called Stochastic Online Convex Optimization (SOCO) analysis, deals with ran-
dom loss functions ¢, t > 1. While the SOCO analysis covers the deterministic
OCO analysis when the distributions of the loss functions ¢y, t > 1, are Dirac
masses, they differ from their definitions of regret. In OCO, the regret is defined
as the cumulative loss, whereas in SOCOQ, it is the cumulative conditional risk,
both measured relatively to their respective minima. Thus SOCO can also be
viewed as a specific imperfect-information OCO problem miminizing the condi-
tional risks that are not directly observable. The imperfect-information setting
of SOCO has its unique characteristics. Firstly, the stochastic environment can
enhance the convexity of the optimization problem since the conditional risk
functions often exhibit better convex properties than the original loss functions.
Secondly, it is worth noting that the deviations of the random loss functions
from the conditional risks are likely to grow with the number of iterations, ne-
cessitating sequential algorithms to be robust against these deviations. Lastly,
the regret bounds for stochastic and deterministic settings have different min-
imizers, with the former focusing on assessing the calibration of parametric
probabilistic forecasters with the environment’s conditional distributions.
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In this study, we demonstrate that certain algorithms, such as online Newton
steps and a scale-free variant of Bernstein online aggregation, are adaptable to
the stochastic convex properties of the conditional risk functions and robust to
the stochastic deviations. As a result, we can effectively use them to calibrate
probabilistic forecasting.

In Section 3, our primary result is that the Online Newton Step (ONS) al-
gorithm’s calibration achieves an O(logT') stochastic regret bound for any con-
ditionally sub-Gaussian sequence of random losses. The main assumption is a
stochastic exp-concavity condition (H2), which is valid for non-convex losses
and unbounded gradients. We prove this result using a self-normalized mar-
tingale inequality and a Poissonian inequality applicable for conditional sub-
Gaussian gradients, as specified in Condition (H3). Our analysis provides in-
sights into why second-order gradient algorithms like ONS produce a fast-rate
calibration: ONS implicitly minimizes a surrogate loss involving second-order
terms.

The learning with expert advice in Cesa-Bianchi and Lugosi (2006) consists
on studying the regret of sequential aggregation algorithms. We propose in Sec-
tion 4 a stochastic version called Stochastic Online Aggregation (SOA) analysis.
In SOA, the experts are stochastic predictors and the aggregation algorithm
competes with the best predictor. Denoting E the deviations of the predictors
the best existing regret bounds achieve optimal rates O(loglog T+ E). However,
the value of E typically increases as O(y/logT) in sub-Gaussian environments.
As a result, the rate is deteriorated by the ability to learn the unknown upper-
bound E of the deviations at horizon T'.

Our second finding presents a stochastic regret bound, as O((loglog T)? +
log E), achieved by a scale-free version of the Bernstein Online Aggregation
(BOA) algorithm. We achieve this result by self-normalizing multiple learning
rates such that the weights remain unaffected by the scaling of losses by a scalar.
This feature is essential in dealing with stochastic losses, and the regret bound
we obtain is an improvement over existing bounds in sub-Gaussian unbounded
stochastic settings.

Section 5 presents our approach to calibrating parametric probabilistic fore-
casters using the SOCO analysis. Our focus is on Gaussian probabilistic fore-
casters of time series with logarithmic losses, where the conditional risk func-
tions correspond to the Kullback-Leibler (KL) divergence. We interpret the
stochastic regret bounds as cumulative KL bounds relative to a static optimal
forecaster.

We demonstrate that the condition (H2) is satisfied by parametric Gaus-
sian forecasters of a time series (y;). We then apply the SOCO analysis to
parametric forecasters using AR-ARCH modeling to predict the conditional ex-
pectations and variances. Although the corresponding logarithmic loss functions
are not convex, the conditional risk functions are still locally stochastically exp-
concave. Consequently, we combine the ONS and BOA algorithms to sequen-
tially calibrate the parameters of the Gaussian probabilistic forecasters. Our
study provides fast-rate non-asymptotic theoretical guarantees for such para-
metric probabilistic forecasters.
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Our stochastic regret bounds are derived using Ville (1939)’s inequality and
are applicable at any time. Recently, anytime-valid sequential inference has been
successfully employed in several statistical problems, including testing, compar-
ing forecasters, and designing confidence sequences, as demonstrated in Henzi
and Ziegel (2022), Shafer et al. (2021), Waudby-Smith and Ramdas (2023).
A comprehensive overview of this approach can be found in the textbook Shafer
and Vovk (2019) and the survey paper Ramdas et al. (2022). Chapter 12 of
Shafer and Vovk (2019) introduces sequentially calibrated non-parametric prob-
abilistic forecasters with an O(v/T') regret bound in any bounded stochastic en-
vironment. Faster regret bounds of O(logT') for parametric prediction of deter-
ministic individual sequences are presented in Cesa-Bianchi and Lugosi (2006),
Hazan (2016) under exp-concavity assumptions. We extend these fast-rate re-
sults to more general stochastic exp-concavity settings.

For independent and identically distributed (iid) loss functions ¢;, Hazan
(2016), Mahdavi et al. (2015) proved that Online Gradient Descent (OGD) and
ONS algorithms satisfy stochastic regret bounds of order O(v/T) and O(log T'),
respectively. Learning with expert advice calibrated by Squint and BOA achieves
a stochastic regret bound as O(loglogT') under the so-called Bernstein condi-
tion in the stationary bounded setting, as shown in Koolen et al. (2016) and
Wintenberger (2017), respectively. The dependence on the deviation bound
FE in these results have been further improved by careful tuning the learning
rate in Mhammedi et al. (2019), Orseau and Hutter (2021) to achieve the rate
O(loglogT + E). All existing stochastic regret bounds have this linear depen-
dence on the maximum deviations of the loss functions. They use a fast-rate “on-
line to batch” conversion to convert deterministic regret bounds into stochastic
ones, as explained in Mehta (2017). We propose a different approach, which uses
surrogate losses to obtain results beyond the iid environment and improving the
dependence on E.

Sequential learning is naturally applicable to time series, as recursive algo-
rithms update their predictions when new data becomes available over time.
However, obtaining high-probability regret bounds is challenging due to the
temporal dependence of the data, which hinders the use of standard exponen-
tial inequalities. For stationary (- or ¢-mixing time series, Agarwal and Duchi
(2012) derived fast-rate regret bounds for the unconditional risk function E[¢;].
Anava et al. (2013) obtained fast-rate regret bounds for the risk of the ONS al-
gorithm for ARMA (Auto-Regressive Moving-Average) models, although their
notion of stochastic regret differs from ours.

Our approach combines optimization (ONS) and aggregation (BOA) to
achieve fast-rate sequential calibration. This strategy has similarities with exist-
ing algorithms developed by Giraud et al. (2015), van Erven et al. (2021), which
achieve a fast rate of stochastic regret bound in some stationary environments
(Koolen et al., 2016). The algorithm proposed by Adjakossa et al. (2023) aggre-
gates Kalman recursions in non-stationary well-specified settings only. Finally,
sequential algorithms for estimating volatilities or aggregating probability fore-
casters have recently been developed by Werge and Wintenberger (2022) and
Thorey et al. (2017), V'yugin and Trunov (2019), respectively.
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2. Preliminaries and assumptions

We use the notation 0 = (0,...,0)7, 1 = (1,...,1)T, and the operations im-
plying vectors are thought componentwise. In the sequel | - || is the Euclidean
norm || -||2. We consider a filtration (F3), ¢t > 0, and Fo = {0, Q} by convention.
The proofs of the main results are deferred to Appendix A.

Definition 2.1 (Stochastic online convex optimization). Consider a convex
body (a convex, compact set with a non-empty interior) K C R? and an F;-
adapted sequence of random loss functions (¢;) defined over K. An algorithm
predicts xy € K that is Fy_1-measurable and incurs the random conditional risk
Li(xy) = Er_1[le(ze)]= E[l(z1) | Fr—1] at each step t > 1. SOCO analyses the
rate of the stochastic regret

T T
Regretr = sup{z Li(zy) — ZLt(x)}, T>1, (2.1)
t=1

zek —1

as a function of T > 1 assuming the risk functions L; being convex for allt > 1.

The main difference with the perfect-information OCO analysis is the use
of the conditional risk functions L; instead of the loss functions ¢; in the re-
gret and the convex assumption. Another difference is that we do not consider
randomized strategy in SOCO as it goes beyond the scope of this paper.

The SOCO regret depends on the stochastic environment via the minimizer
of the cumulative conditional risk:

Example 2.1 (Regression with quadratic loss). Consider a sequence of random
variables of interest (y;)i>1 with finite variances and quadratic loss functions
li(x) = (x—y)%, t > 1. In OCO, the regret is the cumulative loss relative to its
minimum achieved by the empirical mean % E;‘F:l yi. The SOCO regret depends
on the stochastic setting. If (yi) is @id then the conditional risk is constant,
Li(z) = E[(z — y1)?] for every t > 1, and its minimum is achieved by E[y;]. On
the opposite, if vy = y1, t > 1, then Li(z) = (x — y1)? as long as y1 € Fy_1,
t > 2, and is minimal at y1.

The SOCO setting extends the OCO setting.
Proposition 2.1. Any OCO problem is a degenerate SOCO problem.

Proof. We consider that ¢; has a degenerate distribution dyy,y, the Dirac mass
at £;. It is a SOCO problem equipped with the natural filtration is F; = {0, Q},
tZl, anstzft. O

The conditional distribution of the random loss function ¢; may depend ad-
versarially on xy,...,x1 € F;—1, and, as in OCO, a boundedness assumption on
IC is necessary to obtain regret bounds.

(H1) The diameter of K is D < oo so that ||z — y|| < D, z,y € K, and
the loss functions ¢; are continuously differentiable over K a.s. with integrable
gradients.
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Under (H1) and if the loss functions (¢;) are convex the optimal rate is
O(VT) for OCO and thus for SOCO problems by an application of Propo-
sition 2.1. This optimal rate is satisfied in SOCO problems even if the loss
functions (¢;) are not convex but the risk functions (L;) are. See Appendix B.2
for the case of the OGD when the gradients V/; are a.s. bounded by G > 0.
To obtain fast-rate o(v/T) stochastic regret bounds, we assume stochastic exp-
concavity.

(H2) The random loss functions ¢;, t > 1, are stochastically exp-concave if
for some o > 0:

Lu(y) < Li(@) + VL) (s - 2) = S [(VEW) (0 - 2)°],

z,y € K,a.s.,t>1.

Condition (H2) with o = 0 coincides with the convexity assumption on Ly,
t > 1. In the iid setting, stochastic exp-concavity has been studied by Koolen
et al. (2016), making explicit a condition introduced in Rigollet et al. (2008).
Condition (H2) was used by Gaillard and Wintenberger (2018) over the unit £!-
ball and it implies the Bernstein condition of van Erven et al. (2021) introduced
for convex losses. In the deterministic setting, an application of Lemma 4.3 of
Hazan (2016) shows that Condition (H2) with o = 1/2(u A 1/(GD)) follows
from the p-exp-concavity of the loss functions. More generally, Condition (H2)
follows from the exp-concavity of the loss functions (£;), as soon as the gradients
are square integrable. Also (H2) with o > 0 does not imply the convexity of ¢;
and holds under strong convexity of the conditional risk L;, ¢t > 1.

Proposition 2.2. Assume the loss functions are twice continuously differen-
tiable. Then Condition (H2) implies

aE_1[Ve(2)VE(2)T] X V2Li(z), z€K,as.,t>1. (2.2)
On the opposite, if Ly is p-strongly convex and there exists g > 0 such that
E; 1 [Vft(m)VKt(x)T] =< g1, zekK,as.,t>1, (2.3)

then Condition (H2) holds with o = j1/g>.

Proof. Inequalities (2.2) and (2.3) follow easily from a second-order Taylor ex-
pansion of L;. O

We verify Condition (H2) when calibrating parametric Gaussian probabilis-
tic forecasters in Section 5. Under exp-concavity assumptions, the optimal rate
is O(logT) in OCO (Hazan, 2016) and thus in SOCO. In stochastic environ-
ments the constant o > 0 depends on the conditional distributions of the losses
and is unknown in practice.

In many stochastic environments it is unrealistic to work under a boundedness
condition on the gradients of the loss that is independent of T'. We introduce the
conditional sub-Gaussian condition (H3) to control the growth of the gradients
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at a logarithmic rate. We consider unbounded sug-Gaussian gradients introduc-
ing the Orlicz function 1(z) = exp(z?) — 1, € R. Conditional sub-Gaussian
random variables are such as the Orlicz norm

NYillps,e = inf{c >0;E;_4 [wQ(Yt/c)] < la.s.}

is bounded by a constant for every ¢t > 1. This norm is not precise enough for our
purpose. We require a slightly more explicit condition involving two constants.
Our assumption is a conditional version of the Bernstein condition, also related
to the notion of Bernstein-Orlicz norm of van de Geer and Lederer (2013).

(H3) The gradients V& (z;), t > 1, satisfy for Gy,, G2 > 0, and all k£ > 1,
t>1, €Kk,
k _
Et_1 [(Vft l‘t Z‘t - J? )2 } 2(k 1)]Et_1 [(vgt(l‘t)T(ﬂft—l‘))z] a.s.,
B [|[VE(20)]12*] < 'G2(k Y Et_1[||V€t(3:t)||2] a.s.,
Ei1 [[[Ve(2)]?] <
If the gradients V¢ (z;), t > 1, verify the condition (H3) then they are
conditionally sub-Gaussian.
Proposition 2.3. Assume that the gradient Ve, (x,) satisfies Condition (H3):

Then ||V (x¢)|| is conditionally sub-Gaussian with

r{1>alx IVl(e)|lps,t < 2(Gyy V G2)2, t>1, a.s.

Proof. Denote Y = ||Vl (x¢)]|. We have

k'Kk = +k <TRE S

Elexp(Y?/K)] <1 +Z

for K = 2(Gy, V G2)?. We conclude by definition of the Orlicz’ norm. O

Condition (H3) is satisfied in every bounded cases |V (z4)[|? < G?, t > 1,
with Gy, = G2 = G, Thus our sub-Gaussian stochastic setting encompasses
the classical bounded deterministic one. Condition (H3) is also verified for
unbounded Gaussian gradients with second-order conditional moments bounded
by the constant Go > 0. Condition (H3) is independent of the conditional risks
VLi(x:) = Ei_1[Vl(2t)], t > 1, and it does not interfere with Condition (H2).

Proposition 2.4. Assume that the gradient V{li(x:) is normally distributed
given F;_1. Then Condition (H3) is satisfied if Ey_1[|VEi(z)|?] < G% a.s.,
t > 1, and then Gy, = 8.5Gs.
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3. ONS achieves fast-rate stochastic regrets

3.1. Surrogate losses

We base our approach on an observed surrogate loss that upper-bounds the

stochastic regret using an exponential inequality for martingales from Bercu
and Touati (2008) on unbounded gradients V¢, ¢ > 1.

Proposition 3.1. Under (H1) and (H2), for any predictable sequence ()
and deterministic x in IC, it holds with probability 1 — 6, 0 < 0 <1,

T T
> Li(zy) - ZLt(x)
- T

Z xt —x +

L[V () (- 2))°] +

| >

T
Z Vﬁt .’Et l’t — l’))z
t=1

glog(afl), A>0,T>1.

When the distributions of ¢; are degenerate the upper bound in Proposi-
tion 2.1 becomes

T T

2
ngt(lit)T(JCt — JL‘ —a Z Vﬁt I‘t LEt - ZE))Q + X log(éfl).
=1 t=1

Since the result is valid with probability 1, the last term disappears letting
6 1 1. Forthcoming results, anytime-valid with a high probability in a stochastic
environment, are surely valid in deterministic environments when suppressing
the dependence in §.

Following van Erven et al. (2021), we interpret

Zt(‘ft) = V@t(g:t)T(xt - l’) + %(Vﬁt(xt)T(xt - gj))27 t Z 1,

as a surrogate loss. The quadratic term in addition to the gradient term is nec-
essary to upper-bound the unobserved conditional risk with high probability.
In stochastlc environments, algorithms should rmmmlze the cumulative surro-
gate loss Zt 16,5 rather than the cumulative loss Zt 1 4¢. Under Condition
(H2) with o > 0, this additional quadratic term is counterbalanced by the
compensator Zthl E;_1[(--+)?] when A < «/2. The Poissonian inequality of
Proposition 3.2 relates both quadratic terms.

3.2. The stochastic regret analysis of ONS

The cumulative surrogate losses Zthl 0 is implicitly minimized in the ONS’s re-
gret analysis of Hazan (2016). Then the ONS algorithm achieves a fast stochastic
regret bound.
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Algorithm 1: Online Newton Step (Hazan and Kale, 2011)
Parameter: v > 0.
Initialization: Initial prediction z1 € K and Ag = Wld
Predict: z¢
Incur: L¢(x¢)
Observe: Vi (z:) € R?
Recursion: Update
Ap = Ap1 4 Vi (2) Ve (x) T,

Yer1 = e — v ATV (x),

Tet1 = arg min(z — yi+1)T A¢(x — yt41),  projection step.
x

Using the Sherman-Morrison formula, each step of ONS has a O(d?+ P)-cost,
where P is the cost of the projection step. If the gradients V¢, (z;), t > 1, verify
the condition (H3) then the square of their Euclidean norm ||V/;(x,)||* satisfies
a Poissonian exponential inequality.

Proposition 3.2. Under Condition (H8) the gradients Vi(xy) satisfy
Eo [exp(n (V6 (@) |2 — E[[ Ve @) 2]/ (1 - nG2,)] <1, ¥ < 1/Gy,
for any time t > 1 a.s.

Proof. Expanding the exponential and using Condition (H3) we obtain

k
E[exp nY2 Zn ]E <1+77E[Y2 <1—|—Z k= 1G2(’C 1)>
k>2
E[Y?
TR < exp(rE[Y?)/(1 - 063))

=1
+1—nG22

for every ntbQ < 1 and the desired result follows. O

To control the second-order terms in Proposition 3.1, we combine the self-
bounded martingale and Poissonian inequalities. We obtain a fast-rate stochastic
regret bound for the ONS tuned choosing v = «/3.

Theorem 3.1. Under (H1), (H2) and (H38), the ONS algorithm 1 for v =
a/3 satisfies with probability 1 — 30 the stochastic regret bound

2a2D2axﬂ-;G log(s 1»))

+(§ﬂ§ﬁ2ﬁ 'f>baa S\

3
Regretr < % (1 + dlog(l +

9
valid for every T > 1.

Our result extends fast-rate stochastic regret bounds for ONS far beyond
existing results in the deterministic or iid bounded setting. It strengthens the
result of Hazan (2016) only valid when ¢; is exp-concave for every ¢ > 1.
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4. BOA achieves fast-rate regret bounds in Stochastic Online
Aggregation

4.1. Stochastic Online Aggregation

Cesa-Bianchi and Lugosi (2006) consider to learn expert advices argj ), for all
1 < j < K, by aggregating them sequentially for ¢ > 1. Here we consider
[z (1), . xtK)] a dx K matrix whose columns are K different F;_;-adapted

predictors m§ ) We denote 7; = x;m = Zfil mxf) their aggregation, with m;

Xt =

in the simplex Ax = {7 € RX; 7 > O,Zfil m; = 1}. Aggregation algorithms
combine the predictors with weights 7; minimizing the stochastic regret

T
RegretT = max {ZLt Zy) ZLt (x(i))}, T>1.
t=1

We have under Condition (H2) the relation
~ (%
Lt(l’t) — Lt(Xt’]T) § VLt(Xt’]Tt)TXt(ﬂ't — 7T) — §Et71 [(Vﬁt(xtm)Txt(w — 7Tt))2:| .

We consider the loss functions m — £;(x;7) over K = Ak that is stochastically
exp-concave with the same constant « as the original loss functions ¢;. Applying
Proposition 3.1 under Condition (H2) we obtain

T A T
; Xt’]Tt)TXt 7Tt - 71' + 5 ; Vft Xt’f('t Xt(ﬂ't - 7T))2
A— 2
+ Ta Z ]Et—l [(Vﬁt(xtm)Txt(ﬂt - 7T))2] + X log((s*l). (41)

t=1

We identify the surrogate losses
(¢ — )T+ A/2((m — )T 8;)°

with gradients denoted by £€; = x! V/{;(x;m;). We analyze algorithms minimiz-
ing the sum of the surrogate losses in stochastic environments. We compare the
aggregation strategy Ty to m € {e;,1 < i < K}, i.e., with the best predictor
xg ), using the linear losses (m; — 7)T€; over K = Ag. We call this problem, en-

compassing the learning with expert advice, the Stochastic Online Aggregation
(SOA).
4.2. The stochastic regret for the scale-free version of BOA

The version of BOA described in Algorithm 2 is different than the original BOA
algorithm in Wintenberger (2017), because of the specific tuning of the multiple
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Algorithm 2: Bernstein Online Aggregation (Wintenberger, 2017),
scale-free version

Initialization: Initial weights m1 € Ax and 7762 =Lp=0 (e RE).
For each step ¢ > 1: the predictors incur the losses £; € RX.
Recursion: Update

ny 2 =ni2 +2.2(6 — 7l 1),
Et = Et—l + (et — T Et]l) + nt (lt — T Et]l)
Nt EXp(—T]tLt)m

M1 = .
7 (e exp(—neLt))

learning rates 7;. The specific 7, provides a self-normalization and the algorithm
is scale-free, i.e., insensitive to a multiplicative factor of the losses.

The factor 2.2 is not arbitrary and is chosen such as a small numeric constant
satisfying

2
exp(— Y — L )<1—¢, y € R.

V142292 1+22y2 V14 2.2y2

This relation is crucial in the proof of Theorem 4.2 to propagate the self-
normalization in a recursive argument. The coordinate-wise learning rate 7 ;
is only well defined after the first non-null observation m; := (€;; — 77 £;) # 0,

1 < i < K. Before that time Em =L, 1, =--- =0 by convention. Contrary
to the ONS, and thanks to the adaptive learning rates, the algorithm BOA is
parameter-free as it does not require the knowledge of «, and each step has a
O(K)-cost. We provide a deterministic regret bound valid for any deterministic
sequence.

Theorem 4.1. For every 1 < i < K, the BOA algorithm 2 achieves the deter-
ministic regret bound

T T
E : T 2 : T

un Et — U gt,i
t=1 t=1

S 222 U Et ‘etz ( +10g(7T1,L)
K
+Zl{ max ;> 1/4}10g(1—|—(MT1/m) )

+ log <e + %wlT log(1 + (MT/m)2T))> (4.2)

where x1 = nr_1(€y — 1), My = maxo<<7 [€; — 7l 1] € RE and m; is
the first non null observation of €;; — Tl ;.
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The term

K
. . . 2
Z; 1{2?%XT e > 1/4} log(1 + (M. /m,)?)

in the regret bound (4.2) replaces the term ||Mr||s in the regret bounds of
Mhammedi et al. (2019), Orseau and Hutter (2021). In some unbounded stochas-
tic settings, our regret bound (4.2) is better for T' large. For instance, if we
consider that the first predictor is iid standard Gaussian and the other ones are
bounded then ||[Mr| e ~ Mri ~ /2logT is much larger than Eszl log(1 +
(Mr;/m;)?) ~loglogT for T large.

The deterministic regret bound in Theorem 4.1 is assumption-free. Its first
term is the square root of the sum of the additional quadratic terms in the
surrogate losses (4.1). It may increase at the rate O(v/T) but, under condition
(H2), it becomes negligible. We provide a stochastic regret bound for sequential
aggregation using BOA.

Theorem 4.2. Assume Conditions (H1), (H2) and (H8) hold on x} V{,(x;m;)
a.s. forallt > 1,1 < i< K. The scale-free BOA algorithm 2 with w; > e K
for all 1 <1i < K satisfies, with probability 1 — 39,

3(K +1)2 2G2 logT\\?
RegretaTg < ;ﬂ(log(l_i_ Lg>>
[

m2
2 20 2 6 -1
+ O((logloglog T)?) + ?(GWD) + o log(6~1),

for every T > 1, and m > 0 such that P(mini<;<xg m; > m) <1—4.

Aggregation problems are easier than optimization ones and BOA achieves a
faster stochastic regret bound than ONS. This rate O((loglogT)?) is subopti-
mal in the learning with expert advice setting. Condition (H3) implies that the
deterministic gradients are bounded by a constant G > 0, and Condition (H2)
implies exp-concavity. Optimal strategies achieve O(G log K') deterministic re-
gret (Cesa-Bianchi and Lugosi, 2006). Among them Exponentially Weighted
Aggregation, but this algorithm achieves only a O(\/T) stochastic regret as
shown by Audibert (2007). Best-known aggregation algorithms in deterministic
and unbounded stochastic settings are different. It is an open question to find an
aggregation algorithm optimal in both settings whereas squint and the original
version of BOA achieve optimal rates in bounded deterministic and stochas-
tic settings. The choice of the initial weights 7 being not crucial in the latter
setting we choose implicitly uniform initial weights in the sequel.

4.3. The SOCO analysis to adapt to unknown stochastic
exp-concavity constant o > 0

We study an example of BOA-ONS dealing with the adaptation to the best
stochastic exp-concavity constant «. It is crucial for improving the ONS per-
formances in any stochastic environment where, contrary to deterministic ones,
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there is no way to determine the optimal « as it depends on the conditional dis-
tributions of ¢;. Consider T; = x;m = Zfil m—azgz) the BOA aggregation of K > 1
ONS predictions with different parameters v(*) with 4() = {21 ... 27K}, The
resulting BOA-ONS algorithm adapts to the optimal value of o that depends
on the unknown stochastic environment. The algorithm Metagrad of van Erven
et al. (2021) is also able to adapt to different rates of convergence at the price
of an extra factor | Mr||« log T that is sub-optimal in unbounded sub-Gaussian
settings when ||Mr||o increases as y/logT.

Corollary 4.1. Under (H1), (H2) and (H3) with o > 275-2 BOA-ONS
algorithm satisfies with probability 1 — 49 the stochastic regret bound

T T
> Li@) - > Li(z)

< lO(az log(T) + K*loglog(T)?) + O <a(G¢2D)2 + é) log(671).

e

Proof. We combine the stochastic regret bound of Theorem 4.2 with the inequal-
ity (A.4) choosing —log,(y) + 1 <i < —log,(y) + 2 so that a/4 < v < «/2 for
a<1. O

5. BOA-ONS for sequential prediction and probabilistic forecast of
time series

5.1. Probabilistic forecasting

Observing a time series (y;), we use the SOCO analysis to calibrate some para-
metric probabilistic forecasters in the sense of Chapter 12 of Shafer and Vovk
(2019). In our setting sequential algorithms predict x; and parametrize a proba-
bilistic forecaster P,,. Scoring rules are real-valued functions of the forecast and
the observation. They have been introduced by Gneiting and Raftery (2007)
as summary measures for the evaluation of probabilistic forecasts. Given such
a scoring rule S, we consider the loss at step t as ly(xy) = S(Py,,yt), t > 1.
The expected score, also denoted by S in Gneiting and Raftery (2007), is a
discrepancy measure between probabilities

S(P;ct,Pt) = Li(zs) =By [S(Px”yt)]v

where P, denotes the distribution of y; given F;_;. (H2) is a condition on
the scoring rule S, the parametrization « — P, and the distribution P; of the
variable of interest y; given F;_1. It writes as, for all x,y € K

S(Pya Pt) < S(Pwa Pt) +VyS(Pyv Pt)T(y—x) - %Et—l [(vyS(Pyayt)T(y_x))Q]-

If Condition (H2) is satisfied in well-specified settings P; = P,, for any z} € K,
then S is a proper scoring rule for the class {P,;x € K} in the sense of Gneiting
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and Raftery (2007); S(Py, P;) is minimum when P, = P, by convexity. The
scoring rule is not necessarily strictly proper since this maximum is not unique
when V,S(P,, P;) is null in some directions y in the neighborhood of z}.

We provide examples of time series probabilistic forecasting calibrated using
the SOCO analysis by verifying Condition (H2). We focus on the logarithmic
score assuming that P,, P; admit densities p,, ps, * € K, t > 1. We have

Ly(xy) = S(Py,, Pi) = —=E¢_1[10g(pe, (y1))]| = KL(Py, Py,) — By 1 [log(pe(y:))]

where K L is the Kullback-Leibler divergence. This scoring rule is strictly proper
because S is minimized when P, = P; only. It is likely to satisfy the stochastic
exp-concavity condition (H2) locally in well-specified settings.

Proposition 5.1. If P, is in the exponential family so that its conditional den-
sity pe(y) is proportional to eTW @i =b(@D) yith sufficient statistic T'(y) and
some x; € K then for the logarithmic score

E;y [Vgt (w:)Vft (CU:)T} =Ei [Vx,fs(P:c; ) yt)Tvxz S(sz ) yt)T]
= V2.5(Py;, Pay) = V2 Ly (27),
and necessarily o < 1 if condition (H2) holds.

Proof. We apply Proposition 2.2, noticing that the Fisher information identity
holds in the well-specified setting. O

We use the logarithmic score for calibrating the first and second moments
of Gaussian forecasters as recommended in Section 4.4 of Gneiting and Raftery
(2007). Giraud et al. (2015) focus on the estimation of m; = E;_1[y:], establish-
ing fast-rate stochastic regret bounds in expectation.

Example 5.1 (Estimation of the conditional expectation). Let P, = N (x,0?)
so that ly(x) = (x — y:)?/(202) (plus constant). In the OCO analysis, {; is
02/ D?-exp-concave only if v, € K satisfying (H1). This setting requires im-
plicitly that the distributions P; are KC supported. Unbounded cases y; ¢ K
are analyzed by SOCO assuming that the conditional distribution P, has mean
my = E;_1[y:] € K and finite conditional variance o = Var;_1(y;) < &° a.s.,
for some &% > 0 and allt > 1. The losses {; are not exp-concave but still satisfy
Condition (H2) with o = 0%/(G° 4+ D?); See Proposition 5.2 for more details.
The well-specified unbounded case P, = N (x,032) satisfied Condition (H2) with
a = d%/(7% + D?) when m; € K and 02 <52,

We also focus on the estimation of the conditional variance or volatility
02 = Var;_1(y;) for Gaussian probabilistic forecasters. Up to our knowledge,
stochastic regret bounds for sequential algorithms calibrating the volatility have
not been established yet. However, the concept of volatility is important and
required in many applications such as risk assessment and probabilistic fore-
casting in finance (McNeil et al., 2015, Shafer and Vovk, 2019). The logarithmic
score is well-suited to measure the performances of volatility estimators as it is
robust to extreme values (Patton, 2011).
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Example 5.2 (Estimation of the volatility). Let P, = N (my, ) then fi(x) =
(log(x) + (ys —my)?/x)/2 (plus constant) is conver only if 0 < x < 2(y; —my)?.
This assumption is unrealistic when y; is concentrated around its conditional
mean my. Using SOCO, if the conditional distribution P; has mean my and
volatility 02 € K = [c62/2,5%), ° > 0, 1 < ¢ < 2, then the risk L(z) =
(log(z) + 02 /x)/2 is strongly convez with = (c—1)/(25*). Condition (H2) is
satisfied with o = (c — 1)c*276 if By _1[(y? — 02)?] < 35*; See Proposition 5.3
for more details.

The stochastic exp-concavity condition is well-preserved for linear multivari-
ate parametrization. Thus the conditional expectation and the volatility can
be expressed as a linear combination of the past observations y;_1,...,y1 or
their squares y?_1,...,y7. We obtain naturally AR and ARCH estimations for
the conditional expectation and the volatility in Sections 5.2 and 5.3, respec-
tively. Combining both, we obtain the AR-ARCH Gaussian forecaster studied
in Section 5.4. The parametrization does not preserve the strictly proper prop-
erty of the logarithmic loss function. Despite the logarithmic score being strictly
proper overall probability measures, it is not for the AR-ARCH models because
different linear combinations of past observations provide the same probabilistic
forecaster. Stochastic exp-concavity condition (H2), more general than strict
properness, is crucial.

5.2. Sequential ARMA prediction by BOA-ONS

AutoRegressive Moving Average (ARMA) modeling of the conditional mean is
standard in time series analysis. See Brockwell and Davis (2009) for a reference
textbook. We calibrate sequentially, using the SOCO analysis with the natural

filtration F; = o(y¢,---,y1), and the Gaussian forecaster N(mﬁp)(x),ﬁ) for
arbitrary o2 > 0, with clipped mean

AP () = 2T ((ye—1 A MJ2)V (=M /2), ..., (ys—p A M/2) V (= M/2)), M > 0,

and K = By (1), the ¢! unit-ball of dimension p.

Proposition 5.2. We assume that the distributions P; of y: given yi_1,...,y1,
admit densities with means my satisfying 2|m;| < M, volatilities 0 < &> a.s.,
M >0,5% >0, for every t > 1, and satisfy (H3). Then the Gaussian forecaster
N(mgp)(z),UQ) calibrated by the ONS algorithm with v = o2/(3(3% + M?))
achieves the stochastic regret

72 + M? 72 + M? o? ) .
Regretr < O(TplogTJr ( R = M2pr2> log(0 )),

for every T > 1, x € B1(1), and with high probability 1 — 9.

To tackle the case of ARMA models with a moving average component, we
consider increasing orders p since any invertible ARMA model admits an AR(c0)
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representation. For the orders p € {1,...,+/logT/loglog T}, the ONS predictors

ﬁlgp ) (z¢) are aggregated with BOA in m;. The obtained BOA-ONS algorithm
achieves the cumulative K L-divergence bound

ZKL (P, N (74, 02))

1<p</TogT/loglog T x€B1(1)

52 4 M2 52 4 M2 2
+O<%plogT> +O(U j2 o pG22) 10g(51)},

< min min {ZKL PN (p)( ), 0 ))

72 + M2
(5.1)

refining the bound obtained by Anava et al. (2013) in the following ways.
Our bound is valid in every sub-Gaussian stochastic adversarial setting where
2|m¢| < D, and the time series (y;) does not have to be bounded as in Anava
et al. (2013). Moreover, our bounds are anytime-valid with high probability.

The parameters (M, o?) should be tuned to find the best compromise in the
regret bound (5.1). However, the task is not feasible using the SOA analysis
because the loss functions depend on these parameters. The solution comes
from the econometrics literature that provides better loss and risk functions
introducing the concept of volatility.

5.3. Sequential ARCH prediction by BOA-ONS

In mathematical finance, the log-ratios (y;) are commonly modeled using the
Generalized AutoRegressive Conditionally Heteroscedastic (GARCH) model.
Classical inference uses the Quasi-Likelihood approach (Francq and Zakoian,
2019) as if the conditional distributions were Gaussian. If the conditional means
my = Elys | y¢+—1,- - .,%1] are null, the volatilities o7 := Var(y; | y¢_1,...,%1) are
finite, ¢t > 1, then the Quasi-Likelihood estimator 67 of the Volatility minimizes
the cumulative KL divergence K L(P;, N'(0,5%)) = (log(276?) + 02 /57)/2 (plus
constant).

We assume that o2 € [c52/3,7%], 1 < ¢ < 2,3 > 0, and we use a clipped-
ARCH(q) model

87527((1) (z) = C52/2 + T (thfl A 62) tot Ty (yt{q A 62)7 (5.2)
withe e C={z eR?: x>0 and |jz|; <1-c¢/2}.

Proposition 5.3. We assume that the distributions Py of y: given yi_1,...,y1,
admit densities with means m = 0, volatilities o7 € [c52/2,5°], Et_1[(y} —

0¢)?] < 354, ,1<e<2,3 >0 for every t > 1, and satisfy (H3). Then
the Gaussian forecaster N(0,57 (Q)( )) calibrated by the ONS algorithm with

=26/(3(c — 1)c*) achieves the stochastic regret
Regrety < O(q(logT + Gf,}2 log(é_l))),
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for every T > 1, x € K with high probability 1 — 6.

Any invertible GARCH model admits an ARCH(o0) representation. Thus we
consider ARCH( ) models with increasing order g. We consider BOA-ONS &7
aggregating o; (q)( t),q=1,...,4/logT/loglog T so that with high probability

ZKL PN )) min mln{ZKL(Pt,J\/(O,02’('1)(3;)))
t=1

1<¢<V/Tog T/ loglog T =€
+O0(q(logT + G;,, log(671))) }

We solve positively the question raised in the conclusion of Anava et al. (2013)
about the optimization of GARCH forecasters. The main restriction of our ap-
proach is the small range of the volatilities [c72/2,72], 1 < ¢ < 2. Otherwise, the
risk functions arer not even convex when the volatility o2 can be over-estimated
by a factor of 2. It is not surprising since Francq and Zakoian (2010) showed
that the Quasi-Likelihood approach is inconsistent with no lower boundedness
assumption on the volatilities.

5.4. Online Gaussian probabilistic forecasting using BOA-ONS

We combine the ARMA and volatility prediction methods. We consider Gaus-
sian probabilistic forecaster N (7, (®) (xlzp),ﬁf’(q)(xpﬂzﬁq)) with M? = 32 and
T = (T1:p, Tpi1:ptq) € K with

K= {sc € RPHY . H331 ||1 <1, Zpt1:prq 2 0, pr+1 p+qH1 1- 0/2}

Proposition 5.4. We assume that the distributions P; of y: given yi_1,...,y1,
admit densities with means 2|mt| < 7, volatilities o} € [c5°/2,5%], Es_1[(y: —

my)* <354, a.s., 1 <c< 2,52 >0 for every t > 1, and satisfy (H3). Then
the Gaussian forecaster N(A(p)( ),529(x)) calibrated by the ONS algorithm
with v = 3 x 2°/((c — 1)c*) achieves the stochastic regret

Regretr < O((p +q) (logT + th) log(é_l)),

for every T > 1 with high probability 1 — 0.

Aggregating such predictors for 1 < p,q < /logT/loglogT with BOA, we
obtain a Gaussian probabilistic forecast N (M, 57) satisfying the cumulative
K L-divergence bound

ZKL Py, N (4, 62))

< min min KL(P,N (p) 2D (g
T 1<q,p<IlogT/loglog T :EEIC{Z t ( ) T ( p+1-p+q)))
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+ O((p—l— q)(logT + G?pz log(é‘l)))},

with high probability. The sequential algorithms adapt to the random environ-
ment even in misspecified settings; It approximates the parametric Gaussian
forecaster that is the closest to the unknown conditional distributions for the
cumulative KL divergences and a penalty which increases such as (p+¢q) log(T).
Thus the BOA-ONS forecaster regret minimizes automatically a Bayesian infor-
mation type criterion at any-time and with high probability. It is comparable
to a model selection procedure that would require to minimize a penalized log-
likelihood at each step 1 < ¢ < T. The computational cost of our sequential
method is O(T((p + q)? + P)) with explicit formulae except for the projection
step of computational cost P, whereas the batch model selection has a computa-
tional cost O(T'(p+q) M) where M is the computational cost of the optimization
of the likelihood in AR(p)-ARCH(g) models. This cost M is prohibitive when
p+ q is large and the computational gain of our sequential procedure is impor-
tant.

5.5. Sequential probabilistic forecasting using BOA-ONS

The main drawback of our BOA-ONS approach on Gaussian forecasters is the
restriction 02 € [c52/2,5°], 1 < t < T. However, because the loss and risk
functions depend on this hyperparameter, it is not possible to directly aggregate
volatility estimators with different 3> > 0 in a Gaussian forecaster to extend
the range of the volatilities.

To circumvent the issue, we can aggregate the Gaussian probabilistic forecast-
ers to obtain a probabilistic forecaster which is mixed Gaussian. Consider P; =
(ﬁt(i))lg,é Kk, K weak probabilistic forecasters with densities p; = (f)ﬁi))lgg K
such as ﬁt(i) = N(ﬁzij), o2") with different localization, jD + D/v/2 < ﬁz,ﬁj) <
(j+1)D + D/V?2, for —K; < j < Ky and 2 € [(¢/2)¢7152/2, (¢/2)'5?] for
0 < ¢ < K3. Consider the SOCO analysis of mixtures 2T P with K = Ag and
l(z) = —log(zTpy(ys)). We assume that m < Et,l[l/ﬁgz)(yt)Q] < M as. for
1 <i< K, t>1. The risk function is m-strongly convex and Condition (H2)
is satisfied with o = m/M.

Under Condition (H3), we can use the ONS algorithm on the simplex K =
Ak, and we obtain

T T

> KL(P,7/p) < min Y KL(P,,x"p) + O(MK/m(logT +log(67"))).

t=1 mehi i
Similar fast-rate regret bounds were obtained by Thorey et al. (2017) for the
CRPS score instead of the KL divergence. They used the Recursive Least Square
algorithm without projection that does not constrain m; to be in Ag. Contrary
to our procedure, it is difficult to interpret their ensemble probabilistic forecast
because they do not satisfy the axioms of a density function.
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TABLE 1
Statistics of the cumulative square losses based on 100 Monte-Carlo experiments.

Algorithm ~ Meanx 102 (Sdx10%) Unb. Experts Meanx 103 (Sdx10%) Biased Experts

o=1 o=.1 =10 o=1 o=.1 o=10
BOA 1.65 (.07) .164 (.007) 16 (.7) 2.65 (.09) .231 (.004) 31 (1)
S-F BOA 1.17 (.05) .117 (.006) 12 (.6) 1.37 (.04) .136 (.003) 26 (1)

Squint 1.16 (.05) .117 (.004) 12 (.5) 1.37 (.07) .110 (.001) 31 (2)

6. Numerical illustrations
6.1. Aggregations in stochastic environments

We study the impact of stochastic deviations on the aggregation of predictors
for quadratic losses. We consider two sets of 100 predictors of y; = 0,¢ > 1. As a
baseline, the first set consists in O'Nt(i), with Nt(i) iid standard Gaussian random
variables, independent for 1 < i < 100. These 100 predictors are all unbiased.
In this simple setting the uniform weights, which is the initial value of every
implemented aggregation algorithms, is optimal. The second set consists in 100
predictors, the first one being negatively biased —v/t + aNt(l), the other ones
being positively biased v+ oN{”, 1 < ¢ < 1000, 2 < i < 100. Any aggregation
half-weighting the first predictor does not suffer from the bias. We run 100
Monte-Carlo experiments of three different aggregation algorithms; the original
version of BOA of Wintenberger (2017), the scale-free version of BOA described
in Algorithm 2, and the squint algorithm of Koolen et al. (2016). The latter
algorithm is not comparable to the others as it uses beforehand the maximum
of the deviations for initializing the recursion.

In the baseline unbiased setting, the performances reported in Table 1 of
scale-free BOA and squint algorithms are not distinguishable. Both algorithms
are more stable than the original version of BOA which uses a doubling trick
to adapt to the deviations of the predictors'. Note that the cumulative square
losses are proportional to the standard deviations of the predictors.

In the biased setting, the comparison depends on the level of the stochastic
deviations; see also the boxplots in Figure 1. The price for learning non-trivial
weights to correct the bias of the predictors is approximately a factor 10 on the
cumulative losses when compared with the baseline setting. The case ¢ = 1 is
similar to the unbiased setting with scale-free BOA and squint algorithms both
outperforming equally well the original version of BOA. When o = .1 the scale-
free version of BOA is outperformed by squint. Its regret bound suffers when
the minimal observed loss m is small because of unstable self-normalization.
Squint does not suffer from this drawback because the range of the deviations
is provided directly in its initialization. On the opposite, the scale-free BOA
algorithm outperforms the two other algorithms for large deviations when o =
10. The performances, that deteriorate when stochastic deviations are of the

IThe multiple tuning of the deviation bounds in the original version of BOA is flawed and
replaced by the univariate doubling trick of Cesa-Bianchi et al. (2007).
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Fic 1. Bozxplots of the cumulative square losses based on 100 Monte-Carlo experiments of the
biased setting.
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Fic 2. 90%-prediction intervals of the electricity load based on EWA (left) and BOA (right)
and the same 5 forecasters.

same order as the bias, are in accordance with our regret bounds. Designing self-
normalized sequential algorithms such as scale-free BOA is a robust alternative
to the use of the range of the deviations as in BOA or squint algorithms.

6.2. Quantile prediction of electricity loads

We illustrate the impact of the SOCO anlysis on quantile predictions for weekly
electricity load, data available in the Opera package developed by Gaillard et al.
(2021). The 3 forecasters (GAM, AR, GBM) provided in Opera package plus 2
constant forecasters, 0 and 1.5 times the maximum of weekly loads, are aggre-
gated to predict the upper and lower quantile of levels .5 and .95. We use the
quantile loss funcion in 2 different sequential aggregation algorithms, Exponen-
tially Weighted Algorithm (EWA) and BOA, and for the two levels .5 and .95.
BOA aggregations provide accurate quantile predictions because it minimizes
cumulative risks in the SOA analysis. It confirms the theoretical guarantees
obtained in the paper since it is likely that the pinball risk is strongly convex
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F1G 3. 90%-prediction intervals from 6 forecasters (left) and their BOA aggregation (right).

(Steinwart and Christmann, 2011). On the contrary EWA aggregations fail to
provide accurate quantile predictions because EWA algorithm minimizes the
cumulative losses which are not exp-concave. Such visual validation of the pre-
dictions interval is enough to show the benefit of BOA but does not constitute
any evidence of its good calibration. Biau and Patra (2011) analyze the asymp-
totic guarantees of a different sequential algorithm predicting quantiles.

6.3. Volatility estimation during the COVID crisis

We apply BOA-ONS for designing 90%-prediction intervals for the S&P500 in-
dex during 2020, including the COVID crisis in March. We use the iid N/ (0, x)
and ARCH(p) Gaussian probabilistic forecasters for p = 1,...,5. The fore-
casters are tuned sequentially with the ONS algorithm with v = 1, and K =
[e, 0] x B1(1), ¢ = 0 in the iid case, and ¢ = 107!¢ in the ARCH cases. These 6
predictors of the volatility are then aggregated with BOA; See Figure 6.3. We
notice that the iid forecast prediction interval is constant after some training pe-
riod. The ARCH forecasts are required to predict intervals accurately during the
crisis. BOA aggregations converge to weights (0.01,0.17,0.09,0.37,0.21,0.15)
and improve the calibration of ARCH forecasters. A slightly more advanced se-
quentially calibrated volatility estimator developed by Werge and Wintenberger
(2022) has been used in the forecast task of the M6 financial competition by
de Vilmarest and Werge (2023). Its RPS performances rank 5th out of 163
competitors, showing that such sequential calibration o is competitive in prob-
abilistic forecasting.

7. Conclusion and future works

In this paper, we derive fast-rate stochastic regret bounds for the ONS and
BOA algorithms under stochastic exp-concavity. We alleviate the convexity as-
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sumption on the loss functions to calibrate sequentially parametric probabilistic
forecasting using the logarithmic score. We achieve fast-rate stochastic regret
bounds. Thus, BOA-ONS can adaptively and efficiently calibrate Gaussian prob-
abilistic forecasters for any conditionally sub-Gaussian non-stationary time se-
ries. Our stochastic regret bounds are relative to a static prediction parametrized
by z € I for every t > 1. When forecasting non-stationary time series, we should
also consider competitors that evolve through time. Key Propositions 3.1 and 3.2
extend readily to such settings called tracking optimization problems. Thus, one
would like to develop SOCO and algorithms in more dynamic settings. A first
step in that direction is made in Haddouche et al. (2023) using optimistic se-
quential algorithms.

Appendix A: Proofs of the main results
A.1. Proof of Proposition 2.}

We first show that

H Ve (2)T (z¢ — ) ‘
VE (Ve ()T (@ — )7

Then we derive

< V/8/3+(1/1og2)? = Ky, ~ 2.179.

P2

Etfl[(vet(xt)T(mt - f))%]
E: 1 [Ki,z (Ve (z0)T (2 — x))2]F

< ke [1”2 ( Ve 1[%(:;)2(( $t>_<2 - z))?]ﬂ

< 2kl
Using Cauchy-Svhwarz inequality we derive that E;_1[(V(2)T (2 — 2))?] <
Et,1[||V€t(xt)||2]D2 S (;%.D2 and

By [(Ve ()T (20 — 2)) 7] < K2K2FE, 4 [(Ve(2)" (2, — ))°]"

< k12K 2 (G D)2 E DR, [(Ve(2)T (2 — 2))°].
Then we fix Gy, = 2Ki2G2 so that Condition (H3) follows. Let us denote
iy and oy the mean and the variance of the conditionally Gaussian random
variable. Then, N being standard Gaussian distributed, we use the homogeneity
and triangular inequality on the norm || - ||y, to derive
H Vﬁt (L‘t (l’t — .TI)
VE 1 [(Vl ()T (z — ))?]

H ot N + iy
" VEi_1[(aeN + p0)?] Il
T[N |y + llpsellp
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and the desired results follows from Cauchy-Schwartz inequality.

A.2. Proof of Proposition 3.1

Denoting Y; = V/(z;)T (x4 — x), we observe that under (H2) it holds

}:@@g—E:@ }: }Q——EtﬂY] (A1)

Moreover, from Lemma B.1 of Bercu and Touati (2008) for any random variable
Y, and any n € R we have

E;y [exp<n(n—Et_1[m)—§(Et—l [YE]—Et—l[m2+(Yt—Et_l[m)?))] =

Developing the square, we obtain
2
K1 [GXP(U(Yt —Ei4[Yy]) — %(Etﬂ V7] +Y72) + 772Et1[Yt]Yt] <1l

Using Young’s inequality together with Jensen’s one, we derive
B [Yi]Y: > — (B [Vi)? + Y2) /2 > — (B [YVP] + Y) /2
and the exponential inequality
Ei—1[exp(n(Y; — E—a[Vi]) — 0 (Bt [Y7] +Y7)] < L.

We obtain the desired result applying a classical martingale argument due to
Ville (1939) and Freedman (1975) and recalled in Appendix B.1. Indeed, using
the notation of Appendix B.1 with Z;, = n(Y; — E,_1[Yi]) — n?(Ei—1[Y] + Y2),
we have

PAT>1: Mp>6") <6,  0<é<]1,

where M = exp(X:tT:1 Zy). Considering n = —\/2 for any A > 0, it holds with
probability 1 — 4§ for any 7' > 1

iﬂém—Mmeéﬁhﬂﬂ+ﬁ0smww

t=1

T
2
& Y B < Zn S [¥2) 4 72) + S 10a(67)

which, combines with (A.1), yields the desired result.
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A.3. Proof of Theorem 3.1

From the proof of the ONS regret bound in Hazan (2016), we obtain from the
expression of the recursive steps (and not using the convexity of the loss)

T T
> Vbl () < g (Ve () xt—m))2+%log(dct(AT)/dct(Ao))+Z.

Plugging this inequality into the previous bound we obtain

T T T ,
ZLt(SCt) — ZLt(x) S Z Ve (x)T (2 — m))

L [(Ve(a) T (@ — 2)]

1 1 2 _
+ ow log(det(A7)/ det(Ap)) + > +3 log(671).

Then we apply the Poissonian exponential inequality from Proposition 3.2 on
the second-order terms. More precisely, denoting 0 < Yy = (Vi (x)T (2 —
7))?/(2(Gy,D)?), we obtain

E:_1 [exp(Yt — QEt_l[Y}D] <1. (A.2)

Combined with the argument due to Freedman (1975) recalled in Appendix B.1
we derive

T T

IP’(HT >1: ZYt — QZEt_l[Yt] > log(51)> <4, 0<d<1. (A3)
t=1 t=1

Thus an union bound provides

T T
ZLt(xt Z W#ZE& 1 Vét(xt) (mt—w))Z]

t=1

+ % log(det(Ar)/ det(40)) + -
(O (GuDP + 3 ) 0s(57)

Choosing 3\ = o — 2y > 0 since v < «/2 we conclude

T
D L) -
t=1

< — log(det(AT)/det(AO))

IIMH

+ (O‘;”(capzz))2 +— _627) log(671).  (A4)
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From the initialization Ay = (7%)2[% we obtain bound

T
log(det(Ar)/ det(Ap)) < dlog (1 + (yD)? Z ||V€t(xt)||2>.

t=1

We apply the Poissonian exponential inequality from Propostion 3.2 on the
second-order terms 0 <'Y; = ||V (z,)||?/(2G7,) and, combined with the ar-
gument due to Freedman (1975) and Condition (H3) ensuring E; 1[Y;] <
G3/(2G3,), we obtain

T
IP(ET >1:) Y, -TG3/G}, > 10g(51)> <4, 0<é<l

t=1

We derive that, with probability 1 — 4, it holds
log(det(Ar)/ det(Ag)) < dlog(1+2(yD)*(TG35 + Gy, log(67"))), T >1.

The desired result follows from the specific choice of v and a union bound.

A.}. Proof of Theorem 4.1

We keep the same notation and convention as in Section 4. In particular, in-
equalities involving vectors are coordinate-wise. With no loss of generality we
assume that 7, ; # 0 for all 1 <4 < K. To prove the regret bound (4.2) we will
show that

7T1T exp(—nTzT)

K
1
< exp (Z 1{21%1%)% ze;>1/4} log(1+(n1,,-MT,i)2)> <c+ §7T1T 1og(Jl+(771MT)2T)> .

=1

=:Ar
(A.5)

From (A.5) we derive

T

T
—nrLr =nr (Z(WtTetﬂ — &) — Zntfl(ﬂ'tTetﬂ - £t>2> < log(my ' Ar)

t=1 t=1
so that

T

" s - T > log(m!) | log(Ar)
Sl <> 4+ o (mf 61— ) + + :
t=1 t= — nr nr

Since 1; 2 = ;% 4+ 2.2(; — 7l £;1)? we obtain by rearranging the sum

T

1 1 N 177)t
D e (rf L — 1) :TZ% (0 =) 2(; e

t=1 nr
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Thus we derive from a comparison sum-integral

r . 7 1 r 2 1
t—1 — 1]t T

E — < — - E M—1(m; 61 —£;)" < .

= T = (. S wre

The learning rate satisfying the relation

1/1.1 + log(m;*) + log(Ar)
nr

T
< (1/1.1 +log(m ) +log(Ar)) |22 (w] €1 — £:)7,

t=1
and the regret bound (4.2) follows from the expression of log(Ar).
It remains to prove the exponential inequality (A.5). We use the identity
~ 9 ~
exp(—nrLr) = exp(nT (W%ET]I — ET) — (ET — W%ETJI) ) exp(—nrLr_1).

To initiate the recursion, we use the basic inequality z < z® +e~!(a —1)/a for
x>0 and o > 1 with = exp(—nrLr_1) and o = nr_1/nr so that

o1 Nnr—1 — 77T.

eXP(*UTZT—l) < EXP(*UT—lzT_l) +
nr-1

We obtain

exp(—nTZT) S exp(nT (F%:KT]]. — ET) — 77% (ET — W%:ZT]].)Q)

y (exp(_nT_lzT_l) N e—lw)_
Nr-1
Then we use the expression
nr-1

T = )
1+ 2203 (6r — 7her1)?

n

and the notation z7 = ny_1(€r — 7-€r1) to derive

GXp(—’I]TET)
2
T T = Nnr—1—1nr
<exp| — — exp(—np_1Lp_1)+ —— |.
< P( T+ o000 1_1_2.296%)( p(—nr—1L7r_1) o >
. : . - Y
We use different bounds over the function ¢ : y € R +— exp( ST

2 .
) ) < €/2, 9(y) < 1 - o forany y € Rand p(y) < 1 -y if
y < 1/4. Distinguishing whether z is larger or not than 1/4, we deduce

eXp(—ﬂTzT) S (]]_ —Nr-1 (@T — W%:KT]].)) eXp(—anlszl)]].{l'T S 1/4}
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+ (]1 — 77T(£T - W%ET:&)) eXp(—nT_liT_l)]l{J?T > 1/4}

+ 1/277'1—'—1 - 77T'
Nr-1

Using the relations np_1/nr > 1 and 1 — \/ﬁ > 0, y € R we upper bound

the second term by

nr-1
nr

= (77':;;1 — T]T—I(ET — F%KT]].)) exp(—nT_lfT_l)]l{xT > 1/4}

(1 = nr(er — mr1)) exp(—nr—1 Ly )1{ar > 1/4}

Combining it with the previous bound we achieve

_ Nr_1 1{xr>1/4} ~
exp(—nrLr) < ( 77; ) exp(—nr—1Lr-1)
T T Nr—1—1r
— nT_l(ZT — 7TT£T]].) eXp(*ﬂT—1LT—1) -+ 1/2T

The second inequality is obtained. We have

N npp \ HET>1/4)
tewitn < ()

~ T
- (7T17)T—1 eXp(—nT—1LT—1)) (ET — w%ZT]l)
12T AL T IT

! Nr—-1

7T1T eXP(*ﬂT—1ZT—1)

‘ o0

We recognize the weights

mnr—1 exp(—nr—1Lr—1) = mr (7L nr—1 exp(—nr-1Lr_1))

and the second term in the upper bound is proportional to 77% (br — F%ET]I) =0
and thus vanishes. We obtain

7r1 exp(—nr LT)

SCD

and a recursive argument yields

log;<77t_1
Ui

7T exp(—nr_1Lr_1) + 1/%1va
[e%s) nr

T
7r1T exp(—nrLr) < exp (Z

t=2

)mt > 1/4}H ) (m exp(—mL1)

+1/2 Z — )
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We bound the exponent term such as

ti; 1og(%>n{mt > 1/4}Hoo
ZT:I (”t “)]l{x“>1/4}

1t=2 b,

1{221%XT3?1371' > 1/4} (ilo (Ut ;1>1{x“ > 1/4})

t=2

1{ max T ; > 1/4} (10g<77171) +10g<nT—171)>’
1 25t<T nr—i,i N,

assuming with no loss of generality that if maxo<i<r #;; > 1/4 then it happens
for the last iterate zp; = nr_1,:¢r,; > 1/4. Notice also that zp,; > 1/4 implies
that W;iu < My ;/4. Combined with

T—1,i
nnT == \/1 + 2207y ; (€ — 7TWT) < /142207 Mz,
K

we obtain

Mw

7

-

i=1

-

K2

Tt

lht= 1)]1{xt > 1/4}HOO

IN

1{ X Ty > 1/4} (log(m Mr,/4) + 1og(1 + 2.2n§)iM7%,i))

i1 D

IN

1 Jmax Ty > 1/4}10g(1+171 lMTl)

=1

We have exp(—n;,L1) < exp(1) using the relation |5 L1| = 1 and the comparison
sum-integral

L 1
> M < log(m /) = 5 los(1+ (mMr)°T),
t=2 -

we achieve (A.5).
A.5. Proof of Theorem 4.2

From the regret bound (4.2), keeping the notation of (A.5) and applying Young’s
inequality, we infer that for any n > 0

T T -1 2
T i 2 (1/1.1 +log(my ) + log(Ar))
tzzlﬁt Et*tzzlﬁmﬁfg —4;) 2 .
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Plugging this bound into (4.1) and identifying £; = xI V/;(x;m;) and T; = x;7¢
we obtain

d ; A7 — i)\ 2
ZLt(Et) - ZLt ((Egl)) S Tn ZV&(@)T(@ - ‘Tgl))
= t=1

A—a & ~ R i
+ 9 = ;Et—l [(Vﬂt(:vt)T(xt _ xg ))2]

1/1.1+1 1 4+ log(AT))2 2
+(/ +0g(77577)+ og(Ar)) +X10g(5_1).

Applying once again the Poissonian inequality (A.3), using that the diameter of
the simplex satisfies is less than 1, we derive that with probability 1 — §

T T
S (V@) (@) <2 B (V@) (F-2") ] +2(Gy, D) log (571).
t=1 t=1

Then we obtain

d L ; 3IN+2n—« T i) 2
;Lt(@) = ; Li(2) < == Y B [(VGE)T (@ - "))

— t=1
(1/1.1 4 log(m; ') + log(Ar))?
2n

+ ((A +0)(Gy,D)* + ;) log(671).

+

Thus choosing A = 7 = «/3 and introducing V/¢;(#;) for bounding roughly
log(Ar), we obtain

T T ]
Z Lt(@) — Z Lt ("Egl))
t=1 t=1

A\ 112
< 3 (g - s VL)
« m

A 2 2
+log(e+log<1+max1<t<:r|V€t(xt) T)) +1/1.1+10g(7711)>

mQ
20 e ) st
+(BGauD? + 2 ) og(s7).

From the proof Proposition 2.3 on the second-order terms 0 < Y; = ||V£y(Z)]|?/
(2G%,) we obtain
Ei1[exp(V3)] < 14 2E,_1 [Y?] < 14 (G2/Gy,)*.

Thus, for any x > 0 we have

< _
P(lrél%xTK > J;) < E[exp(max Y})] exp(—x)



458 O. Wintenberger

T
< Z]E[exp(Yt)] exp(—z) <T(1+ (Gz/Gwz)Q) exp(—x),

and with probability 1 — § it holds

max Y; < log(T) +log(1 + (G2/Gy,)?) + log(671).

1<t<T

Finally, we obtain the desired result using a union bound.

A.6. Proof of Proposition 5.2

We denote
Uil imp = (Y1 AM/2)V (=M/2), ..., (ys—p A M/2) V (=M/2)) € RP.

Let P, = N(m® (2),02) then £,(z) = (y. — M (2))2/(202) (plus constant)
and

_ B[ - " (2)7]

Ei [vgt(x)v&f(x)T] 4 y%l,t—p(yi\/—ll,t—p)Tv

g

1
Ei [V%t(@] = ;yi\fl,tfp (?%1,1:7;))?

Because the second derivatives do not depend on x a Taylor expansion provides
1 _ _ T
Li(y) = Le(@) + VL) (v = 2) = —5 (= 2) 710y (0 10-p) (9= 2)

Li@) + VI (g~ ) — —5 (AP () — 2 ()

_fﬁ(p) 2))2 )
< Lafo) + VL) (3 = 0) - =LY I G0 ) - ) o)

< Lt(x)+VLt(y)T(y—w)—m

(y—x)TEt_l [Vﬁt (x)VEt(m)T] (y — x).
The first inequality comes from the relations

B¢ [(yt - mgp)(x))Q] =K1 [(yt - mt)Q] —+ (mt — T/T\Lgp) (x))Q < 52 + M2.

Thus Condition (H2) is satisfied with a = 02/(52 + M?).
Applying Theorem 3.1, the ONS achieves the stochastic regret against every
x € Bi(1) (satisfying ||| < \/p)

T T
Z Lt(l‘t) — Z Lt(l')
t=1 t=1

72+ M? o2+ M? o? 9 .
N )
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with high probability. Since the risk satisfies the relation

<m—quW+ﬁ)

o2

i) = 5 (102 + tog(o?) +

= KL(Pt,./\/'(mgp) (z),0?)) + cst.,

we obtain the desired result.

A.7. Proof of Proposition 5.3

We denote
_27 !
Yt-1,t—q (yt 1/\0 ~~ayt2_q/\02)€Rq.

Let P, = N(0,529(x)) then £,(z) = (log(G2'?(2)) + y2/52?(z))/2 and

EAMI—#“R»14j as AT
2( 2(q)( )) yt— (yt 1,t— q) ’

~2,
2Ut2_ (q)( )yQ,al (y A )T
~2 t—1,t—qg\Jt—1,t—q .
%q“%»

Ei_1 [Vl (2) Ve (2)T] =

Et—l [V2£t($)] =

Because 1/2 < 02/67 (q)( ) < 2 under our assumptions, the second derivatives
are decreasing in at’(Q)( ) and thus

207 —7° 1
Et—l[vzzt(xﬂ = OtTifjaﬂfalt q(yt 1,t— q)T? 62_4 ?f Ult q(yt 1,t— q)T~

Combining this lower bound with a Taylor expansion, we obtain
c—1
Li(y) < Lu(@) + VLo(y) " (v — 2) =
< Ly(z) + VLi(y)" (y — 2)

c_ (2 — ?(q)szQq 2.
_ 1)E_4([(y s ()) ](ot’( () — 529 (2))?

< Li(z) + VLi(y) (y — x)

-t (y- x)T]Et_l [Vﬂt(z)VZt(:c)T] (y — x).

_25 _27 T
W—2) 5% W) (y—2)

The second inequality comes from the relations

B[ (y7 —-5> e )) ] = ]Et_l[(yf—af)Q] + (0? _3t2,(q)(x))2 <354 152,

Thus Condition (H2) is satisfied with a = (¢ — 1)c*275.
Applying Theorem 3.1, the ONS achieves the stochastic regret with high
probability against every x € KC (satisfying |lz|| < \/q)

T
ZLt(xt ZLt ) < O qlogT+ (1 + ¢G? )log(cs*l)).
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We conclude the proof by identifying the KL divergence with L; up to additive
constants.

Proof of Proposition 5.3

We use similar arguments than in the proofs of Propositions 5.2 and 5.3, keeping
the same notation with

=~ (p) 2
1 5 ye — g (21,
b(z) =5 <log(at2’(q) (Tp+1:p+q)) + (A’; i (1)) )

Oy (@) (Tp+1:p+q)

Adapting previous computations, we similarly obtain a lower bound on the
second derivatives

1 _
Et—l[VQKt(x)] z CQE (yi\/llt p?yf 11‘ q)(§%1,t—p’§t2’_a1,t—q)T~

We can also upper bound the first derivatives to obtain

24 ~2,(q) g 2\2
= 3P 5 B [@ = (e — (15))7)]

X (yt—l,t—;m y?i,tfq) (@Kl,t—pv ytzi,tfq)T'

]Et—l I:Vgt (:IT)V& (.’E) ]

Under our assumptions, we roughly estimate

Ei—y [(atz’(q) - (yt - ml(tp) (xl'p))z)g]

<267 ) + Bo [(n — i (21)) "))

< 2(6" 4+ 2(Eo—1 [(ye — me)*] + Eeon [ (me — T?lgp)(zlzp))4]))
< 187

Thus Condition (H2) is satisfied with a = (¢ — 1)c*372275.
Applying Theorem 3.1, the ONS achieves the stochastic regret with high
probability against every x € K (satisfying ||z < D = /p+q)

T
ZLt(xt ZLt <O((p+q)logT+ (1+ (p+q)G7,) log(671)).

We conclude the proof by identifying the KL divergence with L; up to additive
constants.

Appendix B: Auxiliary results

B.1. The stopping time argument of Ville (1939) and Freedman
(1975)

We recall the argument of Ville (1939) and Freedman (1975) as we apply it
several times in the proofs of the paper. Consider My = exp(Zil Zy) for any Z,
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adapted to a filtration F; and satisfying the exponential inequality E[exp(Z;) |
Fi—1] < 1. Then we have

T
IP<3T >1:Y 7> 1og(51)> <6

t=1
for any 0 < § < 1 by applying the following lemma.
Lemma B.1. If M; is adapted to Fy, My =1 a.s. and E[M; | Fi—1] < My
a.s., t > 1, then, for any 0 < § < 1, it holds
P(3T >1: My >6") <6.

Proof. We apply the optional stopping theorem with Markov’s inequality defin-
ing the stopping time 7 = inf{t > 1: M; > 6!} so that

P(It>1: My>6")=P(M, >¢") <E[M]§ < E[M]s < 6. O

B.2. SOCO analysis of the OGD algorithm

In this section we work under (H1) and (H2) with @ = 0. Proposition 3.1
holds, A > 0 = a and the compensator term in Proposition 3.1 is positive. In
this section we assume that the gradients are bounded by G < co. A slow rate
stochastic regret bound O(GD\/T ) is expected and the surrogate loss in Propo-
sition 3.1 is useless. The classical Online Gradient Descent (OGD) of Zinkevich
(2003)

D
- —V/
z G\/f t(xt)

satisfies the following linearized regret bound in any SOCO problem, see the
proof in Hazan (2016) that does not use any convex assumption,

starting from xy € K,

T4y = arg gg,rcl

T
S V() (w1 — ) < ;DG\/T.
t=1

Under (H1) we easily bound a.s. both extra quadratic terms in Proposition 3.1
with the same quantity A\/2G?D?T. Choosing A = /21og(6-1)/(GDVT) we
immediately obtain a new slow rate stochastic regret bound for the OGD valid
in any SOCO problem:

Theorem B.1. Assume that (H1) holds and that sup,cx [Vl (2)|| < G a.s.,
t > 1. The OGD algorithm satisfies with probability 1 — § the stochastic regret

bound
T

> Li(ay) - ZT:Lt(:c) < (g + 24 /21og(51)>DG\/T

t=1 t=1
valid for any T > 1 and any x € K.
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This simple extension of the usual iid setting to any stochastic adversarial
setting could be obtained by classical arguments such as Azuma’s inequality
used in Chapter 9 of Hazan (2016). It relies on the martingale ZtT:1(VLt (x¢) —
Viy(x,))T (2, — 2*) and the gradient trick on L; to remove the assumption of
convexity on the losses /;.
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