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Abstract: We study a minimax risk of estimating inverse functions on a
plane, while keeping an estimator is also invertible. Learning invertibility
from data and exploiting an invertible estimator are used in many domains,
such as statistics, econometrics, and machine learning. Although the consis-
tency and universality of invertible estimators have been well investigated,
analysis of the efficiency of these methods is still under development. In this
study, we study a minimax risk for estimating invertible bi-Lipschitz func-
tions on a square in a 2-dimensional plane. We first introduce two types
of L2-risks to evaluate an estimator which preserves invertibility. Then,
we derive lower and upper rates for minimax values for the risks associated
with inverse functions. For the derivation, we exploit a representation of in-
vertible functions using level-sets. Specifically, to obtain the upper rate, we
develop an estimator asymptotically almost everywhere invertible, whose
risk attains the derived minimax lower rate up to logarithmic factors. The
derived minimax rate corresponds to that of the non-invertible bi-Lipschitz
function, which shows that the invertibility does not reduce the complexity
of the estimation problem in terms of the rate.
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1. Introduction

1.1. Background

Learning invertible structures from data is a problem encountered in several
fields, from more classical to modern ones, where an invertible function is a
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typical shape-constraint of functions. A traditional and well-known application
is the nonparametric calibration problem: in a nonparametric regression prob-
lem with an unknown invertible function, one estimates an input covariate cor-
responding to an observed response variable. This problem has been studied
by Knafl et al. (1984), Osborne (1991), Chambers et al. (1993), Gruet (1996),
Tang et al. (2011) and Tang et al. (2015), and applied in the fields of biology
and medicine (Tang et al., 2011, 2015). A different application in econometrics is
the nonparametric instrumental variable, developed by Newey and Powell (2003)
and Horowitz (2011). This is an ill-posed problem with conditional expectations.
For instance, Krief (2017) studies the estimation by direct usage of inverse func-
tions. Another application that has been developed rapidly in recent years is a
framework for normalizing flow used for generative models in machine learning,
developed by Rezende and Mohamed (2015) and Dinh et al. (2017). A related
problem is the analysis of latent independent components using nonlinear invert-
ible maps (Dinh et al., 2014; Hyvarinen and Morioka, 2016). Under this problem,
an observed data distribution is regarded as a transformation of a latent vari-
able by an unknown invertible function, and this function is estimated by an
invertible estimator to reconstruct the latent variable (for a review, see Kobyzev
et al. (2020)). Several methods have been developed for estimating invertible
functions, for example, Dinh et al. (2014), Papamakarios et al. (2017), Kingma
et al. (2016), Huang et al. (2018), De Cao et al. (2020) and Ho et al. (2019).

In the univariate case (d “ 1), an error of the invertible estimators has been
actively analyzed. In this case, the estimation of invertible functions is related
to estimating strictly monotone functions, and there are many related studies
in the field of isotonic regression (for a general introduction, see Groeneboom
and Jongbloed (2014)). Tang et al. (2011, 2015) and Gruet (1996) study an es-
timation for an input point x̄ “ f´1

ptq P r´1, 1s corresponding to an observed
output t P R with an invertible function f . Specifically, Tang et al. (2011) shows
that a pointwise estimator px, which is based on the estimation of monotone func-
tions, achieves a parametric convergence rate |px ´ x̄| “ OP pn

´1{2q, where n is
the number of observations. They also establish an asymptotic distribution of
the estimator x̄. Krief (2017) develops an estimator rf for an unknown invertible
function f˚, which is written as a conditional expectation with an r-times con-
tinuously differentiable distribution function, and study its convergence in terms
of a sup-norm } ¨ }L8 as Er}f˚ ´

rf}2L8s “ Opn´2r{p2r`1qq. Because this rate is
slower than the minimax optimal rate on (even a non-invertible) r-differentiable
functions, it is suggested that this rate does not achieve optimality.

For the multivariate (d ě 2) case, there are few studies on the rate of errors,
because a multivariate invertible function may not be represented by a simple
monotone function as the univariate case. Several studies for normalizing flows
show the universality of each developed flow model (e.g., Huang et al. (2018);
Jaini et al. (2019); Teshima et al. (2020)). However, these studies do not discuss
efficiency, and only a few have investigated a volume of approximation errors of
simple flow models (Kong and Chaudhuri, 2020).

The minimax rate of risk is a specific measure describing an effect of shape
constraints such as invertibility, and one primary interest is whether shape con-
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straints change the minimax rate. It is studied that some shape constraints
change the minimax rate to the parametric rate Opn´1{2q, such as unimodal
(Bellec, 2018), convex (Guntuboyina and Sen, 2015), or log-concave (Kim et al.,
2018), whereas the ordinary rate without shape constraints is Opn´r{p2r`dqq with
an input dimension d and smoothness r of a target function. Furthermore, even
in the invertible setting, Tang et al. (2015) achieved the parametric rate for the
pointwise estimator. In contrast, the monotonicity constraint does not change
the rate, that is, Low and Lang (2002) shows that the nonparametric rate ap-
pears in the estimation of monotone functions. Based on these contrastive facts,
whether the invertible constraint improves L2-risk is an open question to clarify
the efficiency of invertible function estimation.

1.2. Problem Setting

We consider a nonparametric planer regression problem with an invertible bi-
Lipschitz function, and study an invertible estimator for the problem. We set
the input dimension as d “ 2 and define I :“ r´1, 1s. We consider a set of
invertible and bi-Lipschitz functions as

FL
INV :“

�

f : I2
Ñ I2

| @y P I2, !Dx P I2 s.t. fpxq “ y,bi-Lipschitz
(

where !D denotes unique existence, and a function f is called bi-Lipschitz if
L´1}x´x1}2 ď }fpxq´fpx

1q}2 ď L}x´x1}2 holds for some L ě 1 for any x,x1 P

I2. The bi-Lipschitz property is reasonable in dealing with invertible functions,
because f P FL

INV holds if and only if f´1
P FL

INV holds (see Lemma 16). Note
that invertible and continuous function is called homeomorphism.

Assume we have observations Dn :“ tpXi,Y iqu
n
i“1 Ă I2 ˆ R2 that indepen-

dently and identically follow the regression model for i “ 1, ..., n:

Y i “ f˚pXiq ` εi, εi
i.i.d.
„ N2p0, σ2I2q (1)

with a true function f˚ P FL
INV and σ2 ą 0. Let PX be a marginal measure

of Xi, and we assume that PX has a density function which is positive and
bounded on I2.

1.3. Analysis Framework with Inverse Risk

The goal is to investigate the difficulty in estimating invertible functions by
invertible estimators. To this end, we define two risks; (i) an inverse risk to
evaluate both an estimation error and invertibility of estimators, and (ii) an
L2-risk for an inverse. Preliminary, for any y P I2, f̄ ;

npyq denotes x P I2 if it
satisfies f̄npxq “ y uniquely, and some constant vector c P R2zI2 otherwise.
Namely, f̄ ;

n represents a quasi-inverse of the function f̄n (that can be defined
to not entirely-invertible functions).
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(i) Inverse risk: as the first risk, we develop an inverse L2-risk as

RINVpf̄n,f˚q “ En

“

QINVpf̄n,f˚q
‰

,

where En denotes the expectation with respect to the observations Dn,

QINVpf̄n,f˚q :“ ~f̄n ´ f˚~
2
L2pPXq ` ψ

´

~f̄
;

n ´ f´1
˚ ~L2pPXq

¯

denotes the predictive inverse L2-risk, ~f~L2pPXq :“ p
ř2

j“1
ş

|fj |
2dPXq

1{2 is an
L2-norm for vector-valued functions, and

ψ P Ψ :“ tψ : Rě0 Ñ Rě0 is continuous, increasing, and ψp0q “ 0u (2)

denotes a non-negative penalty function. In our upper-bound analysis, we
consider ψpzq “ z4 and ψpzq “ z2. By virtue of the penalty term ψp¨q,
RINVpf̄n,f˚q Ñ 0 indicates both that f̄n is almost everywhere invertible and
that f̄n and f̄

;

n are consistent estimators. Using this risk, we can discuss con-
structing invertible estimators in the context of nonparametric regression.

(ii) L2-risk for inverse: As the second risk, more simply, we define an
L2-risk for an inverse of f˚. It is defined as the following form:

R;

INVpf̄n,f˚q :“ En

”

Q;

INVpf̄n,f˚q

ı

,

where Q;

INVpf̄n,f˚q :“ ~f̄ ;

n ´ f´1
˚ ~

2
L2pPXq.

This risk is not only designed simply to evaluate the estimation error of the
inverse function f´1

˚ , but also considers whether the estimator f̄n is invertible,
since it utilizes the modified inverse f̄

;

n.
Then, we study the minimax inverse risk and the minimax L2-risk for inverses

of the regression problem, that is, we consider the following value

inf
f̄n

sup
f˚PFL

INV

RINVpf̄n,f˚q,

and that with R;

INVpf̄n,f˚q. Here, the infimum with respect to f̄n is taken over
all measurable estimators, depending on Dn. Note that this minimax inverse risk
is related to an ordinary minimax risk without the invertibility of estimators,
that is, inf f̄n

supf˚PFL
INV

RINVpf̄n,f˚q ě inf f̄n
supf˚PFL

INV
Rpf̄n,f˚q holds with

the ordinary L2-risk Rpf̄n,f˚q “ ~f̄n ´ f˚~
2
L2pPXq

.

1.4. Approach and Results

Our analysis depends on the representation of invertible functions by level-sets.
For an invertible function f “ pf1, f2q P FL

INV, we represent its inverse as

f´1
pyq “ Lf1py1q X Lf2py2q (3)
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where Lfj pyjq :“ tx P I2 | fjpxq “ yju is a level-set for yj P I and j “ 1, 2.
In this form, we can characterize invertibility of f by assuring the uniqueness
of the intersection in (3). This result allows the analysis of the smoothness and
composition of an invertible estimator.

Our first main result is a lower bound of the minimax inverse risk and the
minimax L2-risk for inverses based on the developed representation. Specifically,
we show that with d “ 2 and any ψ P Ψ:

min
#

inf
f̄n

sup
f˚PFL

INV

RINVpf̄n,f˚q, inf
f̄n

sup
f˚PFL

INV

R;

INVpf̄n,f˚q

+

Á n´2{p2`dq,

where Á denotes an asymptotic inequality up to constants, and inf f̄n
takes infi-

mum over all the possible estimators depending on Dn. This rate corresponds to
a minimax rate of estimating (not necessarily invertible) bi-Lipschitz functions.

This result gives a negative answer to the question of whether invertibility
improves the minimax optimal rate to the parametric rate. That is, the family
of functions restricted to be invertible is still sufficiently complicated, and no
rate improvement occurs for L2-risk when estimating it.

Our second main result is an upper bound of the minimax risks. To derive
the bound, we develop a novel estimator for f˚, and derive an upper bound on
the inverse risk that corresponds to the lower bound. This estimator employs
an arbitrary estimator of f˚ minimax optimal in the sense of the standard L2

risk, and amends it to be asymptotically almost everywhere invertible, so as to
inherit the rate of convergence. As a result, for d “ 2 and ψpzq “ z4, we obtain

inf
f̄n

sup
f˚PFL

INV

RINVpf̄n,f˚q — n´2{p2`dq,

where — denotes the asymptotic equality up to the constants and logarithmic
factors in n. While the above result considers the 4th power penalty ψpzq “ z4

due to the pathological example shown in Supplement D.5, the pathological
example does not appear if the Lipschitz constant of f ,f´1 is less than L “
21{4 « 1.19: for another penalty ψpzq “ z2, we also prove that

inf
f̄n

sup
f˚PFL

INVXFLp21{4q

RINVpf̄n,f˚q— inf
f̄n

sup
f˚PFL

INVXFLp21{4q

R;

INVpf̄n,f˚q—n´2{p2`dq,

with FLpLq :“ tf : I2 Ñ I2 | f ,f´1 are L-Lipschitzu. Similar to the above
discussion, these results state that the learning invertibility problem has the
same minimax rate for estimating bi-Lipschitz functions.

1.5. Symbols and Notations

rns :“ t1, 2, . . . , nu for n P N. 1t¨u denotes an indicator function. For p P r0,8s,
the norm of vector x “ px1, ..., xdq is defined as }x}p :“ p

ř

j x
p
j q

1{p. For a
function f : S Ñ R and a set S1 Ď S, we define fpS1q :“ tfpxq | x P S1u.
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For a base measure Q, }f}LppQq :“ p
ş

S
|fpxq|pdQpxqq1{p denotes an Lp-norm.

For a vector-valued function fp¨q “ pf1p¨q, ..., fdp¨qq : S Ñ Rd, ~f~LppQq :“
p
řd

j“1
ş

S
|fjpxq|

pdQpxqq1{p denotes its norm. When Q is the Lebesgue measure,
we simply write }f}Lp and ~f~Lp . Specifically, ~f~L8 “ maxjPrds supxPS |fjpxq|.
For any set S Ă R

d, its boundary is expressed as BS :“ tx P R
d | Bεpxq Ă

S for some ε ą 0u. D
d :“ tx P R

d | }x}2 ď 1u is a unit ball, and S
d´1 “

tx P R
d | }x}2 “ 1u p“ BDdq denotes its surface. For two sets X,X 1 Ă R

d,
dHaus.pX,X 1q :“ maxtminxPX maxx1PX1 }x ´ x1}2,minx1PX1 maxxPX }x ´ x1}2u
denotes Hausdorff distance. ˘ represents a simultaneous relation concerning
a simultaneous sign inversion; for instance, ap˘1q “ bp˘1q means that both
ap1q “ bp1q and ap´1q “ bp´1q hold, but does not mean that ap1q “ bp´1q,
ap´1q “ bp1q.

1.6. Organization

The remainder paper is organized as follows. In Section 2, we characterize in-
vertible functions by their level-sets. In Section 3, we provide a minimax lower
bound for inverse risk. We develop an invertible estimator, and prove that an
upper bound of the risk by the estimator attains the lower bound up to log-
arithmic factors in Section 4. Supporting Lemmas, propositions and proofs of
Theorems are listed in Appendix.

2. Level-Set Representation on Invertible Function

We consider a representation of invertible functions using the notion of level-
sets, which will be used in our main results. That is, we describe an inverse of
functions by an intersection of level-sets of coordinates of the functions. This ap-
proach is different from the commonly used representation of invertible functions
by monotonicity (Krief, 2017), local approximation (Tang et al., 2011, 2015), or
Hessian normalization (Rezende and Mohamed, 2015; Dinh et al., 2017).

We consider a vector-valued function f : I2 Ñ I2 with its coordinate-wise
representation fpxq “ pf1pxq, f2pxqq for fj : I2 Ñ I. For j “ 1, 2, we define a
level-set of fj for yj P I as

Lfj pyjq :“
�

x P I2
| fjpxq “ yj

(

.

The notion of level-sets represents a slice of functions, whose shape depends on
the nature of these functions. Then, we define the level-set representation of
fpxq.

Definition 1 (Level-set representation). For a function f “ pf1, f2q : I2 Ñ I2

and y P I2, the level-set representation is defined as

f :
pyq :“ Lf1py1q X Lf2py2q. (4)
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This term is defined with an output-wise level-set of the function f . The
existence and nature of the intersection of f :

pyq depends on the nature of f .
Then, the property of f :

pyq explains the invertibility of f .

Proposition 2 (Level-set representation for an invertible function). f : I2 Ñ
I2 is invertible if and only if f :

pyq exists and uniquely determined for all y P I2.
Furthermore, if f is invertible, we have

f´1
pyq “ f :

pyq.

From this result, if f is invertible, there exists a corresponding level-set rep-
resentation. Additionally, the level-set has tractable geometric properties, which
are useful for future analyses. We discuss the properties of level-sets in the next
section.

We illustrate level-sets Lf1 , Lf2 in Figure 1. The orange and blue lines rep-
resent Lf1py1q and Lf2py2q, respectively; x “ f´1

pyq coincides with the inter-
section Lf1py1q X Lf2py2q as described in eq. (4).

Fig 1: Level-sets Lf1py1q (orange) and Lf2py2q (purple) in I2 for f P FL
INV. These

provide a level-set representation f : of f , and the uniqueness of the intersection
(black dot) of each level-set ensures invertibility, yielding f´1

pyq “ f :
pyq.

2.1. Property of Level-Set by Invertible Function

We consider an invertible function f P FL
INV, where level-sets Lfj pyjq have some

geometric properties that are critical for the analyses on minimax inverse risk in
Sections 3 and 4. All results in this section are rigorously proven in Appendix A.

A level-set has a parameterization with a parameter α P I:

Lemma 3. For f P FL
INV, the following holds for each y P I:

Lf1pyq “
ď

αPI

f´1
py, αq, and Lf2pyq “

ď

αPI

f´1
pα, yq.

This parameterization guarantees the smoothness of level-sets, together with
the Lipschitz property of f . This property prohibits a “sharp fluctuation” in
level-set Lfj , as shown in Figure 2.
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Fig 2: Level-sets in I2. [Left] Lfj pyq without the Lipschitz continuity of fj .
[Right] Lfj pyq with the Lipschitz continuity of hj . If fj is Lipschitz continuous,
the (excessively) sharp fluctuation along with one direction, shown in the left
panel, does not appear. This property is clarified by parameterization (Lemma
3).

Furthermore, level-set Lfj pyq is continuously shifted with respect to yj P I;
more specifically, there exists C P p0,8q such that

dHaus.pLfj pyq, Lfj py
1
qq ď DC|y ´ y1

|

holds for all y, y1 P I (see Lemma 17 in Appendix A). The level-sets at y “ ˘1
are also properly included in the boundary of domain I2: Lfj p˘1q Ă BI2 (see
Lemma 18 in Appendix A).

Whereas the above representation is for identifying the inverse function f´1,
the level-set representation for the inverse function recovers the original function
f itself: Lemma 3 which proves Lh1px1q “ fpx1, Iq, Lh2px2q “ fpI, x2q with
fpxq “ h´1

pxq “ h:
pxq leads to

fpxq “ fpx1, Iq X fpI, x2q. (5)

As fpx1, Iq and fpI, x2q are (1-dimensional) curve, they can be regarded as
a kind of (skewed) “grid” of the square I2, identifying the unique point y “
fpxq by their intersection. We employ this grid-like level-set representation for
constructing an invertible estimator in Section 4.3.

3. Lower Bound Analysis

We develop a lower bound for the minimax risk. The direction of the proof is
to utilize the L2-risk Rppfn,f˚q and to develop a certain subset of invertible
bi-Lipschitz functions FptΞ2

kukq Ă FL
INV as follows:

inf
f̄n

sup
f˚PFL

INV

RINVpf̄n,f˚q ě inf
f̄n

sup
f˚PFL

INV

Rpf̄n,f˚q ě inf
f̄n

sup
fPFptΞ2

kukq

Rpf̄n,fq.

(6)

Then, we derive a lower bound on the right-hand side by two techniques: (i) the
level-set representation developed in Section 2, and (ii) the information-theoretic
approach for minimax risk (e.g., Section 2 in Tsybakov (2008)).
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3.1. Minimax Lower Bound of the Inverse Risk

We derive the minimax lower bound for the inverse risk: applying the information-
theoretic approach to the subset FptΞ2

kukq Ă FL
INV shown in Section 3.2 yields

the following theorem.

Theorem 4. Let ψ P Ψ. For d “ 2, there exists C˚ ą 0 such that we have

inf
f̄n

sup
f˚PFL

INV

Rpf̄n,f˚q ě C˚n
´2{p2`dq.

See Section 3.2 for the proof outline, and Appendix B for details. This lower
bound on the rate indicates that imposing invertibility on the true function
does not improve estimation efficiency in the minimax sense. This is because
the lower rate n´2{p2`dq is identical to the rate for estimating (non-invertible)
Lipschitz functions (see Tsybakov (2008)). Although set FL

INV is smaller than a
set of Lipschitz functions, we find that the estimation difficulty is equivalent in
this sense.

We also derive a lower bound for an inverse risk based on the above results.
By the relation (6), the following result holds without proof:

Corollary 5. Let ψ P Ψ. For d “ 2, there exists C˚ ą 0 such that we have

inf
f̄n

sup
f˚PFL

INV

RINVpf̄n,f˚q ě C˚n
´2{p2`dq.

This result implies that the efficiency of estimators preserving invertibility,
such as normalizing flow, coincides with that of the estimation without invert-
ibility in this sense.

Moreover, we also develop a lower bound on the L2-risk for the inverse func-
tions: we obtain the following theorem:

Theorem 6. For d “ 2, there exists C˚ ą 0 such that we have

inf
f̄n

sup
f˚PFL

INV

R;

INVpf̄n,f˚q ě C˚n
´2{p2`dq.

This result is simply obtained by leveraging the bi-Lipschitz property of f˚

and the result of Theorem 4. Given that this rate corresponds to the mini-
max rate of estimation error for Lipschitz continuous functions, this result also
shows that the invertible property does not improve the rate as in the previous
example.

3.2. Proof Outline: Construction of Subset of FL
INV

Applying an information-theoretic approach to the subset FL
INV constructed

below proves Theorem 4. The important technical point is to use the level-set
representation developed in Section 2 to guarantee the invertibility of functions
in FL

INV.
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We first define a set of functions Ξ2
k for k P t1, 2u as follows. Let m P N and

let M ą 2m. Using a hyperpyramid-type basis function Φ : R2 Ñ r0, 1s

Φpxq “
#

min
rxPBI2 }x´ rx}2 px P I2q

0 pOtherwise.q
,

and grid points tj :“ ´1` 2j´1
m P I (j “ 1, 2, . . . ,m), we define the bi-Lipschitz

function as

χθpxq “
m
ÿ

j1“1

m
ÿ

j2“1

θj1,j2
M

Φ pm px1 ´ tj1q ,m px2 ´ tj2qq : I2
Ñ r0, 1{M s,

parameterized by a binary matrix θ “ pθj1,j2q P Θb2
m (Θm :“ t0, 1um). Using

the function χθ, we define a function class:

Ξ2
k :“

�

ξθ : I2
Ñ I | ξθpxq “ xk ` χθpxq, θ P Θb2

m

(

, (7)

for k P t1, 2u. See Figure 3(a) for an illustration of the function ξθ P Ξ2
k. Using

the function set Ξ2
k defined in (7), we define the function class as

FptΞ2
kukq :“

�

f “ pf1, f2q : I2
Ñ I2

| fk P Ξ2
k, k “ 1, 2

(

.

(a) ξθpx1, x2q “ x1 ` χθpx1, x2q for k “

1,m “ 3,M “ 6. The entries in matrix
θ P t0, 1u

3ˆ3 are θ1,2 “ θ2,3 “ θ3,1 “

θ3,3 “ 1, and 0 otherwise.

(b) Level-sets Lf1 and Lf2 in I2. Their
slopes are restricted so that the inter-
section is unique; hence, invertibility is
guaranteed.

Fig 3: Construction of subset of FL
INV

We state the invertibility of f P FptΞ2
kukq by the level-set representation in

Proposition 2. That is, using the fact that a function fkpxq “ xk`χθpxq P Ξ2
k is

piecewise linear, its level-set Lfkpykq is also piecewise linear with small slopes.
Then, we can prove the uniqueness of the level-set representation f :

pxq, which
indicates the invertibility of f (see Figure 3(b)). We summarize the result as
follows.

Proposition 7. FptΞ2
kukq Ă FL

INV.
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4. Upper Bound Analysis

This section derives an upper bound of the minimax inverse risk, by developing
an estimator pfn which is almost everywhere invertible in the asymptotic sense.
We first present the upper bound, and subsequently, describe the developed
estimator.

4.1. Minimax Upper Bound of the Inverse Risk

Using our developed estimator, we obtain the following upper bound on an
inverse risk:

Theorem 8. Let ψpzq “ z4. Consider d “ 2. Suppose f˚ P FL
INV and Assump-

tion 1 hold. Then, for any β ą 0, there exists C˚ P p0,8q such that

RINVppfn,f˚q ď C˚n
´2{p2`dq

plognq2α`2β,

holds for any sufficiently large n.

See Appendix D for the proof. This result is consistent with the lower bound
of the inverse minimax in Theorem 4 up to logarithmic factors. We immediately
obtain the following result:

Corollary 9. Let ψpzq “ z4. Consider the setting in Theorem 8. Then, for any
β ą 0, there exists C P p0,8q such that

inf
f̄n

sup
f˚PFL

INV

RINVpf̄n,f˚q ď Cn´2{p2`dq
plognq2α`2β

holds for any sufficiently large n.

With this result, we achieve a tight evaluation of the minimax inverse risk in
case d “ 2. This result implies that the difficulty of estimating invertible func-
tions is similar to the case without invertibility, and that there are estimators
that achieve the same rate up to logarithmic factors.

The penalty function ψpzq “ z4 can be replaced to ψpzq “ z2, by considering
a function class FLpLq “ tf : I2 Ñ I2 | f ,f´1 is L-Lipschitzu with L “ 21{4 «
1.19.

Proposition 10. Let ψpzq “ z2. Consider the setting in Theorem 8. Then, for
any β ą 0, there exists C P p0,8q such that

inf
f̄n

sup
f˚PFL

INVXFLp21{4q

RINVpf̄n,f˚q ď Cn´2{p2`dq
plognq2α`2β

holds for any sufficiently large n.

Next, we mention the immediate consequence of the above results. Consider-
ing the inequality Q;

INVp
pfn,f˚q ď QINVppfn,f˚q with ψpzq “ z2, Proposition 10

leads to the following upper-bound without proof:
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Proposition 11. Consider the setting in Theorem 8. Then, for any β ą 0,
there exists C P p0,8q such that

inf
f̄n

sup
f˚PFL

INVXFLp21{4q

R;

INVp
pfn,f˚q ď Cn´2{p2`dq

plognq2α`2β

holds for any sufficiently large n.

This constraint by L “ 21{4 « 1.19 is essential and difficult to improve
to larger constants. This is necessary so that the quadrilateral, which is a
transformed small square in the domain I2 by f˚, does not become patho-
logical with twists. As shown in Remark 29 in Apppendix D.4: even in the case
L “

?
2 « 1.41, there can be a pathological example that prohibits proving the

minimax optimality with ψpzq “ z2.

4.2. Idea and Preparation for Invertible Estimator

We describe the developed invertible estimator, that attains the above upper-
bound. The estimator is made by partitioning the domain I2 and the range I2

respectively, and combining local bijective maps between pieces of the partitions.
To develop the partitions and bijective maps, we develop (i) a coherent rotation
for f˚ and (ii) two types of partitions of I2 by squares and quadrilaterals. In
this section, we introduce these techniques in preparation.

4.2.1. Coherent Rotation

First, we introduce an invertible function g˚ : I2 Ñ I2 whose endpoint level-
sets correspond to endpoints of I2, that is, g˚p˘1, Iq “ p˘1, Iq and g˚pI,˘1q “
pI,˘1q hold. Such g˚ is utilized to define a partition of I2 using quadrilaterals.
See Figure 4 for illustration. To the aim, we define a bi-Lipschitz invertible
function ρ : I2 Ñ I2 for rotation, then obtain g˚ as follows:

Lemma 12. For every f˚ P FL
INV, there exists an invertible map ρ P FL

INV
depending on f˚, such that an invertible function

g˚ “ pg1, g2q :“ ρ ˝ f˚ P FL
INV (8)

satisfies g˚p˘1, Iq “ p˘1, Iq and g˚pI,˘1q “ pI,˘1q.

We refer to ρ as a coherent rotation. We provide a specific form of ρ in
Appendix C.2, and the proof of Lemma 12 is shown in Appendix C.3.

4.2.2. Two Partitions of I2

We develop two types of partitions of I2, in order to construct local bijective
maps between pieces of the partitions, then combine them to develop an invert-
ible function.
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Fig 4: (Left) Level-sets of g˚ “ ρ ˝ f˚, whose endpoints are aligned with a
square I2 by the coherent rotation. (Right) Partition of I2 into quadrilaterals.
Since the endpoint level-set of g˚ is aligned to the endpoint of I2, the partition
is well-defined.

Fig 5: Two partitions of I2. The left I2 is partitioned into squares �, and the
right I2 into quadrilaterals ♦. ♦ is defined by the vertices tx1,x2,x3,x4u of �
mapped by g˚.

The first partition is defined by grids in I2. We consider a set of grids pI2 :“
t0,˘1{t,˘2{t, . . . ,˘pt´ 1q{t,˘1u (t P N), then consider a square by the grids

� :“ rτ1{t, pτ1 ` 1q{ts ˆ rτ2{t, pτ2 ` 1q{ts Ă I2,

for each τ1, τ2 P t´t,´t` 1, ...,´1, 0, 1, ..., t´ 2, t´ 1u.
For each �, we choose four points νp�q :“ tx1,x2,x3,x4u Ă pI2 such that

they are vertices of �, and starting from the x1 closest to p1, 1q, we set the other
vertices by a clockwise-path x1 Ñ x2 Ñ x3 Ñ x4 along with a boundary of �.
A set of � forms a straightforward partition of I2.

The second partition is developed by the first partition and g˚. Intuitively,
using the level-set representation g˚pxq “ g˚px1, Iq X g˚pI, x2q in (5) and
g˚p˘1, Iq “ p˘1, Iq, g˚pI,˘1q “ pI,˘1q in Lemma 12, we consider quadri-
laterals in I2 generated by tg˚px1, Iqux1 and tg˚pI, x2qux2 as shown in Figure 4
(right). Formally, we define a quadrilateral ♦ corresponding to � from the first
partition as

♦ :“ quadrilateral whose vertices are g˚pνp�qq.
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Figure 5 (right) illustrates the quadrilaterals. A set of ♦ works as a partition of
I2, if the quadrilaterals are not twisted (see Remark 13). Also, ♦ plays a role of
approximation of g˚p�q Ă I2.

Remark 13 (Twist of quadrilaterals ♦). If ♦ is twisted as Figure 6 (left), the
partition is not well-defined. However, when the grids for � is sufficiently fine,
i.e. t is sufficiently large, the twisted quadrilaterals vanish in the sense of the
Lebesgue measure (see Figure 6 (right)). Since we will consider t Ñ 8 as n
increases when developing an estimator, an effect of the twisted quadrilaterals
are asymptotically ignored in the result of estimation. Hence, we assume that
there is no twist to simplify the discussion. We provide details of the twist in
Appendix D.5.

Fig 6: The twisted quadrilateral in I2 (the green region in the left) disappears
as the partition by squares become finer (the yellow quadrilateral in the right).
The yellow and blue curves are level-sets by g˚. As t increases, the twists vanish
or become negligibly small.

Using the partitions, we can develop an invertible approximator for g˚. For
each � and its corresponding ♦, we can easily find a local bijective map g

�
: �Ñ

♦ (its explicit construction will be provided in Section D.3). Then, we combine
them and define an invertible function g:

˚ : I2 Ñ I2 as g:
˚pxq :“ g

�x
pxq, where

�x is a square ˝ containing x. Since the partitions satisfy Yi�i “ Yi♦i “ I2,
g:

˚ is invertible. Furthermore, g:
˚ converges to g˚ as t increases to infinity. In

the following section, we develop an invertible estimator through estimation of
ρ and g:

˚.

4.3. Invertible Estimator

We develop an invertible estimator pfn by the following two steps: (i) we develop
estimators pρn for ρ and pg:

n for g:
˚, by using a pilot estimator pf

p1q

n (e.g., kernel
smoother) which is not necessarily invertible but consistent, and (ii) we define
the developed estimator as pfn :“ pρ´1

n ˝ pg:
n. In preparation, we first introduce

the following assumption on the pilot estimator:
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Assumption 1. There exists an estimator pf
p1q

n : I2 Ñ I2 and C ą 0 such that

P

ˆ

~pf
p1q

n ´ f˚~L8 ď Cpn´1{p2`dq
plognqαq

˙

ě 1´ δn

holds for sufficiently large n, with some α ą 0 and a sequence δn Œ 0 as nÑ8.

Several estimators are proved to satisfy this assumption, for example, using a
kernel method (Tsybakov (2008)), a nearest neighbour method (Devroye (1978);
Devroye et al. (1994)) and a Gaussian process method (Yoo and Ghosal (2016);
Yang et al. (2017)) with various α. In some cases, it is necessary to restrict
their ranges to I2 by clipping. Note that this assumption does not guarantee
invertibility of pf

p1q

n as follows:

Proposition 14. There exists an estimator pf
p1q

n satisfying Assumption 1 such
that QINVppf

p1q

n ,f˚q ą Dc ą 0 holds for some f˚ P FL
INV and any n P N.

Herein, we develop the invertible estimator pfn by leveraging the (not neces-
sarily invertible) pilot estimator pf

p1q

n as follows:

(i-a) Estimator for ρ: We develop the invertible estimator pρn for ρ, such that
pρnp

pf
p1q

n prxjqq « rxj for all vertices rx P t˘1uˆt˘1u of I2 (formal definition
of pρn is provided in Appendix C.4).

(i-b) Estimator for g˚: We define an estimator pgnpxq :“ Ppρnp
pf

p1q

n pxqq for
g˚, where P constrains pgnpxq to an edge of the range I2, when x is an
endpoint of the domain I2: P replaces ry1 in ry “ pry1, ry2q :“ ppρn ˝

pf
p1q

n qpxq
with ˘1 if x1 “ ˘1 and ry2 with ˘1 if x2 “ ˘1. This operator P is
necessary for making pgn to have a range I2. Note that pgn is not always
invertible.

(i-c) Invertible estimator for g:
˚: We develop an invertible estimator pg:

n

for g:
˚ by estimating the partition ♦ using pgn. For x P I2, let � “ �x

be a square containing x and νp�q “ tx1,x2,x3,x4u be a set of its
vertices, and we estimate its corresponding quadrilateral ♦ by its estimator
p♦ using pgnpνp�qq. Then, we develop a bijective map between � and p♦.
Let s :“ px1 ` x2 ` x3 ` x4q{4 P I2 and suppose x1,x2 are the two
closest vertices from x. As there exists a unique pα1, α2q P r0, 1s2 satisfying
α1 ` α2 ď 1 and x “ s` α1tx1 ´ su ` α2tx2 ´ su, we define an estimator
pg:
n for g:

˚ on p♦ by a triangle interpolation:

pg:
npxq :“ pgnpsq ` α1

tpgnpx
1
q ´ pgnpsqu ` α2

tpgnpx
2
q ´ pgnpsqu (9)

if the quadrilateral p♦ is not twisted. pg:
n is bijective within each pair of �

and p♦, hence it is therefore invertible. See Figure 7 for illustration. Note
that, the quadrilateral p♦ can be twisted: for the twisted quadrilateral (as
an exceptional case), we define pg:

npxq :“ pgnpx
1q.
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Fig 7: Triangle interpolation pg:
npxq :“ pgnpsq`α1tpgnpx

1q´pgnpsqu`α2tpgnpx
2q´

pgnpsqu for x “ s` α1tx1 ´ su ` α2tx2 ´ su.

(ii) Invertible estimator for f˚: We define the estimator for f˚ as

pfn :“ pρ´1
n ˝ pg:

n.

Since pρn and pg:
n are invertible, the invertibility of pfn is assured.

4.4. Numerical Demonstration of the Developed Estimator:

We experimentally demonstrate the developed estimator pfn. We set a true func-
tion

f˚pxq :“ vp}ωpxq}
| sinpϑpωpxqqq|

2 , ϑpωpxqqq P FL
INV

where the functions ω, ϑ,v are defined in Appendix C.1. We generated n “ 104

covariates xi
i.i.d.
„ UpI2q and outcomes yi

i.i.d.
„ Npf˚pxiq, σ

2I2q, and conduct the
above estimation procedure with σ2 P t10´3, 10´1u. Especially, we employed k-
nearest neighbor regression (k “ 10, clipped to restrict the range to I2) for the
pilot estimator pf

p1q

n . We note that we use bi-linear interpolation for calculating
pg:
n, which coincides with the triangle interpolation (9) in this setting.
We plot the heatmaps of f˚ “ pf˚,1, f˚,2q and pfn “ p

pfn,1, pfn,2q for t P t1, 3, 5u
and σ2 “ 10´3 in Figure 8. We can see that pfn approaches f˚ as t increases.
We further plot the heatmaps of f˚,1, pf

p1q

n,1, pgn,1, pg
:

n,1 and pfn,1 with t “ 3 and
σ2 P t10´3, 10´1u, in Figure 9. We can verify that (i) pgn,1 and pg:

n,1 have level-
sets aligned to the endpoints of I2, and (ii) pg:

n,1 and pfn,1 have level-sets with
fewer slopes than those of pf

p1q

n,1 and pgn,1, which is suitable for invertibility.
R source codes to reproduce the experimental results are provided in https://

github.com/oknakfm/NPIR.

https://github.com/oknakfm/NPIR
https://github.com/oknakfm/NPIR
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Fig 8: Heatmap of the true function f˚ “ pf˚,1, f˚,2q and its invertible estimator
pfn “ p

pfn,1, pfn,2q with t “ 1, 3, 5.

Fig 9: (a,f) True function f˚,1, (b,g) pilot estimator pf
p1q

n,1, (c,h) estimator pgn,1
transformed by a coherent rotation, (d,i) invertible estimator pgn,1 using biniliear
interpolation, and (e,j) invertible estimator pfn,1. The upper row is σ2 “ 10´3

and the lower row is σ2 “ 10´1.

5. Conclusions and Future Research Directions

We studied the nonparametric planer invertible regression, which estimates in-
vertible and bi-Lipschitz function f˚ P FL

INV between a closed square r´1, 1s2.
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For d “ 2, we defined inverse risk to evaluate the invertible estimators pfn: the
minimax rate is lower bounded by n´2{p2`dq. We developed an invertible estima-
tor, which attains the lower bound up to logarithmic factors. This result implies
that the estimation of invertible functions is as difficult as the estimation of
non-invertible functions in the minimax sense. For this evaluation, we employed
output-wise level-sets Lfj pyq :“ tx P I2 | fjpxq “ yu of the invertible func-
tion f “ pf1, f2q, as their intersection Lf1py1q X Lf2py2q identifies the inverse
f´1

pyq. We identified some important properties of the level-set Lfj . This study
is the first step towards understanding the multidimensional invertible function
estimation problem.

However, there remain unsolved problems. For example,

(i) We developed an invertible estimator only for a restricted case, d “ 2.
A natural direction would be to extend our estimator and the minimax
upper bound of the inverse risk to the general d ě 3. However, theoretical
extension to general d ě 3 seems not straightforward by the following two
reasons: (i) coherent rotation, which is used to align the endpoints in our
estimator, cannot be defined even for d “ 3 and (ii) Donaldson and Sullivan
(1989) proved that bi-Lipschitz homeomorphisms cannot be approximated
by even piecewise Affine functions for d “ 4. Some additional assumptions
seem needed. Another ongoing work of ours studies the case d P N, by
additionally imposing C2 smoothness on f˚ to eliminate the pathological
cases.

(ii) The discussions in this paper mostly rely on (a) the existence of the bound-
ary and (b) the simple connectivity of set r´1, 1s2. It would be worthwhile
to generalize our discussion to different types of domains, such as the open
multidimensional unit cube p´1, 1q2 (e.g., Kawamura (1979) and Pourciau
(1988) for a characterization of nonsmooth invertible mappings between
R2, where, R2 and p´1, 1q2 are homeomorphic) and some sets with dif-
ferent torus (see, Hatcher (2002) for the gentle introduction to torus, and
Rezende et al. (2020) for normalizing flow on tri and sphere surface).

(iii) It is an important attempt to relax the bi-Lipschitz continuity setting. In
particular, omitting the restriction of lower-Lipschitz property is impor-
tant. If we omit the restriction, we can handle a wider class of functions
such as polynomials.

(iv) Whereas the minimax rate is obtained for a supervised regression prob-
lem, one of the main applications of the multidimensional invertible func-
tion estimation is density estimation, which implicitly trains the invertible
function in an unsupervised manner. An interesting direction would be to
extend the minimax rate to an unsupervised setting.

Appendix A: Supporting Lemmas

Lemma 15. Let f : I2 Ñ I2 be an invertible function and let L ą 0. The
following statements are equivalent:

(i) }f´1
pyq ´ f´1

py1q}2 ď L}y ´ y1}2 for any y,y1 P I2,
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(ii) L´1}x´ x1}2 ď }fpxq ´ fpx1q}2 for any x,x1 P I2.

Proof of Lemma 15. For any x,x1 P I2, substituting y :“ fpxq,y1 :“ fpx1q to
(i) yields the inequality (ii). Conversely, substituting x :“ f´1

pyq,x1 :“ f´1
py1q

to (ii) yields (i).

Lemma 15 immediately proves the following Lemma 16.

Lemma 16. Let f : I2 Ñ I2 be an invertible function. Both f ,f´1 are
Lipschitz if and only if f is bi-Lipschitz, i.e., there exists L ě 1 such that
L´1}x´ x1}2 ď }fpxq ´ fpx1q}2 ď L}x´ x1}2.

Lemma 17. It holds for f P FL
INV that dHaus.pLfj pyq, Lfj py

1qq ď C|y ´ y1|

py, y1 P I; j “ 1, 2q, for some C P p0,8q.

Proof of Lemma 17. Considering the representation in Lemma 3, the Lipschitz
property of f´1 proved in Lemma 15 leads to

dHaus.pLf1pyq, Lf1py
1
qq ď 2 sup

αPI
}f´1

py, αq ´ f´1
py1, αq}2 ď C|y ´ y1

|

for some C P p0,8q, and dHaus.pLf2pyq, Lf2py
1qq ď C|y ´ y1| is proved in the

same way.

Lemma 18. Let X,Y Ă R
2 be non-empty closed topological spaces and let

f : X Ñ Y be a homeomorphism, i.e., invertible and continuous function.
Then, fpBXq “ BY .

Proof of Lemma 18. As it suffices to prove that fpIntXq “ IntY with IntX :“
XzBX, (i) we first prove that fpIntXq Ă IntY . Taking any x P fpIntXq, we have
f´1

pxq P IntX, i.e., f´1
pxq P U Ă X for some open-neighbourhood U of x.

Applying f yields x P fpUq Ă fpXq “ Y . As f is continuous, fpUq is also open
neighbourhood of x: we have x P IntY , indicating that fpIntXq Ă IntY . (ii) We
next prove that IntY Ă fpIntXq. Take y P IntY , i.e., y P V Ă Y for some open-
neighbourhood V of y. Applying f´1 yields f´1

pyq P f´1
pV q Ă f´1

pY q “ X,
indicating that f´1

pyq P IntX. Thus applying f proves y P fpIntXq, and we
have IntY Ă fpIntXq.

Appendix B: Proofs for Lower Bound Analysis

B.1. Preliminaries

Lemma 19. Fix any k P t1, 2u, x� P I, � P t1, 2uztku and ξθ P Ξ2
k “ p7q. The

following hold for rξθpxkq :“ ξθpxq:

(i) rξθ is strictly increasing in xk, i.e., rξθpxkq ă
rξθpx

1
kq for any ´1 ď xk ă x1

k ď

1, and
(ii) rξθ is surjective from I to I.

Proof of Lemma 19. We prove (i) and (ii) as follows.
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(i) We prove that a continuous function rχθpxkq “ χθpxk, x�q is piecewise
linear whose slopes are greater than ´1, as it immediately proves the
strict monotonicity of rξθpxkq “ xk ` rχθpxkq.
Let j P rms and let j˚

� P rms be a minimum index satisfying |x� ´ tj˚
�
| ď

1{m, for l P t1, 2uztku. Recall the function Φpxq defined in Section 3.2.
Consider a function

φjpxkq :“ Φ
`

mpxk ´ tjq,mpx� ´ tj˚
�
q
˘

with a constant rφ :“ φjptjq “ Φ
´

0,mpx� ´ tj˚
�
q

¯

,

and split I into Ij :“ rrtj´1,rtjq (j “ 1, 2, . . . ,m ´ 1) and Im :“ rrtm´1, 1s
with rtj :“ ´1 ` 2j{m; an explicit formula of this function φj : I Ñ r0, 1s
is

φjpxkq “

$

’

’

’

&

’

’

’

%

mpxk ´ rtj´1q pxk P rrtj´1, rtj´1 ` rφ{mq
rφ pxk P rrtj´1 ` rφ{m, rtj ´ rφ{mqq

mprtj ´ xkq pxk P rrtj ´ rφ{m, rtjqq

0 pOtherwise.q

.

By the definition of the function Φ, we have

rχθpxkq “

m
ÿ

j“1

θj,j˚
�

M
φjpxkq (10)

is piecewise linear with slopes m{M, 0,´m{M . Recalling that M ą 2m
and θj1,j2 P t0, 1u, the slope of rχθ is greater than ´1 (and is less than 1).
The assertion (i) is proved.

(ii) The explicit formula (10) yields rξθp´1q “ ´1 and rξθp1q “ 1, and the
strict monotonicity (shown in (i)) proves that rξθ : I Ñ I is surjective. The
assertion (ii) is proved.

Lemma 20 (Varshamov–Gilbert bound; Lemma 2.9 in Tsybakov (2008)). Let
m ě 8 and θp0q “ p0, 0, ..., 0q P Θm. Then, there exists tθp0q, ..., θpMqu Ă Θm

such that M ě 2m{8 and Hpθpjq, θpkqq ě m{8 for any 0 ď j ‰ k ďM .

Lemma 21 (Theorem 2.5 in Tsybakov (2008)). Let F be a set of functions
from Rd to R, and tf0, f1, ..., fMu Ă F be its subset of size M ` 1 ě 3. Let Pj

be a probability measure indexed by fj P F , and suppose that Pj , j “ 1, ...,M
are absolutely continuous with respect to P0. Then, we have

inf
pfn

sup
fPF

P

´

} pfn ´ f}2L2 ě α
¯

ě

?
M

1`
?
M

˜

1´ 2β ´

d

2β
logM

¸

,

where α “ minj‰k }fj ´ fk}
2
L2{2 ą 0 and β “ pM logMq´1 řM

j“1 KLpPj , P0q P
p0, 1{8q. The infimum is taken over all estimators which depend on the n obser-
vations.
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B.2. Proof of Proposition 7

As the bi-Lipschitz property is straightforwardly proved, we describe the invert-
ibility of f “ pf1, f2q P FptΞ2

kukq in this proof. Considering Propositon 2, f is
invertible if and only if its level-set representation

f :
pyq “

2
č

j“1
Lfj pyjq

shown in (4) is a unique point for every y “ py1, y2q P I2. Therefore, in this
proof, it is sufficient to prove the uniqueness of f :.

We first examine the level-set Lf1py1q. Using a function ιpxq :“ x1 and θ P
Θb2

m such that f1 “ ξθ “ ι` χθ P Ξ2
1, we have

Lf1py1q “
ď

y1
1`y2

1“y1

`

Lιpy
1
1q X Lχθ

py2
1q
˘

“
ď

y1
1Pr0,1{Ms

`

Lιpy1 ´ y1
1q X Lχθ

py1
1q
˘

where the last equality follows from χθpxq P r0, 1{M s. Considering Lιpyq “
tpy, x2q | x2 P Iu and the surjectivity of the functions χθ proved in Lemma 19,
the level-set Lf1py1q should be formed as Figure 10(a). The level-set is piecewise
linear, and the slopes (along with the axis 2) take values within p´1, 1q due to
the assumption M ą 2m.

Similarly, we obtain the level-set Lf2py2q. See Figure 10(b); two level-sets
Lf1py1q, Lf2py2q have at least one intersection point, which we write as rx P I2.
Consider two lines with slopes ˘1 crossing at rx, shown as black dot lines in
Figure 10(b). As slopes of two level-sets Lf1py1q, Lf2py2q take values within
p´1, 1q (along with axes 2, 1, respectively), they belong to each region divided
by the two dot lines, meaning that the intersection Lf1py1q XLf2py2q is unique,
i.e., the function f “ pf1, f2q is invertible.

(a) Level-set Lf1py1q, which is piecewise
linear and its maximum slope is 2m{M
(along with the axis 2).

(b) Intersection of the level-sets Lf1py1q,
Lf2py2q is a unique point.

Fig 10: Level-sets Lf1 , Lf2 .



376 A. Okuno and M. Imaizumi

B.3. Proof of Theorem 4

This proof consists of the following two steps: (step 1) we define an induced set
rΞ2
k Ă Ξ2

k and a function set FptrΞ2
kukq Ă FL

INV, and (step 2) we apply Lemma 21
to this (sufficiently complex) function set FptrΞ2

kukq.

Step 1: Define FptrΞ2
kukq, a sufficiently complex subset of FL

INV. We
define an induced subset of the function class FptΞ2

kukq. Using the Hamming
distance Hpθ, θ1q “

řm
j1,j2“1 1tθj1,j2 ‰ θ1

j1,j2
u defined for θ, θ1 P Θb2

m , Lemma 20
proves the existence of T Ă Θb2

m such that |T | ě m{8 and minθ‰θ1PT Hpθ, θ1q ě

2m{8. We define an induced function set

rΞ2
k :“ tξθpxq :“ xk ` χθpxq : I2

Ñ I | θ P T u Ă Ξ2
k,

where the definition of Fp¨q and Lemma 7 prove

FptrΞ2
kukq Ă FptΞ2

kukq Ă FL
INV, (11)

indicating the invertibility of the functions f P FptrΞ2
kukq.

For any different functions ξθ, ξθ1 P rΞ2
k, there exists c1 P p0, 1q such that we

obtain

}ξθ ´ ξθ1}
2
L2 ě c1}θ ´ θ1

}1m
´2m´2

ě c1m
´2. (12)

Hence, we obtain α in Lemma 21 (used in the next step) bounded below by
m´1.

Step 2: Apply information-theoretic approach. Finally, we develop a
set of invertible functions. In this step, Pj P P denotes a joint distribution of
Dn associated to the probabilistic model (1), equipped with the corresponding
f˚ “ f j .

Considering the inclusion relation FptrΞ2
kukq Ă FL

INV shown in (11), we have

inf
f̄n

sup
fPFL

INV

~f̄n ´ f~2
L2pPXq ě inf

f̄n

sup
fPFptrΞ2

kukq

~f̄n ´ f~2
L2pPXq.

By this form, it is sufficient to study a minimax rate with FptrΞ2
kukq.

We apply the discussion for minimax analysis introduced in Tsybakov (2008),
which is displayed as Lemma 21. We check the conditions of Lemma 21 one by
one. First, we check that |FptrΞ2

kukq| ě pm
2{144q2. Second, we consider different

f “ pf1, f2q,f
1
“ pf 1

1, f
1
2q P FptrΞ2

kukq such that for some k P t1, 2u, fk “ ξθk for
f 1
k “ ξθ1

k
with θk, θ

1
k P

rΞ2
k and Hpθk, θ

1
kq “ 1, and fk1 “ f 1

k1 for all k1 P t1, 2uztku.
Let PXk

be a marginal measure of a k-th element of X „ PX . Then, we obtain

~f ´ f 1
~

2
L2pPXq ě }fk ´ f 1

k}
2
L2pPXk

q ě c2m
´2,
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by (12) with some constant c2 ą 0. Here, the setting of the non-zero bounded
density of PX assures the existence of c2. Third, we apply an equation (2.36) in
Tsybakov (2008) which yields

KLpPj , P0q ď c3dnm
´2d´2

which does not diverge when we set m “ n1{p2`dq. Hence, we set m “ n1{p2`dq;
there exists C˚ ą 0 such that, with a probability larger than 1{2, we obtain

inf
f̄n

sup
f˚PFL

INV

Qpf̄n,f˚q ě C˚n
´2{p2`dq.

Finally, we apply the discussion of the minimax probability, which is described in
(2.5) of Tsybakov (2008). Since Markov’s inequality gives that the risk Rpf̄n,f˚q

is bounded below by C´1
˚ n´2{p2`dq PrpQpf̄n,f˚q ě C˚n

´2{p2`dqq, we obtain the
minimax lower bound of Rpf̄n,f˚q in the statement.

B.4. Proof of Theorem 6

As f˚ is bi-Lipschitz, for any point y P Ωppfnq :“ ty P I2 : pfn is invertible at yu,
we have an inequality

}pf
;

npyq ´ f´1
˚ pyq}2 “ }pf

;

np
pfnpxqq ´ f´1

˚ ppfnpxqq}2

“ }f´1
˚ pf˚pxqq ´ f´1

˚ ppfnpxqq}2

ě L´1
}f˚pxq ´

pfnpxq}2,

where x “ pf
;

npyq. Hence, we have

Q;

INVp
pfn,f˚q “ ~

pf
;

n ´ f´1
˚ ~L2pPXq ě cL´1

}pfn ´ f˚}L2pPXq

with some constant c P p0, 1q. By Daneri and Pratelli (2014), it can be shown
that the Lebesgue measure of the non-invertible region LpI2zΩppfnqq converges
to 0. Therefore, the assertion is proved by following the proof of Theorem 4.

Appendix C: Coherent Rotation

C.1. Additional Symbol and Notation

We define several functions and vectors with fixed f P FL
INV. Recall that D is a

unit ball in R
2.

We develop a correspondence between the unit ball D and the square I2 as
the domain, by using some invertible maps. We define a map ω : I2 Ñ D

2 as

ωpxq :“ }x}8

}x}2
x.
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Its inverse is explicitly written as

ω´1
pyq :“ }y}2

}y}8

y,

for y P D2. Let rx1 “ p1, 1q, rx2 “ p1,´1q, rx3 “ p´1,´1q, rx4 “ p´1, 1q P I2 be
the vertices of the square I2. For each of the vertices, its corresponding point
on D

2 is defined as rζj “ ωpfprxjqq P D
2 pj “ 1, 2, 3, 4q.

We also consider polar coordinates of elements in the unit ball D. For a radius
r P r0, 1s and an angle θ P r0, 2πq, vpr, θq :“ pr sin θ, r cos θq P D is a transform
from polar coordinate to the ordinary system. For convenience, we define �z�
denotes z1 P r0, 2πq satisfying z´ z1 “ 2πm for some m P Z, for any z P R. Also,
ϑpζq :“ �tθ | psin θ, cos θq “ ζ{}ζ}2u� outputs a r0, 2πq-valued angle between
vectors ζ P D2zt0u and e “ p0, 1q.

C.2. Coherent rotation ρ

For a function f˚ “ pf1, f2q P FL
INV, we define a coherent rotation ρ with

functions and vectors defined in Section C.1:

ρ :“ ω´1
˝R ˝ ω : I2

Ñ I2, (13)

where R : D2 Ñ D
2 will be defined in the latter half of this section.

In preparation, we consider angles that correspond to the vertices of I2 as

θj :“ �ϑprζjq ` θ:� P r0, 2πq pj “ 1, 2, 3, 4q,

where θ: is a fixed angle θ: :“ ��2π ´ ϑprζ1q� `
1
2�ϑprζ1q ´ ϑprζ4q�� P r0, 2πq for

normalization. The angles tθju4j“1 defined above satisfy 0 ă θ1 ă θ2 ă θ3 ă
θ4 ă 2π. Moreover, we define a strictly increasing function τ : r0, 2πs Ñ r0, 2πs
as

τpθq :“ π ¨

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1
4θ1 θ pθ P r0, θ1qq

1
2θ2´2θ1 θ `

θ2´3θ1
4θ2´4θ1 pθ P rθ1, θ2qq

1
2θ3´2θ2 θ `

3θ3´5θ2
4θ3´4θ2 pθ P rθ2, θ3qq

1
2θ4´2θ3 θ `

5θ4´7θ3
4θ4´4θ3 pθ P rθ3, θ4qq

1
8π´4θ4 θ `

7π´4θ4
4π´2θ4 pθ P rθ4, 2πsq

.

τ is a piecewise linear function which connects the angles tθju4j“1 defined above
(shown in Figure 11).

Using the notions, we define the function R : D2 Ñ D
2 as

Rpζq :“
#

v
`

}ζ}2 , τp�ϑpζq ` θ:�q
˘

pζ ‰ 0q
0 pζ “ 0q

. (14)
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Fig 11: Strictly increasing and piecewise linear τ : r0, 2πs Ñ r0, 2πs.

Fig 12: The effect of the coherent rotation ρ :“ ω´1 ˝R˝ω : I2 Ñ I2. ω converts
the point in the square I2 to the unit ball D. R rotates the points in D to arrange
tθju

4
j“1 equally spaced on the circle.

R has a role for rotating the points on the unit ball to make the points tθju4j“1
equally spaced on the boundary of D. Figure 12 shows the illustration of ρ
including the role of R.

Lemma 22 below proves the invertibility and the bi-Lipschitz property of the
function ρ. By the fact, we can define g˚ :“ ρ ˝ f˚ P FL

INV.

Lemma 22. ρ P FL
INV.

Proof of Lemma 22. ω is invertible from the definition, and ω, ω´1 are Lipschitz
as their directional derivatives are bounded on the compact set I2. As R is
invertible from the definition, it suffices to show the bi-Lipschitz property of R.

If ζ “ 0, }Rpζq´Rpζ1
q}2 “ }Rpζ

1
q}2 “ }ζ

1
}2 “ }ζ´ζ1

}2. Therefore, we herein
prove the Lipschitz property of R for ζ, ζ1

P D2zt0u. Without loss of generality,
we assume that π{2 ď rθ :“ ϑpζq ` θ: ă rθ1 :“ ϑpζ1

q ` θ: ď 3π{2, indicating that
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0 ď τprθq ă τprθ1q ď 2π.
We first consider a case |τprθq ´ τprθ1q| ě π. Define a function dpu, v; θq :“

tu2`v2´2uv cos θu1{2 (u, v ě 0, θ P R), which outputs }ζ´ζ1
}2 for two vectors

ζ “ vpu, 0q, ζ1
“ vpv, θq. Let Lτ ą 1 be a Lipschitz constant of the bi-Lipschitz

function τ , where we obtain |rθ´ rθ1| ą L´1
τ π, and let LR :“ 1

1´cospL´1
τ πq

: we have

}Rpζq ´Rpζ1
q}2 ď }ζ}2 ` }ζ

1
}2 ď LRdp}ζ}2, }ζ

1
}2;L´1

τ πq

ď LRdp}ζ}2, }ζ
1
}2; |rθ ´ rθ1

|q “ LR}ζ ´ ζ1
}2.

For the remaining case |τprθq ´ τprθ1q| ă π, the Lipschitz property of τ proves
|τprθq ´ τprθ1q| ď Lτ |

rθ ´ rθ1|, whereby we have

}Rpζq ´Rpζ1
q}2 “ dp}ζ}2, }ζ

1
}2; |τpζq ´ τpζ1

q|q ď dp}ζ}2, }ζ
1
}2;Lτ |ζ ´ ζ1

|q

ď Lτdp}ζ}2, }ζ
1
}2; |ζ ´ ζ1

|q “ Lτ }ζ ´ ζ1
}2.

By replacing τ with τ´1, we can prove the Lipschitz property of R´1 in the
same way, thus both ρ “ ω´1 ˝ R ˝ ω,ρ´1 “ ω´1 ˝ R´1 ˝ ω are Lipschitz.
Lemma 15 proves the bi-Lipschitz property of ρ, which indicates the assertion
ρ P FL

INV.

C.3. Proof of Lemma 12

Using τ , the function R : D2 Ñ D
2 defined in (14) is designed to rotate vectors

in D
2 such that

ϑpRprζjqq “ τp�ϑprζjq ` θ:�q “ τpθjq “
p2j ´ 1qπ

4 “ ϑpωprxjqq pj “ 1, 2, 3, 4q.

Considering }Rprζjq}2 “ }
rζj}2 “ 1 “ }ωprxjq}2, we have

Rpωpfprxjqqq “ Rprζjq “ ωprxjq,

which indicates that

gprxjq “ pρ ˝ fqprxjq “ ω´1
pRpωpf˚prxjqqq
looooooomooooooon

“ωprxjq

q “ rxj (15)

for j “ 1, 2, 3, 4. The identity (15) together with Lemma 18 and Lemma 22
proves Lemma 12, which is also illustrated in Figure 12.

C.4. Estimator pρn for ρ

We obtain estimators pθ:
n,
pθn,j , pτn, pRn for θ:, θj , τ, R by substituting pζj :“ pf

p1q

n prxjq

to rζj . Then, we develop an estimator for ρ and its inverse ρ´1 by

pρn :“ ω´1
˝ pRn ˝ ω, and pρ´1

n :“ ω´1
˝ pR´1

n ˝ ω,
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where the inverse of pRn is

pR´1
n pζq “

#

vp}ζ}2, �pτ
´1
n pϑpζqq ´ pθn�q pζ ‰ 0q

0 pζ “ 0q
.

Note that we define pτ´1
n pζq :“ 0 if pτn is not invertible (where such event occurs

with probability approaching 0, nÑ8). This case yields that pR´1
n pζq “ 0 and

pρ´1
n pζq “ 0 for all ζ, hence pfnpxq “ 0 for all x P I2.

Appendix D: Proofs for Upper Bound Analysis

Throughout this section, suppose d “ 2 and Assumption 1 with some fixed
α ą 0, i.e.,

Pp~pf
p1q

n ´ f˚~L8 ď DCγnq ě 1´ δn, for γn :“ n´1{4
plognqα. (16)

Lτ , LR, Lω, Lg . . . denote Lipschitz constants of the functions τ,R, ω, g, . . ., re-
spectively. ttnunPN is a sequence defined as

rγn :“ plognqβγn, tn “ maxtt1 :“ 2m | t1
ď rγ´1

n ,m P Nu. (17)

Note that, tn is of order rγ´1
n and is the power of two: it indicates the mono-

tonicity of pIn, i.e., pIn Ă pIn1 for n ă n1.

In some proofs, we will employ a function g:
˚ defined as follows. For x P I2

and symbols x1,x2,x3,x4 P pI2, s P I2, α1, α2 P r0, 1s defined in Section 4.3 step
(i-c), we define

g:
˚pxq :“ g˚psq ` α1

tg˚px
1
q ´ g˚psqu ` α2

tg˚px
2
q ´ g˚psqu. (18)

D.1. Preliminaries

Lemma 23. Let A1,A2, . . . ,AJ be events such that PpAjq ě 1´ δj for j P rJs,
with a sequence tδjujPrJs Ă R. Then, PpA1 and A2 and ¨ ¨ ¨ and AJq ě 1 ´
řJ

j“1 δj .

Proof of Lemma 23. With the logical negation �, we have PpXjPrJsAjq “ 1 ´
PpYjPrJs�Ajq ě 1´

řJ
j“1 Pp�Ajq ě 1´

řJ
j“1 δj .

Lemma 24. Let tanun, tbnun, tcnun be random sequences and let tdnun, tδnun
be deterministic sequences. Assume the existence of Ca, Cb P p0,8q such that
Ppan ď Cadnq ě 1 ´ δn{2 and Ppbn ď Cbdnq ě 1 ´ δn{2. If cn ď an ` bn, then
Ppcn ď Ccdnq ě 1´ 2δn for Cc :“ Ca ` Cb.

Proof of Lemma 24. Lemma 23 proves Ppcn ď Ccdnq ě Ppan ď Cadn and bn ď
Cbdnq ě 1´ 2pδn{2q.
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Lemma 25. Let ζn,1, ζn,2 be D
2-valued random variables satisfying the follow-

ing conditions: with a sequence δn Œ 0, (i) Pp}ζn,j}2 ě 1{2q ě 1´δn{3pj “ 1, 2q,
(ii) Pp�ϑpζn,jq� ‰ 0q ě 1´ δn{3 pj “ 1, 2q, and (iii) there exists C P p0,8q such
that Pp}ζn,1 ´ ζn,2}8q ď Cγnq ě 1´ δn{3. Then,

P

´

|ϑpζn,1q ´ ϑpζn,2q| ď 2
?

2πCγn

¯

ě 1´ δn.

Proof of Lemma 25. Assume that }ζn,j}2 ě 1{2pj “ 1, 2q and let A :“
›

›

›

ζn,1
}ζn,1}2

´

ζn,2
}ζn,2}2

›

›

›

2
: then, �ϑpζn,1q´ϑpζn,2q� ď πA and A ă 2}ζn,1´ ζn,2}2 hold, indicat-

ing that

�ϑpζn,1q ´ ϑpζn,2q� ď 2π}ζn,1 ´ ζn,2}2 ď 2
?

2π}ζn,1 ´ ζn,2}8.

See Figure 13. Therefore, the assertion is proved by

P

´

|ϑpζn,1q ´ ϑpζn,2q| ď 2
?

2πCγn

¯

ě P
`

}ζn,j}2 ě 1{2, �ϑpζn,jq� ‰ 0, j “ 1, 2, }ζn,1 ´ ζn,2}8 ď Cγn
˘

Lemma 23
ě 1´ tδn{3` δn{3` δn{3u “ 1´ δn.

Fig 13: �ϑpζn,1q ´ ϑpζn,2q� is compatible with the blue arc of the unit ball D2,
whose chord length is A.

Proposition 26. There exist tCju
7
j“1 Ă p0,8q such that

(i) Pp~pτ´1
n ´ τ´1~L8 ď C1γnq ě 1´ δ1,n, Pp~pτn ´ τ~L8 ď C2γnq ě 1´ δ2,n,

(ii) Pp~ pRn ´R~L8 ď C3γnq ě 1´ δ3,n, Pp~ pR´1
n ´R~L8 ď C4γnq ě 1´ δ4,n,

(iii) Pp~pρn´ρ~L8 ď C5γnq ě 1´ δ5,n, Pp~pρ´1
n ´ρ´1~L8 ď C6γnq ě 1´ δ6,n,

(iv) Pp~pgn ´ g˚~L8 ď C7γnq ě 1´ δ7,n,

with sequences δj,n Œ 0 as nÑ8, j “ 1, 2, . . . , 7.

Proof of Proposition 26. In this proof, we first prove (i), and apply Lemma 24
sequentially to prove (ii)–(v). Throughout this proof, for each j P r7s, δ1

j,n, δ
2
j,n, . . .

denote sequences approaching 0 as n Ñ 8, and C 1
j , C

2
j P p0,8q denote some

constants.
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(i) Since Lemma 25 proves Pp|ϑppζn,jq ´ ϑprζjq| ď C 1
1γnq ě 1 ´ δ1

1,n (j “
1, 2, 3, 4), the Lipschitz property of the maps θ: and θ in ϑprζq yields

Pp|pθ:
n ´ θ:

| ď C2
1γnq ě 1´ δ2

1,n, and

P

ˆ

max
j“1,2,3,4

|pθn,j ´ θj | ď C3
1 γn

˙

ě 1´ δ3
1,n.

Further, since 0 ă θ1 ă θ2 ă θ3 ă θ4 ă 2π and the above convergence of
pθn,j to θj , we obtain

Pp0 ă �pθn,1`pθ:
n� ă �pθn,2`pθ:

n� ă �pθn,3`pθ:
n� ă �pθn,4`pθ:

n� ă 2π
loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

p‹q

q ě 1´δ4
1,n.

In situations where this inequality (‹) holds, pτn is invertible since it is
strictly monotone by its definition. When (‹) holds, we obtain

~pτ´1
n ´ τ´1

~L8 ď max
j“1,2,3,4

ˇ

ˇ

ˇ

ˇ

pτ´1
n

ˆ

2j ´ 1
4 π

˙

´ τ´1
ˆ

2j ´ 1
4 π

˙ˇ

ˇ

ˇ

ˇ

“ max
j“1,2,3,4

|pθn,j ´ θj |.

Hence, we obtain

Pp~pτ´1
n ´ τ´1

~L8 ď C1γnq ě P

ˆ

max
j“1,2,3,4

|pθn,j ´ θj | ď C1γn and p‹q
˙

Lemma 23
ě 1´ tδ3

1,n ` δ4
1,nu “: 1´ δ1,n

by taking C1 :“ C3
1 . An inequality ~pτn´τ~L8 “ ~pτn˝pτ

´1
n ´τ ˝pτ´1

n ~L8 “

~pτn ˝ pτ
´1
n ´ τ ˝ pτ´1

n ` τ ˝ τ´1 ´ τ ˝ τ´1~L8 “ ~τ ˝ pτ´1
n ´ τ ˝ τ´1~L8 ď

Lτ~pτ
´1
n ´ τ´1~L8 also proves

Pp~pτn ´ τ~L8 ď C2γnq ě 1´ δn,2

with C2 :“ LτC1 and δn,2 :“ δ1,n.
(ii) We apply Lemma 24 and obtain

~ pRn ´R~L8 “ ~vp} ¨ }2, pτnp�ϑp¨q ` pθ:
n�qq ´ vp} ¨ }2, τp�ϑp¨q ` θ:�qq~L8

ď ~vp1, pτnp�ϑp¨q ` pθ:
n�qq ´ vp1, τp�ϑp¨q ` θ:�qq~L8

ď ~pτnp�ϑp¨q ` pθ:
n�q ´ τp�ϑp¨q ` θ:�q~L8

ď ~pτnp�ϑp¨q ` pθ:
n�q ´ τp�ϑp¨q ` pθ:

n�q~L8

` ~τp�ϑp¨q ` pθ:
n�q ´ τp�ϑp¨q ` θ:�q~L8

ď ~pτn ´ τ~L8 ` Lτ |�ϑp¨q ` pθ:
n�´ �ϑp¨q ` θ:�|

ď ~pτn ´ τ~L8 ` Lτ |
pθ:
n ´ θ:

|.
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The inequality in the second line follows from the property of polar coordi-
nates: }vpr1, θ1q ´ vpr2, θ2q} ď }vp1, θ1q ´ vpr2, θ2q} ď }vp1, θ1q ´ vp1, θ2q}
for any θ1, θ2 P r0, 2πq. By the result of (i), we have

Pp~ pRn ´R~L8 ď C3γnq ě 1´ δ3,n.

Convergence of pR´1
n is proved in the same way.

(iii) We apply Lemma 24 and obtain

~pρn ´ ρ~L8 “ ~ω´1
˝ pRn ˝ ω ´ ω´1

˝R ˝ ω~L8 ď Lω~
pRn ˝ ω ´R ˝ ω~L8

ď Lω~
pRn ´R~L8 .

Then, by the result of (ii), we prove Pp~pρn ´ ρ~L8 ď C5γnq ě 1 ´ δ5,n.
The result on pρ´1

n is proved in the same way.
(iv) We apply Lemma 24 and obtain

~pgn ´ g˚~L8 “ ~Ppρn ˝
pf

p1q

n ´ ρ ˝ f˚~L8

ď ~pρn ˝
pf

p1q

n ´ ρ ˝ f˚~L8

ď ~pρn ˝
pf

p1q

n ´ ρ ˝ pf
p1q

n ~L8 ` ~ρ ˝ pf
p1q

n ´ ρ ˝ f˚~L8

ď ~pρn ´ ρ~L8 ` Lρ~
pf

p1q

n ´ f˚~L8 .

By the result of (iii) and Assumption 1, we obtain the statement of (iv).

D.2. Proof of Proposition 14

We fix f˚pxq “ pf1pxq, f2pxqq as f1pxq “ x1, and f2pxq “ x2. This is obviously
Lipschitz continuous and invertible as f´1

˚ pxq “ x.
For each n P N, we define an estimator pf

p1q

n pxq “ p pf
p1q

n,1pxq,
pf

p1q

n,2pxqq as follows.
We set pf

p1q

n,1pxq “ x1. For pf
p1q

n,2, with an arbitrary positive sequence tDnunPN Ă N,
we define Δn :“ 2{Dn and dn,m :“ ´1`mΔn (m “ 0, 1, 2, . . . , Dn). Then, we
define pf

p1q

n,2 as

pf
p1q

n,2pxq “
pf :
npx2q

:“

$

’

’

’

&

’

’

’

%

dn,m ` 3px2 ´ dn,mq px2 P rdn,m, dn,m `Δn{3qq
dn,m `Δn ´ 3px2 ´ dn,m ´Δn{3q px2 P rdn,m `Δn{3, dn,m ` 2Δn{3qq
dn,m ` 3px2 ´ dn,m ´ 2Δn{3q px2 P rdn,m ` 2Δn{3, dn,m`1qq

1 px2 “ 1q

.

See Figure 14 for illustration of the function pf :
n. Then, we have } pf p1q

n,1´f1}L8 “ 0
and } pf p1q

n,2 ´ f2}L8 ď Δn, and these facts yield

~pf
p1q

n ´ f˚~L8 ď Δn.
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Hence, the estimator pf
p1q

n satisfies Assumption 1, while pf
p1q

n converges to f˚

arbitrarily fast by specifying large Dnp“ 2{Δnq P N.

Fig 14: Sawtooth-like estimator pf :
n

In the following, we prove that the estimator pf
p1q

n is not injective over the
entire I2. If pfn is everywhere not invertible, i.e., pf

´1
n pyq “ c R I2, it proves the

assertion as QINVppf
p1q

n ,f˚q ě }c´ f´1
˚ }L2 ě dHaus.pc, I

2q ą 0.
Pick any x P I2 and n P N. It is easy to derive L

pf
p1q
n,1
px1q “ tx1u ˆ I and

L
pf

p1q
n,2
px2q “ I ˆ ty2 P I | pf

:
npx2q “ y2u

looooooooooooomooooooooooooon

“L
pf
:
n

py2q

,

and their intersection is obtained as L
pf

p1q
n,1
px1q X L

pf
p1q
n,2
px2q “ tx1u ˆ L

pf:
n
py2q.

As the cardinality of L
pf:
n
py2q is greater than 1, the intersection is not a unique

point, indicating that the function pf
p1q

n is not injective at x P I2.

D.3. Proof of Theorem 8

We review some notations. As described in Introduction, an inverse function f̄
;

for a function f̄ : I2 Ñ I2 is defined as

f̄
;
pyq :“

#

x pif !Dx such that f̄pxq “ yq

c potherwiseq
,

for some constant vector c R I2. We also define two sets

Ωpf̄q :“ ty P I2
| D!x such that f̄pxq “ yu, and Ω̄pf̄q :“ I2

zΩpf̄q,

that are used to measure a property of invertibility of functions. For a set Ω̄ Ă I2,
LpΩ̄q denotes the Lebesgue measure of Ω̄.
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We develop an upper-bound of the inverse risk with the Lipschitz coefficient
Lf˚ of f˚ (and f´1

˚ ) and some constant C1, C2, C3 P p0,8q:

QINVppfn,f˚q “ ~
pfn´f˚~

2
L2pPXq`ψ

´

~pf
;

n´f´1
˚ ~L2pPXq

¯

“ ~pfn´f˚~
2
L2pPXq`

´

~pf
;

n´f´1
˚ ~

2
L2pPXq

¯2

ď ~pfn´f˚~
2
L8`

´

LpΩppfnqq~
pf

;

n´f´1
˚ ~

2
L2pΩppfnqq

`C1LpΩ̄ppfnqq

¯2

p‹q

ď ~pfn´f˚~
2
L8`

´

4L2
f˚
~pfn´f˚~

2
L2pΩppfnqq

`C1LpΩ̄ppfnqq

¯2

ď

´

C2~pfn´f˚~L8`C3LpΩ̄ppfnqq

¯2
. (19)

The inequality (‹) follows from LpΩpf̄nqq ď LpI2q “ 4 and the inequality

}pf
;

npyq ´ f´1
˚ pyq}2 “ }pf

;

np
pfnpxqq ´ f´1

˚ ppfnpxqq}2

“ }f´1
˚ pf˚pxqq ´ f´1

˚ ppfnpxqq}2

ď Lf˚}f˚pxq ´
pfnpxq}2

ď Lf˚~f˚ ´
pfn~L8 , py P Ω̄ppfnqq.

Therefore, we herein evaluate LpΩ̄ppfnqq and ~pfn ´ f˚~L8 in the following
Propositions 27 and 28: applying Lemma 24 with these Propositions to (19)
proves:

P

´

QINVppfn,f˚q ď DCrγ2
n

¯

ě 1´ δn, δn Œ 0.

By taking the expectation En with the decreasing δn À n´2{p2`dqplognq2α`2β ,
the statement is proved.

Proposition 27. Suppose Assumption 1 holds. There exists C P p0,8q such
that P

´

LpΩ̄ppfnqq ď Crγn

¯

ě 1´ δn with a sequence δn Œ 0 as nÑ8.

Proof of Proposition 27. Let g:
˚ be a function for triangle interpolation de-

fined in (18). Then, Proposition 4.1 in Daneri and Pratelli (2014) evaluates
the Lebesgue measure of the squares, that cannot be linearly interpolated (so
twisted): there exists C1 P p0,8q such that

LpΩ̄pg:
˚qq ď C1rγn. (20)

(20) is obtained by specifying that r “ rγn and ε is proportional to rγn in Propo-
sition 4.1 in Daneri and Pratelli (2014).

Here, we show Ω̄ppρ´1
n ˝ pg:

nq Ă pρ´1
n pΩ̄ppg:

nqq. We denote A :“ Ω̄ppρ´1
n ˝ pg:

nq and
B :“ pρ´1

n pΩ̄ppg:
nqq. Every y P A satisfies y “ pρ´1

n ˝pg:
npxq “ pρ´1

n ˝pg:
npx

1q for some
x ‰ x1. This fact is rewritten as pρnpyq “ pg:

npxq “ pg:
npx

1q, i.e., pρnpyq P Ω̄ppg:
nq.

Applying pρ´1
n to both sides yields y P B, whereby we have A Ă B.
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This inclusion relation A Ă B yields

LpΩ̄ppfnqq “ LpΩ̄ppρ´1
n ˝ pg:

nqq ď Lppρ´1
n pΩ̄ppg:

nqqq ď L2
pρn
LpΩ̄ppg:

nqq

ď L2
pρn

LpΩ̄pg:
˚qq

loooomoooon

ďC1rγn

`L2
pρn
|LpΩ̄ppg:

nqq ´ LpΩ̄pg:
˚qq|

loooooooooooooomoooooooooooooon

“:T1

. (21)

Since the vertices of the squares converge in probability with the convergence
rate γn “ oprγnq, the term T1 is of order Oppγ

2
nq “ opprγ

2
nq “ opprγnq, i.e., PpT ď

C2rγnq ě 1 ´ δn for some C2 ą 0 and δn Œ 0. Therefore, applying Lemma 24
leads to the assertion.

Proposition 28 (Approximation error). There exist constants C1, C2 P p0,8q
that satisfies the followings:

(i) Pp~pg:
n ´ g˚~L8 ď C1rγnq ě 1´ δ1,n,

(ii) Pp~pfn ´ f˚~L8 ď C2rγnq ě 1´ δ2,n,

with some positive sequences δj,n Œ 0 as nÑ8, j “ 1, 2.

Proof of Proposition 28. We prove (i) and (ii) by the uniform convergence of
pgn, which is already proved in Proposition 26 (iv).

(i) Consider symbols x1,x2,x3,x4, s, p♦, pg:
n defined in Section 4.3, and g:

˚

defined in eq. (18).
Firstly, we consider the case that p♦ is not twisted: with the triangle �pxq
whose vertices are x1,x2, s, we have

}pg:
npxq ´ g˚pxq}8

ď }pg:
npxq ´ g:

˚pxq}8 ` }g
:
˚pxq ´ g˚pxq}8

ď
›

›tpgnpsq ´ g˚psqu ` α1
tpgnpx

1
q ´ g˚px

1
qu ` α2

tpgnpx
2
q ´ g˚px

2
qu

´pα1
` α2

qtpgnpsq ´ g˚psqu
›

›

8

`
›

›´pg˚pxq ´ g˚psqq ` α1
tg˚px

1
q ´ g˚psqu ` α2

tg˚px
2
q ´ g˚psqu

›

›

8

ď 5~pgn ´ g˚~L8 ` 3 sup
xPI2

sup
sP�pxq

}g˚pxq ´ g˚psq}8

ď 5~pgn ´ g˚~L8 ` 3Lg˚ sup
xPI2

sup
sP�pxq

}x´ s}8

loooooooooooomoooooooooooon

ď1{tn

ď 5 ~pgn ´ g˚~L8
looooooomooooooon

“Oppγnq“opprγnq

`3Lg˚rγn.

Secondly, if p♦ is twisted,

}pg:
npxq ´ g˚pxq}8 “ }pgnpx

1
q ´ g˚pxq}8

ď }pgnpx
1
q ´ g˚px

1
q}8 ` }g˚px

1
q ´ g˚pxq}8

ď ~pgn ´ g˚~L8 ` Lg˚rγn.
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Overall, we have obtained

~pg:
n ´ g˚~L8 ď 5~pgn ´ g˚~L8 ` 3Lg˚rγn,

and applying Lemma 24 with Proposition 26 (iv) and the definition of tn
as (17) proves the assertion.

(ii) We apply Lemma 24 and obtain

~pfn ´ f˚~L8 ď ~pρ´1
n ˝ pg:

n ´ ρ´1
˝ g~L8

ď ~pρ´1
n ˝ pg:

n ´ ρ´1
˝ pg:

n~L8 ` ~ρ´1
˝ pg:

n ´ ρ´1
˝ g~L8

“ ~pρ´1
n ´ ρ´1

~L8 ` L~pg:
n ´ g˚~L8

with the above (i) and Proposition 26 (iii) leads to (vi).

D.4. Proof of Proposition 10

This proposition is obtained by slightly modifying the proof of Theorem 8
(shown in Appendix D.3). Specifically, we replace the penalty function ψpzq “ z4

in the inequality (19) with ψpzq “ z2 and obtain an inequality

QINVppfn,f˚q “ ~
pfn ´ f˚~

2
L2pPXq ` ~

pf
;

n ´ f´1
˚ ~

2
L2pPXq

ď ~pfn ´ f˚~
2
L8 ` LpΩppfnqq~

pf
;

n ´ f´1
˚ ~

2
L2pΩppfnqq

` C1LpΩ̄ppfnqq

ď ~pfn ´ f˚~
2
L8 ` 4L2

f˚
~pfn ´ f˚~

2
L2pΩppfnqq

` C1LpΩ̄ppfnqq

ď C2~pfn ´ f˚~
2
L8 ` C3LpΩ̄ppfnqq

with some C1, C2, C3 ą 0. Recall that Lp¨q denotes the Lebesgue measure, Ω̄p¨q
denotes the set of non-invertible points, and Lf˚ denotes the Lipschitz coefficient
of f˚. Since the first term in the rightmost side is Oppγ

2
nq “ opprγ

2
nq by Assump-

tion 1, it suffices to prove the latter term LpΩ̄ppfnqq to be Opprγ
2
nq. Note that,

without the condition f˚ P FLp21{4q, Proposition 27 shows LpΩ̄ppfnqq “ Opprγnq
but not Opprγ

2
nq.

For the function g:
˚ defined in eq. (18), we suppose the following condition

LpΩ̄pg:
˚qq “ 0, (22)

which will be proved later for f˚ P FL
INV XFLp21{4q. With (22), we replace the

inequality (20) in the proof of Proposition 27 with (22) and obtain

PpLpΩ̄ppfnq ď Crγ2
nqq ě 1´ δn

with a decreasing sequence δn Œ 0 and C ą 0, and it completes the proof.
We prove (22) for f˚ P FL

INV X FLp21{4q. Consider a square � and its ver-
tices νp�q :“ tx1,x2,x3,x4u Ă I2 defined in Section 4.2.2, and also consider
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its corresponding quadrilateral ♦ with vertices g˚px
1q, g˚px

2q, . . . , g˚px
4q. We

define another quadrilateral

♦7 :“ quadrilateral whose vertices are f˚pνp�qq,

which is a variant of ♦ “ g˚pνp�qq “ ρ ˝ f˚pνp�qq by reducing the coherent
rotation ρ. Here, we obtain an interesting fact: ♦ is twisted if and only if ♦7 is
twisted. This fact simply holds, since the coherent rotation ρ is only a rotation
through the monotone function τ defined in Section C.2. See Figure 15 illustrates
it: the triangle with three vertices y1 “ f˚px

1q,y2 “ f˚px
2q,y3 “ f˚px

3q

cannot be inverted from the triangle of z1 “ g˚px
1q “ ρpy1q,z2 “ g˚px

2q “

ρpy2q,z3 “ g˚px
3q “ ρpy3q (and the same holds for triangles with vertices

y1,y3,y4 and z1,z3,z4, respectively), whereby the quadrilateral p♦ cannot be
twisted if p♦7 is not twisted.

Fig 15: The triangle with vertices y1 “ f˚px
1q,y2 “ f˚px

2q,y3 “ f˚px
3q

cannot be inverted by the coherent rotation ρ (cf. z1 “ g˚px
1q “ ρpy1q,z2 “

g˚px
2q “ ρpy2q,z3 “ g˚px

3q “ ρpy3q).

By this fact, it is sufficient to show that ♦7 is not twisted. Let a ą 0 be the
length of a side of the square �, then the length of a diagonal of � is

?
2a. Let

b, c, d, e ą 0 be length of lines obtained by transforming the sides of � by f˚,
and r, s ą 0 be length of lines obtained by transforming the diagonals of � as
shown in Figure 16. The bi-Lipschitz property of f˚ with the Lipschitz constant
L “ 21{4 yields

2´1{4a ď mintb, c, d, eu ď maxtb, c, d, eu ď 21{4a

and
21{4a “ 2´1{4

p
?

2aq ď mintr, su.
By these facts, we obtain

maxtb, c, d, eu ď mintr, su.

Then, ♦7 cannot be twisted, since the length of the diagonals of ♦7 is no less than
those of the sides of ♦7. Therefore, the pathological example of twists (shown in
Appendix D.5) does not appear, hence (22) is proved.
Remark 29. While the above proof considers the bi-Lipschitz function with
L ď 21{4 « 1.19, we here consider the case L “ 21{2 « 1.41. Even in this case
(that seems theoretically tractable), twist may appear as shown in Figure 17,
and the above proof does not hold.



390 A. Okuno and M. Imaizumi

Fig 16: The left is � with its sides of length a and diagonals of length
?

2a. The
right is ♦7, obtained by transforming � with f˚, showing both twisted and not
twisted cases.

Fig 17: Twist with L “ 21{2

D.5. A Pathological Example of Twists

We defined an interpolation over the quadrilaterals as shown in Figure 5. How-
ever, the quadrilateral connecting the four points u1 “ pgnpx

1q,u2 “ pgnpx
2q,u3 “

pgnpx
3q and u4 “ pgnpx

4q can be twisted as shown in Figure 6 (left): this twist
interrupts the estimator pfn from being bijective over the quadrilateral, whereby
pfn is not entirely invertible over I2. These twists can be eliminated by increasing
the number of splits tn in most cases (see Figure 6 (right) and Proposition 27).

Here, a natural question arises: can we further prove that the developed es-
timator is entirely invertible on I2? For most suitable f˚, yes, our developed
estimator is (asymptotically) entirely invertible as all the twists vanish as tn in-
creases. Unfortunately, however, there exists a pathological example that such
twist does not disappear even if tn increases. See Figure 18 for such an pathologi-
cal example. In this example, small twists (which can be ignored in the Lebesgue
measure) appear indefinitely, and it prohibits our simple estimator from being
entirely invertible for general f˚ P FL

INV.
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Fig 18: A pathological example: for every n P N with tn “ 2n, the quadrilateral
which connects g˚p0, 0q, g˚p0, 1{tnq, g˚p1{tn, 1{tnq, g˚p1{tn, 0q in this order, is
twisted. Although large twisted quadrilaterals are gradually decomposed into
finer (smaller) quadrilaterals by increasing the number of split, smaller twists
appear around g˚p0, 0q indefinitely.
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