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Abstract: It is more and more frequently the case in applications that the
data we observe come from one or more random variables taking values in
an infinite dimensional space, e.g. curves. The need to have tools adapted
to the nature of these data explains the growing interest in the field of
functional data analysis. The model we study in this paper assumes a lin-
ear dependence between a quantity of interest and several covariates, at
least one of which has an infinite dimension. To select the relevant covari-
ates in this context, we investigate adaptations of the Lasso method. Two
estimation methods are defined. The first one consists in the minimization
of a Group-Lasso criterion on the multivariate functional space H. The sec-
ond one minimizes the same criterion but on a finite dimensional subspaces
of H whose dimension is chosen by a penalized least squares method. We
prove oracle inequalities of sparsity in the case where the design is fixed or
random. To compute the solutions of both criteria in practice, we propose
a coordinate descent algorithm. A numerical study on simulated and real
data illustrates the behavior of the estimators.
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1. Introduction

More and more often, the data we observe come from one or more random
variables taking their values in a space of infinite dimension. This is the case,
for example, for data that can be represented as curves. The need to develop
tools adapted to the nature of the data explains the growing interest in the field
of functional data analysis [68, 38, 36]. It has proven to be very fruitful in many
applications, for example in spectrometry [see for example 65], in the study of
electroencephalograms [34], in biomechanics [73] and in econometrics [52].

In some contexts, and more and more often, the data are a finite number of
curves. We call this case multidimensional functional data. This is the case in
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Aneiros-Pérez et al. [3] where the objective is to predict the ozone concentration
of the next day from the ozone concentration curve, the NO concentration curve,
the NO2 concentration curve, the wind speed curve and the wind direction of the
current day. Another example comes from nuclear safety problems where the risk
of failure of a nuclear reactor vessel in case of a loss of coolant accident is studied
as a function of the evolution of the temperature, pressure and heat transfer
parameter in the vessel [69]. It can also happen, perhaps more often, that the
observed quantities are of different natures (curves and vectors or scalars). This
case has motivated the study of partial linear models (see for example Shin
[71], Wang et al. [80], Xu et al. [83]) where a quantity of interest Y depends
both on vectors and on functional covariates.

In the case where the number of covariates, especially functional or infinite
dimensional covariates, is large, it may be necessary to select the most relevant
covariates for prediction, either to solve the computational problems posed by
the complexity of the data or to obtain an interpretable prediction procedure.

The objective of this paper is to study the link between a real response Y
and a vector of covariates X = (X1, . . . , Xp) which can be of different nature
(curves or vectors or scalar quantities). We assume that, for all j = 1, . . . , p,
i = 1, . . . , n, Xj

i ∈ Hj where Hj is a separable Hilbert space equipped with a
scalar product denoted by 〈·, ·〉j . Our covariate {Xi}1≤i≤n is then in the product
space H = H1 × · · ·×Hp, which is also a separable Hilbert space equipped with
its natural scalar product

〈f ,g〉 =
p∑

j=1
〈fj , gj〉j for all f = (f1, . . . , fp),g = (g1, . . . , gp) ∈ H

and usual norm ‖f‖ =
√

〈f , f〉.
We suppose that our observations follow the multivariate functional linear

model,

Yi =
p∑

j=1

〈
β∗
j , X

j
i

〉
j
+ εi =

〈
β∗,Xi

〉
+ εi, (1)

where, β∗ = (β∗
1, . . . ,β

∗
p) ∈ H is unknown and {εi}1≤i≤n ∼i.i.d. ε where ε is a

centered random variable with variance σ2. The covariates {Xi}1≤i≤n can be
either fixed elements of H (fixed design) or i.i.d centered random variables in
H (random design) independent of {εi}1≤i≤n.

Note that our model does not require the Hj ’s to be functional spaces, we
can have Hj = R or Hj = R

d, for some j ∈ {1, . . . , p}. The case where Hj = R,
for all j = 1, . . . , p exactly corresponds to the classical multivariate regression
model.

The functional linear model, which corresponds to the case p = 1 in the
equation (1), has been widely studied. It has been defined by Cardot et al.
[19] who defined an estimator based on principal component analysis. Splines
estimators have also been proposed by Ramsay and Dalzell [67], Cardot et al.
[20], Crambes et al. [31] as well as estimators based on the decomposition of the
slope function β in the Fourier domain [68, 54, 29] or in a general basis [18, 30].
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In a similar context, we also mention the work of Koltchinskii and Minsker [49]
on Lasso. In this paper, it is assumed that the function β is well represented
as a sum of a small number of well separated spikes. In the case where p = 2,
H1 a functional space and H2 = R

d, the model (1) is called partial functional
linear regression model and has been studied for example by Shin [71], Shin
and Lee [72] who proposed principal component regression and ridge regression
approaches for the estimation of the two coefficients of the model.

Few works have been devoted to the multivariate functional linear model
which corresponds to the case where p ≥ 2 and the Hj are function spaces for
all j = 1, . . . , p. To the best of our knowledge, the model was first mentioned in
the work of Cardot et al. [21] under the name multiple functional linear model.
An estimator of β is defined with an iterative backfitting algorithm and applied
to the ozone prediction dataset initially studied by Aneiros-Pérez et al. [3].
Variable selection is performed by testing all possible models and selecting the
one that minimizes the prediction error on a test sample. Let us also mention
the work of Chiou et al. [28] who consider a multivariate linear regression model
with functional output. They define a consistent and asymptotically normal
estimator based on the multivariate functional principal components initially
proposed by Chiou et al. [27].

In the case where the covariates are finite dimensional and p is large, the
usual approach to select variables is to use a penalty of type �1. This case has
been widely studied, with many variations and improvements. One of the most
common variable selection methods, the Lasso [74, 25], consists of the minimiza-
tion of a least squares criterion with an �1 penalty. The statistical properties
of the Lasso estimator are now well understood. Sparsity oracle inequalities
have been obtained for predictive losses in particular in standard multivariate
or nonparametric regression models [see for example 16, 12, 48, 11].

The Group-Lasso [56, 86, 26] addresses the case where the set of covariates
can be partitioned into a number of groups. To take into account the group
structure in the data, our model can be rewritten as Hj = R

dj , j = 1, . . . , p,
where p is the number of groups and dj is the cardinal of the j-th group. Huang
and Zhang [44] show that, under certain conditions called strong group sparsity,
the Group-Lasso penalty is more efficient than the Lasso penalty. Lounici et al.
[59] proved oracle inequalities for the prediction and �2 estimation error that are
optimal in the minimax sense. Their theoretical results also demonstrate that
Group-Lasso can improve Lasso in prediction and estimation. van de Geer [76]
proved sharp oracle inequalities for general weakly decomposable regularization
penalties, including Group-Lasso penalties. This approach has proven fruitful in
many settings such as time series [24], generalized linear models [13] in particular
Poisson regression [45] or logistic regression [62, 51], the study of panel data [53],
the prediction of breast or prostate cancer [35, 87]. The theoretical results were
extended to the case where the errors are heteroscedastic by Dalalyan et al. [32].

Drawing inspiration from Lounici et al. [59] we define two criteria

β̂λ,∞ ∈ arg min
β=(β1,...,βp)∈H

{
1
n

n∑
i=1

(
Yi − 〈β,Xi〉

)2 + 2
p∑

j=1
λj‖βj‖j

}
, (2)
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and

β̂λ,m ∈ arg min
β=(β1,...,βp)∈H(m)

{
1
n

n∑
i=1

(
Yi − 〈β,Xi〉

)2 + 2
p∑

j=1
λj‖βj‖j

}
, (3)

where, for all j, ‖ · ‖j is the norm associated to the scalar product of Hj , λ =
(λ1, . . . , λp) are positive parameters and (H(m))m≥1 is a sequence of nested
finite-dimensional subspaces of H, to be specified later.

The case where the product space H is of finite dimension has been widely
treated (see the references above). However, few papers deal with the infinite-
dimensional case. Most of the literature in functional data analysis naturally
focuses on dimension reduction methods (mainly projection onto a spline basis
or onto the principal component basis in Ramsay and Silverman [68], Ferraty and
Romain [36]) to reduce data complexity. More recently, clustering approaches
have been considered (see for example [33]) as well as variable selection methods
using �1 penalties. [50] have proposed a Lasso type penalty allowing to select
the Karhunen-Loève coefficients of the functional variable simultaneously with
the coefficients of the vector variable in the partial functional linear model (case
p = 2, H1 = L

2(T ), H2 = R
d of the Model (1)). Group-Lasso and adaptive

Group-Lasso procedures have been proposed by Aneiros and Vieu [1, 2] to se-
lect the important observation points t1, . . . , tn (impact points) in a regression
model where the covariates are the discrete values (X(t1), . . . , X(tp)) of a ran-
dom function X. Lian [55] define a variable selection with a SCAD penalty
and proved consistency and support recovery. Bayesian approaches have been
proposed by Grollemund et al. [43] in the case where the β∗

j are sparse step
functions. The natural extension of the approaches developed in the field of
functional data analysis in our context leads to the projected version of the
criterion defined in equation (3) with H(m) generated by a multivariate splines
basis or an fPCA basis. However, the projection step induces a bias that must
be taken into account.

Some recent contributions (see for example Goia and Vieu [42], Sangalli [70])
emphasize the need to work at the interface between high-dimensional statis-
tics, functional data analysis, and machine learning to deal more effectively with
specific problems of high-dimensional or infinite-dimensional data. Indeed, the
problem of infinite-dimensional variable selection is also considered in the ma-
chine learning community, especially in the context of multiple-kernel learning.
Bach [4], Nardi and Rinaldo [63] proved the consistency of model estimation
and selection, as well as prediction and estimation bounds for the Group-Lasso
estimator, when the data belong to Reproducing Kernel Hilbert Spaces. Yang et
al. [84] consider multiple functional quantile regression with a mixed �1 penalty.
In these papers, the criterion is minimized on the whole product space H, lead-
ing to (2). However, imposing that the data be in a Reproducing Kernel Hilbert
Space is too restrictive in the domain of functional data because it implies a
constraint on the unknown regularity of the data. To the best of our knowledge,
the theoretical study of (2) has not been done when the data are in a general
Hilbert space.
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Our approach also covers the case where Yi depends on a single functional
variable Zi : T → R and we want to determine whether observing the entire
curve {Zi(t), t ∈ T} is useful to predict Yi or whether it is sufficient to observe
it on some subsets of T . For this purpose, we define T1, . . . , Tp a partition of
the set T into subintervals and consider the restrictions Xj

i : Tj → R of Zi

on Tj . If the corresponding coefficient β∗
j is zero, we know that Xj

i is, a priori,
irrelevant to predict Yi and, therefore, that the behavior of Zi on the interval
Tj has no significant influence on Yi. The idea of using a Lasso type criterion
or a Danzig selector in this context, called the FLIRTI method (for Functional
LInear Regression That is Interpretable) has been developed by James et al. [46].

Contribution of the paper

The properties of the solution of the Group-Lasso problem (2) have been studied
for example by [59] under restricted eigenvalue type assumptions in the finite-
dimensional case. [8] have improved these results by obtaining sharp versions of
the sparsity oracle inequalities. The aim of this paper is to study the case where
dim(H) = +∞ and to answer the following questions: are we able to obtain
sharp oracle inequalities when dim(H) = +∞? How to compute the solution of
a Lasso problem in this infinite-dimensional context?

To answer the first question, we must first define a restricted eigenvalue condi-
tion (or an equivalent). Unfortunately, the question of the restricted eigenvalue
assumption in an infinite dimensional space turns out to be a complex issue.
Indeed, we first prove in Section 2 that no such hypothesis can be verified on
the entire space H in infinite dimension, or even when the data dimension is
too large. We consider as an alternative, the minimal ratio κ̃

(m)
n (s) between the

empirical norm and the norm of H on the cone{
δ ∈ H(m),∃J ⊂ {1, . . . , p}, |J | ≤ s,

∑
j /∈J

λj‖δj‖j ≤ 3
∑
j∈J

λj‖δj‖j
}
.

This quantity, supposed to be constant in finite dimension in the works of [59, 8],
is seen here as a sequence which decreases towards 0 when m = dim(H(m))
increases, at a rate which will determine the convergence rate of the final esti-
mator. This rate of convergence thus plays the role of a regularity parameter.
This is, to our knowledge, a new approach to the problem.

We prove in Section 3 a sharp oracle inequality for both criteria (2) and (3)
without any assumption other than noise sub-gaussianity. The proofs and results
are similar to those of [59, 8] except that we have to deal with the remaining
term due to the violation of the restricted eigenvalue assumption for the solution
of (2) and the bias due to the projection for the solution of (3). The results
are true for both fixed and random designs. We find, as expected, that the
properties of the projected estimator (3) depend strongly on the choice of the
projection dimension m. A data-driven criterion for selecting the dimension m,
inspired by the work of [6] and their adaptation to the functional linear model
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by [15], is proposed. In Section 4, we obtain a sparsity oracle inequality for the
theoretical prediction error under an assumption of sub-Gaussianity of the data
distribution. Sections 5 and 6 are devoted to the numerical properties of the
solution. If the solution of the criterion (3) can be computed directly from the
coefficients of the data in a basis of the space H(m) with tools dedicated to
multivariate data, it is not the same for the solution of the criterion (2) which
requires solving an infinite dimensional optimization problem. We then define
a computational algorithm allowing to minimize the criterion (2) directly in
the space H, without projecting the data. This computational algorithm is also
used to solve the criterion (3) to facilitate comparisons. The properties of the
estimators are studied numerically in Section 6 on simulated data sets. We then
applied both estimation procedures to the prediction of energy consumption of
household appliances.

Notations

Throughout the paper, we denote, for all J ⊆ {1, . . . , p} the sets

HJ :=
∏
j∈J

Hj .

Consider that the data X1, . . . ,Xn has been centered, we also define

Γ̂ : β ∈ H �→ 1
n

n∑
i=1

〈β,Xi〉Xi,

the empirical covariance operator associated to the data and its restricted ver-
sions

Γ̂J,J ′ : β = (βj , j ∈ J) ∈ HJ �→
(

1
n

n∑
i=1

∑
j∈J

〈
βj , X

j
i

〉
j
Xj′

i

)
j′∈J ′

∈ HJ ′ ,

defined for all J, J ′ ⊆ {1, . . . , p}. For simplicity, we also denote Γ̂J := Γ̂J,J ,
Γ̂J,j := Γ̂J,{j} and Γ̂j := Γ̂{j},{j}.

For β = (β1, . . . ,βp) ∈ H, we denote by J(β) := {j, βj �= 0} the support of
β and |J(β)| its cardinality.

We also denote by PX(·) = P(·|X1, . . . ,Xn) the conditional probability with
respect to the design if it is random or PX(·) = P if the design is fixed.

2. Discussion on the restricted eigenvalues assumption

2.1. The restricted eigenvalues assumption does not hold if
dim(H) = +∞

Sparsity oracle inequalities are usually obtained under conditions on the design
matrix. One of the most common is the restricted eigenvalues property [12, 59].
Translated to our context, this assumption may be written as follows.
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(ARE(s)): There exists a positive number κ = κ(s) such that

min
{

‖δ‖n√∑
j∈J ‖δj‖2

j

, |J |≤s, δ=(δ1, . . . , δp)∈H\{0},
∑
j /∈J

λj‖δj‖j ≤c0
∑
j∈J

λj‖δj‖j
}
≥κ,

with ‖f‖n :=
√

1
n

∑n
i=1〈f,Xi〉2 the empirical norm on H naturally associated

with our problem.
As explained in Bickel et al. [12, Section 3], this assumption can be seen

as a “positive definiteness” condition on the Gram matrix restricted to sparse
vectors. In the finite dimensional context, van de Geer and Bühlmann [77] have
proven that this condition covers a large class of design matrices.

The next lemma, proven in Section A.1, shows that this assumption does not
hold when dim(HJ ) is too large for a subset J of {1, . . . , p}.

Lemma 2.1. Suppose that there exists J ⊂ {1, . . . , p} such that dim(HJ ) >

rk(Γ̂J), then, for all s ≥ |J |, for all c0 > 0

min

⎧⎨⎩ ‖δ‖n√∑
j∈J ‖δj‖2

j

, |J | ≤ s, δ = (δ1, . . . , δp) ∈ H\{0},
∑
j /∈J

λj‖δj‖j ≤ c0
∑
j∈J

λj‖δj‖j

⎫⎬⎭
= 0.

Remark that, since Im(Γ̂J) = span{(Xj
i )j∈J , i = 1, . . . , n}, rk(Γ̂J) ≤ n. Then

the condition dim(HJ) > rk(Γ̂J) is unfortunately always verified if dim(H) =
+∞.

2.2. Finite-dimensional subspaces and restriction of the restricted
eigenvalues assumption

The infinite-dimensional nature of the data is the main obstacle here. To cir-
cumvent the dimensionality problem, we restrict the assumption to finite-dimen-
sional spaces. In the sequel, we focus on spaces spanned by the m-first elements
of an orthonormal basis (ϕ(k))k≥1 i.e. H(m) := span{ϕ(1), . . . ,ϕ(m)}. To ob-
tain sparsity oracle inequalities, we suppose fulfilled the following condition of
support compatibility of the basis.

We denote by

πj : f = (f1, . . . , fp) ∈ H �→ (0, . . . , 0, fj , 0, . . . , 0)

the projection operator into the j-th coordinates and

Πm : f ∈ H �→
m∑
j=1

〈
f ,ϕ(k)〉ϕ(k)

the projection operator into H(m).
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(Csupp) For all m ≥ 1, j ∈ {1, . . . , p}, the operator Πm commutes with πj .

Condition (Csupp) appears necessary to obtain the sparsity oracle inequality.
It is a condition on the basis (ϕ(k))k≥1. It is the case for instance if, for all
k ≥ 1, |J(ϕ(k))| = 1. Indeed, this means that πjϕ

(k) = 1{j∈J(ϕ(k))}ϕ
(k) for all

f ∈ H

πjΠmf = πj

m∑
k=1

〈
f ,ϕ(k)〉ϕ(k) =

m∑
k=1

〈
f ,ϕ(k)〉πjϕ

(k)

=
m∑

k=1

1{j∈J(ϕ(k))}
〈
fj , ϕ

(k)
j

〉
j
ϕ(k)

and we deduce that

Πmπjf =
m∑

k=1

〈
πjf ,ϕ(k)〉ϕ(k) =

m∑
k=1

〈
fj , ϕ

(k)
j

〉
j
ϕ(k) = πjΠmf .

It is possible now to define a restricted eigenvalues property on the projection
on the data on the finite-dimensional space H(m). We would like to emphasize
first that the viewpoint is different. In finite-dimensional contexts (see e.g. Bickel
et al. [12], Lounici et al. [59]), the restricted eigenvalue property is an assumption
on the design matrix. In infinite-dimensional contexts, it seems more natural,
since, there is no a priori dimension for the data, to define a sequence (κ̃(m)

n )m≥1
depending on the sparsity level s ∈ {1, . . . , p} as follows

κ̃(m)
n (s) :=

min
{

‖δ‖n√∑
j∈J ‖δj‖2

j

, |J |≤s, δ=(δ1, . . . , δp) ∈ H(m)\{0},
∑
j /∈J

λj‖δj‖j ≤ 3
∑
j∈J

λj‖δj‖j
}
.

(4)

The quantities κ̃
(m)
n (s) are linked with the spectral radius of restrictions of the

empirical covariance operator Γ̂ by the following relationship

min
J⊆{1,...,p};|J|≤s

ρ
(
Γ̂
−1/2
J|m

)−1 ≥ κ̃(m)
n (s) ≥ ρ

(
Γ̂
−1/2
m

)−1
, (5)

where Γ̂J|m = (〈Γ̂Jϕ
(k)
J ,ϕ

(k′)
J 〉J)1≤k,k′≤m where ϕ

(k)
J = (ϕ(k)

j , j ∈ J) ∈ HJ and
〈f ,g〉J =

∑
j∈J 〈fj , gj〉j is the usual scalar product of HJ .

Since it has been proven by Cardot and Johannes [18] that the rate of decrease
of the eigenvalues of the covariance operator influences the minimax rates in
functional linear regression, we may assume that the rate of decrease of κ̃(m)

n (s)
to 0 influences the rate, which is confirmed by our results.

2.3. Behavior of the sequence (κ̃(m)
n )m≥1 in some examples

In this section, we detail three examples of spaces H on which we will illus-
trate the theoretical results of the paper. The two first examples are illustrative
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ones and the third one is close to the electricity consumption case presented in
Section 6.5.

Example 1: finite-dimensional space verifying the restricted eigen-
values assumption We first consider, as an illustrative example, the case
where dim(H) = d < +∞. In that case, without loss of generality, we can
consider that dim(Hj) = R

dj with d1 + · · · + dp = d. Moreover, we suppose
in this example, that the restricted eigenvalues assumption (ARE(s)) written in
Section 2.1 holds with c0 = 3. This case match with the model described in
Bellec and Tsybakov [8], Lounici et al. [59] (with, eventually, c0 = 7 instead of
c0 = 3 in Lounici et al. [59]) and we can see easily that, for any nested sequence
H(1) ⊂ . . . ⊂ H(d−1) ⊂ H(d) = H of H,

κ̃(1)
n (s) ≥ . . . κ̃(d−1)

n (s) ≥ κ̃(d)
n (s) ≥ κ > 0.

Example 2: simple semi-functional linear model We suppose that p = 2
and H1 = L

2([0, 1]) and H2 = R. We consider a basis (ê(1)
k )k≥1 that diagonalizes

the empirical covariance operator Γ̂1 of the functional data (X1
1 , . . . , X

1
n) and

we denote by (μ̂(1)
k )k≥1 the associated non-increasing eigenvalues sequence. Re-

mark that the orthonormal system {(ê(1)
k , 0), k ≥ 1; (0, 1)} is a basis of H that

diagonalizes the operator Γ̂. We construct for a rank r ∈ N\{0},

H(m) = span
{(

ê
(1)
k , 0

)
, k = 1, . . . ,m

}
for m < r,

H(m) = span
{(

ê
(1)
k , 0

)
, k = 1, . . . ,m− 1; (0, 1)

}
for m ≥ r.

For s = 1, we remark that, for m < r,

κ̃(m)
n (1) = μ̂(1)

m

the m-largest eigenvalue of Γ̂1. For m ≥ r, we also take into account the inter-
action between the two variables and we can see that κ̃

(m)
n (1) is the smallest

eigenvalue of the covariance matrix of the data matrix containing the coefficients
of the projection of the data onto H(m) which is(〈

X1
i , e

(1)
1

〉
1, . . . ,

〈
X1

i , e
(1)
m−1

〉
1, X

2
i

)
i=1,...,n.

Example 3: fully multivariate functional linear model Now we consider
the example of p an integer and Hj = L

2([0, 1]). We define, for all j = 1, . . . , p, a
basis (ê(j)

k )k≥1 that diagonalizes the empirical covariance operator Γ̂j of the data
(Xj

1 , . . . , X
j
n) and we denote by (μ̂(j)

k )k≥1 the associated eigenvalues sequence.
To simplify the definitions, we set m = Lp, with L ∈ N\{0} and writes

H(m) = S
(1)
L × . . .× S

(p)
L with S

(j)
L = span

{
ê
(j)
k , k = 1, . . . , L

}
, j = 1, . . . , p.
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In that case, the matrix Γ̂|m is a block matrix

Γ̂|m =

⎛⎜⎜⎜⎜⎝
Γ̂L

1,1 Γ̂L
1,2 · · · Γ̂L

1,p
Γ̂L

1,2 Γ̂L
2,2 · · · Γ̂L

2,p
...

. . .
Γ̂L

1,p · · · Γ̂L
p−1,p Γ̂L

p,p

⎞⎟⎟⎟⎟⎠
where Γ̂L

j,j′ = ( 1
n

∑n
i=1〈X

j
i , ê

(j)
k 〉〈Xj′

i , ê
(k′)
j′ 〉)k,k′=1,...,L is the correlation matrix

between the projections of Xj into S
(L)
j and Xj′ into S

(L)
j′ . We remark that the

matrices Γ̂L
j,j are diagonal matrices, with diagonal coefficients {μ̂(j)

k }k=1,...,L.
Equation (5) can be rewritten in that case

min
j=1,...,p

μ̂
(L)
j ≥ κ̃(m)

n (1) ≥ κ̃(m)
n (2) ≥ . . . ≥ κ̃(m)

n (p) = ρ
(
Γ̂
−1/2
m

)−1
,

with equality in the case where the extra-diagonal correlation matrices Γ̂L
j,j′ = 0

for all j �= j′.

3. Sharp sparsity oracle-inequalities for the empirical prediction
error

In this section, the design X1, . . . ,Xn is supposed to be either fixed or random.
The results of the section are obtained under the unique assumption of sub-
Gaussianity of the noise and no assumption on the design. We prove the following
sharp sparsity-oracle inequality for the solutions of both problems (2) and (3).

We consider the following assumption on the noise ε.

(Hnoise) There exists b > 0 such that, for all � ≥ 2,

E
[
|ε|�

]
≤ �!

2 σ2b�−2.

Assumption (Hnoise) is verified for instance by Gaussian random variables and
by compactly supported distributions such as the Rademacher distribution, the
Beta distribution or the uniform distribution.

Proposition 3.1. Suppose Assumption (Hnoise) is verified, let q > 0 and con-
sider that the parameter λ = (λ1, . . . , λp) is equal to

λj = rn

(
1
n

n∑
i=1

‖Xj
i ‖2

j

)1/2

, (6)

where rn satisfy the following constraint,

rn ≥ max
{

4σ
√

q ln(p) + ln(2)
n

, 8bq ln p + ln(2)
n
√
n

}
.
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With probability larger than 1 − p1−q, for all m ≥ 1,

∥∥β̂λ,m − β∗∥∥2
n
≤ min

β∈H(m),|J(β)|≤s

{∥∥β − β∗∥∥2
n

+ 9
4(κ̃(m)

n )2
∑

j∈J(β)

λ2
j

}
(7)

and

∥∥β̂λ,∞ − β∗∥∥2
n
≤ min

m≥1
min

β∈H(m),|J(β)|≤s

{∥∥β − β∗∥∥2
n

+ 9
4(κ̃(m)

n )2
∑

j∈J(β)

λ2
j+Rn,m

}
(8)

with

Rn,m :=
√ ∑

j∈J(β)

λ2
j

(∥∥β̂(⊥m)
λ,∞

∥∥ + 3
κ

(m)
n

∥∥β̂(⊥m)
λ,∞

∥∥
n

)
,

where β̂
(⊥m)

= β̂− β̂
(m)

the orthogonal projection onto (H(m))⊥ and using the
convention 1/0 = +∞ in the case where κ̃

(m)
n = 0.

The proof of this result can be found in Section A.2. It is based on the ones
of Bellec and Tsybakov [8, Proposition 5] and Lounici et al. [59, Theorem 3.1]
with some adjustments linked with the infinite-dimensional nature of the data.
In particular, we need a concentration inequality that remains true in Hilbert
spaces (see Proposition B.1).

In the case where dim(H) < +∞ (Example 1 in Section 2.3), we remark that
when m = d = dim(H) the problematic remaining term Rm,n disappears and
the result of Proposition 3.1 coïncides with

• the result of Bellec and Tsybakov [8, Proposition 5] in the case λj = λ for
all j = 1, . . . , p with the same constants,

• the result of Lounici et al. [59, Theorem 3.1] with better constants (9/4
instead of 96 in the term due to the penalty and 1 replaced by 2 in the
bias term).

However, in the case where dim(H) = +∞ we have to deal either with the
remaining term Rn,m for β̂λ,∞ or with the choice of an optimal dimension m

for β̂λ,m. Up to now, it seems difficult to know the exact convergence rate of
Rn,m. On the contrary, the choice of dimension m for the estimator β̂λ,m is
linked with a classical bias-variance compromise.

• When m is small the distance ‖β∗ − β‖n between β∗ and any β ∈ H(m)

is generally large.
• When m is sufficiently large, we know the distance ‖β∗ − β‖n is small

but the term 3
(κ(m)

n )2
∑

j∈J(β) λ
2
j may be very large since κ

(m)
n is close to 0

when m is close to rk(Γ̂).

To achieve the best trade-off between these two terms, a model selection
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procedure, in the spirit of Barron et al. [6], is introduced. We select

m̂ ∈ arg min
m=1,...,Nn

{
1
n

n∑
i=1

(
Yi − 〈β̂λ,m,Xi〉

)2 + κσ2m log(n)
n

}
, (9)

where κ > 0 is a constant which can be calibrated by a simulation study or se-
lected from the data by methods stemmed from slope heuristics (see e.g. Baudry
et al. [7]) and Nn ≤ n.

We obtain the following sparsity oracle inequality for the selected estimator
β̂λ,m̂.
Theorem 3.1. Let q > 0 and λ = (λ1, . . . , λp) chosen as in Equation (6) and
suppose Assumption (Hnoise) is verified. There exist a minimal value κmin and
a universal constant CMS > 0 such that, with probability larger than 1− p1−q −
CMS/n, if κ > κmin, for all η̃ > 0,∥∥β̂λ,m̂ − β∗∥∥2

n
≤ (1 + η̃) min

m=1,...,Nn

min
β∈H(m),|J(β)|≤s

{∥∥β − β∗∥∥2
n

+ 9
4(κ̃(m)

n (s))2
∑

j∈J(β)

λ2
j + C(η̃)κ log(n)σ2m

n

}
,

with C(η̃) = (η̃ + 2)/(η̃ + 1), κ is the penalty constant appearing in Eq. (9) and
κ̃

(m)
n is the restricted eigenvalue quantity of Eq. (4).
The proof of Theorem 3.1 can be found in Section A.3. It is based on the

control of an empirical process naturally associated with our problem given in
Lemma B.2. Both quantities κmin and CMS are universal constants.

Theorem 3.1 implies that, with probability larger than 1− p1−q −CMS/n, if
|J(β∗)| ≤ s,∥∥β̂λ,m̂ − β∗∥∥2

n
≤ (1 + η̃) min

m=1,...,min{Nn,Mn}

{∥∥β(∗,⊥m)∥∥2
n

+ 9
4(κ̃(m)

n (s))2
∑

j∈J(β∗)

λ2
j + C(η̃)κ log(n)m

n

}
, (10)

where, for all m, β(∗,⊥m) is the orthogonal projection of β∗ onto (H(m))⊥. The
upper-bound in Equation (10) is then the best compromise between two terms:

• an approximation term ‖β(∗,⊥m)‖2
n which decreases to 0 when m → +∞;

• a second term due to the penalization and the projection which increases
to +∞ when m → +∞.

4. Oracle-inequality for prediction error

The aim of this section is to prove sparsity-oracle inequalities for the theoretical
counterpart of the empirical prediction error and to derive convergence rates
under appropriate regularity assumptions.
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We suppose in this section that the design X1, . . . ,Xn is a sequence of i.i.d
centered random variables in H. The aim is to control the estimator in terms of
the norm associated to the prediction error of an estimator β̂ defined by

‖β∗ − β̂‖2
Γ = E

[(
E[Y |X] − 〈β̂,X〉

)2|(X1, Y1), . . . , (Xn, Yn)
]

=
〈
Γ
(
β∗ − β̂

)
,β∗ − β̂

〉
.

where (X, Y ) follows the same distribution as (X1, Y1) and is independent of the
sample and Γ : f ∈ H �→ E[〈f ,X1〉X1] is the (theoretical) covariance operator.

4.1. Moment assumptions and definitions

We first define a theoretical version of κ̃(m)
n ,

κ(m)(s) :=

min
{

‖δ‖Γ√∑
j∈J ‖δj‖2

j

, |J | ≤ s, δ = (δ1, . . . , δp) ∈ H(m)\{0},
∑
j /∈J

λj‖δj‖j ≤ 3
∑
j∈J

λj‖δj‖j
}

we also denote by (μk)k≥1 the eigenvalues of Γ sorted in decreasing order. The
motivation in the definition of the sequence (κm(s)) is that, in the random de-
sign case, the restricted eigenvalues sequence (κ̃(m)

n (s)) is a sequence of random
numbers. However, since they appear in the upper-bounds, we have to make
assumptions on their asymptotic properties to obtain convergence rates for our
estimator. Introducing their theoretical counterparts κm(s) also allows us to
obtain fully deterministic upper-bounds.

(HMom) There exists a constant b > 0 such that, for all � ≥ 1,

sup
j≥1

E

[
〈X,ϕ(j)〉2�

ṽ�j

]
≤ �!b�−1 where ṽj := Var

(〈
Xi,ϕ

(j)〉).
Assumption (HMom) is a classical assumption in the functional linear regres-

sion literature (see e.g. Comte and Johannes [30], Cardot et al. [22] for similar
assumptions). It is verified by bounded processes, indeed, if ‖X1‖ ≤ b a.s., using
Cauchy-Schwarz inequality

E
[〈
X,ϕ(j)〉2�] ≤ E

[
‖X‖2(�−1)〈Xi,ϕ

(j)〉2] ≤ b2(�−1)ṽj ,

and also by Gaussian processes.

4.2. Sparsity oracle inequality

Theorem 4.1. Suppose that assumptions (Hnoise), (H(1)
Mom) and (H(2)

Mom) are
verified. Suppose also that q > 0 and λ = (λ1, . . . , λp) verify the conditions of
Equation (6).
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Then, there exist CMS , cmax > 0 (depending only on tr(Γ) and ρ(Γ)) and
CMom > 0 (depending only on b) such that the following inequality holds with
probability larger than

1 − p1−q − (CMS + CMom)/n + 2n2 exp(−cmaxn),∥∥β̂λ,m̂ − β∗∥∥2
Γ ≤ C min

m=1,...,Nn

min
β∈H(m)

{
‖β − β∗‖2

Γ + 1
(κ(m)

n (s))2
∑

j∈J(β)

λ2
j

+ κ
logn
n

σ2m +
∥∥β∗ − β(∗,m)∥∥2

Γ + log(n)√
n

∑
k>m

ṽk
∥∥β∗ − β(∗,m)∥∥2

}
,

where C > 0 is a universal constant.

The proof is based on concentration inequalities of ratio of norms that can be
found in Proposition B.2 and that relies mainly on Bernstein’s inequality (for
real and functional random variables). It can be found in Section A.4

4.3. Convergence rates

From Theorem 4.1, we derive an upper-bound on the convergence rates of the
estimator β̂λ,m̂. For this we need some regularity assumptions on β∗ and Γ.

For a sequence v = (vj)j≥1 of positive real numbers, we define a weighted
norm as follows

‖f‖2
v :=

∑
k≥1

vk
〈
f ,ϕ(k)〉2

, f ∈ H.

We introduce two sequences b = (bk)k≥1 and v = (vk)k≥1 of positive real
numbers and R, c > 0 and note

Eb(R) := {β ∈ H, ‖β‖b ≤ R},

and
Nv(c) :=

{
T ∈ L(H), ‖Γ1/2f‖ ≤ c‖f‖v, for all f ∈ H

}
,

for the regularity classes of β∗ and Γ.
Let us explain the regularity assumptions on β and Γ in the three examples

of Section 2.3. In order to simplify the presentation, we replace in examples
2 and 3, for all j, the basis (ê(j)

k )k≥1 by its theoretical counterpart (e(j)
k )k≥1

which is the basis that diagonalizes Γj : fj ∈ Hj �→ E[〈fj , Xj
1〉jX

j
1 ] and write it

example 2’ (resp. example 3’) instead of example 2 (resp. example 3).
In example 1, since dim(H) < +∞, we can remark that, for any sequence

b ∈ (R∗
+)N\{0},

H =
⋃
R>0

Eb(R).

Similarly, it is easily seen that for all sequence v ∈ (R∗
+)N\{0}, there exists

c = ρ(Γ1/2)/minj{v1/2
j } > 0 such that Γ ∈ Nv(c).
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In example 2’, remark that, for all f = (f1, f2) ∈ H = L
2([0, 1]) × R,

‖f‖2
v = vrf

2
2 +

∑
k 
=r

vk
〈
f1, ê

(1)
k

〉2
.

Then, for all β=(β1, β2)∈Eb(R), there exists R′ > 0 such that
∑

k 
=r vk〈β, ê
(1)
k 〉2

≤ R′ (and conversely). The assumption is therefore an ellipsoidal regularity
assumption on the functional element of the vector β. This ellispoïdal regularity
assumption is very classical in non-parametric minimax estimation [75] and in
particular in a functional data framework [18, 30, 15]. Concerning the hypothesis
on Γ, we have the following characterization: there exists c > 0 such that Γ ∈
Nv(c) if and only if μ(1)

k � vk where (μ(1)
k )k≥1 is the sequence of eigenvalues of

the covariance operator Γ1, sorted in non increasing order.
Concerning the more complex example 3’, there is a link between the reg-

ularity of beta β and the regularity of its coordinates. Remark that, defining
ϕ(jp+k) = (e(j)

k 1�=j)�=1,...,p we have, for all β = (β1, . . . , βp) ∈ H,

‖β‖2
b =

p∑
j=1

∑
k≥1

bpj+k

〈
β,ϕ(pj+k)〉2 =

p∑
j=1

∑
k≥1

bpj+k

〈
βj , e

(j)
k

〉2
j
.

Then, if each coordinate βj is in an ellipsoïd of L
2([0, 1]) i.e. there exist

b1, . . . , bp > 0 and R > 0 such that,∑
k≥1

kbj
〈
βj , e

(j)
k

〉2
j
≤ R,

then, denoting, b = (kmaxj=1,...,p{bj})k≥1 we have

β ∈ Eb(pR).

Then, the index bj accounting for the regularity of the function βj , the vector
of functions β has the worst regularity of all its coordinates. Regarding the
regularity class Nv(c) a similar result may be obtained. We can see that, for all
f = (f1, . . . , fp) ∈ H,

‖Γ1/2f‖2 = Var
(
〈X, f〉

)
≤

p∑
j=1

Var
(〈
Xj , fj

〉
j

)
=

p∑
j=1

‖Γ1/2
j fj‖2

j ,

and finally, if there exists c > 0 such that μ
(j)
k ≤ cvjp+k

‖Γ1/2f‖2 =
p∑

j=1

∑
k≥1

μ
(j)
k

〈
fj , e

(j)
k

〉2
j
≤ c

∑
k≥1

vk
〈
f ,ϕ(k)〉2

meaning that Γ ∈ Nv(pc).
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Corollary 4.1 (Rates of convergence). We suppose that all assumptions of
Theorem 4.1 are verified and we choose, for all j = 1, . . . , p,

λj = Aσ

√
ln(n) + ln(p)

n

√√√√ 1
n

n∑
i=1

‖Xj
i ‖2

j ,

with A > 0 a numerical constant.
We also suppose that there exist γ ≥ 1/2 and b > 0, such that

vk = k−2γ and bk � k2b.

and that there exists γ(s) ≥ 1/2 such that

κ(m)(s) � m−2γ(s).

Then, there exist two quantities C,C ′ > 0, such that, if |J(β∗)| ≤ s, with
probability larger than 1 − C/n,

sup
β∗∈Eb(R),Γ∈Nv(c)

∥∥β̂λ,m̂ − β∗∥∥2
Γ ≤ C ′

(
s(ln(p) + ln(n)) + ln2(n)

n

) b+γ
b+γ(s)+γ

. (11)

The proof relies on the results of Theorem 4.1.
The polynomial decrease of the eigenvalues (μk)k≥1 of the operator Γ is

also a usual assumption. The Brownian bridge and the Brownian motion on
H = H1 = L

2([0, 1]) verify it with γ = 1.
Remark that the rate of convergence of the selected estimator β̂λ,m̂ is the

same as the one of β̂λ,m∗ where

m∗ ∼
(

n

s(ln(n) + ln(p)) + ln2(n)

) 1
2b+2γ(s)+2γ

has the order of the optimal value of m in the upper-bound of Equation (7).
We do not know however the exact order of the minimax rate when the

solution β∗ is sparse and if it can be achieved by either β̂λ,m or β̂λ,∞.

5. Computing the Lasso estimator

The purpose of this section is to explain how the estimators β̂λ,∞ and β̂λ,m̂ are
computed. We first describe an algorithm which allows to obtain an approxi-
mation of β̂λ,∞ by adapting to infinite dimension an existing finite dimensional
algorithm. We then explain, in Subsection 5.2, how we choose the parameter λ
(both for β̂λ,∞ and β̂λ,m̂) and in Subsection 5.3 how a projection space H(m)

can be chosen to construct the estimator β̂λ,m̂. Finally, we define a method to
reduce the usual bias of Lasso type estimators in Subsection 5.4.
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5.1. Computational algorithm

We propose the following algorithm to compute an approximation of β̂λ,∞.
It can also be adapted to obtain an approximation of β̂λ,m, even if, for this
estimator, the usual algorithms of vanilla group-Lasso can be used directly.

The idea is to update sequentially each coordinate β1, . . . ,βp in the spirit of
the glmnet algorithm [39] by solving

β
(k+1)
j ∈ arg min

βj∈Hj

{
1
n

n∑
i=1

(
Yi −

j−1∑
�=1

〈
β

(k+1)
� , X�

i

〉
�
−

〈
βj , X

j
i

〉
j

−
p∑

�=j+1

〈
β

(k)
� , X�

i

〉
�

)2

+ 2λj‖βj‖j

}
.

(12)

However, in the Group-Lasso context, this algorithm is based on the so-called
group-wise orthonormality condition, which, translated to our context, amounts
to suppose that the operators Γ̂j (or their restrictions Γ̂j|m) are all equal to
the identity. This assumption is not possible if dim(Hj) = +∞ since Γ̂j is a
finite-rank operator. Without this condition, Equation (12) does not admit a
closed-form solution and, hence, is not calculable. We then propose a variant of
the GPD (Groupwise-Majorization-Descent) algorithm, initially defined by Yang
and Zou [85] for Group-Lasso type optimization problems, without imposing the
group-wise orthonormality condition. The GPD algorithm is also based on the
principle of coordinate descent but the minimisation problem (12) is modified in
order to relax the group-wise orthonormality condition. We denote by β̂

(k)
the

value of the parameter at the end of iteration k. During iteration k+1, we update
sequentially each coordinate. Suppose that we have changed the j−1 first coor-
dinates, the current value of our estimator is (β̂(k+1)

1 , . . . , β̂
(k+1)
j−1 , β̂

(k)
j , . . . , β̂

(k)
p ).

We want to update the j-th coefficient and, ideally, we would like to minimise
the following criterion

γn(βj) := 1
n

n∑
i=1

(
Yi −

j−1∑
�=1

〈
β̂

(k+1)
� , X�

i

〉
�
−

〈
βj , X

j
i

〉
j
−

p∑
�=j+1

〈
β̂

(k)
� , X�

i

〉
�

)2

+ 2λj‖βj‖2
j .

We have

γn(βj) − γn
(
β̂

(k)
j

)
= − 2

n

n∑
i=1

(
Yi − Ỹ j,k

i

)〈
βj − β̂

(k)
j , Xj

i

〉
j
+ 1

n

n∑
i=1

〈
βj , X

j
i

〉2
j

− 1
n

n∑
i=1

〈
β̂

(k)
j , Xj

i

〉2
j

+ 2λj

(
‖βj‖j −

∥∥β̂(k)
j

∥∥
j

)
,
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with Ỹ j,k
i =

∑j−1
�=1〈β̂

(k+1)
� , X�

i 〉� +
∑p

�=j+1〈β̂
(k)
� , X�

i 〉�, and

1
n

n∑
i=1

〈
βj , X

j
i

〉2
j
− 1

n

n∑
i=1

〈
β̂

(k)
j , Xj

i

〉2
j

= 〈Γ̂jβj , βj〉j −
〈
Γ̂j β̂

(k)
j , β̂

(k)
j

〉
j

=
〈
Γ̂j

(
βj − β̂

(k)
j

)
, βj − β̂

(k)
j

〉
j
+ 2

〈
Γ̂j β̂

(k)
j , βj − β̂

(k)
j

〉
j
.

Hence

γn(βj) = γn
(
β̂

(k)
j

)
− 2

〈
Rj , βj − β̂

(k)
j

〉
j
+

〈
Γ̂j

(
βj − β̂

(k)
j

)
, βj − β̂

(k)
j

〉
j

+2λj

(
‖βj‖j −

∥∥β̂(k)
j

∥∥
j

)
with

Rj = 1
n

n∑
i=1

(
Yi − Ỹ j,k

i

)
Xj

i + Γ̂j β̂
(k)
j = 1

n

n∑
i=1

(
Yi − Ŷ j,k

i

)
Xj

i ,

where, for i = 1, . . . , n,

Ŷ j,k
i = Ỹ j,k

i +
〈
β̂

(k)
j , Xj

i

〉
j

=
j−1∑
�=1

〈
β̂

(k+1)
� , X�

i

〉
�
+

p∑
�=j

〈
β̂

(k)
� , X�

i

〉
�

is the current prediction of Yi. If Γ̂j is not the identity, we can see that the
minimisation of γn(βj) has no explicit solution. To circumvent the problem the
idea is to upper-bound the quantity〈

Γ̂j

(
βj − β̂

(k)
j

)
, βj − β̂

(k)
j

〉
j
≤ ρ(Γ̂j)

∥∥βj − β̂
(k)
j

∥∥2
j
≤ Nj

∥∥βj − β̂
(k)
j

∥∥2
j
,

where Nj := 1
n

∑n
i=1 ‖X

j
i ‖2

j is an upper-bound on the spectral radius ρ(Γ̂j) of
Γ̂j . Instead of minimising γn we minimise its upper-bound

γ̃n(βj) = −2〈Rj , βj〉j + Nj

∥∥βj − β̂
(k)
j

∥∥2
j

+ 2λj‖βj‖j .

The minimisation problem of γ̃n has an explicit solution

β̂
(k+1)
j =

(
β̂

(k)
j + Rj

Nj

)(
1 − λj

‖Nj β̂
(k)
j + Rj‖j

)
+
. (13)

After an initialisation step (β(0)
1 , . . . ,β(0)

p ), the updates on the estimated
coefficients are then given by Equation (13).

Remark that, for the case of Equation (2), the optimisation is done directly
in the space H and does not require the data to be projected. Consequently, it
avoids the loss of information and the computational cost due to the projection
of the data in a finite dimensional space, as well as, for data-driven basis such
as PCA or PLS, the computational cost of the calculation of the basis itself.
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5.2. Choice of smoothing parameters (λj)j=1,...,p

Following Proposition 3.1, we choose λj = λj(r) = r( 1
n

∑n
i=1 ‖X

j
i ‖2

j )1/2, for
all j = 1, . . . , p. This allows to restrain the problem of the calibration of the p
parameters λ1, . . . , λp to the calibration of only one parameter r. In this section,
we write λ(r) = (λ1(r), . . . , λp(r)) and β̂λ(r),m the corresponding minimiser of
criterion (3) if m < +∞ or (2) if m = +∞.

Drawing inspiration from Friedman et al. [39], we consider a pathwise coor-
dinate descent scheme starting from the following value of r,

rmax = max
j=1,...,p

{ ‖ 1
n

∑n
i=1 YiX

j
i ‖j√

1
n

∑n
i=1 ‖X

j
i ‖2

j

}
.

It can be proven that, taking r = rmax, the solution of the minimisation prob-
lem (2) is β̂λ(rmax) = (0, . . . , 0). Starting from this value of rmax, we choose a
grid decreasing from rmax to rmin = δrmax of nr values equally spaced in the log
scale i.e.

R =
{

exp
(

log(rmin) + (k − 1) log(rmax) − log(rmin)
nr − 1

)
, k = 1, . . . , nr

}
= {rk, k = 1, . . . , nr}.

For each k ∈ {1, . . . , nr − 1}, the minimisation of criterion (2) (resp. (3)) with
r = rk is then performed using the result of the minimisation of (2) (resp. (3))
with r = rk+1 as an initialisation. As pointed out by Friedman et al. [39],
this scheme leads to a more stable and faster algorithm. In practice, we chose
δ = 0.001 and nr = 100. However, when r is too small, the algorithm does
not always converge, in particular when the dimension is large or infinite. We
believe that it is linked with the fact that the optimisation problem (2) has no
solution as soon as dim(H) ≥ rk(Γ̂) and λ = 0.

In the case where the noise variance is known, Theorem 3.1 suggests the value

rn = 4σ
√(

p ln(q) + ln(2)
)
/n.

We recall that Equation (8) is obtained with probability 1− p1−q. Hence, if we
want a precision better than 1 − α, we take q = 1 − ln(α)/ ln(p). However, in
practice, the parameter σ2 is usually unknown. We propose three methods to
choose the parameter r among the grid R and compare them in the simulation
study.

5.2.1. V -fold cross-validation

We split the sample {(Yi,Xi), i = 1, . . . , n} into V subsamples {(Y (v)
i ,X(v)

i ), i ∈
Iv}, v = 1, . . . , V , where Iv =�(v−1)n/V �+1, . . . , �vn/V �, Y (v)

i = Y�(v−1)n/V �+i,
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X(v)
i = X�(v−1)n/V �+i and, for x ∈ R, �x� denotes the largest integer smaller

than x.
For all v ∈ V , i ∈ Iv, r ∈ R let

Ŷ
(v,r)
i =

〈
β̂

(−v)
λ(r),m,Xi

〉
be the prediction made with the estimator of β∗ minimising criterion (2) (or (3))
using only the data {(X(v′)

i , Y
(v′)
i ), i ∈ Iv′ , v �= v′}.

We choose the value of rn minimising the mean of the cross-validated error:

r̂(CV )
n ∈ arg min

r∈R

{
1
n

V∑
v=1

∑
i∈Iv

(
Ŷ

(v,r)
i − Y

(v)
i

)2
}
.

5.2.2. Estimation of σ2

We propose the following estimator of σ2:

σ̂2 = 1
n

n∑
i=1

(
Yi − 〈β̂λ(r̂min),m,Xi〉

)2
,

where r̂min is an element of r ∈ R.
In practice, we take the smallest element of R for which the algorithm con-

verges.
We set

r̂(σ̂2)
n := 4σ̂

√(
p ln(q) + ln(2)

)
/n with q = 1 − ln(5%)/ ln(p).

5.2.3. BIC criterion

We also consider the BIC criterion, as proposed by Wang et al. [79], Wang and
Leng [78],

r̂(BIC)
n ∈ arg min

r∈R

{
log

(
σ̂2
r

)
+ |J(β̂λ(r),m)| log(n)

n

}
.

The corresponding values of λ will be denoted respectively by λ̂
(CV )

:=
λ(r̂(CV )

n ), λ̂
(σ̂2)

:= λ(r̂(σ̂2)
n ) and λ̂

(BIC)
:= λ(r̂(BIC)

n ). The practical properties
of the three methods are compared in Section 6.

5.3. Construction of the projected estimator

The projected estimator relies mainly on the choice of the basis (ϕ(k))k≥1. To
verify the support stability condition Csupp, a possibility is to proceed as follows.

• Choose, for all j = 1, . . . , p an orthonormal basis of Hj , denoted by
(e(j)

k )1≤j≤dim(Hj).
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• Choose a bijection

σ : N\{0} → {(j, k) ∈ {1, . . . , p} × N\{0}, k ≤ dim(Hj)} ⊆ N
2

k �→ (σ1(k), σ2(k)).

• Define

ϕ(k) :=
(
0, . . . , 0, e(σ1(k))

σ2(k) , 0, . . . , 0
)

=
(
e
(σ1(k))
σ2(k) 1{j=σ1(k)}

)
1≤j≤p

.

There are many ways to choose the basis (e(j)
k )1≤k≤dim(Hj), j = 1, . . . , p as

well as the bijection σ, depending on the nature of the spaces H1, . . . ,Hp. We
give here some examples.

Example 1: fixed basis and fixed bijection σ Suppose H1 = · · · =
Hp∞ = L

2([0, 1]) and Hj are finite-dimensional for all j = p∞ + 1, . . . , p. For
j = 1, . . . , p∞ (e(j)

k )k≥1 is e.g. the Fourier basis

e
(j)
1 ≡ 1, e(j)

2k (t) =
√

2 cos(2πkt) and e
(j)
2k+1(t) =

√
2 sin(2πkt),

and, for j = p∞ +1, . . . , p, (e(j)
1 , . . . , e

(j)
dim(Hj)) is the canonical basis of the finite-

dimensional space Hj . Choosing the bijection σ(1) = (1, 1), σ(2) = (2, 1), . . . ,
σ(p) = (p, 1), σ(p + 1) = (1, 2), σ(p + 2) = (2, 2), . . . leads to the basis

ϕ(1) :=
(
e
(1)
1 , 0, . . . , 0

)
ϕ(2) :=

(
0, e(2)

1 , 0, . . . , 0
)

...

ϕ(p) :=
(
0, . . . , 0, e(p)

1
)

ϕ(p+1) :=
(
e
(1)
2 , 0, . . . , 0

)
ϕ(p+2) :=

(
0, e(2)

2 , 0, . . . , 0
)

...

Example 2: fixed basis with random bijection σ A disadvantage of the
previous example is that it gives particular importance to the first variables
which is not necessarily justified by the data. A possible way to circumvent the
problem is to define a random permutation σ. Using the same notations as in
Example 1, we can define e.g. σ as follows:

1. Choose σ1(1) uniformly in {1, . . . , p}.
2. If σ1(1) ≤ p∞, σ2(1) = 1, otherwise σ2(1) is chosen uniformly in

{1, . . . ,dim(Hj)}.
Proceed in a similar way for k = 2, 3, . . . respecting the constraint σ(k) �= σ(k′)
for k �= k′.
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Example 3: PCA basis with data-driven choice of the bijection σ

Let, for j = 1, . . . , p, (ê(j)
k )1≤k≤dim(Hj) the PCA basis of {Xj

i , i = 1, . . . , n}, that
is to say a basis of eigenfunctions (if Hj is a function space) or eigenvectors (if
dim(Hj) < +∞) of the covariance operator Γ̂j . We denote by (μ̂(j)

k )1≤k≤dim(Hj)
the corresponding eigenvalues. This naturally provides a data-driven choice of
the bijection σ the can be defined such that (μ̂(σ(k)

1 )
σ2(k) )k≥1 is sorted in decreasing

order. Since the elements of the PCA basis are data-dependent, but depend
only on the Xi’s, the results of Section 3 hold but not the results of Section 4.
Similar results for the PCA basis could be derived from the theory developed
in Mas and Ruymgaart [61], Brunel et al. [15] at the price of further theoretical
considerations which are out of the scope of the paper. We follow in Section 6
an approach based on the principal components basis (PCA basis). Other data-
driven basis such as the Partial Leasts Squares (PLS, Preda and Saporta [66],
Wold [81]) can also be considered in practice.

5.4. Tikhonov regularization step

It is well known that the classical Lasso estimator is biased [see e.g. 41, Section
4.2.5] because the �1 penalization favors too strongly solutions with small �1

norm. To remove it, one of the current method, called Gauss-Lasso, consists in
fitting a least-squares estimator on the sparse regression model constructed by
keeping only the coefficients which are on the support of the Lasso estimate.

This method is not directly applicable here because least-squares estimators
are not well-defined in infinite-dimensional contexts. Indeed, to compute a least-
squares estimator of the coefficients in the support Ĵ of the Lasso estimator, we
need to invert the covariance operator Γ̂Ĵ which is generally not invertible.

To circumvent the problem, we propose a ridge regression approach (also
named Tikhonov regularization below) on the support of the Lasso estimate. A
similar approach has been investigated by Liu and Yu [58] in high-dimensional
regression. They have shown the unbiasedness of the combination of Lasso and
ridge regression. More precisely, we consider the following minimisation problem

β̃ = arg min
β∈H

J(β̂)

{
1
n

n∑
i=1

(
Yi − 〈β,Xi〉

)2 + ρ‖β‖2

}
(14)

with ρ > 0 a parameter which can be selected e.g. by V -fold cross-validation.
We can see that

β̃ = (Γ̂Ĵ + ρI)−1Δ̂,

with Δ̂ := 1
n

∑n
i=1 YiΠĴXi, is an exact solution of problem (14) but need the

inversion of the operator Γ̂Ĵ+ρI to be calculated in practice. In order to compute
the solution of (14), we define below a stochastic gradient descent algorithm.
The algorithm is initialised at the solution β̃

(0)
= β̂

λ(r̂(σ̂2)
n ),m

(where m = ∞ or
m = m̂) of the Lasso and, at each iteration, we do

β̃
(k+1)

= β̃
(k)

− αkγ
′
n

(
β̃

(k))
, (15)
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Fig 1. Plot of the norm of [β̂λ,∞]j , for j = 1, . . . , 7 as a function of r.

where
γ′
n(β) = −2Δ̂ + 2(Γ̂Ĵ + ρI)β,

is the gradient of the criterion to minimise.
In practice we choose αk = α1k

−1 with α1 tuned in order to get convergence
at reasonable speed.

6. Numerical study

In this section, we study practical properties of both estimators β̂λ,∞ and β̂λ,m̂.
We first consider a context where the data are simulated and then an application
to the prediction of electricity consumption.

6.1. Simulation study

We test the algorithm on two examples:

Y =
〈
β∗,k,X

〉
+ ε, k = 1, 2,

where p = 7, H1 = H2 = H3 = L
2([0, 1]) equipped with its usual scalar product

〈f, g〉L2([0,1]) =
∫ 1
0 f(t)g(t)dt for all f, g, H4 = R

4 equipped with its scalar prod-
uct (a, b) = tab, H5 = H6 = H7 = R, ε ∼ N (0, σ2) with σ = 0.01. The size of
the sample is fixed to n = 1000. The definitions of β∗,1, β∗,2 and X are given
in Table 1.

6.2. Support recovery properties and parameter selection

In Figure 1, we plot the norm of [β̂λ,∞]j as a function of the parameter r.
We see that, for all values of r, we have Ĵ ⊆ J∗, and, if r is sufficiently small
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Table 1

Values of β∗,k and X.

Example 1 Example 2
j β∗,1

j β∗,2
j Xj

1 t �→ 10 cos(2πt) t �→ 10 cos(2πt) Brownian motion on [0, 1]

2 0 0 t �→ a + bt + c exp(t) + sin(dt) with
a ∼ U([−50, 50]), b ∼ U([−30, 30]), c ∼
([−5, 5]) and d ∼ U([−1, 1]), a, b, c and d
independent [37]

3 0 0 X2
2

4 0 (1,−1, 0, 3)t Z tA with Z = (Z1, . . . , Z4), Zk ∼
U([−1/2, 1/2]), k = 1, . . . , 4, A =⎛⎜⎜⎝
−1 0 1 2
3 −1 0 1
2 3 −1 0
1 2 3 −1

⎞⎟⎟⎠
5 0 0 N (0, 1)

6 0 0 ‖X2‖L2([0,1]) − E[‖X2‖L2([0,1])]

7 0 1 ‖log(|X1|)‖L2([0,1])−E[‖log(|X1|)‖L2([0,1])]

Table 2

Percentage of times where the true support has been recovered among 50 Monte-Carlo
replications of the estimates.

Example 1 Example 2

λ̂
(CV )

λ̂
(σ̂2)

λ̂
(BIC)

λ̂
(CV )

λ̂
(σ̂2)

λ̂
(BIC)

Support recovery of β̂
λ̂,∞ (%) 0 100 0 2 100 4

Support recovery of β̂
λ̂,m̂

(%) / 100 / / 100 /

Ĵ = J∗. We compare in Table 2 the percentage of time where the true model
has been recovered when the parameter r is selected with the three methods
described in Section 5.2. We see that the method based on the estimation of σ̂2

has very good support recovery performances, but both BIC and CV criterion
do not perform well. Since the CV criterion minimises an empirical version of the
prediction error, it tends to select a parameter for which the method has good
predictive performances. However, this is not necessarily associated with good
support recovery properties which could explain the bad performances of the
CV criterion in terms of support recovery. As a consequence, the method based
on the estimation of σ2 is the only one which is considered for the projected
estimator β̂λ,m̂ and in the sequel we will denote simply λ̂ = λ̂

(σ̂2)
.
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Fig 2. Plot of β∗
1 (solid black line) and 50 Monte-Carlo replications of [β̂λ,∞]1 (blue lines).

6.3. Lasso estimators

In Figure 2, we plot the first coordinate [β̂λ̂,∞]1 of Lasso estimator β̂λ̂,∞ (right)
and compare it with the true function β∗

1. We can see that the shape of both
functions are similar, but their norms are completely different. Hence, the Lasso
estimator recovers the true support but gives biased estimators of the coefficients
βj , j ∈ J∗.

For the projected estimator β̂λ̂,m̂, as recommended in Brunel et al. [15], we
set the value of the constant κ of criterion (9) to κ = 2. The selected dimensions
are plotted in Figure 3. We can see that the dimension selected is quite large
in general and that it is larger for model 2 than for model 1, which indicates
that the dimension selection criterion adapts to the complexity of the model.
The resulting estimators are plotted in Figure 4. A similar conclusion as for the
projection-free estimator can be drawn concerning the bias problem.

6.4. Final estimator

On Figure 5 we see that the Tikhonov regularization step reduces the bias in
both examples. We can compare it with the effect of Tikhonov regularization
step on the whole sample (i.e. without variable selection). It turns out that, in
the case where all the covariates are kept, the algorithm (15) converges very
slowly leading to poor estimates. The computation time of the estimators on
an iMac 3.06 GHz Intel Core 2 Duo – with a non optimal code – are given in
Table 3 for illustrative purposes.
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Fig 3. Bar charts of dimension selected m̂ over the 50 Monte Carlo replications for the
projected estimator β̂

λ̂,m̂
.

Fig 4. Plot of β∗
1 (solid black line) and 50 Monte-Carlo replications of [β̂

λ̂,m̂
]1 (blue lines).

6.5. Application to the prediction of energy use of appliances

The aim is to study appliances energy consumption – which is the main source
of energy consumption – in a low energy house situated in Stambruges (Bel-
gium). The data are energy consumption measurements of electrical appliances
(Appliances), light (light), temperature and humidity in the kitchen (T1 and
RH1), in the living room (T2 and RH2), in the laundry room (T3 and RH3), in
the office (T4 and RH4), in the bathroom (T5 and RH5), outside the building on
the north side (T6 and RH6), in the ironing room (T7 and RH7), in the teenagers’
room (T8 and RH8) and in the parents’ room (T9 and RH9) as well as the temper-
ature (T_out), the pressure (Press_mm_hg), the humidity (RH_out), wind speed
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Fig 5. Plot of β∗
1 (solid black line), the solution of the Tikhonov regularization on the support

of the Lasso estimator (dashed blue line) and on the whole support (dotted red line).

Table 3

Computation time of the estimators.
Lasso + Tikhonov Proj. Lasso + Tikhonov Tikhonov without Lasso

Example 1 7.5 min 9.3 min 36.0 min
Example 2 7.1 min 16.6 min 36.1 min

(Windspeed), visibility (Visibility) and dewpoint temperature (Tdewpoint)
from the weather station of Chievres, which is the weather station of the nearest
airport.

Each variable is measured every 10 minutes from 11th january, 2016, 5pm to
27th may, 2016, 6pm.

The data is freely available on UCI Machine Learning Repository (archive.
ics.uci.edu/ml/datasets/Appliances+energy+prediction) and has been
studied by Candanedo et al. [17]. We refer to this article for a precise description
of the experiment and a method to predict appliances energy consumption at a
given time from the measurement of the other variables.

Here, we focus on the prediction of the mean appliances energy consumption
of one day from the measure of each variable the day before (from midnight to
midnight). We then dispose of a dataset of size n = 136 with p = 24 functional
covariates. Our variable of interest is the logarithm of the mean appliances
consumption. In order to obtain better results, we divide the covariates by their
range. More precisely, the j-th curve of the i-th observation Xj

i is transformed
as follows

Xj
i (t) ←

Xj
i (t)

maxi′=1,...,n;t′ X
j
i′(t′) − mini′=1,...,n;t′ X

j
i′(t′)

.

Recall that usual standardisation techniques are not possible for infinite-dimen-
sional data since the covariance operator of each covariate is non invertible. The
choice of the above transformation allows us to obtain covariates of the same
order. All the variables are then centered.

We first plot the evolution of the norm of the coefficients as a function of r.
The results are shown in Figure 6.

http://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
http://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
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Fig 6. Plot of the norm of [β̂
λ̂,∞]j , for j = 1, . . . , 24 as a function of r.

Fig 7. Plot of the coefficients [β̂
λ̂,∞]j for j ∈ J(β̂

λ̂,∞) = {1, 7, 17} corresponding to the
coefficients associated to the appliance energy consumption curve (Appliances), temperature
of the laundry room (T3) and temperature of the teenage room (T8).

The variables selected by the Lasso criterion are the appliances energy con-
sumption (Appliances), temperature of the laundry room (T3) and temperature
of the teenage room (T8) curves. The corresponding slope functions are repre-
sented in Figure 7. We observe that all the curves take larger values at the end
of the day (after 8 pm). This indicates that the values of the three parameters
that influence the most the mean appliances energy consumption of the day
after are the one measured at the end of the day.

Concluding remarks

The objective of the paper was to study how the theoretical results obtained
for Lasso and Group-Lasso penalties can be adapted when the dimension of the
covariates is infinite, which is, in particular, the case of functional data.

Discussion on the theoretical results and open-questions As in finite
dimension, the main issue is to control the relationship between the empirical
norm naturally associated with the least squares criterion, related to the covari-
ance matrix of the covariates, and the norm inducing the sparsity appearing in
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the penalty. The main problem here is that, as we prove in Lemma 2.1, these
two norms cannot be equivalent in infinite dimension. The unprojected estima-
tor seems to have very good performance in practice, and the solution can be
computed easily. However, the rates of convergence of this estimator remains
an open question. On the other hand, we prove sharp oracle inequalities for the
projected estimator and we are able to define a data-based dimension selection
criterion that achieves the best trade-off between the bias and the variance term.
However, the rates of convergence of this estimator has not been proven to be
optimal. Intuitively, it is not, and it seems likely that an adaptive Lasso proce-
dure is needed to obtain an optimal rate in the minimax sense. These questions,
which seem complex questions to solve, are left for future work.

We could also consider an alternative restricted eigenvalues assumption as it
appears in Jiang et al. [47] and suppose that there exist two positive numbers
κ1 and κ2 such that

‖β‖n ≥ κ1‖β‖ − κ2‖β‖1, for all β ∈ H,

where we denote

‖β‖1 :=
p∑

j=1
‖βj‖j for β = (β1, . . . , βp) ∈ H.

This assumption does not suffer from the curse of dimensionality as the assump-
tion ARE(s) does. However, contrary to the finite-dimensional case, the control
of the probability that the assumption holds in the random design case is, to
our knowledge, still an open question.

Discussion on the numerical results From the simulation results, both
methods seem to estimate the support of the slope coefficient β∗ well. However,
the projected method, which gives us the most accurate theoretical results, is
quite difficult to implement in practice, due to the cost of constructing the
spaces H(m). On the contrary, the unprojected estimator seems to give inter-
esting results, both in the simulation study and in the application on real data.
However, the theoretical results (see for instance the remark after Corollary 4.1)
argue for the choice of a finite value of m.

Discussion on the linearity assumption The linearity assumption may be
too restrictive in some contexts. A natural way to consider a nonlinear regression
model is to assume that Y = m(X)+ε where m : H → R is an unknown regres-
sion function. However, it has been shown by Mas [60] that, without additional
structural assumptions on m, this model suffers from the curse of dimension-
ality which manifests itself here by a very low minimax rate of convergence,
typically logarithmic (see also the recent review by Ling and Vieu [57] and the
discussion in Geenens [40], Chagny and Roche [23]). This is also the case for
additive models

Y = m1
(
X1) + · · · + mp

(
Xp

)
+ ε,
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with mj unknown functions mj : Hj → R, which could be natural models to
consider the sparsity problem.

This is the reason why semi-parametric models have been introduced and
widely studied. In this category, we can mention for example the partially linear
models [50, 82],

Y =
〈
β1, X

1〉
1 + · · · +

〈
βp∞ , Xp∞

〉
p∞

+ m1
(
Xp∞+1) + · · · + mp

(
Xp

)
+ ε,

where we recall that Xp∞+1, . . . , Xp are scalar or vector covariates and
X1, . . . , Xp∞ are functional covariates. The approach developed in this paper
could be directly extended to this model by considering estimators by projection
of mj , as in Bunea et al. [16]. However, this introduces an additional bias that
needs to be handled in the theoretical results and requires careful selection of
the projection spaces and their dimensions.

This model has been generalized, for example, to the case of single-index
models (see Novo et al. [64] and references cited).

Y = g1
(〈
β1, X

1〉
1

)
+· · ·+gp∞

(〈
βp∞ , Xp∞

〉
p∞

)
+m1

(
Xp∞+1)+· · ·+mp

(
Xp

)
+ε,

where the gj ’s are unknown real functions. This type of model, poses theoretical
questions more difficult to solve than the previous one, because the coefficients
βj do not depend linearly on the observations.

Appendix A: Proofs

A.1. Proof of Lemma 2.1

Proof. Let J ⊂ {1, . . . , p} such that dim(HJ) > rk(Γ̂J). This implies that
dim(ker(Γ̂J)) ≥ 1 and then that there exists δJ = (δj)j∈J ∈ HJ\{0} such
that Γ̂JδJ = 0. Define now from δJ , δ = (δ1, . . . , δp) ∈ H such that δj = 0 if
j /∈ J .

Recall the definition of the operator

Γ̂J : HJ → HJ

β = (βj)j∈J �→
(

1
n

n∑
i=1

∑
j∈J

〈
βj , X

j
i

〉
j
Xj′

i

)
j′∈J

,

and observe that
‖δ‖2

n = 〈Γ̂δ, δ〉 = 0.

Moreover, δ satisfies the constraints

0 =
∑
j /∈J

λj‖δj‖j ≤ c0
∑
j∈J

λj‖δj‖j ,

for all choices of λ1, . . . , λp and for all c0 > 0 which ends the proof.
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A.2. Proof of Proposition 3.1

Proof. We prove only (8), Inequality (7) follows the same lines. The proof below
is largely inspired by the proof of Lounici et al. [59], using the improvement of
Bellec and Tsybakov [8] to obtain a sharp oracle inequality. First remark that
some algebra gives us the following result, true for all β ∈ H(m),∥∥β̂λ,∞ − β∗∥∥2

n
−

∥∥β − β∗∥∥2
n

= 2
n

n∑
i=1

〈
β̂λ,∞ − β∗,Xi

〉
〈β̂λ,∞ − β,Xi〉

−‖β̂λ,∞ − β‖2
n

(16)

We can easily verify that the function

γ : β ∈ H �→ 1
n

n∑
i=1

(
Yi − 〈β,Xi〉

)2 + 2
p∑

j=1
λj‖βj‖j = γ1(β) + γ2(β)

is a proper convex function. Hence, β̂λ,∞ is a minimum of γ over H if and only
if 0 is a subgradient ∂γ(β̂λ,∞) of γ at the point β̂λ,∞.

The function γ1 : β �→ 1
n

∑n
i=1(Yi − 〈β,Xi〉)2 is differentiable on H, with

gradient,(
− 2
n

n∑
i=1

(
Yi − 〈β, Xi〉

)
Xj

i

)
1≤j≤p

= − 2
n

n∑
i=1

(
Yi − 〈β, Xi〉

)
Xi

and γ2 : β �→ 2
∑p

j=1 λj‖βj‖j is differentiable on D := {β = (β1, . . . ,βp) ∈
H, ∀j = 1, . . . , p, βj �= 0} with gradient(

2λj
βj

‖βj‖j

)
1≤j≤p

.

Since, for all j = 1, . . . , p, the subdifferential of ‖ · ‖j at the point 0 is the closed
unit ball of Hj , the subdifferential of γ2 : β �→ 2

∑p
j=1 λj‖βj‖j at the point

β ∈ Dc, is the set

∂γ2(β)=
{
δ = (δ1, . . . , δp) ∈ H, δj = 2λj

βj

‖βj‖j
if βj �= 0, ‖δj‖j ≤ 2λj if βj =0

}
.

(17)
Hence, the subdifferential of γ at the point β = (β1, . . . ,βp) ∈ H is the set

∂γ(β) =
{
θ ∈ H, ∃δ ∈ ∂γ2(β), θ = − 2

n

n∑
i=1

(
Yi − 〈β,Xi〉

)
Xi + δ

}
.

Then, since 0 ∈ ∂γ(β̂λ,∞), we know that there exists δ̂ = (δ̂1, . . . , δ̂p) ∈
∂γ2(β̂λ,∞) such that

0 = − 2
n

n∑
i=1

(
Yi−〈β̂λ,∞,Xi〉

)
Xi+δ̂ = − 2

n

n∑
i=1

(〈
β∗,Xi

〉
+εi−〈β̂λ,∞,Xi〉

)
Xi+δ̂.
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Then
2
n

n∑
i=1

〈
β̂λ,∞ − β∗,Xi

〉
Xi = 2

n

n∑
i=1

εiXi − δ̂

which implies

2
n

n∑
i=1

〈
β̂λ,∞−β∗,Xi

〉
〈β̂λ,∞−β,Xi〉 = 2

n

n∑
i=1

εi〈β̂λ,∞−β,Xi〉+ 〈β− β̂λ,∞, δ̂〉.

(18)
Now remark that, denoting [β̂λ,∞]j the j-th coordinate of β̂λ,∞ we have, by
definition of δ̂,

〈β − β̂λ,∞, δ̂〉 =
p∑

j=1

〈
βj − [β̂λ,∞]j , δ̂j

〉
j

=
p∑

j=1
〈βj , δ̂j〉j − 2λj

∥∥[β̂λ,∞]j
∥∥
j

≤ 2
p∑

j=1
λj

(
‖βj‖j −

∥∥[β̂λ,∞]j
∥∥
j

)
.

(19)

Then inserting (18) and (19) in (16), we get∥∥β̂λ,∞ − β∗∥∥2
n
−

∥∥β − β∗∥∥2
n

≤ 2
n

n∑
i=1

εi〈β − β̂λ,∞,Xi〉 + 2
p∑

j=1
λj

(
‖βj‖j −

∥∥[β̂λ,∞]j
∥∥
j

)
− ‖β̂λ,∞ − β‖2

n.

(20)

Then the key result proven by Bellec et al. [10, Lemma A.2] in a finite-dimen-
sional context also holds in our infinite-dimensional context.

We now deal with the term involving the εi’s. Remark that, writing β̂λ,∞ =

β̂
(m)
λ,∞+β̂

(⊥m)
λ,∞ where β̂

(m)
λ,∞ denotes the orthogonal projection of β̂λ,∞ onto H(m)

and β̂
(⊥m)
λ,∞ denotes the orthogonal projection of β̂λ,∞ onto (H(m))⊥,

1
n

n∑
i=1

εi〈β − β̂λ,∞,Xi〉 =
〈
β − β̂λ,∞,

1
n

n∑
i=1

εiXi

〉

=
〈
β − β̂

(m)
λ,∞,

1
n

n∑
i=1

εiXi

〉
+

〈
β̂

(⊥m)
λ,∞ ,− 1

n

n∑
i=1

εiXi

〉

≤
p∑

j=1

〈
βj −

[
β̂

(m)
λ,∞

]
j
,
1
n

n∑
i=1

εiX
j
i

〉
j

+
∥∥β̂(⊥m)

λ,∞
∥∥∥∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥∥
≤

p∑
j=1

∥∥[β̂(m)
λ,∞

]
j
− βj

∥∥
j

∥∥∥∥∥ 1
n

n∑
i=1

εiX
j
i

∥∥∥∥∥
j

+
∥∥β̂(⊥m)

λ,∞
∥∥∥∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥∥.
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Let A =
⋂p

j=1 Aj , with

Aj =
{∥∥∥∥∥ 1

n

n∑
i=1

εiX
j
i

∥∥∥∥∥
j

< λj/2
}
.

On the set A,

2
n

n∑
i=1

εi〈β − β̂λ,∞,Xi〉 ≤
p∑

j=1
λj

∥∥[β̂(m)
λ,∞

]
j
− βj

∥∥
j
+

∥∥β̂(⊥m)
λ,∞

∥∥√√√√ p∑
j=1

λ2
j . (21)

Since the projector Πm verifies Csupp,∥∥[β̂(m)
λ,∞

]
j

∥∥
j

=
∥∥πjΠmβ̂

(m)
λ,∞

∥∥ =
∥∥Πmπj β̂

(m)
λ,∞

∥∥ ≤ ‖πj β̂λ,∞‖ =
∥∥[β̂λ,∞]j

∥∥
j

and gathering equations (20) and (21),

∥∥β̂λ,∞ − β∗∥∥2
n
−

∥∥β − β∗∥∥2
n

+
p∑

j=1
λj

∥∥[β̂(m)
λ,∞

]
j
− βj

∥∥
j

≤ 2
p∑

j=1
λj

(∥∥[β̂(m)
λ,∞

]
j
− βj

∥∥
j
+ ‖βj‖j −

∥∥[β̂λ,∞]j
∥∥
j

)

− ‖β̂λ,∞ − β‖2
n +

∥∥β̂(⊥m)
λ,∞

∥∥√√√√ p∑
j=1

λ2
j

≤ 2
p∑

j=1
λj

(∥∥[β̂(m)
λ,∞

]
j
− βj

∥∥
j
+ ‖βj‖j −

∥∥[β̂(m)
λ,∞

]
j

∥∥
j

)

− ‖β̂λ,∞ − β‖2
n +

∥∥β̂(⊥m)
λ,∞

∥∥√√√√ p∑
j=1

λ2
j

≤ 4
∑

j∈J(β)

λj

∥∥[β̂(m)
λ,∞

]
j
− βj

∥∥
j
− ‖β̂λ,∞ − β‖2

n +
∥∥β̂(⊥m)

λ,∞
∥∥√√√√ p∑

j=1
λ2
j ,

since ‖βj‖j − ‖[β̂(m)
λ,∞]j‖j ≤ ‖βj − [β̂(m)

λ,∞]j‖j . Finally∥∥β̂λ,∞ − β∗∥∥2
n
−

∥∥β − β∗∥∥2
n
≤ 3

∑
j∈J(β)

λj

∥∥[β̂(m)
λ,∞

]
j
− βj

∥∥
j

−
∑

j /∈J(β)

λj

∥∥[β̂(m)
λ,∞

]
j
− βj

∥∥
j
− ‖β̂λ,∞ − β‖2

n +
∥∥β̂(⊥m)

λ,∞
∥∥√√√√ p∑

j=1
λ2
j

(22)

We consider now two cases:
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1. 3
∑

j∈J(β) λj‖[β̂(m)
λ,∞]j − βj‖j ≥

∑
j /∈J(β) λj‖[β̂(m)

λ,∞]j − βj‖j .
2. 3

∑
j∈J(β) λj‖[β̂(m)

λ,∞]j − βj‖j <
∑

j /∈J(β) λj‖[β̂(m)
λ,∞]j − βj‖j .

First remark that in case 2., the result is obvious. Now, in case 1., we have,
by definition of κ̃(m)

n (s),

κ̃(m)
n (s) ≤

‖β̂
(m)
λ,∞ − β‖n√∑

j∈J(β) ‖[β̂
(m)
λ,∞]j − βj‖2

j

or equivalently√ ∑
j∈J(β)

∥∥[β̂(m)
λ,∞

]
j
− βj

∥∥2
j
≤ 1

κ̃
(m)
n (s)

∥∥β̂(m)
λ,∞ − β

∥∥
n
.

Then, using twice the fact that, for all x, y ∈ R, 3xy ≤ x2 + (9/4)y2, Equa-
tion (22) becomes,∥∥β̂λ,∞ − β∗∥∥2

n
−

∥∥β − β∗∥∥2
n

≤ 3
√ ∑

j∈J(β)

λ2
j

√ ∑
j∈J(β)

∥∥[β̂(m)
λ,∞

]
j
− βj

∥∥2
j
− ‖β̂λ,∞ − β‖2

n

+
∥∥β̂(⊥m)

λ,∞
∥∥√√√√ p∑

j=1
λ2
j ,

≤ 3
κ̃

(m)
n (s)

√ ∑
j∈J(β)

λ2
j

∥∥β̂(m)
λ,∞ − β

∥∥
n
− ‖β̂λ,∞ − β‖2

n

+
∥∥β̂(⊥m)

λ,∞
∥∥√√√√ p∑

j=1
λ2
j ,

≤ 3
κ̃

(m)
n (s)

√ ∑
j∈J(β)

λ2
j

(∥∥β̂λ,∞ − β∗∥∥
n

+
∥∥β̂(⊥m)

λ,∞
∥∥
n

)

− ‖β̂λ,∞ − β‖2
n +

∥∥β̂(⊥m)
λ,∞

∥∥√√√√ p∑
j=1

λ2
j

≤
∥∥β̂λ,∞ − β∗∥∥2

n
+ 9

4(κ̃(m)
n (s))2

∑
j∈J(β)

λ2
j − ‖β̂λ,∞ − β‖2

n + Rn,m,

where we recall that

Rn,m =
(∥∥β̂(⊥m)

λ,∞
∥∥ + 3

κ̃
(m)
n (s)

∥∥β̂(⊥m)
λ,∞

∥∥
n

)√√√√ p∑
j=1

λ2
j ,

which, combined with Lemma B.1, implies the expected result.
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A.3. Proof of Theorem 3.1

Proof. By definition of m̂, we know that, for all m = 1, . . . , Nn,

1
n

n∑
i=1

(
Yi − 〈β̂λ,m̂,Xi〉

)2 + κσ2 m̂

n
log(n) ≤ 1

n

n∑
i=1

(
Yi − 〈β̂λ,m,Xi〉

)2

+ κσ2m

n
log(n).

Now, we decompose the quantity, for all β ∈ H,

1
n

n∑
i=1

(
Yi − 〈β,Xi〉

)2 = 1
n

n∑
i=1

(〈
β∗ − β,Xi

〉
+ εi

)2

=
∥∥β∗ − β

∥∥2
n

+ 2
n

n∑
i=1

εi
〈
β∗ − β,Xi

〉
+ 1

n

n∑
i=1

ε2
i .

and we obtain∥∥β̂λ,m̂ − β∗∥∥2
n
≤

∥∥β̂λ,m − β∗∥∥2
n

+ 2
n

n∑
i=1

εi〈β̂λ,m̂ − β̂λ,m,Xi〉

+ κσ2m

n
log(n) − κσ2 m̂

n
log(n). (23)

Let 1/2 > η > 0, since 2xy ≤ ηx2 + η−1y2 for all x, y ∈ R,

2
n

n∑
i=1

εi〈β̂λ,m̂ − β̂λ,m,Xi〉 ≤ η‖β̂λ,m̂ − β̂λ,m‖2
n + η−1ν2

n

(
β̂λ,m̂ − β̂λ,m

‖β̂λ,m̂ − β̂λ,m‖n

)
,

where ν2
n(·) := 1

n

∑n
i=1 εi〈·, Xi〉. Now, we define the set:

Bm :=
Nn⋂

m′=1

{
sup

f∈H(max{m,m′}),‖f‖n=1
ν2
n(f) < κ

2η−1 log(n)σ2 max{m,m′}
n

}
. (24)

On the set Bm, since β̂λ,m̂ − β̂λ,m ∈ H(max{m,m̂}),

2
n

n∑
i=1

εi〈β̂λ,m̂ − β̂λ,m,Xi〉 ≤ η‖β̂λ,m̂ − β̂λ,m‖2
n (25)

+ η−1 sup
f∈H(max{m,m̂}),‖f‖2

n=1
ν2
n(f)

≤ 2η
∥∥β̂λ,m̂ − β∗∥∥2

n
+ 2η

∥∥β̂λ,m − β∗∥∥2
n

(26)

+ κ

2 log(n)σ2 max{m, m̂}
n

. (27)

Gathering equations (23) and (27), we get, on the set A ∩ Bm,

(1 − 2η)
∥∥β̂λ,m̂ − β∗∥∥2

n
≤ (1 + 2η)

∥∥β̂λ,m − β∗∥∥2
n
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+ κ

2 log(n)σ2 max{m, m̂}
n

+ κ log(n)σ2m

n
− κ log(n)σ2 m̂

n
.

≤ (1 + 2η)
∥∥β̂λ,m − β∗∥∥2

n
+ 2κ log(n)σ2m

n
.

and the quantity ‖β̂λ,m−β∗‖2
n is upper-bounded in Proposition 3.1. We obtain

the expected result with η̃ = (1 + 2η)/(1 − 2η) − 1 > 0.
To conclude, since it has already been proven in Lemma B.1 that P(Ac) ≤

p1−q, it remains to prove that there exists a constant CMS > 0 such that

P
(
∪m
m=1Bc

m

)
≤ CMS

n
.

We have

P

(
m⋃

m=1
Bc
m

)

≤
Nn∑
m=1

Nn∑
m′=1

P

(
sup

f∈H(max{m,m′}),‖f‖n=1
ν2
n(f) ≥ κ

2η−1 log(n)σ2 max{m,m′}
n

)
.

We apply Lemma B.2 with

t =
(

κ

2η−1 log(n) − 1
)
σ2 max{m,m′}

n
≤ κ

6 log(n)σ2 max{m,m′}
n

and obtain

P

(
sup

f∈H(max{m,m′}),‖f‖n=1
ν2
n(f) ≥ κ

6 log(n)σ2 max{m,m′}
n

)
≤ exp

(
−2κ log(n)max

{
m,m′}min

{
κ log(n)

6912 ,
1

1536

})
.

Suppose that κ log(n) > 6912/1536 = 9/2 (the other case could be treated
similarly), we have, since 1 ≤ m ≤ Nn ≤ n, and by bounding the second sum
by an integral

Nn∑
m=1

Nn∑
m′=1

P

(
sup

f∈H(max{m,m′}),‖f‖n=1
ν2
n(f) ≥ κ

6 log(n)σ2 max{m,m′}
n

)

≤
Nn∑
m=1

(
m∑

m′=1
exp

(
−κ log(n)m

768

)
+

Nn∑
m′=m+1

exp
(
−κ log(n)m′

768

))

≤ Nn n exp
(
−κ log(n)

768

)
+ 768Nn

κ log(n) exp
(
−κ log(n)

768

)
.
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Now choosing κ > 2304 we know that there exists a universal constant CMS > 0
such that

P
(
∪Nn
m=1Bc

m

)
≤ CMS/n. (28)

Note that the minimal value 2304 for κ is purely theoretical and does not
correspond to a value of κ which can reasonably be used in practice.

A.4. Proof of Theorem 4.1

Proof. In the proof, the notation C denotes a universal constant that may be
different from line to line.

Let A the set defined in the statement of Proposition 3.1 and B =
⋂Nn

m=1 Bm

the set appearing in the proof of Theorem 3.1 (see Equation (24) p. 3391).
Following the proof of Theorem 3.1, we know that, on the set A ∩ B, for all
m = 1, . . . , Nn,Mn, for all β ∈ H(m) such that J(β) ≤ s, for all η̃ > 0,∥∥β̂λ,m̂−β∗∥∥2

n
≤ (1+ η̃)‖β−β∗‖2

n+ 9
4(κ̃(m)

n (s))2
∑

j∈J(β)

λ2
j +2κ log(n)σ2m

n
, (29)

since C(η̃) ≤ 2. From Lemma B.1 and (28) we have

P
(
Ac

)
≤ p1−q and P

(
Bc

)
≤ CMS

n
.

We define now the set C = C1 ∩ C2 where

C1 :=
{

sup
β∈H(Nn)\{0}

∣∣∣∣‖β‖2
n

‖β‖2
Γ
− 1

∣∣∣∣ ≤ 1
2

}
C2 :=

{
sup

β∈H(Nn)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ
‖β‖2

∣∣∣∣ ≤ 1
2

}
.

and prove that

P
(
Cc

)
≤ 2n2 exp(−cmaxn), cmax = max

{(
4btr(Γ)

(
8tr(Γ) + 1/2

))−1; r2
Γ/32b

}
,

(30)

where rΓ > 0 depends only on Γ and is defined below.
We apply Proposition B.2 and remark that

Nn∑
k=1

ṽk =
Nn∑
k=1

E
[〈
ϕ(k),X1

〉2] =
Nn∑
k=1

〈
Γϕ(k),ϕ(k)〉 = tr(Γ|Nn

) ≤ tr(Γ). (31)

to bound

P
(
Cc
1
)

= P

(
sup

β∈H(Nn)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ
‖β‖2

Γ

∣∣∣∣ > 1
2

)
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≤ 2N2
n exp

(
−

nρ2(Γ|Nn
)

4b
∑Nn

j=1 ṽj(8
∑Nn

j=1 ṽj + ρ(Γ|Nn )
2 )

)

≤ 2N2
n exp

(
−

nρ2(Γ|Nn
)

32btr2(Γ|Nn
)

)
. (32)

We remark that

ρ(Γ|m) = sup
f∈H(Nn)\{0}

‖Γ|Nn
f‖

‖f‖ −→
m→+∞

ρ(Γ)

and

tr(Γ|m) =
Nn∑
k=1

〈
Γϕ(k),ϕ(k)〉 −→

m→+∞
tr(Γ),

then
ρ(Γ|m)
tr(Γ|m) −→

m→+∞
ρ(Γ)
tr(Γ) > 0,

and there exists a constant rΓ > 0 such that, for all m,

ρ(Γ|m)
tr(Γ|m) ≥ rΓ.

Then from Equation (32), and the fact that Nn ≤ n, we get that

P
(
Cc
1
)
≤ 4n2 exp

(
−rΓn

16b

)
.

We turn now to the upper-bound on the probability of Cc
2 and apply again

Proposition B.2 and (31) to obtain

P

(
sup

β∈H(Nn)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ
‖β‖2

∣∣∣∣ > 1
2

)
≤ 2N2

n exp
(
− n/4
b
∑Nn

j=1 ṽj(8
∑Nn

j=1 ṽj + 1
2 )

)
≤ 2N2

n exp
(
− n

4btr(Γ)(8tr(Γ) + 1
2 )

)
.

On the set A ∩ B ∩ C, we have then, for all m = 1, . . . , Nn,∥∥β̂λ,m̂ − β∗∥∥2
Γ ≤ 2

∥∥β̂λ,m̂ − β(∗,m)∥∥2
Γ + 2

∥∥β(∗,m) − β∗∥∥2
Γ

≤ 4
∥∥β̂λ,m̂ − β(∗,m)∥∥2

n
+ 2

∥∥β(∗,m) − β∗∥∥2
Γ

From (29), we get

∥∥β̂λ,m̂ − β∗∥∥2
Γ ≤ C

(
‖β − β∗‖2

n + 1
(κ̃(m)

n (s))2
∑

j∈J(β)

λ2
j + κ

logn
n

σ2m
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+
∥∥β∗ − β(∗,m)∥∥2

Γ

)
,

for a constant C > 0. Now remark that, on the set C1∥∥β(∗,m) − β
∥∥2
n
≤ 3

2
∥∥β(∗,m) − β

∥∥2
Γ

and, for all J ⊂ {1, . . . , p}, for all δ ∈ H(m), such that
∑

j∈J ‖δj‖2
j �= 0,

1
2

‖δ‖2
Γ√∑

j∈J ‖δj‖2
j

≤ ‖δ‖2
n√∑

j∈J ‖δj‖2
j

≤ 3
2

‖δ‖2
Γ√∑

j∈J ‖δj‖2
j

,

which implies
1
2κ

(m)(s) ≤ κ̃(m)
n (s) ≤ 3

2κ
(m)(s).

We obtain∥∥β̂λ,m̂ − β∗∥∥2
Γ ≤ C min

m=1,...,Nn

min
β∈H(m),|J(β)|≤s

{
‖β − β∗‖2

Γ

+ 1
(κ(m)

n (s))2
∑

j∈J(β)

λ2
j + κ

logn
n

σ2m +
∥∥β∗ − β(∗,m)∥∥2

Γ

+
∥∥β∗ − β(∗,m)∥∥2

n

}
. (33)

Now, suppose (HMom) is verified and let ζn,m = log(n)√
n

‖β(∗,⊥m)‖2 ∑
k>m ṽm and

D :=
Nn⋂
m=1

{
‖β(∗,⊥m)‖2

n ≤ ‖β(∗,⊥m)‖2
Γ + ζn,m

}
,

where we recall the notation β(∗,⊥m) = β∗ − β(∗,m). We give now an upper-
bound on P(Dc) which completes the proof. Remark that

‖β(∗,⊥m)‖2
n = 1

n

n∑
i=1

〈
β(∗,⊥m),Xi

〉2
,

and that, for all i = 1, . . . , n,

E
[〈
β(∗,⊥m),Xi

〉2] = ‖β(∗,⊥m)‖2
Γ,

we can rewrite

D :=
Nn⋂
m=1

{
1
n

n∑
i=1

(〈
β(∗,⊥m),Xi

〉2 − E
[〈
β(∗,⊥m),X1

〉2]) ≤ ζn,m

}
.
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Hence

P
(
Dc

)
≤

Nn∑
m=1

P

(
1
n

n∑
i=1

(〈
β(∗,⊥m),Xi

〉2 − E
[〈
β(∗,⊥m),X1

〉2])
> ζn,m

)
.

We upper-bound the quantities above using Bernstein’s inequality (Proposi-
tion B.1, p. 3397).

We have, for � ≥ 2, using Cauchy-Schwarz’s inequality,

E
[〈
β(∗,⊥m),Xi

〉2�] = E

[(∑
k>m

〈
β(∗,⊥m),ϕ(k)〉〈Xi,ϕ

(k)〉)2�]

≤
(∑

k>m

〈
β(∗,⊥m),ϕ(k)〉2

)�

E

[(∑
k>m

〈
Xi,ϕ

(k)〉2
)�]

≤ ‖β(∗,⊥m)‖2�
∑

k1,...,k�>m

E
[〈

Xi,ϕ
(k1)

〉2 · · ·
〈
Xi,ϕ

(k�)
〉2]
(34)

Using iteratively Hölder’s Inequality and Assumption (HMom), we obtain the
following bound

E
[〈

Xi,ϕ
(k1)

〉2
. . .

〈
Xi,ϕ

(k�)
〉2] ≤ E

[〈
Xi,ϕ

(k1)
〉2�]1/�

. . .E
[〈

Xi,ϕ
(k�)

〉2�]1/�
,

≤ ṽk1 . . . ṽk�
�!b�−1. (35)

Injecting (35) into (34) we obtain finally

E
[〈
β(∗,⊥m),Xi

〉2�] ≤ �!b�−1‖β(∗,⊥m)‖2�
∑

k1,...,k�>m

ṽk1 . . . ṽk�

≤ �!b�−1‖β(∗,⊥m)‖2�
(∑

k>m

ṽk

)�

. (36)

Now from Proposition B.1, we get

P
(
Dc

)
≤ Nn exp

(
−

nζ2
n,m

8b‖β(∗,⊥m)‖4(
∑

k>m ṽk)2 + 2bζn,m‖β(∗,⊥m)‖2 ∑
k>m ṽk

)
.

We get, since Nn ≤ n,

P
(
Dc

n

)
≤ Nn exp

(
− log2(n)

8b + 2 log(n)√
n

b

)
≤ CMom

n
,

with CMom > 0 depending only on b.
Then, on A ∩ B ∩ C ∩ D, (33) becomes, for all m = 1, . . . , Nn,∥∥β̂λ,m̂ − β∗∥∥2

Γ ≤ C

(
‖β − β∗‖2

Γ + 1
(κ(m)

n (s))2
∑

j∈J(β)

λ2
j + κ

logn
n

σ2m

+
∥∥β(∗,⊥m)∥∥2

Γ + ζn,m

)
.
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Appendix B: Concentration inequalities and control of empirical
processes

Proposition B.1 (Bernstein type inequality in Hilbert spaces [14, Theorem
2.5, p. 49]). Let Ξ1, . . . ,Ξn be independent random variables taking values in a
separable Hilbert space (H, ‖·‖). Suppose there exists b = b(n) and c = c(n) such
that

n∑
i=1

E
[
‖Ξi‖�

]
≤ �!

2 c2b�−2, � ≥ 2,

then, for all t > 0,

P

(∥∥∥∥∥
n∑

i=1
Ξi − E[Ξ1]

∥∥∥∥∥ ≥ t

)
≤ 2 exp

(
− t2

4c2 + 2bt

)
≤ 2 max

{
e−

t2
8c2 ; e− t

4b
}
.

Proposition B.1 is a direct adaptation of Bosq (2000) [14], Theorem 2.5, p. 49.

Lemma B.1. Suppose Assumption (Hnoise) is verified and that λ = (λ1, . . . , λp)
is chosen as in (6). Then,

P
(
Ac

)
≤ p1−q.

Proof of Lemma B.1. The proof is based on a Bernstein type inequality for
Hilbert-valued processes (Proposition B.1, p. 3397). Let Ξi,j = εiX

j
i , the se-

quence Ξ1,j , . . . ,Ξn,j is, conditionally to X1, . . . ,Xn, a sequence of indepen-
dent random variables taking values in the Hilbert space Hj . Now Assumption
(Hnoise) implies that, for all � ≥ 2, by independence of Xj

i with εi,
n∑

i=1
EX

[
‖Ξi,j‖�j

]
=

n∑
i=1

‖Xj
i ‖�E

[
|εi|�

]
≤

n∑
i=1

‖Xj
i ‖�

�!
2 σ2b�−2

≤ �!
2 σ2b�−2

(
n∑

i=1
‖Xj

i ‖2

)�/2

.

Applying Proposition B.1 and the inequality exp(−a/(b + c)) ≤ max{e−a/(2b);
e−a/(2c)}, true for all a, b, c > 0, gives us the following bound

P
(
Ac

j

)
= P

(∥∥∥∥∥
n∑

i=1
Ξi,j

∥∥∥∥∥
j

≥ nλj

2

)

≤ 2 max
{

exp
(
−

λ2
jn

2

16σ2Sj

)
; exp

(
− λjn

8b
√
Sj

)}
≤ p−q,

for λj satisfying (6) and Sj =
∑n

i=1 ‖X
j
i ‖2

j .

Lemma B.2. For all t > 0, for all m,

PX

(
sup

f∈H(m),‖f‖n=1

(
1
n

n∑
i=1

εi〈f ,Xi〉
)2

≥ σ2m

n
+ t

)
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≤ exp
(
−min

{
n2t2

1536σ4m
; nt

512σ2

})
,

where PX(·) := P(·|X1, . . . ,Xn) is the conditional probability given X1, . . . ,Xn.

Proof of Lemma B.2. We follow the ideas of Baraud [5]. Let m be fixed, and

Sm :=
{
x = (x1, . . . , xn)t ∈ R

n,∃f ∈ H
(m),∀i, xi = 〈f ,Xi〉

}
.

We known that Sm is a linear subspace of Rn and that

sup
f∈H(m),‖f‖n=1

1
n

n∑
i=1

εi〈f ,Xi〉 = 1
n

sup
x∈Sm,xtx=n

εtx = 1√
n

sup
x∈Sm,xtx=1

εtx

= 1√
n

√
εtPmε,

where ε = (ε1, . . . , εn)t and Pm is the matrix of the orthogonal projection onto
Sm. This gives us

PX

(
sup

f∈H(m),‖f‖n=1

(
1
n

n∑
i=1

εi〈f ,Xi〉
)2

≥ σ2m

n
+ t

)
= PX

(
εtPmε ≥ σ2m + nt

)
.

We apply now Bellec [9, Theorem 3], with A = Pm and obtain the expected
results, since

E
[
εtPmε

]
= σ2 tr(Pm) = σ2m,

and since the Frobenius norm ‖ · ‖F of Pm is equal to ‖Pm‖F =
√

tr(Πt
mΠm) =√

m and its matrix norm ‖Pm‖2 = 1.

Proposition B.2 (Norm equivalence in finite subspaces). Let X1, . . . ,Xn be
i.i.d copies of a random variable X verifying Assumption (HMom).Then, for all
t > 0, for all weights w = (w1, . . . , wm) ∈]0,+∞[m,

P

(
sup

β∈H(m)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ
‖β‖2

w

∣∣∣∣> t

)
≤ 2m2 exp

(
− nt2

b
∑m

j=1
ṽj
wj

(8
∑m

j=1
ṽj
wj

+ t)

)
(37)

where ‖β‖2
n = 1

n

∑n
i=1〈β,Xi〉2, ‖β‖2

Γ =E[‖β‖2
n], and ‖β‖2

w =
∑m

j=1 wj〈β,ϕ(j)〉2
and

P

(
sup

β∈H(m)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ
‖β‖2

Γ

∣∣∣∣ > t

)
≤ 2m2 exp

(
−

nρ2(Γ|m)t2

b
∑m

j=1 ṽj(8
∑m

j=1 ṽj + tρ(Γ|m))

)
. (38)

Proof of Proposition B.2. We have, for all β ∈ H(m), ‖β‖2
n = 〈Γ̂β,β〉. Hence,

‖β‖2
n−‖β‖2

Γ =
〈
(Γ̂−Γ)β,β

〉
=

m∑
j,k=1

〈
β,ϕ(j)〉〈β,ϕ(k)〉〈(Γ̂−Γ)ϕ(j),ϕ(k)〉=btΦmb,
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with b := (〈β,ϕ(1)〉, . . . , 〈β,ϕ(m)〉)t and Φm = (〈(Γ̂ − Γ)ϕ(j),ϕ(k)〉)1≤j,k≤m

which implies

sup
β∈H(m)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ
‖β‖2

w

∣∣∣∣ = ρ
(
W−1/2ΦmW−1/2) ≤

√
tr
(
W−1ΦmΦt

mW−1
)

=

√√√√ m∑
j,k=1

〈(Γ̂ − Γ)ϕ(j),ϕ(k)〉2
wjwk

,

where ρ denotes the spectral radius, and W the diagonal matrix with diagonal
entries (w1, . . . , wm). We then have

P

(
sup

β∈H(m)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ
‖β‖2

w

∣∣∣∣ > t

)
≤ P

(
m∑

j,k=1

〈(Γ̂ − Γ)ϕj ,ϕk〉2
wjwk

>t2

)

≤ P

(
m⋃

j,k=1

{
〈(Γ̂ − Γ)ϕ(j),ϕ(k)〉2

wjwk
>pj,kt

2
})

,

≤
m∑

j,k=1

P

(
|〈(Γ̂ − Γ)ϕ(j),ϕ(k)〉|

√
wjwk

>
√
pj,kt

)
,

where pj,k := ṽj ṽk
wjwk

(
∑m

�=1 ṽ�/w�)−2 (remark that
∑m

j,k=1 pj,k = 1). Now, for all
j, k = 1, . . . ,m,

P

(
|〈(Γ̂ − Γ)ϕ(j),ϕ(k)〉|

√
wjwk

>
√
pj,kt

)
= P

(∣∣∣∣∣ 1n
n∑

i=1

〈ϕ(j),Xi〉〈ϕ(k),Xi〉√
wjwk

− E

[
〈ϕ(j),Xi〉〈ϕ(k),Xi〉√

wjwk

]∣∣∣∣∣ > √
pj,kt

)
.

By Cauchy-Schwarz inequality, for all � ≥ 2,

E

[∣∣∣∣ 〈ϕ(j),Xi〉〈ϕ(k),Xi〉√
wjwk

∣∣∣∣�] ≤
√

E[〈ϕ(j),X〉2�]E[〈ϕ(k),X〉2�]
√
wjwk

�

≤ �!b�−1

√
ṽj
wj

�√
ṽk
wk

�

= �!
2 2b ṽj

wj

ṽk
wk

(
b

√
ṽj
wj

√
ṽk
wk

)�−2

.

Hence, Bernstein’s inequality (Lemma B.1) implies that

P

(
|〈(Γ̂ − Γ)ϕ(j),ϕ(k)〉|

√
wjwk

>
√
pj,kt

)
≤ 2 exp

(
− npj,kt

2

8b ṽj ṽk
wjwk

+ 2b
√

ṽj
wj

√
ṽk
wk

√
pj,kt

)
,
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and the definition of pj,k implies Equation (37).
We proceed similarly to prove Equation (38) from the upper-bound

sup
β∈H(m)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ
‖β‖2

Γ

∣∣∣∣ = ρ
(
Γ−1/2
|m ΦmΓ−1/2

|m
)
≤ ρ(Φm)ρ

(
Γ−1
|m

)
= ρ(Φm)ρ(Γ|m)−1

Following the same reasoning as above with w1 = · · · = wm = 1, we get, for
all t > 0,

P
(
ρ(Φm) > t

)
≤ 2m2 exp

(
− nt2

b
∑m

j=1 ṽj(8
∑m

j=1 ṽj + t)

)
,

which proves Equation (38).
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