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Abstract: Spatial analysis commonly relies on the estimation of a co-
variance matrix associated with a random field. This estimation strongly
impacts the prediction where the process has not been observed, which in
turn influences the construction of more sophisticated models. If some of
the distances between all the possible pairs of observations in the plane are
small, then we may have an ill-conditioned problem that results in a nearly
singular covariance matrix. In this paper, we suggest a covariance matrix
estimation method that works well even when there are very close pairs of
locations on the plane. Our method is an extension to a spatial case of a
method that is based on the estimation of eigenvalues of the unitary ma-
trix decomposition of the covariance matrix. Several numerical examples
are conducted to provide evidence of good performance in estimating the
range parameter of the correlation structure of a spatial regression process.
In addition, an application to macroalgae estimation in a restricted area
of the Pacific Ocean is developed to determine a suitable estimation of the
effective sample size associated with the transect sampling scheme.
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1. Introduction and motivation

The analysis of spatial processes with singular or near singular covariance matri-
ces has been a subject of study for decades (Penrose, 1955). Several approaches
have been suggested to address nearly singular covariance matrices and their
inverses. These matrices are characterized by a large condition number, which
makes the estimation process unstable. In kriging analysis under the Gaussian
assumption, Diamond and Armstrong (1984) found that the robustness of the
kriging predictor depends on the condition number of the covariance matrix.
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Ababou et al. (1994) studied the condition number associated with several co-
variance functions. Salagame and Barton (1997) and Davis and Morris (1997)
performed further analysis on the kriging stability and the condition number.
Subsequently, there have been a number of papers undertaking a variety of ap-
proaches to deal with ill-conditioned covariance matrices. On the one hand, it
is well known that the nugget effect can play a significant role in the estima-
tion of the inverse of a covariance matrix (Cressie, 1993; Peng and Wu, 2014).
On the other hand, methods such as covariance tapering (Furrer et al., 2006),
fixed rank kriging (Cressie and Johannesson, 2008), penalized likelihood func-
tions (Li and Sudjianto, 2005), matrix decomposition Ayyıldız et al. (2012), and
compactly support covariance functions (Bevilacqua et al., 2019, 2022a) have
been proposed to overcome the ill-conditioned problem.

The causes of instability of kriging have been classified and discussed by
Peng and Wu (2014). The authors mention three possible causes of singularity
of the correlation matrix: (i) sample size, (ii) dimension of the input vectors,
and (iii) parameter values. In addition, we mention two more reasons that cause
instability when doing spatial analysis: (iv) type of parametric correlation func-
tion and (v) spatial design. This classification makes it difficult to approach the
problem from a unique perspective. For instance, Smith and Nicolik (2013) pro-
posed an automatic method for handling nearly singular covariance structures
by using a Cholesky decomposition. More recently, Zimmermann (2015b) in the
context of (iv), addressed the ill-conditioning problem for the Gaussian correla-
tion model from a theoretical perspective. In particular, it was proven that the
condition number goes to infinity when the hyperparameter of the correlation
approaches zero, thus distinguishing the Gaussian case from the remaining expo-
nential correlation models in terms of how fast the condition number increases.
In addition, Zimmermann (2015a) gives an improved growth rate estimate for
the Gaussian condition number anomaly.

The main purpose of this paper is to study an estimation method of the in-
verse of a covariance matrix, also referred to as a precision matrix, associated
with a spatial process when the covariance matrix is nearly singular due to the
existence of pairs of points that are very close in space. Clearly, the closeness of
two points in space is relative to the degree of correlation between the points,
and can be characterized through the practical range of the process. We develop
an estimation method for the parameters of a spatial process when the covari-
ance matrix is nearly singular, due to the sampling scheme of the locations, or
when there are repeated observations yielding a singular covariance matrix. Our
suggested method is a generalization of the method proposed by Marzetta et al.
(2011) in an image processing context, in which the eigenvalues close to zero of
a nearly singular matrix are estimated.

Their method provides an alternative to numerical regularization (Cressie,
1993) used to estimate the covariance matrix and its inverse for a Gaussian
regression process. Our method is developed in an iterative fashion, so that
the eigenvalues, the mean of the process, and the covariance parameters are
estimated in each iteration. We present the estimation algorithms and show how
to perform spatial prediction (kriging). Eigenvalue estimation and parameter
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estimation of a Gaussian process are explored numerically through Monte Carlo
simulation. An application with a real dataset that has been collected using
transect sampling is analyzed to estimate the effective sample size when a spatial
linear regression model is assumed.

2. Preliminaries and background

In this section, we describe an approach that allows us to estimate a singular co-
variance matrix when having N independent identically distributed realizations
of a random vector. Marzetta et al. (2011) considered a data matrix X of size
M ×N with N < M that contains N independent and identically distributed
realizations of a M -dimensional zero mean random vector with a covariance
matrix Σ. In this framework, K is the sample covariance matrix of Σ, which is
singular, because rank(K) = N < M . Let ΩL,N = {Φ ∈ RL×M : ΦΦ∗ = IL}
be the set of all L × M one-sided unitary matrices, with manifold structure
called the Stiefel manifold. Marzetta et al. (2011) endow the Stiefel manifold
with the Haar measure and define the operators covL(K) = EΦ(Φ∗(ΦKΦ∗)Φ)
and InvCovL(K) = EΦ(Φ∗(ΦKΦ∗)−1Φ) as estimators of Σ and Σ−1, respec-
tively. In addition, the authors found that covL(K) coincides with nugget reg-
ularization (see for instance, Ranjan et al., 2011). However, InvCovL(K) does
not necessarily coincide with covL(K)−1. For the InvCov estimator, consider the
spectral decomposition of K (K = UDU∗) with D = diag(d1, . . . , dN , 0, . . . , 0)
containing the eigenvalues of K and U being the corresponding eigenvector
matrix. Marzetta et al. (2011) proved that InvCovL(K) = U InvCovL(D) U∗,
where

InvCovL(D) = diag(λ1, . . . , λN , μ, . . . , μ),

and provided formulas to compute the values of λi and μ, and investigated their
asymptotic behavior (see Appendix A). Notice that λi is an approximation
of d−1

i .
The developments presented in this section were designed for a stochastic

process with N replicates. In such scenarios, the aim of Marzetta et al. (2011)
is to address the problem of an ill-conditioned covariance matrix by introducing
dimension reduction techniques, which effectively reduce the dimensionality of
the problem to a lower-dimensional space. The focus of this paper is on a spa-
tial process defined in R2, where N = 1. Even in this case, the problem of an
ill-conditioned covariance matrix persists due to the presence of spatial auto-
correlation, which leads to redundant information in the observed data Acosta
and Vallejos (2018). The next section will cover the extension of Marzetta et al.
(2011)’s approach to the spatial context.

3. Estimation of the covariance function in a spatial process

Consider a second-order stationary spatial process {Z(s) : s ∈ R2}, with the
locations s1, . . . , sM ∈ R2 and the parameter vector θ ∈ Θ ⊂ Rp. Assume that
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var[Z(s)] = Σ(θ) is a nearly singular matrix of order M × M . For the sake
of simplicity we denote Σ := Σ(θ). Given Z(si), i = 1, . . . ,M , the parametric
estimation of the covariance matrix is denoted by Σ̂ = Σ(θ̂).

Let d1, d2, . . . , dN , dN+1, . . . , dM be the eigenvalues of Σ̂, then the spectral
decomposition of Σ̂ is Σ̂ = UDU�, where D is a diagonal matrix with en-
tries equal to the eigenvalues of Σ̂ and U is an orthogonal matrix with the
respective eigenvectors. Assume that dN+1, . . . , dM ≈ 0 and define DN =
diag(d1, d2, . . . , dN ), where N corresponds to the number of nonzero eigenvalues,
then D ≈ diag(DN ,0M−N ). Consequently, the estimation method developed by
Marzetta et al. (2011) can be applied in this framework to obtain estimations
of Σ and Σ−1 as

covL(Σ̂) = L

(M2 − 1)M
[
(ML− 1)Σ̂ + (M − L) tr(Σ̂)IM

]
, (3.1)

InvCovL(D) = diag(λ1, . . . , λN , μ, . . . , μ), (3.2)

InvCovL(Σ̂) = U InvCovL(D)U−1, (3.3)

with L < N ,

μ = det(G)
det(Δ(DN )) , and

λi = ∂

∂di

(
L−1∑
k=0

(N − (k + 1))!
(L− (k + 1))!

det(Gk)
det(Δ(DN ))

)
,

where G, Gk, and Δ(·) are defined in Appendix A. Given the structures of
Gk and Δ(DN ), it is possible to provide an explicit expression for λi. The
derivatives of matrices Gk and Δ(DN ) with respect to di are straightforward
to obtain. Then, the expression depends only on a power of di, one element
from the inverse of Gk, and on another element from the inverse of Δ(DN ).
The computation of the inverse of matrices Gk and Δ(DN ) is done by using a
QR decomposition. In a similar fashion, the determinants of these matrices are
obtained. The following result gives an expression for λi.

Theorem 3.1. In the framework of Equations (3.1)–(3.3),

λi =
L−1∑
k=0

(N − (k + 1))!
(L− (k + 1))!

|Gk|
|Δ(DN )|

⎛⎜⎝ N−1∑
l=1

l �=k+1

(
(gil − bil)(N − l)dN−(l+1)

i

)
+ gi,k+1Gi − bi,k+1

(
N − (k + 1)

)
d
N−(k+2)
i

)
,

(3.4)

where G−1
k = [gij ]Ni,j=1, Δ(DN )−1 = [bij ]Ni,j=1 and Gi is the (N − L − 1)-th

integral of xL−(k+1) log(x), evaluated at x = di.

Proof. See Appendix B.
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In practice, eigenvalues equal to zero are not possible in the nearly singular
case, hence the final estimates rely on the selection of N . A sensitivity study
about N was carried and is described at the end of section 6.1. Alternative
criteria for the selection of N can be constructed considering eigenvalues greater
than a fixed tolerance; or considering a fixed value of the total variance.

4. Estimation algorithm

In this section, we present an iterative estimation algorithm for the parameters of
Σ for a spatial regression model with constant mean. The InvCov method is used
because in this case, it is possible to obtain a closed form for the estimation based
on the estimation of the eigenvalues of Σ. The usual methods of estimation,
such as maximum likelihood (ML), cannot be applied here because Σ is nearly
singular. Hence, it is not practically possible to compute Σ−1 or ln |Σ|. Let
{Z(s) : s ∈ R2} be a spatial process observed in the locations s1, . . . , sM ∈ R2,
such that the vector of observations is Z = (Z(s1), . . . , Z(sM ))�. In addition,
assume that

Z ∼ N (1 · β,Σ), (4.1)

where β is a real parameter, 1 is a vector of ones of size M , Σ = σ2R(φ), where
R(φ) = R(‖h‖, φ) is a parametric correlation matrix, φ is a correlation scale
component, ‖h‖ = ‖si − sj‖ and θ = (σ2, φ)�. We denote the derivative of
R(φ) with respect to φ as Ṙφ(φ).

The log-likelihood for model (4.1) is

�
(
β, σ2, φ

)
= −M

2 ln(2π)−M

2 ln
(
σ2)− 1

2 ln |R(φ)|− 1
2σ2 (Z−1 ·β)�R−1(φ)(Z−1 ·β),

(4.2)
from which the ML estimators of β, σ2 and φ are obtained by solving the system
∇�

(
β, σ2, φ

)
= 0. In this system, β and σ2 have closed forms in terms of φ, which

can be substituted into the log-likelihood (4.2) to obtain a so-called concentrated
log-likelihood. Consequently, the ML estimate of β can be computed as

β̂ =
(
1�R−1(φ̂)1

)−11�R−1(φ̂)Z. (4.3)

Let e = Z − 1 · β̂ be the error estimates; then, the ML estimate for σ2 is

σ̂2 = 1
M

e�R−1(φ̂)e. (4.4)

Substituting the expressions from Equations (4.3) and (4.4) into the log-
likelihood (Equation (4.2)) yields the concentrated log-likelihood

�C(φ) = const. − 1
2 ln |R(φ)| − M

2 ln
(
e�R−1(φ)e

)
, (4.5)

a nonlinear function in a single parameter φ, where const. = −M ln(2π)/2 −
M/2+M ln(M)/2. Let d1, d2, . . . , dM be the eigenvalues of R(φ), and let v1,v2,
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. . . ,vM be the corresponding eigenvectors of R(φ). Note that |R(φ)| =
∏M

i=1 di,
and the quadratic form e�R−1(φ)e may also be written in terms of the eigen-
values and eigenvectors as follows:

R−1(φ) = PD−1P� =⇒ e�R−1(φ)e =
(
P�e

)�
D−1(P�e

)
=

M∑
i=1

q2
i

di
,

where D and P are the matrix of eigenvalues and eigenvectors of R(φ), re-
spectively, and qi = v�

i e, i.e., q = P�e. Furthermore, Equation (4.5) can be
rewritten as

�C(φ) = const. − 1
2

M∑
i=1

ln(di) −
M

2 ln
(

M∑
i=1

q2
i

di

)
. (4.6)

Let λ1, λ2, . . . , λN , μ, . . . , μ be the estimated eigenvalues of R−1(φ) obtained
by using the InvCov method. That is, d−1

i ≈ λi for i = 1, . . . , N , and d−1
i ≈ μ for

i = N + 1, . . . ,M . To obtain an ML estimate for φ, we suggest approximating
the likelihood by replacing the eigenvalues provided by the InvCov method
with (4.6), which will yield the approximate log-likelihood:

�InvCov(φ) = const. + 1
2

N∑
i=1

ln(λi)

+ (M −N)
2 ln(μ) − M

2 ln
(

N∑
i=1

q2
i λi + μ

M∑
i=N+1

q2
i

)
. (4.7)

Note that (4.7) is a nonlinear function of φ, which can be maximized by
numerical optimization. Additionally, note that the dependence of φ is implicit
through μ, λi and qi. Thus, an approximation of the ML estimate of φ is

φ̂ML-InvCov = arg max
φ

�InvCov(φ).

The motivation to use the estimated eigenvalues provided by the InvCov
method is because some of the eigenvalues are approximately zero. It is worth
mentioning that the approximate likelihood (4.7) results in a biased estimation
equation. Nevertheless, the estimations provided by this method are computa-
tionally plausible, as will be shown in the numerical experiments presented in
Section 6. One way to overcome the biased of an estimation equation is by con-
sidering a bias correction, similar to how it is achieved in robustness (Stefanski
and Boos, 2002).

The estimations β̂ and σ̂2 given in Equations (4.3) and (4.4) cannot be ob-
tained due to their dependence on the inverse of R. Thus, we approach the
estimation of R−1 via the InvCov method to obtain

R−1
InvCov = R−1(φ̂ML-InvCov) = PD−1

InvCovP
�, (4.8)
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where D−1
InvCov = diag{λ1, . . . , λN , μ, . . . , μ} (the diagonal matrix with approxi-

mated eigenvalues using the InvCov method with λ1, . . . , λN , μ, . . . , μ estimates
from R(φ̂ML-InvCov)). As a consequence, β and σ2 are estimated by

β̂ML-InvCov =
(
1�R−1

InvCov1
)−11�R−1

InvCovZ. (4.9)

σ̂2
ML-InvCov = 1

M
(Z − 1 · β̂ML-InvCov)�R−1

InvCov(Z − 1 · β̂ML-InvCov). (4.10)

Note that tr(R) =
∑M

i=1 di = M ; however,
∑N

i=1 λ
−1
i + (M − N)μ−1 does

not necessarily add up to M . This clearly affects the estimator of σ2 in Equa-
tion (4.10), but it does not affect the estimator of β in Equation (4.9) because
it contains the inverse correlation matrix in both the numerator and denomina-
tor. A corrected version of σ̂2

ML-InvCov described in Equation (4.10) is obtained
by scaling the eigenvalues yielded by the InvCov method; thus, the corrected
estimator of σ2 is

σ̃2
ML-InvCov =

(
1
M

N∑
i=1

1
λi

+ (M −N)
Mμ

)
σ̂2

ML-InvCov. (4.11)

This procedure is summarized in the following algorithm, which will be used
in the Monte Carlo simulations developed in Section 6 and in the application
developed in Section 7.

Algorithm 1: InvCov estimation.
input : Z, N, tolerance

1 Maximize �InvCov(φ) given in Equation (4.7), and obtain φ̂ML-InvCov;
2 Compute R−1

InvCov through Equation (4.8);
3 Compute β̂ML-InvCov through Equation (4.9);
4 Compute σ̂2

ML-InvCov through Equation (4.11);
output: φ̂ML-InvCov, β̂ML-InvCov, σ̂2

ML-InvCov

Sometimes Algorithm 1 does not converge because �InvCov(φ) in (4.7) is not
bounded (see the first row of Figure 1). One way to overcome this drawback is
to introduce a penalty to the objective function �InvCov(φ) (in order to yield a
bounded log-likelihood) through

Gη(φ) = �InvCov(φ) − ηH(φ), (4.12)

where H(φ) is a concave positive and differentiable function. In such a case, an
approximation of the ML estimate of φ is

φ̂ML-InvCov = arg max
φ

Gη(φ).

From the first-order conditions ∂Gη/∂φ = 0, it follows that

η = max
{
�′InvCov(φ)
H ′(φ) , 0

}
. (4.13)
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Fig 1. Plot of (4.7) (first row) and (4.12) (second row). These plots correspond to the log-
likelihood evaluated at a realization from a Gaussian random field with exponential and Gaus-
sian correlation function, with parameters β = 0, σ2 = 1, and the same practical range equal
to 1.5 (φ ≈ 0.50 for exponential, and φ ≈ 0.87 for Gaussian). For the penalized loglik case
η = 35 for the exponential covariance function and η = 80 for the Gaussian covariance
function.

A typical choice of H is H(φ) = φ2 (Fu, 1998), which implies that H ′(φ) = 2φ.
Figure 1 shows the penalization effect described in Equation (4.12) when the
penalization is a quadratic function. A bounded objective function is obtained
for both covariance structures, exponential and Gaussian with a different value
of η in each case.

Note that H ′(φ) > 0 for φ > 0, but �′InvCov(φ) is not necessarily positive.
However, if �′InvCov(φ) < 0 the objective function is bounded (reaches a maxi-
mum), so the penalty should not apply.

In addition, an approximation of �′InvCov(φ) is

�′InvCov(φ) = �InvCov(φ + a) − �InvCov(φ− a)
2a ,

where a is a tolerance level that could be fixed (for instance) as a = 10−4.
Algorithm 2 summarizes the procedure describe above:
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Algorithm 2: InvCov penalized estimation.
input : Z, N, tolerance, max.iter, φ̂0

1 Set j=0;
2 Compute η through Equation (4.13) evaluated at φ̂j ;
3 Maximize Gη(φ) given by Equation (4.12), and obtain φ̂j+1;
4 Set j=j+1;

5 Repeat steps 2-4 until j = max.iter or |φ̂j+1−φ̂j |
φ̂j

< tolerance;

6 Set φ̂ML-InvCov = φ̂j ;
7 Compute R−1

InvCov through Equation (4.8);
8 Compute β̂ML-InvCov through Equation (4.9);
9 Compute σ̂2

ML-InvCov through Equation (4.11);
output: φ̂ML-InvCov, β̂ML-InvCov, σ̂2

ML-InvCov

5. Spatial prediction

Let {Z(s) : s ∈ R} be a spatial process. Define Z = (Z(s1), . . . , Z(sn))�
for s1, . . . , sn ∈ R, denote s0 as a new location where the process has not
been observed (Z(s0)), and denote the predictor of Z(s) at s0 as p(Z, s0). We
consider the ordinary kriging scenario (Cressie, 1993), with a spatial regression
process of the form

Z(s) = β + δ(s), s ∈ D,β ∈ R,

with unknown β. The InvCov predictor in such a case is

p̂InvCov(Z, s0) = w�Z, subject to
n∑

i=1
wi = 1,

where w = (w1, . . . , wn)� and m (parameter associated with the restriction∑n
i=1 wi = 1) is obtained by minimizing the quadratic prediction error

σ2
e = E

[(
Z(s0) − p(Z, s0)

)2]
.

As a result,

w� =
(
c + 1 (1 − 1�InvCovL(Σ)c)

1�InvCovL(Σ)1

)�
InvCovL(Σ), (5.1)

m = 1 − 1�InvCovL(Σ)c
1�InvCovL(Σ)1 , (5.2)

where c = cov(Z, Z(s0)). In this case, Σ = σ2R where R is a correlation matrix,
then InvCovL(Σ) = σ−2R−1

InvCov and c = σ2r (r = corr(Z, Z(s0)). Hence the
kriging predictor can be written as

p̂InvCov(Z, s0) = β̂ML-InvCov + r�R−1
InvCov(Z − β̂ML-InvCov1).
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The kriging variance is given by σ2
k(s0) = C(0) −w�c + m; then, given w,

we have

σ2
k(s0) = C(0) − c�InvCovL(Σ)c + (1 − 1�InvCovL(Σ)c)2

1�InvCovL(Σ)1 ,

= σ2
(

1 − r�R−1
InvCovr +

(1 − 1�R−1
InvCovr)2

1�R−1
InvCov1

)
,

under the condition C(0)−c�InvCovL(Σ)c ≥ 0. The last equation was obtained
as a particular case when Σ = σ2R. Then C(0) = σ2. Because the estimation of
Σ−1 is carried out through InvCovL(Σ), we propose an estimation based on the
cov estimator for the augmented matrix Σ̃ by including the covariance between
Z and the process at the new location s0. More precisely,

Σ̃ =
(
C(0) c
c� Σ

)
.

Then,

cov(Σ̃) = L̃[((M + 1)L̃− 1)Σ̃ + ((M + 1) − L̃) tr(Σ̃)IM+1]
(M2 + 2M)(M + 1) .

Normalizing cov(Σ̃) by (M + 1)/L̃ such that Σ̃ and cov(Σ) have the same
trace, and using the fact that tr(Σ̃) = (M + 1)C(0), the estimators for c and
C(0) can be written as

c̃ = (M + 1)L̃− 1
M2 + 2M c = k1c,

C̃(0) = [((M + 1)L̃− 1)C(0) + ((M + 1) − L̃) tr(Σ̃)]
M2 + 2M = C(0),

where k1 = (M+1)L̃−1
M2+2M . Finally, the corrected kriging predictor is

p̂InvCov(Z, s0) = β̂ML-InvCov + k1r
�R−1

InvCov(Z − β̂ML-InvCov1),

and its variance is given by

σ2
k(s0) = C̃(0) − c̃�InvCovL(Σ)c̃ + (1 − 1�InvCovL(Σ)c̃)2

1�InvCovL(Σ)1 ,

= σ2
(

1 − k2
1r

�R−1
InvCovr +

(1 − k11�R−1
InvCovr)2

1�R−1
InvCov1

)
.

6. Numerical experiments

This section introduces numerical examples that allow us to have a better un-
derstanding of the problems discussed in this work. The material is divided into
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three parts. First, we present an example to explore the estimations of the eigen-
values of covL(Σ̂). Second, a simulation experiment is carried out to gain more
insights into the estimation of a nearly singular covariance structure. Finally, a
Monte Carlo simulation study addresses spatial prediction (kriging) when the
covariance matrix is nearly singular.

6.1. Eigenvalue estimation

Here, we consider a spatial process defined on the grid [0, 1]2, with a parametric
and isotropic covariance model. The InvCov method is used to compare the
estimates of the theoretical eigenvalues of Σ, obtained using the R function
eigen, with the estimates of the inverse of InvCovL(Σ), normalized by L/N . In
this study, three covariance structures were considered. The Gaussian covariance
function is defined as C(h) = exp[−(h/φ)2], where h = ‖h‖ and φ > 0. The
Matérn covariance given by

C(h) = 1
2ν−1Γ(ν)

(
h

φ

)ν

Kν

(
h

φ

)
,

where Γ(·) is the gamma function, K(·) is the modified Bessel function of the
second kind, and φ > 0 and ν > 0. The third covariance is the exponential one,
obtained as a particular of the Matérn, when ν = 1/2. The following three sets
of parameters were used in the experiment:

• Case 1: Exponential covariance with practical ranges (PR) 0.5, 1.0, 1.5,
where φ = PR/2.996.

• Case 2: Gaussian covariance with practical ranges 0.5, 1.0, 1.5, where
φ = PR/1.731.

• Case 3: Matérn covariance with practical ranges 0.5, 1.0, 1.5, where φ =
PR/4.744, and smoothness parameter ν = 1.5.

The results of the eigenvalue estimations and the theoretical values are plot-
ted in Figure 2 for the sets of covariance functions and parameters listed in
Cases 1–3. The estimations are visually close to the true values, and it can
be observed that the error of the estimated eigenvalues is reduced as practical
range increases. Among the three approximate covariance models, the Gaussian
covariance outperforms the other two, which is in agreement with Zimmermann
(2015b) who argued that the Gaussian covariance is an anomalous model within
the class of exponential covariances, showing a larger condition number than the
other models for a fixed practical range. To quantify the discrepancy between
them, we used the root mean square error (RMSE) to obtain a nonnegative num-
ber associated with every pair of curves. The formula used for the comparison
is

RMSE =

√√√√ 1
T

T∑
i=1

(λ̂i − λi)2,
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where λ̂i is the estimated value, λi is the true value and T is the total number
of eigenvalues in each case. These values are summarized in Table 1. Among all
cases, the largest values of the RMSE are attained for a practical range equal
to 0.5. The RMSE also decreases as the practical range increases. For small
practical ranges the Gaussian covariance has the worse performance, however,
for large practical ranges the Gaussian covariance outperforms the other two
models.

Table 1

RMSE for the eigenvalue estimations for Cases 1–3 displayed in Figures 2.
Practical Range

Covariance function 0.5 1.0 1.5
Exponential 0.461 0.345 0.267
Gaussian 0.637 0.151 0.028
Matérn (ν = 1, 5) 0.584 0.352 0.190

In addition, Figure 2 also shows the sensitivity of the estimated eigenvalues by
the proposed method described in Section 3, for different values of N (number of
non-zero eigenvalues) and for the exponential, Gaussian, and Matérn covariance
functions with different levels of dependence in each case.

Table 2 shows the standardized difference of the spectral radius between
matrices R and InvCov(R)−1 given by (λ1 − λ̂1)/λ1, where λ1 is the largest
eigenvalue of R and λ̂1 is its estimator. We observe that all the values are
negative, indicating an underestimation of the largest eigenvalue.

Table 2

Difference between the largest correlation eigenvalue and the largest estimated eigenvalue for
different values of N and covariance structures with different degrees of spatial dependence.

Covariance function
Practical Range N Exponential Gaussian Matérn (ν = 1.5)

0.5
9 −0.0495 −0.0437 −0.0493
10 −0.0400 −0.0328 −0.0389
11 −0.0335 −0.0257 −0.0318

1.0
9 −0.0201 −0.0053 −0.0145
10 −0.0153 −0.0032 −0.0104
11 −0.0123 −0.0019 −0.0077

1.5
9 −0.0112 −0.0008 −0.0056
10 −0.0084 −0.0004 −0.0038
11 −0.0066 −0.0002 −0.0027

6.2. Parameter estimation

A Monte Carlo simulation study is carried out to observe the performance of the
estimation method described in (3.1) and (3.3). We consider 100 fixed locations
randomly sampled from [0, 1] × [0, 1], as displayed in Figure 3, where it can be
seen how close some pairs of locations are.
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Fig 2. Eigenvalue estimations and theoretical values for three covariance models with prac-
tical ranges equal to 0.5, 1.0, and 1.5. (a)–(c) Exponential covariance; (d)–(f) Gaussian
covariance; (g)–(i) Matérn covariance with ν = 1.5

Exponential and Gaussian correlation models with different ranges (1.0, 1.5,
2.5, and 5.0) were used. For each case, we simulated 1000 independent random
fields with zero mean and unit variance, and then the ML and ML-InvCov esti-
mates of the range, β, and σ2, were computed. In most cases, it was not feasible
to obtain the ML estimator because a computationally singular system was ob-
tained. Then, for comparison purposes, a fixed nugget equal to 0.01 was used to
regularize the system and compared with the InvCov method. Figure 4 shows
the empirical variograms (black dots) for the 1000 realizations of the generated
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Fig 3. Coordinates of the locations to be used in the Monte Carlo simulation study.

Fig 4. Empirical variogram (black dots) for the 1000 realizations of the Gaussian random
field. The red line represents the true model from which the data were simulated.

Gaussian random field with exponential and Gaussian correlations. The red line
represents the true model from which the observations were simulated. Note
that as the spatial dependence increases (increasing range), the empirical var-
iogram becomes increasingly distant from the theoretical variogram; therefore,
using the least squares type technique is not very appropriate. We conjecture
that the empirical variogram differs from the theoretical one as the practical
range increases. One potential reason for this could be that the simulation pro-
cess relies on the inverse of the square root of the covariance matrix, which, in
this case, is computed using Cholesky decomposition. This can introduce insta-
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Fig 5. Estimation of β using the pairwise composite likelihood (complik), the InvCov algo-
rithm, and the ML method (likfit), with a fixed nugget equal to 0.01 for the complik anf likfit
methods.

bility that affects the randomly generated numbers, In this study, the maximum
simulation range was selected to ensure that Cholesky decomposition could be
performed computationally.

The application of the methodology described in Algorithm 2 can be seen in
Figures 5–7. The schemes shown on the x-axis indicate the range for which the
observations were simulated, where schemes 1, 2, 3, and 4 have practical ranges
equal to 1, 1.5, 2.5, and 5.0, respectively. The estimation process was carried out
using the ML method through the likfit function of Ribeiro Jr et al. (2020), the
pairwise composite likelihood (CL) method, through the GeoFit2 function of
Bevilacqua et al. (2022b), and the InvCov method. To implement the pairwise
composite likelihood method, the number of neighbors was set to a fixed value of
3, and a conditional likelihood approach was employed. In particular, Figure 5
shows the mean estimator. The performance of the all methods is very similar
for both the exponential and Gaussian covariance models for the different ranges
simulated, highlighting that the uncertainty associated with the estimation of
the β parameter increases as the range increases, although this increase is very
slight. In schemes 1 and 2, it can be observed that the likfit method performs
slightly better than the rest, while in scheme 4 the InvCov method ouperforms
the others.

Figure 6 shows the behavior of the estimator of the variance. Only in the
scheme 1 for exponential correlation the InvCov have good result. As the prac-
tical range increases, the true variance is underestimated regardless of the esti-
mation method used. For the exponential correlation, the InvCov method per-
forms better than the others, but in Gaussian case has the worst behavior.
The composite likelihood method has a slightly better performance in Gaussian
case, while the likfit has a similar behavior for both correlation functions. This
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Fig 6. Estimation of σ2 using the complik, InvCov, and likfit methods, with a fixed nugget
equal to 0.01 for the complik anf likfit methods.

Fig 7. Estimation of the practical range using the complik, InvCov, likfit methods, with a
fixed nugget equal to 0.01 for the complik anf likfit methods.

fact may be may be related to to the discrepancy between the empirical and
theoretical variograms in those cases where the practical range is large.

Although the performance for the estimator of σ2 is not as expected with
regards to the Gaussian case, it can be seen from Figure 7 that the behavior
for the range is quite different. Here, φ is estimated and then transformed into
the practical range for the exponential model range = 3φ and for the Gaussian
model range =

√
3φ. In all cases, the InvCov method outperforms likfit method

in terms of variance and bias (which has been marked with a black line in Fig-
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Fig 8. Estimation of the microergodic parameter using the complik, InvCov, and ML likfit
method, with a fixed nugget equal to 0.01 for the complik anf likfit methods.

ure 7). In the Gaussian covariance model the pairwise composite likelihood has
the smallest variance for each scheme but a higher bias. Moreover, for this case
1.8%, 5.2%, 17.6%, and 56.4% of the times the estimations of φ were negative
for schemes 1-4 respectively. Also notice that in all cases the likfit and pairwise
composite likelihood methods underestimate the true spatial dependence. Per-
haps this positively impacts the likfit estimates of the variance (see Figure 6(b)).
Surprisingly, the InvCov estimates for schemes 3 and 4 in the exponential model,
present a very tiny dispersion.

Note that the poor performance of the ML and CL methods in estimating the
parameters σ2 and φ is not surprising, because when the practical range signif-
icantly increases, it becomes challenging to consistently estimate both param-
eters separately, when using an increasing domain sampling scheme. However,
by using the asymptotic infill approach, it is possible to consistently estimate
the microergodic parameter, which, in the case of the Matérn model is σ2/φ2ν .
This can be seen in Figure 8 for the exponential model (ν = 0.5). Here, the
complik and likfit methods exhibit the expected behavior, as the ratio cancels
out the biases stemming from the imperfect estimation of σ2 and φ, respectively.
For the InvCov method, an underestimation of the microergodic parameter is
observed, which can be explained by the fact that the estimator of φ is un-
biased while the estimator of σ2 is biased, therefore, the ratio maintains the
bias of the estimator of σ2. It is worth noting that, in all cases, as the prac-
tical range increases, the uncertainty surrounding the microergodic parameter
decreases.

The proposed methodology allows spatial prediction (kriging) to be carried
out when the inverse of Σ is not computationally feasible to obtain. In this
case, the Gaussian covariance is the most affected, especially when the practical
range is large. Figure 9 displays the kriging estimates and their variance for a
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Fig 9. Kriging predictor (a) and its standard deviation (b) for a Gaussian covmodel with
practical range equal to 5.0.

rectangular grid (101 × 101) in the unit square. Figure 9(a) shows the average
of 1000 simulations using ordinary kriging, while Figure 9(b) shows the square
root of the average of the respective variances. To explore the kriging behavior,
the same parameters considered for the Monte Carlo simulation were used to
generate the plots. i.e., β = 0, σ2 = 1, τ2 = 0 and practical range equal to
5.0, that is, φ = 2.8888. The observed trend from left to right that is observe
in Figure 9(a) is apparent due to the short range of the scale. The surface
shown corresponds to just one realization of the process. Other patterns can be
observed when running the experiments many times. The standard deviation
of the kriging predictor shown in Figure 9(b) displays largest values for those
areas with small number of observations.

Finally, Figure 10 shows the scalability of the estimation process proposed
in Algorithm 2, measuring the computational time of the estimation process
for different sample sizes, setting the covariance models to Exponential and
Gaussian, and the practical range equal to 2.0 when the data are simulated
from a zero mean Gaussian random field over the square [0, 1]2. An exponential
trend for the computational is observed for both covariance models when they
are plotted as a function of the sample size.

7. An application

The macroalgae dataset was analyzed in Acosta et al. (2016) whithin the context
of effective sample size (ESS) for a spatial regression process with a constant
mean. Subsequently, the same dataset was considered as an illustration for the
generalization of the ESS for a general spatial regression process (Acosta and
Vallejos, 2018). In this study, we revisit the macroalgae dataset, which consists
of 427 observations pertaining to the density of Lessonia trabeculata (scientific
name of macroalgae in the study) per 20 m2. These observations were collected
by the IFOP1 institute in a protected area near Quintero, Chile. A transect

1Instituto de Fomento Pesquero (Chilean Fisheries Research).
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Fig 10. Execution time (in seconds) for the InvCov method proposed in Algorithm 2, for
the Exponential and Gaussian covariance models as a function of the sample size n. The
estimations were obtained using the R function proc.time(·). The computations were run on
a i7-8565U processor, CPU 1.99 GHz with 8 GB in RAM.

sampling scheme consisting of 26 perpendicular line transects was employed to
study species found at depths no greater than 20 m. The locations, transects
and study area can be seen in Figure 11.

In order to achieve symmetry in the distribution of the entire raw dataset,
Acosta et al. (2016) applied a logarithmic transformation of the form W (si) =
ln(Z(si) + 2.586), where Z(si) represents the original process observed at loca-
tion si and W (si) denotes the transformed process at the same location. This
transformation also has an impact on the estimation of the covariance compo-
nents of the process. As a result, multiple covariance matrices were employed
to estimate the ESS, which indicates the number of independent and identi-
cally distributed variables associated with a spatial sample of size n. The ESS
is particularly important in this context as it quantifies the decrease in sample
size caused by the presence of spatial correlation among the georeferenced ob-
servations. This has implications, for example, for determining the number of
observations to be collected in a subsequent study assuming that the correlation
structure of the underlying process remains unchanged.

Here, we use the raw data (density of the macroalgae) and assume that the
original spatial regression process is as in (4.1). The relationship between density
and the UTM coordinates (north and east) is depicted in Figure 12. No distinct
patterns or trends can be observed between density and the spatial variables.
However, since the study encompasses two sampled zones—one area unaffected
by human intervention and another open area—the means of these two zones
exhibit differences (as evident in Figure 12(a), particularly for values of North
less than 6375000). A similar effect is observed in Figure 12(b).
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Fig 11. Location of study in central Chile (left); Transect lines (in yellow) where the obser-
vations were taken (right). This area is near Quintero in the fifth region of Chile.

Fig 12. Density versus the coordinates north and east for the macroalgae dataset. The co-
ordidnates were measured in the UTM metric system, thus one unity corresponds to one
meter.
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Direct maximum likelihood estimation of a spatial regression process with
a constant mean and a Gaussian covariance function is not feasible with the
macroalgae dataset. For instance, when using the geoR package, an error mes-
sage is encountered, indicating a reciprocal condition number of 4.34×10−21. If
a fixed nonzero nugget effect is added to the covariance structure, the remain-
ing parameters of the model can be estimated successfully. On the other hand,
if the nugget effect is not fixed and treated as an additional parameter to be
estimated, the estimation algorithm produces a sequence of nugget effect values
that converge to zero. In such cases, the InvCov method can be applied, particu-
larly when the nugget effect is equal to zero. Observing the empirical variogram
depicted in Figure 7, it is evident that the practical range is approximately 450.
Therefore, a suitable value for φ0 in the Gaussian model would be 250. Evalu-
ating the correlation matrix associated with the Gaussian model at φ = 250, it
is found that the 16 largest eigenvalues account for 95% of the total variance.
Consequently, a fixed value of 16 was chosen for N , with L = N − 1 = 15. Ta-
ble 3 presents the results of the maximum likelihood (ML) estimates obtained
with a fixed nugget effect that is nonzero, as well as the ML estimates using the
InvCov methodology. The most significant distinction between the InvCov and
regular ML estimations is observed for the parameter φ. In accordance with the
performance displayed in Figure 7, the InvCov method exhibits a small bias,
while the ML method consistently underestimates the true value. Consequently,
this characteristic also impacts the range, which in this case is equal to

√
3φ.

Table 3

Parameter estimation of the Gaussian covariance model.
Fixed Estimated

Method τ2
0 σ2

0 φ0 σ2 φ β range η
InvCov 0.00 – 250 0.789 264.00 0.673 457.26 0.01

ML1 0.01 0.80 250 0.632 7.17 0.962 12.42 –
ML2 0.10 0.80 250 0.520 43.73 0.944 75.68 –
ML3 0.20 0.80 250 0.536 70.95 0.943 122.79 –

Average – – – 0.769 – 1.026 0 –

Figure 13 shows the outcome of parameter estimation for the Gaussian corre-
lation model in combination with the empirical semivariogram. The maximum
likelihood (ML) estimates, when considering a model with a fixed and nonzero
nugget effect, underestimate the spatial dependence of the process. Conversely,
the InvCov method accurately captures the range as indicated by the empirical
variogram. For distances less than 200 meters, the patterns of all other methods
closely resemble that of a white noise sequence.

To compare the estimation methods, leave-one-out cross-validation was used,
with the metrics performance the RMSE (defined in Section 6.1), and the DMSE,
defined through

DMSE =

√√√√ 1
M

M∑
j=1

(
Ẑ(−j)(sj) − Z(sj)

σ̂(−j)

)2

,
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Fig 13. Empirical variogram (dots) and ML estimations of the Gaussian variogram for dif-
ferent nugget effects. Distance has been measured in meters.

where Ẑ(−j)(sj) is the kriging estimator of Z(sj), and σ̂2
(−j) is the kriging vari-

ance with all data points except j. The results are shown in Table 4. The best
performance, according with RMSE, was obtained for the maximum likelihood
estimates with a fixed nugget equal to 0.10. The performance of our method is
comparable with the maximum likelihood approach. However, the RMSE does
not take into account the spatial location where the prediction was made, so it
is strongly dependent on the observations at the boundary of the region. Ac-
cording with DMSE, our proposal (invcov method) has the best performance.
Figure 14 shows the kriging variance associated with the all estimation meth-
ods.

Table 4

First and second row contain root mean square error (RMSE) and dimensionless mean
squared error (DMSE) for the leave-one-out cross validation for the invcov method,

maximum likelihood with fixed nugget (0.01, 0.10, and 0.20, respectively), and the average
estimator. The third row shows the coverage rate for a 95% confidence interval.

InvCov ML1 ML2 ML3 Average
RMSE 0.608 0.659 0.411 0.430 0.876
DMSE 1.010 1.106 1.115 0.878 0.998

Coverage Prob. 0.918 0.780 0.895 0.965 0.967

Therefore, we can conclude that incorporating a nugget improves the point
estimator but not the Kriging variance. This is evident in the coverage of the
95% confidence intervals, where the invcov method is closer to the expected
value compared to the maximum likelihood method with a nugget value of 0.10
(refer to Table 4 and Figure 14 for more details).
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Fig 14. Kriging variance for leave-one-out cross-validation using the transect data employed
in the application.

As a direct result of estimating the covariance parameters, the ESS can be
estimated, which is defined as

ESS = 1�R(θ)−11, (7.1)

where R(θ) is as in model (4.1). For simplicity let us define R = R(θ). When R
is singular or nearly singular, the ESS cannot be obtained. There are at least two
alternatives to overcome this inconvenience. The first alternative, inspired by
Vallejos and Osorio (2014), involves setting the correlation between all pairs of
observations to one, resulting in R = 11�, which is not invertible. In this case,
the Moore-Penrose pseudoinverse R+ = 11�/M2 is used to obtain ESS = 1.
The second alternative is to use the InvCov approximation of R−1, R−1

InvCov,
and thus obtain the ESS as

ESS = 1�R−1
InvCov1.

In the estimation process, the sum of eigenvalues,
∑N

i=1 λi + (M − N)μ, is
not necessarily equal to M . To account for this, a correction factor defined in
Equation (4.11) is applied. The ESS can be expressed as

ESS =
(

1
M

N∑
i=1

1
λi

+ (M −N)
Mμ

)
1�R−1

InvCov1. (7.2)
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By using the InvCov-ML estimate for φ and applying the correction factor used
for σ, the ESS in (7.2) amounts to 16 sample units. When using the Moore-
Penrose pseudoinverse, the ESS is calculated as 14 sample units.

8. Discussion

In this paper, we suggest an estimation method to overcome the problem of
having a nearly singular covariance matrix in a spatial regression model. It is a
generalization of a methodology first proposed by Marzetta et al. (2011) for pro-
cesses in which there are replicates. Our generalization includes the treatment
of processes for which only one trajectory is available and for those datasets
with one or more distances between pairs of locations that are close in space.
The estimation relies on previous knowledge of the parameters N and L such
that L < N , and where both parameters depend on M (the size of the spatial
dataset). The novelty of our paper lies in the fact that we provide an estimation
method for spatial data and covariance models where traditional ML estimations
cannot be computed due to dealing with an ill-conditioned problem. Numerical
experiments point out that the computation of the InvCov estimator is demand-
ing and it highly depends on the spatial sample size. Hence, the computation of
the proposed estimator for large spatial datasets is a challenge.

Tucci and Wang (2019) show that InvCovL(D) has a surprisingly simple
algebraic structure, i.e., it is a polynomial of the diagonal matrix D. They also
provide formulas to compute the coefficients of the polynomial, and extend these
ideas by replacing random unitary matrices with random permutation matrices
and by using the Ewens measure. Then, they define two new operators Kϑ,M,L =
E[V �

σ (VσKV �
σ )Vσ], and K̃ϑ,M,L = E[V �

σ (VσKV �
σ )+Vσ] to estimate Σ and its

inverse Σ−1, respectively. Here, Vσ is a unitary permutation matrix, and A+

is the Moore Penrose pseudoinverse of the A (Penrose, 1955). Additionally,
Tucci and Wang (2019) provide an explicit formula for Kϑ,M,L and an inductive
formula to compute K̃ϑ,M,L. Moreover, they studied the asymptotic behavior for
certain matrices with the mean conjugate estimator under the Ewens measure.
The extension of their work to a spatial statistics framework is an interesting
open problem that will be addressed in future research.

In a future article, we will also report on further numerical experiments, in
which different sampling schemes and sample sizes will be considered, as well as
the practical issues that arise.

Appendix A: Definition and results for Section 2

Definition A.1. Given a matrix A = diag(a1, a2, . . . , an), the Vandermonde
matrix associated with A, denoted by Δ(A), is defined as

Δ(A) :=

⎛⎜⎜⎜⎝
an−1
1 an−1

2 · · · an−1
n

...
...

...
a1 a2 · · · an
1 1 · · · 1

⎞⎟⎟⎟⎠ , (A.1)
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whose determinant is given by det(Δ(A)) =
∏

1≤i≤j≤n(aj − ai).

Theorem A.2 (Marzetta et al., 2011). Let DN be a full rank N ×N diagonal
matrix. For f ∈ C[dmin, dmax], we have that∫

ΩL,N

tr
(
f
(
Φ∗DNΦ

))
dφ =

L−1∑
k=0

(N − (k + 1))!
(L− (k + 1))!

det(Gk)
det(Δ(DN )) , (A.2)

where ΩL,N is defined in Section 2, Gk is the matrix defined by replacing the
(k+1)-th row of Δ(DN ), {dN−(k+1)

i }ni=1, by {I(N−L)(x(L−(k+1))f(x))|x=di}Ni=1,
and tr(·) is the trace operator.

Proposition A.3 (Marzetta et al., 2011). Let DN be a N×N diagonal matrix.
Consider 1 ≤ L < N and Z as a Gaussian random matrix with zero mean
entries and variances equal to one such that all entries are iid of size N × L.
Then ∫

ΩL,N

tr
((

Φ∗DNΦ
)−1) dφ = (N − L) det(G)

det(Δ(DN )) , (A.3)

and
μ := E

[
tr
((
Z∗DNZ

)−1)] = det(G)
det(Δ(DN )) , (A.4)

where G is the matrix constructed in Theorem A.2 by replacing the L-th row of
the Vandermonde Δ(DN ) by the row (dN−(L+1)

1 log(d1), . . . , dN−(L+1)
N log(dN )).

The matrix InvCovL(D) is diagonal and can be decomposed as

InvCovL(D) = diag
(
ΛL(DN ), μIM−N

)
,

where ΛL(DN ) = diag(λ1, . . . , λN ). Using Lemma 1 in Marzetta et al. (2011),
it follows that

λk = ∂

∂dk

∫
ΩL,N

tr log
(
Φ∗DNΦ

)
dφ. (A.5)

As a result, the components d−1
k , k = 1, . . . , N , of D are approximated by λk

given in Equation (A.5), while the components equal to zero in D are replaced
by μ given in Equation (A.4) in the approximation of the inverse of D.

Appendix B: Proof of Theorem 3.1

We note that using the linearity of the derivative operator and pulling out the
constants we have that

λi = ∂

∂di

(
L−1∑
k=0

(N − (k + 1))!
(L− (k + 1))!

|Gk|
|Δ(DN )|

)

=
L−1∑
k=0

(N − (k + 1))!
(L− (k + 1))!

∂

∂di

(
|Gk|

|Δ(DN )|

)
.
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By application of the quotient rule it follows that

λi =
L−1∑
k=0

(N − (k + 1))!
(L− (k + 1))!

( ∂|Gk|
∂di

|Δ(DN )| − |Gk|∂|Δ(DN )|
∂di

|Δ(DN )|2
)
.

Using the fact that ∂(det(X)) = det(X)trace(X−1∂X) (Magnus and Neudecker,
2007) we obtain

λi =
L−1∑
k=0

(N − (k + 1))!
(L− (k + 1))!

( |Gk||Δ(DN )|(tr[G−1
k

∂(Gk)
∂di

] − tr[Δ(DN )−1 ∂(Δ(DN ))
∂di

])
|Δ(DN )|2

)
.

Canceling |Δ(DN )| we have that

λi =
L−1∑
k=0

(N − (k + 1))!
(L− (k + 1))!

( |Gk|(tr[G−1
k

∂(Gk)
∂di

] − tr[Δ(DN )−1 ∂(Δ(DN ))
∂di

])
|Δ(DN )|

)
.

Let VN be a Vandermonde matrix defined as

VN = V (DN ) :=

⎛⎜⎜⎜⎝
1 d1 · · · dN−1

1
1 d2 · · · dN−1

2
...

...
...

1 dN · · · dN−1
N

⎞⎟⎟⎟⎠ .

Then, for a row permutation matrix PN , we have that

Δ(DN ) = (VNPN )�.

Furthermore,

∂

∂di

(
Δ(DN )

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · (N − 1)dN−2
i · · · 0 0

0 0 · · · (N − 2)dN−3
i · · · 0 0

...
...

...
...

...
0 0 · · · 2di · · · 0 0
0 0 · · · 1 · · · 0 0
0 0 · · · 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and denoting the inverse of Δ(DN ) by Δ(DN )−1 = [bij ]Ni,j=1, we obtain

tr
[
Δ(DN )−1 ∂(Δ(DN ))

∂di

]
=

N−1∑
l=1

bil(N − l)dN−(l+1)
i .
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For Gk, we notice that

∂

∂di
(Gk) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · (N − 1)dN−2
i · · · 0 0

0 0 · · · (N − 2)dN−3
i · · · 0 0

...
...

...
...

...
0 0 · · · Gi · · · 0 0
...

...
...

...
...

0 0 · · · 2di · · · 0 0
0 0 · · · 1 · · · 0 0
0 0 · · · 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where Gi = ∂
∂di

(I(N−L)(x(L−(k+1)) log(x))
∣∣
x=di

) = I(N−L−1)(x(L−(k+1)) ×
log(x))

∣∣
x=di

. Defining the inverse of Gk by G−1
k = [gij ]Ni,j=1, one gets

tr
[
G−1

k

∂(Gk)
∂di

]
=

N−1∑
l=1

l �=k+1

gil(N − l)dN−(l+1)
i + gi,k+1Gi.

Hence, we obtain that

tr
[
G−1

k

∂(Gk)
∂di

]
− tr

[
Δ(DN )−1 ∂(Δ(DN ))

∂di

]
=

N−1∑
l=1

l �=k+1

(gil − bil)(N − l)dN−(l+1)
i + gi,k+1Gi − bi,k+1

(
N − (k + 1)

)
d
N−(k+2)
i .

Thus,

λi =
L−1∑
k=0

(N − (k + 1))!
(L− (k + 1))!

|Gk|
|Δ(DN )|

(
N−1∑
l=1

l �=k+1

(
(gil − bil)(N − l)dN−(l+1)

i

)

+ gi,k+1Gi − bi,k+1
(
N − (k + 1)

)
d
N−(k+2)
i

)
,

completing the proof.
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