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Abstract: We develop a family of doubly robust kernel machines for classi-
fication in the presence of missing covariates. We assume that the missingness
is missing at random and the missing pattern is homogeneous over a subset
of covariates. First, we construct a novel convex augmented loss function
using inverse probability weighting, multiple imputation, and surrogacy. It
features (i) the double robustness against misspecification of the missing
mechanism or the imputation model, and (ii) computation feasibility via a
constrained quadratic optimization. Second, we obtain theoretical results
for the proposed kernel machine, which include Fisher consistency, an upper
bound of the excess risk, and the rate of convergence. We demonstrate
the finite sample performance of the proposed kernel machine through
simulation and real data analysis.
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1. Introduction

Classification is the problem of identifying to which category an observation
belongs. A classifier is an algorithm that maps input data to a category. In recent
years, kernel machine methods, such as support vector machines, have became
popular for their flexibility and computational ease. Typically, the algorithms
assume that the training data is fully observed. However, there are many sit-
uations where only a fraction of the covariates are available for some subjects.
Such cases of missing covariates arise either by chance or by design. For example,
in a two-stage clinical trial, information of some covariates is collected on all
patients in the first stage. While, in the second stage, information of additional
covariates is collected only on a subgroup of the patients. This could happen
because of patient dropouts which is referred to as missing by chance. It could
also happen because the information of the second stage is expensive or time
consuming (w.r.t. some patients). Hence, the collection or missing information
depends on the information of the first stage. This type of missingness is referred
to as missing by design. Another example of missing covariates often occurs in a
market surveys, where companies are interested in whether customers are willing
to purchase a new electric product (a binary response). Sensitive questions such
as personal income are often skipped in surveys when other covariates, such as
age, gender, and occupation, are collected.

Throughout the paper, we assume that the missing mechanism is missing
at random (MAR), which means that the missingness does not depend on
the missing components given the observed data. This assumption holds true
for missingness by design, although in general, the MAR assumption is non-
identifiable. The missing mechanism of the aforementioned two examples can be
categorized as MAR. For the two-stage clinical trial example, the missingness of
the information in the second stage only depends on the information collected
from the first stage which is observed and independent of the information in
the second stage. For the market survey example, whether a customer answers
the income question depends on the observed occupation and is assumed to be
independent of the actual value of income given the observed occupation. Under
the MAR assumption, three major approaches have been developed to handle
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the missing covariates, namely, the maximum likelihood method, the imputation
method and the inverse probability weighting method Little and Rubin (2002);
Pelckmans et al. (2005); Tsiatis (2006).

In the kernel machine literature, various methods have been proposed for
the classification problem in the presence of missing covariates. Smola et al.
(2005) constructed a framework that can handle missing covariates and missing
response under the condition that the kernel machines can be written as an
estimator in an exponential family. Pelckmans et al. (2005) proposed a classifier
by imposing a distribution for the covariates under the assumption of miss-
ing completely at random (MCAR). Shivaswamy et al. (2006) proposed the
support vector machines (SVM) using (conditional) probabilistic constraints
in the presence of missing covariates. Anderson and Gupta (2011) assumed a
specific distribution for the covariates and proposed a classifier using the ex-
pectation of the kernel matrix to circumvent the problem of missing covariates.
Luengo et al. (2012) compared different imputation techniques for three groups
of classification methods which include the SVM based on a working set se-
lection using second-order information (Fan et al., 2005). Hazan et al. (2015)
presented a kernel-gradient-based online algorithm under the low rank assump-
tion of the joint distribution of the covariates, observed attributes, and the re-
sponse variable. Stewart et al. (2018) provided an overview of some SVM-specific
strategies where the methods of imputation, multiple imputations, and proba-
bility constraints are employed first to handle the missing covariates. Śmieja
et al. (2019) constructed a generalized Gaussian radial bias (RBF) kernel for
incomplete data under the normality assumption.

Other approaches in the domain of machine learning include K-nearest neigh-
bours (García-Laencina et al., 2009; Choudhury and Kosorok, 2020), the neural
network ensemble models (Sharpe and Solly, 1995), classification trees (Saar-
Tsechansky and Provost, 2007; Ding and Simonoff, 2010), pattern classifica-
tion (García-Laencina et al., 2010), learning with limited attribute observation
(Bullins et al., 2016), adjusted weight voting random forests (Xia et al., 2017),
neural network with generalized neuron’s response (Śmieja et al., 2018), deep
learning (Qiu et al., 2018), and graph representation learning (You et al., 2020).
As far as we know, the consistency of the classifier has not been established by
any of these methods. In a different domain, Wang et al. (2019) proposed doubly
robust joint learning for recommendation when ratings (i.e., the response vari-
ables) are potentially missing and the missing mechanism is assumed to be not
missing at random. Their method combines error-imputation based approach
and inverse probability weighting to build a doubly robust estimator for the
prediction inaccuracy, not for the loss function as is done in this work.

In this paper, we first introduce a kernel machine with an inverse-probability-
weighted-complete-case loss function, where the weight of a complete case is
chosen to be the inverse of the probability of observing this case. This kernel
machine is inefficient since only the complete cases are used. Additionally, the
consistency of the corresponding kernel machine is guaranteed only when the
estimator of the missing mechanism is consistent. Secondly, we propose a novel
kernel machine with a convex augmented loss to overcome the aforementioned
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drawbacks. The construction of the proposed loss consists of two steps. First,
through multiple imputations, the information of the incomplete cases is used
to construct an augmented loss function to achieve double robustness. Sec-
ond, a surrogate loss and nonnegative weights are used together to modify the
augmented loss to achieve the convexity. The latter is essential for a compu-
tationally tractable solution and a simple representation of kernel machines
(Steinwart and Christmann, 2008, Theorem 5.5). The surrogate losses we con-
sider here are the classification calibrated losses which possess the property that
minimizing the risk with respect to the surrogate losses implies minimizing the
risk with respect to the classification loss as proposed by Bartlett et al. (2006).
See more discussion of the classification calibrated loss in Steinwart and Christ-
mann (2008, Chap. 3) and Bao et al. (2020). We show that the proposed convex
augmented loss is indeed a calibrated loss for the classification loss in the pres-
ence of missing covariates.

We establish some desired theoretical properties of the proposed kernel ma-
chine. Specifically, we show that the optimal classifier is Fisher consistent and
doubly robust against the misspecification of either the missing mechanism or
the imputation model but not necessarily both. To demonstrate the closeness to
the Bayes risk, we derive an upper bound of the excess risk with respect to the
classification loss (Steinwart and Christmann, 2008, Sect. 2). This upper bound
holds if either the imputation model or the missingness model is correctly spec-
ified. In addition, we obtain an upper bound for the excess risk of the proposed
kernel machine classifier and establish the convergence rate of the risk. We
show that the proposed kernel machine classifier can be implemented using
constrained quadratic programming. The R package drkm4mc is provided for
implementation of the proposed methods. We demonstrate the performance of
the proposed kernel machine through simulation and real data analysis. Lastly,
we extend the proposed kernel machine to accommodate a more complicated
type of missing pattern.

Here, we would like to emphasize the difference between the proposed convex
augmented loss and the usual augmented inverse probability weighting (AIPW)
methods (Robins et al., 1994; An and Fuller, 1998; Fuller, 2011). The AIPW
technique is used to construct an augmented term to an estimator (Scharfstein
et al., 1999; Tsiatis, 2006, Chap. 6.5) or an estimation equation (Carpenter et al.,
2006; Han et al., 2019) in the presence of missing covariates. Our approach is
different from the usual AIPW method since we do not add an augmented term
to an estimator or an estimating equation. Specifically, in our proposed kernel
machine, we construct an augmented term to an inverse probability weighted
(IPW) loss function to achieve double robustness. However, this raises mathe-
matical challenges regarding the convexity of the augmented loss function and
further the ability to use the kernel trick (Hofmann et al., 2008). The proposed
kernel machine classifier is obtained by minimizing a regularized empirical risk
over a reproducing kernel Hilbert space (RKHS), in contrast to an optimization
program with respect to the IPW loss function.

So far, the only similar work we are aware of using the convex augmented
loss function is in Liu and Goldberg (2020) who developed kernel machines with
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a different missingness type, namely, missing responses. However, their result is
limited to the quadratic loss. The loss functions considered in the present work
are much broader, which include the hinge loss, the quadratic loss, the logistic
loss, and the exponential loss, among others.

The rest of the paper is organized as follows. Section 2 introduces some
notation and preliminary about kernel machine classification, the assumption of
missing at random, and a naive method to handle classification in the presence
of missing covariates. Section 3 presents the construction of a novel convex aug-
mented loss function which serves as the basis for the proposed kernel machine.
Section 4 provides the theoretical results including Fisher consistency, an upper
bound of the excess risk, and rate of convergence. Sections 5 and 6 compare the
proposed method with some existing methods through simulation and real data,
respectively. Section 7 concludes the paper with some discussion. All technical
details are deferred to Appendix.

2. Notation and preliminaries

Let Y ∈ Y = {1,−1} denote a binary response variable which represents
two different categories. Let X ∈ X ⊂ R

d denote a d-dimensional vector of
covariates, which is partitioned as X = (Xᵀ

1 , X
ᵀ
2 )ᵀ with X1 ∈ X1 ⊂ R

d1 and
X2 ∈ X2 ⊂ R

d2 , respectively. Assume that X = X1×X2 is a compact set. Assume
that (X,Y ) jointly follows an unknown probability distribution P. Denote the
marginal distribution of X by PX .

Let I{·} denote the indicator function. Define sign(t) = 2I(t ≥ 0) − 1 ∈ Y.
For a measurable function f : X �→ R, denote the classification 0-1 loss as
L(X,Y, f) = I[Y �= sign{f(X)}] = I[Y sign{f(X)} ≤ 0]. Denote the risk by
R(f) = E{L(X,Y, f)}. The Bayes risk is defined by R∗ = inff R(f), where the
infimum is taken over all measurable functions f . It is attained at fI,opt such that
sign (fI,opt) = sign {2P(Y = 1 | X) − 1} with the value R∗ =

∫
X min{P(Y = 1 |

x), 1 − P(Y = 1 | x)}dPX (Steinwart and Christmann, 2008, Sect. 2.1).
Let H be a separable reproducing kernel Hilbert space (RKHS) of a bounded

measurable kernel on X . Denote its norm by ‖ · ‖H. Let k : X × X �→ R be
the kernel function satisfying that K(x, x′) = 〈Φ(x),Φ(x′)〉 for all x, x′ ∈ X ,
where Φ is called the feature map, and 〈·, ·〉 denotes the inner product. For f ∈
H, ‖f‖2

H = 〈f, f〉. RKHS possesses the property that the norm convergence
implies the point-wise convergence. We further assume that k is universal in the
sense that H is dense in the space of bounded continuous functions with respect
to the supremum norm, denoted by ‖ · ‖∞. It is used to facilitate the derivation
of rate of convergence in Sect. 4. Without loss of generality, assume that ‖k‖∞ ≤
1 (Hofmann et al., 2008; Steinwart and Christmann, 2008, Chap. 4). A kernel
machine is a function f ∈ H which minimizes the regularized empirical risk.

Now, assume that X1 is fully observed and X2 is potentially missing. Let R
denote the missingness indicator with R = 1 if X2 is observed, called the ‘com-
plete case’, and R = 0 if X2 is missing, called the ‘incomplete case’. We elaborate
the missing at random assumption as follows.
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Assumption 1. The missingness indicator R and the potentially missing co-
variates X2 are independent given the fully observed covariates X1 and the
response Y , i.e., the missing mechanism is missing at random (MAR) (Little
and Rubin, 2002).

Under Assumption 1, define the probability of observing X2 given X1 and Y ,
i.e., the propensity score, as π0(X1, Y ) = P(R = 1|X1, Y ).

Suppose that (Ri, Xi1, RiXi2, Yi), i = 1, . . . , n, are independent and identi-
cally distributed samples of (R,X1, RX2, Y ) where Xi2 is observed only when
Ri = 1. Let Pn(F (U)) = n−1 ∑n

i=1 F (Ui) denote the empirical process for an
arbitrary function F and a simple random sample of U in U1, . . . , Un.

When there is no missing covariates, R(f) is simply estimated by RD(f) =
Pn[I{Y sign(f(X)) ≤ 0}]. When some covariates are missing, RD(f) is not
available since sign(f(X)) is not defined for the missing observations. A naive
method is to just use the complete cases and estimate R(f) by

RC
D(f) =

∑n
i=1 RiI[Yisign{f(Xi)} ≤ 0]∑n

i=1 Ri
.

Here, Xi = (Xi1, Xi2). However, this complete-case-based estimator is biased
unless the missing mechanism is missing completely at random (MCAR) (Tsi-
atis, 2006, Sect. 6.1).

A common method to correct such bias is to use the inverse probability
weighted (IPW) loss defined by

LIPW (R,X, Y, π̂, f) = RI[Y sign(f(X)} ≤ 0]
π̂(X1, Y ) , (2.1)

where π̂(X1, Y ) is an estimator of π0(X1, Y ) (Tsiatis, 2006). Denote the empirical
risk with respect to (2.1) as RLIPW,D(f) = Pn{LIPW(R,X, Y, π̂, f)}. The mini-
mizer of the regularized version of RLIPW,D(f), i.e.,

f̂WCC = arg min
f∈H

λ‖f‖2
H + RLIPW,D(f), (2.2)

is defined as the weighted-complete-case kernel machine estimator. It can be
shown (Liu and Goldberg, 2020) that under MAR, RLIPW,D(f) is consistent
whenever π̂(X1, Y ) is a consistent estimator of π0(X1, Y ). However, the con-
sistency of π̂(X1, Y ) is not guaranteed in general. Secondly, the minimizer of
RLIPW,D(f) is subject to inefficiency since only complete cases are used directly.

In the next section, we will propose a convex augmented surrogate loss to
overcome these two problems.

3. Convex augmented loss

3.1. Augmented loss

We first introduce an augmented loss which serves as a stepping stone for the
later convex augmented loss. Our construction of the augmented term is based
on a conditional expectation with multiple imputations.
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Let F 0
2|1,Y (x2) denote the conditional distribution function of X2 given X1

and Y ; for example, the conditional normal distribution as used in the simulation
study. Let F̂2|1,Y (x2) be an estimator of F 0

2|1,Y (x2) based on the sample.

Assumption 2. F̂2|1,Y (x2) converges in probability to F ∗
2|1,Y (x2), i.e., for any

fixed x1, x2, y, and ε > 0,

P{|F̂2|1,Y (x2) − F ∗
2|1,Y (x2) | ≥ ε} −→ 0;

and π̂(x1, y) converges in probability to π∗(x1, y), i.e., for any fixed x1, y, and
ε > 0,

P{|π̂(x1, y) − π∗(x1, y)| ≥ ε} −→ 0.

Remark 3.1. Assumption 2 requires that both F̂2|1,Y (x2) and π̂(x1, y) con-
verge to some deterministic functions F ∗

2|1,Y (x2) and π∗(x1, y) which are not
necessarily the true functions F 0

2|1,Y (x2) and π0(x1, y) due to possible model
misspecification.

Let X2|1,Y , X imp
2|1,Y , and X∗

2|1,Y denote the random variables whose distribu-
tion functions are F 0

2|1,Y (x2), F̂2|1,Y (x2), and F ∗
2|1,Y (x2), respectively.

Remark 3.2. Assumption 1 implies that the missingness R is independent of
both X imp

2|1,Y and X∗
2|1,Y , given X1 and Y .

Denote X0 = (Xᵀ
1 , X

ᵀ
2|1,Y )ᵀ, X imp = (Xᵀ

1 , X
impᵀ

2|1,Y )ᵀ and X∗ = (Xᵀ
1 , X

∗ᵀ
2|1,Y )ᵀ

for later use. Denote Xg = (Xᵀ
1 , Z

ᵀ)ᵀ as a generic random vector (of dimension
d1 +d2) where Z is some d2 dimensional random vector. We shall use Xg to rep-
resent X0, X imp and X∗ in a generic form for later development. Let πg(X1, Y )
denote a generic conditional probability R given X1 and Y .

Define the augmented loss by

Laug(π∗, X∗, f)

= R

π∗(X1, Y )I[Y sign{f(X)} ≤ 0]

+ π∗(X1, Y ) −R

π∗(X1, Y ) EX∗
2|1,Y

(I[Y sign{f(X1, X
∗
2|1,Y )} ≤ 0] | X1, Y ), (3.1)

=I[Y sign{f(X)} ≤ 0] + R− π∗(X1, Y )
π∗(X1, Y )

× {I[Y sign{f(X)} ≤ 0] − EX∗
2|1,Y

(I[Y sign{f(X1, X
∗
2|1,Y )} ≤ 0] | X1, Y )},

(3.2)

where the expectation is taken with respect to X∗
2|1,Y . Note that the augmented

loss function Laug (π∗, X∗, f) depends on X, Y , and R. To simplify the notation,
we omit these three terms in the argument. Similar simplification is used to de-
note loss functions in Sect. 3.2. For fixed f , the empirical risk of (3.2) is used
to estimate E[I{Y sign(f(X)) ≤ 0}]. A similar form has been used to estimate
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the population mean (Tsiatis, 2006, Sect. 6) or the regression coefficients (Sea-
man and Vansteelandt, 2018) in the presence of missing responses. However,
we consider Laug (π∗, X∗, f) as a loss function over different f which is unlike
the aforementioned forms. We call the risk with respect to Laug (π∗, X∗, f), i.e.,
RL∗

aug
(f) = E {Laug (π∗, X∗, f)}, the auxiliary risk.

We introduce the following two conditions regarding model specification.

Condition 1 (CD). The conditional distributional model is correctly specified
if F ∗

2|1,Y (x2) = F 0
2|1,Y (x2) while π∗(x1, y) is not necessarily π0(x1, y).

Condition 2 (PS). The propensity score model is correctly specified if
π∗(x1, y) = π0(x1, y) while F ∗

2|1,Y (x2) is not necessarily F 0
2|1,Y (x2).

Theorem 3.1. Under Assumption 1, RL∗
aug

(f) = R(f) whenever Condition 1
or Condition 2 holds.

The proof of Theorem 3.1 basically shows that under either one of the two
conditions the expectation of the second term of (3.2) vanishes, thus establishing
the doubly robust property of RL∗

aug
(f).

By replacing π∗ and X∗ as π̂ and X imp respectively, we obtain the sample
version of Laug(π∗, X∗, f) as

Laug(π̂, X imp, f)

= R

π̂(X1, Y )I[Y sign{f(X)} ≤ 0]

+ π̂(X1, Y ) −R

π̂(X1, Y ) EXimp
2|1,Y

(I[Y sign{f(X1, X
imp
2|1,Y )} ≤ 0] | X1, Y ), (3.3)

where the expectation is taken with respect to the conditional distributionX imp
2|1,Y .

To estimate the conditional expectation in (3.3), we multiply impute X imp
2|1,Y

m times, denoted by X imp
2j|1,Y , j = 1, . . . ,m, based on the distribution F̂2|1,Y (x2).

Denote X imp
j = (Xᵀ

1 , X
impᵀ

2j|1,Y )ᵀ, j = 1, . . . ,m, and Ximp = (X imp
1 , . . . , X imp

m )ᵀm×d.
Then, we modify Laug(π̂, X imp, f) in (3.3) as

Laug(π̂,Ximp, f)

= R

π̂(X1, Y )I[Y sign{f(X)} ≤ 0]

+ π̂(X1, Y ) −R

π̂(X1, Y )

⎛⎝ 1
m

m∑
j=1

I[Y sign{f(X imp
j )} ≤ 0]

⎞⎠ , (3.4)

where the augmented second term is the weighted empirical risk with respect
to the imputed data. By the weak law of large numbers, the term in the
brackets of (3.4) converges in probability to EXimp

2|1,Y
(I[Y sign{f(X1, X

imp
2|1,Y )} ≤

0] | X1, Y ) as m → ∞. This conditional expectation further converges to the
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conditional expectation in (3.1) as n → ∞. In practice, we find that a moderate
number of m is adequate as illustrated in the simulation.

At last, denote the empirical risk with respect to Laug(π̂,Ximp, f) by RLimp
aug ,D

(
f) = PnLaug(π̂,Ximp, f). The corresponding kernel machine estimator is given
by

fD,λ = arg min
f∈H

λ‖f‖2
H + RLimp

aug ,D
(f), (3.5)

where λ is the tuning parameter governing the penalty term ‖f‖2
H.

3.2. Convex surrogate

The computation of (3.5) involves non-convex optimization because of the 0-1
loss. It is common practice to replace the 0-1 loss by some convex surrogate. To
be more precise, by introducing

Wj(πg) = R

πg(X1, Y )I(Y = j), Vj(πg) = πg(X1, Y ) −R

πg(X1, Y ) I(Y = j), j=1,−1,

we write a generic loss for (3.4) by

Laug(πg, Xg, f)
=W1(πg)I[sign{f(X)} ≤ 0] + W−1(πg)I[−sign{f(X)} ≤ 0]

+ 1
m

m∑
j=1

V1(πg)I[sign{f(Xg
j )} ≤ 0] + 1

m

m∑
j=1

V−1(πg)I[−sign{f(Xg
j )} ≤ 0].

(3.6)

The formula (3.6) is a general formula for any πg and Xg. While (3.4) is a
special case of (3.6) by substituting π̂ and Ximp into (3.6). For simplicity, we
fix m = 1. The results can be easily derived for general m.

Notice that the negative value of Vj when R = 1 causes Laug(πg, Xg, f) to
remain non-convex even after replacing the 0-1 loss by some convex loss. So our
first step toward the construction of a convex loss is to find a way of using only
nonnegative weights. It is achieved by the following proposed loss function,

Labs(πg, Xg, f)
=W1(πg)I[sign{f(X)} ≤ 0] + W−1(πg)I[−sign{f(X)} ≤ 0]

+ |V1(πg)|I[sign(V1){f(Xg)} ≤ 0] + |V−1(πg)|I[− sign(V−1){f(Xg)} ≤ 0].
(3.7)

For general m > 1, we shall replace the last two terms of (3.7) by

1
m

m∑
j=1

|V1(πg)|I[sign(V1) sign{f(Xg
j )} ≤ 0]

+ 1
m

m∑
j=1

|V−1(πg)|I[− sign(V−1) sign{f(Xg
j )} ≤ 0]. (3.8)
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Lemma 3.1. Labs(πg, Xg, f)−Laug(πg, Xg, f) = −V1I(V1 < 0)− V−1I(V−1 <
0).

Remark 3.3. Lemma 3.1 shows that the difference between the two losses
(3.7) and (3.6) is free of f , which implies that the minimizer of the risk w.r.t.
Laug(πg, Xg, f) is the same as the minimizer of the risk w.r.t. Labs(πg, Xg, f),
i.e., arg minf E{Laug(πg, Xg, f)} = arg minf E{Labs(πg, Xg, f)}, where (πg, Xg)
can be either (π0, X0), (π∗, X∗), or (π̂, X imp). The loss function Labs(πg, Xg, f)
is a nonnegative loss function with all positive weights. After replacing the 0-1
loss by some convex surrogate, a convex loss can be built. The proof of Lemma 3.1
is not trivial. The main technique enabled to guarantee that the following equa-
tion holds for the classification loss

I[−sign{f(Xg)} ≤ 0] = 1 − I[sign{f(Xg)} ≤ 0].

Then the term |V1(πg)|I[sign(V1)sign{f(Xg)} ≤ 0] in the loss function Labs
can be related to the term V1I[sign{f(Xg)} ≤ 0] in the loss function Laug
(free of f). Similarly, the difference between the terms |V−1(πg)|I[− sign(V−1)
sign{f(Xg)} ≤ 0] and V−1I[−sign{f(Xg)} ≤ 0] is free of f .

Next, we introduce a surrogate loss to deal with the non-convex classification
loss in (3.7). Let φ(t) be a convex surrogate loss for the classification loss. Define
G(t) = uφ(t) + vφ(−t), where u and v are two positive constants. Let tmin =
arg mint∈R G(t).

Assumption 3. φ(t) is differentiable at 0 and φ′(0) < 0. φ(−t) is convex with
φ(0) = 1 and φ satisfies sign(tmin) = sign(u− v).

By Theorem 2 of Bartlett et al. (2006), Assumption 3 ensures that φ(t) is
a classification-calibrated loss, which is used to facilitate the derivation for the
excess risk in Sect. 4.

Lemma 3.2. Assumption 3 holds for the hinge loss, φ(t) = max{0, 1 − t}, the
quadratic loss, φ(t) = (1 − t)2, the logistic loss, φ(t) = log(1 + e−t), and the
exponential loss, φ(t) = e−t.

Now, on replacing the 0-1 loss by φ, we obtain a convex augmented loss by

Lφ(πg, Xg, f)
=W1(πg)φ{f(X)} + W−1(πg)φ{−f(X)}

+ |V1(πg)|φ{sign(V1)f(Xg)} + |V−1(πg)|φ{− sign(V−1)f(Xg)}. (3.9)

Define the corresponding risk as RLg
φ
(f) = E{Lφ(πg, Xg, f)}.

Remark 3.4. The risk RLg
φ
(f), consequently its corresponding kernel machine,

depends on the conditional distribution of X2 given X1 and Y and the propensity
score model πg(X1, Y ). For example, when (πg, Xg) = (π∗, X∗), by Assump-
tion 1 and Remark 3.2,

RL∗
φ
(f)
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=
∫
X1,Y

∫
{0,1}

∫
X2

[W1(π∗)φ{f(x1, x2)}

+ W−1(π∗)φ{−f(x1, x2)}]dF 0
2|1,Y (x2) dFR|1,Y (r)dFX1,Y (x1, y)

+
∫
X1,Y

∫
{0,1}

∫
X2

[|V1(π∗)|φ{sign(V1)f(x1, x2)}

+ |V−1(π∗)|φ{−sign(V−1)f(x1, x2)}]dF ∗
2|1,Y (x2) dFR|1,Y (r)dFX1,Y (x1, y)

where FR|1,Y (r) is the conditional distribution of the missing mechanism R
given X1 and Y .

Denote the Bayes risk with respect to Lφ(π∗, X∗, f) by R∗
L∗

φ
= inff RL∗

φ
(f),

which by convexity is attained at fφ,opt = arg minf RL∗
φ
(f). Further denote the

kernel machine in H by

fφ,opt,λ = arg min
f∈H

λ‖f‖2
H + RL∗

φ
(f). (3.10)

Finally, denote the empirical risk of RL∗
φ
(f) by RLimp

φ ,D(f)=PnLφ(π̂,Ximp, f).
The corresponding kernel machine estimator is

f̂φ = arg min
f∈H

λ‖f‖2
H + RLimp

φ ,D(f). (3.11)

We refer to f̂φ in (3.11) as a doubly robust kernel machine estimator; this
property is shown in the next section.

The computation of f̂φ through a constrained quadratic optimization under
the hinge loss is provided in Appendix A.

Remark 3.5. For the augmented loss Laug(π̂, X imp, f) in (3.3), though it is
a common approach to construct the augmented term for the general AIPW
estimator, directly estimating the conditional expectation in (3.3) does not work
because the signs of V1 and V−1 and the convexity of the conditional expectation
are unknown. We provide more details in Appendix B.

4. Theoretical results

4.1. Fisher consistency

Recall that fI,opt is the minimizer of the risk function R(f) in Sect. 2 and fφ,opt
is the minimizer of the auxiliary risk function RL∗

φ
in Sect. 3.2.

Theorem 4.1. Under Assumptions 1 and 3,

R(fφ,opt) = R(fL∗
aug,opt) = R(fI,opt) = R∗,

whenever either Condition 1 or Condition 2 holds, where

fL∗
aug,opt = arg min

f
RL∗

aug
(f).
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Theorem 4.1 states that whenever F ∗
2|1,Y (x2) or π∗ is correctly specified, the

minimizer of RL∗
φ
(f) achieves the Bayes risk.

Remark 4.1. Replacing the 0-1 loss by a surrogate loss cannot guarantee the
same minimizer due to different loss functions. However, for the classification
problem, the sign of the minimizer determines the classification rule. By the
Fisher consistency result (Theorem 4.1) and Remark C.1 (in the Appendix C.5),
we have shown that sign{fφ,opt(x)} = sign{fI,opt(x)}, i.e., the two classifiers
fφ,opt(x) and fI,opt determine the same classification rule.

4.2. Excess risk

Let Lφ,1(f) = Lφ

(
π∗, X0, f

)
and Lφ,2(f) = Lφ

(
π0, X∗, f

)
denote the aug-

mented convex loss with F ∗
2|1,Y (x2) correctly specified and π∗ correctly speci-

fied, respectively. For j = 1, 2, define the risk with respect to Lφ,j as RLφ,j
(f) =

E {Lφ,j(f)}. Denote the corresponding Bayes risk by R∗
Lφ,j

= inff RLφ,j
(f),

which is attained at fφ,j,opt.
Following Bartlett et al. (2006), we define the optimal conditional φ-risk as

H(η) = inf
t∈R

{ηφ(t) + (1 − η)φ(−t)}, η ∈ [0, 1],

where φ(t) is a classification-calibrated loss. Let

ψ(t) = φ(0) −H

(
1 + t

2

)
. (4.1)

Similar to Bartlett et al. (2006, Theorem 1), we use ψ(t) to relate the excess
risk with respect to the classification loss to the excess risk with respect to the
proposed convex augmented loss. Recall that φ(t) is a classification-calibrated
loss. By Bartlett et al. (2006, Lemma 2), ψ(t) is invertible. In particular, ψ(t) =
|t| for the hinge loss, ψ(t) = 2t2 − 1 for the quadratic loss, ψ(t) = 1+t

2 log(1 +
t) + 1−t

2 log(1 − t) for the logistic loss, and ψ(t) = 1 −
√

1 − t2 for the expo-
nential loss. We will use ψ to derive the bound of the excess risk R(f) −R∗ in
Theorems 4.2, 4.3, and 4.4.

Assumption 4. There exist constants c� and cu such that

0 < c� ≤ π0(x1, y), π̂(x1, y), π∗(x1, y) ≤ cu < 1

for all x1 ∈ X1 and y ∈ Y, where π0(x1, y), π̂(x1, y) and π∗(x1, y) are defined
in (2.1) and Assumption 2.

Remark 4.2. Assumption 4 is used to bound the propensity score and its esti-
mator as in Tsiatis (2006, Chap. 6).

Theorem 4.2. Under Assumptions 1, 2, 3, and 4, (i) when Condition 1 holds,

ψ

{
R(f) −R∗

supx∈X c1(x)

}
≤

RLφ,1(f) −R∗
Lφ,1

infx∈X c1(x) ,



Kernel machines with missing covariates 2497

where c1(x) ≥ 1 is some function (defined in the proof) taking value in [2c�c−1
u +

1−c�−cu, 2cuc−1
� −2c�+1]; (ii) when Condition 2 holds and the Radon-Nikodym

derivative of F ∗
2|1,Y (x2) with respect to F 0

2|1,Y (x2) is bounded by Mh,

ψ

{
R(f) −R∗

supx∈X c2(x)

}
≤

RLφ,2(f) −R∗
Lφ,2

infx∈X c2(x) ,

where c2(x) is some function (defined in the proof) taking value in [1, 1+Mh(1−
c�)].

Remark 4.3. (i) When the derivative of F ∗
2|1,Y (x2) is bounded and the deriva-

tive of F 0
2|1,Y (x2) is greater than a positive constant, the Radon-Nikodym deriva-

tive of F ∗
2|1,Y (x2) with respect to F 0

2|1,Y (x2) is bounded. (ii) The properties of
double robustness (Theorem 3.1), Fisher consistency (Theorem 4.1), and excess
risk (Theorem 4.2) hold for general regularized empirical risk minimization, such
as neural network, in the presence of missing covariates with MAR mechanism.

For general f , Theorem 4.2 provides a bound of the excess risk R(f)−R∗ in
terms of the excess risks RLφ,1(f) −R∗

Lφ,1
and RLφ,2(f) −R∗

Lφ,2
, respectively.

Next, we show the upper bound of the excess risk when the kernel machine f̂φ
in (3.11) is used.

To this end, we need some additional notations and assumptions. Denote the
excess risk of the population-version kernel machine in (3.10) with respect to
the Bayes risk by

a(λ) = inf
f∈H

{
λ‖f‖2

H + RL∗
φ
(f)

}
− inf

f∈H
RL∗

φ
(f).

Clearly, a(λ) → 0 as λ → 0.
Let B denote the closed unit ball of H. Let M = {(4 + cu)c−1

� }1/2. Let
BH(λ) = λ−1/2MB denote the ball with the radius λ−1/2M . Define the empir-
ical L2 norm of BH by

‖f − g‖L2(Pn) = {Pn|f(X) − g(X)|2}1/2 for f, g ∈ BH. (4.2)

By the density of universal RKHS, define the L2(Pn) ε-balls around g ∈ BH
as the set

{
f ∈ BH : ‖f − g‖L2(Pn) < ε

}
. For ε > 0, the covering number of BH

with respect to L2(Pn), denoted by N (BH, ε, L2(Pn)), is the smallest number
of L2(Pn) ε-balls needed to cover BH (Zhao et al., 2015).

Assumption 5. For p ∈ (0, 2], there exists a constant C2,p depending on p such
that sup{x1,...,xn}∈Xn logN (B, ε, L2(Pn)) ≤ C2,pε

−p, where Pn is the empirical
measure obtained by observing x1, . . . , xn and L2(Pn) is the empirical L2 norm
defined as in (4.2).

Remark 4.4. By Corollary 9.5 of Kosorok (2008), Assumption 5 holds for any
Vapnik-C̆ervonenkis classes (Kosorok, 2008, Sect. 9.1.1) of measurable func-
tions. Assumption 5 is also satisfied by the Gaussian RBF kernel with k(x, x′) =
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exp(−σ2
n‖x − x′‖2) where σn > 0 is the bandwidth parameter. By Theorem 2.1

of Steinwart and Scovel (2007), for any ε > 0, sup
Pn

logN (BH, ε, L2(Pn)) ≤
cp,δ,dσ

(1−p/2)(1+δ)d
n ε−p, where 0 < p ≤ 2, δ > 0, and cp,δ,d is a constant

depending on p, δ, and d.

Assumption 6. There exist two positive constants ρ1 and ρ2 such that
|F̂2|1,Y (x2) − F ∗

2|1,Y (x2) | = Op(n−ρ1) uniformly, i.e.,

sup
x1∈X1,x2∈X2,y∈Y

|F̂2|1,Y (x2) − F ∗
2|1,Y (x2) | = Op(n−ρ1),

and |π̂(x1, y) − π∗(x1, y)| = Op(n−ρ2) uniformly, i.e.,

sup
x1∈X1,y∈Y

|π̂(x1, y) − π∗(x1, y)| = Op(n−ρ2).

Assumption 6 is stronger than Assumption 2. It is used to derive the upper
bound of the excess risk and the universal consistency. The existence of the con-
stants can be warranted by using an order-preserving nonparametric estimator
and appropriate choices of smooth kernel function and bandwidths after Hall
and Müller (2003, Theorem 3.4).

Assumption 7. Suppose that φ(t) in Assumption 3 is locally Lipschitz contin-
uous, i.e., for any β ≥ 0, there exist constants Cφ(β) such that |φ(t) − φ(t′)| ≤
Cφ(β)|t− t′|.

Remark 4.5. Assumption 7 holds for the hinge loss, the quadratic loss, the
logistic loss, and the exponential loss.

Define
CLφ

(β) = (2cu + 4)Cφ(β)
cl

. (4.3)

Theorem 4.3. Under Assumptions 1–7, when either Condition 1 or Condi-
tion 2 holds, for any b > 0, with probability no less than 1 − e−2b,

1
infx∈X cj(x)ψ

{
R(f̂φ) −R∗

supx∈X cj(x)

}
≤ a(λ) + Op{Cφ(λ−1/2)λ−1/2n−min(ρ1,ρ2)} + εn,λ,b

where j = 1, 2, and

εn,λ,b

= max
[
12C1,λcp max

{
(C1,λ

−2cλε)1/2−p/4
(
C2,p

n

)1/2
,

(
C2,p

n

)2/(2+p)
}
,

36cQb

n
,
8QC1b

n

]
,
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C1,λ = CLφ
(λ−1/2)Mλ−1/2 + 2M2, cp is a constant depending p, C2,p is the

constant defined in Assumption 5, cλ = 2
λ{CLφ

(λ−1/2) + 2Mλ1/2}2; ε is an
arbitrarily small enough positive constant, Cφ is Lipschitz constants defined in
Assumption 7, CLφ

is defined in (4.3), and Q is an absolute constant.

The universal consistency of the doubly robust kernel machine f̂φ is discussed
in the next theorem.

Theorem 4.4. Suppose Assumptions 1–7 hold. Further suppose the constant
CLφ

(β) in (4.3) is bounded by δβq for some q > 0 and δ ≥ 1 and the tuning
parameter λ in (3.11) satisfies λ → 0 and λ(q+2)/2nmin(ρ1,ρ2) → ∞. Let ψ,
defined in (4.1), be increasing in [0,∞). Then, whenever either Condition 1 or
Condition 2 holds, for any b > 0, with probability no less than 1 − e−2b,

R(f̂φ) −R∗ −→ 0.

Remark 4.6. (i) When φ is either the hinge loss, the quadratic loss, the logistic
loss, or the exponential loss, ψ increases in [0,∞). (ii) By Theorems 4.2 and 4.3,
we conclude that the proposed convex augmented loss is indeed a calibrated loss
in the presence of missing covariates. (iii) In Theorem 4.4, we claim the consis-
tency of f̂ through excess risk instead of deriving the bound of ‖f̂ −f∗‖2 directly
is because even if by bounding ‖f̂ −f∗‖2 under appropriate assumptions, we can
conclude f̂ converges to f∗. However, for the classification loss I[Y sign{f(X)}
≤ 0], the convergence of f̂ cannot guarantee RI(f̂) converges to RI(f∗) = R∗

(due to the discontinuity of classification loss).

5. Simulation

We conduct simulation studies to compare the finite-sample performance of
the proposed kernel-machine methods with some existing methods in terms of
classification error.

We denote the seven competing methods as follows.

CC: The kernel machine that use only the complete observations without any
partially observed subjects.

Full: The kernel machine that use the full observations with the missing co-
variates assumed to be known from the generating model, i.e., the oracle
method.

IPTa: The kernel machine with the missing covariates imputed by the sample
mean.

IPTk: The kernel machine with the missing covariates imputed by the sample
mean from the k nearest neighbors.

IPTm: The kernel machine with the missing covariates imputed by multiple
imputations.

WCC: The proposed weighted-complete-case kernel machine presented in (2.2).
DR: The proposed doubly robust kernel machine presented in (3.11).
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For all kernel machines, we use the Gaussian RBF kernel. The tuning pa-
rameter λ and the Gaussian RBF kernel width parameter are chosen by (the
five-fold) cross validation where λ is from {1/1000, 1/100, 1/10, 1, 10} and the
kernel width parameter is from {1/100, 1/10, 1, 10}. The hinge loss is used as the
surrogate loss in our proposed methods. The last three methods (IPTm, WCC,
DR) involve estimation of the missing mechanism P(R = 1|X1, Y ) and/or mul-
tiple imputations of the missing covariates X2.

The probability that an observation is fully observed is generated using
logistic regression of R on X1 and Y . We estimate the propensity score using
either logistic regression (under a correctly-specified model) or probit regression
(under a misspecified model). The missing values X2 are imputed either from
the multivariate normal distribution or from the regression of X2 on X1 and Y .
For the former imputation, the procedure works as follows. We assume that
given X1 and Y , the conditional distribution of X2 is multivariate normal. Then,
we obtain the estimated distribution F̂2|1,Y (x2) by replacing the mean vector
and covariance matrix by their MLEs. At last, we use F̂2|1,Y (x2) to generate m

independent samples {X imp
2j|1,Y : j = 1, . . . ,m} to form {X imp

j = (Xᵀ
1 , X

impᵀ

2j|1,Y )ᵀ :
j = 1, . . . ,m}. An alternative way to estimate the imputation model is discussed
in Appendix D.

We consider three classification models with missing covariates in Table 1,
where the actual generating model P(Y = 1|X) and the missing mechanism
P(R = 1|X1, Y ) are specified in detail.

Under the MLE imputation, denote the two methods of estimating the pro-
pensity score by logistic regression and probit regression by E1 and E2, respec-
tively. Under the regression imputation, denote the two methods of estimating
the propensity score by logistic regression and probit regression by E3 and E4,
respectively. The missingness indicator is generated through the logistic model.
Thus, Condition 2 holds when we apply methods E1 and E3.

We set the training sample size n to be 100, 200, and 400, respectively, and
the number of imputations m in (3.4) to be 5. Let {(Xi, Yi) : i = 1, . . . , N}
denote a generic testing sample of size N = 10, 000. In the simulation, the test
instances are fully observed. In reality, when the covariates X2 are missing in
some instances, we can impute them by X imp

2 based on the estimated conditional
distribution F̂2|1,Y (x2). Let Ŷi denote the generic estimate of Yi obtained by
the competing method based on common training data and Xi. Denote the
corresponding empirical classification error by R̃ = N−1 ∑N

i=1(Yi−Ŷi)2. Finally,
we set the number of replications to be 100. The implementation of both the
WCC and the DR algorithms, as well as the dataset generation can be found in
the R package drkm4mc.

Table 2 reports the sample mean, median, and standard deviation of R̃
over 100 replications obtained by the competing methods for the three data
generating models under various sample sizes and different estimation meth-
ods of the missing mechanism and imputation (E1–E4). The corresponding
distributions of R̃ are displayed by boxplots in Figs. 1–3. The boxplots of IPTa
and IPTk are omitted since they show nearly uniform inferiority to that of IPTm
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Table 1. Specification of three data generating models with missing covariates X2 in terms of the actual generating model P(Y = 1|X) and
missing mechanism P(R = 1|X1, Y ), where logit(x) = log{x/(1 − x)}, 0 and 1 denote vectors of zeros and ones respectively, Ωp = (ωij) with
ωij = I(i = j)+ |i−j|−1I(i �= j), U∗ = {U−E(U)}/sd(U). For model 2, U = z1 +z2, E(U) = 1.3273, sd(U) = 0.7840; for model 3, U = z1 + · · ·+z6,
E(U) = 1.4659, sd(U) = 0.5306.

model X X2 logit(P(Y = 1|X)) logit(P(R = 1|X1, Y ))
1 z2 ∼ N(0, I2) z1 logit{Φ(5(z2

1 − z2
2) + 1)} − 2

3 + 4z1Y

2 z10 ∼ N(Ω10110,Ω2
10) z9, z10

1
8{6.3 + z10 −

∑9
i=1(zi − 1)2} − 1

2 + 3(Y + 1)U∗

3 z17 ∼ N(Ω17117,Ω2
17) z9, z13, z17 − 1

10{20 + z18+z19+z20
3 −

∑17
i=1(zi − 1)2} − 1

2 + Y U∗

z18 = z6 + z7 + z8 + z2
9 z18, z19, z20

z19 = z10 + z11 + z12 + z2
13

z20 = z14 + z15 + z16 + z2
17
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Table 2. Sample median, mean, and standard deviation of the empirical risk R̃ over 100 replications obtained by the seven competing methods
under the three data generating models, where the superscript indicates the method of estimating missing mechanism and imputation, e.g., WCC1

stands for the WCC method under E1. Note that by design, IPT1
m coincides with IPT2

m; IPT3
m coincides with IPT4

m; WCC1 coincides with WCC3

and WCC2 coincides with WCC4.

model n CC IPTa IPTk IPT1
m IPT3

m WCC1 WCC2 DR1 DR2 DR3 DR4 Full

1 100 median 1.66 1.30 1.29 1.09 1.09 1.66 1.66 0.94 0.96 0.94 0.89 0.39
mean 1.67 1.30 1.31 1.10 1.09 1.53 1.52 0.96 1.03 1.02 0.97 0.40
std 0.14 0.22 0.25 0.18 0.18 0.29 0.30 0.31 0.37 0.32 0.33 0.06

200 median 1.66 1.30 1.29 0.92 0.91 1.50 1.48 0.72 0.76 0.71 0.78 0.34
mean 1.65 1.32 1.30 0.90 0.90 1.41 1.39 0.77 0.79 0.77 0.82 0.35
std 0.11 0.18 0.21 0.17 0.16 0.30 0.31 0.24 0.27 0.25 0.27 0.04

400 median 1.66 1.26 1.34 0.80 0.80 1.29 1.34 0.62 0.64 0.68 0.64 0.31
mean 1.64 1.26 1.32 0.79 0.80 1.26 1.28 0.65 0.68 0.70 0.69 0.31
std 0.11 0.16 0.18 0.13 0.13 0.35 0.36 0.18 0.19 0.22 0.21 0.02

2 100 median 1.90 1.64 1.79 1.70 1.69 1.73 1.75 1.64 1.64 1.64 1.64 1.64
mean 1.96 1.69 1.79 1.72 1.71 1.78 1.78 1.72 1.70 1.71 1.71 1.68
std 0.29 0.09 0.12 0.09 0.07 0.17 0.17 0.13 0.11 0.13 0.12 0.08

200 median 1.88 1.64 1.76 1.65 1.66 1.68 1.65 1.64 1.64 1.64 1.64 1.64
mean 1.90 1.69 1.76 1.67 1.67 1.73 1.72 1.67 1.66 1.67 1.67 1.67
std 0.21 0.09 0.11 0.08 0.08 0.12 0.11 0.07 0.07 0.08 0.06 0.09

400 median 1.90 1.64 1.79 1.64 1.64 1.64 1.65 1.64 1.64 1.64 1.64 1.63
mean 1.92 1.68 1.77 1.64 1.64 1.72 1.73 1.65 1.65 1.66 1.66 1.62
std 0.18 0.09 0.10 0.04 0.04 0.14 0.16 0.04 0.04 0.06 0.05 0.05

3 100 median 1.83 1.44 1.62 1.51 1.51 1.75 1.77 1.44 1.44 1.44 1.44 1.44
mean 1.88 1.48 1.63 1.53 1.53 1.76 1.77 1.46 1.45 1.46 1.45 1.47
std 0.28 0.09 0.14 0.09 0.10 0.29 0.30 0.07 0.05 0.08 0.06 0.08

200 median 1.82 1.44 1.66 1.44 1.48 1.71 1.70 1.44 1.44 1.44 1.44 1.44
mean 1.86 1.46 1.65 1.46 1.49 1.71 1.70 1.44 1.44 1.44 1.44 1.44
std 0.19 0.07 0.11 0.05 0.07 0.23 0.21 0.00 0.00 0.02 0.01 0.06

400 median 1.77 1.41 1.62 1.41 1.43 1.66 1.64 1.44 1.44 1.44 1.44 1.39
mean 1.78 1.42 1.61 1.41 1.43 1.66 1.65 1.44 1.44 1.44 1.44 1.40
std 0.09 0.05 0.08 0.03 0.05 0.15 0.16 0.00 0.00 0.00 0.00 0.05
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Fig 1. Box plots of R̃ obtained by the five competing methods (CC, IPTm, WCC, DR and
Full) under model 1.

as reflected in Table 2. The results of the kernel machines that use only the com-
plete observation (CC) method and the oracle (Full) method remain the same
across the four estimation methods since they do not involve missing values and
imputation.
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Fig 2. Box plots of R̃ obtained by the five competing methods (CC, IPTm, WCC, DR and
Full) under model 2.

It is seen that the doubly robust (DR) kernel machine method performs the
best in almost all cases regardless of the modeling of the missing mechanism and
imputation. The multiple imputation method (IPTm) performs the second best.
The only exception that IPTm performs better than DR occurs in model 2 when
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Fig 3. Box plots of R̃ obtained by the five competing methods (CC, IPTm, WCC, DR and
Full) under model 3.

n = 400. Overall, the proposed DR method exhibits the desired robustness in
regard to the choice of methods used in estimating the missing mechanism and
imputing missing covariates.
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Table 3

Description of the responses and covariates of three real data sets and specification of the
missing mechanism of X2 of the training sets, where z∗1 , z∗2 and z∗3 are the standardized

variables of z1, z2 and z3, respectively.

data (n, n0) response and covatiates logit{P(R = 1|X1, Y )}
1 (748, 500) Y = 1: donating blood

z1: months since last donation
z2: months since first donation
z3: total number of donations
X2 = z3 −1 − z∗2Y

2 (345, 200) Y = 1: in training set
z1: mean corpuscular volume
z2: alkaline phosphotase
z3: alanine aminotransferase
z4: aspartate aminotransferase
z5: glutamyl transpeptidase
z6: alcohol drank per day
X2 = (z1, z6) − 1

6 − 3z∗3Y
3 (310, 200) Y = 1: abnormal

z1: pelvic incidence
z2: pelvic tilt
z3: lumbar lordosis angle
z4: sacral slope
z5: lumbar lordosis angle
z6: grade of spondylolisthesis
X2 = (z4, z5) 2 − 11

2 (z∗1 + z∗2 )Y

6. Real data application

We apply the proposed methods to three classification data sets regarding blood
transfusion, liver disorders, and the vertebral column, respectively, which are
publicly available from the UCI machine learning repository (www.ics.uci.edu/
~mlearn/MLRepository.html). The three datasets and the code that generate
the missing data appear in the package drkm4mc. The descriptions of the data
are given in Table 3, where the proportions of positive response (Y = 1) are
about 24%, 41%, and 67%, respectively.

We randomly divide each data into a training set of size n0 (of about two
thirds of n) and a testing set of size n − n0. Further, we specify the missing
mechanism for the covariates X2 in the last column of Table 3 through some
logit models under which the missing rates are about 30%, 45% and 55%, re-
spectively.

We then apply the proposed methods to these data sets. For all three datasets,
we use the linear regression of X1 to impute the missing values of X2. For
the third data, since the partially observed X2 = {z4, z5} appears to follow
a bivariate normal distribution, we also use the bivariate normal variables to
impute the missing covariates. Thus, the estimation methods E1 and E2 are
also adopted for this data.

Table 4 reports the sample mean, median, and standard deviation of R̃
(over 100 replications) obtained by the different methods. Figure 4 shows the

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
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Table 4. Sample median, mean, and standard deviation of the empirical risk R̃ over 100 replications obtained by the seven competing methods for
the three real data sets. The results under IPT1

m and DR1 and DR2 are not available for the first two data sets since the estimation methods E1
and E2 are not considered.

data CC IPTa IPTk IPT1
m IPT3

m WCC1 WCC2 DR1 DR2 DR3 DR4 Full

1 median 1.26 1.28 1.23 – 1.05 0.96 0.97 – – 0.95 0.95 0.87
mean 1.24 1.26 1.22 – 1.06 0.96 0.97 – – 0.95 0.95 0.88
std 0.15 0.18 0.20 – 0.14 0.12 0.12 – – 0.09 0.08 0.09

2 median 1.64 1.47 1.54 – 1.46 1.64 1.64 – – 1.44 1.44 1.31
mean 1.63 1.46 1.53 – 1.47 1.63 1.64 – – 1.46 1.46 1.30
std 0.16 0.16 0.17 – 0.14 0.15 0.15 – – 0.19 0.19 0.14

3 median 1.05 0.95 0.87 0.63 0.75 1.09 1.07 0.74 0.75 0.73 0.73 0.65
mean 1.06 0.96 0.87 0.63 0.75 1.08 1.07 0.75 0.76 0.73 0.74 0.65
std 0.14 0.16 0.17 0.10 0.16 0.22 0.21 0.17 0.18 0.17 0.17 0.12
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Fig 4. Box plots of R̃ obtained by five competing methods for the three real datasets under
various estimations of the missing mechanism.

corresponding boxplots of R̃. The results of IPTa and IPTk are again omitted
since they are uniformly inferior to that of IPTm. It is seen that (i) for the first
data, the proposed DR method performs best under both E3 and E4. The WCC
method performs better than IPTm. (ii) For the second data, the DR method is
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comparable with IPTm under both E3 and E4. (iii) For the third data, the DR
method performs best under both E3 and E4. While the IPTm performs best
under both E1 and E2 when the missing data are imputed from a multivariate
normal distribution.

The findings are consistent with the results in the simulation section. The pro-
posed doubly robust kernel machine method is recommended when the missing
covarites are imputed by a regression model. It can serve as a good alternative
to the multiple imputation method when the missing covariates follow from a
multivariate normal distribution.

7. Concluding remarks

We developed two kernel machines for classification in the presence of miss-
ing covariates. A novel convex augmented loss function was proposed to obtain
the doubly robust kernel machine. Its construction combines the techniques
of inverse probability weighting and multiple imputations. Theoretical results
regarding Fisher consistency, excess risk, and convergence are established. The
proposed doubly robust kernel machine is recommended in general after simu-
lation comparison with some existing methods.

We would like to note that the algorithm we develop for calculating the dou-
bly robust estimator involves multiple imputations within the loss and, there-
fore, is time consuming. It is of interest to pursue a faster version. Other di-
rections for future work include extensions to the regression model with the
continuous response and to handle missing covariates with the non-monotonic
pattern.

Appendix A: Computation details of the doubly robust kernel
machine f̂φ (3.11) in Sect. 3.2

Write the original data as {(Ri, Xi, Yi) : i = 1, . . . , n}. When Ri = 0, X2i
is missing. Write the data with multiple imputation as {(Ri, X

imp
i,j , Yi) : i =

1, . . . , n, j = 1, . . . ,m}, where X imp
i,j = (X1i, X

imp
2j|1i,Yi

).
The empirical risk of RL∗

φ
(f) is

RLimp
φ ,D(f)

= 1
n

n∑
i=1

[|W1 (π̂)|φ {sign(W1)f(xi)} + |W−1 (π̂)|φ {−sign(W−1)f(xi)}]

+ 1
n

n∑
i=1

1
m

m∑
j=1

[|V1 (π̂)|φ{sign(V1)f(ximp
i,j )} + |V−1 (π̂)|φ{−sign(V−1)f(ximp

i,j )}].

Let N = n(m + 1). For computational convenience, we will re-order the nm
records of the triplet data with multiple imputation by a single index with
i = n + 1, . . . , n(m + 1).
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Then, f̂φ = arg minf∈H λ‖f‖2
H + RLimp

φ ,D(f) in (3.11) can be expressed as

f̂φ

= arg min
f∈H

{
1
n

n∑
i=1

[
Ri

π̂
I (Yi = 1)φ{f(Xi)} + Ri

π̂
I (Yi = −1)φ{−f(Xi)}

]

+ 1
nm

n(m+1)∑
i=n+1

(
Ri

[
1 − π̂

π̂
I (Yi = 1)φ{−f (Xi)} + 1 − π̂

π̂
I (Yi = −1)φ{f (Xi)}

]
+(1 −Ri) [I (Yi = 1)φ{f (Xi)} + I (Yi = −1)φ{−f (Xi)}]

)}
+ λ‖f‖2

H

= arg min
f∈H

{
1
N

n∑
i=1

(m + 1)
[
Ri

π̂
I (Yi = 1)φ{f(Xi)} + Ri

π̂
I (Yi = −1)φ{−f(Xi)}

]

+ 1
N

n(m+1)∑
i=n+1

N

nm

(
Ri

[
1 − π̂

π̂
I (Yi = 1)φ{−f(Xi)} + 1 − π̂

π̂
I (Yi = −1)φ{f(xi)}

]
+(1 −Ri) [I (Yi = 1)φ{f(Xi)} + I (Yi = −1)φ{−f(Xi)}]

)}
+ λ‖f‖2

H.

Let

μi =
{

(m + 1)Ri

π̂ I (Yi = 1) , i = 1, . . . , n,
N
nm

{
Ri

1−π̂
π̂ I (Yi = −1) + (1 −Ri)I (Yi = 1)

}
, i = n + 1, . . . , n(m + 1),

νi =
{

(m + 1)Ri

π̂ I (Yi = −1) , i = 1, . . . , n;
N
nm

{
Ri

1−π̂
π̂ I (Yi = 1) + (1 −Ri)I (Yi = −1)

}
, i = n + 1, . . . , n(m + 1).

The objective function can be expressed as

1
N

N∑
i=1

[μiφ{f(Xi)} + νiφ{−f(Xi)}] + λ‖f‖2
H. (A.1)

(i) We first consider the hinge loss. Then, φ(f) = max(0, 1−f) and φ(−f) =
max(0, 1 + f). For the logistic loss and the exponential loss, the derivation is
similar (Steinwart and Christmann, 2008, Sect. 11.1).

Since μi and νi are both nonnegative, (A.1) is a convex function of f . By the
representer theorem of Steinwart and Christmann (2008, Theorem 5.5), there
exists α = (α1, . . . , αN )ᵀ such that f̂φ(·) =

∑N
j=1 αjk(·, Xj).

Let C = (2Nλ)−1. Minimizing (A.1) is equivalent to minimizing

C

N∑
i=1

(μiξi + νiηi) + 1
2‖f‖

2
H,

subject to

ξi ≥ 0, ξi ≥ 1 − f(Xi), ηi ≥ 0, ηi ≥ 1 + f(Xi), i = 1, . . . , N.
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Next, introduce the objective function with Lagrange multiplier

Lagr = C

N∑
i=1

(μiξi + νiηi) + 1
2‖f‖

2
H +

N∑
i=1

γ1i{1 − f(Xi) − ξi} −
N∑
i=1

γ2iξi

+
N∑
i=1

γ3i{1 + f(Xi) − ηi} −
N∑
i=1

γ4iηi, (A.2)

where γ1i, γ2i, γ3i and γ4i are all nonnegative for i = 1, . . . , N .
Write U = diag(μ1, . . . , μN ), V = diag(ν1, . . . , νN ), ξ = (ξ1, . . . , ξN )ᵀ, η =

(η1, . . . , ηN )ᵀ, Γa = (γa1, . . . , γaN )ᵀ for a = 1, . . . , 4, K = (k(xi, xj))N×N . De-
note 1 and 0 as the vectors of ones and zeros, respectively.

We have

Lagr =C (Uξ + V η)ᵀ 1 + 1
2α

ᵀKα + Γᵀ
1 (1 −Kα− ξ)

− Γᵀ
2ξ + Γᵀ

3 (1 + Kα− η) − Γᵀ
4η. (A.3)

Setting the partial derivatives of Lagr with respect to α, ξ and η to zeros,
respectively, we get the following equations

∂Lagr
∂α

= Kα−KΓ1 + KΓ3 = 0,

∂Lagr
∂ξ

= CU1− Γ1 − Γ2 = 0,

∂Lagr
∂η

= CV 1 − Γ3 − Γ4 = 0.

Solving α, U and V by Γ1, . . . ,Γ4 and substituting them in the primal
problem (A.3), we obtain the dual program

Larg = −1
2 (Γ1 − Γ3)ᵀ K (Γ1 − Γ3) + Γᵀ

11 + Γᵀ
31

= −1
2

(
Γ1
Γ3

)ᵀ(
K −K
−K K

)(
Γ1
Γ3

)
+
(

Γ1
Γ3

)ᵀ(1
1

)
,

where 0 ≤e Γ1 ≤e CU1 and 0 ≤e Γ3 ≤e CV 1; the subscript ‘e’ stands for
element-wise. It then reduces to a quadratic optimization with box constraints.

(ii) Second, consider the quadratic loss, i.e., φ(f) = (1−f)2. Substituting φ(f)
in (A.1), we get

1
N

N∑
i=1

[μi{1 − f(Xi)}2 + νi{1 + f(Xi)}2] + λ‖f‖2
H. (A.4)

Since φ(f) and φ(−f) are both convex, there exists α = (α1, . . . , αN )ᵀ such
that f̂φ(·) =

∑N
j=1 αjk(·, Xj). After some simple algebra, we express

(A.4) = 1
N

{αᵀK(U + V )Kα− 2αᵀK(U − V ) + 1ᵀ(U2 + V 2)1} + λαᵀKα.
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Setting its derivative with respect to α to be the zero vector, we solve

α = (U + V + λNIN )−1(U − V ),

where IN is the N ×N identity matrix.

Appendix B: Discussion of the infeasibility of construction of a
convex augmented loss with the augmented term
obtained by the conditional expectation estimation

The conditional expectation estimation approach is a common method to con-
struct the augment term in the AIPW literature. Here, we reason the infeasi-
bility of this approach for the classification problem in the presence of missing
covariates.

First, we recap our approach. The augmented loss function in (3.6) is

Laug (πg, Xg, f) =W1(πg)I[sign{f(X)} ≤ 0] + W−1(πg)I[−sign{f(X)} ≤ 0]
+V1(πg)I[{sign{f(Xg)} ≤ 0] + V−1(πg)I[{−sign{f(Xg)} ≤ 0].

Based on (3.6), we introduce a new loss (3.7) given by

Labs(πg, Xg, f)
=W1(πg)I[sign{f(X)} ≤ 0] + W−1(πg)I[−sign{f(X)} ≤ 0]
+ |V1(πg)|I[sign(V1)sign{f(Xg)}≤0]+|V−1(πg)|I[− sign(V−1)sign{f(Xg)}≤0].

Then, minimization with respect to Laug is equivalent to minimization with
respect to Labs. Replacing the 0-1 loss by the convex surrogate loss φ, we obtain
a convex augmented loss (3.9) given by

Lφ(πg, Xg, f) = W1(πg)φ{f(X)} + W−1(πg)φ{−f(X)}
+ |V1(πg)|φ{sign(V1)f(Xg)} + |V−1(πg)|φ{− sign(V−1)f(Xg)}.

The loss function Labs serves as a connection between the nonconvex augmented
loss Laug and the convex augmented loss function Lφ in (3.9).

Second, we explain the problems in building a convex augmented loss as (3.9)
by directly estimating the required conditional expectations.

Denote the conditional expectation given X1 and Y as

Q0(X1, Y, f) = E2|1,Y (I[Y sign{f(X1, X2)} ≤ 0] | X1, Y ) (B.1)

Based on (B.1), define the augmented loss by

Laug1(π̂, Q̂, f) = R

π̂(X1, Y )I[Y sign{f(X)} ≤ 0] + π̂(X1, Y ) −R

π̂(X1, Y ) Q̂(X1, Y, f)

where Q̂ is an estimator of Q0(X1, Y ). Then, in the same way as Laug we can
express

Laug1 (πg, Qg, f) =W1(πg)I[sign{f(X)} ≤ 0] + W−1(πg)I[−sign{f(X)} ≤ 0]
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+V1(πg)Qg(X1, 1, f) + V−1(πg)Qg(X1,−1, f),

where Qg denotes a generic conditional expectation.
However,all positive weights as Labs because the signs of V1(πg) and V−1(πg)

are unknown. Even if they are positive, since Qg(X1, 1, f) and Qg(X1, 1, f) are
not necessarily convex, it is not clear that the obtained loss function

W1(πg)φ{f(X)} + W−1(πg)φ{−f(X)} + V1(πg)Qg(X1, 1, f)
+ V−1(πg)Qg(X1,−1, f)

is convex after replacing the 0-1 loss by the convex surrogate loss φ as Labs.

Appendix C: Proofs

C.1. Proof of Theorem 3.1

Proof. Case I: Under Condition 1, F ∗
2|1,Y (x2) = F 0

2|1,Y (x2). By Assumption 1,

E
(
π∗(X1, Y ) −R

π∗(X1, Y ) I[Y sign{f(X)} ≤ 0]
)

=E
{

E
(
π∗(X1, Y ) −R

π∗(X1, Y ) I[Y sign{f(X)} ≤ 0] | X1, Y

)}
=E

{
E
(
π∗(X1, Y ) −R

π∗(X1, Y ) | X1, Y

)
E (I[Y sign{f(X1, X2)} ≤ 0] | X1, Y )

}
=E

{
E
(
π∗(X1, Y ) −R

π∗(X1, Y ) | X1, Y

)
E
(
I[Y sign{f(X1, X2|1,Y )} ≤ 0] | X1, Y

)}
=E

(
π∗(X1, Y ) −R

π∗(X1, Y ) I[Y sign{f(X0)} ≤ 0]
)
.

Then,

RLaug(π∗, X∗, f)

=E
(

R

π∗(X1, Y )I[Y sign{f(X)} ≤ 0] + π∗(X1, Y ) −R

π∗(X1, Y ) I[Y sign{f(X0)} ≤ 0]
)

=E(I[Y sign{f(X)} ≤ 0]) + E
(
R− π∗(X1, Y )
π∗(X1, Y ) I[Y sign{f(X)} ≤ 0]

+π∗(X1, Y ) −R

π∗(X1, Y ) I[Y sign{f(X0)} ≤ 0]
)

=E [I{Y sign(f(X)) ≤ 0}] .

Case II: Under Condition 2, π∗(X1, Y ) = π0(X1, Y ). Then,

RLaug (π∗, X∗, f)
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=E (I[Y sign{f(X)} ≤ 0]) + E
(
π0(X1, Y ) −R

π0(X1, Y ) I[Y sign{f(X∗)} ≤ 0]
)

− E
(
π0(X1, Y ) −R

π0(X1, Y ) I[Y sign{f(X)} ≤ 0]
)
. (C.1)

Observe that the second term of (C.1) equals

E
{

E
(
π0(X1, Y ) −R

π0(X1, Y ) I[Y sign{f(X∗)} ≤ 0] | X∗, Y

)}
=E

(
I[Y sign{f(X∗)} ≤ 0]E

(
π0(X1, Y ) −R

π0(X1, Y ) | X∗, Y

))
=E

(
I[Y sign{f(X∗)} ≤ 0]E

(
π0(X1, Y ) −R

π0(X1, Y ) | X1, Y

))
,

which is zero after Remark 3.2. Similarly, the third term of (C.1) is zero. This
completes the proof of Case II.

C.2. Proof of Lemma 3.1

Proof. Recall that

Labs(πg, Xg, f)
=W1(πg)I[sign{f(X)} ≤ 0] + W−1(πg)I[−sign{f(X)} ≤ 0]

+ |V1(πg)|I[sign(V1)sign{f(Xg)} ≤ 0]
+ |V−1(πg)|I[− sign(V−1)sign{f(Xg)} ≤ 0]. (C.2)

We now show the relation between Laug(πg, Xg, f) and Labs(πg, Xg, f).
Recall that sign(t) = 2I(t ≥ 0) − 1 ∈ Y; thus, I[sign{f(Xg)} = 0] = 0.

Consequently,

I[−sign{f(Xg)} ≤ 0] = I[sign{f(Xg)} ≥ 0] = 1 − I[sign{f(Xg)} ≤ 0].

Then, the third term of (C.2) is

V1I(V1 ≥ 0)I[sign{f(Xg) ≤ 0] − V1I(V1 < 0)I[−sign{f(Xg)} ≤ 0]
=V1I(V1 ≥ 0)I[sign{f(Xg)} ≤ 0] − V1I(V1 < 0)(1 − I[sign{f(Xg)} ≤ 0])
=V1I[sign{f(Xg)} ≤ 0] − V1I(V1 < 0). (C.3)

Similarly, the fourth term of (C.2) can be expressed as

V−1I[−sign{f(Xg)} ≤ 0] − V−1I(V−1 < 0). (C.4)

Combining (C.2), (C.3), and (C.4),

Labs (πg, Xg, f) = W1(πg)I[sign{f(X)} ≤ 0] + W−1(πg)I[−sign{f(X)} ≤ 0]
+ V1I[sign{f(Xg)} ≤ 0] + V−1I[−sign{f(Xg)} ≤ 0]
− V1I(V1 < 0) − V−1I(V−1 < 0)

= Laug(π0, X0, f) − V1I(V1 < 0) − V−1I(V−1 < 0).
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C.3. Proof of Lemma 3.2

Proof. Recall that G(t) = uφ(t)+vφ(−t) and tmin = arg mint∈R G(t). When φ(t)
is the hinge loss, the quadratic loss, the logistic loss, or the exponential loss, φ(t)
is differentiable at 0 and φ′(0) < 1. Also the convexity of φ(−t) holds with
φ(0) = 1.

Next we will show that sign(tmin) = sign(u− v).
(i) Suppose φ(t) is the hinge loss. Write φ(t) = max(0, 1 − t) = 1−t+|1−t|

2 .
Then,

G(t) = t

2(v − u) + |1 − t|
2 u + |1 + t|

2 v + u + v

2 .

Case 1: u > v. We show that for every α < 0, there exists β ≥ 0 such that
G(α) > G(β).

If −1 < α < 0, choose 0 < β < 1. Then, G(α) −G(β) = (v − u)(α− β) > 0.
If α ≤ −1, choose β = 1. Then, G(α)−G(β) = −u(α− 1)− 2v ≥ 2(u− v) > 0.
Therefore, the minimizer of G(t) is non-negative and the sign of the minimizer
is the same as u− v.

Case 2: u < v. We show that for every α ≥ 0, there exists β < 0 such that
G(α) > G(β).

If 0 ≤ α < 1, choose −1 < β < 0. Then, G(α) −G(β) = (v − u)(α− β) > 0.
If α ≥ 1, choose β = −1. Then, G(α)−G(β) = v(α+1)+u(−1−1) ≥ 2(v−u) > 0.
Therefore, the minimizer of G(t) is negative and its sign is the same as u− v.

Case 3: u = v. We show that sign (tmin) = 1 = sign(u− v).
Since for every α > 1, G(α) = αu + u > 2u = G(1); thus, tmin ≤ 1. Second,

since for every α < −1, G(α) = −αu + u > 2u = G(−1); thus, tmin ≥ −1. Ob-
serve that G(α) = 2u when α ∈ [−1, 1]. Then, tmin = 1/2 is also the minimizer
of G(t).

Combining all three cases, we have tmin = sign(u− v).
(ii) Suppose φ(t) is the quadratic loss, i.e., φ(t) = (1 − t)2. Then,

G′(t) = 2(u + v)t− 2(u− v).

Thus, tmin = u−v
u+v . Consequently, sign(tmin) = sign(u− v).

(iii) Suppose φ(t) is the logistic loss, i.e., φ(t) = ln{1 + exp(−t)}.
The derivative of G(t) is

G′(t) = − exp(−t)
1 + exp(−t)u + exp(t)

1 + exp(t)v.

If u > 0 and v > 0, by solving G′(t) = 0, we have tmin = log
(
u
v

)
. Then,

sign (tmin) = sign(u− v).
If u = 0 and v > 0, then G′(t) > 0. Thus, tmin = −∞ and sign (tmin) =

sign(−v) = −1.
If u > 0 and v = 0, then G′(t) < 0. Thus, tmin = ∞, and sign (tmin) =

sign(u) = 1.
(iv) Suppose φ(t) is the exponential loss. The proof is similar to (ii).
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C.4. Proof of Theorem 4.1

Proof. Recall the decision function fφ,opt in Sect. 3.2 with respect to F ∗
2|1,Y (x2)

and π∗.
Case I: Suppose Condition 1 holds.
Recall that

RL∗
φ
(f) = E [W1(π∗)φ {f(X)} + W−1(π∗)φ {−f(X)}]

+ E [|V1(π∗)|φ {sign(V1)f(X∗)} + |V−1(π∗)|φ {− sign(V−1)f(X∗)}]

and X∗ = (X1, X
∗
2|1,Y ).

On replacing F ∗
2|1,Y (x2) by F 0

2|1,Y (x2),

E [|V1(π∗)|φ {sign(V1)f(X∗)}]

=
∫
X1,Y

∫
{0,1}

∫
X2

|V1(π∗)|φ {sign (V1) f (x1, x2)} dF ∗
2|1,Y (x2) dFR|1,Y (r)dFX1,Y (x1, y)

=
∫
X1,Y

∫
{0,1}

∫
X2

|V1(π∗)|φ {sign (V1) f (x1, x2)} dF 0
2|1,Y (x2) dFR|1,Y (r)dFX1,Y (x1, y)

=E [|V1(π∗)|φ {sign(V1)f(X)}] .

Similarly, we get

E [|V−1(π∗)|φ {− sign(V−1)f(X∗)}] = E [|V−1(π∗)|φ {− sign(V−1)f(X)}] .

Then,

RL∗
φ
(f) = E {Lφ (π∗, X, f)} = E [E {Lφ (π∗, X, f) | X}]

= E (E [W1(π∗)φ {f(X)} + W−1(π∗)φ {−f(X)}
+ |V1(π∗)|φ {sign(V1)f(X)} + |V−1(π∗)|φ {− sign(V−1)f(X)} | X]) .

Let

u1(x) = E {W1(π∗) + V1(π∗)I(V1 ≥ 0) − V−1(π∗)I(V−1 < 0) | X = x} ,
v1(x) = E {W−1(π∗) + V−1(π∗)I(V−1 ≥ 0) − V1(π∗)I(V1 < 0) | X = x} .

(C.5)

Then,

RL∗
φ
(f) = E [u1(X)φ{f(X)} + v1(X)φ{−f(X)}] .

Let
G1(x, f) = u1(x)φ{f(x)} + v1(x)φ{−f(x)}.

Given x, u1(x) and v1(x) are known. Then, minimizing G1(x, f) is equivalent
to minimizing RL∗

φ
(f). Further, since both u1(x) and v1(x) are nonnegative, by

Assumption 3, we have sign(fφ,opt(x)) = sign(u1(x) − v1(x)).
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Next, we show that

sign{u1(x) − v1(x)} = sign{2P(Y = 1 | X = x) − 1}.

Recall that for j = −1, 1,

Wj (π∗) = R

π∗ I(Y = j); Vj (π∗) = π∗ −R

π∗ I(Y = j).

Then,

E{W1 (π∗) | X = x}

=E
{

R

π∗(X1, Y )I(Y = 1) | X = x

}
= 1
π∗(x1, 1)P(Y = 1, R = 1 | X = x)

= 1
π∗(x1, 1)P(R = 1 | X = x, Y = 1)P(Y = 1 | X = x)

=π0(x1, 1)
π∗(x1, 1)P(Y = 1 | X = x),

where π0(x1, y) = P(R = 1|X1 = x1, Y = y) is the propensity score.
On the other hand,

E {V1(π∗)I(V1 ≥ 0) | X = x}

=E
{
π∗(X1, Y ) −R

π∗(X1, Y ) I(Y = 1)I(V1 ≥ 0) | X = x

}
=π∗(x1, 1) − 0

π∗(x1, 1) P(Y = 1, R = 0 | X = x)

=P(R = 0 | X = x, Y = 1)P(Y = 1 | X = x)
={1 − π0(x1, 1)}P(Y = 1 | X = x),

where the second equality holds because π∗(X1,Y )−R
π∗(X1,Y ) I(Y = 1)I(V1 ≥ 0) �= 0 if

and only if Y = 1 and R = 0. Also,

E {V−1 (π∗) I(V−1 < 0) | X = x}

=E
{
π∗(X1, Y ) −R

π∗(X1, Y ) I(Y = −1)I(V−1 < 0) | X = x

}
=π∗(x1,−1) − 1

π∗(x1,−1) P(Y = −1, R = 1 | X = x)

=π∗(x1,−1) − 1
π∗(x1,−1) P(R = 1 | X = x, Y = −1)P(Y = −1 | X = x)

=π∗(x1,−1) − 1
π∗(x1,−1) π0(x1,−1)P(Y = −1 | X = x),
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where the second equality holds because π∗(X1,Y )−R
π∗(X1,Y ) I(Y = −1)I(V−1 < 0) �= 0

if and only if Y = −1 and R = 1.
Similarly, we have

E{W−1(π∗) | X = x} = π0(x1,−1)
π∗(x1,−1)P(Y = −1 | X = x)

E{V−1(π∗)I(V−1 ≥ 0) | X = x} = {1 − π0(x1,−1)}P(Y = −1 | X = x)

E{V1(π∗)I(V1 < 0) | X = x} = π∗(x1, 1) − 1
π∗(x1, 1) π0(x1, 1)P(Y = 1 | X = x).

Thus,

u1(x) =π0(x1, 1)
π∗(x1, 1)P(Y = 1 | X = x) + {1 − π0(x1, 1)}P(Y = 1 | X = x)

− π∗(x1,−1) − 1
π∗(x1,−1) π0(x1,−1)P(Y = −1 | X = x),

v1(x) =π0(x1,−1)
π∗(x1,−1)P(Y = −1 | X = x) + {1 − π0(x1,−1)}P(Y = −1 | X = x)

− π∗(x1, 1) − 1
π∗(x1, 1) π0(x1, 1)P(Y = 1 | X = x).

Observe now

π∗(x1, 1)π∗(x1,−1){u1(x) − v1(x)}
=π∗(x1,−1)π0(x1, 1)P(Y = 1 | X = x)

+ π∗(x1, 1)π∗(x1,−1){1 − π0(x1, 1)}P(Y = 1 | X = x)
+ π∗(x1, 1){1 − π∗(x1,−1)}π0(x1,−1)P(Y = −1 | X = x)
− π∗(x1, 1)π0(x1,−1)P(Y = −1 | X = x)
− π∗(x1, 1)π∗(x1,−1){1 − π0(x1,−1)}P(Y = −1 | X = x)
− π∗(x1,−1){1 − π∗(x1, 1)}π0(x1, 1)P(Y = 1 | X = x)

=π∗(x1, 1)π∗(x1,−1) {2P(Y = 1 | X = x) − 1} .

This implies that

sign{fφ,opt(x)}
=sign{u1(x) − v1(x)} = sign{2P(Y = 1 | X = x) − 1} = sign{fI,opt(x)}.

Case II: Suppose Condition 2 holds.
In this case,

RL∗
φ
(f) = E[W1(π0)φ{f(X)} + W−1(π0)φ{−f(X)}]

+ E[|V1(π0)|φ{sign(V1)f(X∗)} + |V−1(π0)|φ{− sign(V−1)f(X∗)}].
(C.6)



Kernel machines with missing covariates 2519

The first expectation of (C.6) is∫
X1,Y

∫
{0,1}

∫
X2

|W1(π0)|φ{sign(W1)f(x1, x2)}

+ |W−1(π0)|φ{−sign(W−1)f(x1, x2)}dF 0
2|1,Y (x2) dFR|1,Y (r)dFX1,Y (x1, y),

(C.7)

where the third integration follows from the independence in Assumption 1 and
Remark 3.2. Note that when R = 1, (C.7) is nonzero. Then, given X1 and Y ,
the conditional distribution of X2 is F 0

2|1,Y (x2).
Given R = r, Y = y, define

h(x1, x2, y) =
dF ∗

2|1,Y (x2)
dF 0

2|1,Y (x2)
, (C.8)

which is the Radon-Nikodym derivative of F ∗
2|1,Y (x2) with respect to F 0

2|1,Y (x2).
Then, by Remark 3.2, the second expectation of (C.6) is∫
X1,Y

∫
{0,1}

∫
X2

|V1(π0)|φ{sign(V1)f(x1, x2)}

+ |V−1(π0)|φ{−sign(V−1)f(x1, x2)}dF ∗
2|1,Y (x2) dFR|Y,1(r)dFX1,Y (x1, y)

=
∫
X1,Y

∫
{0,1}

∫
X2

[|V1(π0)|φ {sign(V1)f(x1, x2)}

+ |V−1(π0)|φ{−sign(V−1)f(x1, x2)}]
dF ∗

2|1,Y (x2)
dF 0

2|1,Y (x2)
dF 0

2|1,Y (x2) dFR|Y,1(r)dFX1,Y (x1, y)

=
∫
X1,Y

∫
{0,1}

∫
X2

[|V1(π0)|φ{sign(V1)f(x1, x2)}

+ |V−1(π0)|φ{−sign(V−1)f(x1, x2)}]
h(x1, x2, y)dF 0

2|1,Y (x2) dFR|Y,1(r)dFX1,Y (x1, y), (C.9)

where the first equality holds because of the change of measure and the second
equality follows after (C.8).

Consequently, combining (C.7) and (C.9),

RL∗
φ
(f) = E[W1(π0)φ{f(X)} + W−1(π0)φ{−f(X)}]

+ E(h(X,Y )[|V1(π0)|φ{sign(V1)f(X)}
+ |V−1(π0)|φ{− sign(V−1)f(X)}]).

Define

u2(x) = E{W1(π0) | X = x} + E[h(X,Y ){V1(π0)I(V1 ≥ 0)} | X = x]
− E[h(X,Y ){V−1(π0)I(V−1 < 0)} | X = x]
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= u21(x) + u22(x) + u23(x),
v2(x) = E{W−1(π0) | X = x} + E[h(X,Y ){V−1(π0)I(V−1 ≥ 0)} | X = x]

− E[h(X,Y ){V1(π0)I(V1 < 0)} | X = x]
= v21(x) + v22(x) + v23(x). (C.10)

Clearly, both u2(x) and v2(x) are nonnegative.
Then,

RLφ
(f) = E[u2(X)φ{f(X)} + v2(X)φ{−f(X)}].

Define

G2(x, f) =u2(x)φ{f(x)} + v2(x)φ{−f(x)}.

By the similar argument in Case I, we focus on minimizing G2(x, f).
By Assumption 3, we have sign{fφ,opt(x)} = sign{u2(x) − v2(x)}.
In what follows, we show that

sign{u2(x) − v2(x)} = sign{2P(Y = 1 | X = x) − 1}.

Recall that Wj(π0) = R
π0 I(Y = j), Vj(π0) = π0−R

π0 I(Y = j) for j = −1, 1.
By (C.10),

u21(x) = E
{

R

π0(X1, Y )I(Y = 1) | X = x

}
= 1

π0(x1, 1)P(R = 1, Y = 1 | X = x)

= 1
π0(x1, 1)P(R = 1 | X = x, Y = 1)P(Y = 1 | X = x)

= 1
π0(x1, 1)P(R = 1 | X1 = x1, Y = 1)P(Y = 1 | X = x)

= P(Y = 1 | X), (C.11)

where the fourth equality is obtained by Assumption 1 and the definition of
π0(X1, Y ). Similarly,

v21(x) = P(Y = −1 | X = x). (C.12)

By the definition of u22(x) in (C.10),

u22(x) = E
{
h(X,Y )π

0(X1, Y ) −R

π0(X1, Y ) I(Y = 1)I(V1 ≥ 0) | X = x

}
= h(x, 1)π

0(x1, 1)
π0(x1, 1)P(R = 0, Y = 1 | X = x)

= h(x, 1){1 − π0(x1, 1)}P(Y = 1 | X = x), (C.13)
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where the second equality holds by the fact that h(X,Y )π
0(X1,Y )−R
π0(X1,Y ) I(Y =

1)I (V1 ≥ 0) �= 0 if and only if Y = 1 and R = 0.
Similarly, we get

v23(x) = −h(x, 1)π
0(x1, 1) − 1
π0(x1, 1) P(R = 1, Y = 1 | x)

= −h(x, 1){π0(x1, 1) − 1}P(Y = 1 | X = x), (C.14)

and

v22(x) = E
{
h(X,Y )π

0(X1, Y ) −R

π0(X1, Y ) I(Y = −1)I(V−1 ≥ 0) | X = x

}
= h(x,−1)π

0(x1,−1)
π0(x1,−1)P(R = 0, Y = −1 | X = x)

= h(x,−1){1 − π0(x1,−1)}P(Y = −1 | X = x), (C.15)

where the second equality holds by the fact that h(X,Y )V−1
(
π0) I (V−1 ≥ 0) �=

0 if and only if Y = −1 and R = 0.
By the definition of u23(x) in (C.10) and the fact that the integrated term

h(X,Y ){V−1(π0)I (V−1 < 0)} �= 0 if and only if Y = −1 and R = 1. Hence,

u23(x) = −h(x,−1)π
0(x1,−1) − 1
π0(x1,−1) P (R = 1, Y = −1 | X = x)

= −h(x,−1){π0(x1,−1) − 1}P (Y = −1 | X = x) . (C.16)

Substituting (C.11)–(C.16) in (C.10),

u2(x) − v2(x)
=P(Y = 1 | X = x) + h(x, 1){1 − π0(x1, 1)}P(Y = 1 | X = x)

+ h(x,−1){1 − π0(x1,−1)}P(Y = −1 | X = x)
−
[
P(Y = −1 | X = x) + h(x,−1){1 − π0(x1,−1)}P(Y = −1 | X = x)

+h(x, 1)(1 − π0(x1, 1))P(Y = 1 | X = x)
]

=2P(Y = 1 | X = x) − 1.

Thus,

sign{u2(x) − v2(x)} = sign{fφ,opt(x)} = sign{2P(Y = 1 | X = x) − 1}
= sign{fI,opt(x)}.

By Theorem 3.1, RL∗
aug

(f) = R(f). Then,

R(fI,opt) = RL∗
aug

(fI,opt) ≥ RL∗
aug

(fL∗
aug,opt) = R(fL∗

aug,opt) ≥ R(fI,opt).
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C.5. Proof of Theorem 4.2

Proof. Recall that

Laug(π0, X0, f)
=W1(π0)I[sign{f(X)} ≤ 0] + W−1(π0)I[−sign{f(X)} ≤ 0]

+ V1(π0)I[sign{f(X0)} ≤ 0] + V−1(π0)I[−sign{f(X0)} ≤ 0]

= R

π0 I[Y sign{f(X)} ≤ 0] + π0 −R

π0 I[Y sign{f(X0)} ≤ 0],

where X0 = (X1, X2|1,Y ). By Theorem 3.1,

RLaug(π0, X0, f) = E{Laug(π0, X0, f)} = R(f) = E(I[Y sign{f(X) ≤ 0}]).

Define Laug,1(f) = Laug(π∗, X0, f), Laug,2(f) = Laug(π0, X∗, f). Then, for j =
1, 2, the risk function and the Bayes risk are given by RLaug,j (f) = E{Laug,j(f)}
and R∗

Laug,j
= inff RLaug,j (f), respectively.

By Theorem 3.1, we have

RLaug,1(f) = RLaug,2(f) = R(f).

Thus, the excess risk of R(f)−R∗ is equivalent to RLaug,j (f)−R∗
Laug,j

for both
j = 1 and 2.

Define Labs,1(f) = Labs(π∗, X0, f), Labs,2(f) = Labs(π0, X∗, f) where Labs is
the form of (3.7). For j = 1, 2, the risk, the Bayes risk, and the Bayes decision
function are

RLabs,j (f) = E {Labs,j(f)} , R∗
Labs,j

= inf
f

RLabs,j (f),

and
fabs,j,opt = arg min

f
RLabs,j (f).

Then,

R(f) −R∗ = RLaug,j (f) −R∗
Laug,j

= RLabs,j (f) −R∗
Labs,j

, (C.17)

where the first equality holds after Theorem 3.1 and the second equality holds
after Lemma 3.1. Thus, the excess risk R(f) − R∗ equals RLabs,1(f) − R∗

Labs,1

when Condition 1 holds and equals RLabs,2(f)−R∗
Labs,2

when Condition 2 holds.
Subsequently, we will focus our analysis on these two excess risks.

Recall that

RLabs,1(f)
=E(W1(π∗)I[sign{f(X)} ≤ 0] + W−1(π∗)I[−sign{f(X)} ≤ 0]

+ |V1(π∗)|I[sign(V1)sign{f(X0)} ≤ 0]
+ |V−1(π∗)|I[− sign(V−1)sign{f(X0)} ≤ 0])
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and

RLabs,2(f)
=E(W1(π0)I[sign{f(X)} ≤ 0] + W−1(π0)I[−sign{f(X)} ≤ 0]

+ |V1(π0)|I[sign(V1)sign{f(X∗)} ≤ 0]
+ |V−1(π0)|I[− sign(V−1)sign{f(X∗)} ≤ 0]).

For j = 1, 2, let

cj(x) = uj(x) + vj(x), (C.18)

where u1(x) and v1(x) are defined in (C.5), and u2(x) and v2(x) are defined
in (C.10).

Using the integration argument in the proof of Theorem 4.1,

RLabs,j (f)
=E(uj(X)I[sign{f(X)} ≤ 0] + v1(X)I[−sign{f(X)} ≤ 0])
=E{cj(X)(ηj(X)I[sign{f(X)} ≤ 0] + {1 − ηj(X)}I[−sign{f(X)} ≤ 0])},

where ηj(X) = uj(X)
cj(X) . Since cj(X) is positive and by Steinwart and Christmann

(2008, Sect. 2.1), minimizing RLabs,j (f) yields

sign{fabs,j,opt(x)} = sign{2ηj(x) − 1}.

For the classification loss function,

R∗
Labs,j

= RLabs,j (fabs,j,opt) = E [cj(X)min {ηj(X), 1 − ηj(X)}] .

Thus,

RLabs,j (f) −R∗
Labs,j

=E {cj(X) (ηj(X)I[sign{f(X)} ≤ 0] + {1 − ηj(X)}I[−sign{f(X)} ≤ 0]
−min {ηj(X), 1 − ηj(X)})}

=E(cj(X) |2ηj(X) − 1| I[{2ηj(X) − 1}sign{f(X)} ≤ 0]). (C.19)

Similarly,

RLφ,j
(f) = E(cj(X)[ηj(X)φ{f(X)} + {1 − ηj(X)}φ{−f(X)}]).

Define U(η, t) = ηφ(t)+(1−η)φ(−t). Then, R∗
Lφ,j

= E[cj(X) inft∈R U{ηj(X), t}]
= E[cj(X)H{ηj(X)}]. Hence,

RLφ,j
(f) −R∗

Lφ,j
= E(cj(X)[U{ηj(X), f(X)} − inf

t∈R

U{ηj(X), t}]).

Following Definition 2 of Bartlett et al. (2006), the ψ-transform of φ can be
written as

ψ{2ηj(X) − 1} = inf
f : f(2ηj−1)≤0

U{ηj(X), f(X)} − inf
t∈R

U{ηj(X), t}. (C.20)
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Specially, ψ is convex when φ(α) is the hinge loss, the logistic loss, or the
exponential loss.

Thus,

ψ

{
R(f) −R∗

supx∈X cj(x)

}
=ψ

(
RLabs,j (f) −R∗

Labs,j

supx∈X cj(x)

)

=ψ

{
1

supx∈X cj(x)E(cj(x)|2ηj(X) − 1|I[{2ηj(X) − 1}sign{f(X)} ≤ 0])
}

≤ψ {E(|2ηj(X) − 1|I[{2ηj(X) − 1}sign{f(X)} ≤ 0])}
≤E{ψ(|2ηj(X) − 1|I[{2ηj(X) − 1}sign{f(X)} ≤ 0])}
=E(I[{2ηj(X) − 1}sign{f(X)} ≤ 0]ψ{|2ηj(X) − 1|})
=E(I[{2ηj(X) − 1}sign{f(X)} ≤ 0]ψ{2ηj(X) − 1})
=E(I[{2ηj(X) − 1}sign{f(X)} ≤ 0]

[ inf
f : f(2ηj−1)≤0

U{ηj(X), f(X)} − inf
t∈R

U{ηj(X), t}])

≤E[U{ηj(X), f(X)} − inf
t∈R

U{ηj(X), t}]

≤ 1
infx∈X cj(x)E(cj(x)[U{ηj(X), f(X)} − inf

t∈R

U{ηj(X), t}])

=
RLφ,j

(f) −R∗
Lφ,j

infx∈X cj(x) ,

where the first equality follows from (C.17), the second equality follows from
(C.19), the fourth equality follows from the convexity of ψ and Jenssen inequal-
ity, the fifth equality holds after applying Lemma 2 of Bartlett et al. (2006) to
the nonnegative loss function φ(α) and ψ(0) = 0, the sixth equality holds after
Lemma 2 of Bartlett et al. (2006) and ψ(t) = ψ(−t), and the seventh equality
holds after the definition of ψ in (C.20).

Finally, we derive the bounds for cj(x) for j = 1, 2. By the definition of u1(x)
and v1(x) in (C.5),

c1(x) = u1(x) + v1(x)

= E
{

R

π∗(X1, Y ) + I(R = 0) + 1 − π∗(X1, Y )
π∗(X1, Y ) I(R = 1) | X = x

}
= π0(X1, Y )

π∗(X1, Y ) + 1 − π0(X1, Y ) + 1 − π∗(X1, Y )
π∗(X1, Y ) π0(X1, Y )

= 2π
0(X1, Y )

π∗(X1, Y ) − 2π0(X1, Y ) + 1.

By Assumption 4, 0 < c� ≤ π∗(X1, Y ), π0(X1, Y ) ≤ cu < 1. Therefore, 2c�c−1
u +

1 − c� − cu ≤ c1(x) ≤ 2cuc−1
� − 2c� + 1.
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Recall that u2(x) and v2(x) are defined in (C.10), and h(x1, x2, y) is defined
in (C.8). Then,

c2(x) = u2(x) + v2(x)
= 1 + 2h(x, 1){1 − π0(x1, 1)}P(Y = 1 | X = x)

+ 2h(x,−1){1 − π0(x1,−1)}P(Y = −1 | X = x).

Note that h(x1, x2, y) is nonnegative and when |h(x1, x2, y)| ≤ Mh, then 1 ≤
c2(x) ≤ 1 + Mh(1 − c�).

Remark C.1. By the definition of ηj(X), i.e., ηj(X) = uj(X)
cj(X) ,

sign{fφ,opt(x)} = sign{fI,opt(x)} = sign{fabs,j,opt(x)}
= sign{2P(Y = 1 | X = x) − 1},

where j = 1, 2. This implies the Fisher consistency of the decision function
sign{fφ,opt(x)}.

C.6. Proof of Theorem 4.3

Proof. From Theorem 3.1, if either π∗ = π0 or F ∗
2|1,Y (x2) = F 0

2|1,Y (x2), R(f) =
RLaug(π∗, X∗, f). Then, R(f) = RLaug(π0, X0, f), where X0 = (X1, X2|1,Y ).

Now we show the upper bound of

R(f̂φ) −R∗ = R(f̂φ) −R(fI,opt).

Observe that

R(f̂φ) −R(fI,opt)

=RLaug(π0, X0, f̂φ) −RLaug(π0, X0, fI,opt)

=RLaug(π0, X0, f̂φ) − inf
f∈H

RLaug(π∗, X∗, f) + inf
f∈H

RLaug(π∗, X∗, f)

−RLaug(π∗, X∗, f̂φ) + RLaug(π∗, X∗, f̂φ) −RLaug(π0, X0, fI,opt)

≤RLaug(π0, X0, f̂φ) −RLaug(π∗, X∗, f̂φ)
+ RLaug(π∗, X∗, fI,opt) −RLaug(π0, X0, fI,opt)

+ RLaug(π∗, X∗, f̂φ) − inf
f∈H

RLaug(π∗, X∗, f)

≤|RLaug(π0, X0, f̂φ) −RLaug(π∗, X∗, f̂φ)|
+ |RLaug(π∗, X∗, fI,opt) −RLaug(π0, X0, fI,opt)|
+ RLaug(π∗, X∗, f̂φ) − inf

f∈H
RLaug(π∗, X∗, f)

≤2 sup
f∈H

|RLaug(π0, X0, f) −RLaug(π∗, X∗, f)|
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+ RLaug(π∗, X∗, f̂φ) − inf
f∈H

RLaug(π∗, X∗, f).

If either Condition 1 or Condition 2 is correctly specified, both RLaug(π∗,X∗,f)=
R(f) and RLaug(π0, X0, f) = R(f). Thus,

2 sup
f∈H

|RLaug(π0, X0, f) −RLaug(π∗, X∗, f)| = 0.

Hence, it suffices to derive the upper bound of

RLaug(π∗, X∗, f̂φ) − inf
f∈H

RLaug(π∗, X∗, f).

By RLaug(π∗, X∗, f) = R(f),

RLaug(π∗, X∗, f̂φ) = R(f̂φ).

Combining
inf
f∈H

RLaug(π∗, X∗, f) = inf
f∈H

R(f) ≥ R(fI,opt)

and Theorem 4.1, we get

RLaug(π∗, X∗, f̂φ) − inf
f∈H

RLaug(π∗, X∗, f) ≤ R(f̂φ) −R(fφ,opt).

By Theorem 4.2,

{ inf
x∈X

cj(x)}ψ
{
R(f̂φ) −R(fφ,opt)

supx∈X cj(x)

}
≤ RLφ,j

(f̂φ) −R∗
Lφ,j

. (C.21)

Then, we focus on the upper bound of the RHS of (C.21).

RHS of (C.21)
= inf

f∈H
E{Lφ(π∗, X∗, f)} + λ‖f‖2

H − E{Lφ(π∗, X∗, fφ,opt)}

− inf
f∈H

E{Lφ(π∗, X∗, f)} − λ‖f‖2
H + E{Lφ(π∗, X∗, f̂φ)}

=an(λ) + E{Lφ(π∗, X∗, f̂φ)} − E{Lφ(π̂, X imp, f̂φ)}
+ E{Lφ(π̂, X imp, f̂φ)} − E{Lφ(π̂, X imp, fφ,opt,λ)}
+ E{Lφ(π̂, X imp, fφ,opt,λ)} − inf

f∈H
E{Lφ(π∗, X∗, f)} − λ‖f‖2

H

=an(λ) + E{Lφ(π∗, X∗, f̂φ)} − E{Lφ(π̂, X imp, f̂φ)}
+ E{Lφ(π̂, X imp, f̂φ)} − E{Lφ(π̂, X imp, fφ,opt,λ)}
+ E{Lφ(π̂, X imp, fφ,opt,λ)} − E{Lφ(π∗, X∗, fφ,opt,λ)} − λ‖fφ,opt,λ‖2

H

≤ an(λ) + λ‖f̂φ‖2
H + E{Lφ(π̂, X imp, f̂φ)}

− λ‖fφ,opt,λ‖2
H − E{Lφ(π̂, X imp, fφ,opt,λ)}
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+ E{Lφ(π∗, X∗, f̂φ)} − E{Lφ(π̂, X imp, f̂φ)}
+ E{Lφ(π̂, X imp, fφ,opt,λ)} − E{Lφ(π∗, X∗, fφ,opt,λ)}.

Define

(J1) ≡ λ‖f̂φ‖2
H + E{Lφ(π̂, X imp, f̂φ)} − λ‖fφ,opt,λ‖2

H − E{Lφ(π̂, X imp, fφ,opt,λ)};
(J2) ≡ E{Lφ(π∗, X∗, f̂φ)} − E{Lφ(π̂, X imp, f̂φ)};
(J3) ≡ E{Lφ(π̂, X imp, fφ,opt,λ)} − E{Lφ(π∗, X∗, fφ,opt,λ)}.

We begin with the upper bound of J2 and J3.
By the fact that PnLφ(π̂, X imp, f̂φ) is nonnegative and by the definition of f̂φ

in (3.11),

λ‖f̂φ‖2
H ≤ λ‖f̂φ‖2

H + PnLφ(π̂, X imp, f̂φ) ≤ PnLφ(π̂, X imp, 0).

For all the hinge loss, the quadratic loss, the exponential loss, and the logistic
loss, φ(0) = 1. Then,

Lφ(π̂, X imp, 0)

=R

π̂
I(Y = 1) + R

π̂
I(Y = −1) +

∣∣∣∣ π̂ −R

π̂
I(Y = 1)

∣∣∣∣ +
∣∣∣∣ π̂ −R

π̂
I(Y = −1)

∣∣∣∣
≤ 2
cL

+ 2cU + 1
cL

≡ M2.

Thus, ‖f̂φ‖H ≤ Mλ−1/2. Similarly, λ‖fφ,opt,λ‖2
H ≤ M2.

Next we examine the difference between Lφ(π∗, X∗, f) and Lφ(π̂, X imp, f).
Observe that

Lφ(π∗, X∗, f) − Lφ(π̂, X imp, f)

=
[
R

π∗ I(Y = 1)φ{f(X)} + R

π∗ I(Y = −1)φ{−f(X)}

+ I(R = 0)π
∗ − 0
π∗ I(Y = 1)φ{f(X∗)} − I(R = 1}π

∗ − 1
π∗ I(Y = 1)φ(−f(X∗)}

+ I(R = 0)π
∗ − 0
π∗ I{Y = −1)φ{−f(X∗)}

−I(R = 1)π
∗ − 1
π∗ I(Y = −1)φ{f(X∗)}

]
−
[
R

π̂
I(Y = 1)φ{f(X)} + R

π̂
I(Y = −1)φ{−f(X))

+ I(R = 0) π̂ − 0
π̂

I(Y =1)φ{f(X imp)} − I(R = 1) π̂ − 1
π̂

I(Y =1)φ{−f(X imp)}

+ I(R = 0) π̂ − 0
π̂

I(Y = −1)φ{−f(X imp)}

−I(R = 1) π̂ − 1
π̂

I(Y = −1)φ{f(X imp)}
]
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=
(

R

π∗ − R

π̂

)
[I(Y = 1)φ{f(X)} + I(Y = −1)φ{−f(X)}]

+ (I(R = 0)I(Y = 1)[φ{f(X∗)} − φ{f(X imp)}])
− (I(R = 1)I(Y = 1)[φ{−f(X∗)} − φ{−f(X imp)}])
+ (I(R = 0)I(Y = −1)[φ{−f(X∗)} − φ{−f(X imp)}])
− (I(R = 1)I(Y = −1)[φ{f(X∗)} − φ{f(X imp)}])

+
(
I(R = 1)I(Y = 1)

[
1
π∗φ{−f(X∗)} − 1

π̂
φ{−f(X imp)}

])
+
(
I(R = 1)I(Y = −1)

[
1
π∗φ{f(X∗)} − 1

π̂
φ{f(X imp)}

])
. (C.22)

Observe that
1
π∗φ{−f(X∗)} − 1

π̂
φ{−f(X imp)}

= 1
π∗φ{−f(X∗)) − 1

π̂
φ{−f(X∗)} + 1

π̂
φ{−f(X∗)} − 1

π̂
φ{−f(X imp)}. (C.23)

Combining (C.22) and (C.23),

Lφ(π∗, X∗, f) − Lφ(π̂, X imp, f)

=
∑
j=±1

{
I(R = 0)I(Y = j) + I(R = 1)I(Y = −j)

(
1
π̂
− 1

)}
[φ{jf(X∗)} − φ{jf(X imp)}]

+
(

R

π∗ − R

π̂

) ∑
j=±1

I(Y = j)φ{jf(X)}

+
(

1
π∗ − 1

π̂

) ∑
j=±1

I(Y = j)I(R = 1)φ{−jf(X∗)}. (C.24)

Recall that BH(λ) = Mλ−1/2B, and that BH is the ball covering H with ra-
dius Mλ−1/2. Then, for j ∈ {−1, 1}

|φ{jf(x)}| ≤ |φ{jf(x)} − φ(0)| + |φ(0)| ≤ Cφ(λ−1/2)‖f‖∞ + φ(0)
≤ Cφ(λ−1/2)Mλ−1/2 + 1,

where the second inequality follows after Assumption 7 with φ(0) = 1 and Cφ

is the Lipschitz constant in Assumption 7.
By Assumption 6, |F̂2|1,Y (x2) − F ∗

2|1,Y (x2) | = Op(n−ρ1) and Lemma 4.2 of
Liu and Goldberg (2020),

sup
f∈BH

|E[φ{jf(X imp)}] − E[φ{jf(X∗)}]|

={Cφ(λ−1/2)Mλ−1/2 + 1}Op(n−ρ1)
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=Op{Cφ(λ−1/2)λ−1/2n−ρ1} (C.25)

for j ∈ {−1, 1}.
Then, combining (C.24), (C.25) and Assumption 6 that |π̂−π∗| = Op(n−ρ2),

we obtain

sup
f∈BH

|E{Lφ(π∗,X∗,f)}−E{Lφ(π̂, X imp, f)}|=Op{Cφ(λ−1/2)λ−1/2n−min(ρ1,ρ2)}.

This leads to

(J2) + (J3) = Op{Cφ(λ−1/2)λ−1/2n−min(ρ1,ρ2)}. (C.26)

Next, we derive the upper bound of (J1) using Lemma 6 of Bartlett et al.
(2006).

Define the functional class

Lφ,λ={Lφ(π̂, X imp, f)+λ‖f‖2
H−Lφ(π̂, X imp, fφ,opt,λ)−λ‖fφ,opt,λ‖2

H : f ∈ BH}.

Define

Gφ,λn = {E(�) − � : E(�) = ε, � ∈ Lφ,λn},
Z = sup

g∈Gφ,λn

Png, where g ∈ Gφ,λn . (C.27)

We now bound the function in Lφ,λ. Lemma 6 of Bartlett et al. (2006) requires
the following three conditions.

1. sup�∈Lφ,λn
‖�‖∞ ≤ C1,λ.

2. There exists c ≥ 1 and 0 < β ≤ 1, for any � ∈ Lφ,λn , E(�2) ≤ c{E (�)}β .
3. Fixed 0 < α, ε1 < 1, suppose if some � ∈ Lφ,λn has Pn� ≤ αε1 and

E(�) ≥ ε1, then some �′ ∈ Lφ,λn has Pn�
′ ≤ αε1 and E(�′) = ε1.

Under these three conditions, for any � ∈ Lφ,λn that satisfies Pn� ≤ αε1, we
have

P{E(�) ≥ ε1} ≥ 1 − e−b,

provided that

ε1 ≥ max
{
ε∗,

9cQb

(1 − α)2n,
4QC1b

(1 − α)n

}
,

where Q is an absolute constant and ε∗ ≥ 6
1−αE(Z).

Then, it suffices to verify Conditions 1, 2, 3 and bound E(Z).
(i) To verify Condition 1, for all � ∈ Lφ,λn , since Lφ is a convex function, by

Assumption 7 and Lemma 4.23 of Steinwart and Christmann (2008)

|�| ≤ |Lφ(π̂, X imp, f) − Lφ(π̂, X imp, fφ,opt,λ)| + λ|‖f‖2
H −

∥∥fφ,opt,λ‖2
H
∣∣

≤ CLφ
(λ−1/2)‖f − fφ,opt,λ‖∞ + λ‖f‖2

H + λ‖fφ,opt,λ‖2
H

≤ 2CLφ
(λ−1/2)Mλ−1/2 + 2M2 ≡ C1,λ. (C.28)
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Thus, sup�∈Lφ,λ
‖�‖∞ ≤ C1,λ which implies Condition 1. By (C.28), we also

have ‖�‖H ≤ C1,λ by Lemma 4.23 of Steinwart and Christmann (2008) and
‖f‖∞ ≤ ‖f‖H.

(ii) To verify Condition 2, observe that

|Lφ(π̂, X imp, f) − Lφ(π̂, X imp, fφ,opt,λ)|
≤
∣∣W1(π̂)φ{f(X imp)} −W1(π̂)φ{fφ,opt,λ(X imp)}

∣∣
+
∣∣W−1(π̂)φ{−f(X imp)} −W−1(π̂)φ{−fφ,opt,λ(X imp)}

∣∣
+ |V1(π̂)φ{sign(V1)f(X imp)} − V1(π̂)φ{sign(V1)fφ,opt,λ(X imp)}|
+ |V−1(π̂)φ{− sign(V1)f(X imp)} − V−1(π̂)φ{− sign(V1)fφ,opt,λ(X imp)}|

=W1(π̂)|φ{f(X imp)} − φ{fφ,opt,λ(X imp)}|
+ W−1(π̂)|φ{−f(X imp)} − φ{−fφ,opt,λ(X imp)}|
+ V1(π̂)|φ{sign(V1)f(X imp)} − φ{sign(V1)fφ,opt,λ(X imp)}|
+ V−1(π̂)|φ{− sign(V1)f(X imp)} − φ{− sign(V1)fφ,opt,λ(X imp)}|

≤W1(π̂)Cφ(λ−1/2)‖f − fφ,opt,λ‖∞ + W−1(π̂)Cφ(λ−1/2)‖f − fφ,opt,λ‖∞
+ V1(π̂)Cφ(λ−1/2)‖f − fφ,opt,λ‖∞ + V−1(π̂)Cφ(λ−1/2)‖f − fφ,opt,λ‖∞

≤ (2cu + 4)Cφ(λ−1/2)
cl

‖f − fφ,opt,λ‖∞

=CLφ
(λ−1/2)‖f − fφ,opt,λ‖∞,

where the second inequality holds because of the locally Lipschitz continuity of
φ in Assumption 7; the third inequality holds after Assumption 4.

Note that

�|Lφ(π̂, X imp, f) − Lφ(π̂, X imp, fφ,opt,λ)| + λ|‖f‖2
H − ‖fφ,opt,λ‖2

H|
≤CLφ

(λ−1/2)‖f − fφ,opt,λ‖∞ + λ‖f + fφ,opt,λ‖H‖f − fφ,opt,λ‖H
≤{CLφ

(λ−1/2) + λ‖f + fφ,opt,λ‖H}‖f − fφ,opt,λ‖H
≤{CLφ

(λ−1/2) + 2Mλ1/2}‖f − fφ,opt,λ‖H.

Then,
E(�2) ≤ {CLφ

(λ−1/2) + 2Mλ1/2}2‖f − fφ,opt,λ‖2
H.

Using the same argument as in the proof of Theorem 3.4 of Zhao et al. (2012),
we can show that

E(�) ≥ λ‖f − fφ,opt,λ‖2
H

2 .

Thus,

E(�2) ≤ 2
λ
{CLφ

(λ−1/2) + 2Mλ1/2}2E(�). (C.29)

Then Condition 2 is satisfied for cλ = 2
λ{CLφ

(λ−1/2) + 2Mλ1/2}2 and β = 1.
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(iii) To verify Condition 3, fixed 0 < α, ε1 < 1, recall that for a function f1 ∈
BH(λ), �(f1) ∈ Lφ,λ, which is defined as

�(f1) = Lφ(π̂, X imp, f1) + λ‖f1‖2
H − Lφ(π̂, X imp, fφ,opt,λ) − λ‖fφ,opt,λ‖2

H.

Assume that Pn�(f1) ≤ αε1 and E{�(f1)} ≥ ε1. Since �(fφ,opt,λ) ≡ 0,
Pn�(fφ,opt,λ) = 0 and E{�(fφ,opt,λ)} = 0.

Also Pn�(f) and E{�(f)} are both convex functions of f . There exists f ′

between f1 and fφ,opt,λ such that E{�(f ′)} = ε1 and Pn�(f ′) ≤ αε1. This
implies Condition 3.

Consider the difference

Lφ(π̂, X imp, f) + λ‖f‖2
H − Lφ(π̂, X imp, fφ,opt,λ) − λ‖fφ,opt,λ‖2

H. (C.30)

By (3.11),

PnLφ(π̂i, X
imp, f̂φ) + λ‖f̂φ‖2

H ≤ PnLφ(π̂i, X
imp, fφ,opt,λ) + λ‖fφ,opt,λ‖2

H,

and

Pn{Lφ(π̂i, X
imp, f̂φ)+λ‖f̂φ‖2

H−Lφ(π̂i, X
imp, fφ,opt,λ)−λ‖fφ,opt,λ‖2

H} ≤ 0 <
ε1

2 .

Since Conditions 1, 2, and 3 hold, applying Lemma 6 of Bartlett et al. (2006)
to (C.30),

P[E{Lφ(π̂i, X
imp, f̂φ) + λ‖f̂φ‖2

H − Lφ(π̂i, X
imp, fφ,opt,λ) − λ‖fφ,opt,λ‖2

H} ≤ ε1]
> 1 − e−b, (C.31)

where
ε1 ≥ max

(
ε∗,

36cλQb

n
,
8QC1,λb

n

)
,

with cλ = 2
λ{CLφ

(λ−1/2) + 2Mλ1/2}2, C1,λ = 2CLφ
(λ−1/2)Mλ−1/2 + 2M2,

ε∗ ≥ 12E(Z). Note that both cλ and C1,λ are functions of λ.
By Assumption 5 and Lemma C.1,

E(Z) ≤ C1,λcp max
{

(C−2
1,λcλε)

1/2−p/4
(
C2,p

n

)1/2

,

(
C2,p

n

)2/(2+p)
}
, (C.32)

where cp > 0 is a constant depending on p and ε > 0 is an arbitrarily small
enough positive constant. Let

εn,λ,b

=ε1

≥max
[
12C1,λcp max

{
(C−2

1,λcλε)
1/2−p/4

(
C2,p

n

)1/2

,

(
C2,p

n

)2/(2+p)
}
,
36cQb

n
,
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8QC1b

n

]
.

By (C.26) and (C.31), with probability no less than 1 − e−2b,

(J1) + (J2) + (J3) ≤ Op{Cφ(λ−1/2)n−min(ρ1,ρ2)} + εn,λ,b.

Therefore, with probability no less than 1 − e−2b,

1
infx∈X cj(x)ψ

{
R(f̂φ) −R(fφ,opt)

supx∈X cj(x)

}
≤an(λ) + Op{Cφ(λ−1/2)n−min(ρ1,ρ2)} + εn,λ,b, (C.33)

for j = 1, 2.

C.7. Lemma C.1

The following lemma is to bound E(Z) in (C.27).

Lemma C.1. Under Assumption 5, for any ε > 0,

E(Z) ≤ C1,λcp max
{(

C−2
1,λcλε

)1/2−p/4
(
C2,p

n

)1/2

,

(
C2,p

n

)2/(2+p)
}
,

where cp is a positive constant depending only on p,

C1,λ = CLφ
(λ−1/2)Mλ−1/2 + 2M2, cλ = 2

λ
{CLφ

(λ−1/2) + 2Mλ1/2}2.

Proof. Recall Gφ,λn = {E(�) − � : E(�) = ε, � ∈ Lφ,λn}. For any � ∈ Gφ,λn , by
(C.29)

E(�2) ≤ cλE(�) = cλε.

Then,

E(Z) = E( sup
g∈Gφ,λn

Png) = E

⎛⎜⎜⎝ sup
�∈Lφ,λn ,

E(�)=ε

[E(�) − 1
n

n∑
i=1

�{f(Xi)}]

⎞⎟⎟⎠
≤ E

[
sup

�∈Lφ,λn ,E(�2)≤cλε

|E(�) − 1
n

n∑
i=1

�{f(Xi)}|
]

= Rad(Lφ,λn , n, cλε),

where Rad(Lφ,λn , n, cλε) is the local Rademacher average of Lφ,λn for cλε. (See
Sect. 5.2 of Steinwart and Scovel, 2007 for more details.)

Recall that

Lφ,λn = {Lφ(π̂, X imp, f) − λ‖f‖2
H − Lφ(π̂, X imp, fφ,opt,λn) − λ‖fφ,opt,λn‖2

H,



Kernel machines with missing covariates 2533

f ∈ BH}

and ‖�‖H ≤ C1,λ. Then, the ball C1,λB covers Lφ,λn . It is sufficient to consider
the local Rademacher average, defined by

Rad(C1,λB,n, cλε) = E
[

sup
{�:�∈C1,λB and E(�2)≤cλε}

|E(�) − 1
n

n∑
i=1

�{f(Xi)}|
]

= C1,λRad(B,n,C−2
1,λcλε),

where the second equality holds after (37) of Steinwart and Scovel (2007, Sect.
5.2).

By Assumption 5,

sup
Pn

logN(B,C−2
1,λcλε, L2(Pn)) ≤ C2,p(C−2

1,λcλε)
−p.

Since B is a closed unit ball, by Proposition 5.5 of Steinwart and Scovel (2007),

Rad(B,n,C−2
1,λcλε) ≤ cp max

{
(C−2

1,λcλε)
1/2−p/4

(
C2,p

n

)1/2

,

(
C2,p

n

)2/(2+p)
}
,

where cp > 0 depends only on p. Therefore,

E(Z) ≤ Rad(Lφ,λn , n, cλε) ≤ Rad(C1,λB,n, cλε)

≤ C1,λcp max
{

(C−2
1,λcλε)

1/2−p/4
(
C2,p

n

)1/2

,

(
C2,p

n

)2/(2+p)
}
.

C.8. Proof of Theorem 4.4

Proof. We first consider εn,λ,b. When p ∈ (0, 2), 1
2 −

p
4 > 0. Since CLφ

(β) ≤ δβq,
then

C1,λ = 2CLφ
(λ−1/2)Mλ−1/2 + 2M2 ≤ 2δλ−q/2Mλ−1/2 + 2M2 ≤ δ1,Mλ−(q+1)/2,

(C.34)

where δ1,M is some constant depending on δ and M . Also for λ ∈ (0, 1) and t <
0 < s, we have λs < λt. Then,

cλ = 2
λ
{CLφ

(λ−1/2) + 2Mλ1/2}2 ≤ 2
λ

(δλ−(q+1)/2 + 2Mλ1/2)2 ≤ δ2,Mλ−(q+2),

(C.35)

where δ2,M is some constant depending on δ and M . Thus,

C1,λcp(C−2
1,λcλε)

1/2−p/4 = cpC1,λ
p/2cλ

1/2−p/4ε1/2−p/4

≤ cp(δ1,M )p/2λ−(q+1)p/4(δ2,Mλ−(q+2))1/2−p/4ε1/2−p/4
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≤ cpδM,ελ
−(q+1)p/4λ−(q+2)(1/2−p/4)

= cpδM,ελ
−(2q+4−p)/4,

where δM,ε is some constant related to δ1,M , δ2,M , and ε. Hence,

C1,λcp

(
C−2

1,λcε
)1/2−p/4

(
C2,p

n

)1/2

≤cpδM,εC
1/2
2,p λ

−(q+1)p/4λ−(q+2)(1/2−p/4)n−1/2 (C.36)

and,

C1,λcp

(
C2,p

n

)2/(2+p)

≤cpδ1,Mλ−(q+1)/2C
2/(2+p)
2,p n−2/(2+p). (C.37)

Substituting (C.36) and (C.37) in (C.32),

E(Z)

≤max
{
cpδM,εC

1/2
2,p λ

−(2q+4−p)/4n−1/2, cpδ1MC
2/(2+p)
2,p λ−(q+1)/2n−2/(2+p)

}
.

Consequently, if min
{
λ(2q+4−p)/4n1/2, λ(q+1)/2n2/(2+p)} → ∞, E(Z) → 0.

By (C.34) and (C.35), if λ(q+1)/2n −→ ∞ and λq+2n → ∞, then,

min{λ(2q+4−p)/4n1/2, λ(q+1)/2n2/(2+p)} → ∞,
8QC1,λb

n
→ 0, 36cλQb

n
→ 0.

Hence, if λq+2n → ∞, then εn,λ,b → 0.
Next we consider Op{Cφ(λ−1/2)λ−1/2n−min(ρ1,ρ2)}. Since Cφ(β) ≤ δβq, the

following equality holds,

Cφ(λ−1/2)λ−1/2n−min(ρ1,ρ2) ≤ δλ−q/2λ−1/2n−min(ρ1,ρ2)

= δλ−(q+1)/2n−min(ρ1,ρ2).

Hence, if λ(q+1)/2nmin(ρ1,ρ2) → ∞, then Op{Cφ(λ−1/2)λ−1/2n−min(ρ1,ρ2)} → 0.
Since λ → 0, a(λ) → 0. Therefore, for p ∈ (0, 2], if λ → 0 and λ(q+2)/2nmin(ρ1,ρ2)

→ ∞, then the RHS of (C.33) converges to zero, that is,for any b > 0, with
probability no less than 1 − e−2b,

1
infx∈X cj(x)ψ

{
R(f̂φ) −R∗

supx∈X cj(x)

}
−→ 0.

Since R∗ is the Bayes risk, then R(f̂φ)−R∗ is nonnegative. Note that infx∈X cj(x)
and supx∈X cj(x) are positive and finite and ψ is increasing in [0,∞). Thus, for
any b > 0, with probability no less than 1 − e−2b,

R(f̂φ) −R∗ −→ 0.

This completes the proof.
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Appendix D: An alternative way to estimate the imputation model

An alternative way to estimate the imputation model is to employ the EM
algorithm. When all the models were fully parametric, one can use the following
EM algorithm

• E-step: Compute the prodictive distribution for X2 by

f(x2|x1, y; θ(t)) = P(Y = y|x1, x2; θ(t)
1 )f(x2|x1; θ(t)

2 )∫
P(Y = y|x1, x2, y; θ(t)

1 )f(x2|x1; θ(t)
2 )dx2

• M-step: Update the parameters by solving the score equations for θ1
and θ2:

n∑
i=1

[RiS1(θ1;x1i, x2i, yi) + (1 −Ri)E{S1(θ1;x1i, X2, yi)|x1i, yi; θ(t)}] = 0

and
n∑

i=1
[RiS2(θ2;x1i, x2i, yi) + (1 −Ri)E{S2(θ2;x1i, X2, yi)|x1i, yi; θ(t)}] = 0,

where S1 and S2 are the score functions of of θ1 and θ2 are respectively.
Noticed that the normalization constant

∫
P(Y = y|x1, x2, y; θ(t)

1 ) f(x2|x1;
θ
(t)
2 )dx2 is known to be difficult to calculate as it involves the multivariate

integral. See discussion in Tsiatis (2006, Remark 2, Sect. 6.2). One possible
strategy is to apply Metropolis-Hastings algorithm to construct a Markov chain
with a stationary distribution is f(x2|x1; θ(t)

2 ) for every given x1 and at every
iteration t of the EM algorithm.
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Supplementary Material

R code
(doi: 10.1214/23-EJS2158SUPP; .zip). The R package drkm4mc for the weighted-
complete-case kernel machine estimator and the doubly robust kernel machine
estimator, and R code for Sects. 5 and 6 are provided at https://github.com/
LTTGH.
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https://github.com/LTTGH
https://github.com/LTTGH
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