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Abstract: Variable screening for ultrahigh-dimensional data has attracted
extensive attention in the past decade. In many applications, researchers
learn from previous studies about certain important predictors or control
variables related to the response of interest. Such knowledge should be
taken into account in the screening procedure. The development of variable
screening conditional on prior information, however, has been less fruitful,
compared to the vast literature for generic unconditional screening. In this
paper, we propose a model-free variable screening paradigm that allows
for high-dimensional controls and applies to either continuous or categor-
ical responses. The contribution of each individual predictor is quantified
marginally and conditionally in the presence of the control variables as
well as the other candidates by reproducing-kernel-based R2 and partial
R2 statistics. As a result, the proposed method enjoys the sure screening
property and the rank consistency property in the notion of sufficiency,
with which its superiority over existing methods is well-established. The
advantages of the proposed method are demonstrated by simulation stud-
ies encompassing a variety of regression and classification models, and an
application to high-throughput gene expression data.
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1. Introduction

Ultrahigh-dimensional data have become increasingly prevalent nowadays in di-
verse fields such as biomedical sciences, finance and social sciences. Since a vital
task of contemporary statistical analysis is to extract core information by iden-
tifying low-dimensional sparse presentations of the predictive variables, variable
selection becomes an indispensable part of the analysis pipeline. However, im-
peded by the complications embedded in ultrahigh-dimensional data, it is often
beyond the hope in practice to recover all the truly important predictors with
no error. Traditional variable selection and regularization methods are no longer
applicable due to statistical and computational issues associated with increas-
ing data volume. Recent years have seen rising attention to variable screening
as a less ambitious yet efficient way to remove most irrelevant information be-
fore more sophisticated modeling can be pursued. Variable screening was first
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introduced by Fan and Lv (2008) for linear models to fast filter out redun-
dant variables through marginal independence learning based on the Pearson
correlation. The screening mechanism asymptotically almost surely identifies
all important predictors, and thus is called sure independence screening (SIS).
Since conjecturing about the dependence structure is presumably challenging in
high-dimensional spaces, more flexible approaches have emerged to avoid model
specifications. For instance, Li, Zhong and Zhu (2012) and Balasubramanian,
Sriperumbudur and Lebanon (2013) improved SIS using distance correlation
(DCOR; Székely, Rizzo and Bakirov, 2007) and a more general class of depen-
dence measures, namely Hilbert-Schmidt independence criterion (HSIC; Gretton
et al., 2005), respectively. Model-free SIS procedures focusing on categorical re-
sponses include Kolmogorov filter (Mai and Zou, 2013, 2015) and MV-SIS (Cui,
Li and Zhong, 2015), among others.

Conditional variable screening is a pertinent addition to the toolbox of ana-
lyzing ultrahigh-dimensional data when prior information is available or when
potential confoundings exist. In many applications, researchers know from pre-
vious investigations that certain variables are responsible for the outcomes or
should be controlled for in related studies. This knowledge should be taken into
account so that these variables can assist in the selection of the other important
predictors while being shielded from screening. Variable screening then relies on
the learning of conditional dependence between potential predictors and the re-
sponse variable given a control set already contained in the model. Compared to
the rich literature in unconditional variable screening, the development in con-
ditional variable screening has been less yielding. Measuring conditional depen-
dence is in general a hard problem. It was recently revealed that a valid test for
conditional independence does not have power against any alternative for contin-
uous random vectors, unless the test is carefully chosen by some domain knowl-
edge (Shah and Peters, 2020). Extending unconditional screening methods to
complement conditional screening is therefore nontrivial and most of their adap-
tions remain elusive. Limited work has expanded to generalized linear model
(Barut, Fan and Verhasselt, 2016) and varying coefficient linear model (Fan, Ma
and Dai, 2014; Liu, Li and Wu, 2014; Yang, Yang and Li, 2020). Model-free ap-
proaches have also been developed based on conditional DCOR (CDCOR; Wang
et al., 2015; Wen et al., 2018) and Blum–Kiefer–Rosenblatt correlation (Zhou,
Liu and Zhu, 2020), which are mainly designed for continuous responses. While
it is common to have multiple or even high-dimensional control variables in the
analysis of ultrahigh-dimensional data, the conditional set is often restricted to
very low dimension in existing screening methods because common nonparamet-
ric approaches for estimating moments of conditional distributions, such as ker-
nel smoothing and k-nearest neighbors, suffer from the curse of dimensionality.

Interrelations, redundancy and noise also add to the difficulty of variable
screening. A common but not negligible issue of the aforementioned uncondi-
tional or conditional screening methods is that important predictors making
little or no marginal contribution (or conditional contribution given the control
variables) to the response variable cannot be detected, while spurious variables
that are highly correlated with some important predictors may be falsely se-
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lected (Fan and Lv, 2008). Intuitively, this issue can be solved if each predic-
tor is evaluated after adjusting for the joint effect of the other candidates and
the control variables, which unfortunately also becomes an arduous conditional
independence problem as the conditional vector is ultrahigh-dimensional. For
unconditional screening, Yang, Yin and Zhang (2019) proposed some approach-
able sufficient conditions for identifying irrelevant predictors by incorporating
the joint information of all variables. However, a marginally silent predictor
may not survive those conditions if it does not have a stronger correlation with
the rest variables compared to the other candidates. False discoveries of spurious
variables are exacerbated in the meanwhile. Other available solutions are mostly
iterative algorithms (Fan and Lv, 2008; Balasubramanian, Sriperumbudur and
Lebanon, 2013; Liu, Li and Wu, 2014, etc.) which at each step select variables
that explain the “residuals” from the previous iteration. Nevertheless, defining
“residuals” without model specification is not obvious and no theoretical support
has been provided. A gap still exists in addressing the predicament, especially
for model-free conditional screening.

In this paper, we develop a model-free sufficient variable screening paradigm
that allows prior information to be integrated. The impetus is the general lack of
flexible and reliable conditional screening tools for ultrahigh-dimensional data,
creating an impediment to promising applications in practice. Two jointly suf-
ficient conditions for identifying null variables are introduced to assess the con-
tribution of each individual predictor marginally and conditionally in the pres-
ence of the others as well as the control set. The assessments are carried out
via reproducing-kernel-based R2 and partial R2 measures, which inherit the
interpretability of the classical R2 statistics but assume no underlying model
structure. Deviation bounds for the empirical measures can be found uniformly
in spite of the dimension of the control variables. Consequently, the proposed
screening procedure satisfies the sure screening property and the rank consis-
tency property in a “large p small n” setting. In a nutshell, our proposal has
the following merits compared to existing methods. Firstly, the framework is
developed with the notion of sufficiency – meaning that there is no loss of in-
formation in reducing the dimension. All the truly important predictors will be
selected with high probability, including those that are individually independent
but jointly dependent of the response variable when conditioning on the control
variables. Secondly, arbitrarily many control variables can be adjusted for in the
screening procedure that is implemented with the proposed model-free utility
measures. Thirdly, the unified framework applies to either continuous or cate-
gorical response variables with finite or diverge numbers of categories. Lastly,
the method is very general and can work with a broad class of independence
measures. When there is no available prior information, the procedure automat-
ically performs unconditional sufficient variable screening, which also surpasses
existing unconditional screening approaches in detecting important predictors
that are marginally independent of the response.

The rest of this paper is organized as follows. In Section 2, we develop the
framework of conditional sufficient variable screening along with the kernel-
based utility measures, and study related properties. Numerical studies compar-
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ing our proposal with existing alternatives are provided in Section 3, followed
by a short discussion in Section 4 to close the paper. All technical proofs are
deferred to the appendix, along with a discussion addressing the computational
aspects of the proposed procedure.

2. Conditional sufficient variable screening

2.1. Methodology

Let Y ∈ R be the response variable, X = (X1, . . . , Xp) ∈ Rp be the vector
of predictors that are subject to screening, and W ∈ Rp0 be the vector of
control variables such as known important predictors, confounders or exposure
variables. Ideally, we would like to identify the smallest index set A ⊆ {1, . . . , p}
such that

Y X|{XA,W},
where XA := {Xj : j ∈ A}. Conditioning on W, the selection of XA is “minimal
sufficient” since no information about the regression is impaired in reducing the
predictors to the utmost. The primary goal of conditional variable screening is
to achieve sufficiency; that is, to find a reduced index set that covers A with
relatively small cardinality (realistically assumed to be smaller than the sample
size). This aim is less ambitious than exact variable selection that recovers A
precisely, but in exchange for faster dimension reduction of massive data. After
the majority of irrelevant variables are eliminated, more accurate variable selec-
tion can be further conducted. The following proposition lays the cornerstone
for conditional sufficient variable screening.

Proposition 1. Let X−j denote the vector of all predictors excluding Xj (j =
1, . . . , p), then

1. j �∈ A if and only if condition

(a) Xj Y |(X−j ,W)

holds, j = 1, . . . , p; and
2. the following pair of conditions (b1) and (b2) implies condition (a):

(b1) Xj Y ; (b2) (X−j ,W) Y |Xj .

The first statement in Proposition 1 streamlines a one-by-one screening pro-
cedure where each individual predictor should be assessed in the presence of
the control variables as well as the other predictors. However, the conditional
independence in (a) is rather difficult to verify, especially given the ultrahigh di-
mension of the conditioning vector. To circumvent the hurdle, one can check the
conditions in the second statement instead, where (b1) is simply a marginal in-
dependence condition and (b2) only involves a single conditional variable. Since
the pair of conditions (b1) and (b2) is stronger than condition (a), it is en-
sured that the excluded predictors are truly unimportant and subsequently, the
remaining set will cover XA.
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Nonetheless, the biggest challenge in ultrahigh dimensional screening is that
variables tend to be correlated by chances (Fan and Lv, 2010), so an unim-
portant predictor can be spuriously associated with the response due to its
correlation with the important ones. Therefore, instead of eliminating unimpor-
tant predictors through independence tests, variable screening procedures select
predictors that contribute most to the response, or equivalently, those “vio-
late” condition (a) the most. Since violation of condition (a) implies violation
of condition (b1) or condition (b2), Xj is retained if its marginal contribution
to Y is large or if the conditional contribution of (X−j ,W) to Y given Xj is
large. Examining only condition (b1) is not sufficient as there might exist im-
portant predictors that are marginally independent but collectively dependent
of the response. This occurs when an important predictor Xj∗ is correlated with
other significant ones in the model, but its effect on the response is offset by
the joint effect of the others, so any marginal change in that predictor does
not lead to a difference in the response. Since the joint effect of (X,W) can
be decomposed into the marginal effect of an arbitrary predictor Xj and the
conditional effect of (X−j ,W) given Xj already contained in the model, the
conditional effect maxes out if Xj has absolutely no marginal contribution. As
a result, the conditional effect of (X−j∗ ,W) given Xj∗ is in fact tantamount to
the full effect of (XA,W). For a spurious predictor Xj , the conditional effect of
(X−j ,W) given Xj is undermined due to the indirect marginal effect of Xj . For
an unimportant predictor Xj′ that is completely independent of the response,
the conditional effect of (X−j′ ,W) given Xj′ is also maximized, but in this case
Xj′ must be independent of (XA,W) and hence can be easily distinguished from
marginally irrelevant but jointly important predictors. Assessing condition (b2)
is thus indispensable for further capturing important predictors whose marginal
contribution to the response is very weak or nonexistent.

The mainstream of existing conditional screening methods evaluates an in-
sufficient condition

(a′) Xj Y |W
without considering the effect of X−j . As a consequence, active predictors that
are individually independent but collectively dependent of the response variable
given the control set are falsely ruled out. In other words, only part of the active
index set, namely A1 := {j ∈ A : Xj �⊥⊥ Y |W} ⊆ A, can be identified. Besides,
W as the conditional vector in (a′) is often restricted to be low-dimensional.
Note that by leaving out X−j in Proposition 1, conditions (b1) and

(b2′) W Y |Xj

jointly imply condition (a′), which suggests that one can utilize conditions (b1)
and (b2′) to recover A1 given high-dimensional controls. That is, Xj is retained
if the marginal contribution of Xj is large or if the conditional contribution of
W given Xj is large, either of which can lead to a strong joint effect of (Xj ,W).
In the meanwhile, the collective effect of (Xj ,W) can also be decomposed into
the constant effect of W and the conditional effect of Xj given W, so a strong
joint effect implies a strong conditional effect of Xj given W.
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In the following subsections, we propose utility measures to evaluate condi-
tions (b1) and (b2), based on which a conditional sufficient variable screening
procedure that allows W to be high-dimensional is then developed.

2.2. Kernel-based ANOVA statistics

Analysis of variance (ANOVA) plays an important role in statistical inference
for linear models, and related statistics can be used to measure the marginal or
the conditional contribution of individual predictors. The famous SIS (Fan and
Lv, 2008) ranks predictors by the R2 statistic of univariate linear regression,
and its extension, conditional SIS (CSIS; Barut, Fan and Verhasselt, 2016), is
based on a measure closely related to partial R2 to adjust for the effect of the
known important predictors. Elicited by these work, we introduce a model-free
ANOVA decomposition through the theory of reproducing kernel Hilbert space
(RKHS), which leads to generalized R2 and partial R2 statistics that can be
employed to assess conditions (b1) and (b2) in Proposition 1.

Let us start with a brief review of RKHS. Let HK denote a RKHS of real-
valued functions defined on X with respect to the reproducing kernel K :
X × X → R. That is, for any x ∈ X and f ∈ HK , K(·,x) ∈ HK and
〈f,K(·,x)〉HK

= f(x). A reproducing kernel is positive definite and every pos-
itive definite kernel has an associated RKHS according to Moore-Aronszajn
theorem. The map φK(x) = K(·,x) : X → HK is called the canonical fea-
ture map of K. Let M(X ) be the set of all Borel probability measures on X .
For any P ∈ M(X ), the kernel embedding of P into HK is defined by the
Borel integral μK(P) =

∫
φK(x)dP(x) : M(X ) → HK . For any f ∈ HK , we

have 〈f, μK(P)〉
HK

=
∫
f(x)dP(x). The kernel embedding is well defined if∫

K
1
2 (x,x)dP(x) < ∞ by Riesz representation theorem.

Let U, V and Z be three random vectors on Rp1 , Rp2 and Rp3 , respectively.
Denote the probability distribution of U, U|V and U|(V,Z) by PU, PU|V and
PU|(V,Z). For a selected positive definite kernel K : Rp1 × Rp1 → R and the
associated RKHS HK , the total variation in φK(U) at the population level can
be measured by the total sum of squares (SSTO) in RKHS norm as:

SSTOK(U) := EU ‖φK(U) − μK(PU)‖2
HK

.

It can be shown through RKHS operations that

SSTOK(U) = EUK(U,U) − EU,U′K(U,U′),

where U′ is an independent and identically distributed copy of U. We have
the following kernel decomposition of the total variation in φK(U) into the
regression sum of squares (SSR) and the error sum of squares (SSE) for the
regression of U on V:

SSTOK(U) = SSRK(U|V) + SSEK(U|V),
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where

SSRK(U|V) := EV
∥∥μK(PU|V) − μK(PU)

∥∥2
HK

,

SSEK(U|V) := E(U,V)
∥∥φK(U) − μK(PU|V)

∥∥2
HK

.

Alternative formulas for easier computation of the two components are

SSRK(U|V) = EVEU|V,U′|VK(U,U′) − EU,U′K(U,U′),
SSEK(U|V) = EUK(U,U) −EVEU|V,U′|VK(U,U′),

where (U′,V′) is an independent and identically distributed copy of (U,V)
and EU|v,U′|v(·) denotes conditional expectation E(·|V = v,V′ = v). In fact,
the kernel regression sum of squares SSRK(U|V) is identical to the expected
conditional characteristic function-based independence criterion (ECCFIC; Ke
and Yin, 2020) between U and V, and SSTOK(U) is the ECCFIC between U
and itself. Then the proportion of total variation in φK(U) explained by V is

R2
K(U|V) := SSRK(U|V)

SSTOK(U) .

By Theorem 5 in Ke and Yin (2020), 0 ≤ R2
K(U|V) ≤ 1, where R2

K(U|V) = 0
if and only if U V and R2

K(U|V) = 1 if and only if U is a measurable
function of V, assuming K is characteristic (Fukumizu et al., 2009). Examples
of characteristic kernels include Gaussian, Laplacian, inverse multiquadratics,
among others.

In a similar vein, the marginal effect associated with V given Z already
contained in the model to explain U can be measured by the extra sum of
squares

SSRK(U|V;Z) := EV
∥∥μK(PU|(V,Z)) − μK(PU|Z)

∥∥2
HK

= E(V,Z)EU|(V,Z),U′|(V,Z)K(U,U′) − EZEU|Z,U′|ZK(U,U′).

The following equalities can be easily observed:

SSRK(U|V;Z) = SSRK(U|(V,Z)) − SSRK(U|Z)
= SSRK(U|Z;V) + SSRK(U|V) − SSRK(U|Z),

which align well with the properties of typical extra sum of squares in linear
model. Furthermore, the partial R2 that measures the proportion of the remain-
ing variation in φK(U) after regressing on Z that is explained by adding V to
the model is given by

R2(U|V;Z) := SSRK(U|V;Z)
SSEK(U|Z) .

It can be shown analogously that 0 ≤ R2(U|V;Z) ≤ 1 with R2(U|V;Z) = 0
if and only if U V|Z. The two R2-type statistics in RKHS are nonlinear
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generalizations of the classical R2 and partial R2 since they require no linearity
or distribution assumptions.

In the next, we develop sample estimators for the above ANOVA statistics
given observed data {Ui,Vi,Zi}ni=1. Firstly, SSTOK(U) can be simply esti-
mated by

SSTOK,n(U) := 1
n

n∑
t=1

K(Ut,Ut) −
1
n2

n∑
t1,t2=1

K(Ut1 ,Ut2).

If V is continuous, the Nadaraya-Watson estimator of SSRK(U|V), relying on
a product smoothing kernel G : Rp2 → R and a tuning bandwidth h = h(n) ∈ R,
is given by

SSRK,G,n(U|V) := 1
n3

n∑
t1,t2,t3=1

Gt1t2Gt1t3Kt2t3
1
n2

∑n
s1,s2=1 Gt1s1Gt1s2

− 1
n2

n∑
t1,t2=1

Kt1t2 ,

where Gt1t2 = Gh(Vt1 − Vt2), Gh(·) = h−qG(·/h), and Kt1t2 = K(Ut1 ,Ut2).
Then the extra sum of squares can be estimated by

SSRK,G̃,G,n(U|V;Z) := SSRK,G̃,n(U|(V,Z)) − SSRK,G,n(U|Z),

using one of its properties, where G̃ : Rp2+p3 → R is a product smoothing kernel
applied on V and Z jointly with a tuning bandwidth h̃ = h̃(n) ∈ R. If V is
categorical with L levels {v(l)}Ll=1 and within each level we have nl observations
{U(l)

i ,v(l),Z(l)
i }nl

i=1, then a natural estimator of SSRK(U|V) is given by

SSRK,n(U|V) := 1
n

L∑
l=1

1
nl

nl∑
t1,t2=1

K(U(l)
t1 ,U

(l)
t2 ) − 1

n2

n∑
t1,t2=1

K(Ut1 ,Ut2).

And the extra sum of squares can be estimated by

SSRK,G,n(U|V;Z) := SSRK,G,n(U|Z;V) + SSRK,n(U|V) − SSRK,G,n(U|Z),

where SSRK,G,n(U|Z;V) :=
∑L

l=1
nl

n SSRK,G,n(U(l)|Z(l)) is the weighted sum
of within-level regression sums of squares. Sample R2 and sample partial R2

can be calculated accordingly, based on the type of V. With a slight abuse
of notation in exchange for simplicity, hereafter we will indiscriminately use
R2

n(U|V) and R2
n(U|V;Z) to refer to their respective estimators for either type

of V.
The proposed kernel-based ANOVA statistics are closely related to the well-

known class of Hilbert-Schmidt independence criterion (HSIC; Gretton et al.,
2005) under the RKHS framework (Ke and Yin, 2020). To assess the correla-
tion between two random vectors U and V, HSIC measures the discrepancy
between the joint distribution P(U,V) and the product of the marginal distribu-
tions PUPV. Thus, the two random vectors are treated symmetrically. Distance
correlation (DCOR; Székely, Rizzo and Bakirov, 2007) is a special case of HSIC
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correlation when a distance kernel is used (Sejdinovic et al., 2013). From the
perspective of regression, we consider the discrepancy between the conditional
distribution PU|V and the unconditional distribution PU instead. The resulting
R2 statistic attains zero if and only if the response is independent of the pre-
dictors, and reaches one if and only if the predictors fully explain the response.
In contrast, although HSIC equal zero indicates independence and vice versa,
it is not clear under what circumstances HSIC approaches its upper bound or
how the random vectors are related when the upper bound is attained. There-
fore, compared with HSIC, the kernel-based R2 statistic better quantifies the
contribution of the predictors to the response because it characterizes both in-
dependence and functional dependence in a supervised way. The kernel-based
partial R2 statistic as a supervised analogue of conditional DCOR (CDCOR;
Wang et al., 2015) also boasts the same advantage. Besides, DCOR and CD-
COR only apply to continuous random vectors, but the kernel-based ANOVA
statistics can allow either continuous or categorical vectors. More benefits of
using the proposed statistics as filters in variable screening are to demonstrate
in the next subsection.

2.3. Utility measures and deviation bounds

Returning to the context of conditional sufficient variable screening, the follow-
ing kernel-based R2 and partial R2 statistics are employed to assess conditions
(b1) and (b2) in Proposition 1, respectively:

1) wM
j := R2

K(Xj |Y ) = SSEK(Xj |Y )
SSTOK(Xj)

and

2) wC
j := R2

K̃
((X−j ,W)|Y ;Xj) =

SSR
K̃

(X−j ,W)|Y ;Xj)
SSE

K̃
(X−j ,W)|Xj)

,

for selected reproducing kernels K : R×R → R and K̃ : Rp+p0−1×Rp+p0−1 → R.
The sample utility measures are denoted by ŵM

j := R2
n(Xj |Y ) and ŵC

j :=
R2

n((X−j ,W)|Y ;Xj) for observed data {Xi, Yi,Wi}ni=1. The marginal utility
measure is the kernel R2 for the inverse regression of Xj |Y , whereas the con-
ditional utility measure is the kernel partial R2 associated with Y given Xj

already contained in the inverse model to explain (X−j ,W). Note that the re-
lation between Xj and the other predictors is adjusted for in the conditional
utility measure, which helps distinguish true signal from pure noise that is fully
independent of Y and (XA,W) because the denominator SSE

K̃
(X−j ,W)|Xj)

becomes larger if Xj is less correlated with the other predictors. The idea of
inverse regression has been implanted in many dimension reduction methods
for high-dimensional data (Li, 1991; Cook and Weisberg, 1991; Li and Wang,
2007, etc.) to tackle the difficulty of handling the conditional distribution of
Y |X in a standard forward way. Here with inverse regression, the response vari-
able is allowed to be either continuous or categorical, and estimating conditional
expectation via Nadaraya-Watson is only applied to a single conditional vari-
able (continuous Y or Xj) or bivariate conditional vector (Xj , Y ) so that the
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curse of dimensionality is avoided. As a payoff, dimension-free deviation bounds
can be found for the sample utility measures as demonstrated in Theorem 1
below. Note that Ke and Yin (2020) studied finite sample properties such as√
n-consistency for kernel regression sum of squares with fix dimension, so their

results do not adapt to the ultrahigh-dimensional setting considered in this pa-
per, where the dimension can diverge with the sample size. Let fU(u) denote the
density function of U, and fU|V(u|v) denote the conditional density function of
U given V = v. The following regularity conditions are imposed in Theorem 1
to facilitate the technical proof although they are certainly not the weakest ones.

(C1) The characteristic kernels K and K̃ are bounded.
(C2) The smoothing kernels G : R → R and G̃ : R2 → R are products of

univariate kernel g : R → R such that
∫
R
uig(u)du = δi0 (i = 0, 1) and

g(u) = O((1 + |u|4)−1), where δij is Kronecker’s delta.
(C3) h, h̃ → 0 and nh2, nh̃4 → ∞ as n → ∞.
(C4) Xj is continuous and fXj (xj) is bounded away from zero, for j =

1, . . . , p. In addition, the first partial derivatives of fXj (xj), fX,W(x,w)
and fX−j ,W|Xj

(x−j ,w|xj) with respect to xj are uniformly bounded by
some constants that do not depend on xj , for each j.

(C5) Y is categorical with L = O(nκ) levels {y(1), y(2), . . . , y(L)} for some
κ ≥ 0. Let Pl := P (Y = y(l)) for l = 1, . . . , L, then there exists c0 > 0
such that min1≤l≤L Pl ≥ 2c0/L.

(C6) Y is continuous and fY (y) as well as fXj ,Y (xj , y) are bounded away from
zero, for j = 1, . . . , p. In addition, the first partial derivatives of fY (y),
fXj ,Y (xj , y) and fXj |Y (xj |y) with respect to y are uniformly bounded by
some constants that do not rely on y, and the first partial derivatives of
fX,W,Y (x,w, y) and fX−j ,W|Xj ,Y (x−j ,w|xj , y) with respect to (xj , y)
are uniformly bounded by some constants that do not rely on y and xj ,
for each j.

Condition (C1) is also adopted in Balasubramanian, Sriperumbudur and
Lebanon (2013) for reproducing kernels. Condition (C2) implies that the smooth-
ing kernel function is bounded from above and satisfies some moment conditions,
which holds for many well-known kernel functions. Condition (C3) requires the
bandwidth to be chosen appropriately according to n. Conditions (C4) and (C6)
impose smoothness conditions on the density functions, which can be relaxed
by assuming local Lipschitz properties (Li, Zhu and Zhu, 2011; Ke and Yin,
2020). Conditions (C2)–(C4) and (C6) are commonly assumed in applications
of Nadaraya-Watson estimators (Chen, Cook and Zou, 2015; Yin and Yuan,
2020). Condition (C5) allows a diverging number of levels for a categorical re-
sponse but the proportion of each level should not be too small (see also Cui,
Li and Zhong, 2015).

Theorem 1. If Y is categorical, then under conditions (C1)–(C5),

P
(
|ŵM

j − wM
j | > ε

)
≤ 2L exp

{
−a1nε

2

L3

}
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and P
(
|ŵC

j − wC
j | > ε

)
≤ 2Ln exp

{
−a2nε

2

L3

}
for any ε > 0, where j = 1, . . . , p, and a1, a2 > 0 are some constants depending
on c0. If Y is continuous, then under conditions (C1)–(C4) and (C6),

P
(
|ŵM

j − wM
j | > ε

)
≤ 2n exp

{
−a3nε

2}
and P

(
|ŵC

j − wC
j | > ε

)
≤ 2n exp

{
−a4nε

2}
for any ε > 0, where j = 1, . . . , p, and a3, a4 > 0 are some constants.

If we let the deviation of the sample marginal measure to vanish as n in-
creases by setting ε = c1n

−γ1 for some positive constants c1 and γ1, then with
a categorical response we have

P

(
max

1≤j≤p
|ŵM

j − wM
j | > c1n

−γ1

)
≤ O

(
p exp

{
−b1n

1−2γ1−3κ + κ logn
})

,

where b1 > 0 is a constant depending on c0 and c1. Similarly, taking the deviation
of the sample conditional measure to be ε = c2n

−γ2 for some positive constants
c2 and γ2,

P

(
max

1≤j≤p
|ŵC

j − wC
j | > c2n

−γ2

)
≤ O

(
p exp

{
−b2n

1−2γ2−3κ + (1 + κ) logn
})

,

where b2 > 0 is a constant depending on c0 and c2. Assuming 1−2γ−3κ ∈ (0, 1]
where γ := max{γ1, γ2}, the probability that the sample utility measures deviate
from the true contribution of the predictors decays exponentially with n, as
long as log p = o(n1−2γ−3κ). If κ = 0, meaning the response variable has a fixed
number of categories, or if the response variable is continuous, the order can
be relaxed to log p = o(n1−2γ). The consistency is attained regardless of the
dimension of W, with no string attached to the underlying model structure.
This salient property, together with the flexibility in the response variable and
the generalized ANOVA interpretation, makes the proposed utility measures
very appealing for ultrahigh-dimensional data.

2.4. The screening procedure

By Proposition 1, predictors making discernibly marginal or conditional con-
tribution should be retained. Therefore, the active index set can be estimated
by

Â :=
{
1 ≤ j ≤ p : ŵM

j ≥ c1n
−γ1 or ŵC

j ≥ c2n
−γ2

}
,

where c1, c2, γ1 and γ2 are constants relying on the strength of the true signal,
which will be defined soon in condition (C7). We henceforth refer to the above
screening procedure as kernel-based conditional sufficient variable screening, or
KCSVS for short. In the next, we show that the proposed procedure embraces
the sure screening property as well as the rank consistency property.
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Let AM := {j ∈ A : Xj �⊥⊥ Y}, AC := A \ AM . The following conditions
ensure that important predictors are detectable and are distinguishable from
noise.

(C7) There exist c1, c2 > 0 and γ1, γ2 ∈ [0, 1/2), such that

min
j∈AM

wM
j ≥ 2c1n−γ1 and min

j∈AC

wC
j ≥ 2c2n−γ2 .

(C8) There exist c3, c4 > 0 and γ3, γ4 ∈ [0, 1/2), such that

min
j∈AM

wM
j − max

j �∈AM

wM
j ≥ 2c3n−γ3 and min

j∈AC

wC
j − max

j �∈AC

wC
j ≥ 2c4n−γ4 .

Condition (C7) is typically assumed in the literature of variable screening (Fan
and Lv, 2008; Li, Zhong and Zhu, 2012; Yang, Yin and Zhang, 2019, etc.) requir-
ing that the true signal cannot diminish too fast as n diverges. Condition (C8)
further restricts the decay rate of the discrepancy between the true signal and
the noise (Zhu et al., 2011; Cui, Li and Zhong, 2015; Liu et al., 2022, etc.). The
two properties of KCSVS are exhibited in Theorems 2 and 3, respectively.

Theorem 2 (Sure Screening). Let s := |A| and γ := max{γ1, γ2}. If Y is
categorical, then under conditions (C1)–(C5) and (C7), we have

P
(
A ⊂ Â

)
≥ 1 −O

(
s exp

{
−bn1−2γ−3κ + (1 + κ) logn

})
for κ ∈ [0, 1

3 − 2γ
3 ), where b is a positive constant depending on c0, c1 and c2. If

Y is continuous, then under conditions (C1)–(C4), (C6) and (C7), we have

P
(
A ⊂ Â

)
≥ 1 −O

(
s exp

{
−b̃n1−2γ + logn

})
,

where b̃ is a positive constant depending on c1 and c2.

As implied by Theorems 2, KCSVS selects all important predictors asymp-
totically almost surely, including those that are conditionally independent with
the response given the control variables.

Theorem 3 (Rank Consistency). Let γ̃ := max{γ3, γ4}. If Y is categorical
and log p = o(n1−2γ̃−3κ) for κ ∈ [0, 1

3 − 2γ̃
3 ), then under conditions (C1)–(C5)

and (C8),

lim inf
n→∞

{
min
j∈AM

ŵM
j − max

j �∈AM

ŵM
j

}
> 0 and lim inf

n→∞

{
min
j∈AC

ŵC
j − max

j �∈AC

ŵC
j

}
> 0

almost surely. If Y is continuous and log p = o(n1−2γ̃), then under condi-
tions (C1)–(C4), (C6) and (C8),

lim inf
n→∞

{
min
j∈AM

ŵM
j − max

j �∈AM

ŵM
j

}
> 0 and lim inf

n→∞

{
min
j∈AC

ŵC
j − max

j �∈AC

ŵC
j

}
> 0

almost surely.
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Theorem 3 guarantees that important predictors can be separated from nulls
by some thresholds as long as there is truly a gap between the two sets of
variables in terms of the signal strength.

There is no established way of determining such threshold values in a finite
sample setting. As it is commonly assumed that the cardinality of the truly
important set is small, one may specify a model size d < n and select Â∗ :=
Â∗

M ∪ Â∗
C , where

Â∗
M (d1) := {1 ≤ j ≤ p : ŵM

j is among the first d1 largest of all},
Â∗

C(d2) := {j �∈ Â∗
M (d1) : ŵC

j is among the first d2 largest of all},

for d1 + d2 = d. Typical choices of d are [n/ log(n)], 2[n/ log(n)], 3[n/ log(n)],
and n− 1 (Fan and Lv, 2008; Li, Zhong and Zhu, 2012). And we can simply set
d1 = d2 = [d/2], in which case the marginal and conditional utility measures are
weighted equally in the selection of Â∗. Let {rMj }pj=1 and {rCj }

p
j=1 be the two

rankings of variables by {ŵM
j }pj=1 and {ŵC

j }
p
j=1, respectively. A joint ranking

{rj}pj=1 can be acquired by ascending (rMj ∧rCj , rMj ∨rCj ). Then selecting the top
d variables is identical to the trivial choice of Â∗ with d1 = d2. The sure screening
property ensures that the probability of selecting all the active predictors is close
to one when d is sufficiently large. If we only select Â∗ := Â∗

M (d), kernel-based
univariate screening (KUS) is performed, which can be regarded as a model-free
generalization of linear SIS (Fan and Lv, 2008).

3. Numerical studies

In this section, we test the performance of the proposed procedure through
simulation studies and real data analysis.

3.1. Simulation studies

The following methods are included for comparisons with KCSVS in the sim-
ulation studies: NIS (Fan, Ma and Dai, 2014), CCSIS (Liu, Li and Wu, 2014),
CSIS (Barut, Fan and Verhasselt, 2016), CDCSIS (Wen et al., 2018), BKRSIS
(Zhou, Liu and Zhu, 2020) and KUS as a benchmark. Among aforementioned,
only KCSVS and CSIS can handle a categorical response, or a high-dimensional
control set, but CSIS still requires p0 < n − 1. For each predictor CSIS fits a
generalized linear model with the predictor and the control variables, and se-
lects predictors with the largest absolute coefficients (for a normal or poisson
response) or deviances (for a multiclass response). NIS and CCSIS are devel-
oped for varying coefficient model where the coefficient varies with an exposure
variable. KCSVS and KUS are conducted with the Gaussian kernel being the
reproducing kernel as well as the smoothing kernel for density estimation. The
bandwidths of the two Gaussian kernels are set to heuristic median pairwise
distance (Gretton et al., 2008) and h = (n(q + 2)/4)−1/(q+4)σ2 (Silverman,
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1986), respectively, where q is the dimension of the random vector conditional
on which an expectation is estimated and σ2 can be estimated by its average
marginal sample variance. Discussions on how to choose the reproducing kernel
and associated parameters can be found in Fukumizu et al. (2009) and Gretton
et al. (2012). All variables are standardized prior to screening. We report the
following statistics based on 200 replicates:

• the τ th quantiles of the minimum model size (MMS) that includes all
active predictors, denoted as Mτ , for τ = 5%, 25%, 50%, 75%, 95%;

• the proportion of selecting a certain active predictor Xj , denoted as P s
j ,

and the proportion of including all active predictors, denoted as Pa, given
a model size d.

MMS is defined as min{M1 +M2} such that A ⊆ {1 ≤ j ≤ p : ŵM
j is among the

first M1 largest of all} ∪ {1 ≤ j ≤ p : ŵC
j is among the first M2 largest of all}.

By default, we set n = 300, p = 10000, and d = 2[n/ logn] = 105. The size of
the control set p0 varies from 1 to 2000.

Example 1. Let X ∈ Rp+p0+1 be distributed as Np+p0+1(0,Σ), where Σ =
(σij) with σii = 1, σi5 = σ5i = 0 for i �= 5, and σij = 0.5 otherwise. That is, Σ is
compound symmetry except that X5 is independent with other variables. Given
X, we simulate a variety of generalized linear/nonlinear models as follows.

Model 1: (Linear) Y = 0.8(X1+X2+X3−1.5X4+X5)+ε, where ε ∼ N(0, 1).
Model 2: (Heterogeneity) Y = 2

3 (X1−0.5X4)+sin(π2 (X2−0.5X4))+ 1
3 (X3−

0.5X4 + 1)2 + |X5|ε, where ε ∼ N(0, 1).
Model 3: (Probit) Y = argmax4

l=1Y
(l), where Y (l) = (−1)l+1(Xl−0.5X4)+εl

for l = 1, 2, 3, Y (4) = X5 + ε4, and ε = (ε1 · · · ε4) ∼ N4(0, I).
Model 4: (Poisson) Y ∼ Poisson(λ), where λ = e5g(X)−2/(1+ e5g(X)−3) and
g(X) = X1 + X2 + X3 − 1.5X4 + X5.

All models are designed such that X4 Y |X5. Conditioning on the following co-
variate subsets of size p0 for each model, the screening procedures are performed
on the remaining first p predictors:

(a) W = X5, p0 = 1;
(b) W = (X5, Xp+2, Xp+3, · · · , Xp+p0), p0 = 2000;
(c) W = X1 + X5, p0 = 1;
(d) W = (X1 + X5, X2), p0 = 2;
(e) W = (X1 + X5, X2, Xp+4, Xp+5, · · · , Xp+p0+1), p0 = 2000.

Theses control sets are deliberately chosen to examine the screening procedures
when (a): there exists an important variable (X4) that is conditionally inde-
pendent of the response given the control set; (c): only a compound of some
important variables is available as the control variable; (d): multiple control
variables are considered; (b) and (e): the high-dimensional control set contains
a large amount of noise in addition to known important variables.

The results are summarized in Table 1. Note that not all methods are in-
cluded for comparisons in every model as some are not applicable to certain
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Table 1

Quantiles of MMS Mτ ’s and average selection proportions P s
j ’s and Pa’s for models in

Example 1 based on 200 replicates. A cell for P s
j displays a dash if the corresponding

variable Xj is assigned to the control set and thus protected from screening.

Model p0 s Method M5% M25% M50% M75% M95% P s
1 P s

2 P s
3 P s

4 Pa

1(a) 1 4 NIS 9988.9 10000.0 10000.0 10000.0 10000.0 1.000 1.000 1.000 0.000 0.000
CCSIS 9998.0 10000.0 10000.0 10000.0 10000.0 1.000 1.000 1.000 0.000 0.000

CSIS 10000.0 10000.0 10000.0 10000.0 10000.0 1.000 1.000 1.000 0.000 0.000
CDCSIS 9995.9 10000.0 10000.0 10000.0 10000.0 1.000 1.000 0.995 0.000 0.000
BKRSIS 9998.0 10000.0 10000.0 10000.0 10000.0 1.000 0.995 0.995 0.000 0.000

KUS 9692.4 9980.0 9999.0 10000.0 10000.0 0.995 1.000 0.980 0.000 0.000
KCSVS 4.0 4.0 5.0 12.0 68.0 0.980 0.990 0.965 1.000 0.935

1(b) 2000 4 KCSVS 4.0 4.0 5.0 12.0 68.0 0.980 0.990 0.965 1.000 0.935
1(c) 1 3 NIS 3.0 3.0 3.0 12.5 715.3 – 1.000 1.000 0.870 0.870

CCSIS 3.0 3.0 7.0 185.0 5091.1 – 1.000 1.000 0.720 0.720
CSIS 3.0 3.0 3.0 3.0 775.7 – 1.000 1.000 0.915 0.915

CDCSIS 3.0 7.0 77.0 1171.8 8049.9 – 1.000 1.000 0.530 0.530
BKRSIS 3.0 3.0 4.0 26.0 2660.6 – 1.000 1.000 0.800 0.800

KUS 9692.4 9980.0 9999.0 10000.0 10000.0 – 1.000 0.980 0.000 0.000
KCSVS 3.0 3.0 3.0 6.0 50.1 – 0.990 0.965 1.000 0.955

1(d) 2 2 CSIS 2.0 2.0 2.0 38.8 905.0 – – 0.810 1.000 0.810
KUS 9692.4 9980.0 9999.0 10000.0 10000.0 – – 0.980 0.000 0.000

KCSVS 2.0 2.0 2.0 2.0 44.1 – – 0.965 1.000 0.965
1(e) 2000 2 KCSVS 2.0 2.0 2.0 2.0 44.1 – – 0.965 1.000 0.965
2(a) 1 4 NIS 9582.0 9989.0 10000.0 10000.0 10000.0 1.000 0.985 0.995 0.000 0.000

CCSIS 9994.0 10000.0 10000.0 10000.0 10000.0 1.000 1.000 1.000 0.000 0.000
CSIS 9994.6 10000.0 10000.0 10000.0 10000.0 1.000 0.995 1.000 0.000 0.000

CDCSIS 9993.0 10000.0 10000.0 10000.0 10000.0 0.995 1.000 1.000 0.000 0.000
BKRSIS 9987.9 10000.0 10000.0 10000.0 10000.0 0.990 1.000 0.995 0.000 0.000

KUS 9629.8 9977.0 9999.0 10000.0 10000.0 0.995 1.000 1.000 0.000 0.000
KCSVS 4.0 4.0 4.0 6.0 24.2 0.980 1.000 0.995 1.000 0.980

2(b) 2000 4 KCSVS 4.0 4.0 4.0 6.0 24.2 0.985 1.000 0.995 1.000 0.980
2(c) 1 3 NIS 73.0 4114.8 7980.5 9796.0 9999.0 – 0.985 1.000 0.060 0.060

CCSIS 814.5 6272.5 9566.5 9982.2 10000.0 – 1.000 1.000 0.020 0.020
CSIS 97.8 4171.8 8755.5 9965.5 10000.0 – 1.000 1.000 0.055 0.055

CDCSIS 1204.4 6845.5 9570.5 9978.2 10000.0 – 1.000 1.000 0.010 0.010
BKRSIS 169.8 3193.0 7969.0 9885.5 10000.0 – 1.000 1.000 0.045 0.045

KUS 9629.8 9977.0 9999.0 10000.0 10000.0 – 1.000 1.000 0.000 0.000
KCSVS 3.0 3.0 3.0 3.0 7.0 – 1.000 0.995 1.000 0.995

2(d) 2 2 CSIS 2.0 2.0 2.0 2.0 4.1 – – 0.990 0.995 0.985
KUS 9629.7 9977.0 9999.0 10000.0 10000.0 – – 1.000 0.000 0.000

KCSVS 2.0 2.0 2.0 2.0 6.0 – – 0.995 1.000 0.995
2(e) 2000 2 KCSVS 2.0 2.0 2.0 2.0 6.0 – – 0.995 1.000 0.995
3(a) 1 4 CSIS 9766.5 9997.0 10000.0 10000.0 10000.0 1.000 1.000 1.000 0.000 0.000

KUS 8070.8 9799.5 9985.0 10000.0 10000.0 0.995 1.000 0.995 0.000 0.000
KCSVS 4.0 4.0 5.0 8.0 40.2 0.980 1.000 0.990 0.990 0.960

3(b) 2000 4 KCSVS 4.0 4.0 5.0 8.0 40.2 0.980 1.000 0.990 0.990 0.960
3(c) 1 3 CSIS 522.9 5000.5 8605.5 9814.2 9997.0 – 1.000 1.000 0.015 0.015

KUS 8070.8 9799.5 9985.0 10000.0 10000.0 – 1.000 0.995 0.000 0.000
KCSVS 3.0 3.0 3.0 5.0 27.3 – 1.000 0.990 0.990 0.980

3(d) 2 2 CSIS 2.0 2.0 2.0 2.0 8.0 – – 1.000 0.995 0.995
KUS 8069.9 9799.5 9985.0 10000.0 10000.0 – – 0.995 0.000 0.000

KCSVS 2.0 2.0 2.0 4.0 26.3 – – 0.990 0.990 0.980
3(e) 2000 2 KCSVS 2.0 2.0 2.0 4.0 26.3 – – 0.990 0.990 0.980
4(a) 1 4 NIS 9943.8 9999.0 10000.0 10000.0 10000.0 0.995 1.000 0.995 0.000 0.000

CCSIS 9978.9 10000.0 10000.0 10000.0 10000.0 1.000 1.000 1.000 0.000 0.000
CSIS 9997.0 10000.0 10000.0 10000.0 10000.0 0.990 1.000 0.990 0.000 0.000

CDCSIS 9990.0 10000.0 10000.0 10000.0 10000.0 1.000 1.000 1.000 0.000 0.000
BKRSIS 9993.0 10000.0 10000.0 10000.0 10000.0 0.985 0.995 1.000 0.000 0.000

KUS 9884.0 9996.8 10000.0 10000.0 10000.0 0.985 0.995 0.985 0.000 0.000
KCSVS 4.0 4.0 5.5 11.2 75.1 0.965 0.980 0.975 1.000 0.920

4(b) 2000 4 KCSVS 4.0 4.0 6.0 13.2 68.3 0.961 0.978 0.983 1.000 0.922
4(c) 1 3 NIS 3.0 4.0 15.0 126.0 2821.9 – 1.000 0.990 0.745 0.735

CCSIS 3.0 4.0 63.5 1056.8 6479.1 – 1.000 1.000 0.515 0.515
CSIS 3.0 3.0 7.0 121.0 1844.0 – 0.995 1.000 0.745 0.740

CDCSIS 3.0 16.2 453.5 3352.0 8515.0 – 1.000 1.000 0.410 0.410
BKRSIS 3.0 5.0 53.0 1085.8 6009.7 – 0.975 0.975 0.570 0.545

KUS 9884.0 9996.8 10000.0 10000.0 10000.0 – 0.995 0.985 0.000 0.000
KCSVS 3.0 3.0 3.0 6.0 41.0 – 0.980 0.975 1.000 0.955

4(d) 2 2 CSIS 2.0 2.0 10.5 279.0 4609.8 – – 0.675 1.000 0.675
KUS 9884.0 9996.8 10000.0 10000.0 10000.0 – – 0.985 0.000 0.000

KCSVS 2.0 2.0 2.0 3.0 15.0 – – 0.975 1.000 0.975
4(e) 2000 2 KCSVS 2.0 2.0 2.0 3.0 15.0 – – 0.975 1.000 0.975
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designs. Since KUS does not leverage any prior information, its performance
does not vary from (a) to (b), or from (d) to (e), so duplicated results are omit-
ted. Conditioning on (a) W = X5, only KCSVS successfully detects X4 for the
variety of models studied in this example, and therefore it significantly outper-
forms the other methods with high selection probabilities and minimum model
sizes close to the true size s = 4. Even when the control set is dominated by
irrelevant variables besides X5 in (b), KCSVS remains equally powerful. All the
conditional screening methods are able to utilize the intermediate variable (c)
W = X1 + X5 to improve screening for Model 1 and Model 4, but for Model
2 and Model 3, where the response variables do not directly rely on W , only
KCSVS recovers the truly active set effectively. With more accurate informa-
tion added to (d) W = (X1 +X5, X2), the performance of CSIS catches up with
KCSVS. In the presence of redundant information in (e), KCSVS still achieves
sure screening and offers a strong advantage over CSIS as CSIS is no longer
applicable when the dimension of W exceeds the sample size. It is also clear
that KCSVS improves KUS as the conditional utility measure weighs in.

Example 2. In this example, we study another generalized linear model assum-
ing first-order autoregression covariance structure for X, as well as a multi-class
classification model with independent non-normal predictors.

Model 5: (Linear) Let X ∈ Rp+p0 be distributed as Np+p0(0,Σ), where
Σ = (σij) with σij = 0.5|i−j|. Y = 5X1 +5X2 +2(X3 +X4)2 +5X51{X5>0} +
exp{X6 + 2 sin(πX7/2)} + 5|X8| ln(1 + |X8|) + (X9 − 1)3 + 5 sin(1/X10) + ε,
where ε ∼ N(0, 1).
Model 6: (Multiclass) The response Y is generated with P (Y = l) =
1/5, l = 1, . . . , 5. Given Y = l, X2l−1 and X2l follow a normal mixture
0.5N(1, 0.22) + 0.5N(−1, 0.22) independently, and other variables follow the
Cauchy distribution independently.

Screening is conditional on the following control vectors:

(a) W = (X1, X3, X5, X7, X9), p0 = 5;
(b) W = (X1, X3, X5, · · · , X2p0−1), p0 = 2000;
(c) W = (X2, X4, X6, X8, X10), p0 = 5;
(d) W = (X2, X4, X6, · · · , X2p0), p0 = 2000.

For each model, all the important predictors are correlated with the response
variable given any of the control vectors. In other words, the goal of this example
is to assess KCSVS when A = A1. Model 6 generates a 5-category response with
a balanced design, which resembles Model 7 in Mai and Zou (2015).

As demonstrated in Table 2, both KUS and KCSVS work reasonably well
in all scenarios and lead CSIS by large margins. CSIS can barely identify the
nonlinear active predictors in Model 5 and Model 6. In contrast, KCSVS as
a model-free screening procedure shows superior adaptability to different types
and structures of data. Moreover, we again observe that KCSVS is flexible about
the dimension of the control vector and is robust to the noise therein.
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Table 2

Quantiles of MMS Mτ ’s and average selection proportions P s
j ’s and Pa’s for models in

Example 2 based on 200 replicates.

Model p0 s Method M5% M25% M50% M75% M95% P s
2 P s

4 P s
6 P s

8 P s
10 Pa

5(a) 5 5 CSIS 1045.3 3342.8 6042.5 8289.5 9692.4 0.985 0.080 0.990 0.075 0.615 0.000
KUS 5.0 5.0 5.0 8.0 68.4 1.000 0.995 1.000 0.980 1.000 0.975

KCSVS 5.0 5.0 5.0 8.0 68.4 1.000 0.980 1.000 0.955 0.995 0.935
5(b) 2000 5 KCSVS 5.0 5.0 5.0 7.0 71.3 1.000 0.980 1.000 0.955 0.995 0.935
6(a) 5 5 CSIS 5841.7 8078.2 8942.5 9623.0 9961.3 0.020 0.010 0.010 0.020 0.010 0.000

KUS 5.0 5.0 5.0 5.0 5.0 1.000 1.000 1.000 1.000 1.000 1.000
KCSVS 5.0 5.0 5.0 5.0 5.0 1.000 1.000 1.000 1.000 1.000 1.000

6(b) 2000 5 KCSVS 5.0 5.0 5.0 5.0 5.0 1.000 1.000 1.000 1.000 1.000 1.000
Model p0 s Method M5% M25% M50% M75% M95% P s

1 P s
3 P s

5 P s
7 P s

9 Pa

5(c) 5 5 CSIS 403.5 2084.2 5291.5 7893.8 9263.4 0.990 0.065 0.600 0.315 1.000 0.010
KUS 5.0 5.0 5.0 5.0 11.1 1.000 1.000 0.995 0.995 1.000 0.990

KCSVS 5.0 5.0 5.0 5.0 11.1 1.000 0.995 0.995 0.995 1.000 0.985
5(d) 2000 5 KCSVS 5.0 5.0 5.0 5.0 13.0 1.000 0.995 0.995 0.995 1.000 0.985
6(c) 5 5 CSIS 5873.4 7646.0 8844.0 9531.5 9928.0 0.015 0.025 0.010 0.025 0.015 0.000

KUS 5.0 5.0 5.0 5.0 5.0 1.000 1.000 1.000 1.000 1.000 1.000
KCSVS 5.0 5.0 5.0 5.0 5.0 1.000 1.000 1.000 1.000 1.000 1.000

6(d) 2000 5 KCSVS 5.0 5.0 5.0 5.0 5.0 1.000 1.000 1.000 1.000 1.000 1.000

Example 3. This example is to evaluate KCSVS for varying coefficient model.
Let (U∗,X) be generated from Np+p0(0,Σ) for some Σ specified later, where
U∗Rp0 ,X ∈ Rp. Let U = Φ(U∗), where Φ(·) is the cumulative distribution
function of Np0(0, I). Define β1(U) = 2 cos(πU1/2) + 2, β2(U) = 2U2 + 2,
β3(U) = (2−U3)2, β4(U) = −2 sin2(2πU4)− 2 and β5(U) = −0.5

∑4
j=1 βj(U).

Model 7: (Linear) Let (U∗
1 , U

∗
2 , U

∗
3 , U

∗
4 ) be distributed as N4(0,Σ1) and

(U∗
5 , . . . , U

∗
p0
,X) be distributed as Np+p0−4(0,Σ1) independently, where Σ1 =

(σij) with σii = 1 and σij = 0.5 for i �= j. Consider Y =
∑5

j=1 βj(U)Xj + ε,
where ε ∼ N(0, 1).
Model 8: (Linear) The same as Model 7 except that (U∗,X) ∼ Np+p0(0,Σ1).
Model 9: (Probit) Let (U∗,X) be generated as in Model 7 and let Y =
argmax4

l=1Y
(l), where Y (l) = (−1)l+1βl(U)(Xl − 0.5X5) + εl for l = 1, 2, 3, 4,

and ε = (ε1 · · · ε4) ∼ N4(0, I).
Model 10: (Interaction) Let (U∗,X) ∼ Np+p0(0,Σ2), where Σ2 = (σij) with
σij = 0.5|i−j|. Consider Y = 3β1X1X2 + β2(X12 + 1)2 + 3β3 sin(πX22/2) +
β4 exp(|X33|) + ε, where ε ∼ N(0, 1).

Model 7 and Model 9 are designed such that X5 Y |(U1, . . . , U4). In Model 8,
U and X are correlated, while in the other models, the important exposure vari-
ables (U1, . . . , U4) are independent or almost uncorrelated with the predictors
of primary interest and other nuisance exposure variables. Screening procedures
are conducted given the following control vectors:

(a) W = U1, p0 = 1;
(b) W = (U1 U2 U3 U4), p0 = 4;
(c) W = U, p0 = 2000.

These model are adapted from examples in Liu, Li and Wu (2014) and
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Yang, Yang and Li (2020), where only one exposure variable is involved. We
consider more generally numerous exposure variables in each of the regression
models and different covariance structures of variables. Only KCSVS and CSIS
can handle the multiple exposure variables in (b), and KCSVS is further in-
vestigated with the very high-dimensional control vector in (c). Also note that
for Model 9, methods other than KCSVS and CSIS are not applicable to the
categorical response.

The results are summarized in Table 3. For Model 7, all methods except for
KCSVS fail to discover the hidden variable X5. The same observation holds in
Model 8 when conditioning on U1 and in Model 9. Moreover, the competitors
barely identify X4 in Models 7 and 8 because X4 is weakly correlated with the
response due to the model design. Given all the important exposure variables,
the performance of KCSVS further improves and surpasses CSIS. In addition,
KCSVS demonstrates competitive ability to disentangle predictors from inter-
action or nonlinear terms in Model 10. This simulation example indicates that
KCSVS is an effective screening procedure for varying coefficient model contain-
ing multiple or even high-dimensional exposure variables.

Computation efficiency is an important issue for screening procedures. Al-
though KCSVS relies on two utility measures and calculating the conditional
measures involves ultrahigh-dimensional vectors, its computation complexity
can be optimized to O(n2p), which in theory is comparable to single-measure
screening procedures that adopt RKHS-based indexes such as DCOR, HSIC and
CDCOR (see Appendix B for more details). In our simulation studies, KCSVS
is in fact shown to be more efficient than CDCSIS, which is implemented using
the cdcsis package in R. Moreover, KCSVS as the only applicable method for
very high-dimensional controls remains equally efficient for a wide range of p0.
A summary of the computational time for different methods is presented in
Appendix B.

In summary, there are several important takeaways from the above simulation
studies.

• Only KCSVS among all methods can capture hidden important predictors
that are conditionally independent with the response variable given the
control set. When the model contains no such predictors, KCSVS still
successes in distinguishing marginally important predictors from irrelevant
ones.

• KCSVS can handle control vectors of very high dimension, and utilize im-
portant control variables (or even unimportant ones that are correlated
with the response) to enhance screening. It also demonstrates better re-
silience to inaccurate prior information than the other methods.

• KCSVS effectively and efficiently adapts to a variety of models includ-
ing linear/nonlinear regression, classification, and varying coefficient mod-
els.
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Table 3

Quantiles of MMS Mτ ’s and average selection proportions P s
j ’s and Pa’s for models in

Example 3 based on 200 replicates.

Model p0 s Method M5% M25% M50% M75% M95% P s
1 P s

2 P s
3 P s

4 P s
5 Pa

7(a) 1 5 NIS 9819.0 10000.0 10000.0 10000.0 10000.0 1.000 1.000 0.990 0.000 0.000 0.000
CCSIS 9836.9 9997.8 10000.0 10000.0 10000.0 1.000 1.000 0.995 0.000 0.000 0.000

CSIS 9701.7 9990.0 10000.0 10000.0 10000.0 1.000 1.000 0.995 0.000 0.000 0.000
CDCSIS 9991.9 10000.0 10000.0 10000.0 10000.0 1.000 1.000 0.995 0.000 0.000 0.000
BKRSIS 9930.8 10000.0 10000.0 10000.0 10000.0 1.000 1.000 0.995 0.000 0.000 0.000

KUS 9012.8 9958.2 9996.0 10000.0 10000.0 1.000 1.000 0.970 0.000 0.000 0.000
KCSVS 5.0 5.0 5.0 8.2 101.3 1.000 1.000 0.945 0.990 0.980 0.925

7(b) 4 5 CSIS 9988.9 10000.0 10000.0 10000.0 10000.0 1.000 1.000 0.995 0.000 0.000 0.000
KCSVS 5.0 5.0 5.0 8.2 101.3 1.000 1.000 0.945 0.990 0.980 0.925

7(c) 2000 5 KCSVS 5.0 5.0 5.0 8.0 93.2 1.000 1.000 0.945 0.990 0.985 0.925
8(a) 1 5 NIS 676.7 4032.0 6870.0 9429.2 9995.0 1.000 1.000 0.995 0.105 0.030 0.010

CCSIS 3752.6 8099.8 9680.0 9963.0 10000.0 1.000 1.000 1.000 0.030 0.000 0.000
CSIS 446.8 3747.0 7059.5 9374.2 9973.1 1.000 1.000 1.000 0.130 0.050 0.025

CDCSIS 598.2 4229.0 8031.0 9737.0 9998.0 1.000 1.000 1.000 0.095 0.035 0.020
BKRSIS 1639.1 6072.8 8938.0 9858.0 9997.0 1.000 1.000 1.000 0.050 0.010 0.005

KUS 9743.4 9978.0 9999.0 10000.0 10000.0 1.000 1.000 0.990 0.000 0.000 0.000
KCSVS 5.0 5.0 5.0 6.0 15.2 1.000 1.000 0.985 1.000 0.995 0.980

8(b) 4 5 CSIS 5.0 5.0 9.5 70.2 1068.5 1.000 1.000 1.000 0.895 0.850 0.780
KCSVS 5.0 5.0 5.0 6.0 15.2 1.000 1.000 0.985 1.000 0.995 0.980

8(c) 2000 5 KCSVS 5.0 5.0 5.0 6.0 15.2 1.000 1.000 0.985 1.000 0.995 0.980
9(a) 1 5 CSIS 9896.4 10000.0 10000.0 10000.0 10000.0 1.000 1.000 1.000 1.000 0.000 0.000

KUS 9245.4 9976.8 9998.5 10000.0 10000.0 1.000 0.985 0.985 0.985 0.000 0.000
KCSVS 5.0 5.0 5.0 8.0 72.8 1.000 0.980 0.980 0.975 1.000 0.935

9(b) 4 5 CSIS 9930.9 10000.0 10000.0 10000.0 10000.0 1.000 1.000 1.000 1.000 0.000 0.000
KCSVS 5.0 5.0 5.0 8.0 72.8 1.000 0.980 0.980 0.975 1.000 0.935

9(c) 2000 5 KCSVS 5.0 5.0 5.0 8.0 72.8 1.000 0.980 0.980 0.975 1.000 0.935
Model p0 s Method M5% M25% M50% M75% M95% P s

1 P s
2 P s

12 P s
22 P s

33 Pa

10(a) 1 5 NIS 26.0 64.8 162.5 459.0 1225.9 0.595 0.640 1.000 1.000 0.865 0.380
CCSIS 5.0 8.8 16.0 42.0 271.6 0.940 0.950 1.000 1.000 0.980 0.880

CSIS 357.7 1741.2 4023.0 5996.5 9104.6 0.165 0.210 0.990 0.445 0.215 0.015
CDCSIS 1237.2 4141.5 6939.0 8715.8 9779.5 0.065 0.090 1.000 0.825 0.085 0.000
BKRSIS 493.7 2140.2 3784.5 6319.2 9164.5 0.145 0.210 1.000 0.795 0.155 0.015

KUS 5.0 5.0 5.0 6.0 15.0 1.000 0.995 1.000 1.000 1.000 0.995
KCSVS 5.0 5.0 5.0 6.0 15.0 0.995 0.995 1.000 1.000 1.000 0.990

10(b) 4 5 CSIS 1123.2 4476.5 6677.0 8727.2 9703.8 0.070 0.080 1.000 0.820 0.085 0.000
KCSVS 5.0 5.0 5.0 6.0 15.0 0.995 0.995 1.000 1.000 1.000 0.990

10(c) 2000 5 KCSVS 5.0 5.0 5.0 6.0 15.0 0.995 0.995 1.000 1.000 1.000 0.990

3.2. Diffuse large-B-cell lymphoma data

Diffuse large-B-cell lymphoma (DLBCL) is the most common type of blood
cancer and demonstrates genetic and biological heterogeneous. DLBCL molec-
ular subtypes include germinal center B-cell-like (GCB), activated B-cell-like
(ABC) and Type-III (unclassified), among which ABC is a more acute subtype
associated with far worse survival prognosis than GCB. Classifying DLBCL is
therefore a critical step towards developing personalized therapies for DLBCL
patients. DLBCL subtypes are typically determined by hierarchical clustering
based on the similarity of DLBCL gene expression to activated peripheral blood
B cells or normal germinal center B-cells (Alizadeh et al., 2000). It would be
interesting to identify a batch of core genes that characterizes such an classifica-
tion (closely related to survival). For example, the B-cell lymphoma 6 (BCL6)
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gene is known to be frequently translocated and hypermutated in DLBCL and
associated with GCB subtype as a marker of germinal center differentiation
(Dalla-Favera et al., 1999; Dunleavy and Wilson, 2014). Aside from genetic in-
formation, some clinical measurements can be easily acquired to assist in the
classification. International Prognostic Index (IPI) is a widely-used scoring sys-
tem for the prognosis of DLBCL after chemotherapy on the basis of five clinical
characteristics. Rosenwald et al. (2002) and Li (2006) suggest utilizing both IPI
and genetic information to stratify patients for therapeutic trials and enhance
survival prediction.

Rosenwald et al. (2002) applied a hierarchical clustering algorithm to group
240 lymphoma samples collected from DLBCL patients into the three subtypes
based on 100 cDNA expressions (including BCL6). Data is available at https://
llmpp.nih.gov/DLBCL/. Our goal is to discover influential genes for DLBCL
classification through KCSVS, in which IPI and the expression of BCL6 are
treated as prior information. In total, 219 cases with positive survival time
and the IPI risk recorded are included for our analysis. We add 1,901 inde-
pendently and normally distributed noise variables to make up a total of 2,000
variables subject to the screening conditional on IPI and BCL6. The dataset
is split into a training cohort of 147 samples and a validation cohort of 72
samples following Rosenwald et al. (2002). We first conduct KCSVS to locate
d = 2[72/ log(72)] = 34 genes, followed by model-free dimension reduction on the
selected genes and the two control variables via sliced inverse regression (SIR; Li,
1991), and then perform linear discriminant analysis (LDA) using the first two
SIR directions. The performance of the fitted model is evaluated using the test-
ing samples. Kaplan-Meier curves for the overall survival of the predicted sub-
types are presented in Fig. 1. In particular, the survival curves for predicted GCB
and ABC are compared using the log-rank test. For both training and testing co-
horts, the ABC subgroup identified by the KCSVS+SIR+LDA model is indeed
associated with worse prognosis than the GCB subgroup (p-values < 0.001).

To further examine the classification accuracy of the KCSVS+SIR+LDA
model, we repeat the above modeling procedure 100 times, but in each trial
we randomly split the data at the ratio of 147:72 for training versus testing.
The model is benchmarked against CSIS followed by penalized LDA (PenLDA).
We display the distribution of the misclassification rate in Fig. 2, which sug-
gests that KCSVS+SIR+LDA makes better predictions of the subtypes than
CSIS+PenLDA. On average KCSVS captures 18 “true” genes (i.e., genes that
were used to determine the subtypes in the original dataset) out of the 34 se-
lected genes. In summary, KCSVS detects influential genes that lead to not
only better discrimination of the DLBCL subtypes but also biologically sensible
findings. Among the three genes that are selected in all replicates by KCSVS,
CD10 is a known marker for GCB (Dunleavy and Wilson, 2014) while CCND2
is often up-regulated in ABC (Blenk et al., 2007). In fact, since gene expression
profiling analysis is not practical in clinical laboratory, immunohistochemistry
algorithms based on tissue microarray have been proposed to predict DLBCL
subtypes, and the most commonly used algorithm in routine practice was made
up of three markers including CD10 and BCL6 (Hans et al., 2004).

https://llmpp.nih.gov/DLBCL/
https://llmpp.nih.gov/DLBCL/
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Fig 1. Kaplan–Meier curves of the overall survival for DLBCL patients in the training co-
hort (left panel) and the testing cohort (right panel) assigned to the three subtypes by the
KCSVS+SIR+LDA model. The survival curves for the predicted GCB and ABC subgroups
are compared using the log-rank test.

4. Discussion

In this paper, we develop a model-free conditional sufficient variable screen-
ing framework that allows for high-dimensional control variables and applies
to either continuous or categorical responses. The framework is built upon the
RKHS theory to avoid model specification while preserving nice interpretation
from the perspective of regression. We proposed kernel-based R2 and partial R2

as nonlinear generalizations of the typical R2 statistics to quantify the marginal
contribution of a variable as well as its conditional contribution given the con-
trol set and the other variables. Dimension-free deviation bounds are found for
the kernel R2 statistics, which is the key to achieve conditional sufficient vari-
able screening for ultrahigh-dimensional data. The sure screening property and
the rank consistency property of the proposed procedure are established. The
major advantage of KCSVS over existing competitors is that KCSVS can dis-
cover hidden important predictors that are individually independent but jointly
dependent with the response variable conditioning on arbitrarily many control
variables. As demonstrated numerically, KCSVS is a powerful screening tool
that copes well with assorted regression or classification models, and varying
quality of prior information. We conjecture that control variables that are care-
fully chosen by domain experts would compound the eminence of KCSVS for
particular applications in practice.

There are two byproducts of the proposed procedure. In the absence of W,
the conditional utility measure becomes wC

j = R2
K̃

(X−j |Y ;Xj) and the pro-
posed procedure performs kernel-based unconditional sufficient variable screen-
ing (KSVS). Yang, Yin and Zhang (2019) and Yuan et al. (2022) also de-
veloped sufficient variable screening procedures that evaluate each predictor
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Fig 2. Boxplots of the training (left panel) and the testing (right panel) classification errors
for the two competing models applied to the DLBCL data over 100 random partitions.

marginally and conditionally. To identify important predictors that make no
marginal contribution, they consider Xj (X−j , Y ) for continuous responses
and Xj X−j |Y for categorical responses. However, since the relation between
Xj and X−j dominates the two conditions due to the ultrahigh dimension-
ality of X−j , an important predictor may not survive if it does not have a
strong correlation with the rest variables. In contrast, KSVS relies on condition
(b2) X−j Y |Xj , which is known to be most violated by a marginally silent
predictor, and the correlation between Xj and X−j is adjusted for in kernel
partial R2. As a result, KSVS is more powerful in terms of discovering impor-
tant predictors that are marginally independent of the response. Theoretical
properties and simulation studies for KSVS are provided in Appendix D. The
proposed procedure can also be modified easily to accommodate cases when it
is believed that A = A1, as mentioned in Section 2.1. The conditional utility
measure is replaced by wC∗

j = R2
K̃

(W|Y ;Xj) in the procedure to recover A1
more precisely. We refer to this adapted procedure as kernel-based univariate
conditional screening (KUCS) as candidate variables enter the reproducing ker-
nel regression model that already contains W one at a time. Although KUSC
shares the same target on A1 with most existing conditional screening meth-
ods, it gets rid of the dimension limitation of W. It can be shown that KUCS
achieves both sure screening and rank consistency with regard to A1, which
is deferred to Appendix C along with some numerical results due to limited
space.

Our procedure is developed using kernel R2 statistics, but other appropri-
ate utility measures can also be implanted to the framework. For example, the
marginal utility measure can be replaced by R2

K(Y |Xj) (the kernel R2 for regres-
sion Y |Xj), DCOR, HSIC, martingale difference divergence (Shao and Zhang,
2014), or projection correlation (Liu et al., 2022), to name a few, and the condi-
tional utility measure can be substituted with CDCOR. Admittedly, this paper
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poses some open (though less critical) questions besides what it solves. Re-
call that since the screening procedure aims to achieve sufficiency as opposed
to minimal sufficiency, we simply treat the marginal and the conditional util-
ity measures as equally important and select a generous number of variables.
On the one hand, adjusting the relative weight of Â∗

M and Â∗
C may improve

the performance of KCSVS, which would require a data-driven tuning process.
On the other hand, one may consider incorporating a strategy to control false
discoveries. False discovery rate (FDR) control often involves creating a set of
synthetic predictors that are designed to mimic the statistical properties of the
original predictors, but are not directly related to the response. By compar-
ing the effects of the original predictors with those of the synthetic predictors,
we can distinguish truly important predictors from those that are unimportant
or merely spurious correlated. FDR control through knockoff features (Barber
and Candès, 2015, 2019) is one such technique developed for high-dimensional
variable selection and has been applied to ultrahigh-dimensional unconditional
screening by Liu et al. (2022). However, the construction of conditional knockoff
features given high-dimensional controls remains a challenging task. These afore-
mentioned topics will be pursued in future research to round out the proposed
framework.

Appendix A: Main proofs

A.1. Proof of Theorem 1

The proof is composed of four parts and each part justifies one of the inequalities.
The following lemma is vital to the proof of Theorem 1.

Lemma 1 (Deviation bound for U-statistics, Hoeffding, 1963). Let g(U1, . . . ,
Ur) be a kernel of a U-statistic Un, i.e., Un := 1

(n)r
∑

inr
g(Ui1 , . . . ,Uir), where

n > r, (n)r := n!
(n−r)! and

∑
inr

is taken over all r-tuples {i1, . . . , ir} drawn
without replacement from {1, . . . , n}. If b1 ≤ g(U1, . . . ,Ur) ≤ b2, then for any
ε > 0, the following bound holds:

P {|Un −EUn| ≥ ε} ≤ 2 exp{−2wε2/(b2 − b1)2},

where w := [n/r], the largest integer contained in n/r.

This lemma finds a uniform bound for any U-statistic of arbitrary dimensional
data, as long as the associated kernel is bounded. We repeatedly use this result
throughout the proofs of the four inequalities.

(I) If Y is categorical, then under conditions (C1) and (C5), for any ε ∈ (0, 1),

P{|ŵM
j − wM

j | ≥ ε} ≤ 2L exp
{
−a1n

L3 ε2
}
,

where j = 1, . . . , p, and a1 > 0 is a constant depending on c0.
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Proof. We aim to show the uniform consistency of the denominator and
the numerator of ŵM

j under regularity conditions respectively. Because the
denominator of ŵM

j has a similar form as the numerator, we deal with its
numerator only below. Let

Ĥ :=SSRK,n(Xj |Y )

=
L∑

l=1

nl

n

1
n2
l

nl∑
i1,i2=1

K(X(l)
i1,j

, X
(l)
i2,j

) − 1
n2

n∑
i1,i2=1

K(Xi1,j , Xi2,j)

:=
L∑

l=1

P̂lV
(l)
nl

− V (0)
n ,

where V
(l)
nl (l = 0, . . . , L) are V-statistics. Let U

(l)
nl (l = 0, . . . , L) be

corresponding U-statistics with El := EU l
nl

(l = 0, . . . , L). Under con-
dition (C1), without loss of generality, we assume that the kernel K
is bounded above by 1. Hence, 0 ≤ El ≤ 1 for l = 0, . . . , L. Denote
H := SSRK(Xj |Y ) =

∑L
l=1 PlEl − E0. For any ε ∈ (0, 1),

P
{
|Ĥ − H| ≥ ε

}
=P

{∣∣∣∣∣
L∑

l=1

P̂l

(
V (l)
nl

− El

)
+

L∑
l=1

(
P̂l − Pl

)
El −

(
V (0)
n −E0

)∣∣∣∣∣ ≥ ε

}

≤P

{
L∑

l=1
P̂l

∣∣∣V (l)
nl

−El

∣∣∣ ≥ ε

3

}
+ P

{
L∑

l=1

∣∣∣P̂l − Pl

∣∣∣El ≥
ε

3

}
+ P

{∣∣∣V (0)
n −E0

∣∣∣ ≥ ε

3

}
:=T1 + T2 + T3.

Let us consider T1 first.

T1 ≤P

{
Lmax

l
P̂l

∣∣∣V (l)
nl

− El

∣∣∣ ≥ ε

3

}
≤P

{
max

l

∣∣∣V (l)
nl

− El

∣∣∣ ≥ ε

3L, min
l

P̂l ≥
c0
L

}
+ P

{
min

l
P̂l <

c0
L

}
≤P

{
max

l

∣∣∣V (l)
nl

− El

∣∣∣ ≥ ε

3L, min
l

nl ≥
c0n

L

}
+ P

{
max

l

∣∣∣P̂l − Pl

∣∣∣ ≥ c0
L

}
≤

L∑
l=1

P
{∣∣∣V (l)

nl
−El

∣∣∣ ≥ ε

3L, nl ≥
c0n

L

}
+

L∑
l=1

P
{∣∣∣P̂l − Pl

∣∣∣ ≥ c0
L

}

:=
L∑

l=1
T

(l)
11 +

L∑
l=1

T
(l)
12 ,



Conditional sufficient variable screening 2163

where the third inequality holds because maxl

∣∣∣P̂l − Pl

∣∣∣ ≥ Pl − P̂l ≥
2c0/L− c0/L = c0/L by condition (C5).

T
(l)
11 = P

{∣∣∣∣∣nl − 1
nl

U (l)
nl

+ 1
n2
l

nl∑
i=1

K(X(l)
i,j , X

(l)
i,j ) −El

∣∣∣∣∣ ≥ ε

3L, nl ≥
c0n

L

}

≤ P

{
nl − 1
nl

∣∣∣U (l)
nl

− El

∣∣∣ +

∣∣∣∣∣ 1
n2
l

nl∑
i=1

K(X(l)
i,j , X

(l)
i,j ) −

1
nl

El

∣∣∣∣∣ ≥ ε

3L,

nl ≥
c0n

L

}
≤ P

{∣∣∣U (l)
n − El

∣∣∣ ≥ ε

3L − 2
nl

, nl ≥
c0n

L

}
≤ P

{∣∣∣U (l)
n − El

∣∣∣ ≥ ε

6L, nl ≥
c0n

L

}
, for n large enough

≤ 2 exp
{
−c0nε

2

36L3

}
,

where the last inequality follows from Lemma 1. Also,

T
(l)
12 ≤ 2 exp

{
−2c20n

L2

}
.

Similarly, we can show T2 ≤ P
{

maxl

∣∣∣P̂l − Pl

∣∣∣ ≥ ε
3L

}
≤ 2L exp

{
−2nε2

9L2

}
and T3 ≤ 2 exp

{
−nε2

36

}
. Combining T1, T2 and T3, we have

P
{
|Ĥ − H| ≥ ε

}
≤ 2L exp

{
−a1nε

2

L3

}
,

where a1 is a positive constant depending on c0.

(II) If Y is continuous, then under conditions (C1)–(C3) and (C6), for any
ε > 0,

P{|ŵM
j − wM

j | ≥ ε} ≤ 2n exp
{
−a3nε

2} ,
where j = 1, . . . , p, and a3 > 0 is a constant.

Proof. For a given j ∈ {1, . . . , p}, let γ(y) := E(d1234|Y1 = y, Y2 = y),
where d1234 = K(X1j , X2j) − K(X3j , X4j), then H := H2

K(Xj |Y ) =
Eγ(Y ). The kernel regression estimator

Ĥ :=SSRK,G,n(Xj |Y )

= 1
n5

n∑
t1,...,t5=1

Gt1t2Gt1t3dt2t3t4t5

f̂2
Y (yt1)

= 1
n

n∑
t1=1

f2
Y (yt1)
f̂2
Y (yt1)

γ̂(yt1),
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where fY (·) is the density function of Y , f̂Y (yt1) := 1
n

∑n
s=1 Gt1s and

γ̂(yt1) := 1
n4

n∑
t2,t3,t4,t5=1

Gt1t2Gt1t3dt2t3t4t5
f2
Y (yt1)

.

Without loss of generality, we assume that fY (y) is bounded below by
some c > 0 by condition (C6). We first show some intermediate results.
(R1) P{|f̂Y (yt) − fY (yt)| ≥ ε} ≤ 2 exp{−nε2/2}.

Note that f̂Y (yt) = 1
nhG(0) + n−1

n

(
1

n−1
∑

s �=t Gts

)
and 1

nhG(0) =
o(1) by conditions (C2) and (C3). Denote Un−1 := 1

n−1
∑

s �=t Gts.
Then

EUn−1 =
∫

h−1G(yt − y

h
)fY (y)dy

=
∫

G(u)fY (yt + hu)du = fY (yt) + O(h2)

by Taylor expansion and conditions (C2) and (C6), and O(h2) = o(1)
by conditions (C2) and (C3). Hence,

P
{∣∣∣f̂Y (yt) − fY (yt)

∣∣∣ ≥ ε
}

=P

{∣∣∣∣n− 1
n

Un−1 − EUn−1 + o(1)
∣∣∣∣ ≥ ε

}
=P

{∣∣∣∣n− 1
n

(Un−1 −EUn−1) + o(1)
∣∣∣∣ ≥ ε

}
≤P

{
|Un−1 − EUn−1| ≥

ε

2

}
for n sufficiently large

≤ 2 exp
{
−nε2

2

}
by Lemma 1.

(R2) P{| 1n
∑n

t1=1 γ̂(yt1) −H| ≥ ε} ≤ 2 exp{−nε2/8}.
Denote the corresponding U-statistic of 1

n

∑n
t1=1 γ̂(yt1) as H̃, that

is,
H̃ := C5

n

∑
t1<···<t5

1
5!

∑
π

gi1i2i3i4i5 ,

where g12345 := G12G13d2345/f
2
Y (y1) and

∑
π represents summation

over the 5! permutations of (i1, . . . , i5) of (t1, . . . , t5). Under condi-
tions (C2) and (C3), 1

n

∑n
t1=1 γ̂(yt1) = H̃+o(1). We will show in the

next that EH̃ = H + o(1) in two parts. Firstly,

Γ1 :=
∫
h−2G(y1 − y2

h
)G(y1 − y3

h
)K(x2, x3)

f−1
Y (y1)fXjY (x2, y2)fXjY (x3, y3)dx2dx3dy1dy2dy3



Conditional sufficient variable screening 2165

=
∫
K(x2, x3)fXj |Y (x2|y1 + hu)fXj |Y (x3|y1 + hv)dx2dx3

G(u)G(v)fY (y1 + hu)fY (y1 + hv)dudvf−1
Y (y1)dy1

=
∫
K(x2, x3)fXj |Y (x2|y1)fXj |Y (x3|y1)dx2dx3fY (y1)dy1

+ Op(h2)

by Taylor expansion and conditions (C2) and (C6). Similarly, we can
show

Γ2 :=
∫
K(x4, x5)fXj (x4)fXj (x5)dx4dx5

h−2G(y1 − y2

h
)G(y1 − y3

h
)f−1

Y (y1)fY (y2)fY (y3)dy1dy2dy3

=
∫
K(x4, x5)fXj (x4)fXj (x5)dx4dx5fY (y1)dy1 + Op(h2).

Therefore, EH̃ = Γ1 + Γ2 = H + o(1). Then

P

{∣∣∣∣∣ 1n
n∑

t1=1
γ̂(yt1) −H

∣∣∣∣∣ ≥ ε

}
=P

{∣∣∣H̃ − EH̃ + o(1)
∣∣∣ ≥ ε

}
≤P

{∣∣∣H̃ − EH̃
∣∣∣ ≥ ε

2

}
for n sufficiently large

≤2 exp
{
−nε2

8

}
by Lemma 1.

Now, for arbitrary ε ∈ (0, 1),

P
{
|Ĥ − H| ≥ ε

}
≤P

{∣∣∣∣∣ 1n
n∑

t1=1

f2
Y (yt1)
f̂2
Y (yt1)

γ̂(yt1) −H
∣∣∣∣∣ ≥ ε

}

≤P

{∣∣∣∣∣ 1n
n∑

t1=1
γ̂(yt1) −H + 1

n

n∑
t1=1

(
f2
Y (yt1)
f̂2
Y (yt1)

− 1
)
γ̂(yt1)

∣∣∣∣∣ ≥ ε

}

≤P

{∣∣∣∣∣ 1n
n∑

t1=1
γ̂(yt1) −H

∣∣∣∣∣ ≥ ε

2

}

+ P

{∣∣∣∣∣ 1n
n∑

t1=1

(
f2
Y (yt1)
f̂2
Y (yt1)

− 1
)
γ̂(yt1)

∣∣∣∣∣ ≥ ε

2

}
:=T1 + T2.
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By (R2), T1 ≤ 2 exp{−nε2/640}. Moreover,

T2 ≤P

{
max
t1

∣∣∣∣∣
(
f2
Y (yt1)
f̂2
Y (yt1)

− 1
)
γ̂(yt1)

∣∣∣∣∣ ≥ ε

2

}

≤P

{
max
t1

∣∣∣∣∣
(
f2
Y (yt1)
f̂2
Y (yt1)

− 1
)
γ̂(yt1)

∣∣∣∣∣ ≥ ε

2 ,min
t1

f̂Y (yt) ≥
c

2

}

+ P

{
min
t1

f̂Y (yt) <
c

2

}
≤P

{
max
t1

∣∣∣γ̂(yt1)[f2
Y (yt1) − f̂2

Y (yt1)]
∣∣∣ ≥ c2ε

8

}
+ P

{
max
t1

∣∣∣fY (yt) − f̂Y (yt)
∣∣∣ ≥ cε

2

}
:=T21 + T22.

By (R1), T22 ≤ 2n exp{−c2nε2/2}. Let m̂(yt1) := γ̂(yt1)[f2
Y (yt1)− f̂2

Y (yt1)]
and m̂U (yt1) be the corresponding U-statistic. Similar to (R2), we can
show that

m̂(yt1) = m̂U (yt1) + o(1) and Et2t3t4t5m̂
U (yt1) = O(h2).

Hence, for n sufficiently large,

T21 ≤ P

{
max
t1

∣∣m̂U (yt1) −Et2t3t4t5m̂
U (yt1)

∣∣ ≥ c2ε

16

}
≤ 2n exp

{
−c4nε2

512

}
.

Finally, we have

P
{
|Ĥ − H| ≥ ε

}
≤ 2n exp

{
−a3nε

2} ,

where a3 is a constant depending on c.

(III) If Y is discrete, then under conditions (C1)–(C5), for any ε ∈ (0, 1),

P{|ŵC
j − wC

j | ≥ ε} ≤ 2Ln exp
{
−a2nε

2

L3

}
,

where j = 1, . . . , p, and a2 > 0 is a constant depending on c0.

Proof. Let Zj = (X−j ,W), j = 1, . . . , p. Note that

H :=SSRK(Zj |Y ;Xj)
=SSRK(Zj |Xj ;Y ) + SSRK(Zj |Y ) − SSRK(Zj |Xj)
:=H1 + H2 + H3.
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Denote H(l)
1 := SSRK(Z(l)

j |X(l)
j ) as the within-group SSR given Y = y(l),

then H1 =
∑L

l=1 PlH(l)
1 . Let

Ĥ1 :=SSRK,n(Zj |Xj ;Y )

=
L∑

l=1

nl

n
SSRK,G,n(Z(l)

j |X(l)
j ) :=

L∑
l=1

P̂lĤ(l)
1 .

Then,

P
{
|Ĥ1 −H1| ≥ ε

}
=P

{∣∣∣∣∣
L∑

l=1
P̂lĤ(l)

1 −
L∑

l=1
PlH(l)

1

∣∣∣∣∣ ≥ ε

}

≤P

{
L∑

l=1

P̂l

∣∣∣Ĥ(l)
1 −H(l)

1

∣∣∣ ≥ ε

2

}
+ P

{
L∑

l=1

∣∣∣P̂l − Pl

∣∣∣H(l)
1 ≥ ε

2

}

≤P

{
max

l

∣∣∣Ĥ(l)
1 −H(l)

1

∣∣∣ ≥ ε

2L

}
+ P

{
max

l

∣∣∣P̂l − Pl

∣∣∣ ≥ ε

4L

}
≤P

{
max

l

∣∣∣Ĥ(l)
1 −H(l)

1

∣∣∣ ≥ ε

2L,min
l

P̂l ≥
c0
L

}
+ P

{
min

l
P̂l <

c0
L

}
+ P

{
max

l

∣∣∣P̂l − Pl

∣∣∣ ≥ ε

4L

}
≤

L∑
l=1

P
{∣∣∣Ĥ(l)

1 −H(l)
1

∣∣∣ ≥ ε

2L, nl ≥
c0n

L

}
+ P

{
min

l
P̂l <

c0
L

}

+
L∑

l=1

P
{∣∣∣P̂l − Pl

∣∣∣ ≥ ε

4L

}
≤2Lmax

l
nl exp

{
−ac0nε

2

L3

}
+ 2L exp

{
−2c20nε2

L2

}
+ 2L exp

{
− nε2

8L2

}
by (II) and Lemma 1 for some constants a > 0

≤2Ln exp
{
− ã2nε

2

L3

}
for some constant a2 > 0 depending on c0.

Similar to (I), it can be shown that

P
{
|Ĥ2 −H2| ≥ ε

}
≤ 2L exp

{
− ã1nε

2

L3

}
for some ã1 > 0 depending on c0. Similar to (II),

P
{
|Ĥ3 −H3| ≥ ε

}
≤ 2n exp

{
−ã3nε

2}
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for some ã3 > 0. Therefore,

P
{
|Ĥ − H| ≥ ε

}
≤

3∑
i=1

P
{
|Ĥi −Hi| ≥ ε/3

}
≤ 2Ln exp

{
−a2nε

2

L3

}
,

for some a2 > 0 depending on c0.

(IV) If Y is continuous, then under conditions (C1)–(C4) and (C6), for any
ε ∈ (0, 1),

P{|ŵC
j − wC

j | > ε} ≤ 2n exp
{
−a4nε

2} ,
where j = 1, . . . , p, and a4 > 0 is a constant.

Proof. The proof is analogous to (II) since

SSRK,G̃,G,n(Zj |Y ;Xj) = SSRK,G̃,n(Zj |(Y,Xj))−SSRK,G,n(Zj |Xj).

A.2. Proof of Theorem 2

Proof. Let AM := {j ∈ A : Xj �⊥⊥ Y} with |AM | = s1 and AC := A \ AM with
|AC | = s2. If Y is categorical, following from Theorem 1,

P

{
max
j∈AM

|ŵM
j − wM

j | > c1n
−γ1

}
≤ 2s1L exp

{
−a1c

2
1n

1−2γ1

L3

}
≤ O

(
s1 exp

{
−b1n

1−2γ1−3κ + κ logn
})

,

where b1 > 0 is a constant depending on c0 and c1. Similarly, by Theorem 1,

P

{
max
j∈AC

|ŵC
j − wC

j | > c2n
−γ2

}
≤ 2s2Ln exp

{
−a2c

2
2n

1−2γ2

L3

}
≤ O

(
s2 exp

{
−b2n

1−2γ2−3κ + (1 + κ) logn
})

,

for some constant b2 > 0 depending on c0 and c2. Under condition (C7), if A �
Â, there must exist some j ∈ AM such that wM

j ≥ 2c1n−γ1 but ŵM
j < c1n

−γ1 ,
or some j ∈ AC such that wC

j ≥ 2c2n−γ2 but ŵC
j < c2n

−γ2 . Therefore,

P
{
A � Â

}
≤P

{∣∣ŵM
j − wM

j

∣∣ > c1n
−γ1 for some j ∈ AM

}
+ P

{∣∣ŵC
j − wC

j

∣∣ > c2n
−γ2 for some j ∈ AC

}
≤P

{
max
j∈AM

∣∣ŵM
j − wM

j

∣∣ > c1n
−γ1

}
+ P

{
max
j∈AC

∣∣ŵC
j − wC

j

∣∣ > c2n
−γ2

}
≤O

(
s1 exp

{
−b1n

1−2γ1−3κ + κ logn
})

+ O
(
s2 exp

{
−b2n

1−2γ2−3κ + (1 + κ) logn
})

≤O
(
s exp

{
−bn1−2γ−3κ + (1 + κ) logn

})
,
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where b is a constant depending on c0, c1 and c2, and γ = max{γ1, γ2}. In other
words,

P
{
A ⊆ Â

}
≥ 1 −O

(
s exp

{
−bn1−2γ−3κ + (1 + κ) logn

})
.

The proof for continuous Y is analogous.

A.3. Proof of Theorem 3

Proof. If Y is categorical, by condition (C8) and Theorem 1,

P

{(
min
j∈AM

ŵM
j − max

j �∈AM

ŵM
j

)
< c3n

−γ3

}
≤P

{(
min
j∈AM

ŵM
j − max

j �∈AM

ŵM
j

)
−
(

min
j∈AM

wM
j − max

j �∈AM

wM
j

)
< −c3n

−γ3

}
≤P

{∣∣∣∣( min
j∈AM

ŵM
j − max

j �∈AM

ŵM
j

)
−

(
min
j∈AM

wM
j − max

j �∈AM

wM
j

)∣∣∣∣ > c3n
−γ3

}
≤P

{
max

j

∣∣ŵM
j − wM

j

∣∣ > c3n
−γ3/2

}
≤2pL exp

{
−a5n

1−2γ3

L3

}
for some a5 > 0 depending on c3. Since log(p) = o(n1−2γ3−3κ) and L = O(nκ),
we have log(p) ≤ a5n

1−2γ3/(2L3), a5n
1−2γ3/(2L3) ≥ 3 log(n), log(L) ≤ log(n)

for n sufficiently large. For some n0 sufficiently large,

+∞∑
n=n0

pL exp{−a5n
1−2γ3/L3} ≤

+∞∑
n=n0

n−2 < +∞.

By Borel-Cantelli Lemma,

lim inf
n→∞

{
min
j∈AM

ŵM
j − max

j �∈AM

ŵM
j

}
≥ c3n

−γ3 > 0

a.s. Similarly, by condition (C8) and Theorem 1,

P

{
( min
j∈AC

ŵC
j − max

j �∈AC

ŵC
j ) < c4n

−γ4

}
≤ 2npL exp

{
−a6n

1−2γ4

L3

}
,

for some a6 > 0 depending on c4. Since log(p) = o(n1−2γ4−3κ) and L = O(nκ),
we can derive similarly that

lim inf
n→∞

{
min
j∈AC

ŵC
j − max

j �∈AC

ŵC
j

}
≥ c4n

−γ4 > 0

a.s. The proof for continuous Y is analogous.
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Appendix B: Computational issues

Computing efficiency is an important factor for variable screening procedures.
In this section, we discuss the computational aspect of the proposed procedure.

Let U, V and Z be three random vectors on Rp1 , Rp2 and Rp3 , respectively.
Since kernel learning typically requires computing and handling an n×n Gram
matrix, the computational complexity for R2

n(U|V ) is O(n2(p1 + p2)) if V is
continuous or O(n2p1) if V is categorical, and the computational complexity
for R2

n(U|V ;Z) is O(n2p1(p2 + p3)) if V is continuous or O(n2(p1 + p3)) if
V is categorical. Low-rank approximation to the Gram matrix via incomplete
Cholesky decomposition can be used to improve efficiency and the resulting com-
putational complexity depends on the decaying spectrum of the kernel function
(Bach and Jordan, 2002). In the univariate case with a Gaussian kernel, the
decay is exponential, reducing the computational complexity to O(n logn).

As for the utility measures, the computational complexity is O(n2) for
marginal utility and O(n2p) for conditional utility per predictor due to the
computation of the Gram matrix for Xj and for ultrahigh-dimensional vector
(X−j ,W). A naive implementation of the screening procedure would therefore
scale as O(n2p2), which can be a serious liability in applications to large data
sets. However, the computation of the conditional utility measure can be eas-
ily reduced to O(n2). For example, if a Gaussian kernel is used, the distance
matrix of (X,W) can be computed in O(n2p), based on which the Gram ma-
trix for (X−j ,W) can be obtained within O(n2). As a result, the computation
complexity of KCSVS can be optimized to O(n2p). In theory this is compa-
rable to single-measure screening procedures that adopt similar reproducing-
kernel-based indexes such as DCOR, HSIC and CDCOR, despite that KCSVS
relies on two utility measures and calculating the conditional measures involves
ultrahigh-dimensional vectors. Again, incomplete Cholesky decomposition may
help further improve the efficiency.

We also compare KCSVS with other methods in terms of computational
cost in the simulation studies. The average computing times are summarized in
Table 4 based on 100 replicates in R on a laptop with i5 1.4 GHz processor and
16G RAM. We only report the results for the three submodels (c)–(e) of Model
2 (regression) and Model 3 (classification) because the computing time does not
vary significantly between different models for given n, p and p0. All the existing
methods only compute one marginal measure for each predictor, yet KCSVS is
shown to be more efficient than CDCSIS, a conditional screening procedure
based on CDCOR that can be implemented using the cdcsis package in R.
Note that methods that appear to be very fast such as NIS, CCSIS and CSIS
are model-based procedures. Moreover, KCSVS can handle high-dimensional
controls and remain equally efficient for a wide range of p0.

Appendix C: Kernel-based univariate conditional screening

When it is believed that A = A1 or when the main interest lies in recovering A1,
we should evaluate the marginal importance of each predictor after adjusting for
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Table 4

Average computing time (in seconds) based on 100 replicates. A
cell displays a dash if the corresponding method is not applicable

to the specific model.

Model p0 n p KCSVS NIS CCSIS CSIS CDCSIS BKRSIS

2(c) 1 100 5000 21.42 1.76 0.41 4.54 47.50 9.03
10000 41.34 3.61 0.80 9.09 95.22 17.77

300 5000 262.67 2.37 3.22 4.79 1469.66 55.98
10000 530.14 4.70 6.42 9.43 2892.08 112.08

2(d) 2 100 5000 20.34 – – 4.68 48.35 9.27
10000 41.89 – – 9.57 95.78 18.63

300 5000 261.12 – – 4.91 1484.34 56.34
10000 522.08 – – 9.86 2941.17 111.85

2(e) 2000 100 5000 20.19 – – – – −
10000 41.70 – – – – −

300 5000 261.13 – – – – −
10000 523.76 – – – – −

3(c) 1 100 5000 22.35 – – 6.93 – –
10000 45.83 – – 13.79 – −

300 5000 189.78 – – 12.47 – −
10000 386.68 – – 24.27 – −

3(d) 2 100 5000 22.38 – – 8.04 – −
10000 46.80 – – 16.06 – −

300 5000 189.85 – – 15.29 – −
10000 381.38 – – 29.79 – −

3(e) 2000 100 5000 22.60 – – – – −
10000 45.35 – – – – −

300 5000 190.97 – – – – −
10000 382.07 – – – – −

the effect of the control variables. Leaving out X−j in Proposition 1, conditions
(b1) Xj Y and (b2′) W Y |Xj jointly imply condition (a′) Xj Y |W.
Therefore, we turn to use wM

j = R2
K(Xj |Y ) and wC∗

j = R2
K̃

(W|Y ;Xj) as
the utility measures. Denote their estimators by ŵM

j = R2
n(Xj |Y ) and ŵC∗

j =
R2

n(W|Y ;Xj), respectively. Then A1 is estimated by

Â1 =
{

1 ≤ j ≤ p : ŵM
j ≥ c1n

−γ1 or ŵC∗

j ≥ c∗2n
−γ∗

2

}
,

where c1, c∗2, γ1 and γ∗
2 are pre-specified threshold values defined later. We

refer to the above screening procedure as kernel-based univariate conditional
screening (KUSC).

C.1. Theoretical properties

Following from Theorem 1, deviation bounds can be found for ŵC∗

j for different
types of the response variable, regardless of the dimension of W.

Corollary 1. If Y is categorical, then under conditions (C1)–(C5),

P{|ŵC∗

j − wC∗

j | > ε} ≤ 2Ln exp
{
−a∗2nε

2

L3

}
,
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for any ε > 0, where j = 1, . . . , p, and a∗2 > 0 is some constant depending on
c0. If Y is continuous, then under conditions (C1)–(C4) and (C6),

P{|ŵC∗

j − wC∗

j | > ε} ≤ 2n exp
{
−a∗4nε

2}
for any ε > 0, where j = 1, . . . , p, and a∗4 > 0 is some constant.

With the above appealing property, it can be shown that KUSC asymptoti-
cally almost surely select A1. Let AM = {j ∈ A : Xj �⊥⊥ Y}, AC∗ = A1 \ AM .
The following condition is required to establish the sure screening property.

(C7∗) There exist c1, c
∗
2 > 0 and γ1, γ

∗
2 ∈ [0, 1/2), such that

min
j∈AM

wM
j ≥ 2c1n−γ1 and min

j∈AC∗
wC∗

j ≥ 2c∗2n−γ∗
2 .

Corollary 2 (Sure Screening). If Y is categorical, then under conditions (C1)–
(C5) and (C7∗), we have

P
(
A1 ⊂ Â1

)
≥ 1 −O

(
s1 exp

{
−b∗n1−2γ∗−3κ + (1 + κ) logn

})
for κ ∈ [0, 1

3 − 2γ∗

3 ), where s1 is the cardinality of A1, b∗ is a positive constant
depending on c0, c1 and c∗2, and γ∗ = max{γ1, γ

∗
2}. If Y is continuous, then

under conditions (C1)–(C4), (C6) and (C7∗), we have

P
(
A1 ⊂ Â1

)
≥ 1 −O

(
s1 exp

{
−b̃∗n1−2γ∗

+ logn
})

,

where s1 is the cardinality of A1, b̃∗ is a positive constant depending on c1 and
c∗2, and γ∗ = max{γ1, γ

∗
2}.

Moreover, the procedure ranks important predictors above irrelevant ones
with high probability if a stronger condition is assumed as follows.

(C8∗) There exist c3, c
∗
4 > 0 and γ3, γ

∗
4 ∈ [0, 1/2), such that

min
j∈AM

wM
j − max

j �∈AM

wM
j ≥ 2c3n−γ3 and min

j∈AC∗
wC∗

j − max
j �∈AC∗

wC∗

j ≥ 2c∗4n−γ∗
4 .

Corollary 3 (Rank Consistency). Let γ̃∗ = max{γ3, γ
∗
4}. If Y is categorical

and log p = o(n1−2γ̃∗−3κ) for κ ∈ [0, 1
3 −

2γ̃∗

3 ), then under conditions (C1)–(C5)
and (C8∗),

lim inf
n→∞

{
min
j∈AM

ŵM
j − max

j �∈AM

ŵM
j

}
> 0

and lim inf
n→∞

{
min

j∈AC∗
ŵC∗

j − max
j �∈AC∗

ŵC∗

j

}
> 0

almost surely. If Y is continuous and log p = o(n1−2γ̃∗), then under condi-
tions (C1)–(C4), (C6) and (C8∗),

lim inf
n→∞

{
min
j∈AM

ŵM
j − max

j �∈AM

ŵM
j

}
> 0
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and lim inf
n→∞

{
min

j∈AC∗
ŵC∗

j − max
j �∈AC∗

ŵC∗

j

}
> 0

almost surely.

In other words, the true marginal and conditional signal can be well separated
from noise by some thresholds. Such thresholds, however, could be difficult to
determined in practice. We can instead choose a relatively generous model size
d and select Â∗

1 := Â∗
M ∪ Â∗

C∗ , where

Â∗
M (d1) := {1 ≤ j ≤ p : ŵM

j is among the first d1 largest of all}
and Â∗

C∗(d2) := {j �∈ Â∗
M (d1) : ŵC∗

j is among the first d2 largest of all},

for d1+d2 = d. The sure screening property guarantees the coverage of A1 when
d is large.

C.2. Numerical studies

We examine the performance of KUSC through the same 10 models considered
for KCSVS and the results are reported in Table 5 with n = 200, p = 2, 000 and
d1 = d2 = [n/ logn] = 38. As expected, KUSC selects all important variables
in A1 with high probability and results in small MMS (close to the true size)
when A = A1. In general, KUSC performs similarly to KCSVS except for that
KUSC cannot detect important variables beyond A1. Compared with existing
alternatives that also aim to recover A1, KUSC allows multiple or even high-
dimensional control variables. Notice that unimportant control variables that
are correlated with the response help improve the performance of KUSC in
some models, which suggests that KUSC can utilize indirect or even inaccurate
prior information to better select important predictors.

Appendix D: Kernel-based sufficient variable screening

In the absence of W, or equivalently when W is empty, KCSVS performs kernel-
based unconditional sufficient variable screening (KSVS) with the conditional
utility measure being wC

j = R2
K̃

(X−j |Y ;Xj). The sure screening property and
the rank consistency property naturally hold by Theorems 2 and 3. The most
important merit of sufficient variable screening is the ability to select impor-
tant predictors that are marginally independent with the response. There are
different paths towards achieving sufficient variable screening for ultrahigh-
dimensional data. In this section, we elaborate the advantage of KSVS over
existing competitors. Yang, Yin and Zhang (2019) and Yuan et al. (2022) de-
veloped sufficient variable screening procedures for continuous and categorical
responses, respectively. The following proposition summarizes the sufficient con-
ditions adopted by KSVS and the two aforementioned methods for identifying
redundant variables.
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Table 5

Quantiles of MMS Mτ ’s and selection proportions P s
j ’s and Pa’s for KUSC across all

models based on 200 replicates. A cell for P s
j displays a dash if the corresponding variable

Xj is assigned to the control set and thus protected in screening.

Model p0 s M5% M25% M50% M75% M95% P s
1 P s

2 P s
3 P s

4 P s
5 Pa

1(a) 1 4 227.8 1223.2 1734.5 1940.8 1998.0 0.990 0.995 0.995 0.010 – 0.010
1(b) 2000 4 5.0 6.0 6.0 12.0 44.0 0.996 0.995 0.995 1.000 – 0.980
1(c) 1 3 3.0 4.0 4.0 6.0 32.3 – 0.995 0.995 1.000 – 0.990
1(d) 2 2 2.0 2.0 2.0 2.0 10.0 – – 0.990 1.000 – 0.990
1(e) 2000 2 2.0 2.0 2.0 2.0 10.0 – – 0.990 1.000 – 0.990
2(a) 1 4 65.9 368.8 936.5 1536.0 1933.8 0.990 1.000 0.990 0.070 – 0.070
2(b) 2000 4 5.0 6.0 6.0 8.0 30.3 0.985 1.000 0.990 1.000 – 0.975
2(c) 1 3 4.0 4.0 9.5 25.2 139.4 – 1.000 0.990 0.915 – 0.905
2(d) 2 2 2.0 2.0 2.0 2.0 14.2 – – 0.985 1.000 – 0.985
2(e) 2000 2 2.0 2.0 2.0 2.0 14.2 – – 0.985 1.000 – 0.985
3(a) 1 4 303.3 1043.5 1508.5 1829.5 1991.0 0.970 1.000 0.990 0.020 – 0.020
3(b) 2000 4 5.0 5.0 9.0 29.0 233.3 0.980 1.000 0.990 0.935 – 0.905
3(c) 1 3 16.0 66.8 313.0 873.2 1695.4 – 1.000 0.985 0.275 – 0.275
3(d) 2 2 2.0 2.0 2.0 7.0 48.2 – – 0.980 1.000 – 0.980
3(e) 2000 2 2.0 2.0 2.0 9.0 50.2 – – 0.975 1.000 – 0.975
4(a) 1 4 162.6 635.2 1045.0 1591.8 1869.3 0.965 0.950 0.965 0.015 – 0.015
4(b) 2000 4 4.0 5.0 8.0 27.0 114.4 0.960 0.945 0.960 0.990 – 0.865
4(c) 1 3 3.0 3.0 6.0 14.0 82.2 – 0.950 0.960 0.990 – 0.900
4(d) 2 2 2.0 2.0 2.0 5.0 35.4 – – 0.960 1.000 – 0.960
4(e) 2000 2 2.0 2.0 2.0 6.0 47.4 – – 0.960 0.990 – 0.950
Model p0 s M5% M25% M50% M75% M95% P s

2 P s
4 P s

6 P s
8 P s

10 Pa

5(a) 5 5 9.0 10.0 12.0 30.2 320.7 0.995 1.000 1.000 1.000 0.880 0.875
5(b) 2000 5 9.0 10.0 12.0 30.0 296.5 0.995 1.000 1.000 1.000 0.885 0.880
6(a) 5 5 9.0 9.0 10.0 12.2 28.1 1.000 1.000 1.000 1.000 0.995 0.995
6(b) 2000 5 9.0 9.0 10.0 13.0 29.2 1.000 1.000 1.000 1.000 0.995 0.995
Model p0 s M5% M25% M50% M75% M95% P s

1 P s
3 P s

5 P s
7 P s

9 Pa

5(c) 5 5 9.0 10.0 11.5 20.0 151.9 0.910 1.000 1.000 1.000 0.995 0.905
5(d) 2000 5 9.0 10.0 12.0 25.0 168.3 0.995 1.000 0.995 1.000 0.900 0.895
6(c) 5 5 9.0 9.0 10.0 12.0 26.4 1.000 1.000 1.000 1.000 1.000 1.000
6(d) 2000 5 9.0 9.0 10.0 12.0 28.0 1.000 1.000 1.000 1.000 1.000 1.000
Model p0 s M5% M25% M50% M75% M95% P s

1 P s
2 P s

3 P s
4 P s

5 Pa

7(a) 1 5 624.0 1220.0 1610.5 1879.2 1991.0 1.000 1.000 0.975 0.060 0.045 0.000
7(b) 4 5 421.9 984.0 1473.5 1796.5 1991.0 1.000 1.000 0.955 0.075 0.055 0.000
7(c) 2000 5 6.0 6.0 8.0 18.0 105.9 1.000 1.000 0.955 0.990 0.980 0.925
8(a) 1 5 6.0 25.5 90.0 324.0 1025.1 1.000 1.000 0.960 0.655 0.640 0.455
8(b) 4 5 6.0 6.0 12.5 30.5 142.1 1.000 1.000 0.975 0.975 0.955 0.905
8(c) 2000 5 5.0 6.0 6.0 16.0 64.3 1.000 1.000 0.975 0.995 0.990 0.960
9(a) 1 5 97.6 635.5 1198.0 1706.8 1980.2 1.000 0.985 0.985 0.990 0.045 0.045
9(b) 4 5 88.8 442.8 1023.0 1472.5 1919.6 1.000 0.980 0.990 0.995 0.050 0.050
9(c) 2000 5 7.0 7.0 9.0 17.0 57.1 1.000 0.990 0.990 0.995 0.995 0.970
Model p0 s M5% M25% M50% M75% M95% P s

1 P s
2 P s

12 P s
22 P s

33 Pa

10(a) 1 5 8.0 11.2 30.0 104.5 465.2 0.770 0.925 1.000 0.950 0.990 0.680
10(b) 4 5 9.0 10.0 11.0 25.5 135.6 0.965 0.975 1.000 0.980 0.985 0.910
10(c) 2000 5 9.0 10.0 12.0 26.0 150.5 0.965 0.975 1.000 0.985 0.985 0.915
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Proposition 2. Let X−j denote the vector of all predictors excluding Xj (j =
1, . . . , p), then

1. j �∈ A if and only if condition

(a) Xj Y |X−j

holds, j = 1, . . . , p; and
2. The following pair of conditions (b1) and (b2) implies condition (a):

(b1) Xj Y ; (b2) X−j Y |Xj .

3. The pair of conditions (b1) and (b3) is equivalent to condition (b4), which
implies condition (a):

(b3) Xj X−j |Y ;
(b4) Xj (Y,X−j).

Statements 1 and 2 follow immediately from Proposition 1. The pair of (b1)
and (b3) is considered by Yang, Yin and Zhang (2019) for sliced continuous
responses and by Yuan et al. (2022) for categorical response, in which case con-
dition (b3) can be more easily assessed than condition (a) given the conditional
variable is categorical. Condition (b4) is used in Yang, Yin and Zhang (2019) for
continuous responses. Most existing unconditional screening methods only eval-
uate condition (b1), which is not sufficient for condition (a). As a consequence,
important predictors that are marginally independent but jointly correlated with
the response could be falsely ruled out. Therefore, one should further check ei-
ther one of conditions (b2)–(b4) before removing a variable. However, we argue
that a marginally silent predictor may not survive (b3) or (b4) if it does not have
a stronger correlation with the rest variables compared to the other candidates.
False discoveries of spurious variables are exacerbated in the meanwhile. The
reason is that the relation between Xj and X−j dominates the two conditions
due to the ultrahigh dimensionality of X−j . In contrast, KSVS uses condition
(b2) and avoids such an issue. Taking a closer look at the conditional utility
measure of KSVS,

R2
K̃

(X−j |Y ;Xj) = SSRK̃(X−j |Y ;Xj)
SSEK̃(X−j |Xj)

,

where

SSRK̃(X−j |Y ;Xj) = SSRK̃(X−j |(Y,Xj)) − SSRK̃(X−j |Xj)
and SSEK̃(X−j |Xj) = SSTOK̃(X−j) − SSRK̃(X−j |Xj),

we notice that the correlation between Xj and X−j is adjusted for in this kernel
partial R2, which solves the issue of the existing sufficient variable screening
methods. In addition, another common issue of unconditional screening pro-
cedures is also alleviated. That is, important variables that are difficult to be
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detected marginally because they are weakly correlated with the response (es-
pecially when spurious predictors that are highly correlated with the important
predictors exist) may still be discovered through strong conditional signal.

To support the above argument with numerical evidence, we compare KSVS
with DCSVS (Yang, Yin and Zhang, 2019) by revisiting Model 1 (linear) and
Model 2 (heterogeneity) with n = 200, p = 2, 000 and d = 2[n/ logn] = 76.
The two methods are benchmarked against DCSIS (Li, Zhong and Zhu, 2012),
a well-known marginal screening procedure based on DCOR, which is also the
marginal measure adopted by Yang, Yin and Zhang (2019). The results are
summarized in Table 6. Recall that for either model, X4 Y and X5 is weakly
correlated with Y although both variables are truly important. Moreover, unlike
the other predictors, X5 acts on the second-order moment of the response vari-
able. Therefore, DCSIS as a marginal method fails to select X4 all the time. As
we can also observe from the table, KSVS outperforms DCSVS by large margins
in terms of MMS quantiles and selection probabilities. In particular, KSVS is
more powerful than DCSVS in detecting both X4 and X5.

Table 6

Quantiles of MMS Mτ ’s and selection proportions P s
j ’s and Pa’s for all Models 1 and 2

based on 200 replicates to compare KSVS, DCSVS and DCSIS. Note that DCSVS1 is based
on the pair of conditions (b1) and (b3), while DCSVS2 is based on the pair of conditions

(b1) and (b4).

Model s Method M5% M25% M50% M75% M95% P s
1 P s

2 P s
3 P s

4 P s
5 Pa

1 5 KSVS 6.0 8.0 16.0 45.2 223.4 0.990 0.995 0.995 1.000 0.860 0.845
1 5 DCSVS1 340.1 925.2 1436.0 1787.2 1988.0 1.000 1.000 1.000 0.000 0.615 0.000
1 5 DCSVS2 8.0 10.0 49.0 532.8 1716.1 1.000 1.000 1.000 0.945 0.615 0.575
1 5 DCSIS 1997.0 2000.0 2000.0 2000.0 2000.0 1.000 1.000 1.000 0.000 0.620 0.000

2 5 KSVS 6.0 6.0 8.0 22.0 220.3 0.985 1.000 0.990 1.000 0.925 0.900
2 5 DCSVS1 2000.0 2000.0 2000.0 2000.0 2000.0 0.995 1.000 1.000 0.000 0.000 0.000
2 5 DCSVS2 2000.0 2000.0 2000.0 2000.0 2000.0 0.995 1.000 1.000 0.930 0.000 0.000
2 5 DCSIS 2000.0 2000.0 2000.0 2000.0 2000.0 0.995 1.000 1.000 0.000 0.000 0.000
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