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Abstract: In this paper we present and analyze random number gener-
ators for the Poisson Kernel-Based Distribution (PKBD) on the sphere.
We show that the only currently available sampling scheme presented in
Golzy and Markatou (2020) can be improved by a better selection of hyper-
parameters but still yields an unbounded rejection constant as the concen-
tration parameter approaches 1. Furthermore, we introduce two additional
and superior sampling methods for which boundedness in the above men-
tioned case can be obtained. The first method proposes initial draws from
angular central Gaussian distribution and offers uniformly bounded rejec-
tion constants for a significant part of the PKBD parameter space. The
second method uses adaptive rejection sampling and the results of Ulrich
(1984) to sample from the projected Saw distribution (Saw, 1978). Finally,
both new methods are compared in a simulation study.
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1. Introduction

Directional statistics has attracted a fair amount of attention over the past
years. New developments in the fields of mixture modeling, special function ap-
proximation, estimation and random sampling of direction distributions have
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allowed to develop new algorithms that are capable of recognizing various pat-
terns on multidimensional spheres and cluster data with similar directions into
groups using probabilistic methods. An example is the work of Hornik and Grün
(2014), where von Mises-Fisher distributions are used to analyse sentiment of
submitted abstracts.

Golzy and Markatou (2020) introduce the Poisson Kernel-Based Distribution
(PKBD) family for spherical data and propose an efficient algorithm for its es-
timation. Unlike other commonly employed spherical distributions, the PKBD
densities are straightforward to compute, making them particularly attractive
for mixture modeling of spherical data. This also amplifies the need for a fast
and efficient random number generator for the distribution. The samples from
such a generator can then be used in various applications where simulation
techniques are needed. An example would be the use of the random draws to
accompany the estimation algorithms and assess the uncertainty of the param-
eters using methods such as the parametric boostrap (O’Hagan et al., 2019),
which specifically was proposed in the context of mixture modeling for the like-
lihood ratio test to assess the number of components (McLachlan, 1987). In
terms of Bayesian modeling, random number samples can directly be applied in
the process of sampling from a predictive distribution or as a proposal distribu-
tion in a Metropolis-Hastings algorithm.

Random variate generation for distributions on the sphere involves generating
random points on the surface of a sphere. This is useful in a variety of fields,
including physics, astronomy, and geology. In order to generate random variates
from a desired distribution on the sphere, one common technique is the rejection
sampling method. This method involves generating random points over a larger,
enclosing shape called hat function, and then rejecting points that are outside of
the desired distribution. The ratio of the volume below the hat function and the
given density is called the rejection constant, denoted by R in this contribution.
This constant gives the expected number of iterations of the acceptance-rejection
loop of the algorithm and equals the reciprocal of the acceptance probability
(which is often used as an alternative characterization). Obviously the choice
of the hat function is crucial for the performance of the rejection method, in
particular for high dimensional sampling problems. For more details, see for
example Devroye (1986).

Golzy and Markatou (2020) suggest to sample from the PKBD via rejection
sampling using von Mises-Fisher (vMF) envelopes. In this paper we show that
the proposed sampling scheme is not uniformly bounded and that it can be
improved by a proper selection of the hyper parameters. Moreover, we show
that better results can be achieved when other proposal distributions are se-
lected. The first algorithm we present uses angular central Gaussian (ACG) en-
velopes as a proposal distribution, and compared to the vMF envelopes, it offers
bounded rejection constant as the concentration parameter goes to the extreme
case equal to 1. Furthermore, the presented sampling scheme offers high effi-
ciency, where the sampling from the proposal distribution overcomes the curse
of dimensionality and has cost which scales only linearly in the dimension. The
second algorithm utilizes adaptive rejection sampling from the projected Saw
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distribution (Saw, 1978), based on the results presented in Ulrich (1984). In ad-
dition, both algorithms are compared in a brief simulation study, which shows
a great balance between the algorithms, suggesting a large importance value for
both algorithms depending on the various tasks in the application.

All proofs of the results in the following sections are given in an appendix.

2. PKBD distribution

With S
d−1 = {x ∈ R

d : ‖x‖ = 1} the unit sphere in R
d and υd the uniform

distribution on S
d−1, the density of the PKBD with parameters 0 ≤ ρ < 1 and

μ ∈ S
d−1 with respect to υd is given by

fPKBD(x|ρ, μ) = 1 − ρ2

‖x− ρμ‖d , x ∈ S
d−1.

Clearly, for ρ = 0 we get the uniform distribution on the sphere, and using
densities with respect to this needs no additional normalizing constant. For
ρ → 1−, the PKBD with parameters ρ and μ tends to the Dirac distribution at
μ.

The distribution can be considered as a special case (ξ = d) of the family of
densities

f(x) ∝ ‖x− ρμ‖−ξ
x ∈ S

d−1, (1)

with ξ > 0. It arises for example as an exit distribution from Brownian Motion
on unit sphere in R

d (Kato and Jones, 2013; Durrett, 1984). Another famous
member of the family (1) is the spherical Cauchy distribution with ξ = 2(d −
1) (Kato and McCullagh, 2020). On the contrary to PKBD, spherical Cauchy
distribution can be sampled directly by applying suitable Möbius transformation
on the sphere to the uniform distribution on the sphere.

The following reparametrization allows to write the PKBD density in the
form gd(λμ′x)/cd,λ, i.e., as a Saw distribution (Saw, 1978) with shape function
gd, direction parameter μ and concentration parameter λ.

Theorem 1. Let
λ = λ(ρ) = 2ρ

1 + ρ2 . (2)

Then λ(ρ) increases from 0 to 1 as ρ goes from 0 to 1, with inverse

ρ = ρ(λ) = λ

1 +
√

1 − λ2
, (3)

and the PKBD density can be written as gd(λμ′x)/cd,λ with

gd(t) = (1 − t)−d/2

and
cd,λ = 2d−2

√
1 − λ2(

√
1 + λ +

√
1 − λ)d−2

.
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3. Simulating with vMF envelopes

A random vector in S
d−1 has a von Mises-Fisher distribution with parameters

κ ≥ 0 and μ ∈ S
d−1 if its density with respect to the uniform distribution on

the unit sphere is given by

fvMF(x|κ, μ) = eκμ
′x

Hd/2−1(κ) ,

where Hν(κ) = 0F1(; ν + 1;κ2/4) = Γ(ν+1)
(κ/2)ν Iν(κ) with 0F1 and Iν being the

confluent hypergeometric limit function (e.g., Mardia and Jupp, 2009, page 352)
and modified Bessel function of the first kind (DLMF, Eq. 10.25.2), respectively.

Golzy and Markatou (2020) suggest sampling from the PBKD with parameter
ρ and μ using vMF envelopes with concentration parameter

κρ = dρ

1 + ρ2 = dλ

2
and direction parameter μ, observing however that this choice yields rejection
constants which do not remain bounded as ρ → 1−, so that these samplers are
not feasible for large concentration parameters.

The following result shows that one can find concentration parameters with
smaller rejection constants.

Theorem 2. Using κρ has rejection constant

Hν(κρ)e−κρ
1 + ρ

(1 − ρ)d−1 ≈ Hν(d/2)e−d/2 1 + ρ

(1 − ρ)d−1

as ρ → 1−. The smallest rejection constants for sampling from PKBD distribu-
tion using vMF envelopes are obtained using κ∗

ρ = d
2 log 1+ρ

1−ρ , with value

RvMF
d,ρ =

Hν(κ∗
ρ)

(1 − ρ2)d/2−1

and as ρ → 1−,

RvMF
d,ρ ≈ Γ(d/2)2d/2−1

√
2π(d/2)(d−1)/2

1(
log 1+ρ

1−ρ

)(d−1)/2
1 + ρ

(1 − ρ)d−1 → ∞.

We see that using κ∗
ρ gives rejection constants which diverge as ρ → 1−

at a “slightly smaller” rate than the rejection constants for κρ, but still are
computationally infeasible for large concentration parameters. This behavior
can for the most part be explained by the fact that the PKBD has heavier tails
than vMF and hence vMF cannot provide an efficient envelope for sampling
from PKBD under high concentration. A similar situation occurs also for the
previously mentioned spherical Cauchy distribution, which has lighter tails than
the PKBD and hence also cannot serve as an efficient proposal distribution.

The following two sections propose two new sampling algorithms that offer
uniformly bounded rejection constants for fixed d and all ρ.
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4. Simulating with angular central Gaussian envelopes

The ACG distribution with parameter Ω (a symmetric, positive definite matrix)
has density

fACG(x|Ω) = det(Ω)1/2(x′Ωx)−d/2, x ∈ S
d−1.

Clearly,

max
x∈Sd−1

fPKBD(x|ρ(λ), μ)
fACG(x|Ω) = det(Ω)−1/2

cd,λ
max

x∈Sd−1
(1 − λμ′x)−d/2(x′Ωx)d/2

over all feasible Ω. Following Kent, Ganeiber and Mardia (2018), we restrict our
attention to those Ω for which x′Ωx is a function of μ′x (i.e., where μ′x is a
sufficient statistic for the ACG as it is for the PKBD), using Ω(β, μ) = I−βμμ′

with β < 1. In this case, det(Ω(β, μ)) = 1−β and x′Ω(β, μ)x = 1−β(μ′x)2. Note
that the ACG distribution generalizes the uniform distribution on the sphere
and in the case of Ω = I (i.e., β = 0) simplifies to it.

Theorem 3. Let βλ = λ/(2 − λ). The optimal rejection constant of sampling
from PKBD distribution using ACG envelopes is of the form

RACG
d,ρ(λ) = 2

√
1 − λ2

1 +
√

1 − λ2
min

βλ≤β<1

1√
1 − β

(
1 +

√
1 − λ2

1 +
√

1 − λ2/β

)d/2

.

Proposition 1. Let

Cd,λ(β) = −4(d− 1)β3 + (4d− λ2(d− 2)2)β2 + 2d(d− 2)λ2β − d2λ2.

The optimal β =: β∗
d,λ of

min
βλ≤β<1

1√
1 − β

(
1 +

√
1 − λ2

1 +
√

1 − λ2/β

)d/2

is given by the unique root of Cd,λ in (βλ, 1).

Proposition 2. RACG
d,ρ is increasing in d and as d → ∞,

RACG
d,ρ /

√
d →

√
eρ
√

1 − ρ2.

Proposition 3. As ρ → 1−,

RACG
d,ρ ≈ (1 + ρ)

√
1 + ρ2

√
2

→ 2.

The above approaches allow to identify limits but fail to give sharp bounds
for the rejection constant. These are investigated in the following theorems.
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Theorem 4. Let

Zd,λ(u) = 2
√

1 − λ2

1 +
√

1 − λ2
1√
u− 1

(
1 +

√
1 − λ2

1 +
√

1 − uλ2

)d/2

,

ũd,λ =
(
1 − ṽ2

d,λ

)
/λ2, ṽd,λ = max(vd,λ, 1 − λ) and vd,λ = d(1−λ2)

1+
√

1+d(d+2)(1−λ2) .
Then the following inequalities are satisfied

Zd,λ(ũd,λ) ≤ RACG
d,ρ(λ) ≤

√
ũd,λZd,λ(ũd,λ).

Furthermore, let d → ∞ and λ → 1− in a way that d(1 − ρ(λ)) = ω. Then

RACG
d,ρ(λ) ≈ Zd,λ(ũd,λ) →

√
2
√

1 +
√

1 + ω2e
1
2
(
1+ω−

√
1+ω2

)

and thus is bounded for fixed ω.

Note that as d → ∞, clearly ṽd,λ →
√

1 − λ2 and hence ũd,λ → 1. Similarly,
if λ → 1−, ṽd,λ → 0 and again ũd,λ → 1. So in both cases where d or λ
approach the upper limit, the bounds are asymptotically sharp (and we can
re-obtain the limits using the bounds). On the other hand, for λ ≤ 2/(d + 1),
ũd,λ = uλ = 2/λ − 1, which tends to infinity as λ → 0+. In this situation, the
lower bound is much too small.

Theorem 5. The optimal rejection constant RACG
d,ρ satisfies

RACG
d,ρ ≤

√
2e
√
d
(1 + ρ)

√
1 + ρ2

2 ≤ 2
√
e
√
d.

According to Proposition 2, RACG
d,ρ /

√
d → √

eρ
√

1 − ρ2 where ρ
√

1 − ρ2 =√
ρ2(1 − ρ2) is at most 1/2, so the (worst case) upper bound is for d → ∞ off

by a factor of 4.
Coming back to the sampling algorithm, we have a rejection ratio of the form

f̃PKBD (x|λ, μ)
f̃ACG (x|Ω) M̃

≤ 1,

with f̃PKBD (x|λ, μ) = (1 − λμ′x)−d/2 and f̃ACG (x|Ω) = (x′Ωx)−d/2 = (x′(I −
βμμ′)x)−d/2 = (1 − β(μ′x)2)−d/2 being the unnormalized densities and

M̃ =
(

2
1 +

√
1 − λ2/β

)d/2

.

According to Proposition 1, the optimal β =: β∗
d,λ is given by the unique root

of Cd,λ(β) in (λ(2 − λ), 1). Thus, we accept the draw x if

log(U) ≤ d

2

⎛
⎝− log(1 − λμ′x) + log

(
1 − β∗

d,λ(μ′x)2
)
− log

⎛
⎝ 2

1 +
√

1 − λ2/β∗
d,λ

⎞
⎠
⎞
⎠ ,

(4)
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where U ∼ U(0, 1). Recall that if y ∼ Np(0,Σ), then x = y/ ‖y‖ ∼ ACG(Ω)
with Ω = Σ−1 (Mardia and Jupp, 2009). Obviously, to evaluate the right-hand
side of (4) one only needs the value for μ′x, which can be easily calculated using
the following proposition.

Proposition 4. Let Ω be a rank-1 updated identity matrix of the form Ω =
I − β0μμ

′, with ‖μ‖ = 1. Then

Ω−1 = I + β1μμ
′, Ω−1/2 = I + β2μμ

′,

with β1 = β2(β2 + 2) = β0/(1 − β0) and β2 = −1 + 1/
√

1 − β0.

Thus for x = y/ ‖y‖ with y = Ω−1/2z, where z ∼ N(0, I), we have

μ′x = μ′y

‖y‖ = μ′Ω−1/2z√
y′y

= μ′z + β2μ
′z√

z′Ω−1z
= μ′z + β2μ

′z√
z′z + β1(μ′z)2

.

The full sampling procedure is summarized in Algorithm 1.

Algorithm 1 Generator for PKBD distribution with parameters λ and μ using
ACG envelopes
1: (β0=) β∗

d,λ ← unique root of Cd,λ(β) in (λ(2 − λ), 1) � e.g. using root solver
2: β1 ← β∗

d,λ/(1 − β∗
d,λ)

3: β2 ← −1 + 1/
√

(1 − β∗
d,λ)

4: repeat � acceptance-rejection loop
5: Sample U ∼ U(0, 1)
6: Sample Zi ∼ N(0, 1) for i = 1, 2, . . . , d
7: z ← (Z1, Z2, . . . , Zd)
8: q ← (μ′z + β2μ′z)/

√
z′z + β1(μ′z)2

9: until log(U) ≤ d
2

(
− log(1 − λq) + log

(
1 − β∗

d,λq
2
)
− log

(
2

1+
√

1−λ2/β∗
d,λ

))

10: return x ← (z + β2(μ′z)μ)/
√

z′z + β1(μ′z)2

5. Simulating with adaptive rejection sampling from projected Saw
distributions

Following the results of Theorem 1, we can rewrite the PKBD density in the
form gd(λμ′x)/cd,λ, which resembles the family of densities introduced in Saw
(1978) of the form

g(λu′x)
cg;λ,(d−1)/2

,

where for γ = (d− 1)/2 > 0

cg;λ,γ = 1
B(1/2, γ)

∫ 1

−1
g(λt)(1 − t2)γ−1 dt.
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Here g(·) is a function from R to [0,∞) controlling the shape of the distribution,
u ∈ S

d−1 is a direction parameter and λ ≥ 0 is a concentration parameter. Note
however that unlike for the vMF and Watson distributions, gd depends on d,
and that infinite concentration is obtained for λ → 1− (instead of λ → ∞).
This representation suggests exploring the possibility to obtain better samplers
for the PKBD distribution using Theorem 1 of Ulrich (1984).

Theorem 6 (Ulrich, 1984). Let W be a random variable with density

g(λzd)
cg;λ,(d−1)/2

(1 − z2
d)(d−3)/2

B(1/2, (d− 1)/2) =: fg,λ,d(zd)

and let Y ∼ υd−1 be independent of W then the vector X, where

X ′ =
(√

1 −W 2Y ′,W
)
,

has density Sawd(g, u, λ) with modal vector u′ = (0, 0, . . . , 1).

We will refer to the distribution with density fg;λ,d as the projected Saw
distribution with parameters d, g and λ, symbolically pSawd(g, λ). Thus, to
simulate X ∼ Sawd(g, u, λ), we can draw from Saw-type distributions on the
unit sphere S

d−1 with densities proportional to g(λμ′x) via

U(
√

1 −W 2Y ′,W )′,

where Y and W are independently drawn from, respectively, the uniform distri-
bution on S

d−2 and density proportional to g(λt)(1− t2)(d−3)/2 on (−1, 1), and
U is an orthogonal matrix for which Ued = μ (where ed is the d-th Cartesian
unit vector). We note that the uniformly distributed part Y can be efficiently
sampled by Y = Z/‖Z‖, where the elements of Z are i.i.d. with standard normal
distribution. For more informations see, e.g., Deak (1979) or Hörmann, Leydold
and Derflinger (2004).

To use this approach for sampling from the PKBD, we thus have to find
appropriate samplers for the density proportional to

fd,λ(t) = (1 − λt)−d/2(1 − t2)(d−3)/2. (5)

The scaled log-density on (−1, 1) is then

Ld,λ(t) := 2 log(fd,λ(t))
= −d log(1 − λt) + (d− 3) log(1 − t2)
= −d log(1 − λt) + (d− 3) (log(1 + t) + log(1 − t)) .

(6)

Theorem 7. Let I = (−1, 1), fd,λ(t) be the density (5), Ld,λ(t) be the log-
density (6) and

td,λ,1 = dλ

d− 3 −
√

(d− 3)2 − d(d− 6)λ2
,
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td,λ,2 = dλ

d− 3 +
√

(d− 3)2 − d(d− 6)λ2
,

the following then holds:

(1) If λ = 0, fd,0 is log-convex on I with minimum at t = 0 for d < 3, constant
for d = 3, and log-concave on I with maximum at t = 0 for d > 3.

(2) If d < 3, fd,λ attains its minimum over I at td,λ,1. If d > 3, fd,λ attains
its maximum over I at td,λ,2.

(3) If d ≤ 3 and λ > 0, fd,λ is strictly log-convex on I.
(4) If d > 3 and λ > 0, the function Ld,λ(t) has at most 2 inflection points in

I.

Theorem 7 directly shows that the function Ld,λ(t) is either concave, con-
vex, or has at most 2 inflection points which can be easily calculated. Thus,
in the case where these inflection points exist, by splitting the interval I with
the arithmetical mean of the 2 roots, the two defined intervals have at most 1
inflection point. Note, that even in the case where the roots of Bd,λ in I are
complex conjugate pair or a double root, by performing this operation on the
real parts, the defined intervals have 0 inflection points in the interior. For the
log-concave and log-convex parts, adaptive rejection sampling (Gilks and Wild,
1992) can be deployed. For the intervals with exactly one inflection point, Botts,
Hörmann and Leydold (2013) have proposed an algorithm where even the ex-
act position of the inflection point is not required. The algorithm in Hörmann,
Leydold and Derflinger (2004) replaces the stochastic method for finding con-
struction points with a deterministic one called derandomized adaptive rejection
sampling for finding construction points. This method is implemented in CRAN
package Tinflex (Leydold, Botts and Hörmann, 2019).

In order to avoid numerical underflow and overflow when calculating the
density exp(Ld,λ/2), the scaled log-density Ld,λ can be normalized. This can be
achieved by Ld,λ(x)−Ld,λ(td,λ,2), where td,λ,2 is the extremum from the previous
theorem. The Tinflex algorithm has the advantage that the rejection constant
can be predefined to some given value. In particular it can be selected close to
one at the cost of a more expensive setup. In addition, this procedure allows to
decide on the rejection after generating only one single random variate, so that
overall O(d) operations are needed to sample from the PKBD on S

d−1, for any
value of the concentration parameter. This is not true for the ACG method which
requires to sample a full d-dimensional vector first and in combination with the
result of Proposition 2 scales as O(d3/2). This clearly indicates a big advantage
of the Tinflex method for large dimensions d. On the other hand, this method
requires some time consuming setup which makes it not a favorable choice over
the ACG sampler if the dimension is small enough and small amount of random
variates is needed or the input parameters (d, λ) vary with every iteration.

This method is summarized in Algorithm 2. Per iteration, the algorithm
requires to sample the univariate sample from Tinflex and d times from standard
normal distribution. Hornik and Grün (2014) presented a similar algorithm, with
however less efficient postprocessing for d large. To the contrary, the algorithm
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in Hornik and Grün (2014) needs only d − 1 samples from standard normal
distribution, but from our experiments this is not worth the additional costs
that come with the required QR decomposition.

Algorithm 2 Generator for PKBD distribution with parameters λ and μ using
projected Saw distribution
1: Sample W ∼ pSawd((1 − t)−d/2, λ) � using Tinflex
2: Sample Y ∼ υd with Y = Z/‖Z‖ and elements of Z i.i.d. standard normal
3: Y ← Y − μ′Y μ � projection to hyperspace orthogonal to μ
4: Y ← Y/

√
Y ′Y

5: X ← Wμ +
√

1 −W 2Y � projection of W in the direction of μ and addition of the
uniform distribution in the orthogonal complement of it

6: return X

6. Simulation study

In the following simulation study we compare the two newly proposed samplers
(ACG-envelope and Tinflex) for different sets of parameters and sample sizes n.
The final time was calculated as an average of 300 measurements. The exper-
iments were all initiated from R (R Core Team, 2018) on operating system
Ubuntu 18.04 LTS and compiled using GNU Compiler Collection. The ACG
algorithm (Algorithm 1) is written in C++ and integrated into R using Rcpp
(Eddelbuettel and François, 2011). Algorithm 2 uses Tinflex package which is
mainly written in C. The postprocessing was performed in R.

Table 1

Average times of an ACG-sampler (Algorithm 1, left table) and Tinflex-sampler
(Algorithm 2, right table) in milliseconds for n = 10, for different dimensions d (as rows)

and parameters ρ (as columns).
d = 3 5 10 20 50 100 200 1000

ρ = 0.01 0.02 0.02 0.02 0.02 0.04 0.06 0.13 0.68
0.1 0.02 0.02 0.02 0.03 0.05 0.12 0.27 2.43

0.25 0.02 0.02 0.02 0.04 0.09 0.20 0.53 5.38
0.4 0.02 0.02 0.03 0.04 0.12 0.29 0.77 8.19
0.6 0.02 0.02 0.03 0.05 0.15 0.37 1.00 10.67

0.75 0.02 0.02 0.03 0.05 0.15 0.40 1.02 10.85
0.9 0.02 0.02 0.03 0.05 0.12 0.32 0.81 8.50

0.99 0.02 0.02 0.02 0.04 0.07 0.15 0.34 3.20

d = 3 5 10 20 50 100 200 1000
ρ = 0.01 0.54 0.25 0.26 0.29 0.32 0.36 0.49 1.22

0.1 0.31 0.24 0.25 0.31 0.30 0.36 0.48 1.23
0.25 0.26 0.28 0.25 0.30 0.33 0.38 0.46 1.23
0.4 0.22 0.24 0.25 0.27 0.30 0.38 0.46 1.22
0.6 0.23 0.25 0.25 0.29 0.33 0.35 0.49 1.24

0.75 0.27 0.25 0.25 0.27 0.33 0.38 0.48 1.22
0.9 0.25 0.29 0.30 0.30 0.32 0.39 0.48 1.23

0.99 0.32 0.33 0.33 0.32 0.35 0.40 0.47 1.20

Table 2

Average times of an ACG-sampler (Algorithm 1, left table) and Tinflex-sampler
(Algorithm 2, right table) in milliseconds for n = 1000, for different dimensions d (as rows)

and parameters ρ (as columns).
d = 3 5 10 20 50 100 200 1000

ρ = 0.01 0.3 0.4 0.6 1.1 2.6 5.2 11.3 65.0
0.1 0.4 0.5 0.8 1.5 4.2 10.0 25.7 230.8

0.25 0.5 0.7 1.1 2.4 7.3 18.8 50.9 525.8
0.4 0.6 0.8 1.4 3.1 10.4 27.1 73.7 787.3
0.6 0.7 1.0 1.7 3.8 13.0 34.3 95.0 1027.5

0.75 0.7 1.0 1.8 3.8 13.2 35.4 96.9 1059.0
0.9 0.7 1.0 1.5 3.3 10.7 28.4 77.7 839.1

0.99 0.7 0.9 1.2 2.2 5.7 13.2 32.4 309.3

d = 3 5 10 20 50 100 200 1000
ρ = 0.01 0.6 1.0 1.4 2.4 5.1 10.0 20.6 103.4

0.1 0.7 1.0 1.4 2.6 5.3 9.9 20.3 99.6
0.25 0.8 1.0 1.4 2.4 5.3 10.0 20.3 101.6
0.4 0.8 1.0 1.4 2.4 5.3 10.0 20.4 101.8
0.6 0.8 1.0 1.4 2.4 5.2 9.8 20.1 112.4

0.75 0.8 1.0 1.4 2.4 5.0 9.9 20.3 102.3
0.9 0.8 1.0 1.4 2.3 5.1 9.7 20.0 100.4

0.99 0.8 1.0 1.5 2.4 5.4 10.0 20.0 104.0

The measured times were further compared relatively and visualized in the
following graphics. We note that Tinflex, as an adaptive rejection sampling al-



2190 L. Sablica et al.

Fig 1. Relative differences of ACG-sampler and Tinflex-sampler for n = 10 and n = 100, with
reference value being the smaller of the two values. Negative and positive numbers (toned into
red and blue color respectively) indicate the dominance of ACG-sampler and Tinflex-sampler
respectively. Cases where the log-density of pSawd(g, λ) is neither concave nor convex on
(0, 1) are further annotated with a thick black border.

Fig 2. Relative differences of ACG-sampler and Tinflex-sampler for n = 1000 and n = 10000,
with reference value being the smaller of the two values. Negative and positive numbers (toned
into red and blue color respectively) indicate the dominance of ACG-sampler and Tinflex-
sampler respectively. Cases where the log-density of pSawd(g, λ) is neither concave nor convex
on (0, 1) are further annotated with a thick black border.

gorithm, has much more demanding setup period and hence would be expected
to be relatively slower for small sample size n. However it should offer supe-
rior speed for n large enough thanks to the univariate form of the marginal
distribution and bounded rejection constant. This is also confirmed by the re-
sults of the simulation study, which show a very nice balance between the sam-
plers.
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7. Conclusions

In this paper we presented and analyzed random number generators for the Pois-
son Kernel-Based Distribution. Altogether we compared tree proposal distribu-
tions for the rejection sampling and analyze the efficiency of the corresponding
algorithms.

The first method proposes random draws from vMF distribution. We showed
that there exists an optimal choice of the concentration parameter κ, which
dominates the currently only available rejection sampling scheme of PKBD dis-
tribution. Furthermore, Theorem 2 implied that the rejection constant diverges
as ρ → 1−, which motivates the need for samplers with other proposal distri-
butions where higher efficiency can be obtained.

As a result, we proposed a rejection sampling algorithm which uses ACG
envelopes. This gives rejection constants for which as ρ → 1−, RACG

d,ρ → 2
(Proposition 3). What is more, uniformly bounded rejection constants can be
achieved on a much larger set of parameter space, because for d(1 − ρ) = ω as
d → ∞ and ρ → 1−,

RACG
d,ρ →

√
2
√

1 +
√

1 + ω2e
1
2
(
1+ω−

√
1+ω2

)

(Theorem 4). Furthermore, we approximated and bounded the rejection con-
stant by multiple simple expressions, which can be used for a quick analysis of
the worst case scenarios.

The last algorithm uses adaptive rejection sampling and the projection results
for the Saw distribution family. This simplifies the whole procedure to a sampling
from a univariate distribution, for which it has been shown that its log-density
has at most two inflection point and that we can always split the support in
a way that there is at most one inflection point in it. This allows to use the
adaptive rejection sampling algorithm as for example Tinflex (Leydold, Botts
and Hörmann, 2019).

Finally, both new sampling methods are compared in a simulation study
for different sets of parameters, showing that adaptive rejection sampling via
projected Saw distributions becomes increasingly attractive for large sample
sizes (where the additional setup costs become increasingly negligible).

Both new sampling schemes allow for very efficient sampling from the PKBD,
adding to its attractiveness for (mixture) modeling of spherical data due to the
numerical simplicity of fitting such models established in Golzy and Markatou
(2020).

Appendix A: Proofs

Proof of Theorem 1. Clearly, if x, μ ∈ S
d−1,

‖x− ρμ‖2 = 1 − 2ρμ′x + ρ2 = (1 + ρ2)
(

1 − 2ρ
1 + ρ2μ

′x

)
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so that with
λ(ρ) = 2ρ

1 + ρ2 , gd(t) = (1 − t)−d/2 (7)

we get the desired form.
Furthermore, λ(ρ) increases from 0 to 1 as ρ increases from 0 to 1. Inverting

the transformation gives the quadratic equation q(ρ) = λρ2 − 2ρ+λ = 0, which
has solutions

2 ±
√

4 − 4λ2

2λ = 1 ±
√

1 − λ2

λ
.

As for 0 < λ < 1, q(0) = λ > 0 and q(1) = 2(λ− 1) < 0, the inverse is given by
the smaller root

ρ(λ) = 1 −
√

1 − λ2

λ
= 1 −

√
1 − λ2

λ

1 +
√

1 − λ2

1 +
√

1 − λ2
= λ

1 +
√

1 − λ2
.

Then
ρ(λ)2 = 1 −

√
1 − λ2

λ

λ

1 +
√

1 − λ2
= 1 −

√
1 − λ2

1 +
√

1 − λ2

so that
1 − ρ(λ)2 = 2

√
1 − λ2

1 +
√

1 − λ2
, 1 + ρ(λ)2 = 2

1 +
√

1 − λ2
(8)

and hence for the reparametrization,

fPKBD(x|ρ(λ), μ) = 1 − ρ(λ)2

(1 + ρ(λ)2)d/2(1 − λμ′x)d/2

=
√

1 − λ2

(
1 +

√
1 − λ2

2

)d/2−1

gd(λμ′x).

Finally, as (
1 +

√
1 − λ2

2

)d/2−1

=
(√

1 + λ +
√

1 − λ

2

)d−2

we have

cd,λ = (1 + ρ(λ)2)d/2

1 − ρ(λ)2 = 2d−2
√

1 − λ2(
√

1 + λ +
√

1 − λ)d−2
.

Proof of Theorem 2. We aim to derive the rejection constant of the sampling
from PKBD using vMF envelopes. This can be written as

Hν(κ)
cd,λ

max
x∈Sd−1

(1 − λμ′x)−d/2

eκμ′x
= Hν(κ)

cd,λ

1
min−1≤t≤1 eκt(1 − λt)d/2

.

Now L(t) = log(eκt(1 − λt)d/2) = κt + (d/2) log(1 − λt) has first and second
derivatives

κ− d

2
λ

1 − λt
, −d

2
λ2

(1 − λt)2 ,
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hence is concave on [−1, 1] and attains its minimum at ±1. The values of L at
−1 and 1 are, respectively, given by

L(−1) = −κ + d

2 log(1 + λ), L(1) = κ + d

2 log(1 − λ)

so that the minimum is attained at t = 1 iff

κ + d

2 log(1 − λ) ≤ −κ + d

2 log(1 + λ) ⇔ 2κ ≤ d

2 log 1 + λ

1 − λ
.

Equivalently, using

1 + λ = 1 + 2ρ
1 + ρ2 = (1 + ρ)2

1 + ρ2 , 1 − λ = 1 − 2ρ
1 + ρ2 = (1 − ρ)2

1 + ρ2 ,

the minimum is attained at t = 1 iff

κ ≤ d

2 log 1 + ρ

1 − ρ
=: κ∗

ρ.

For the suggested choice of κρ, we find that

2κρ − d log 1 + ρ

1 − ρ
= d

(
2ρ

1 + ρ2 − log 1 + ρ

1 − ρ

)

is decreasing in ρ for 0 ≤ ρ < 1 with maximal value 0 attained for ρ = 0, so
that for κρ, the minimum is attained at t = 1.

In general, we obtain with ρ = ρ(λ) that for 0 ≤ κ ≤ κ∗
ρ, the rejection

constant equals

Hν(κ) 1 − ρ2

(1 + ρ2)d/2
e−κ(1 − λ)−d/2 = Hν(κ)e−κ 1 + ρ

(1 − ρ)d−1

whereas for κ ≥ κ∗
ρ it equals

Hν(κ) 1 − ρ2

(1 + ρ2)d/2
eκ(1 + λ)−d/2 = Hν(κ)eκ 1 − ρ

(1 + ρ)d−1 .

Now log(Hν(κ)e−κ) = log(Hν(κ))−κ has derivative Rν(κ)−1 < 0, with Rν(κ) =
Iν+1(κ)/Iν(κ) the Bessel function ratio and hence is decreasing in κ, whereas
log(Hν(κ)eκ) has derivative Rν(κ) + 1 > 0 and hence is increasing in κ (Hornik
and Grün, 2013). Thus, κ = κ∗

ρ gives the smallest rejection constant, with value

Hν(κ∗
ρ)

(
1 + ρ

1 − ρ

)−d/2 1 + ρ

(1 − ρ)d−1 =
Hν(κ∗

ρ)
(1 − ρ2)d/2−1 .

As ρ → 1−, clearly κ∗
ρ → ∞. Using (DLMF, Eq. 10.40.1), for κ → ∞ with ν

fixed,

Hν(κ) ≈ Γ(d/2)2d/2−1eκ√
2πκ(d−1)/2
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so that as ρ → 1−, the optimal vMF rejection constant is

Hν(κ∗
ρ)e−κ∗

ρ
1 + ρ

(1 − ρ)d−1 ≈ Γ(d/2)2d/2−1
√

2π(d/2)(d−1)/2
1(

log 1+ρ
1−ρ

)(d−1)/2
1 + ρ

(1 − ρ)d−1 .

As uε log(u) → 0 as u → 0+ for all ε > 0, this in essence tends to ∞ as ρ → 1−
like (1 − ρ)1−d, and hence is not computationally feasible for large ρ.

Proof of Theorem 3. We want to express the rejection constant of the sampling
from PKBD using ACG envelopes. It follows that

max
x∈Sd−1

(1 − λμ′x)−d/2(x′Ω(β, μ)x)d/2

= max
−1≤t≤1

(1 − λt)−d/2(1 − βt2)d/2

=
(

max
−1≤t≤1

Rβ,λ(t)
)d/2

, Rβ,λ(t) = 1 − βt2

1 − λt
.

We have log(Rβ,λ(t)) = log(1 − βt2) − log(1 − λt) which has first derivative

−2βt
1 − βt2

+ λ

1 − λt
= −2βt(1 − λt) + λ(1 − βt2)

(1 − βt2)(1 − λt) = βλt2 − 2βt + λ

(1 − βt2)(1 − λt) .

The numerator N(t) = βλt2−2βt+λ has N(0) = λ ≥ 0 and N ′(t) = 2β(λt−1)
which is non-decreasing with N ′(1) = 2β(λ−1) ≤ 0. Hence, N is non-increasing
on I = [−1, 1] with minimal value N(1) = β(λ − 2) + λ. If N(1) ≥ 0, or
equivalently if β ≤ βλ = λ/(2 − λ), N is non-negative on I so that Rβ,λ is
non-decreasing on I and attains its maximum for t = 1. Otherwise, there is a
unique t = tβ,λ ∈ I for which N(t) = 0 and Rβ,λ attains its maximum. Writing

0 = N(t) = βλ

(
t2 − 2

λ
t + 1

β

)

we obtain
tβ,λ = 1

λ
−
√

1
λ2 − 1

β
.

(clearly, 1/λ +
√

1/λ2 − 1/β ≥ 1/λ > 1). Using

tβ,λ =
√
β −

√
β − λ2

λ
√
β

√
β +

√
β − λ2

√
β +

√
β − λ2

= λ
√
β(

√
β +

√
β − λ2)

,

we have

1 − βt2β,λ = 1 − β

(
2
λ
tβ,λ − 1

β

)
= 2

(
1 −

√
β

√
β +

√
β − λ2

)

= 2
√

β − λ2
√
β +

√
β − λ2
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and

1 − λtβ,λ = 1 −
(
1 −

√
1 − λ2/β

)
=

√
1 − λ2/β =

√
β − λ2
√
β

so that
1 − βt2β,λ
1 − λtβ,λ

= 2
√
β

√
β +

√
β − λ2

= 2
1 +

√
1 − λ2/β

.

Altogether, if β ≤ βλ,

(1 − β)−1/2
(

max
−1≤t≤1

Rβ,λ(t)
)d/2

= (1 − β)−1/2(Rβ,λ(1))d/2

= (1 − β)(d−1)/2

(1 − λ)d/2

which is decreasing in β, so that (as tβλ,λ = 1)

min
β<1

(1 − β)−1/2
(

max
−1≤t≤1

Rβ,λ(t)
)d/2

= min
βλ≤β<1

1√
1 − β

Rβ,λ(tβ,λ)d/2.

As

1
cd,λ

1√
1 − β

Rβ,λ(tβ,λ)d/2

=
√

1 − λ2

(
1 +

√
1 − λ2

2

)d/2−1
1√

1 − β

(
2

1 +
√

1 − λ2/β

)d/2

= 2
√

1 − λ2

1 +
√

1 − λ2
1√

1 − β

(
1 +

√
1 − λ2

1 +
√

1 − λ2/β

)d/2

,

the optimal simple ACG envelopes yield rejection constants

RACG
d,ρ(λ) := 2

√
1 − λ2

1 +
√

1 − λ2
min

βλ≤β<1

1√
1 − β

(
1 +

√
1 − λ2

1 +
√

1 − λ2/β

)d/2

.

For λ = 0, the above clearly equals one (as the uniform distribution is also a
special case of the ACG distribution), so assume λ > 0.

Proof of Proposition 1. Apart from an additive constant not depending on β,
twice the log of the above equals

− log(1 − β) − d log(1 +
√

1 − λ2/β)

the derivative of which with respect to β equals

1
1 − β

− d

1 +
√

1 − λ2/β
× 1

2(1 − λ2/β)−1/2 × λ2

β2
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= 1
1 − β

− dλ2

2β2
√

1 − λ2/β

1
1 +

√
1 − λ2/β

= 1
1 − β

− dλ2

2β2
√

1 − λ2/β

1 −
√

1 − λ2/β

λ2/β

= 1
1 − β

− d

2
1 −

√
1 − λ2/β

β
√

1 − λ2/β

=
2β

√
1 − λ2/β − d(1 − β)(1 −

√
1 − λ2/β)

2β(1 − β)
√

1 − λ2/β

where the numerator equals

(2β + d(1 − β))
√

1 − λ2/β − d(1 − β)

= (2β + d(1 − β))2(1 − λ2/β) − d2(1 − β)2

(2β + d(1 − β))
√

1 − λ2/β + d(1 − β)

= ((d− 2)β − d)2(β − λ2) − d2β(1 − β)2

β
(
(2β + d(1 − β))

√
1 − λ2/β + d(1 − β)

)
where in turn the numerator equals

((d− 2)2β2 − 2d(d− 2)β + d2)(β − λ2) − d2β(1 − 2β + β2)
= β3((d− 2)2 − d2) + β2(−2d(d− 2) − λ2(d− 2)2 + 2d2)

+ β(d2 + 2d(d− 2)λ2 − d2) − d2λ2

= −4(d− 1)β3 + (4d− λ2(d− 2)2)β2 + 2d(d− 2)λ2β − d2λ2

= Cd,λ(β)

so that the sign of the derivative equals the sign of Cd,λ. By straightforward
computation,

Cd,λ(1) = 4(1 − λ2) > 0

and

Cd,λ(βλ) = −4λ2(d− 1)(1 − λ)2(2d + (1 − d)λ)
(2 − λ)3 < 0.

As clearly limβ→−∞ Cd,λ(β) = ∞, Cd,λ(0) = −d2λ2 < 0, and limβ→∞ Cd,λ(β) =
−∞, Qd,λ has three real roots in (−∞, 0), (βλ, 1) and (1,∞), and the optimal
β =: β∗

d,λ is given by the unique root of Cd,λ in (βλ, 1).

Proof of Proposition 2. Clearly, for βλ ≤ β < 1

1 +
√

1 − λ2

1 +
√

1 − λ2/β
> 1
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so that RACG
d,ρ(λ) is increasing in d for fixed λ > 0. To understand the behavior of

RACG
d,ρ(λ) for large d, we proceed as follows. We have

Cd,λ(β) = −λ2(1 − β)2d2 + 4β(1 − β)(β − λ2)d + 4β2(β − λ2),

so that as d → ∞ we must have β∗
d,λ → 1. We can derive an asymptotic

approximation via the ansatz β∗
d,λ = 1 − αλ/d + O(d−2). As

Cd,λ(β = 1 − α/d) = −λ2α2 + 4βα(β − λ2) + 4β2(β − λ2)
= −λ2α2 + 4β(β − λ2)(α + β)

= −λ2α2 + 4
(
1 − α

d

)(
1 − λ2 − α

d

)(
1 + α− α

d

)
= −λ2α2 + 4(1 − λ2)(1 + α) + O(d−1),

αλ must be the positive solution of the quadratic equation λ2α2 − 4(1−λ2)α−
4(1 − λ2) = 0, so that

αλ =
4(1 − λ2) +

√
42(1 − λ2)2 + 42λ2(1 − λ2)

2λ2

= 2
λ2

(
(1 − λ2) +

√
(1 − λ2)(1 − λ2 + λ2)

)

= 2
√

1 − λ2

λ2 (1 +
√

1 − λ2).

Thus, as d → ∞,

RACG
d,ρ(λ) ≈

2
√

1 − λ2

1 +
√

1 − λ2
1√

1 − β

(
1 +

√
1 − λ2

1 +
√

1 − λ2/β

)d/2
∣∣∣∣∣∣
β=1−αλ/d

= 2
√

1 − λ2

1 +
√

1 − λ2

√
d√
αλ

(
1 +

√
1 − λ2

1 +
√

1 − λ2/β

)d/2
∣∣∣∣∣∣
β=1−αλ/d

.

As
d log(1 +

√
1 − λ2/β)

dβ
= 1

1 +
√

1 − λ2/β
× 1

2
√

1 − λ2/β
× λ2

β2

we have that as β → 1,

log 1 +
√

1 − λ2

1 +
√

1 − λ2/β
= − λ2

2
√

1 − λ2(1 +
√

1 − λ2)
(β − 1) + O((β − 1)2)

and hence as d → ∞,
(

1 +
√

1 − λ2

1 +
√

1 − λ2/β

)d/2
∣∣∣∣∣∣
β=1−αλ/d

= exp
(
d

2

(
− 1
αλ

−αλ

d
+ O(d−2)

))
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→
√
e

so that

lim
d→∞

RACG
d,ρ(λ)√
d

= 2
√

1 − λ2

1 +
√

1 − λ2

√
e√
αλ

=
√
e

2
√

1 − λ2

1 +
√

1 − λ2
λ√

2(1 − λ2)1/4(1 +
√

1 − λ2)1/2

=
√

2eλ (1 − λ2)1/4

(1 +
√

1 − λ2)3/2
.

This can be further simplified by using the ρ parameter instead of λ. From
λ = 2ρ/(1 + ρ2),

1 − λ2 = 1 − 4ρ2

(1 + ρ2)2 = (1 − ρ2)2

(1 + ρ2)2 ,

so that √
1 − λ2 = 1 − ρ2

1 + ρ2 , 1 +
√

1 − λ2 = 2
1 + ρ2

and the above limit becomes

√
e

23/2ρ

1 + ρ2

√
1 − ρ2

1 + ρ2
(1 + ρ2)3/2

23/2 =
√
eρ
√

1 − ρ2,

which can also be written as
√
e
√

ρ2(1 − ρ2) and hence interestingly is maxi-
mized for ρ2 = 1/2, or equivalently, ρ = 1/

√
2.

Proof of Proposition 3. The range βλ ≤ β < 1 can be reparametrized as, e.g.,

β(u) = (1 − u) + u
λ

2 − λ
, 0 < u ≤ 1.

Then
1 − β(u) = u− u

λ

2 − λ
= 2u1 − λ

2 − λ

and

RACG
d,ρ(λ) = 2

√
1 − λ2

1 +
√

1 − λ2
min

0<u≤1

1√
1 − β(u)

(
1 +

√
1 − λ2

1 +
√

1 − λ2/β(u)

)d/2

= 2
√

1 − λ2

1 +
√

1 − λ2
min

0<u≤1

√
2 − λ

2(1 − λ)u

(
1 +

√
1 − λ2

1 +
√

1 − λ2/β(u)

)d/2

=
√

2(1 + λ)(2 − λ)
1 +

√
1 − λ2

min
0<u≤1

1√
u

(
1 +

√
1 − λ2

1 +
√

1 − λ2/β(u)

)d/2

.
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As λ → 1−, the terms involving λ tend to 2 uniformly in 0 ≤ u ≤ 1, from which

lim
λ→1−

RACG
d,ρ(λ) = 2.

Note, that the acceptance rate of 50% under high concentration is an unsurpris-
ing result considering the form and bimodality of ACG distribution.

Alternatively, as

Cd,1(β) = −(1 − β)2d2 + 4β(1 − β)(β − 1)d + 4β2(β − 1),

we see that β∗
d,λ → 1 as λ → 1−. Making the ansatz β∗

d,λ = 1 − αd(1 − λ) +
O((1 − λ)2) gives αd = 2 so that as λ → 1−, 1 − β∗

d,λ ≈ 2(1 − λ) and

RACG
d,ρ(λ) ≈

2
√

1 − λ2

1 +
√

1 − λ2
1√

2(1 − λ)
=

√
2(1 + λ)

1 +
√

1 − λ2
→ 2.

This can be also further rewritten using the ρ parameter. Trivially, if λ → 1
then also ρ → 1 and hence

RACG
d,ρ(λ) ≈

√
2(1 + λ)

1 +
√

1 − λ2
= 1 − ρ2

√
2
√

(1 − λ)
= (1 + ρ)

√
1 + ρ2

√
2

→ 2,

where (8) was used.

Proof of Proposition 4. Trivial.

Proof of Theorem 4. First, write β = 1/u and uλ = 1/βλ = 2/λ− 1. As

1
1 − β

= 1/β
1/β − 1 ,

we have

RACG
d,ρ(λ) = 2

√
1 − λ2

1 +
√

1 − λ2
min

1<u≤uλ

√
u

u− 1

(
1 +

√
1 − λ2

1 +
√

1 − uλ2

)d/2

.

Thus,

RACG
d,ρ(λ) ≥

2
√

1 − λ2

1 +
√

1 − λ2
min

1<u≤uλ

1√
u− 1

(
1 +

√
1 − λ2

1 +
√

1 − uλ2

)d/2

.

To compute the minimum, substitute v =
√

1 − uλ2. Then v2 = 1−uλ2 so that
u = (1 − v2)/λ2. Up to an additive constant not depending on v, twice the log
of the above is − log(1 − λ2 − v2) − d log(1 + v) which has derivative

2v
1 − λ2 − v2 − d

1 + v
= 2v(1 + v) − d(1 − λ2 − v2)

(1 − λ2 − v2)(1 + v)
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= (d + 2)v2 + 2v − d(1 − λ2)
(1 − λ2 − v2)(1 + v) ,

with positive critical point given by

vd,λ =
−2 +

√
4 + 4d(d + 2)(1 − λ2)

2(d + 2) =
−1 +

√
1 + d(d + 2)(1 − λ2)

d + 2

= d(d + 2)(1 − λ2)
(d + 2)(1 +

√
1 + d(d + 2)(1 − λ2))

= d(1 − λ2)
1 +

√
1 + d(d + 2)(1 − λ2)

.

As (d+2)v2 +2v−d(1−λ2) is negative for v = 0 and positive for v =
√

1 − λ2,
vd,λ indeed gives the minimizer of the lower bound over 0 < v <

√
1 − λ2. Now

as u goes from 1 to uλ, v =
√

1 − uλ2 goes from
√

1 − λ2 to 1 − λ, so in fact
we need the minimum over 1 − λ ≤ v <

√
1 − λ2, which is thus attained at

max(vd,λ, 1 − λ), where

vd,λ ≥ 1 − λ

⇔ −1 +
√

1 + d(d + 2)(1 − λ2)
d + 2 ≥ 1 − λ

⇔
√

1 + d(d + 2)(1 − λ2) ≥ 1 + (d + 2)(1 − λ)
⇔ 1 + d(d + 2)(1 − λ2) ≥ 1 + 2(d + 2)(1 − λ) + (d + 2)2(1 − λ)2

⇔ (d + 2)(1 − λ) (d(1 + λ) − 2 − (d + 2)(1 − λ)) ≥ 0
⇔ 2(d + 1)λ− 4 ≥ 0
⇔ λ ≥ 2/(d + 1).

We thus have the following. Let

ṽd,λ = max(vd,λ, 1 − λ) =
{
vd,λ, 2/(d + 1) ≤ λ < 1,
1 − λ, 0 < λ ≤ 2/(d + 1).

and

Zd,λ(u) = 2
√

1 − λ2

1 +
√

1 − λ2
1√
u− 1

(
1 +

√
1 − λ2

1 +
√

1 − uλ2

)d/2

.

Then for

ũd,λ =
1 − ṽ2

d,λ

λ2

we have
Zd,λ(ũd,λ) ≤ RACG

d,ρ(λ) ≤
√
ũd,λZd,λ(ũd,λ).

Now clearly as d → ∞ and ρ → 1, for d(1 − ρ) = ω

ξd,λ := d
√

1 − λ2 = d(1 − ρ2)/(1 + ρ2) → ω,
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and λ ≥ 2/(d + 1) is satisfied. Thus

ṽd,λ = vd,λ =
√

1 − λ2ξd,λ

1 +
√

1 + (1 + 2/d)ξ2
d,λ

≈
√

1 − λ2ω

1 +
√

1 + ω2
→ 0,

and hence ũd,λ → 1, making the lower and upper bounds sharp for this scenario.
Furthermore we have that

(
1 +

√
1 − λ2

1 +
√

1 − ũd,λλ2

)d/2

=
(

1 +
√

1 − λ2

1 + ṽd,λ

)d/2

=

⎛
⎜⎝ 1 + ω/d

1 + (ω/d)ξd,λ
1+

√
1+(1+2/d)ξ2

d,λ

⎞
⎟⎠

d/2

,

from which
1 + ω/d

1 + (ω/d)ξd,λ
1+

√
1+(1+2/d)ξ2

d,λ

= d + ω

d + ωξd,λ

1+
√

1+(1+2/d)ξ2
d,λ

,

where
ωξd,λ

1 +
√

1 + (1 + 2/d)ξ2
d,λ

→ ω2

1 +
√

1 + ω2
.

Moreover

d + ω

d + ω2

1+
√

1+ω2

= d + ω

d− 1 +
√

1 + ω2
=

(
d− 1 +

√
1 + ω2

d + ω

)−1

=
(

1 +
√

1 + ω2 − ω − 1
d + ω

)−1

and hence (
1 +

√
1 − λ2

1 +
√

1 − ũd,λλ2

)d/2

→ e
1
2
(
1+ω−

√
1+ω2

)
.

Note that as ω → ∞ (which is the case if d → ∞ for fixed λ) and as ω → 0
(which is the case if λ → 1 for fixed d) this goes to

√
e and 1, respectively,

confirming the previous results.
For

2
√

1 − λ2

1 +
√

1 − λ2
1√

ũd,λ − 1
= 2

√
1 − λ2

1 +
√

1 − λ2
1√

1−ṽ2
d,λ−λ2

λ2

= 2
√

1 − λ2

1 +
√

1 − λ2
λ√

1 − ṽ2
d,λ − λ2

it follows that
2
√

1 − λ2

1 +
√

1 − λ2
λ√

1 − ṽ2
d,λ − λ2

= 2
1 +

√
1 − λ2

λ√
1 − ξ2

d,λ

(1+
√

1+(1+2/d)ξ2
d,λ)2
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→ 2 1√
1 − ω2

(1+
√

1+ω2)2

,

with

2 1√
1 − ω2

(1+
√

1+ω2)2

= 2 1 +
√

1 + ω2√
2(1 +

√
1 + ω2)

=
√

2
√

1 +
√

1 + ω2.

Again, as ω → 0,
√

2
√

1 +
√

1 + ω2 → 2 and as ω → ∞,
√

2
√

1 +
√

1 + ω2 ≈√
2ω =

√
2d(1 − ρ). Note that

√
dρ

√
(1 − ρ2) =

√
dρ

√
(1 − ρ)(1 + ρ) ≈

√
2d(1 − ρ).

Thus, overall we have that as d → ∞ and ρ → 1 for d(1 − ρ) = ω,

RACG
d,ρ(λ) ≈ Zd,λ(ũd,λ) →

√
2
√

1 +
√

1 + ω2e
1
2
(
1+ω−

√
1+ω2

)
.

Proof of Theorem 5. To bound the rejection constant from above, we proceed
as follows. Since

d

du
log(1 +

√
1 − uλ2) = −λ2

2(1 +
√

1 − uλ2)
√

1 − uλ2
,

we have for u > 1 by the mean value theorem that

log 1 +
√

1 − λ2

1 +
√

1 − uλ2
= λ2(u− 1)

2(1 +
√

1 − ξλ2)
√

1 − ξλ2

for some 1 ≤ ξ ≤ u, and hence for 1 < u ≤ uλ

log 1 +
√

1 − λ2

1 +
√

1 − uλ2
≤ λ2(u− 1)

2(1 +
√

1 − uλλ2)
√

1 − uλλ2 = λ2(u− 1)
2(2 − λ)(1 − λ) .

So if u = 1 + α(1 − λ)/d ≤ uλ,

RACG
d,ρ(λ) ≤

2
√

1 − λ2

1 +
√

1 − λ2

√
u

u− 1

(
1 +

√
1 − λ2

1 +
√

1 − uλ2

)d/2

≤ 2
√

1 − λ2

1 +
√

1 − λ2

√
1 + α(1 − λ)/d
α(1 − λ)/d exp

(
d

2
λ2α(1 − λ)

2(2 − λ)(1 − λ)d

)

=
√
d

2
√

1 + λ

1 +
√

1 − λ2

√
1 + α(1 − λ)/d

α
exp

(
λ2α

4(2 − λ)

)

≤
√
d

2
√

1 + λ

1 +
√

1 − λ2

√
1 + α(1 − λ)/d

α
eλ

2α/4
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(retaining 2 − λ does not improve the worst case constants). Up to an additive
constant not depending on α, twice the log of the above equals

log(1 + α(1 − λ)/d) − log(α) + λ2α/2

which has derivative

(1 − λ)/d
1 + α(1 − λ)/d − 1

α
+ λ2

2

= 2(α(1 − λ)/d− (1 + α(1 − λ)/d)) + λ2α(1 + α(1 − λ)/d)
2α(1 + α(1 − λ)/d)

where the numerator equals

λ2(1 − λ)
d

α2 + λ2α− 2 = λ2(1 − λ)α2 + λ2dα− 2d
d

.

This has its positive root at

α =
−λ2d +

√
λ4d2 + 8dλ2(1 − λ)

2λ2(1 − λ)

= 8dλ2(1 − λ)
2λ2(1 − λ)

(
λ2d +

√
λ4d2 + 8dλ2(1 − λ)

)
= 4d

λ2d +
√
λ4d2 + 8dλ2(1 − λ)

= 4d
λ
(
λd +

√
λ2d2 + 8d(1 − λ)

)
=: αd,λ.

As the derivative at α = 0 is negative, αd,λ must give the minimum of the upper
bound. In general,

1 + α
1 − λ

d
≤ uλ = 2

λ
− 1

⇔ α
1 − λ

d
≤ 2

λ
− 2 = 2(1 − λ)

λ

⇔ α ≤ 2d
λ
.

For αd,λ determined above, this is equivalent to

2 ≤ λd +
√

λ2d2 + 8d(1 − λ).

The right hand side is clearly increasing in d, with minimal value for d = 2 given
by

2λ +
√

4λ2 + 16(1 − λ) = 2λ +
√

4(λ2 − 4λ + 4)
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= 2λ + 2(2 − λ) = 4

so indeed we always have u = 1 + αd,λ(1 − λ)/d ≤ uλ, and thus

RACG
d,ρ(λ) ≤

√
d

2
√

1 + λ

1 +
√

1 − λ2

√
1 + αd,λ(1 − λ)/d

αd,λ
eλ

2αd,λ/4.

Now

1 + αd,λ(1 − λ)/d
αd,λ

=
λ
(
λd +

√
λ2d2 + 8d(1 − λ)

)
+ 4(1 − λ)

4d

=
λ(λ +

√
λ2 + 8(1 − λ)/d) + 4(1 − λ)/d

4 .

This is clearly decreasing in d, with minimal value for d = 2 given by

λ(λ +
√
λ2 + 4(1 − λ)) + 2(1 − λ)

4 = λ(λ + (2 − λ)) + 2(1 − λ)
4 = 1

2 .

Also,

λ2αd,λ

4 = λ2

4
4d

λ
(
λd +

√
λ2d2 + 8d(1 − λ)

)
= λd

λd +
√
λ2d2 + 8d(1 − λ)

≤ 1
2 .

Altogether, we obtain

RACG
d,ρ(λ) ≤

√
d

2
√

1 + λ

1 +
√

1 − λ2

√
1
2
√
e =

√
2e

√
1 + λ

1 +
√

1 − λ2

√
d.

With λ = 2ρ/(1 + ρ2), 1 + λ = (1 + ρ)2/(1 + ρ2) and
√

1 + λ

1 +
√

1 − λ2
= 1 + ρ√

1 + ρ2

1 + ρ2

2 = (1 + ρ)
√

1 + ρ2

2 .

This is clearly increasing in ρ, and hence for 0 ≤ ρ < 1 at most the value at
ρ = 1, which is

√
2. Thus,

RACG
d,ρ(λ) ≤ 2

√
e
√
d.

Proof of Theorem 7. Ld,λ(t) has first derivative

L′
d,λ(t) = d

λ

1 − λt
+ (d− 3)

(
1

1 + t
− 1

1 − t

)
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and second derivative

L′′
d,λ(t) = d

λ2

(1 − λt)2 − (d− 3)
(

1
(1 + t)2 + 1

(1 − t)2

)
.

Then
L′
d,λ(t) = d

λ

1 − λt
− (d− 3) 2t

1 − t2
= Qd,λ(t)

(1 − λt)(1 − t2)

where the denominator is positive on (−1, 1) and the numerator equals

Qd,λ(t) = dλ(1 − t2) − 2(d− 3)t(1 − λt)
= λt2(2(d− 3) − d) − 2(d− 3)t + dλ

= (d− 6)λt2 − 2(d− 3)t + dλ.

Similarly,

L′′
d,λ(t) = d

λ2

(1 − λt)2 − 2(d− 3) 1 + t2

(1 − t2)2 = Bd,λ(t)
(1 − λt)2(1 − t2)2 ,

where the denominator is positive on (−1, 1) and the numerator equals

Bd,λ(t) = dλ2(1 − t2)2 − 2(d− 3)(1 + t2)(1 − λt)2. (9)

Using
(1 + t2)(1 − λt)2 = 1 − 2λt + (1 + λ2)t2 − 2λt3 + λ2t4,

we find

Bd,λ(t) = (6 − d)λ2t4 + 4(d− 3)λt3 + ((6 − 4d)λ2 − 2d + 6)t2

+ 4(d− 3)λt + (dλ2 − 2d + 6).

From this (1) and (3) are trivial.
Consider 0 < λ < 1. If d = 3, L′

3,λ(t) > 0 on I, so f3,λ is strictly increasing
on I. If d = 6, Q6,λ(t) = −6t + 6λ, which has its unique zero at t = λ. As
Q6,λ(−1) > 0 and Q6,λ(1) < 0, f6,λ has its maximum at t = λ.

Clearly,

Qd,λ(−1) = 2(d− 3)(1 + λ), Qd,λ(0) = dλ, Qd,λ(1) = −2(d− 3)(1 − λ).

Hence,

sgn(Qd,λ(−1)) = sgn(d− 3), Qd,λ(0) > 0, sgn(Qd,λ(1)) = −sgn(d− 3).

As Qd,λ(t) goes to ∞ for t → ±∞ if d > 6 and to −∞ for d < 6, we thus have
the following.

• If d < 3, Qd,λ has one root in (−1, 0) and one root in (1,∞), and the
former gives the minimum of fd,λ over I.
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• If 3 < d < 6, Qd,λ has one root in (−∞,−1) and one root in (0, 1), and
the latter gives the maximum of fd,λ over I.

• If d > 6, Qd,λ has one root in (0, 1) and one root in (1,∞), and the former
gives the maximum of fd,λ over I.

Now if d = 6, the roots of Qd,λ are given by

td,λ,1 =
(d− 3) +

√
(d− 3)2 − d(d− 6)λ2

(d− 6)λ

= (d− 3)2 − ((d− 3)2 − d(d− 6)λ2)
(d− 6)λ(d− 3 −

√
(d− 3)2 − d(d− 6)λ2

= dλ

d− 3 −
√

(d− 3)2 − d(d− 6)λ2

and

td,λ,2 =
(d− 3) −

√
(d− 3)2 − d(d− 6)λ2

(d− 6)λ

= dλ

d− 3 +
√

(d− 3)2 − d(d− 6)λ2
.

Clearly, td,λ,1 < 0 if d < 6, and if d > 6, td,λ,1 > td,λ,2. As

t6,λ,2 = 6λ
3 + 3 = λ,

(2) follows.
To analyze Bd,λ, we first note that for λ = 0,

Bd,0(t) = −2(d− 3)(1 + t2)

which is always negative for d > 3.
Again using Equation (9),

Bd,λ(−1) = −4(d− 3)(1 + λ)2, Bd,λ(1) = −4(d− 3)(1 − λ)2

which are both negative if d > 3 and 0 ≤ λ < 1. Using

d

dt
(1 + t2)(1 − λt)2 = 2t(1 − λt)2 − 2λ(1 + t2)(1 − λt)

= 2(1 − λt)
(
t(1 − λt) − λ(1 + t2)

)
= 2(1 − λt)(−λ + t− 2λt2),

we obtain that

B′
d,λ(t) = −4dλ2t(1 − t2) − 4(d− 3)(1 − λt)(−λ + t− 2λt2) (10)

so that B′
d,λ(0) = 4(d− 3)λ,

B′
d,λ(−1) = −4(d− 3)(1 + λ)(−1 − 3λ) = 4(d− 3)(1 + λ)(1 + 3λ),
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and

B′
d,λ(λ) = −4dλ3(1 − λ2) + 8(d− 3)(1 − λ2)λ3 = 4(d− 6)λ3(1 − λ2).

If 3 < d < 6, Bd,λ(t) tends to ∞ for t → ±∞. Hence, it must have one root
in (−∞,−1) and one root in (1,∞), and thus can have at most two roots in I.
Similarly, as limt→−∞ B′

d,λ(t) = −∞, B′
d,λ(−1) > 0, B′

d,λ(0) > 0, B′
d,λ(λ) < 0,

and limt→∞ B′
d,λ(t) = ∞, B′

d,λ must have one root each in (−∞,−1), (0, λ),
and (λ,∞). In particular, Bd,λ is always increasing on [−1, 0]. Clearly, since
Bd,λ(−1) < 0, B′

d,λ(−1) > 0, and Bd,λ(λ) < 0, B′
d,λ(λ) < 0, the remaining 2

roots are in I, either as a conjugate pair or real roots.
If d ≥ 6,

(6 − 4d)λ2 − 2d + 6 ≤ −2d + 6 < 0, dλ2 − 2d + 6 < −d + 6 ≤ 0

so that the coefficients in Bd,λ for even powers of t are non-positive and the
ones for odd powers of t are positive. Hence for t ≤ 0, Bd,λ(t) ≤ Bd,λ(0) =
dλ2 −2d+6 < 0, so that Bd,λ has no zeros on (−∞, 0]. Similarly, B′

d,λ can have
no zeros on (−∞, 0], so that in particular, Bd,λ is always increasing on [−1, 0].
With dots indicating terms at most quadratic in s,

Bd,λ(1 − s) = (6 − d)λ2(1 − s)4 + 4(d− 3)λ(1 − s)3 + · · ·
= (6 − d)λ2(s4 − 4s3 + · · · ) + 4(d− 3)λ(−s3 + · · · ) + · · ·
= (6 − d)λ2s4 + (4(d− 6)λ2 − 4(d− 3)λ)s3 + · · ·
= (6 − d)λ2s4 + 4λ((d− 6)λ− d + 3)s3 + · · · .

If d ≥ 6 and λ ≤ 1,

(d− 6)λ− d + 3 ≤ (d− 6) − d + 3 = −3.

Thus, if d ≥ 6 and 0 < λ < 1, the coefficients of s4, s3 and s0 in Bd,λ(1 − s)
are non-positive, negative and (as Bd,λ(1) < 0) negative, so that the number
of sign changes in the non-zero coefficients of Bd,λ(1 − s) is at most two. By
exact investigation of the Bd,λ(1− s) polynomial, it is possible to show that for
any feasible λ, at least one of the quadratic and linear coefficient is positive. By
Descartes’ rule of signs, Bd,λ(1− s) has two non-negative roots, or equivalently,
Bd,λ(t) can have at most two roots in (−∞, 1). Furthermore, since Bd,λ(1) < 0,
Bd,λ(1/λ) = dλ2(1 − (1/λ)2)>0 and limt→∞ B′

d,λ(t) = −∞, the remaining two
roots are in (1, 1/λ) and (1/λ,∞). Thus again, Bd,λ has 2 roots in I and at
most two real roots in I (and if it has, these must be positive). Similarly, we
can infer that B′

d,λ can at most have two zeros in I (and again, if it has these
must be positive).
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