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Abstract: We propose a new method under the Bayesian framework to
perform valid inference for low dimensional parameters in high dimensional
linear models under sparsity constraints. Our approach is to use surrogate
Bayesian posteriors based on partial regression models to remove the effect
of high dimensional nuisance variables. We name the final distribution we
used to conduct inference “conditional Bayesian posterior” as it is a sur-
rogate posterior constructed conditional on quasi posterior distributions of
other parameters and does not admit a fully Bayesian interpretation. Un-
like existing Bayesian regularization methods, our method can be used to
quantify the estimation uncertainty for arbitrarily small signals and there-
fore does not require variable selection consistency to guarantee its valid-
ity. Theoretically, we show that the resulting Bayesian credible intervals
achieve desired coverage probabilities in the frequentist sense. Methodolog-
ically, our proposed Bayesian framework can easily incorporate popular
Bayesian regularization procedures such as those based on spike and slab
priors and horseshoe priors to facilitate high accuracy estimation and infer-
ence. Numerically, our proposed method rectifies the uncertainty underes-
timation of Bayesian shrinkage approaches and has a comparable empirical
performance with state-of-the-art frequentist methods based on extensive
simulation studies and a real data analysis.
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1. Introduction

1.1. Problem setting

High dimensional covariates are prevalent in many modern scientific research
areas where the number of covariates p may exceed the number of observa-
tions n. For performing statistical inference in high dimensional models, it is
common to make sparsity assumptions that the response variable depends only
on a small number of the covariates to make inference feasible. In the last
few decades, many statistical methods, under both frequentist and Bayesian
paradigms, have been proposed to perform parameter estimation and variable
selection under sparsity assumptions. These methods make use of convex and
non-convex penalization or shrinkage and sparsity inducing priors to perform
sparse estimation.

In many practical problems, beyond point estimation of parameters, it is
quite important to conduct statistical inference based on this estimator via con-
structing confidence intervals or performing hypothesis testings. For instance,
to estimate the effect of a treatment in medical studies, researchers need to
incorporate a large number of control variables such as patients’ demographic
and clinical features, which makes it a high dimensional problem. In this paper,
we consider the scenario where the researchers are interested in performing in-
ference on a specific variable or a small set of variables of interest, and want to



Statistical inference via conditional Bayesian posteriors 771

conduct inference by controlling for other high dimensional covariates as nui-
sance variables. Consider the following high dimensional linear model

Y = Xθ + Zη + ε, (1.1)

where Y is an n-dimensional response variable, (X,Z) is the n× (q+ d) design
matrix collecting (q + d) covariate vectors, θ is the q-dimensional parameter
of interest associated with the q covariates in X, η is the d-dimensional nui-
sance parameter associated with Z, and ε ∼ N(0, σ2In) is the random noise
vector with variance σ2. Our goal is to conduct valid statistical inference un-
der the Bayesian framework for the low dimensional parameter vector θ in the
high dimensional linear model, where the dimension q is small but allowed to
grow slowly with n and d such that q = o(

√
n/ log d) while d is allowed to be

substantially larger than n.

1.2. Existing approaches on high dimensional linear regression

Classical high dimensional estimators such as Lasso (Tibshirani, 1996), MCP
(Zhang et al., 2010), SCAD (Fan and Li, 2001) focus on estimation and do not
provide natural ways to obtain confidence intervals for θ. Indeed, Knight and Fu
(2000) showed that Lasso has intractable asymptotic distributions and cannot
be directly used to perform inference. Vanilla bootstrap and subsampling tech-
niques also fail to work due to the non-continuity of the limiting distribution
(Knight and Fu, 2000). To obtain valid estimation intervals for θ in model (1.1),
a class of debiased estimators have been proposed in the frequentist framework.
These methods typically assume an extra layer of low-dimensional structure
between random designs X and Z. Some well-known methods utilizing this
approach include: Debiased Lasso estimators (Zhang and Zhang, 2014, Javan-
mard and Montanari, 2014, Van de Geer et al., 2014), post-double-selection
method (Belloni, Chernozhukov and Hansen, 2014), double machine learning
(Chernozhukov et al., 2016). These methods lead to root-n consistent estima-
tors that are asymptotically normally distributed and admit valid confidence
intervals.

Bayesian methods have the advantage of providing a natural way of uncer-
tainty quantification through posterior distributions. It is often desired that
Bayesian credible sets have the same nominal coverage probability in the fre-
quentist sense. For Gaussian sequence models, Castillo and Nickl (2013) used
wavelet based priors and constructed credible sets with frequentist coverage
through Bernstein-von Mises theorems. van der Pas, Szabó and van der Vaart
(2017) studied the uncertainty quantification using Horseshoe prior for Gaus-
sian sequence model. However, they require a “self-similarity” assumption, which
is similar to the beta-min condition and excludes the bad regime where over-
shrinkage occurs. In the context of high-dimensional linear regression, Bayesian
regularization techniques of utilizing sparsity inducing prior distributions are
often used. Commonly used priors include Laplace prior (Gelman et al., 2013),
horseshoe prior (Carvalho, Polson and Scott, 2009, van der Pas, Szabó and



772 T. Wu et al.

van der Vaart, 2017) and spike and slab priors (George and McCulloch, 1993,
Ishwaran et al., 2005, Castillo and Szabó, 2020). Belitser and Ghosal (2020),
Belitser and Nurushev (2020) and Castillo and Szabó (2020) consider empirical
Bayesian approaches for Bayesian high dimensional estimation and uncertainty
quantification. However, they do not address our goal of obtaining precise and
valid confidence intervals for a selected parameter of interest—their Bayesian
credible sets for the entire parameter vector have asymptotic coverage proba-
bility tending to one as the sample size grows. For spike and slab regression,
Castillo et al. (2015) show that the joint posterior distribution of regression
coefficients associated with important variables can be well approximated by
a normal distribution centered at the least squares estimator of the reduced
model, which makes it possible to conduct valid inference based on the poste-
rior distribution. Song and Liang (2017) provide a similar Bernstein von-Mises
type result for Bayesian high dimensional linear regression using a general class
of shrinkage priors. However, such oracle properties (Castillo et al., 2015, Song
and Liang, 2017) only hold under a very strong beta-min condition requiring
the coefficients for all active covariates to be significantly large.

1.3. Invalid uncertainty quantification of Bayesian shrinkage
approaches

In the common and realistic situations where some of the true regression co-
efficients are non-zero but small, shrinkage priors tend to shrink those small
coefficients to zero, and the resulting posterior distribution tends to underesti-
mate the uncertainty and the frequentist coverage probabilities of the induced
credible intervals are substantially lower than their nominal levels.

We use a toy simulation study to demonstrate the impact of such over-
shrinkage issue. Data are generated from model (1.1). We fix η∗={0, 0, 2, 0, . . . , 0}
and let θ∗ take values from {0, 0.1, . . . , 1}. Other details of the data generating
processes can be found in Section 4.1. We directly perform spike and slab re-
gression to construct the 95% credible intervals for different values of θ based
on the posterior distribution. Figure 1 shows the average posterior mean and
empirical coverage of the credible intervals based on 1000 replications. Notice
that when the signal is zero, spike and slab regression shrink the posterior to
zero provides super-efficient credible intervals. However, for small but non-zero
signals, the substantial biases in the posterior mean estimators may cause the
credible intervals to have coverage probabilities lower than their nominal levels.

This over-shrinkage issue can be explained by the following heuristic argu-
ment. To analyze the coverage probability, we adopt a frequentist setting, where
we use θ∗ to denote the true value of the parameter θ in the data generating
model. For other parameters, we also add a ∗ in the superscript to indicate their
corresponding true values. ‖ · ‖q is used to denote the vector �q norm for q ≥ 1.
For a usual Bayesian shrinkage approach, the posterior distribution based on



Statistical inference via conditional Bayesian posteriors 773

Fig 1. Toy simulation example using spike and slab regression. Left panel: Empirical coverage
probabilities for Bayesian Posterior credible intervals shows undercoverage for weak signals.
Right panel: Posterior mean estimator shows substantial bias for weak signals

model (1.1) takes the following form:

πB(θ,η|X,Y ,Z) ∝ exp
{
−‖Y −Xθ −Zη‖2

2
2σ2

}
πθ(θ)πη(η),

where πθ(θ), πη(η) are some shrinkage priors. To analyze the marginal posterior
of θ, we start with the conditional distribution of θ given all other parameters,

π(θ | η,X,Y ,Z) ∝ N
(
μs, σ

2(XTX)−1)πθ(θ), with

μs(η) = θ∗ + (XTX)−1XTε + (XTX)−1XTZ(η∗ − η), (1.2)
where N(μ,Σ) represents the normal distribution with mean vector μ and
variance-covariance matrix Σ. Since commonly used shrinkage priors will make
η concentrate around η∗ (i.e. Bayesian estimation consistency), the center of
the marginal distribution of θ will be roughly μs(η) with η replaced by its
posterior mean η̂. Notice that the leading term θ∗ + (XTX)−1XTε in μs(η̂)
is the maximum likelihood estimator of θ∗ with η = η∗1. The additional bias
term (XTX)−1XTZ(η∗− η̂) has a typical order of Op(

√
s log d/n) in the high

dimensional setting2, which dominates (XTX)−1XTε = Op(
√

q/n). This large
bias cannot be captured by the O(1/

√
n) spread of the marginal posterior, which

explains the low coverage probabilities under weak signals in Figure 1a. To ex-
plain why the credible intervals from Bayesian shrinkage posteriors are valid
when signals are strong3, notice that, the prediction error ‖Z(η∗ − η̂)‖2 of nui-
sance parameter η is reduced to Op(1/

√
n) (refer to Fig 1b), so that the extra

1Not knowing η will inflate the variance
2The typical fitting error is ‖Z(η∗ − η)‖2 = Op(

√
s log d) for Bayesian regularized regres-

sions, where s is the sparsity for η∗. This makes the bias term (XTX)−1XTZ(η∗ − η) =
Op(

√
s log d/n).

3All non-zero elements in θ∗ and η∗ are larger than O(
√

log d/n).



774 T. Wu et al.

log d term in the additional bias term can be avoided. This heuristic analysis
shows that Bayesian shrinkage posteriors capture the estimation uncertainty for
strong signals but not weak signals.

1.4. Our contributions

In this paper, we propose a novel conditional Bayesian posterior framework that
rectifies the uncertainty underestimation of Bayesian shrinkage approaches with
theoretical justifications from a frequentist perspective. We incorporate a simi-
lar low dimensional structure between X and Z used in Belloni, Chernozhukov
and Hansen (2014) and Chernozhukov et al. (2016). By utilizing the Bayesian
framework, our method can conveniently incorporate prior information on the
parameter of interest. This is particularly useful in practice, since it is common
to have prior information on the low dimensional parameters of interest and
not on the high dimensional nuisance parameters. Compared with frequentist
methods such as double machine learning (Chernozhukov et al., 2016) and dou-
ble selection (Belloni, Chernozhukov and Hansen, 2014) that generally require
estimation in multiple stages, our conditional posterior procedure automatically
propagates estimation uncertainty of the high dimensional nuisance parameters
in multiple layers. To overcome the over-shrinkage issue, Hahn et al. (2018a) pro-
posed a fully Bayesian approach that can perform inference on the treatment
effect when there is high dimensional confounding. Their method places inde-
pendent priors in transformed parameter space and admits an efficient sampling
algorithm. However, the validity of the resulting posterior credible intervals was
not theoretically validated. We show that our proposed procedure provides cred-
ible intervals that achieve desired coverage probabilities in the frequentist sense.
The length of resulting Bayesian credible interval is optimal in the minimax sense
as shown by Cai et al. (2017) in the sparse regime. The conditional Bayesian
posterior we proposed can be viewed similarly as a quasi-Bayesian approach
since we do not assume a particular data generating process for obtaining the
posterior. Compared with the usual quasi-Bayesian methods (Syring and Mar-
tin, 2019), the proposed method can provide valid inference without the need
for any calibration. Our proposed approach has the additional benefit of being
naturally filled into semi-supervised learning setting, where a large number of
unlabeled training data are available that can be incorporated to improve the
estimation accuracy and boost the hypothesis testing power. Simulation studies
show that our method has better performance compared with Bayesian regular-
ization methods, and frequentist inference approaches such as debiased Lasso
and double selection.

The rest of the paper is organized as follows. In Section 2, we describe our
main methodology to perform inference of low dimensional parameters in high
dimensional linear model and show in theory that the resulting interval esti-
mation has valid frequentist coverage probability. Section 3 provides simulation
under various settings and a real data application. Finally, Section 4 concludes
the paper and discusses possible extensions.
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2. Methodology and results

In this section, we propose a conditional Bayesian posterior approach to over-
come the over-shrinkage issue described in Section 1.3, followed by the theoret-
ical investigation into its validity.

2.1. Methodology

We now present our method to conduct inference for low dimensional parameters
of interest in the high dimensional linear model. To motivate our method, we
first consider the regression model (1.1) for a single covariate of interest with
q = 1 and d is much smaller than n. From the standard theory of linear models,
the least squares estimator θ̂LS of θ in jointly fitting (θ,η) can be equivalently
obtained via the residual on residual regression (Velleman and Welsch, 1981).
More precisely, perform a linear regression of X on Z and obtain the residuals
X̃. Similarly, let Ỹ be the residuals when regressing Y on Z. When regressing
Ỹ on X̃, the resulting slope estimator is the same with θ̂LS . The first two linear
regression models can be interpreted as removing the effect of Z from X and
Y , respectively. Let Pz = Z(ZTZ)−1ZT be the projection matrix induced by
Z. This equivalent procedure of reaching θ̂LS can be justified by applying the
projection operator (I − Pz) to both sides of model (1.1) as in the following,

(I − Pz)Y = (I − Pz)Xθ + (I − Pz)ε.

This classical idea can be generalized to high dimensional settings with some
additional assumptions. Under high dimensional settings, we can not obtain
the residuals via projection. However, an approximated version of residuals can
still be obtained by performing regularized regression. We consider performing
Bayesian regularized regression under the following working models:

X = Zγ + ω, ω ∼ N(0, σ2
1In) (2.1)

Y = Zφ + ν, ν ∼ N(0, σ2
2In), (2.2)

where γ, φ are sparse d-dimensional parameters, ω, ν are independent random
noise vectors, and σ2

1 , σ
2
2 > 0 are corresponding residual variances. To assure

E[Y | X,Z] stays the same with model (1.1), we require the newly introduced
parameters to satisfy φ∗ = γ∗θ∗ +η∗. Models (2.1) and (2.2) serve the purpose
of removing the effect of Z from X and Y .

A similar sparsity structure between X and Z as our model (2.1) is a com-
mon assumption made in the literature. In fact, the sparsity assumption on
the regression coefficient γ when we perform X ∼ Z regression is equivalent
to the sparsity of the X column in the joint precision matrix of (X,Z) (Peng
et al., 2009), a fact that is heavily used for devising computationally efficient
regression based methods for estimating sparsity of high dimensional precision
matrices (Peng et al., 2009, Khare, Oh and Rajaratnam, 2015). The working
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models we assume in Equations (2.1)-(2.2) are based on additional modeling
assumptions which are not necessarily assumed for a high dimensional model
targeting estimation alone. However, this is a common phenomenon for high
dimensional inference with similar assumptions being made for existing meth-
ods including the Double Selection method (Belloni, Chernozhukov and Hansen,
2014) which explicitly considers two stage models similar to (2.1) and (2.2) along
with sparsity assumptions on the coefficients γ∗ and φ∗ (see their Section 2.1 for
more detailed discussion on these assumptions). The debiased Lasso estimator
proposed by Zhang and Zhang (2014) applied Lasso regression separately for
each column Xj on the rest of the predictors X−j to estimate “an inverse” to
the sample covariance matrix of the design. This procedure assumed model (2.1)
and sparsity of the regression parameters γ (see their Equation (9)). Van de Geer
et al. (2014) and Chernozhukov et al. (2016) also made similar assumptions for
obtaining valid inference methods.

Model (2.2) serves the purpose of extracting the residuals from regressing Y
on Z, so that the residual on residual regression idea can be generalized to the
high dimensional context. More specifically, we use X̃ = X −Zγ to denote the
residual vector of regressing X on Z and Ỹ = Y − Zφ to denote the residual
vector of regressing Y on Z. Conditional on γ and φ, the residual on residual
regression motivates the following linear model as our third working model

Y −Zφ = (X −Zγ)θ + ε, where ε ∼ N(0, σ2In). (2.3)

Note that the models given by Equation (1.1) and (2.3) are equivalent with
each of them corresponding to a different reparametrization of the parameters
due to η∗ = φ∗ − γ∗θ∗. Therefore, the interpretation of the linear model and
the parameter θ∗ remains unchanged.

With the three working models (2.1)–(2.3), we propose the following surro-
gate posterior, which will be referred to as the conditional Bayesian posterior
distribution,

π(θ,γ,φ, σ2
1 , σ

2
2 | Y ,X,Z) ∝

πỸ ∼X̃(θ | γ,φ,Y ,X,Z)πX∼Z(γ, σ2
1 | X,Z)πY ∼Z(φ, σ2

2 | Y ,Z),
(2.4)

where the three components correspond to the working models (2.1)–(2.3), with
forms:

πX∼Z(γ, σ2
1 | X,Z) ∝ 1

σn
1

exp
{
−‖X −Zγ‖2

2
2σ2

1

}
πγ(γ)πσ2

1
(σ2

1), (2.5)

πY ∼Z(φ, σ2
2 | Y ,Z) ∝ 1

σn
2

exp
{
−‖Y −Zφ‖2

2
2σ2

2

}
πφ(φ)πσ2

2
(σ2

2), (2.6)

πỸ ∼X̃(θ | γ,φ,Y ,X,Z) ∝ exp
{
−‖Y −Zφ− (X −Zγ)θ‖2

2
2σ2

}
πθ(θ), (2.7)
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where πγ(γ), πφ(φ) are some sparsity inducing priors, πσ2
1
(σ2

1), πσ2
2
(σ2

2) are
inverse Gamma priors, and πθ(θ) is some generic prior for θ. To obtain sam-
ples of θ from (2.4), we simply need to sample γ from quasi posterior (2.5),
and sample φ from quasi posterior (2.6). Both samples can be easily obtained
by implementing Bayesian regularized regression. Finally, θ can be generated
conditional on γ and φ based on (2.7).

Notice that Equations (2.1), (2.2) and (2.3) are only working models and do
not constitute a valid data-generating model. They are always misspecified: the
residuals ω, ν and ε do not have i.i.d. component since the three models are
related by relationship ν = ωθ∗ + ε. Although our model is a over-determined
system and has the potential to be overparameterized, our theoretical results
in Section 2.3 show that the conditional posterior in (2.4) can be used to con-
struct pseudo credible sets for θ that have coverage probabilities achieving their
nominal level in the frequentist sense.

When we are interested in performing inference for a multivariate covariate
vector so that the dimension of X is q > 1, then the model given by (2.1) would
be

X = Zγ + ω, ω ∼ N(0, In ⊗ Σ), (2.8)
where ⊗ denotes Kronecker product. The residual term ω is now an n×q matrix.
This working model treats the different columns of ω to be independent as we
use a diagonal Σ for estimation of γ. However, for the theoretical analysis, we
will allow dependency between the columns of ω.

2.2. Comparison with Bayesian shrinkage approaches

To illustrate how our method rectifies the undercoverage of Bayesian shrinkage
approaches in interval estimation, we consider the following similar heuristic
analysis to show the asymptotic normality of the conditional posterior of θ.
Our conditional Bayesian posterior in (2.4) can be simplified to

π(θ,φ,γ, σ2
1 | X,Y ,Z) ∝ exp

{
−‖Y − (X −Zγ)θ −Zφ‖2

2
2σ2

}
1
σn

1
exp

{
−‖Y −Zφ‖2

2
2σ2

1

}
πθ(θ)πφ(φ)πσ2

1
(σ2

1).

We can also derive the conditional distribution of θ given all other parameters,

g(θ|φ,γ, σ2,X,Y ,Z) ∝ N
(
μq, σ

2 {(X −Zγ)T (X −Zγ)
}−1)

πθ(θ),

with

μq(φ,γ) = θ∗ +
{
(X −Zγ)T (X −Zγ)

}−1 (X −Zγ)Tε

+
{
(X −Zγ)T (X −Zγ)

}−1 (X −Zγ)TZ(φ∗ − φ).

With appropriate shrinkage priors, φ and γ will concentrate on their correspond-
ing true parameter values φ∗ and γ∗. Consequently, the marginal distribution



778 T. Wu et al.

of θ will center on μq(φ̃, γ̃) where φ̃ and γ̃ are parameter values close to φ∗ and
γ∗. Notice that, the leading term θ∗ +

{
(X −Zγ̃)T (X −Zγ̃)

}−1 (X −Zγ̃)Tε
is the maximum likelihood estimator of θ from model (2.3) for γ = γ̃. To ana-
lyze the additional bias term

{
(X −Zγ̃)T (X −Zγ̃)

}−1 (X−Zγ̃)TZ(φ∗− φ̃),
notice that

(X −Zγ̃)TZ(φ∗ − φ̃) ≤ ‖φ∗ − φ̃‖1‖ZT (X −Zγ̃)‖∞. (2.9)

For the first term in inequality (2.9), a usual posterior concentration implies
‖φ∗ − φ̃‖1 = Op(s2

√
log d/n) where s2 is the sparsity for φ∗. The second term

ZT (X −Zγ̃) is close to ZT (X −Zγ∗) = ZTω, which is of order Op(
√
n log d).

To summarize, the third term in μq(φ̃, γ̃) is of order Op(s2 log d/n), which is
negligible to the order Op(1/

√
n) of the second term, when s2 log d 
 √

n.
This is different from the analysis in the introduction of μs(η) for the usual
Bayesian regularized regression, since our conditional Bayesian posterior can
utilize the orthogonal structure between X − Zγ and Z. Consequently, the
marginal distribution of θ still approaches to a normal distribution regardless
of the signal strength of θ∗. This gives some heuristic understanding on why our
model is capable of providing valid posterior credible intervals without requiring
variable selection consistency.

2.3. Theoretical results

In this section, we show the theoretical results of our proposed method by
presenting a Bernstein von-Mises type theorem. Bernstein von-Mises type re-
sults state that the posterior distribution of a parameter in a smooth finite-
dimensional model can be approximated by a normal distribution if the number
of observations tends to infinity. This kind of results has been widely stud-
ied in Bayesian literature to justify the use of Bayesian credible intervals as
valid confidence intervals in the frequentist space (Bontemps et al., 2011, Kleijn
et al., 2012). In particular, the theorem we present asserts that the conditional
Bayesian posterior of θ converges in total variation to a normal distribution
which is centered at the maximum likelihood estimator in the frequentist sense
with a standard deviation of order 1/

√
n. We first discuss some assumptions

required for our theorem. We say a p-dimensional vector β to be s sparse if∑p
i=1 1{βi �= 0} = s.

Assumption 1. Assume there is a vector γ∗ such that the residual vector ω∗ =
X −Zγ∗ satisfies that:

1. There exists a q×q positive definite matrix Σ such that ‖ω∗Tω∗/n−Σ‖2 ≤
M1

√
q/n on set E1 with P (E1) > 1 − n−c1 ,

2. and for each j = 1, . . . q, ‖ZTω∗
j ‖∞ ≤ M2

√
n log d on set E2 with P (E2) >

1 − d−c2 ,

where ω∗
j is the j-th column of ω∗ and c1, c2,M1,M2 are some positive constant.
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Assumption 2. ‖θ∗‖1 ≤ M0q for some M0 > 0. Each column of γ∗ is at most
s1 sparse and η∗ is at most s2 sparse. s1 and s2 satisfy

s1 + s2 = o

( √
n

q log d

)
.

Assumption 1 allows for both fixed and random design of (X,Z). In the case
of random design, Assumption 1 is implied by sub-Gaussianity of ω∗, where
Σ can be taken as the common covariance matrix of each row of ω∗. Sparsity
assumptions are commonly used in high dimensional literature, similar assump-
tions are made by Belloni, Chernozhukov and Hansen (2014) etc. Sparsity as-
sumptions are imposed to obtain consistent estimations of γ∗ and φ∗. Since X is
allowed to have more than one column, the sparsity assumption is made on each
column of γ∗. Notice that we do not require different columns of γ∗ to have the
same support. In particular, if the supports are the same, Bayesian multivariate
regression methods can be applied which encourage a common sparsity pattern
by imposing a global shrinkage prior (Bai and Ghosh, 2018). This extra layer
of sparsity structure can be easily incorporated with a suitable prior. An upper
bound in the sparsity Assumption 2 is necessary in the sense that, in order to
construct adaptive confidence intervals that have the optimal length of the para-
metric rate n−1/2 without knowing the exact sparsity level, we need to restrict
ourselves to the ultra sparse regime, where the sparsity level is o(n1/2/ log d)
(Cai et al., 2017).

Our next assumption concerns the posterior concentration for γ and φ, as well
as the contraction rate the fitting error, which are satisfied by many Bayesian
regularized methods, see Theorem 2 in Castillo et al. (2015), Theorem 8 in
Ročková and George (2018) and Theorem 2.1-2.2 in Song and Liang (2017).

Assumption 3. The marginal posterior distribution of γ and φ based on models
(2.1) and (2.2) satisfy the following concentration properties:

1. We assume that the posterior of γ concentrates as

ΠX∼Z

(
max

{‖γj − γ∗
j ‖1

s1
,
‖γj − γ∗

j ‖2

s
1/2
1

,
‖Z(γj − γ∗

j )‖2

n1/2s
1/2
1

}

≥ M3

√
log d
n

∣∣∣∣X,Z

)

≤ M4d
−c3 ,

for j = 1, . . . , q on set E3, with P (E3) ≥ 1 − qd−c3 ,
2. We assume that the posterior of φ concentrates as

ΠY ∼Z

(
max

{‖φ− φ∗‖1

s1 + s2
,
‖φ− φ∗‖2

(s1 + s2)1/2
}
≥ M3

√
log d
n

∣∣∣∣Y ,Z

)
≤ M4d

−c4 ,

on set E4, with P (E4) ≥ 1 − d−c4 ,
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where M3, M4, c3 and c4 are some positive constants.

Theorem 1 (Normal Approximation to Posterior). If Assumption 1-3 hold,
Π(θ | D) converges to U in total variation with probability at least 1 − n−c1 −
(q + 2)d−c3 . More specifically, the following inequality holds with probability at
least 1 − n−c1 − (q + 2)d−c3 :

‖Π(θ | D) − U‖TV ≤ C
q(s1 + s2) log d

n1/2 + 2M3d
−c3 ,

where ‖ · ‖TV denote the total variation difference between two measures, U ∼
N

(
θ∗ + (ω∗Tω∗)−1ω∗Tε), σ2(ω∗Tω∗)−1) is the distribution of the maximum

likelihood estimator of θ when γ∗ is known, and C is some positive constant.

Remark 1. For the case where we have an additional n1 unlabeled pairs (X,Z),
the convergence result in Assumption 3 can be modified to

ΠX∼Z

(
max

{‖γj − γ∗
j ‖1

s1
,
‖γj − γ∗

j ‖2

s
1/2
1

}
≥ M3

√
log d
n + n1

| X,Z

)
≤ M4d

−c3 ,

which will improve the estimation for γ. However, the convergence rate in The-
orem 1 is not affected.

Remark 2. Assumption 2 can be relaxed to �q sparse settings, which is a weaker
version of sparsity that does not require exact zeros (see Ye and Zhang (2010)
for definition of �q sparse). Many statistical methods for high dimensional linear
model are shown to enjoy similar concentration properties under �q sparsity and
usual sparsity assumption. For simplicity, we will stick with Assumption 2 and
3 for our main results and proofs, but all the steps would go through if we have
consistent posterior samples that concentrate in a similar rate under �q sparse
assumptions.

Remark 3. In this paper, we are considering a high dimensional setting where
the dimension d is considered to be comparable or much larger than the sample
size n. More specifically, we are considering the regime where d ≥ Cn. For a
general dimension d that might be fixed or slowing growing with n, the same
assumptions and theoretical statements will remain valid when the dimension d
is replaced with the maximum of d and n, denoted by (d ∨ n).

Theorem 1 asserts that the posterior of θ can be well approximated by a
Gaussian distribution whose covariance matches the covariance of the maximum
likelihood estimator of θ when γ∗ is known, and the credible interval obtained
from the Bayesian procedure provides valid frequentist coverage. Let q = 1, q̂Bα/2
and q̂B1−α/2 be the (α/2)th and (1− α/2)th percentile of Π(θ | D), the following
corollary characterize how the convergence result in Theorem 1 affects the error
rate in the coverage probability of the Bayesian credible interval.

Corollary 1. The (1−α)-credible interval has the correct frequentist coverage,
and we have∣∣∣P ∗

(
θ∗ ∈ (q̂Bα/2, q̂B1−α/2)

)
− α

∣∣∣ = O(q(s1 + s2) log d/n1/2 + qd−c3 + n−c1).
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In the case where q is larger than 1, for any a ∈ R
q, the credible intervals for

aTθ can be constructed similarly.

2.4. Comparison with existing bayesian regularized regression

In this section, we compare our theoretical results with existing Bayesian meth-
ods based on sparsity inducing priors. Let W = (X,Z), and β = (θ,η). Spike
and slab regression results in a joint posterior that can be expressed as a mix-
ture,

πSnS(β | D) =
∑

ξ⊂{1,...,q+d}
π(ξ | D)π(βξ | Wξ,Y )1{βξc = 0},

where ξ is the subset model, βξ and βξc denote the coefficient vectors included
in and excluded from subset model ξ, and Wξ denote the sub-design matrix that
corresponds to subset model ξ. If the true model ξ∗ can be correctly selected
with high probability, π(ξ∗ | D) → 1, under additional regularity conditions
(Song and Liang, 2017), the posterior can be approximated by the following
normal distribution.

ΠSnS(β | D) ≈ N(βξ∗ ; β̂ξ∗ , (W T
ξ∗Wξ∗)−1) ⊗ δ0(β(ξ∗)c),

where δ0 is the Dirac measure. Similar shape approximation results have been
shown in Song and Liang (2017) for Bayesian regression based on global shrink-
age priors.

The above results suggest that when θ is indeed an active parameter with
a sufficiently large magnitude, the posterior distribution for θ can be well ap-
proximated by the corresponding normal distribution as if we knew the true
model. However, when θ∗ is zero, the posterior distribution for θ degenerates
to zero and ends up with super-efficient estimation intervals. For a small signal
that does not satisfy beta-min condition, the posterior underestimates the un-
certainty and the frequentist coverage probabilities are substantially lower than
the nominal levels. Intuitively, a minimum signal strength (beta-min) condition
is required for variable selection consistency, and a valid credible interval can be
constructed with a consistent variable selection approach for such strong signals
under this condition. Without a beta-min condition, it is well known (Fu and
Knight, 2000) that the asymptotic distribution of a typical sparsity inducing
method, such as LASSO, will have point mass at zero; for Bayesian regularized
regression, the posterior has the overly conservative tendency of shrinking all
small but nonzero signals to zero. Song and Liang (2017) provided theoretical
insights into this issue in their Section 2.3. Hahn et al. (2018b) also discussed
this issue of over-shrinking the signal induced by high-dimensional regularization
prior distributions. The over-shrinkage issue is also consistent with the numeri-
cal results in our toy example in Section 1.3. More theoretical discussion on the
over-shrinkage issue can be found in Section 2.3 of Song and Liang (2017). In
comparison, our method does not depend on whether the parameter of interest
θ is zero or not, and the theoretical result in Theorem 1 holds for all θ∗.
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3. Numerical studies

In this section, we demonstrate the advantage of using the proposed method
through various simulation studies followed by a real data application.

3.1. Simulation

We first investigate the performance of our proposed method under different sim-
ulation settings. The simulation results demonstrate that our proposed method
can provide correct interval inference even in situations where commonly used
Bayesian regularization methods do not work. Compared with commonly used
frequentist methods, our method is also observed to have less bias, more ac-
curate coverage probabilities and better robustness under various simulation
settings. The data are generated from the following model:

Y = Xθ∗ + Zη∗ + ε,

X = Zγ∗ + ω,

where X is an n-dimensional vector and Z ∼ N(0,Σ) is n × d dimensional
matrix. We use Toeplitz covariance matrix Σij = 0.8|i−j| as default unless oth-
erwise stated. The error terms ε ∼ N(0, In) and ω ∼ N(0, In) are independent
of Z. We consider (n, 1 + d) = (100, 100), (200, 500) and let θ∗ take values
from {0, 0.1, . . . , 1}. We calculate the empirical coverage probabilities of 95%
confidence/credible intervals for different values θ∗ based on 1000 Monte Carlo
simulations. We consider the following methods for performance comparison in
our simulation studies:

1. HS: We perform Bayesian regression using horseshoe prior for shrinkage
and construct credible interval of θ based on posterior distribution (Car-
valho, Polson and Scott, 2009). We use the default implementation in R
package bayeslm (Hahn, He and Lopes, 2018, 2019).

2. Laplace: We perform Bayesian regression using Laplace prior for shrink-
age (also known as Bayesian Lasso (Gelman et al., 2013)) and construct
credible interval of θ based on the posterior distribution. We use the de-
fault implementation in R package bayeslm (Hahn, He and Lopes, 2018,
2019).

3. SnS: We perform Bayesian regression using spike and slab prior (George
and McCulloch, 1993) and construct credible interval of θ based on the
posterior distribution. We use the default implementation in R package
BoomSpikeSlab (Scott, 2021).

4. DeLasso: We obtain the debiased Lasso estimator and its Wald interval
(Zhang and Zhang, 2014, Van de Geer et al., 2014). We use the default
implementation in R package hdi (Dezeure et al., 2015).

5. DS: We obtain the double selection estimator and its Wald interval (Bel-
loni, Chernozhukov and Hansen, 2014). We use the default implementation
in R package hdm (Chernozhukov, Hansen and Spindler, 2016).
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6. DML: We obtain the double machine learning estimator and its Wald
interval without performing sample splitting (Chernozhukov et al., 2016).
We use 10-fold cross-validation to fit Lasso estimator for two-stage regres-
sion model.

7. CBP + HS: We implement the proposed conditional Bayesian posterior
method with horseshoe prior to generate samples for φ and γ. For horse-
shoe regressions, we adopt the default implementation from R package
bayeslm. We use Jeffery’s prior π(θ) ∝ 1 in expression (2.7).

8. CBP + SnS: We implement the proposed conditional Bayesian posterior
method with spike and slab prior to generate samples for φ and γ. For
spike and slab regressions, we adopt the default implementation from R
package BoomSpikeSlab. We use Jeffery’s prior π(θ) ∝ 1 in expression
(2.7).

We first compare the performance of different methods under sparse γ. We
let γ∗ = (2, 1, 0, . . . , 0) and set η∗ = (0, 0, 2, 0, . . . , 0). Fig. 2 provides the com-
parisons of different methods in terms of coverage and interval length. The
results demonstrate that our proposed methods achieve more precise coverage
than other methods. In particular, Bayesian methods based on horseshoe prior
and spike and slab priors show a similar performance. When θ = 0 or relatively
small, both methods tend to shrink θ to zero and provide super narrow intervals.
This ends up with super-efficient intervals when θ = 0. However, for relatively
small signals, the coverage probabilities are very low. The resulting posterior
from Bayesian Lasso fails to quantify the uncertainty in θ and the overall per-
formance is the worst among all the methods. Due to this reason, we will exclude
this method in all the following discussions. The resulting intervals from debi-
ased Lasso undercover for all signal strengths due to a dominating bias term.
Double selection method provides intervals that undercover larger signals, which
is likely due to the strong correlation between the significant and insignificant
predictors in Z, which cast more difficulty during model selection for model
(2.1) and (2.2). This shows the advantage of using the proposed method, since
the validity of our resulting credible intervals does not rely on model selection
consistency. The intervals based on double machine learning achieve similar cov-
erage probabilities and average interval lengths compared to our method in this
setting. Our proposed methods together with double machine learning tend to
have wider intervals compared with intervals resulting from Bayesian methods
based on horseshoe priors or spike and slab priors, despite that all estimation
intervals achieve correct coverage probabilities for large signals. This is the price
we pay for achieving uniformly correct coverage.

We now demonstrate the performance of our proposed method under semi-
parametric learning setting. The way we formulate our conditional Bayesian
posterior (2.4) suggests we can sample γ and φ independently. We use the same
setting with the above sparse γ case and fix the signal size at θ = 1. We report
the simulation results of our conditional Bayesian posterior with horseshoe re-
gression when there are additional unlabeled pairs (X,Z). We consider the case
(n, 1+d) = (100, 100), (300, 100), and then there are 500 or 1000 more unlabeled
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Fig 2. The proposed methods (red solid) achieve nominal coverage probability under sparse γ

data. The results are summarized in Table 1. The plugin method stands for the
case that we calculate the sample mean of γ and φ when generating samples
θ using model (2.3). The results for the debiased Lasso, Bayesian Lasso and
horseshoe regression are also provided for comparison. It can be seen that when
there are more unlabeled observations, the length of the interval will become
slightly smaller.

We also investigate in a case when ω ∼ N(0, σ2
1In) and σ2

1 = 0.1. This means
model (2.1) has a smaller variability, and X is highly correlated with Z. The
rest of the data generating process is the same as the sparse γ case. The results
in Fig. 3 show that the proposed method with spike and slab regression achieves
the most satisfactory coverage across all signal strengths. Double machine learn-
ing provides slightly narrower intervals and the proposed method with horseshoe
regression provides slightly wider intervals, thus resulting in slight undercover-
age and overcoverage, respectively. The performance of double selection method
is better compared with the result in Fig. 2 and the resulting confidence inter-
vals have similar coverage probabilities and average interval length across all
signal strengths. This is due to the fact that small σ2

1 provides a large signal to
noise ratio, making the variable selection step easier for model (2.1). Bayesian
regression based on spike and slab priors shows similar performance to results
in Fig. 2. The resulting credible intervals show over-shrinkage for smaller sig-
nals and provide empirical coverage probabilities close to the nominal level for
large signals. All other methods fail to provide estimation intervals that give



Statistical inference via conditional Bayesian posteriors 785

Table 1

Inference on θ for semi-parametric setting
n = 100 DeLasso HS Laplace CBP+HS Plugin 500 more 1000 more
Estimation 1.039 1.108 0.959 0.987 0.998 0.987 0.987
Bias 0.039 0.108 −0.041 −0.013 −0.002 −0.013 −0.013
Var of Est. 0.003 0.034 0.013 0.010 0.010 0.010 0.010
MSE 0.005 0.045 0.015 0.010 0.010 0.010 0.010
Coverage(95/%) 0.790 0.812 0.952 0.958 0.938 0.956 0.960
Length of CI 0.280 0.490 0.515 0.414 0.400 0.411 0.410
n = 300 DeLasso HS Laplace CBP+HS Plugin 500 more 1000 more
Estimation 1.017 1.004 0.985 0.993 0.996 0.993 0.993
Bias 0.017 0.004 −0.015 −0.007 −0.004 −0.007 −0.007
Var of Est. 0.003 0.004 0.004 0.003 0.003 0.003 0.003
MSE 0.004 0.004 0.004 0.003 0.003 0.003 0.003
Coverage(95/%) 0.862 0.954 0.932 0.956 0.956 0.954 0.956
Length of CI 0.176 0.238 0.245 0.230 0.228 0.230 0.230

satisfactory coverage probabilities.
We further examine the robustness of our method under model misspec-

ification. We investigate the case when the homoscedastic error assumption
does not hold. We still use the same data generating process for Z and set
η∗ = (0, 0, 2, 0, . . . , 0). However, for X, we let

Xi = 2Zi1 + Zi2 + wi(1 + Zi1), for i = 1, . . . , n,

where Zij are the i, jth entry of the design matrix Z. In this case, the ho-
moscedastic assumption in the error term ω is violated for the partial regres-
sion model (2.1). The simulation results under such model misspecification are
summarized in Fig. 4. Horseshoe regression and spike and slab regression still
fail to provide reasonable credible intervals for small signals. Similar to the re-
sult in Fig. 2, double selection estimators have larger bias due to the strong
dependence structure and the resulting confidence intervals have low coverage
probabilities. Different from previous results, double machine learning in this
case fails to provide intervals with valid coverage probabilities. A closer inves-
tigation shows that the estimated variance is smaller than the variance of the
actual double machine learning estimator, which results in the undercoverage.
The two conditional Bayesian posterior methods provide good coverage results
and demonstrate robustness.

Next, we compare the performance of different methods when the sparsity
assumption for γ is violated. We set γ∗ = 2 · (1/22, 1, 1/32, 1/42, . . . , 1/d2) and
η∗ = (1, 0, . . . , 0). The rest of the data generating process is the same as the
default setting. Notice that, in this case, γ∗ is no longer a sparse vector while
still �1 sparse. The simulation results are summarized in Fig. 5. Similar to the
sparse γ∗ case (Fig. 2), the proposed methods still result in credible intervals
that achieve nominal coverage probabilities across different signal strengths. The
performance of the credible intervals from horseshoe regression and spike and
slab regression only catch when the signal strength is large enough. For small
signals, the over-shrinkage issues still exist. The confidence intervals based on
debiased Lasso still show undercoverage for all signal strengths due to the large
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Fig 3. The proposed methods (red solid) achieve nominal coverage probability under small σ2
1

Fig 4. The proposed methods (red solid) demonstrate reasonable robustness when homoscedas-
tic error assumption does not hold
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Fig 5. The proposed methods (red solid) achieve nominal coverage probability under dense γ

bias. Double selection still fails to provide intervals with satisfactory coverage
probabilities for large signals due to the correlation structure. Double machine
learning provides satisfactory interval estimations that perform similarly to the
proposed methods.

3.2. Real data application

In this subsection, we apply our proposed method to examine the effect of
mother’s smoking on infant birth weight. This problem has been studied in
Lumley et al. (2009), and they confirmed the causal relationship through ran-
domized trials. Here, we use 2016 Natality data from the National Vital Statis-
tics System of Centers for Disease Control and Prevention. We perform a similar
regression analysis as has been done in Wang, He and Xu (2018). We treat the
infant birth weight as the response variable and study the effect of the binary
treatment variable – smoking or non-smoking mother. The high dimensional
control variables include father’s age and race, infant’s sex, plurality, infant’s
birth defects, infant’s Apgar score, the obstetric estimate of gestation, induction
of labor, admission to NICU, mother’s pre-pregnancy weight, mother’s weight
gain during pregnancy, mother’s height, and several variables that indicate com-
plications during pregnancy, and some interaction terms between these selected
features. We use the ordinary least squares estimator from the entire dataset as
the ground truth, and evaluate the performance of high dimensional methods
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Table 2

Comparison of different methods for real data application
n = 100 SnS DS DML CBP+SnS n = 200 SnS DS DML CBP+SnS
Est −0.007 −49.429 −44.462 −48.389 Est −0.011 −60.141 −57.81 −62.295
SE 0.589 111.381 91.469 107.77 SE 0.441 73.737 62.738 71.48
Coverage
95%

0.000 0.953 0.915 0.968 Coverage
95%

0.000 0.954 0.928 0.959

Length of
CI

2.308 436.605 363.035 422.449 Length of
CI

1.729 289.042 247.44 280.198

Power NA 0.209 0.164 0.190 Power NA 0.322 0.302 0.330

n = 300 SnS DS DML CBP+SnS n = 400 SnS DS DML CBP+SnS
Est −0.016 −59.692 −60.41 −63.132 Est −0.023 −58.806 −61.353 −65.711
SE 0.350 58.819 51.614 56.088 SE 0.378 50.004 44.379 47.604
Coverage
95%

0.001 0.961 0.925 0.960 Coverage
95%

0.001 0.959 0.923 0.963

Length of
CI

1.372 230.568 203.149 219.862 Length of
CI

1.482 196.011 174.495 186.605

Power NA 0.388 0.414 0.445 Power NA 0.436 0.458 0.529

based on subsamples.
Following the analysis done in Wang, He and Xu (2018), we only consider

live, singleton births to Asian mothers between the ages of 18 and 45, with no
more than 2 years of college education in the United States. We consider the
same set of predictors used in Wang, He and Xu (2018). As an implementa-
tion detail, we deleted the observations with missing response values. We also
deleted two categorical variables that indicate whether the infant has Down
Syndrome or suspected chromosomal disorder, which are highly correlated with
intercept and cause numerical issues. The variable mother’s weight gain during
pregnancy is left censored at zero and right censored at 98. Excluding these
observations will provide residuals with much better normality. Also, since the
high dimensional methods are not designed to deal with censored observations,
including these will influence the performance of the high dimensional meth-
ods. We further delete some outliers based on studentized residuals to avoid
their potential impact on the high dimensional approaches. After processing the
data, we end up with 57341 observations and 283 covariates. The fitted linear
regression model explains 46.78% of the variance of the infant birth. Based on
the regression output, women who were self-reported smokers delivered infants
weighing 70.24g less than the others on average with a standard error of 11.62,
which is similar to others’ findings.

To compare the performance of the high dimensional methods, we randomly
draw subsamples with size n from the full sample. Since the dataset is highly un-
balanced, with only 2% smoking observations, we sample n/2 from the smoking
observations and n/2 from the nonsmoking observations to obtain a balanced
subsample.

We present the estimated coefficients and report the coverage probability
based on 1000 replications. The results are summarized in Table 2 for different
subsample sizes. The results suggest that directly using spike and slab regres-
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Fig 6. Density estimation for the p-values

sion fails to quantify the uncertainty associated with the estimator and resulting
in super narrow credible intervals. For the remaining methods, double machine
learning, similar to the simulation studies, results in shortest intervals among
others and have coverage probabilities lower than the nominal level. The pro-
posed conditional Bayesian posterior methods with spike and slab regression
achieves smaller bias as the subsample size increases and has narrower intervals
compared with double selection in general. We also report the p-values for test-
ing whether there is a treatment effect at significance level α = 0.1. Fig. 6 shows
the kernel density estimation based on the empirical distribution of the resulting
p-values. Overall, the proposed method tends to output smaller p-values in this
case, which makes it more likely to assert the existence of treatment effect for
the limited subsample size.

4. Technical proofs

4.1. Proof for Theorem 1

Proof. Let E∗ = E1∩E2∩E3∩E4, we have P (E∗) > 1−n−c1−d−c2−qd−c3−d−c4 .
For simplicity, assume c3 > max{c2, c4}, we have P (E∗) > 1−n−c1−(q+2)d−c3 .
We will perform our analysis on this high probability set E∗.

Let η̃ = φ− γθ∗, we have

‖η̃ − η∗‖1 = ‖φ− γθ∗ − η∗‖1 = ‖φ− γθ∗ − η∗ + γ∗θ∗ − γ∗θ∗‖1
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≤ ‖φ− γ∗θ∗ − η∗‖1 + ‖γ∗ − γ‖1‖θ∗‖1.

Recall that ‖θ∗‖1 ≤ M0q for some M0 > 0. Therefore, on set E∗ we have

Π
(
‖η̃ − η∗‖1 ≥ M3((s1 + s2) + M0qs1)

√
log d
n

| D
)

≤ M4(d−c3 + d−c4).

Define set B by

B=
{
‖γ − γ∗‖1 ≤ M3s1

√
log d
n

, ‖η̃ − η∗‖1 ≤ M3((s1 + s2) + M0qs1)
√

log d
n

}
.

Notice that according to previous result, we have Π(Bc|D) ≤ M4(2d−c3 +d−c4),
and for and set A ranging from all measurable sets in R

q,

|Π(θ ∈ A | D) − Π(θ ∈ A | D,B)|
=|Π(θ ∈ A | D,B)Π(B | D) + Π(θ ∈ A | D,Bc)Π(Bc | D) − Π(θ ∈ A | D,B)|
≤2Π(Bc | D) ≤ 2M4(2d−c1 + d−c2).

(4.1)

Next, we show that

sup
A

|Π(θ ∈ A | D,B) − P (U ∈ A)| ≤ C
q(s1 + s2) log d

n1/2 ,

for some positive constant C.
The conditional density of θ is given by

g(θ|γ,φ,D) ∝ exp
{
−‖Y −Zφ− (X −Zγ)θ‖2

2
2σ2

}
π(θ),

for some constant C > 0.
From the frequentist prospective, we substitute Y with Xθ∗ +Zη∗ + ε, the

conditional density can be simplified to

g(θ|γ,φ,D) ∝ exp
{
−1

2(θ − μ1)TΣ−1
1 (θ − μ1)

}
,

where

μ1 = θ∗ + (ω̃T ω̃)−1ω̃T (ε + Z(η̃ − η∗)), Σ1 = σ2(ω̃T ω̃)−1,

and ω̃ = X −Zγ. Therefore,

g(θ | γ,φ,D) = N(μ1,Σ1).

Recall that U ∼ N
(
θ∗ + (ω∗Tω∗)−1ω∗T ε), σ2(ω∗Tω∗)−1) =: N(μ2,Σ2). To

bound |Π(θ ∈ A|D, B) − P (U ∈ A)|, notice that

|Π(θ ∈ A | D, B)−P (U ∈ A)| =
∫

|Π(θ ∈ A | D, η̃,γ) − P (U ∈ A)|dΠ(η̃,γ | D)
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≤ sup
(η̃,γ)

1
2‖Π(θ | D, η̃,γ) − P (U)‖TV

Therefore, it suffices to find a uniform bound for the total variance distance
between Π(θ | D, η̃,γ) and U .

It is known that the total variation distance is upper bounded by K-L diver-
gence

‖N(μ1,Σ1) −N(μ2,Σ2)‖TV ≤ 1
2
√
DKL(N(μ2,Σ2)‖N(μ1,Σ1)).

The K-L divergence between two multivariate normal distribution is

DKL(N(μ2,Σ2)‖N(μ1,Σ1))

= 1
2
(
(μ1 − μ2)TΣ−1

1 (μ1 − μ2) + tr(Σ−1
1 Σ2) − q + log det(Σ1Σ−1

2 )
)
.

(4.2)

We derived the bound for K-L divergence between these two distributions.
First notice that on set B,

‖ω̃T ω̃ − ω∗Tω∗‖2 = ‖(γ∗ − γ)TZTZ(γ∗ − γ) + 2(γ∗ − γ)TZTω∗‖2

≤ ‖Z(γ∗ − γ)‖2
2 + 2‖(γ∗ − γ)TZTω∗‖2

� qs1 log d.

‖Z(γ∗−γ)‖2
2 is the fitting error of the regression model between X and Z, which

is assumed to be s1 log d in Assumption 1. In the q× q matrix (γ∗ − γ)TZTω∗,
each elements

(γ∗
i −γi)TZTω∗

i ≤ ‖γ∗
i −γi‖1‖ZTω∗

i ‖∞ � s1

√
log d
n

·
√
n log d � s1 log d. (4.3)

Then we have ‖(γ∗ − γ)TZTω∗‖2 � qs1 log d on set B.
According to the assumption qs1 log d � √

n. Therefore, we have

‖Σ−1
1 ‖2 � ‖ω̃T ω̃‖2 ≤ ‖ω∗Tω∗‖2 + ‖ω̃T ω̃ − ω∗Tω∗‖2 � n.

We now bound the first component in Equation (4.2), and show that on set B,

(μ1 − μ2)TΣ−1
1 (μ1 − μ2) � n‖μ1 − μ2‖2

2 → 0.

Notice that on set B,

‖μ1 − μ2‖2 = ‖(ω̃T ω̃)−1ω̃T (ε + Z(η̃ − η∗)) − (ωTω)−1ωTε‖2

= ‖((ω̃T ω̃)−1ω̃T − (ωTω)−1ωT )ε + (ω̃T ω̃)−1ω̃TZ(η̃ − η∗)‖2

≤ ‖((ω̃T ω̃)−1ω̃T − (ωTω)−1ωT )ε‖2 + ‖(ω̃T ω̃)−1ω̃TZ(η̃ − η∗)‖2.
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We first bound ‖((ω̃T ω̃)−1ω̃T − (ωTω)−1ωT )ε‖2. Let ΔT := (ω̃T ω̃)−1ω̃T −
(ωTω)−1ωT . Since ε ∼ N(0, σ2I). According to Theorem 6.3.2 and 6.3.5 in
Vershynin (2018), we have for any t ≥ 0

P{‖ΔT ε‖2 ≥ C‖Δ‖F + t} ≤ exp
(
− ct2

‖Δ‖2

)
,

where c and C can be viewed as fixed conditioning on X and Z. Now substituting
δ = exp

(
− ct2

‖Δ‖2

)
with will give

P{‖ΔT ε‖2 ≥ C‖Δ‖F +
√

2‖Δ‖2 log(1/δ)
n

} ≤ δ.

select δ = n−c′ , we have ‖ΔT ε‖2 ≤ (C+
√

2c′)‖Δ‖F on a set C ′ with probability
at least 1−n−c′ . We continue our analysis restricted to the set B∩B2, for which
the following will hold

‖((ω̃T ω̃)−1ω̃T − (ω∗Tω∗)−1ω∗T )ε‖2

�‖(ω̃T ω̃)−1ω̃T − (ω∗Tω∗)−1ω∗T ‖F
=‖(ω̃T ω̃)−1(ω̃ − ω∗)T +

(
(ω̃T ω̃)−1 − (ω∗Tω∗)−1)ω∗‖F

� q

n
·
√

s1q log d + qs1 log d
n2 · √nq

�q3/2√s1 log d
n

.

As for the second term

‖(ω̃T ω̃)−1ω̃TZ(η̃ − η∗)‖2 ≤ ‖(ω̃T ω̃)−1‖2‖ω̃TZ(η̃ − η∗)‖2.

For the first part, ‖(ω̃T ω̃)−1‖2 = O(1/n). The second part can be bounded as
follows,

‖ω̃TZ(η̃ − η∗)‖2 = ‖ω∗TZ(η̃ − η∗)‖2 + ‖(γ∗ − γ)TZTZ(η̃ − η∗)‖2,

where
‖ω∗TZ(η − η∗)‖2 = O(q(s1 + s2) log d)),

following the similar argument in Equation (4.3) and

‖(γ∗ − γ)TZTZ(η̃ − η∗)‖2 ≤ ‖(γ − γ∗)ZT ‖2‖Z(η − η∗)‖2 � q(s1 + s2) log d.

Overall, we have

‖(ω̃T ω̃)−1ω̃TZ(η̃ − η∗)‖2 � q(s1 + s2) log d
n

.

Therefore, we have

(μ1 − μ2)TΣ−1
1 (μ1 − μ2) � n‖μ1 − μ2‖2

2 � (q(s1 + s2) log d)2

n
+s1q

3 log d
n

,
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Then we bound the term

tr(Σ−1
1 Σ2) = tr(ω̃T ω̃(ωTω)−1).

By definition

(ω̃T ω̃)(ωTω)−1

= Iq + 2(γ∗ − γ)TZTω(ωTω)−1 + (γ∗ − γ)TZTZ(γ∗ − γ)(ω∗Tω∗)−1.

Therefore

tr(Σ−1
1 Σ2) − q

=tr(2(γ∗ − γ)TZTω∗(ω∗Tω∗)−1) + tr((γ∗ − γ)TZTZ(γ∗ − γ)(ω∗Tω∗)−1)
�√

q‖(γ∗ − γ)TZTω∗(ω∗Tω∗)−1‖2 + √
q‖(γ∗ − γ)TZTZ(γ∗ − γ)(ω∗Tω∗)−1‖2

�q3/2s1 log d
n

.

For the last term, we use the approximation

det(I + hM) = 1 + h · tr(M) + o(h2),

log |Σ1Σ−1
2 | ≤ log

(
1 + M4

q3/2s1 log d
n

)
� q3/2s1 log d

n
.

Overall we have that on set B,

DKL(N(μ2,Σ2)||N(μ1,Σ1)) �
(q(s1 + s2) log d)2

n
,

which implies

‖N(μ1,Σ1) −N(μ2,Σ2)‖TV � q(s1 + s2) log d
n1/2 .

Therefore, we have for any measurable subset A of Rq,

|Π(θ ∈ A | D) − P (U ∈ A)|
≤|Π(θ ∈ A | D) − Π(θ ∈ A | D, B)| + |Π(θ ∈ A | D, B) − P (U ∈ A)|

≤C
q(s1 + s2) log d

n1/2 + 2M3(2d−c3 + d−c4) on set E∗.

4.2. Proof for Corollary 1

Proof. Let set A = (−∞, q̂Bα/2]. According to Theorem 1, we have
∣∣∣∣∣α/2 − Φ

(
q̂Bα/2 − θ̂

σ̂

)∣∣∣∣∣ = O

(
q(s1 + s2) log d

n1/2 + d−c3

)
:= O(δn),
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where
θ̂ = θ∗ + (ω∗Tω∗)−1ω∗Tε and σ̂ = σ

‖ω∗‖2
,

are maximum likelihood estimators when γ∗ is known. This implies

q̂Bα/2 = θ̂ + σ̂zα/2 + O

(
1√
n
δn

)
.

Let q̂α/2 be the frequentist estimator for the lower bound of the confidence
interval, we have

q̂α/2 = θ̂ + σ̂zα/2.

Therefore, on set E∗, we have

|q̂Bα/2 − q̂α/2| = O(δn/
√
n).

Similarly we have
|q̂B1−α/2 − q̂1−α/2| = O(δn/

√
n).

For the coverage of the credible interval, we have

P (θ∗ ∈ (q̂Bα/2, q̂B1−α/2))

=P (θ∗ ∈ (q̂Bα/2, q̂B1−α/2) ∩ E) + O((q + 2)d−c3 + n−c1)

≤P (θ∗ ∈ (q̂α/2 −O( 1√
n
δn), q̂1−α/2 + O( 1√

n
δn))) + O((q + 2)d−c3 + n−c1)

=P (zα/2 −O(δn) ≤ ω∗T

‖ω∗‖2
ε ≤ z1−α/2 + O(δn)) + O((q + 2)d−c3 + n−c1).

Since ω∗T

‖ω∗‖2
ε follows a standard normal distribution, we have

P (θ∗ ∈ (q̂Bα/2, q̂B1−α/2)) ≤ α + O(q(s1 + s2) log d/n1/2 + qd−c3 + n−c1).

Similarly,

P (θ∗ ∈ (q̂Bα/2, q̂B1−α/2)) ≥ α−O(q(s1 + s2) log d/n1/2 + qd−c3 + n−c1).

Therefore, we have

|P (θ∗ ∈ (q̂Bα/2, q̂B1−α/2)) − α| = O(q(s1 + s2) log d/n1/2 + qd−c3 + n−c1).

5. Discussion

In this paper, we propose a conditional Bayesian posterior approach to facili-
tate inference on low dimensional parameters in high dimensional linear models.
Our approach avoids the over-shrinkage issue associated with existing Bayesian
regularized regression that leads to uncertainty underestimation for small sig-
nals. Theoretical results show that our proposed method can obtain root n-
consistent credible intervals that achieve the nominal coverage probabilities in
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the frequentist sense regardless of the signal strength. The proposed conditional
Bayesian posterior has shown better robustness compared with other frequen-
tist and Bayesian methods under model misspecifications. The current method
focuses on a small number of parameters of interest and it would be interesting
to see if there is a Bayesian approach to perform root n-consistent inference for
a dense transformation of a high dimensional parameter.
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