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Abstract: Predictive classification considered in this paper concerns the
problem of identifying subgroups based on a continuous biomarker through
estimation of an unknown cutpoint and assessing whether these subgroups
differ in treatment effect relative to some clinical outcome. The problem
is considered under a generalized linear model framework for clinical out-
comes and formulated as testing the significance of the interaction between
the treatment and the subgroup indicator. When the main effect of the
subgroup indicator does not exist, the cutpoint is non-identifiable under
the null. Existing procedures are not adaptive to the identifiability issue,
and do not work well when the main effect is small. In this work, we pro-
pose profile score-type and Wald-type test statistics, and further m-out-of-n
bootstrap techniques to obtain their critical values. The proposed proce-
dures do not rely on the knowledge about the model identifiability, and
we establish their asymptotic size validity and study the power under local
alternatives in both cases. Further, we show that the standard bootstrap
is inconsistent for the non-identifiable case. Simulation results corroborate
our theory, and the proposed method is applied to a dataset from a clinical
trial on advanced colorectal cancer.
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1. Introduction

In clinical trials testing a new treatment against a control, it is a common
practice to classify patients into two subgroups based on a continuous biomarker,
such as the expression level of a gene or the result from a blood test, so that the
identified subgroups have significantly different treatment effects with respect to
certain clinical outcome. This problem is known as predictive classification, and
the biomarker that induces the subgroups is called a predictive biomarker [5].
Identification and assessment of predictive biomarkers are very active areas of
medical research, especially in the current era of personalized medicine [45, 34].

In many studies, the clinical outcome of interest is binary. For example, in
cancer clinical trials, one important outcome is whether a patient has responded
to or received a clinical benefit from a treatment based on a specific criterion
[35]. This motivates us to investigate the problem of predictive classification
under generalized linear models (GLMs) for clinical outcomes, which include
the binary outcome as a special case. Specifically, for a patient, denote Y as a
clinical outcome of interest, U a binary treatment indicator which equals 1 if the
patient received an experimental treatment and 0 if a control treatment, and
X a continuous biomarker which is used to classify the patient into subgroups
based on an unknown cutpoint c¢g. There may be additional covariates W of
length d observed. We assume that conditional on (W,U, X) = (w,u,z), the
density function of Y = y, relative to some o-finite measure v on R, belongs to
the exponential family and is given as follows:

eXP(y(noTZco + Aoumm) - ¢(nngO + /\Ouxco))a (11)

where ¢ is a given strictly convex function on R, z. = (w?,u,z.)T with

2. = I(x < ¢) for ¢ € R, ¢y € [{,u] is the unknown cutpoint, and 1, =
(al’, Bo,v0)T and )¢ are regression parameters. Then the conditional expecta-
tion E(Y |W,U, X) of Y given (W, U, X) satisfies the following GLM:

g(BE(Y |W,U, X)) = al W + BoU + 70X, + MU X, (1.2)

where g(-) = (¢’)7%(+) is a link function. When g is the logistic function, model
(1.2) is the popular logistic regression model for the binary responses.

Model (1.2) implies that the treatment effect is respectively Sy + Ag and 5y
for patients in the subgroup with X < ¢y and X > ¢g. Therefore, parameter Ag
measures the differential treatment effect between the two subgroups defined by
the unknown cutpoint ¢y. Our goal is to test whether the difference is significant,
i.e., testing Hp : A\p = 0.

Given a sample {(Y;,W;,U;, X;), i € [n] := {1,...,n}} of size n, if the
cutpoint ¢y was known to take the value ¢, then one can use the usual score
test statistic, denoted as S, ¢, for testing Hp : Ag = 0, which, under the null,
converges in distribution to the zero mean normal distribution with variance
02 n,» denoted as N (0,07, ) [31]. Note that the discussions below apply similarly
to other tests such as Wald, and we focus on score tests for concreteness. Since ¢
is unknown, one may replace it by its estimate, which however is only possible
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when c¢q is identifiable. Specifically, if 79 = 0, then under Hy : A\g = 0, the
cutpoint cg is non-identifiable, in the sense that different values of ¢y induce the
same distribution on the response Y. We discuss below procedures for each case.

If it is known a priori that the cupoint is identifiable, i.e., 79 # 0, we may
estimate cg by the profile maximum likelihood estimator (MLE), &,, and act as
if ¢, is its true value. Specifically, denote by L, (¢,n, A) the likelihood function
under the model (1.1). Let #),, . be the maximizer of Ly (c,n,0) over n € R4 for
each fixed ¢, and ¢, the smallest maximizer of Ly(c,7,, ., 0) over ¢ € [{,u]. Then
we may use S, := Sy ¢, as a profile score-type statistic for testing Hy : Ag = 0.
Since ¢ is identifiable, i.e., 79 # 0, it can be shown that ¢, converges to ¢ at
the rate n under Hp by similar approaches used in, for example, [22, 36, 29,
44, 43, 25, 33], under some closely related models. As a result, S,, converges in
distribution to N (0, JEMO), the same limit as for .S, ¢,, and the variance afmno
can be consistently estimated by replacing ¢y and 1, by &, and 7,, respectively,
where 7),, := 1), ; . See Section 2 for the precise statements.

On the other hand, if it is known a priori that the cupoint is non-identifiable,
i.e., 9 = 0, the so-called minimum p-value method may be used, which is
popular in practice [20, 9]. Specifically, for each ¢ € [¢, u], if ¢y assumes the value
¢, then Sy, /0.5 _ converges in distribution to N(0,1) [31]. The minimum p-
value method estimates ¢y by minimizing the p-value or equivalently maximizing
the absolute value of the test statistic, and uses the associated p-value to test
Ho : )\0 = 0, i.e.,

Prnmp = 2{1 — ®(M,,)}, where M, = sup |Sn.c/0cq, |, (1.3)
c€[l,u] "

where ®(-) is the cumulative distribution function of the standard normal distri-
bution. Although, without adjustment, p,, ,, suffers from the problem of type
I error inflation, under the assumption that vy = 0, one may obtain the critical
value for M,, from its limiting distribution, as in [17], which considers a gen-
eral regression model for a continuous outcome. Such approaches are also widely
used in a related problem known as prognostic classifications [32, 18, 23, 30, 40],
which tests H), : 70 = 0 under the assumption A\g = 0 in model (1.2). Finally,
we note that the non-identifiable case is non-standard in the sense that ¢g is a
nuisance parameter under the null [12, 13, 2].

The aforementioned works require the additional assumption regarding the
identifiability of the model. However, in practice, there usually is no convincing
justification for one case or the other; further, a valid procedure under the
identifiability condition may control the size poorly if the model is close to
being non-identifiable, i.e., |yo| being small, and vice versa. Thus it is important
to develop a procedure that is adaptive to the identifiability issue, and that is
valid in both cases. In [27], we have shown that for regression models with a
continuous outcome, the minimum p-value approach as in (1.3), with the score
test statistic being replaced by Wald, turns out to work for both cases under
both the random and fixed designs. However, the arguments therein rely on the
fact that the link function in (1.2) is linear. For general GLMs, M,, in (1.3)
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would diverge at the rate \/n, and its failure is also apparent from simulation
studies in Section 5.

In this work, we propose to use the profile score-type or Wald-type statistic
for testing Hy : A9 = 0, and obtain its critical value by an m-out-of-n bootstrap.
For concreteness, here we focus on the score-type, i.e., S,. Specifically, we first
sample with replacement m, < n pairs of covariates (W, U, X}), i € [my],
and then for each i € [m,], generate Y;* from the density (1.1) with A\g = 0
and 7, co replaced by 1),,, ¢y, respectively. Finally, we obtain the critical value
for S, from the bootstrap distribution of the score-type statistic, .S, based on
the bootstrap samples. The proposed procedure does not rely on the knowledge
of identifiability, and we establish its asymptotic size validity in both cases as
long as the bootstrap sample size is of a smaller order compared to the original
sample size, i.e., m,/n — 0.

Further, in the identifiable case, we show that the condition m,,/n — 0 can be
dropped, and that the standard bootstrap, i.e., m,, = n, provides asymptotically
correct critical values for S,. This is interesting because by [36, 44, 43] the
standard bootstrap is not asymptotically consistent for constructing confidence
intervals for the MLE ¢, of the cutpoint ¢y, but we show that it is in fact so for
the MLE 1), of the regular parameter 1,, and also for \S,,. In the non-identifiable
case, we prove that the standard bootstrap is inconsistent, in the sense that the
bootstrap distribution does not converge weakly to the limiting distribution of
the test statistic, in probability.

Finally, we study the rejection probabilities, i.e. power, of the proposed pro-
cedure under local alternatives, Hy ,, : \g = By/+/n, for some fixed constant
By # 0. In the identifiable case, the asymptotic power is the same as if the
unknown cutpoint ¢y was known. In the non-identifiable case, the form of power
is more complicated, but it tends to one as |By| approaches oco.

In terms of the literature, the m-out-of-n bootstrap, which usually generates
bootstrap samples of size m = o(n), is proposed by [7] as a modification to
the standard bootstrap techniques using m = n, which are reliable for regular
models [6, 15, 38], but may fail in cases such as non-smooth estimation prob-
lems, estimators with a cube-root convergence rate, or models with unknown
nuisance parameters; see [24, 36, 10, 37, 1] and the references therein. The
asymptotic validity of m-out-of-n bootstrap techniques have been established
under several non-standard models. For example, [36, 44] show the inconsistency
of the standard bootstrap and the consistency of the m-out-of-n bootstrap in
constructing confidence intervals for the cutpoint parameter under regression
models with continuous responses; in addition, [43] establishes similar results
for the Cox model. Further, [24] proves the consistency of the m-out-of-n boot-
strap for estimating the limiting distribution of non-nuisance parameters under
the M-estimation framework, provided that the estimators of the nuisance pa-
rameters enjoy a faster convergence rate. To the best of our knowledge, for
the GLM in (1.1), due to the identifiability issue, the validity of the proposed
procedures does not follow directly from previous works.

The reminder of the paper is organized as follows. In Section 2 we introduce
the score-type and Wald-type test statistics, and derive the limiting distributions
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of S, in the identifiable and non-identifiable cases, respectively. In Section 3,
we propose an m-out-of-n bootstrap procedure for obtaining the critical value
for S, establish the asymptotic size validity and study its power under local
alternatives; further, we show the inconsistency of standard bootstrap for the
non-identifiable case. In Section 4 we propose an m-out-of-n bootstrap for the
Wald-type test statistic. We present in Section 5 simulation studies to evaluate
the finite-sample performance of the proposed methods, and in Section 6 an
application to an advanced colorectal cancer dataset. We conclude in Section 7
and present proofs in Appendix.

2. Profile estimates and test statistics

Our primary objective is to test Hp : Ay = 0 under model (1.2) based on D; =
(Y;, W;,U;, X;), © € [n], which are independently and identically distributed
observations with the same distribution as (Y, W, U, X ), where random variables
are defined on some probability space (€2, G, pr). Under the assumption that the
response Y is from the exponential family defined by (1.1), the log-likelihood
function of parameters ¢ € [/,u], n = (a?,3,7)T € R¥*2 and A € R can be
written as

Lo(c,n, ) :==n""! Z Ve (D;),  where
i=1 (2.1)

Cemr(y, w,u,z) =y (0" zc + Muze) — ¢ (0" ze + Mua.)

and z. = (w?,u,z.)7 with z, = I(x < ¢).
Suppose for now the value of the cutpoint ¢g is known to be ¢. Then, based
on the likelihood function (2.1), the score test statistic for Hy : Ag = 0 is:

1 n
Spe=— UiX;(Yi —¢' AT .Z;.)), 2.2)
7 2 ’ (

where ), . := argmax, cga+2 Ln(c,1,0) is the MLE of n, for a given ¢ under
the null Hy : A\g = 0.

Since the cutpoint ¢q is in fact unknown, in view of the discussion in Section
1, we replace it by the profile estimate ¢, under the null, and use its associated
score test statistic, Sy, for testing Hy : A\g = 0, i.e.,

Cp 1= Sargmax Ln(ca nn,cv O)a Ny = T’n,éna
cell,u]

(2.3)

1 n
Sp o= Sne, = —= Y UiXis, (Vi — ¢'(71, Ziz,)),
7 ; ( ( )

where “sargmax” denotes the maximizer corresponding to the smallest c¢; see
a precise definition in [36, Page 4]. Note that (é,,7,,) are the joint MLE for
(co,mg) under the null Hy : A\g = 0.
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Another approach for testing Hy : A\g = 0 is to use the Wald-type test statis-
tic. Similarly, if the value of the cutpoint ¢y was known to be ¢, we can esti-
mate (1, A\o) by its MLE (ﬁn,c,j\n,c) 1= argmax, yyerd+s Ln(c,m,A), and use
Wi = \/ﬁj\nc for testing Hy : Ag = 0. Now since ¢y is unknown, we replace
it by a profile estimator ¢,, and use its associated Wald test statistic, W,,, for
testing Hy : Ao =0, i.e.,

Cp 1= sargmax Ly (¢, M, c; Ane)y,  An i= e
c€[l,u]

Wn = Wn,én' (24)

n )

Because of the similarity in the theoretical development for the score-type and
Wald-type test statistics, we only present the details below for the score-type
test statistic.

Remark 2.1. In practice, to find the “sargmaz” over ¢ € [¢,u] in (2.3) and
(2.4), it suffices to consider those ¢ € {X; : i € [n]} N[¢,u].

2.1. Limiting distributions of the score-type test statistic

Define F;(z) := pr(X < z|U =1i) for i € {0,1} and = € R. For a square matrix
A denote by Apin(A) its smallest eigenvalue. We make the following assumption
regarding the covariates in model (1.2).

(C.1) 0 < E[U] < 1; For ¢ € {0,1}, F; is continuous on [¢,u], continuously
differentiable with positive derivative in a neighbourhood of ¢g, and 0 < F;(¢) <
F;(u) < 1; ||[W|| < C,, for some positive constant C,,, where ||-|| is the Euclidean
norm; Apin(EWW7T|U =i, X > u]) > 0 and Apin(EWWT|U =i, X < /]) >
0.

Remark 2.2. We assume that the additional covariates W are bounded, which
simplifies significantly our presentation and proof. Other assumptions are mainly
to exclude degenerate situations; in particular, the last two conditions assume
that W are (conditionally on U and X ) not collinear.

First, we consider the identifiable case. Let Z, := N(0, (Vg?no)_l) be a
normal random vector of length d + 2, independent of another normal random
variable Zg := N(O,agomo), where for any (¢,n) € [¢,u] x RT2

Vin =B 202:20, o=V - VEVE) VR
. 2) ._ 1o T T 3) . 1o T !

with Vg,n T E[(b (77 ZC)UXCZC]7 ‘/;(,77) T E[(b (77 ZC)UXC]

Define O := al W + BoU + v, and ©_ := ol W + ByU. Let Yy and Y_
be two random variables such that their conditional v-density, given (W, U, X),
are respectively exp(y4+ 04+ —¢(04)) and exp(y—O_ —$(0_)). Further, consider
a sequence of independent and identically distributed pairs of random variables,
{(&n.+,&n,—) : n € N}, such that & 4 and & _ are independent, and

S4 = Y5~ (6(04) — 3(0-)) given X = o,
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§1,— L v+ (#(©4) — ¢(O-)) given X = co,

where < means that two sides have the same distribution. Let Ni(-) and N_(+)
be two Poisson processes with intensity F%(co) > 0, where Fx(-) is the cu-
mulative distribution function for X. In addition, we assume N (-), N_(+),
{(én,+,&n,—) : n € N} and Z,), Zg are all independent. Finally, define

SN it >0,

Z. = sargmax D(t), where D(t):= {ZN_(_t) 6 ift<0
i=1 i :

teR

Note that we use the convention Z?Zl iy = Z?:l &.— =0.
We use the notation ~» for the weak convergence of probability measures.

Theorem 2.1. Consider the identifiable case under the null, i.e. v9 # 0 and
Ao = 0. Assume (C.1) holds. Then n(é, — co) is bounded in probability, and
(i, = 10), ) ~ (Zn, Zs),

In addition, if the conditional distribution of (W ,U) given X = ¢ is contin-
wous in a neighbourhood of co with respect to the weak convergence', then

(n(én - cO)a \/ﬁ(fln - nO)a Sn) ~ (Zc, Z’r]; ZS)
Proof. See Sections C.1 and C.3 of the Appendix. O

Remark 2.3. It is well known that for change-point models, the weak limits
of the MLE for the regular parameters (Z,, above) and for the change-point (Z.
above) are independent, and the latter is the smallest mazimizer of a two-sided,
compound Poisson process (D(-) above). See [22, 36, /4] for related results in
the regression models, and [43] in the Cox models.

_ Now consider the non-identifiable case, i.e. 70 = 0. For each ¢ € R, define
Z,= (W' U X, UX,)T, and denote by £*°(A) the space of bounded functions

on an arbitrary index set A. Let {((AM)7, A&Q))T : ¢ € [¢,u]} be a zero mean
Gaussian process, that is tight in (£°°([¢,u]))?*3, whose covariance function is
given as follows: for any ¢, ¢cq € [¢, u],

cov((AD)T, APHT (AT, AG)T) = E[¢" (al W + BoU) Z., Zs,]. (2.6)

Note that for each ¢, AV is of length d + 2 and A(? of length 1, and that the
existence of such a Gaussian process is established in Theorem 2.2.
Finally, define the following quantities associated with the Gaussian process:

T
€ —argmax (A) (V(}) AL, H= (V)AL
cell,u

s=AP -vE |

(2.7)

where VEI% and VEQ% are defined in (2.5).

IThat is, for any sequence ¢, — ¢, we have E[f(W,U)|X = ¢,n] — E[f(W,U)|X = ] for
any continuous, bounded function f.
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Theorem 2.2. Consider the non-identifiable case under the null, i.e. vg = Ao =
0, and assume (C.1) holds. Then there exists a zero mean Gaussian process, that
is tight in (°([¢,u]))?*3 and that has the covariance function given by (2.6).
Further,

(6n7 \/ﬁ(ﬁn - 770)7 Sn) ~ ((Ca H, S)

Proof. See Section C.2 of the Appendix. O

In this work, our primary focus is on the limiting behavior of the score-
type test statistic S,, which is distinct in the two cases. Specifically, in the
identifiable case, ¢, is a consistent estimator of ¢y with the rate n, and, as a
result, the limiting distribution of \S,, is the same as that for S, ., [31], despite
the fact that ¢y is unknown.

In the non-identifiable case, however, é, converges to a non-degenerate limit
without scaling, and the limiting distribution of S,, is non-Gaussian. For illustra-
tion, in Appendix C.4, we show that if W = 1, X has the uniform distribution
over (0,1), and U is independent of X, then C is the maximizer of a Brownian
bridge, while S is the value of another independent Brownian bridge evaluated
at C, up to a multiplicative constant.

In practice, it is usually unknown whether the observations are from an iden-
tifiable model or not. Therefore, it is important to develop a procedure for
obtaining the critical values for the test statistic .S,, that does not rely on the
knowledge of identifiability, but nonetheless is valid in both cases. In the next
section, we propose an m-out-of-n bootstrap method for this purpose, and es-
tablish its validity.

3. Bootstrap method for the score-type profile tests

We propose the following m-out-of-n bootstrap procedure for the score-type
profile test statistic S, in (2.3), where m,, < n below are user-specified integers.

STEP 1. Based on data D;, i € [n], compute the MLE (&,,7),,) under the
null Hy : Ag = 0 and the score-type test statistic S, as in (2.3).

STEP 2. Randomly sample with replacement from (W;,U;, X;), i € [n] to
obtain a bootstrap sample of size m,, denoted as (W}, U, X}), i € [my]. For
each i € [my], given (W7, U}, X}) = (w,u,z), generate Y;* is from the distri-
bution with the following v-density:

y — exp(y(h)zz,) — ¢ ze,))-

The bootstrap sample is D} = (Y*, W}, U, X¥), i € [m,].
STEP 3. Based on the bootstrapped data D, i € [m,], compute the MLE
(¢:,7,) and the score-type test statistic S as in (2.3) with n replaced by m,,



556 N. Li et al.

and D; replaced by D}. That is,

(@) == sargmax  my, 'Y (D), where e = om0,
(e,m) €l ,u] xRd+2 i—1
L (3.1)
i=1

STEP 4. Denote by prip the conditional probability given the data D;,i €
[n]. Then the p-value is defined as

Syo=

pn =1=prp(IS;| < |Sal)- (3.2)

If pJ is smaller than a user-given significance level, we reject the null hypothesis
Hy : Mg = 0. Otherwise we cannot reject the null.

Remark 3.1. In practice the p-value can be approximated by:

B
B =B I(IS)] > |Sa]),
b=1

where S%* is the value of the score-type test statistic S defined in (3.1) based
on the b-th bootstrap sample and B is the number of bootstrap repetitions.

3.1. Asymptotic consistency of the m-out-of-n bootstrap

In this section, we establish the asymptotic theory for the bootstrap procedure
for the score-type test statistic. We denote by op(1) a sequence of random
variables that goes to zero in probability as n — oo. Recall that m,, < n is
the size of the bootstrap sample, and that (Z,,Zg) and (C,H,S) are the weak
limits appearing Theorems 2.1 and 2.2.

Theorem 3.1. Consider the null, i.e., \g = 0. Assume that (C.1) holds and
that m,, — 00 as n — oo.

(7). If the model is identifiable, i.e., vo # 0, then

sup

S, Pt (Vi (11, = 11,,), S5) < t) = pr((Zay, Zs) < t)) = 0px(1).

(ii). If the model is non-identifiable, i.e., v = 0, and if, additionally, m, /n —
0 as n — oo, then

sup
teRd+4

1o (6, VM (A1, = 01,),57,) < ) — pr((C,H,S) < t)’ = op:(1)-

Proof. The proof for (i) and (ii) can be found, respectively, in Sections C.1 and
C.2 of the Appendix. O
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The above theorem, together with Theorems 2.1 and 2.2, establishes the
asymptotic size validity of the proposed m-out-of-n bootstrap procedure for
both the identifiable and non-identifiable cases, as long as the bootstrap sample
size is of a smaller order than the original sample size, i.e., m,,/n — 0, despite
the fact that the procedure does not use the knowledge about the identifiability.

In the identifiable case (see part (i) above), however, the condition m,, /n — 0
is not required, and m,, = n is allowed for obtaining the critical value for the test
statistic .S,,, which corresponds to the standard bootstrap. It is noteworthy that
by [36, 44, 43] the standard bootstrap is not asymptotically valid for constructing
confidence intervals for ¢,, but, by Theorem 3.1 above, is in fact so for the MLE
7M,, and S,. That is, for the same model, bootstrap methods may work for some
statistics, but fail for others.

In the non-identifiable case (see part (ii) above), we show in the next sub-
section that the standard bootstrap, corresponding to m,, = n, is inconsistent,
in the sense that the bootstrap distribution of S’ in (3.1) does not converge
weakly to the limiting distribution (i.e. S) of the test statistic .S,,, in probability.
From the simulation studies in Section 5, with m,, = n" (rounded to an integer),
we observe that as x varies from 0.9 to 1, the proposed procedure controls the
size well and is not sensitive to the choice of k; thus x = 0.95 seems to be a
reasonable choice in practice.

Remark 3.2. In the identifiable case, if my/n does vanish, then again by [36,
44, 48], the m-out-of-n bootstrap procedure is also consistent for é,, which are
now standard results and omitted, since our primary focus is on testing Hy :
Ao = 0 using Sy,.

3.2. Inconsistency of the standard bootstrap for the non-identifiable
case

In this subsection, we establish the inconsistency of the standard bootstrap,
i.e., my, = n, for the non-identifiable case, i.e., 79 = 0. To make this statement
precise, we recall the notations in Subsection 2.1 and introduce additional ones.

Denote by R, the empirical distribution of the covariates {(W, U;, X;) : i €
[n]}. For each integer k > 1, denote by M (RF) the space of Borel probability
measures on R¥, and we equip it with the Prokhorov metric dp,ok (-, -) [8, Section
6.5], which characterizes the weak convergence and under which M(R¥) is a
complete and separable metric space.

The m-out-of-n bootstrap procedure with m,, = n requires three inputs: the
empirical distribution R,, from which bootstrap covariates {WiUHNX) i€
[n]} are drawn, and the estimators é, and 7),, which are used to generate the
bootstrap responses {Y;* : i € [n]}. Denote by L,(¢,m, R) the distribution of
the bootstrap test statistic S when (&,,7,,, 7%”) takes the value (¢,n, R). That
is, £, is a measurable mapping from [¢,u] x R4*2 x M(R4*2) to M(R), and
L, (¢n,7,,,Ry) is the bootstrap distribution of S* given the data, which is a
random element in M(R).
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Finally, recall that S in (2.7) is the limiting distribution of the test statistic
Sy, which a deterministic element in M(RR). The next theorem shows that the
Prokhorov distance between the bootstrap distribution and the target does not
converge to zero in probability.

Theorem 3.2. Consider the null, i.e., Ag = 0, and the non-identifiable case,
i.e., 70 = 0. Further, consider the standard bootstrap with m,, = n. Assume that
(C.1) holds. There exists some € > 0 such that

lim inf pr (dprok(ﬁn(én,ﬁn,ﬁn), S) > 6) >0,

n—roo
where S in the second argument of dp,ok(+,+) Tefers to its distribution.
Proof. See Appendix C.5. O

We briefly discuss the proof strategy for the non-identifiable case, i.e., 79 = 0
and the standard bootstrap, i.e., m;, = n. From Theorem 2.2, (&,,+/n(f),, —
no)) ~ (C,H), and the empirical distribution R, converges weakly (i.e., in
terms of dprok) to the population distribution R, of the covariates (W, U, X)
almost surely [14, Theorem 11.4.1]. Due to Skorohod’s representation theorem [8,
Theorem 6.7], there exist a sequence of random variables {(c} ,nf RI):n > 1}
and (Ct H') such that (i, nl RI) has the same distribution as (¢n,,,, Ry)

n’ n?

for each n > 1, (Ct,H') as (C,H), and for each w € €,

lim (C;rz(w)v \/ﬁ(nl(w) - "70)77?’;(1(“)) = (CT((“))’HT (w)>R00)'

n—oo

Denote by 7/, (w) the last component of nf, (w), and by H! (w) the last component
of H' (w). Since o = 0, we have v/n7} (w) — ]HIL (w). In Appendix C.5 (Theorem
C.1), we show that

derok (La(chol RE), Loo(CTHY)) = 0pe(1),

where Lo, is some measurable map from [¢, u] x R to M(R). Since EOO(CT,]HIL)
is a random measure, i.e., depending on w € €2, and the law of S is fixed, we
have that for some € > 0,

lim inf pr (dprok(ﬁn(cl,nL,RL), S) > e) > 0,

n—oo

N

which is equivalent to the conclusion in the above theorem, as (&,,1,,, R») and
(el mi RI) have the same distribution by construction.

Remark 3.3. If m,/n — 0, we have \/m,5n, = /nin X \/Mp/n = 0p:(1).
Further, it turns out that Loo(c,0) is equal to the law of S for any ¢ € [£,u].
This explains the consistency in Theorem 8.1(ii) when the bootstrap sample size
my, s of a smaller order compared to the original sample size n.

Remark 3.4. Theorem 3.1 shows that the m-out-of-n bootstrap with m., /n —
0 is consistent in the sense that for each fixed n, € R¥2 and ¢y € [(,u],
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lim,, o0 pr(p,sl < «a) = a. The procedure is robust against model identifiability
issues, that is, the consistency holds whether vy = 0 or not.

However, we note that the procedure does not control the size uniformly over
the parameter space R9F2 x [¢,u], in the sense [4, 3] that under Hy : A\g = 0,

. . s
Jim. sup pry, .(p, <) <a,
(m.c)ERI+2 x[¢,u]

where pr,, . denotes the probability when the value of (ny,co) is (n,c). This is
a stronger requirement, which allows the parameters (ny,co) to change with the
sample size n, as opposed to being fized relative to n. Indeed, if yvg = By//n for
some constant By # 0 and other parameters are fized, which corresponds to the
weakly identifiable case in [3], the limiting distribution of the test statistic Sy
would be Loo(co, B1) by Theorem A.5 in the Appendix. Further, if my,/n — 0,
by similar arguments as for Theorem 3.1(ii) and 3.4, the bootstrap distribution
of S} converges weakly to S in probability, whose law differs from Lo (co, B1) if
By #0.

3.3. Power analysis under local alternatives

In this subsection, we study the rejection probabilities under the following local
alternatives:

Hi, : A\, = Bo/v/n, for some constant By # 0. (3.3)
That is, conditional on (W,U, X) = (w,u, x), the v-density of Y = y is
€Xp (y (ngzco + /\nuxco) - ¢(770TZco + AHUICO)) .

For simplicity, we assume that the constant By and other parameters (1, ¢o),
as well as the distribution of (WU, X), do not depend on the sample size n.
We start with the identifiable case, and recall that Zg has the zero mean

normal distribution with variance o2, n, Siven in (2.5).

Theorem 3.3. Assume that vo # 0, and (C.1) holds. Consider the local alter-
natives Hy p, in (3.3). Asn — 00, S, converges in distribution to ZS—I—BOUSO’%.
Further, consider the bootstrap procedure with m, — oo as n — oco. For each

a € (0,1),

lim pr(py < a) = (27" (a/2) + Booey.n,) + (271 (/2) — Booey m, ),

n— oo

where ®(-) is the cumulative distribution function of N(0,1).

Proof. See Appendix D.1. O

For the identifiable case, the power under the local alternatives in (3.3) is the
same as if the unknown cutpoint ¢y was known [41]. This is because if vg # 0,
the cutpoint ¢y can still be estimated at a super parametric rate under Hy ,,.
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Next, we consider the non-identifiable case. Recall the definitions of Vgl,), and

VEQT)] in (2.5), and the zero mean Gaussian process {((Agl))T, AEQ))T ccelul}
in Subsection 2.1. Define

1 T
C : = sargmax — (Aél) + BOV£4)) (Vg},)?o)_l(Agl) + B()Vgl))7
c€ll,u]

27]

N ) (2) (1) -1 A M) (5) (2) 1) y-1y,(4)
T A@ N Vﬁa”lo(vév"lo) Aﬁ + BO (VE N VCK’]U (VE/’TU) VC ) ’

where for each ¢ € [¢, u],
VW =E[¢" (g Ze))\UXeyZe), VO =E[¢" (0 Ze))UXey X (3.4)

Note that both C and S depend on By, which is omitted for simplicity. In
addition to the bias term, i.e., the last term in the definition of S above, the

first two terms are different from S in (2.7), since they are evaluated at C,
instead of C in (2.7).

Theorem 3.4. Assume that v = 0, and (C.1) holds. Consider the local alter-
natives Hy ,, in (3.3). Asn — oo, S, converges in distribution to S.
Further, consider the bootstrap procedure with my/n — 0 as n — oo. Fix
some level o € (0,1) and denote by s the upper a-th quantile of |S|. Then
lim pr(p;; < ) = pr([S| > gas)-

n—oo

Proof. See Appendix D.2. O

In the non-identifiable case, although the power function does not have a
simple form, under mild conditions, the rejection probability for the proposed
procedure approaches one under the local alternatives in (3.3), when the mag-
nitude of By diverges, that is, lim|g | oo pr(|S| > gas) = 1. To see this, due to
the definition of C, as |By| — oo, C converges in probability to

¢t = argmax (VIHT(v) =1y @),

cm c
cell,u] 0

€]

1y 4 .
) LW is non-zero
ctmg ct ’

if the maximizer is unique. Further, if Vc(f) - Vt(j)n vV
2o

then |S| approaches oo in probability as |By| — oo.

4. Wald-type profile tests based on the m-out-of-n bootstrap

In this section, we propose the following m-out-of-n bootstrap procedure for
the Wald-type test statistic, W, in (2.4). As before, m,, < n below is a user-
specified integer.

SteP 1. Compute the MLE (&,,7,,, An) for (co, g, Ao) and the test statistic
Wy, as in (2.4), based on data D;, i € [n].
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STEP 2. Randomly sample with replacement from (W;,U;, X;), i € [n] to
obtain a bootstrap sample of size m,, denoted as (W7}, U}, X}), i € [my]. For
each i € [my,], given (W}, U, X*) = (w,u,x), generate Y;* from the distribu-
tion with the following v-density:

Yy = exp(y(ﬁngzn) - ¢(7~7525n))-

The bootstrap sample is D; = (Y;*, W, U, X}), i € [mn)].

STEP 3. Based on the bootstrapped data ’13: , © € [my,], compute the MLE
(e, My, Ar) and the test statistic W,¥ using (2.4) with n replaced by m,, and D;
replaced by ’b: . That is,

my
(5,05, \5) == sargmax  my, Zg@cm,)\(’D:), W)= /mpAl.
(e,mA\)El,u] xRd+3 i—1

STEP 4. Recall that prp denotes the conditional probability given the data
D;, i € [n]. Then the p-value is defined as

pn =1 = prp(IWy] < [Wal).

If p/¥ is smaller than a user-given significance level, we reject the null hypothesis
Hy : Ay = 0. Otherwise we cannot reject the null.

As mentioned above, we omit the precise statements regarding the properties
of Wald-type profile tests, due to its similarity to score-type profile tests, and
also because in Section 5 we notice that its performance is not as good in terms
of empirical sizes and powers, when the sample size is moderate (100 ~ 500).

To understand this issue, we conduct the following simulation study: W =1,
X is uniformly distributed over (0,1), U is independent of X with E[U] =
0.5, the response follows the logistic regression model, and ¢o = 0.5, [¢,u] =
[0.15,0.85], g = (1,—1.5,0)7, Ay = 0. In Figure 1, we present histograms and
density lines, with 7.5 x 10° repetitions, of the sampling distributions of \/ﬁj\n
for n = 100, 300, 1000, 10%. From Figure 1 we observe that \/ﬁj\n approaches its
limiting distribution (in the last panel) rather slowly, not until n is 1000. The
theoretical investigation of the slow convergence rate is left for future work.

5. Simulation study

In this section we conduct simulation studies to evaluate the finite-sample per-
formance of the proposed methods. In each repetition of the simulation, for each
i € [n] where the sample size n € {200,300, 500}, we consider the following in-
dependent covariates: an intercept W; = 1, a continuous biomarker X; from the
uniform distribution on (0, 1), and a treatment indicator U; from the Bernoulli
distribution with a success probability 0.5, and further a binary outcome Yj,
whose conditional expectation, given (W;, X;,U;), is specified by model (1.2)
with the logistic link function, and ¢y = 0.5. For regression parameters, we con-
sider \g = 0 under the Hy and A\g = 2 under Hy, and four different choices for
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F1G 1. The sampling distributions of Wy, under the null for different n. “1M” denotes 10°.

Ny € {n™ : k € [4]}, which are specified in the captions of Tables 1 and 2.
Specifically, under the null, n®), ) correspond to the identifiable case, and
7@ to the non-identifiable case, while 7! belongs to the identifiable case with
a small main effect (i.e., |yo]| is small). The empirical sizes and powers of the tests
below, defined as the proportion of rejections under Hy and H; respectively, are
calculated with R = 2000 repetitions at the level 5%.

The bootstrap score-type and Wald-type tests, proposed respectively in Sec-
tions 3 and 4, are referred as “B-Score” and “B-Wald” in this section. For
each sample size n, we let [(,u] = [15%,85%)], consider the bootstrap sam-
ple size m, = n" (rounded to an integer) with x € {0.9,0.9375,0.95,1}, and
use B = 2000 bootstrap repetitions. We compare the proposed methods with
several tests mentioned in Section 1, which are asymptotically valid under either
the identifiable case or non-identifiable case, but not both.

First, in Theorem 2.1, we show that if the cutpoint ¢y is identifiable (i.e.,
7o # 0), the profile score test statistic Sy, in (2.3) convergences in distribution to
N(0,02 ., ), where 02, is defined in (2.5). By a similar argument as for Theorem

€0,Mo

2.1, one can show that ng,;]n is a consistent estimator for 0'30)1]0 if y9 # 0, where
(Cn,1M,) are the MLE in (2.3). Thus we may reject the null if |S,/0s, 4 | >
®1(0.975), where ®(-) is the cumulative distribution function of N(0,1). This
procedure obtains the critical value by the asymptotic approximation under the
identifiable assumption, and thus is referred as “A-Score”.

Second, we consider the minimum p-value methods, with and without ad-
justment. For the unadjusted version, which is called as “MP”, we reject the
null if sup,cg ) [Sn.e/Gcn, | = ®~1(0.975), where S, . and 7, . are defined in

(2.2), and 02, is defined in (2.5). For the adjustment under the non-identifiable
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assumption, which is referred to as “MP(adj)”, we define the following test
statistic Sqq; [40] and p-value py qq5 (8],

v k1 202 _ SrL X Uik
Pradj =2 ) (—1)"""exp(—2k“S5y), where Suqj = sup | F=tr—x/,
; “ celb,u] | Omp\/ Zizl U;

with & == Y; — ¢/ (&, + Buli), 67, = 7' 20 6 — (071 201, 6)?, and &,
and Bn are the MLE of ay and 5y under the assumption vy = Ao = 0.

The empirical sizes and powers for the above tests are summarized in Tables
1 and 2. From Table 1, the empirical sizes of the B-Score method are close
to the nominal 5% level under both the identifiable and non-identifiable cases,
and are not sensitive to the choice of bootstrap sample size m,,. The empirical
sizes from the MP method can be seven times of the nominated level in all cases.
Although the A-Score test works reasonably well under the identifiable case (1)
and n), it loses the control of Type I error in the non-identifiable case (n(?)
and the small-main-effect case (n*)). In contrast, the MP(adj) method works
well in the non-identifiable case (9(®) but behaves poorly in the identifiable
case (n®® and ®), and also when || is small (p")). The results on empirical
sizes indicate that A-Score and MP(adj) methods are quite sensitive to their
corresponding identifiability assumption.

The empirical sizes of the B-Wald are very conservative, and from Table 2, its
empirical powers are poor compared to the B-Score method especially when the
sample size is not large (say, less than 500), which makes B-Wald less desirable.
The A-Score, MP and MP(adj), as expected, have a slightly better power than
the proposed methods, but they fail to control the size in many situations.

6. Application to a colorectal cancer dataset

We consider data from a CO.17 trial conducted by the Canadian Cancer Trials
Group [19], which randomized 572 patients with advanced colorectal cancers
to receive Cetuximab plus best supportive care (BSC) or BSC alone. One of
the important clinical outcomes in this trial is the response to the treatment as
assessed by Response Evaluation Criteria in Solid Tumours (RECIST), which
is categorized as complete response (CR) if all target lesions of this patient
disappear, partial response (PR) if there is at least 30% decrease in the sum
of longest diameters of the target lesions, progressive disease (PD) if there is
at least 20% increase in the sum of longest diameters of the target lesions, or
stable disease (SD) if there is not sufficient decrease or increase in the sum of
longest diameter to qualify for PR or PD [39]. A patient is said to have benefited
clinically when the response was either CR, PR or SD, and it is of interest to
identify subgroups of patients who would have different treatment effects with
respect to this clinical outcome based on baseline values of some biomarkers.
In this analysis, we consider the following three potential, continuous biomark-
ers (i.e. X): mRNA expression of the gene epiregulin (EREG), the levels of lac-
tate dehydrogenase (LDH) and alkaline phosphatase (ALKPH) in the blood.
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TABLE 1
The empirical sizes (in percentage) for testing Ho : Ao = 0 at the level 5% for the logistic
model. Here, n1) = (=1.4,1.2,0.2)T, n®® = (1,-1.5,007,7n® = (-1.4,1.2,1)T,
@ = (—1.4,1.2,2)T, Xo = 2 under the alternative.

B-Score B-Wald A-Score  MP  MP(adj)
mn n0.9 n0.9375 n0.95 n n0,9 "0.9375 710'95 n
n =200
M 54 5.7 58 5.9 4.5 3.8 44 44 26.0 34.0 8.7
n? 6.2 6.3 6.1 6.4 2.2 2.4 28 20 28.4 37.7 5.0
n® 7.0 7.5 6.5 6.9 1.1 0.7 1.5 09 11.9 35.5 5.4
n® 6.4 6.8 6.6 6.0 0.6 2.0 24 4.0 5.7 35.4 9.4
n = 300
n 6.3 6.6 55 5.4 1.3 0.8 1.0 3.6 26.5 36.0 9.9
n® 53 5.2 42 5.0 0.2 0.4 1.3 29 27.8 37.4 4.9
n® 71 5.5 75 5.4 0.2 0.3 0.6 1.8 8.6 37.7 7.5
n® 6.6 5.6 58 5.6 0.0 1.2 26 4.0 5.1 40.3 9.8
n = 500
M 52 5.0 6.0 5.0 1.6 2.3 33 6.0 22.6 36.8 13.2
n? 56 5.7 48 58 1.6 3.6 40 82 28.2 39.9 4.7
73 5.6 6.3 6.1 4.9 1.2 1.6 1.6 28 7.3 41.1 9.3
n® 6.1 5.6 6.7 6.0 2.6 3.2 4.1 44 4.5 46.4 9.9

TABLE 2
The empirical powers (in percentage) for testing Ho : Ao = 0 at the level 5% for the logistic
model. Here, n(V) = (=1.4,1.2,0.2)T, n® = (1,-1.5,0)T,n® = (-1.4,1.2,1)T,
7@ = (—1.4,1.2,2)T, X\o = 2 under the alternative.

B-Score B-Wald A-Score  MP  MP(adj)
mn n0.9 n0‘9375 n0’95 n n0.9 n0.9375 n0.95 n
n = 200
1 739 74.0 73.0 732 2.2 2.3 35 133 81.0 92.5 97.3
73 79.2 78.2 76.5  75.6 0.9 1.8 24 162 86.7 96.0 96.7
n® 725 70.9 71.9  70.6 9.3 24.0 30.3  53.8 73.1 88.1 94.8
n®  53.2 53.0 53.1  54.2 45.2 57.2 61.4  66.4 48.3 56.8 98.4
n = 300
nM  89.1 88.5 89.1  88.7 3.3 5.7 352 59.5 93.0 98.2 98.9
7@  90.2 91.5 921 92.0 5.0 14.8 48.9  67.1 96.3 99.3 98.9
n®) 889 872 87.5  86.9 32.5 61.3 80.2  89.0 87.7 97.1 98.6
n® 731 72.1 719 722 50.5 73.9 80.0  81.1 69.1 83.7 99.5
n = 500
nM 983  99.0 98.7  98.1 83.5 90.7 92.2 952 99.0 99.8 99.3
n 989 993 98.9  98.7 92.9 942 95.2  96.8 99.7 99.9 99.2
n®) 977 982 98.1 982 97.9  98.7 98.4  98.9 98.4 99.7 99.5
n® 921 91.4 91.7 925 94.5 94.6 94.0  95.9 89.4 98.3 99.0

The clinical outcome Y is binary, with value 1 if a patient had a clinical benefit
and 0 otherwise. The treatment indicator U is 1 if a patient received Cetuximab
plus BSC and 0 if BSC alone. We consider the age of patients and the inter-
cept as the additional covariate W. The sampling distributions of the three
biomarkers and the age covariate are showniln Figure 2. For each biomarker
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Fic 2. The sampling distribution of EREG, LDH, ALKPH, and AGE. The vertical dash line
for each of the three biomarkers indicates the cutpoint estimated by (2.4).

TABLE 3
The p-values for testing Ho : Ao = 0 from the B-Score, MP and A-Score methods. The 95%
confidence interval for the p-value from B-Score method shown in parentheses under the

p-value.
Biomarker B-Score MP A-Score
mn nOAQ n0A95
EREG 5x1073 7x1073 1.4x10~3 1.3x1073
(0.001,0.008)  (0.000,0.008)
LDH 0.02 0.03 2.5%x1073 0.014
(0.011,0.028)  (0.012,0.030)
ALKPH 0.07 0.09 4.4x1073 0.027

(0.069,0.105)  (0.066,0.100)

(i.e. X), we consider the regression model (1.2) with the logistic link function
for identification of subgroups with differential treatment effects.

First, separately for each biomaker, we applied the proposed B-Score method
with m,, = n%?, n%9%, MP method, and A-Score method defined in Section 5
to test whether there exist subgroups defined by an unknown cutpoint which
have significantly different treatment effects, i.e., testing Hy : Ap = 0 in model
(1.2) with an unspecified ¢g. The p-values from these methods are presented in
Table 3. Due to randomness of the resampling methods [26], we computed 95%
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TABLE 4
An explanatory subgroup analysis that shows the proportion of patients with clinical benefits
by treatment and subgroups for biomarkers EREG, LDH and ALKPH.

Cetuximab+BSC BSC
Biomarker Subgroup Total #  # (%) with Clinical Benefit Total #  # (%) with Clinical Benefit Treat Effect p-value

EREG <743 116 65 (56%) 99 17 (17%) 39% 5.7x1079

>7.43 46 8 (17%) 39 9 (23%) -6% 0.70
LDH <992 150 71 (47%) 109 25 (23%) 24% 1.0x10~4
> 992 40 20 (50%) 25 0 (0%) 50% 7.1x107°
ALKPH <270 152 77 (51%) 114 25 (22%) 29% 3.5x1076
> 270 50 20 (40%) 21 0 (0%) 40% 1.7x1073

confidence intervals for the bootstrap p-values from the B-score method with
1,000 repeated bootstrap tests (each with B = 2,000 bootstrap samples), which
are also shown in Table 3.

From Table 3, one can see that, for both EREG and LDH, all methods suggest
rejecting the null at the 5% nominal level; the p-values from MP and A-Score
methods are, however, more significant than that from the B-Score methods. For
ALKPH, the B-Score method fails to reject Hy at the 5% level, in contrast to the
other two methods. These results are consistent with the simulation results in
Section 5 which demonstrated that MP and A-Score methods are more liberal
than the B-Score method. Note that the confidence intervals for the p-values
from the B-Score method lead to the same conclusions.

To make sense of the above results from testing Hy : A\g = 0, we show in Table
4 the results from the explanatory subgroup analysis based on each biomarker.
Specifically, we first obtained the MLE estimate ¢, of the cutpoint for each of
the potential biomarkers through (2.4), i.e., without assuming Ao = 0, which is
7.43 for EREG, 992 for LDH, and 270 for ALKPH; these cutpoints are shown by
the vertical dash lines in Figure 2 relative to the sampling distributions of the
biomarkers. Next, for each biomarker, based on the estimated cutpoint, patients
are divided into two subgroups; further, for each subgroup, we counted the
number of patients (shown in the Total # column) in each of the two treatment
groups (“Cetuximab + BSC” and “BSC?”), and also calculated the number and
proportion (in %) of patients with clinical benefit. For example, there were 116
patients in the subgroup with EREG < 7.43 who received the treatment with
cetuximab+BSC, and 65 (56%) of them had clinical benefit 2. Finally, for each
subgroup, we computed the difference in the proportions (in %) of patients with
clinical benefits between patients treated with cetuximab+BSC and BSC alone
(shown in the Treat Effect column) with a positive difference indicating that the
treatment with Cetuximab plus BSC is “more beneficial” than that with BSC
alone, and the p-value from the chi-square test for the difference. From Table
4, we observe that the absolute difference in the treatment effect between the
subgroups was the smallest for ALKPH among the three biomarkers (11% in
comparison with 45% and 26% respectively for EREG and LDH). Since, from the
B-Score tests (see Table 3), the difference in treatment effect was significant at

2Due to missing data in the biomarkers, the number of patients corresponding to different
biomarkers are not the same.
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5% level for EREG and LDH, we may conclude that patients with EREG < 7.43
or LDH > 992 would have more clinical benefits when treated by centuximab
and BSC than by BSC alone, while there is no additional or smaller clinical
benefit from centuximab and BSC for patients with EREG > 7.43 or LDH
< 992. There is only a marginally higher clinical benefit from cetuximab and
BSC for patients with ALKPH > 270 than those with ALKPH < 270 because
there is only a trend to significance at 5% level for the difference in treatment
effect between the subgroups defined by ALKPH from the B-Score tests.

7. Discussions

In this section, we discuss potential future work. First, in this work, we consider
the use of a single unknown cutpoint on a continuous biomarker to classify pa-
tients into two subgroups; however, in many applications, it may be desirable
to have more than two subgroups and thus multiple cutpoints. In the recent lit-
erature on prognostic classification problems, this issue has been studied under
various models such as accelerated failure time models [25] and change plane
models [28]. The procedures proposed in this work may be extended to pre-
dictive classification with multiple cutpoints but there are several challenges to
implement the procedures and investigate their theoretical properties. Specifi-
cally, assume that W = 1 and there are two cutpoints. In this case, the response
Y has a v-density given by exp(yto — ¢(to)), where

to = ag + BoU + (0,1 + X0,1U) Xy, + (0,2 + A0,2U)(Xep o — Xeo )

with X, = I(X < ¢) and ¢p1 < cp2. To test Hy : Ag1 = Ag,2 = 0, which is
the goal of predictive classification, one approach would be to extend the profile
score test statistic Sy, in (2.3) as follows:

S =72 (Vi = ¢ () Uil Xie s Xison o — X )71
=1

where I; = G, +BnUi+9n,1Xi.6, 1, +9n,2(Xien o —Xien 1 )» and (G, By An1s An2)
and (é,1,6n,2) are the joint maximum likelihood estimators (MLE) under the
null. The critical value for S, could be obtained by modifying the m-out-of-n
bootstrap procedure in Section 3 but its computation may be more expensive
because of the need to compute joint MLEs. The identifiability issue becomes
more complicated, since it could happen that neither or one of ¢y ; and cg 2 is
identifiable, which makes theoretical investigations more difficult. The number
of cutpoints may also be unknown and need to be estimated. These problems
would be interesting topics for future research.

Other interesting directions for future research include the case where there
are multiple biomarkers which need to be combined for predictive classification,
and as discussed in Section 4, the slow convergence rate of the profile Wald-type
test statistics.
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Appendix A: Triangular array setup for size analysis

Let P be the joint distribution of (Y, W, U, X) on the observation space S :=
So x {w € R? : ||w|| < C,} x {0,1} x R, where Sy is the response space.
The conditional density of Y given (W, U, X) is given in (1.1), relative to some
o-finite measure v. From [31] it is known that E[Y|W U, X| = ¢'(n Z.,),
VAR]Y|W .U, X]| = ¢"(nd Z.,), where Z, = (WT U, X,)T and X. = I(X < ¢),
and ¢”(t) > 0 for all ¢ € R. Further, ¢(-) is an infinitely differentiable convex
function on R.

In this section, we consider a triangular array setup that will be applied to
both the MLE based on the original data and the bootstrapped data. For each
neN, let Dy ; = (Yo, Wi, Uns, Xns), i € [my] be a random sample from a
distribution @, defined on the common underlying probability space (€2, G, pr),
where m,, — co. Assume that conditional on (W, ;,U, ;, X, ;) = (w, u, x), the
v-density of Y, ; =y is

exp (y (mfzcn) - ¢(775ch)) ) (A1)

where nlz. = alw+B,utynz., , 2. is defined after (1.1), n,, = (&L, Bp, vn)* €
R¥*2 and ¢, € [¢,u]. Note that compared to (1.1), we set Ao = 0 in (A.1). Also,
E[Yn,1|Wn,17 Un,l; Xn,l] = ¢/("7£Zn,1,cn)a where Zn,l,cn = (Wz,l’ Un717 Xn,l,c,,)T
and X, 1,6, = 1(Xn1 < cp).

Denote by Qf = m,'> " ép,, the empirical measure on S induced by
D, i,i € [my), where 0p, , is the Dirac measure at D, ;. The MLE (¢, 7;,),
based on D, ;,i € [my)], is defined to be

(&,,7,) == sargmax Qg.n,=  sargmax S Z Ve (Dhni)s
(e,;m) €[l u] xRI+2 (c,n)€[l,u] xRd+2 TTn i1

where we recall . n,(y, w,u,z) = y(n'z.) — ¢(n’'z.) in (3.1), and for an ar-

bitrary distribution @ on S and a function f : S — R, denote by Qf =

| f(z)Q(dz) as long as the integral is well defined.

Define two semi-metrics on [¢, u] x R¥T2 do((c1,m,), (c2,m5)) = /|1 — ca| +
I — ol and da((er,m,), (e2:m2)) = I, — myll, where || - | is the Euclidean
norm. In this section, we establish the consistency and the convergence rate of
(é:,7) to (cn,m,), in terms of dy for the identifiable case (i.e. 79 # 0), and
dy for the non-identifiable case (i.e. 79 = 0). Further, we derive the limiting
distribution of (&, ) under the triangular array setup.

Additional Notations. For two sequences of random variables {4,, : n € N}
and {B,, : n € N}, we write A,, = Op,(By,) (vesp. A, = op(By)) if Ay, /By, is
bounded (resp. converges to zero) in probability. If {A,} and {B,} are in fact
deterministic, we omit the subscript pr.

Let f, F be two real-valued functions on S, and F a collection of functions on
S. F is said to be an envelope function for F if |g(s)| < F(s) forallg € F,s € S.
Further, define F — f :={g— f : g € F}, and for any § > 0,

Fs = {906,71 : (Ca 77) € K5}a with K5 = {(Cvn) icE Ma u]v Hn - 770” < 6} (AQ)
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For a distribution Q on S, define | Q|| 7 = sup;c 7 |Qf], and || f[lg,2 = (Q[IfIP)Y2.

Let N(&, F,d) denotes the £ covering number of the set F under the semi-
metric d. Following [42, Page 239], for any € > 0, define the uniform entropy
J(e, F, F) for the class F with an envelope function F' as follows

J(e,F,F) = sup/ V1+10gN(E|Floa F Lo(Q)ds,  (A3)
Q Jo

where the supremum is taken over all discrete probability measures @ with
|Fllgz > 0.

All random variables D, ;, i € [my] are defined on the underlying probabil-
ity space (£2,G,pr). Since we will work with distributions on the space S, we
introduce the following measurable coordinate mappings on S:

Yy, w,u,z) =y, Wy, w,u,z) =w, Uy, w,u,z)=u, X(y,w,uzr)=mr,

X.=Ix<¢), Z.=W'u,x)" Z.=2Z7 ux)?,
which are random variables (vectors) on the space S, and we can use operator
notations such as Q[X,] for [I(z < ¢)Q(dx), where @Q is a distribution on S.

Let T be an arbitrary index set, and for a function f : T' — R, denote its

loo norm by || fllec = sup,eq |f(t)|. Denote by ¢>°(T) the space of uniformly
bounded, real-valued functions on T' equipped with ¢o, norm. Let Z,, = {Z,, ; :
t € T}, n > 1 be a sequence of random processes indexed by T, for which
| Zn|loo < oo for each m > 1 almost surely, and Z be a tight random element in
£°(T). Then as in [41], we say Z,, n > 1 converges weakly to Z, or Z, ~~ Z,
in £°(T) if E[g(Z,)] — E[g(Z)], as n — oo, for any bounded and continuous
function g : ¢*°(T) — R. 3

A.1. Assumptions for the triangular array setup

We make the following assumptions for the triangular array setup.
(A.1) For j € {0,1},
0 < lim irng[Un,l] <limsupE[U, 1] < 1,
0 < lim ir&fpr(XnJ <l U,1=7) <limsuppr(X,1 <u,U,1=7) <1,

sup  pr(cr Acg < Xpi<ec1Veg) =0 forevery 6§, — 0.
[e1—c2|<dn

Hminf Ain (E(W o i Wiy | Ut = j, Xn1 > u]) > 0,
Hminf Apin (B[W o s WL 3 [ Uny = J, Xn1 <4]) >0, sup||[Wy || < Cl.

3The random processes Zp, n > 1, viewed as maps from the underlying probability spaces
to £°°(T), are usually not Borel measurable, in which case the expectations are with respect
to outer-probabilities. For details and a definitive treatment of functional weak convergence,
we refer readers to [41].
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(A1) For any § > 0, |Q, — P||x, — 0.

(A.x) For any 6 > 0, (cg,mg) is a well-separated maximizer of Py, ., in
Ks. That is, for any € > 0, Pp.n < Ppc,n, for all (¢,n) € Ks such that
d,((c,m), (co,mg)) > €, where ¢ € {0,1} needs to be specified.

(Av) d,((enym,,), (co,mg)) — 0, where ¢ € {0,1} needs to be specified.

If 79 # 0, we further need the next three conditions:
(A.v) For some € € [0,1/4):

1
0 < liminf inf ——Qnll(chey, <X <cVey)
n—00 n-1l+2<|c—c,|<1 | |€ — cp
1
< limsup sup {7Qn[I(CACn<X<c\/cn)]} < 00.
n—oo p-1+2¢<|c—c,|<1 ‘C - Cn|

(A.v1) For any 4 € [0,1/4):
VI QulI(cn — m; 12 < X < ¢, + my; 2] = 0.

(A For any (c1,m,). (cam) € 6] X BRI, QuI(0) = o/ (] 22V -
¢ (i Z.,)) 2., Z,,] converges as n — oo. Further,

T

=T
Co]'

lim Qn[fb"(’mTchn)chZc |= PW//(’?OTZ%)ECOZ
n—o0 "

If 9 = 0, we need the following two conditions:

(A.vur) For some constant Bi, lim, oo /MnYn = Bi. Further, if By # 0,
assume that lim,,_, « ¢, = By for some Bs € [, u].

(A.1x) Uniformly over (cy, ca,c3) € [, u]?,

. = =T = =T
nh~>nclo Qn[(bll(nzzcs)zcl ZCQ] = P[¢”(n§ZC3)ZCI ZC2]'

A.2. Consistency under triangular array setup

Theorem A.1. Let: € {0,1}. Assume that (A.1)-(A.111) with ¢ hold, and that
sup,, ||n,,|| < oo. Then d,((&5,7},), (co,mg)) — 0 in probability.

Proof. From Lemma A.2, (¢&, 7)) is uniformly tight. Besides, for any § > 0,
(co,mp) is a well-separated maximizer of Py, , in K from condition (A.III).
Therefore by [42, Corollary 3.2.3 (ii)], it suffices to show that ||Q} — P||z — 0
in probability for any > 0. Note the following decomposition

Q7 — Pllzs < 1Qr, — Qullzs + 1@n — Pl
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where the second term converges to zero by condition (A.Ir). For the first term,
by [42, Theorem 2.14.1], there exists an absolute constant C' > 0, such that

* CJ(1, Fs, F,
BIQ; - @l < SRR o, (1)

where F5(Y, W,U, X.) = C1,5|Y|+C25 is defined before Lemma A.1. By Lemma
A1, J(1, Fs, F5) < oo. Further, since sup,, ||n,,|| < oo and || Z.|| < 2+ C,, for
any c¢ € [{,u], we have

sup Qn[YV?] = sup (¢"(mEZc,) + (¢ (L 2e,))?) < o0, (A.4)

which implies sup,, /Qn[FZ] < co. As aresult, [|Q} —Q,|| 7, — 0 in probability.
Then due to [42, Corollay 3.2.3 (ii)], we obtain that d,((é&%,7;,), (co,m0)) — 0 in
probability. O

Recall the function class Fs and the set K; defined in (A.2), and C,, in
condition (A.1). For any § > 0, define

C1s = [laol|Cuw + [Bol + [0 + (24 Cw)d,  Cas = o (lo@®)] + 16 (B)]) -
t|<Chis

Since ¢ is infinitely differentiable on R, for any 6 > 0, we have C3 5 < 0o and
Fs(Y, W, U, X.) = C15|V| + Cas,
is an envelope function for Fjs.
Lemma A.1. Under (A.1), J(1,Fs,Fs) < oo for any § > 0.
Proof. For any 6 > 0, define a function class F; 5 on S as follows:
Fis =182 (y,w,u,z) = a’w + pu+~yI(x <c): (c,n) € Ks}.

From [11, Definition 2.1], 1,4 is a VC-type class with the constant envelope
function C s. Further, the class {V} is a single function, and thus is a VC type
class with the envelope function |)|.

Now define g : R? — R by g(ai,as) = ajaz — ¢(ay). Then we have

Fs C g(Fr,5,{V}) ={f1,6Y — o(fi5): fis € Fis}-
Observe that for any fis, f] 5 € F1,6,

}go (fl,éay)(vaauax) —go (f{,&y)(vavuax”
< (‘y| + 02,5)‘f1,6(y7w7uvx) - f{,é(vaauaz”'

By [11, Lemma A.6], Fs is of VC type with the envelope function Fs, which
completes the proof due to the calculation in the proof of [11, Corollary 5.1]. O

Lemma A.2. Assume that (A.1) holds, and sup,, ||n,| < oco. Then (&, 7;,) =
Op:(1).
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Proof. The tightness of & holds since it is restricted in [¢, u], and in what follows
we focus on 7),,. Since (&, 7),) maximizes Q},¢cn, we have that Qj [@e: 42 —
©e,m,] > 0, or equivalently

Q)" Ze; = Ze,) — (0((1)" 22,) — b0y, Zc,))] 2 0.
Therefore we have I, < |L(Ll)\ + |II7(12)|, where

I = @) QY = ¢ 2, ) Ze ), LD =m QY = ¢/ (m 2e,) 2]
Iy = Qule((M,)" Ze;) = b0y Ze,) = &'y Ze,)(07,)" e, =y Ze,))-
By Lemma A.3 (below) and since sup,, ||n,,]] < oo, we have
D]+ LD = (L4 (177, op: (1). (A.5)
Next we consider the term I1,,. Since ¢ is convex,
bn 1= ()T Zor) — 6T Z0) — ' (0] 2o ()7 B, — T Ze,) = 0.
which implies that
I, > ITM + 113 + 11, where  TT() = Q% [pnI(U = 0,X < 1)),
1P = QoI U =1, X < 0)], I = QhdnI(U =0,X > u)].
Let Cp, C; be the constants in Lemma A.5 (below). Define an event in the

observation space S:

A={| o] = at e - el = LU =0 < o

If A occurs, then X, = 0 for ¢ € [¢,u], and thus
an > H(Kv C()_l) |(d: - an)TW| Z H(Ka Co_l)oo_lnd:; - an“a

where K = C,,sup,, [|1,|| < oo, and x(K,Cy*) > 0 is defined in Lemma A.4
(below). Thus there exists some positive constant C such that

CIIY = CQ}[¢n(U =0,X < 0)]

(&, — )"
167, — el

> 1165 — anll I(6, — aunl| 2 1)@ [1(

>[lé; - anllI(lé; — anll > 1) inf Q3I(8™WI>Cq\U = 0,% < 0)

W‘zco—l, U=0,x geﬂ

> ||a:; - an”I(HdZ —a,l> 1)(Cf1 + Opr(l))a

where the last inequality is due to Lemma A.5.
Further, if ||&) — a,||Cw < 27185 — Bul, U =1, X </, then

()" 26, —my e, | 2 1By = Bul = |6, — el Cu > 27115, = Bal.
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If [|&) — an||Cw < 2743 — 4|, U = 0, X > u, then
|(ﬁ;)TZéfL - ngzcn‘ Z |’3I:L - ’)/n| - Hdz - anHCw Z 271|/7\/;kl - ’Yn'

Then by a similar argument as for I,(Il), there exist positive constants Cy
and C5 such that

112 2 (05 + 0pe()IB5 = Bul (157 — Bl > max{2]16;, — exa|Cus, 2}).
1P > (G5 + 0p () A5 = vl L1375 — vl = max{2(|&;; — ]| Cu, 2})-

Combining the above three cases, and due to (A.5), we have that there exists
a positive constant C4 such that

(1" +op W), — L1707, — 1, | = 8Cw +6) < L1 < (1+ |7, ) opr (1)
This completes the proof for ||7};, — n,,|| = Op:(1), since sup,, ||n,,|| < cc. O
Lemma A.3. Assume that (A.1) holds, and that sup,, ||n,| < co. Then

s QLY — ¢ (mn Ze,)) 2l = ope(1).

Proof. Let § :=sup,, ||n,,|| < oo, and define
]:275 - {S > (yawauax) = (y - ¢/(nTzC1))zC2 : (61362) € [E,U]Q, ||7l|| < 6}

By a similar argument as in Lemma A.1, there exists a constant C, that de-
pends on §, such that Fy 5 = C(|Y| + 1) is an envelope function for F3 5, and
that J(1, F26, F2) < 0o. Then due to [42, Theorem 2.14.1], for some absolute
constant C”,

E

sup [|Qy,[(Y — ¢'(ngzcn))zc]1
cel,u]

=E
cel,u]

% C'J(1, Fos, F:
< E|Q; — Qullz, < sup WQT‘S 2) [0, 2,
n n

sup ”(Q; - Qn)[(y - ¢/(7153cﬂ))zc”|1

Then the proof is complete due to (A.4) and condition (A.1). O
Lemma A.4. For any K >0 and § > 0,
. o(y) — () /
k(K,9) = inf —— — ¢ (x)| > 0.
( ) ly—z[26,|z|<K y—x ?(@)

Proof. Since ¢ is convex and infinitely differentiable on R, for any y > = + 6,
we have

¢(y) B (b(f) /
T ¢ (x) > 5

At =00 2y = Lo/ (a1 19),
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for some ¢ € (0,1) by the mean value theorem, and thus

. (b(y) B ¢($) / 1 . "
R A i S > =
y2z+1§f\fz|<z< y—x (@) 2 26 |m|1§}£+a¢ (@) >0,

where the last inequality is because ¢” is continuous and ¢”(¢) > 0 for any
t € R. The case where y < z — § is similar and omitted. |

Denote by S¢~1 the unit sphere in R?, i.e. S¥~! = {s € R?: ||s|| = 1}.

Lemma A.5. Assume (A.1) holds. Then there exist positive constants Cop, Cy
such that

elgf QLI(16"W| > Cyt U = 0,X < 0)] > CT + ope(1).
c d—1

Proof. By a similar argument as in Lemma A.3,

sup (@, = Qu)[I(16" W] > Cy U = 0,X < 0)]| = op(1).
0eSd—1

Then, due to (A.I), it suffices to show that for some constant Cp,

liminf inf pr(|@TW, | > Cyt U1 =0, Xp1 <€) >0
feSa-1

n

Let Ay = Amin(E[(W o 1 WE | [Un1 =0, X, 1 < £]). For any 6 € S,

EHB Wnll |U 1 =0, X, 1<€]
EHOT |2 (‘HT n,1|§ V n/ )|Un,1:07 Xn,l §£]

+E[|0TW n71|2I(|9TWn71| > VA/2) | Un1 =0, X,1 <)
A
§7 C2pr(|6W n1l = VA2 Un1 =0, Xpa <),

which implies that

A

. T n
gel‘lsldf_lpr(w Woil > VA /2|Up1=0,X,1 <0) > 202"

Then the proof is complete since lim inf,, A, > 0 due to (A.1). O

A.3. The identifiable case

For the lemmas and theorems in this subsection we assume conditions (A.1)-(A.V)
hold with ¢ = 0.
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A.8.1. Convergence rates in the identifiable case

Theorem A.2. Consider the identifiable case under the null, i.e. v9 # 0 and
Xo = 0. Let (A1)-(A.V) hold. Then my* “do((¢5,75), (cn,m,)) = Ope(1),
where € appears in condition (A.V).

Proof. From conditions (A.1)-(A.1v) with : = 0 and Theorem A.1, we have that
do((&5,75,), (¢nsm,,)) — 0 in probability. Then by [42, Theorem 3.4.1], it suffices
to verify the following two conditions for some positive constant C' and large
enough n:

sup Qn[‘Pcm - @cn,nn] < _0_1627 (A.6)
§/2<do((e,m),(cn,m,,)) <8
E sup Y, mn|(Q;, — Qn)spc,n - (Qy - Qn)%nmJ < Co, (A7)

§/2<do((c,m),(cn,m,)) <6

for any Ay V3 re < § < &y, where € appears in condition (A.v), and §, is a
constant that will be specified. Note that in the proof the value of the constant
C may vary from line to line.

Next we verify (A.6) and (A.7) for any fixed & which satisfies 4m,, " /2e <
§ < &,. We focus on the case ¢ < ¢, and the case ¢ > ¢, can be verified similarly.

Due to conditions (A.1) and (A.v), and since ¢ is infinitely differentiable on
R and ¢” is a positive function on R, there exists some constant C' > 0 such
that for large enough n, i € {0,1}, || — n,,|| <6, and ¢ € [¢,u], we have

16/ + 16"+ 16" )0 Z:.) < C, ¢"(n"Zc)>C7, (A-8)
1 QnlI(cNep <X < eV,
B e — cnl
Amin(QuWWT U =i, X < () >C7Y, QuIU=i,X<0)]>C1,
Amin(QuWWT U =i, X > u)) >C7, QulIUU =14,X >u)]>C L.

c~ < C ifm T < Je—cp| < 1

Also, note that due to (A.1)

EYo1 | Woi,Unt, Xni]l = ¢/ (0L Z1,).

Verifying (A.6). Fix some (¢,n) such that §/2 < do((¢,n), (¢n,n,,)) < 6. From
(A.8), and by the mean value theorem, there exists a constant Cy such that

Qnlpen — Penm,] = Qulen, — Penm, T Pem — em,]

<Qulpcn, = Penm,) =271 Quld" (M Z)(n —m,)" 222 (0 — )]
+Qul(¢ (ny Ze,) = &' (my 2e)) (1 — )" 2] + Cod®

=D; + Dy + D3 + Cy0®, (A.9)

where D1, Dy and D3 will be upper bounded separately as follows.
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Upper bounding D;. Due to (A.8), from the mean value theorem, D; can be
upper bounded by

D1 = Quleen, — eum,]
== Qn [(1Y = (g W + Bull +30) = dlag W + B,lh))) I(c < X < c)]
== Qn [(1® (@n W + Bald +70) — (dlag W + Bald + )
— Pt W+ B.U))) I(c < X < )]
== Qu [27192¢" (g W + Bl + A)I(c < X < ¢)]
< CT2QuI(e < X < e
where 7 is between +y, and 0.
By (A.8), QulI(c < X < ¢,)] > CYe—cy|, for any c € [(,u], if 1 > |c—c,| >

m,, 1t2¢ > p=1+2¢. By condition (A.1v), v, — Yo # 0. Therefore there exists a
constant C7 > 0 such that for large enough n,

D1 = Qulpen, — Penm, ] < —Crlte—cpl, i o — | > my T2

Upper bounding Ds. For Dy in (A.9), note that,

D2 =Qul(n —n,)" 227 (n —n,)]
=Qul(a — )W+ (B = Bu)U + (v — ) Xc?
>Qn [IU =0, X, = 0)((a — )" W)?]
+Qn [IU =1, X, = 0)((a — ) "W + (8 = B2))?]
+Qn [IU=0,X=1)((a — )" W+ (v — )%
=Qu[IU = 0, X, = 0)]Qn[((ex — an)"W)?|U = 0, X, = 0]
+QulIU = 1,2, = 0)]Qu[(( — )" W+ (B = B))*lU = 1, X, = 0]
+QulI(U = 0,% = 1)]Qu[((a — )W + (v = 7))* U = 0, X = 1].
If [m —mn,| > 0/4, then one of the following cases holds: (i) |la — ay,| >
min{6/12,6/(17Cy)}, (i) |lae — ]| < 6/(17Cy,) and ||B — B,| > §/12, (iii)
|l — an|| < §/(17C,) and ||y — || = §/12. As 2a® + 2(a + b)* > b? for any
reals a, b, due to (A.8), we have
Dy > C7 e — a,?, if case (i) ,
Dy > C7YB = B,)?,  if case (ii),
Dy > C7 Yy — 7%, if case (iii).
Due to (A.8), there exists a constant Cy > 0 such that
Dy < =Cy I —m, | = —C3 6%, if [ —m,[| > 6/4.

Upper bounding Dj3. The last term D3 in (A.9), as ¢”'(+) is upper bounded from
(A.8), by the mean value theorem, can be upper bounded by

D3 =Qu [(n —n,)" Zo)(¢' (7, Ze,) — &' (0, Zc))]
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=Qn [((a - an)TW + (B = Bn)U) (7n¢"(afW + Bl + 7)) Ilc< X < Cn)]
<Clwllln = n,1@nll(c < X < cn)],

where 4 is between 0 and +,,. By condition (A.1v), v, = v # 0, and ||[n—n,,|| <
5, e —en| < 42, then from (A.8), there exists a constant C3 > 0 such that for
large enough n,

D5 < Clyalle = enllln = n, || < C36°.

Since do((c,m), (cnym,)) > /2, either ||p — n,||> > 62/16 or |c — ¢,| >
62/16 > m;1+26, therefore Dy + Dy < —0[1(52. Further, there exists a small
enough 6, > 0 such that —C'4_152—|—0353 +Cy63 < —C~162 for all § < §,,. Thus,
for any am e <5< S,

Sup Qn[QOC,n - ron,'r]"] § 707152.
6/2§d0((67"7)»(cn »T’In))S5

Verifying (A.7). We next verify (A.7) using [42, Theorem 2.14.1]. Consider the
function class

Fnis = {Pem = Penm, = do((c,;n), (cn,m,,) <O}

For any (¢, n) satisfying do((c,n), (¢n,m,,)) < ¢ and Amy t*Te < 5 < 5, due to
(A.8), by the mean value theorem, @5 — ¢, n, | can be upper bounded by

|y(77Tzc - nfzcnﬂ o ze) — oy z)| + [o(ny, ze) — d(ny zc,)|
=|((a = an)Tw + (B = Bu)u+ (v = )l (z < ) = Wlc < a < ca))yl
+]((@ = an)w+ (8= Ba)u+ (v —m)(z < ¢) ¢'(a)|
+|(¢ (a 'w—l—ﬁnu—l—yn) ool w + Bou )) (c<$<cn)|
<lyl(lla = anllCuw + 18 = Bul + |7 =l + Il (c <2 < ¢n))
+C(lloe = an||Cow + 8 = Bul + |7 =l + [nlI(c <z < cn))
<O(Jy| + 1) + |ymlI(cn — 6 < x < ¢,)) := Fus, (A.10)

where a is between n?'z. and nlz.. From (A.8) and conditions (A.1), (A.1V)
and (A.V), we have sup,, (Qn[F2 5])*/? < C6.

Similar to Lemma A.1, sup, J(1,Fp.s, Fns) < C < oo with the envelope

function F, 5. Then, from [42, Theorem 2.14.1] and (A.4), for 4m,, "/*™* < § <
0w, we have

E sup VMn |(Q:,<Pc,n - Qn‘)@cxr)) - (Q:ﬁ@cmnn - Qn@cn,nn)

5/2§d0((c"’1)a(0n,"7n))§5

<sup J(1, Fn.s, Fns) /suanFi(; < (6. O
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A.8.2. Limiting distributions in the identifiable case

Next we derive the asymptotic distributions of the score test statistic and the
MLE under the triangular array setup.

Let p = E[U] and recall Fy(-), Fi(-) in condition (C.1), and Vcl,),7 ng,),, VC(E,),
02’,] defined in (2.5). Recall from the Section 2.1 that Z, is a random vector
of length (d + 2) that has the multivariate normal distribution with zero mean
and covariance matrix (VE?,,O)—l Zg is a random variable that has the normal

distribution with zero mean and variance o2 and Z,, and Zg are independent.

€o,Mp’

Let g, (v, w,z,u) = (y — ¢' (0" 2.)) Zc (95:1%799%) where

( ) et (T
;:;](ya w,x,u) T (y ¢ (TI zc))zm (All)
cm

98y, w,z,u) = (y — &' (0" zc) Juze.

Denote G, := /mn,(Q}, — Qn).

Theorem A.3. Consider the identifiable case under the null, i.e. g # 0 and
Mo = 0. If (C.1) and (A.1)-(A.vi1) hold, then (\/mn (7, —n,,), S5) ~ (Zy,Ls).

Proof. By condition (A.vil), we have ng) — Vg?m for i = 1,2,3, where

viD=Q, [¢" (nnzcn)zanT} V(2 = Qn[¢"(n ch)chuchn}

V3 = Qule" (nl Z.,)X.,Ul.

First we derive an asymptotic linear expansion of /m, (), — 7,,). Since
(¢%,7y,) is the maximum likelihood estimator, we have

Mn
> Znies (Yoi = &' (Z05.0010) = Gigl e + VimQugt ..

" i=1
By Lemma A.6 (ahead), Gj;gg) . = G,*,g&}“m + opr(1). Further,

\/anngé?,m Vvm Qngcn ar T V/m Qn[ 77," gii)jﬁl]
=(1) V annng«f,: =+ Opr(l)a
=2 _ngl)\/mn(f?:; —1,) + ope(1),

where (1) holds by Lemma A.7 (ahead) and (2) is due to the Taylor Theorem
and that || — n,[|?> = op:(n"'/2) by Theorem A.2 (note that e < 1/4 in

condition (A.v)). From condition (C.1), VC(I)),, is invertible, and thus we have

vV mn(f": —1,) = (V(l )~ 1G*gcn ., + Opr(l)' (A.12)

Now consider the score test statistic. By similar arguments and by the mean
value form of the Taylor Theorem, Lemma A.7 and (A.12), we have

S =G; gc* * + Vm Qng(2) ar = G* ,(;i),n + v anng;?’ﬁ:L + Opr(l)
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* 2 2 2
=GP VT Qg e VI Qulos e — 98 5]+ op(1)
= G*gm N, ngz)\/ ( -n,)+ Opr(l)
=G, - VOV GrLgY, +on(1)

ThUS, we have (\/ mn(f];; - nn)v S:;) = G: [gn] + Opr(l)a where
g, = (V)9 . 9@, —~ VRV gl ).

Finally, note that

o (V(1)>71 0 ( (1) )—1 0
Qulgngnl =" : ad G
n19.9.] 0 VY vOwO) @) 0 o,

Then the proof is complete by the Lindeberg-Feller central limit theorem. [

Lemma A.6. Consider the identifiable case under the null, i.e. vy # 0 and
Ao = 0. Under conditions (A.1)- (A.vIID), HG;[gé;ﬁ; — e, || = 0pr(1).

Proof. Fix some 0 > 0. Due to Theorem A.2 and the asymptotically uniformly
equicontinuity property [42, Page 37], it suffices to show that there exists a tight,
uniformly dop-continuous, Gaussian process G such that {G}g., : (¢,n) € Ks}
converges weakly to G in (£*°(Ks))43. In turn, by [42, Theorem 2.11.1], it
suffices to show the following conditions hold:

1. There exists an envelope function G5 on S such that for any (¢,n) € K,
Gs(y, w,u,x) > ly — ¢/ (n" zc)|||z[|, and

Qn[G3{Gs > ey/m,}] — 0, for every € > 0;

2. For every positive sequence €, — 0,

sup Q’IL”gcl,nl - gcg,n2||2 — 07

do((c1,my),(c2,m2))<en

3. For every positive sequence €, — 0 and j € [d + 3],

/ \/ log N (¢, K5,d9) — 0,  in probability,
0

where dif’ ((c1,m1), (c2, 1)) = 96m, — 92, llo; 2, and @&} is the j-th

element in g, ,,.
4. For any (c1,my), (c2,m,) € K5, cov(Grg., » , G, p,) converges.

Verify condition 1. Since W,U, X, are bounded, (c,,n,) — (co,ny) by con-
dition (A.1v), and ¢(-) is infinitely differentiable in R, there exists a posi-
tive constant C' > 1 such that G5 = C(|]Y| + 1) is an envelope function for
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{9e,n : (c,;m) € Ks}. Since the distribution of Y;, 1 belongs to the exponential
family (A.1), and n,, — 1y, for every ¢ > 0,

1
€x/My,

Qn [G3Gs > ey/mn}] < Qu [G] = 0.

Verify condition 2. Note that

”ch - 202"2 = ‘XCI - XC2|2 + |XC1 - X62|2u2 < 2|X61 - XC2‘2'

Further, since ¢ is smooth on R and || Z.|| < C\,+2, by the mean value theorem,
there exists a positive constant C' such that for any ((c1,7,), (c2,m5)) € K3,

||¢'(?7{ch) - ¢’(772TZc2)|| <C (H)an - 262“ + ||771 - 772”) )

and, as a result,

19c1m, = Gezm, | < C VN Xey = ey [+ [l = m2a])) -

Then by a similar argument to (A.4), and due to conditions (A.v) and (A.vI),
for every €, — 0, we have
I?

sup Qancl,nl - gcQ,n2 — 0.

do((c1,m1),(c2,m5))<en

Verify condition 3. We will show condition 3 for j = d + 2; the other cases
can be shown similarly and omitted here. Let F55 = {S 2 (y,w,u,z) — (y —
& (nTz))z. : (c,m) € Ks}. Similar to Lemma A.1, there exists a positive
constant C such that for each n and € > 0,

1
SgPIOgN(EHGzSHQ,za}—&&L2(Q)) <C (1 + log (E)) )
where @ is any discrete measure on S, which indicates J(e,, F3,5,Gs) — 0 for
any €, — 0.
Further, since E[||Gs|qz 2] = [|Gsll@,, .2, due to the definition of G5 and (A.4),
we have that 1 < [|Gslqz 2 = Op:(1). Then, for any €, — 0,

| v KsaPyae = [\l N (e Fop L@

=[|Gs|

en/lIGslloz .2
- V0B N (€l Gallgs 2. Fos La(@))de
0

<||Gsllog.2J (€n/Gsllay 25 F3.5, G5) = 0ope(1).

Verify condition 4. Note that for any (c1,n,), (c2,n5) € K,

T
02]'

COV(G:Lgchnl’G:Lgcz,nQ) = Qn[(y - ¢/(771Tzcl))(y - ¢/(772Tzw))zclz

Then condition 4 is verified due to (A.vII). O
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Lemma A.7. Consider the identifiable case under the null, i.e. vg # 0 and
Ao = 0. Assume (A.1)- (A.VI) hold. Then \/mnQn|ges = — 9o, az] = 0pr(1).

Proof. Due to Theorem A.1 and by the mean value theorem, we have

\/m_nQn[gé;,ﬁ; - gcn,f,;] = I(%7, —noll < 1)\/m_nQn[gé;,ﬁ; - gcn,fv:,] + ope(1)
= I(l71, = moll € Dv/maQul(¢' (7 Ze,,) = &' (77)T Z6)) (2o, — Ze,)]
= I(l7n;, = moll < Dv/maQul(&'((3)" Zey) = &' ((01,)" Ze,)) Ze,] + 0pe(1)
= I(l71, = moll € DV/maQul(¢' (7 Ze,) = &' (A7) Z6)) (2o, — Ze,)]
— 1(l715, = moll < V)VmnQul¢" (@) ()" (22, — Ze,))Ze,] + 0pe(1),
where a is between (7);,)7 Ze and (7);,)7 Z.:. Now each function inside [] is

zero unless X, # Xex. Since ¢ is smooth, and sup.cp, ) |Z.|| and sup,, |0,
are both fine, there exists a positive constant C' such that

VI Qnlges ie = G, iy ]| < OVMaQulI(E, N ey < X <&,V en)] + op(1).
Let 6 € (¢,1/4), where € < 1/4 appears in condition (A.v). Then

VI QulI(E, Ney < X <6V ep)]
=1(|&% — el <My T2V mnQulI(E A e < X < EV ey)]
HI(|& — cn| > my T2 mnQulI(E Ac, < X < &V ey)]

:Opr(l)a
where, in the second to the last equality, the first term is o(1) by condition
(A.v1), and the second term is op, (1) since mpy=2¢¢; — ¢,| = Op(1) due to
Theorem A.2. Then the proof is complete. O

A.4. The non-identifiable case

For the lemmas and theorems in this subsection we assume conditions (A.IIT)
and (A.1v) hold with « = 1.

A.4.1. Convergence rates in the non-identifiable case

Theorem A.4. Consider the non-identifiable case under the null, i.e. y9 =
Mo =0. Let (A.1)-(A.1v) and (A.vi) hold. Then \/my,dy((¢5, 1), (¢nym,)) =
Op:(1).

Proof. The proof of Theorem A.4 is similar to the proof of Theorem A.2. First
from conditions (A.1)-(A.1v) with « = 1 and Theorem A.1, d1((&5, 7)), (cn,1,,))

converges to 0 in probability. Then by [42, Theorem 3.4.1], to achieve the rate
/T, we need to verify (A.6) and (A.7) with dy replaced by dy, for any fixed

0 which satisfies nmﬁl/Z < 6 < dy, where k,d, will be specified below. We also



582 N. Li et al.

focus on the case ¢ < ¢, and omit the case ¢ > ¢,.

Verifying (A.6) Fix some (c,n) such that 6/2 < dy((¢,n), (¢n,M,,)) < 0. The
same decomposition of Q,[¢e.n—@c, n,] continues to hold in the non-identifiable
case:

Qn[‘pc,n - (pcn,nn] S Dl + D2 + Dd + 00537

where D1, Da, D3 are defined in (A.9). By definition of dy(-,-), ||n — n,,|| < 6.
Further, from the proof of Theorem A.2 and by the Taylor Theorem, for some
constant C' > 0 that does not depend on 4, , d,,, we have

Dy <= C7'97Qu [I(e < X <¢,)] 0,

Dy, < — (7162,

D3 <Clyalle = ealllm = m, |l < Clu = 0)8%/k x (\/7n|1nl)-
Recall the limit By in condition (A.viir), and let x = max{3C?(u — £)|By|, 1}.

Then for large enough n, D3 < (2C) =162, which implies that there exists a small
0y > 0 such that for § < ¢, and large enough n,

sup Qn [‘Pcm - @Cm"ln] < _(30)_162‘
§/2<d1((e;m),(cnsmy,)) <0

Verifying (A.7) Define

Fns = {eem — enm, t di((c.m), (cn,m,) <6}

From (A.10), there exists a positive constant C such that for any (¢, n) satisfying
di((c;m), (¢n,m,)) < 6, we have

|§Dc,n - ‘pcn,nn| < Fn,zi =C(lyl + 1)(6 + |val)-

As 7y, = 0(5), by (A.4), there exists some constant C such that (Q,[F2 ;])'/? <
C§ for large enough n.

Similar to Lemma A.1, sup,, J(1, F,_s, ﬁ'm;) < oo with the envelope function
F, 5. Then by [42, Theorem 2.14.1], for any &, > § > mp /% and large enough

n, we have

E sup \/m_n‘(Q: - Qn)ﬂﬁc,n - (QZ - Qn)@cn,nn” < (6.

5/2Sd1((5’ﬁ)’(0m"n))§5

A.4.2. Limiting distributions in non-identifiable case

We recall and introduce a few notations. For any c¢;,c2 € R, define p(cy,c2) =
|e1 — c2]. Recall the definitions of (C,H,S) in (2.7), and V{), V) in (2.5). Let

emr Ve,

B, Bs be the constants appearing in condition (A.VIII).
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In Lemma A.10, we show that there exists a zero mean Gaussian process
{((aMT, AD. Ag’))T : ¢ € [¢,u]}, that is tight in (£>°([¢,u]))?*4, is uniformly
p-continuous, and has the following covariance function: for ¢1,¢s € [€, ],

Cov (AT, A2, AT, (AD)T, A2, A0)7) (A.13)
~ T ~
—p ¢H("70TZ~C%)ZC1 Zcz ¢'l(770TZco)Zc1 (Xcz - XBz) .
¢/I(ngZCO)ZCQ (XCI - XBz) ¢/I(ngzco)<XC1 - XBQ)(XCQ - XBz)

Note that for each c, Agl) is a random vector of length d 4+ 2 and Ag), Ag?’) are
real valued random variables. Further, {((A()T, AEQ))T : ¢ € [4,u]} does not
depend on Bs, and has the same distribution as the random process appear in
Subsection 2.1.

Further, for each ¢ € [¢,u], define

p) = Pl¢" (g ZeUI(By < X < )], pf?) = P[¢" (g Zeo)(Xe — XB,)%],
&) = Pl¢"(ng Zeo)(Xe — Xp,) 2],

(&

and

1 T
C = argmax — (Agl) - Blu£3)) (v )=t (Agl) - Bluf’))

cel,u] “ Mo
1
® _ Lp2 @
+BAT - B (A.14)

o (v -1 @ _ (3
H= (v )7 (aY - Bl

S_ A2 _yv©@ o (1)
S = A@ V(EWQH Bl,u@ .
Note that when By = 0, the distribution of (@,Iﬁl, g) does not depend on Bs,
and is the same as (C,H.,S) in (2.7).
Further, for any § > 0 let Ks = {(c,h) € [(,u] x R¥*2: c € [(,u],|h| < d}.
For any (c, h) € [¢,u] x R¥*2 define the following functions on the observation
space S:

Behn = VM (Pem, +h)imm = Penim,):

D =-¢dmIZ. )2, fE=Q-dml2.,)UX.,
O = " MEZ UXZ., [ = ¢ (L Z . UI(c, < X < ),
=V -¢mr2.,)) (Xe— &)

Finally, denote G}, = \/m,(Q} — Qn).
The following theorem establishes the limiting distribution of the MLE and
the score test statistics under the triangular arrary setup.

(A.15)

Theorem A.5. Consider the non-identifiable case under the null, i.e. vog =
X =0. If (Ca), (Ad)-(A.av) with =1, (A.vil) and (A.1X) hold, then

(é:m \/mn(ﬁ:; - nn)vs;;) ~ (@a]ﬁlv g)
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Proof. Let fzz = /My, (7)), —mn,,). By Theorem A .4, fzz is bounded in probability.
Note that by definition,

(€, hy) = sargmax  Qqlpen, +h/ymy — Penm,]
(c,h)€E[l,u] xRI+2

= ( hsiar[zgrr]laxm G Pehin + VMnQnPe hn-
c,h)ell,u] xR

Further, observe that

S = VGV — ¢ (1, Ze,) UXe; ]
— VMR QL (¢ ()T Zer ) — ' () Zex WU Xz ]
+ VI QL (¢ (3 Ze,) — ¢ (0 Zey))UI(cn < X < )]
= VI GLUE,) = Q) M = (V) QS )+ 0 (1),
WhereA in the last equality, we applied the Taylor Theorem, and used the fact
that h,, = Op,(1) and /my,y, — By by (A.vi).

By Lemmas A.8, A.10 (both ahead) and the Slutsky’s theorem, for any § > 0,
in the space of (£>°(Ks))4+6, we have for (c,h) € K,

VT QnPehn ~3RTVE) b= BL® — BiRT p
QIFENT] Ve,
Q| - e
Gre, hn RTAM + B, AY
G: c,n Ag)
For each ¢ € [{,u], the maximizer and the maximum value of the function
R*2 5 h e hWTAW + BAP — LhTVE) b~ B — BTl € R are
respectively:

(V) ALY = Bial®),  and
1

BQ
3 (Al - B u(?’)) (V) (AL = Biu®) + Bia®) - S n.

Further, note that {((AMT, AP A(3))T : ¢ € [¢,u]} is uniformly p-contin-
uous, and so are V(1) o ,Vg%o, ,ug), NS;Q) 9) due to (C.1), and that ﬁ; = Op(1).
Then by the continuous mapping theorem, we have

(e fons Gt QLD )T QUUD,]) ~ (€ H ALY, VE ).

Cv"]o

Finally, the proof is complete by another application of the continuous mapping
theorem. O

Recall the definitions of @, p n, f(3) and fc(4,2 above.
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Lemma A.8. Consider the non-identifiable case under the null, i.e. vg = \g =
0. Assume (C.1), (A.1), (A.1v), (A.vi) and (A.1X) hold. Then for any § > 0

y 1 B
sup  [VmuQnPe,hn + §hTVS,)7Oh + TI,U((:Q) +BhT 3| — 0.

(C,h)€K5
SEp] QLT =V E) | =0, in probability.
celb,u

sup |Q;[f4)] — V] =0, in probability.
cel,u]

Proof. We start with the first claim. Note that for any (¢, h) € K,

V1 Qndenn = MnQnlPem, +h/ymn = Penm,)
=mnQu [¢' (0} Ze,)(, + B/ VM) 2. —n) 2.,)]
—mnQn [(¢((n,, + h/v/ma)" Zc) = ¢l Ze,))]
:ann[g(rm Snyln, qn)]v

where r,, = nZZCn, Sn = YnXe,, tn = Yndke, @, = \/%, and
g(r,s,t,q) =¢' (Nt —s+q"Zc) = (p(r — s+t +q" Zc) — ().
Let v = (s,t,q)". Elementary calculation shows that
dg(rp, v’
9(ra.0,0,0) =0, 2m?) = (0,0,0)7,
dv (rn,0,0,0)
1
829 T’I’h UT
Pt e | 1| xp 1 2]
(rn,0,0,0) -Z,

From conditions (A.1v) and (A.vi), n, — my and /m,y, — Bj. Since
IZ.] is bounded,

sup (16" (4 Ze,)| + 19" (m, + B/ VM) 2.)]) < oo,
(¢,h)EKs,nEN

by the mean value theorem,
vV m7an¢c,h,n = —271Qn[¢”(7lfzcn)(\/ mn’Yn(Xc - ch) + hTZC)Q] + 0(1)
=27'WQ, |¢"mE 2. ) 2.2 | h
- 271(\/ mn'Yn)ZQn[‘ZSH(nZch)(Xc - ch)Q]
- (\/mn’Yn)hTQn[‘bH(nZch)(Xc - ch)ZC] +o(1),

where o(1) is uniform over (¢, h) € Kjs. Then the proof of the first claim is
complete due to condition (A.1X) and (A.vi).
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Now we consider the second claim. Note that sup.cp . [|Q, [f(3)] VC( Al
is upper bounded by

sup [|(Q;, = Q) [F" |

c€ll,u]

+ sEp]HQn[ 'MEZIUXZ]] — Pl¢" (ad W + Bl UX.Z]]|.
cell,u

By a similar argument to Lemma A.3, the first term is op,(1). Further, the
second term is o(1) by condition (A.IX).

The proof for the last claim is similar, and thus omitted. Then the proof is
complete. O

Recall that @ p,, and f 0(2’27](-(5572 are defined (A.15), and that G} =

c,n?

VI (Q;, — Qn). Next we derive the limiting process for {Gj, [<pchn,fc n] :
(c,h) € Ks} in (£2°(K5))? for any 6 > 0. The key step is to approximate

G} [penn) by G, [hng}% + Blfc(572] uniformly over (¢, h) € Kj, which is estab-
lished in the following lemma.

Lemma A.9. Consider the non-identifiable case under the null, i.e. vg = Ao =
0. Suppose (A.1), (A.1v) and (A.viil) hold, then for any 6 > 0,

sup |G [Genn] = ColRT £ + BufE| = 0 0.

(c,h)€Ks

Proof. Fix some § > 0. Due to (A.vii) and (A.1), v, = O(1/\/m,) and
SUPcefe,u) | 2cll < oo, thus uniformly over (c, h) € Ks,

h \* 1 1
— ) Z.—-nfZ, =, (X. - X, K'z.=0 )

Since ¢(+) is infinitely differentiable on R, sup,, ||n,,]] < oo due to (A.1v), and
SUP.efe,u) | Zcll < 00, by the Taylor expansion to the third order, uniformly over

(Ca h) € K(S)
@c,h,n - hT.fg,ly)l - (5) = (V nYn — Bl) (5)

" (8 Ze,) (T (Xe — X, >+hTzc>2+o<\/iTn).

<‘\/ nYn — Bi| x In +

" 2/mn

Thus, sup(, e, |GalPennl — GLlRT L) + By fE)]

271, + o(1), where
I, := sup ’G:[(y - ¢,(773;ch)) (Xe — ch)” )

(¢,h)EK;s
I = swp (@ = Qu)l" (mh Zo,)(imwmm (X = Xe,) + hT2.)%]|.
(c,h)€K5

By [42, Theorem 2.14.1] and a similar argument as Lemma A.3, we have I,, =
Opr(1) and IT,, = opr(1), which complete the proof due to (A.vIir). O
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Recall the distance function p(cy, c2) = |¢1 — co| for ¢1, c2 € [£,ul.

Lemma A.10. Consider the non-identifiable case under the null, i.e. v9 =
Ao = 0. Suppose (A.1), (Aav), (A.viil) and (A.1X) hold. Then there exists a
zero mean Gaussian process {((AM)T, AP A(?’)) : ¢ € [¢,u]}, that is tight

in (£°([¢,u]))?**, that is uniformly p-continuous, whose covariance function is
given by (A.13), and for which Agl) is of length d 4+ 2 and A£2)7A((;3) both of
length 1 for each ¢ € [0, u]. Further, for any § > 0, in ({>°(Ks))?,

(G (Benn 125 (e.h) € Ks} o~ {(WTAD + BAD, AD) ¢ (c,h) € K .

Proof. Fix some § > 0. By Lemma A.9 and the continuous mapping theorem,
it suffices to show that there exists a Gaussian process {((AM)7, AP, AES))T
c € [¢,u]} with the above prescribed conditions such that in (£>°([¢,u]))+*

{Cr((ENT SELFENT) = e e [t ul} ~ {(AM)T, AP, AT ¢ € [4u]}.

In turn, by [42, Theorem 2.11.1], it suffices to verify the following conditions:

1. There exists a function G5 on S such that uniformly over ¢ € [¢,u],
Gs(y, w,u,x) > |y — ¢ (ny 2c,)|| 2|, and

QnlG, 5{Gns > ey/mn}] — 0, for every e > 0.

2. For every positive sequence €, — 0,

sup Qu[(Y—¢'(MEZc))?1Ze, — Ze,|?] = 0

|e1—ca|<en

3. For every positive sequence €, — 0 and j € [d + 4],

/ \/log N, ¢, ul, ds«bj)) — 0, in probability,
0

where d»ELj)(Cl,CQ) =Y - qb’(anLZC")(zg) (j)))\ 0,2, and Z( 7 is the
j-th element in Z..

4. For any (c1,ca) € [, u]?,

cov (G F 2 ST G DT, 12, 11T

converges to the right hand side of (A.13).

The verification for the first three conditions is almost identical to those
arguments in the proof of Lemma A.6, and thus omitted. Further, the condition
4 is due to assumption (A.1X), which completes the proof. |
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Appendix B: Some useful lemmas and proofs

Lemma B.1. Consider the case under Hy : Ao = 0. If (C.1) holds, then con-
dition (A.111) holds with v = 0 for the identifiable case, i.e., vo # 0, and with
v =1 for the non-identifiable case, i.e., v = 0.

Proof. Denote M(c,n) = Py¢ . We consider two cases separately.

Identifiable case. First we show that (cg,n,) is the unique maximizer of
M (e, m). By [41, Lemma 5.35], it is sufficient to show that if do((¢, n), (co, 7)) #
0, then pr(¢'(n’'Z.) # ¢'(nt Z.,)) > 0, which is equivalent to pr(n?Z. #
& Z.,) > 0, since ¢/(-) is strictly increasing. Note that

{nTZc 7’é ﬂcho} = {(a_aO)TW"i'(ﬁ_ﬁO)UJ’_(V_VO)XC'F'YO(XC_XCO) 7& O}

From the definition, do((¢,n), (co,my)) # 0 indicates one of the following
cases holds: (i) a # ay, (i) @ = ay, B8 # Bo, (iii)) @ = ap, 8 = Bo, 7 # 70, and
(IV) a:a07ﬂ:ﬂ077:70,c7é00'

If (¢, m) belongs to case (i), we have

pr(n"Ze #m9Ze,) = pr((@—ao)'W #0,U = X, = 0).

From Assumption (C.1), Anin(E(WW?T|U = 0,X,, = 0)) > 0 and thus (a —
o) TEWWT|U =0, X, = 0)(a—ap) > Anin(E(WWT|U =0,X, =0))||a—
agl|? > 0 if @ # ag. On the other hand, if pr((a — o)W = 0|U = X, =
0) = 1, it is clear that E((a — ag)"WW7 (a — ao)|U = 0, X, = 0) = 0, which
is a contradiction. Therefore pr((a — ap)”W = 0|U = X, = 0) < 1 and thus
pr((a—aoap)TW #0|U = X,, = 0) > 0. Since 0 < Fy(u) < 1,0 < E[U] < 1 from
Assumption (C.1), we have pr((a — ag)TW #£0,U = X,, = 0) > 0.
Similarly, for cases (ii), (iii) and (iv), by Assumption (C.1),

pr(n’ Ze #noZe,) = pr((B — Fo)U # 0, X, = 0)

>pr(U=1,X,=0)>0, case (ii),
pr(n” Ze #M0Zey) > pr((v = 70)Xe # 0,70(Xe = Xo) = 0)

>pr(X,=1)>0, case (iii),
pr(n" Ze # mZe,) = pr(vo(Xe — X,) #0)

>pr(X,=0,X, =1)+pr(X, =0,X.=1) >0, case (iv),

where the last inequality holds, since F(+) is continuous and differentiable with
a positive derivative at a small neighbor of ¢y from Assumption (C.1). Then by
[41, lemma 5.35], (co, 7)) is the unique maximizer of M (c,n).

As M (e, m) is continuous in (¢, n) due to Assumption (C.1), the unique maxi-
mizer (cg, 7,) must be well separated over any compact set, i.e. condition (A.11T)
holds with ¢ = 0.

Non-identifiable case. Similar to the identifiable case, (cp, 7)) is the unique
maximizer of M(c,n) in the non-identifiable case with respect to d;. Next we
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show the maximizer (cg, ;) is well-separated, with respect to dy, in the compact
set K, for any § > 0.
Fix some § > 0. Suppose there exists € > 0 such that

M(COa 770) = sSup M(Ca "I)
6Sd1((c,n),(00,n0))§5

Define K. s := {(¢,n) € K;s : di((¢,m), (co,mny)) > €}. Then by definition, there
exists a sequence (épn,M,), n > 1, in K. s, such that M(¢,,7,,) — M(co,ng)-
ANS {(675 is a compact set, there exists a SNub:sequence (Enk,f/nk), k> 1 and
(Co,Mg) € Kes such that di((Gn,,7,,). (Co,Mg)) — 0. By the continuity of
M(c,m), we have M (co,ng) = limg_so0o M(Cpn,,M,,) = M(co,mg), Which con-
tradicts with the fact that (co,7) is the unique maximizer. Therefore, for all
0<e<d,

M(COa 770) > sup M(C, n)u
Egdl((c7n)7(0077’0))gé

i.e. condition (A.11) holds with ¢ = 1. O

Next we provide a few lemmas under the bootstrap setup, under which @,
takes the form as follows:

1 n
(Wn,laUn,len,l) ~ Ezé(Wi,Ui,X,;)a (B]-)
=1

Yo 1lWn1,Un 1, X1 ~ eXp(le(nr{Zn,l,cn) - ¢(773;Zn,17cn)>7

with respect to the measure v, where (¢, 7,,),n € N is a sequence in [¢, u] x R4+2.

In what follows in this subsection, for the identifiable case, we establish that
given almost every sequence of D; = (W;,U;, X;), i > 1, for every sequence
(¢n,m,,) — (co,Mmg), certain condition holds for the @, above; in other words,
the null set is common to every sequence (cp,m,),n € N with the property
that (¢n,n,) — (co,Mg)- Similar comment applies to the non-identifiable case.
Further, note that the distribution of (W 1,Un1,Xn1) does not depend on
(cn,my,),n € N.

The following Lemma verifies condition (A.I) under the bootstrap setup,
which only concerns covariates, and does not depend on (¢, n,,),n € N.

Lemma B.2. Suppose (C.1) holds. Then condition (A.1) holds for Q, in (B.1),
given almost every sequence of Dy, 1 > 1.

Proof. The condition sup,, |W, 1| < C, follows from Assumption (C.1). For
j €{0,1}, by the strong law of large numbers, we have that almost surely,

1
Pr(Xp1 < U1 = j) = = Y I(X; S LU= j) = pr(X < €U =)

=1
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1 n
Pr(Xng Uy =) =~ > I(Xi <u,Us = j) = pr(X <u,U =),
=1

By Assumption (C.1), the first two conditions in (A.T) hold almost surely.

Next we prove the condition on )\min(E[WnJWf,ﬂUn}l =7,X,1</{]), and
the other case on )\min(E[WnJWf’ﬂUn’l = j,X,1 > u]) can be proved in a
similar way. For Q,, in (B.1) and j € {0,1}, by the strong law of large numbers,
almost surely,

S LU =5, X <OW W]
Y IUi =5, X: < 1)
—SEWWT|U =j,X </, almost surely.

EW, Wh U1 =4, X1 <] =

As liminf, Apin(+) is a continuous function in (¢£°(R))4*4, from Assumption
(C.1), we have liminf, )\min(E[WnJWZ’ﬂUn,l = 7,Xn1 < {]) > 0 almost
surely.

Finally, by [42, Theorem 2.4.3], uniformly over c;,co € [£,u], given almost
sure all sequence of D;, i > 1,

pI‘(Cl N ey < Xn,1 <cV CQ)
1

n
:—Zl(cl Nea < X <ecpNez) = pr(cg Aea < X <ep Acg).
n
i=1

From Assumption (C.1) and the mean value theorem, the last condition in (A.T)
holds almost surely. O

Lemma B.3. Consider the case under the null Hy : \g = 0, and Q, in (B.1).
Assume (C.1) holds.

1. For the identifiable case, i.e., y9 # 0, condition (A.11) holds for every
sequence (¢p,m,) — (co, M), given almost every sequence of Dy, i > 1.

2. For the non-identifiable case, i.e., v = 0, condition (A.11) holds for ev-
ery sequence (cn,m,,) such that m,, — Mgy, given almost every sequence of
D;, i > 1.

Proof. We start with the first claim. Fix some § > 0, and define the following
function class on S:

{éc,n : (Ca "l) € K(S}a where &C,n(yawvuax) = UTZc¢/(7loTzco) - ¢(7ITZC)'

For any (¢,m) € Ky, by the definition of @, in (B.1), we have the following
decomposition for Qnpcn — P n:

Qu ' Ze, )" Ze— (" Ze)] — P [¢'(ng Zee)n” Zc — (0" Z.)]
=Qu[(¢' (S Ze,) — &' (5 Ze))n" 2]+ Qul(¢' (g Ze,) — &' (h Zeo))n” 2]
+ (Qn - P) [dgc,n]



Bootstrap adjusted predictive classification under GLM 591

=1 4+ gp®

n,c,m n,c,m

+ Bl
Thus it suffices to show that sup(. ,ex, |E,(Lkg,,| — 0 for every sequence
(¢n,Mm,,) — (co,Mmy), almost surely, for k = 1,2,3. We first observe that for any
(¢,m) € K5, Inl| < |Imgll + 6 and || Z.|| < Cy + 2, and that ¢ is infinitely
differentiable on R.
E,(llzn For every sequence (c,,m,,) — (co,Mg), by the mean value form of the
Taylor Theorem, there exist some constants C,C’ that may depend on the
sequence (¢, m,,), n > 1, but not on n such that

sup |E{) 1= sup |Qul(¢'(nlZ.,)— ¢ (nf Z.,))n" 2.
(e;n)EKS (e,m€EKs
<C sup |Qun"Z.2ZL (m,—mo)l
(e,m€EKs

< C'|n,, = moll — 0.

This holds surely, not just almost surely.
E?)., Note that nT 2, —nT Z., = v0(X,, —X.,). Then there exists a constant
C > 0, that does not depend on (¢,,n,,), n > 1, such that

sup |EQ) = sup |Qul(¢/(ndZe,) — ¢ (b Zeo))n” 2.
(em)EKs (em)eKs

<C sup Qu[l(cn Ao <X <en Vo)
(6777)61(5

<C sup QunlI(ci Neg < X < e Ve

(e1,e2)El,u)?:lc1—c2|<|en —co

In Lemma B.2, we showed that if ¢, — ¢, then the last term converges to zero
almost surely, where the null set does not depend on (¢,,,m,,), n > 1.
E,(L?’zn Note that qNSC,,, only depends on (w,u,z), and that under @,, in (B.1),
(Wpn1,Up1,Xn1) is a random pair from the ~empirical measure induced by
(W;,U;, X;), i € [n]. Similar to Lemma A.1, {¢cn : (¢,n) € Ks} is a strongly
Glivenko-Cantelli class. Therefore sup . nc i, \E,(fg,ﬂ — 0 almost surely, where
the null set does not depend on (¢, m,,), n > 1.

Next, we consider the second claim. The decomposition continues to hold,

and the exact same argument shows that sup n)ecx, |E7(1k2,,\ — 0 for every
sequence (cp,n,,) such that n,, — 1, almost surely, for k = 1,3. If y9 = 0, then

by definition sup . e, |E7(L2,);77 = 0. Thus the proof is complete. O

Lemma B.4. Consider the identifiable case under the null, i.e. v9 # 0 and
Ao = 0, and @, in (B.1). Assume (C.1) holds. Then for any ¢ € (0,1/4),
condition (A.V) holds for every sequence (cn,m,,) such that ¢, — co, given
almost all sequence of D;, i > 1.

Proof. Fix any € € (0,1/4) and a sequence sequence (¢, 7,,) such that ¢, — co.
We first focus on those ¢ € (¢, +n 712 ¢, +1].
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Define K(-) = I(- € [-1,0)), and observe that for @,, defined in (B.1), almost
surely,

n n

i=1 = e = cnl

%g’c (%) ~ (F(e) = Flea))|

€ (Fe) = Flea) F

Note that
1 1 & en — X
su — |- Kl ———|—(F(c)— Flc,
SR rern i) 3 (o) ~tr@ - ”‘
lew1, (c—X; 1. [(c—X;
< sup sup |— —IC< )—E{—IC( )] .
n—1+2¢ <h<1 c€[l,u] ’I’L;h h h h

By [16, Theorem 1], the last term converges to zero almost surely, where the
null set does not depend on (c,,n,,), n > 1.
Further, due to the mean value theorem and Assumption (C.1),

1

inf —|F(c) - F
0 <n_1+2el<r|lc_cn|§1 |cf Cn|| (C) (Cn)‘
1
< sup ——|F(c) — Fep)| < 0.

n n=1t2e<|c—c,|<1 |C - Cnl

As a result, we have that for those ¢ € (¢, + n=172¢ ¢, + 1], condition (A.V)
holds for every ¢, — cg, almost surely. The proof for the case where ¢ € [¢,, —
1, ¢, — n~112¢) is similar if we define K(-) = I(- € [0,1)). O

Lemma B.5. Consider the identifiable case under the null, i.e. o # 0 and
Ao = 0, and Qp in (B.1). Assume (C.1) holds. Then condition (A.v1) holds

for every sequence (cn,m,) such that ¢, — co, given almost all sequence of
D;, i>1.

Proof. Fix any § € [0,1/4), and any sequence (cy,n,,) such that ¢, — ¢o. By
condition (C.1), there exists a small neighbourhood Uy around ¢y on which X
has a density. Since ¢, — ¢g, for large n and ¢,, € Up.

Define Fyc = {R2>x — I(c; < x < ca): (c1,c2) € UZ,|c1 — c2| < €}. Note
that for large n,

Vi QulI(cn —my T <X < e +my 1)
< sup VmaQull(ci Aea < X <1 Ve)

le1 —ca|<2mpt+2°

< Sup anP[I(cl Nep <X <V 02)] + \/mnHQn - P||’F4,2m_1+25’

ler —ca|<2my 1128

where the first term converges to 0 by the mean value theorem, and the second
term converges to zero almost surely by a similar argument as in [27, Proof of
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Lemma 10], where the null set does not depend on (¢,,m,,),n > 1. Then the
proof is complete. O

Lemma B.6. Consider the identifiable case under the null, i.e. 79 # 0 and
Ao =0, and Q, in (B.1). Assume (C.1) holds. Then condition (A.v11) holds for
every sequence (cn,m,) — (co,MNy), given almost all sequence of Dy, i > 1.

Proof. We first consider the second statement in condition (A.vil). Fix a se-
quence (¢n,m,,) — (co,Mg). Then for large n, ||n,, — Nyl < 1. Let F5 = {S >
(y,w,u,z) = ¢"(MT2.)2.2T : (c,m) € K1}. Note that for large n,

~ ~T ~ =T
HQn[(bH("?Zch)chch} - P[¢/l(ngZCU)ZCOZCU]||
S S
SHQH - P||]:5 + ||P[¢H("7£ch)chzc”] - P[¢//(ngZCO)ZCOZCO]||'

Note that functions in F5 only depends on (w,u,z), and that under @, in
(B.1), W,.1,Upn1,Xn1) is a random pair from the empirical measure induced
by (W;,U;, X;), © € [n]. Similar to Lemma A.1, F5 is a strongly Glivenko-
Cantelli class, and thus ||Q,, — P||#, converges to zero almost surely, where the
null set does not depend on (¢,,,m,,), 7 > 1. Further, the last term converges to
0 due to (C.1). Then the proof for the second statement in condition (A.vII) is
complete.

Now we consider the first statement in condition (A.vir). Note that for any
(Cla 771)7 (023 772) € [67 U] X Rd+2? we have

QY =T Z )Y~ S MEZ)) 20 2, = Quld" (L 2., )20, 2,
+ Qul((@ (M Z0) — ST Z ) ML Ze,) — ¢ (ML 2.,))) 2 21 ).

For those functions inside [] on the right hand side, they only depend on
(w,u,x). Then by a similar argument as above, almost surely,

Tim Qu[(V = ¢ Ze))(Y = ¢/ (] Bey)) Eei Zey) = Pl (] Bey) Be, 2]
+ PI((¢' (0 Ze0) — &' (] Ze)) (&' (0] Zey) — & (0 2e))) 2 2.,

where the null set does not depend on (c,,n,), n > 1. Then the proof is
complete. O

Lemma B.7. Consider the non-identifiable case under the null, i.e. yg = Ao =
0, and Qy, in (B.1). Assume (C.1) holds. Then condition (A.1X) holds for every
sequence (¢, m,) such that m,, — mg, given almost all sequence of D;, i > 1.

Proof. Fix a sequence (cy,n,,) such that n,, — n,. Then for large n, |n,,—1| <
1. Consider the class F = {S 3 (y,w,u,x) = ¢"(NT 205)Zc,Zc, © (c1,c2,¢3) €
[¢,u]?,||m — myll < 1}. Note that for large n,

T
CQH

~ ~T ~ ~
sup | Quld"(NEZe) 202, — Pl¢" (ML 2020 2

(c1,c2,c3)€E[L,u]3
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<|Qn—Pllrs+  sup

(e1,e2,¢3) €[L,ul?

P(@" M 2e) = 0" (0 2e)) 2o 2o .

Note that functions in F4 only depends on (w, u, ), and that under @,, in (B.1),
(Wi1,Un1,Xn1) is a random pair from the empirical measure induced by
(W;,U;, X;), i € [n]. Similar to Lemma A.1, Fg is a strongly Glivenko-Cantelli
class, and thus ||Q, — P||z, converges to zero almost surely, where the null set
does not depend on (¢, n,,), n > 1. Further, since ¢ is infinitely differentiable
on R, the last term converges to 0 since sup ¢y | Z¢[ < Cw + 2 < 0o due to
(C.1). Then the proof is complete. O

Appendix C: Proofs regarding size analyais

Consider the cases under the null, i.e. Ay = 0. For (é,,7,,), the MLE estimator
based on the original data, we consider the triangular setup, where @, = P,
my, = n and D, ,; = D;, i € [n]. For (&,7,), the MLE estimator based on
the bootstrapped data, @, is defined in (B.1) with (¢,,n,,) = (é.,7,,), and
D, = (Y, W3, U X7, i € [ma).

All results, except for the limiting distribution of n(é, —c¢g) in the identifiable
case, follow immediately from the results in the triangular array setup in Section
A and the verification of conditions in Section B. Thus we defer the proof for
the second claim in Theorem 2.1 to Section C.3.

C.1. Identifiable case - size analysis

Proof of the first claim in Theorem 2.1. We consider the identifiable case under
the null, i.e. 79 # 0 and Ay = 0, and the triangular array setup, where m,, = n,
D, = D;, i € [n], and Q, = P with (¢, m,) = (co,7mg). Then the MLE
estimator (é,,7),,) and the score-type test statistic S, in (2.3), based on the
original data, correspond to (&, 7)) and S} in Theorem A.3.

Note that (A.1), (A.11), (A.v) with ¢ = 0, and (A.v1) trivially hold, due
to (C.1). Further, by the mean value theorem, and due to (C.1), (A.v) with
€ = 0 and (A.vI) hold. Finally, (A.111) with ¢+ = 0 holds by Lemma B.1. Then
the claim follows immediately from Theorem A.2 and A.3. O

Proof of Theorem 3.1(i). We consider the identifiable case under the null, i.e.,
Yo # 0 and Ao = 0, and the triangular array setup: D,,; = (Y;*, W, U, X}),i €
[my], and @, is defined in (B.1) with (¢,,n,,) = (én,7,,). Then the MLE esti-
mator (¢, 7)) and the score-type test statistic S in (3.1), based on the boot-
strapped data, correspond to (¢%,;,) and S} in Theorem A.3.

From Theorem 2.1, do((é,,9,,), (co,my)) — 0 in probability. Then for each
sub-sequence (&, ,1),, ), there exists a further sub-sequence (énke,ﬁnké) such
that do((Cny, 1, ), (co,M0)) — 0 almost surely.

We apply Theorem A.3 to @, K, 1D (B.1) associated with this sub-sub-sequence
(é"kwﬁnw)' First, by construction, condition (A.1v) holds almost surely. Fur-

ther, conditions (A.1)-(A.11) and (A.v)- (A.vil) with ¢ = 0 are verified by
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Lemmas B.1-B.6 given almost all sequence of D;, ¢ > 1. Thus by Theorem A.3,
almost surely,

SUp (D (M, (7, — 1y, ) S, ) < ) = Dr((Zgs Zs) < )] = 0,

teRa+3

which completes the proof. O

C.2. Non-identifiable case - size analysis

Note that for B; =0, (@,]ﬁl, S) in (A.14) has the same distribution as (C,H,S)
in (2.7).

Proof of Theorem 2.2. We consider the non-identifiable case under the null,
ie. 0 = Ao = 0, and the triangular array setup, where m, = n, D,; =
D;, i € [n], and @, = P with (¢,,n,,) = (co,m). Then the MLE estimator
(én,M,,) and the score-type test statistic .S, in (2.3), based on the original data,
correspond to (¢, ) and S} in Theorem A.5.

Note that (A.1), (A.11), (A.1v) with ¢« = 1, (A.vin), and (A.IX) trivially
hold, due to (C.1). Finally, (A.111) with ¢ = 1 holds by Lemma B.1. Then the
first claim follows immediately from Theorem A.5. O

Proof of Theorem 3.1(ii). We consider the non-identifiable case under the null,
i.e. 70 = Ao = 0, and the triangular array setup, where D,, ; = (Y;*, W7, U}, X7),
i € [my], and @, is defined in (B.1) with (¢n,n,,) = (én,7,,). Then the MLE
estimator (&5,7),) and the score-type test statistic S;; in (3.1), based on the
bootstrapped data, correspond to (&, 7)) and S} in Theorem A.5.

By Theorem 2.2, since 79 = 0, v/n9, = Ope(1) and m,, /n — 0, we have

vV mnﬁ’n = Opr(1)7 Hﬁn - T’O” = Opr(1)7

which implies that for each sub-sequence (¢,,,,, ), there exists a further sub-
sequence (Cn,, , 7y, ;W) such that

/M A, =0, and |9, —mnol — 0, almost surely.

We apply Theorem A.5 to Qp,, in (B.1) associated with this sub-sub-sequence
(Cny, » T, ). First, by construction, conditions (A.viir) with B; = 0 and (A.1v)
with 7 = 1 hold. Second, conditions (A.1)-(A.111) and (A.I1X) hold due to Lem-
mas B.1-B.3 and B.7. Then by Theorem A.5, almost surely,

Ak Ak A *
i Iprio (6, /M, (T, = Finy,)> Sy,) < 8) — pr((C,HLS) < 8)] — 0,

which completes the proof. O
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C.3. The weak limit of the cutpoint MLE in the identifiable case

In this subsection, we prove the second claim in Theorem 2.1 regarding the
limiting distribution of n(&, — ¢p) in the identifiable case.

Before the formal proof we review some definitions. For a closed interval
I C R, the space Dy is the collection of all functions on I, that are right-
continuous with left limits, endowed with a metric d; below [21, 36, 44]. Let
Ar = {\: I — I|\is strictly increasing, surjective and continuous} and write

[All == supg_sser | 10g%|. Then for any fi, f» € Dy:

B £2)i= inf {supllF(0) ~ 2O + I |

Note that, endowed with the metric d;, the space D; is Polish [37, 8, 21].
For (7,h) € R x R4*2 define

Prhn = \/ﬁ(@co+~r/n,no+h/\/ﬁ - 5000»770)'

Further, recall from Section A.3.2 that ggl,), =Y -¢nTZ.))Z. and g§27), =
(VY —¢'(nT Z.))UX., and that Vgl) and Vg) are introduced in (2.5). Define

ggg) - gcn V(2 (V(l)) g£11)7

Denote by P, = n~! Zi:l 0p,, the empirical measure on S induced by D;, i €
[n], where dp, is the Dirac measure at D;, and define G,, = /n(P, — P).

Proof of the second claim in Theorem 2.1. By definition,

(n(én — <o), \/ﬁ(ﬁn - "70)) = (Tn, ﬁn) = sargmax \/ﬁpn@‘nh,n
(1,R) €[l ,upn] xRI+2

= sargmax VP, (@b — Prom] + VP, [@r,0,n]-
(1,R) €[l ,upn] xRI+2
where £,, :=n(¢ — ¢p) and u, :=n(u — cp).
In the proof of Theorem A.3, whose conditions are verified in Section C.1, we
showed that

Sy =Gy [gco,,o}+opr<1).

Further, for any compact hyper-rectangle K ¢ RxR%+2 by the same asymptotic
expansion argument as in Section A.3.2, we have

( Si?)pK \/ﬁ]pn[@r,h,n - @T,O,n] - <hTG {gco ”70} hTVg?noh> ‘ = Opr(l)'
T,h)e

By a tedious but now standard argument as in [21, 36, 44] (see some discus-
sions below), for any closed interval I C R,

1
Gn ggO)no VE(I))"IO n ~
Gn gt(:g)no ~ ZS s in RQ X D[, (Cl)

{VnPy[@ron] i T €T} {D(r) : 7 € I}
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where recall that Z,, Zgs and D(-) are defined before Theorem 2.1. Then the
proof is complete by the continuous mapping theorem [36, Lemma A.3], and

due to the fact that (7, h,) = Op:(1), which is the first claim in Theorem 2.1,
and is proved in Section C.1. U

To show (C.1), as in [21, 36, 44], it involves two steps: (1). establishing
the finite-dimensional distribution convergence using the characteristic func-
tion method; (2) establishing that {/nP,[@r 0] : 7 € I} is uniformaly tight in
D;. The detailed arguments are similar to those in [21, 36, 44], and thus not
repeated here.

Below we present an important calculation in order to show why we have the
two-sided, compound Poisson process D(-) in the limit, and why we assume the
following for the second part of Theorem 2.1.

(C.11) the conditional distribution of (W,U) given X = c is continuous in a
neighbourhood of ¢y with respect to the weak convergence.

Lemma C.1. Assume (C.1) and (C.11) hold. Then for two real numbers 0 <
71 < To,
\/E]P)n [SZTQ,O,TL - @Tl,O,n] ~ D(TQ - 7'1)-

Proof. Note that by definition,

\/ﬁPn [%572,0,71 - 957'1,0,n]

:Z (Yio = (#(0i4) — ¢(04,-))) I (T—l <X;—cp < :L—Q) ,

© n
i=1

where ©; ; = agWi + BoUi + Y0, and ©; _ := agWi + BoU;. Then denoting
By =Y1v% — (¢(01,4+) — #(01,_)), for any t € R, we have

E [exp {V-1t\/nP,, [#r,,0,0 — @ri.0m]}]
= (E [exp{ﬁtE.;.] (% <Xj;—c < %) }})n

:<1+E[exp{\/—1t5+}—1'ﬂ<X1—00§2} pr(T—1<X1—COSE))
n n n

n

Due to (C.1),
limn x pr (E <X1—¢ < E) = F}((CO)(TQ —7'1).
n n n

Further, due to (C.11) and since Y, given (W, U, X), belongs to the exponential
family distribution (1.1), the conditional distribution of (Y, W,U) given X = ¢
is also continuous in a neighbourhood of ¢y with respect to the weak convergence,
due to the (generalized) dominated convergence theorem. As a result, for any
teR,

limE [Cxp{\/_—ltE+} ‘ DX e < 2] =B e (VETH )]
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Combining these two parts, for any ¢ € R, we have
nh_{réo E [exp {V—=1t\/nPy, [¢ry.0.n — Pr1,0m] }]
=exp (Fi(co)(m2 —71) (E [exp {V-1t& 4 } — 1)]).
Since the right hand side is the characteristic function for D(ro — 1) for 7 > 74,

the proof is complete. O

C.4. A special case in the non-identifiable case

In this section we consider a special case where W = 1 and U, X are indepen-
dent, and X follows uniform distribution over (0, 1). Then, in the non-identifiable
case,

t1 to tico taco

5 5 t t toc toc

El¢" (al 7 ZT _ 2 2 2C2 2C2
[¢ (ao w t ﬁOU) “ Cz] t101 tZCl tl(Cl A 02) tQ(Cl A CQ) ’

toc1 tacy tQ(Cl VAN 62) tQ(Cl AN CQ)

which indicates {((Ag))T,Agz))T : ¢ € [,u]} in Theorem 2.2 has the same
distribution as

VtB(1)
B B(1) + \/ta — L B(1)
VtiB(c) )
%B(c) ++/ta — t3/t1B(c)

where B(-), B(-) are two independent Brownian motions, t; = E[o” (ag + SoU))]
and to = E[O’"((Xo + 50U)U]
Then C,HL, S in (2.7) have the following representation:

C= sup W, S = 1/t — /11 (B(C) — CB(1)),

tel,u]
VEB(1) ] (C.2)
H= (V) )™ | &BQ) — Vi — 3/6B(1)
VEB(C)
In other words, ¢, converges to the maximizer C of a weighted Brownian bridge,

and S,, to the value of an independent Brownian bridge evaluated at C, up to
a multiplicative constant.

cec€efbu] gy,

C.5. Proof for the inconsistency of standard bootstrap in the
non-identifiable case

Recall from Subsection 3.2 that M(IR¥) denotes the space of Borel probability
measures on R¥ where k > 1 is some integer, and we equip M (R*) with the
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the Prokhorov metric dpok(+, ) [8, Section 6.5], which characterizes the weak
convergence and under which M(R¥) is a complete and separable metric space.

Recall from Subsection 3.2 that R,, denotes the empirical distribution of the
covariates {(W;,U;, X;) : i € [n]}, that is, R, =n "' 31| 8w,.0:,x,), which is
a random element in M (R%*2). Further, recall that R, denotes the population
distribution of (W, U, X).

Recall from Subsection 3.2 that £, (c,n, R) denotes the distribution of the
bootstrap test statistic S* when (é,,7,,, Rn) takes the value (¢c,m,R); that
is, £, is a measurable mapping from [¢,u] x R¥*2 x M(R%*2?) to M(R), and
L, (én,7,,,Ry) is the bootstrap distribution of S* given the data, which is a
random element in M(R).

Recall the definition of (@,]ﬁl, S) in (A.14). Note that the distribution of S
depends on the value of B; and By in condition (A.viII), and thus we denote its
law by Lo (B2, B1), where L, may be viewed as a measurable mapping from

[¢,u] x R to M(R).

Theorem C.1. Consider the null, i.e., A\g = 0, and the non-identifiable case,
i.e., v0 = 0. Assume that (C.1) holds. Further, consider the standard bootstrap
with m,, = n. There exist a sequence of random variables {(c},ni,R}) : n ZAI}

and (CT H") such that (cl,nl,Rl) has the same distribution as (¢n,7,,, Rn)
for each n > 1, (Ct,H') as (C, H), and as n — oo

dprok (En(cTn’nIL?RIL)7 EOO(CT,]HITY)) = Opr(l)a

where ]HIL is the (d + 2)-th component of H'.

Proof. By Theorem 2.2, (é,,+/n(f),,—n,)) ~ (C,H), and the empirical distribu-
tion R, converges weakly (i.e., in terms of dpok) to the population distribution
Roo of the covariates (W, U, X) almost surely [14, Theorem 11.4.1]. Due to
Skorohod’s representation theorem [8, Theorem 6.7], there exist a sequence of
random variables {(cf,nl,Rl) :n > 1} and (C',H) such that (cf,n},R}) has
the same distribution as (é,,7,,, Ry) for each n > 1, (CT,H') as (C,H), and for
each w € €,

lim (cf (w), v(n}(w) —n9), R}, (w)) = (CT(w), H (w), Roo)- (C.3)
Denote by v} (w) the last component of 0, (w); since 7o = 0, we have /ny} (w) —
]HII/ (w). Recall the triangle array setup in Appendix A. By Lemma B.2, B.3 and

B.7 respectively, conditions (A.1), (A.11) and (A.1X) hold almost surely, when
@, takes the following form:

A

(Wn,la Un,la Xn,l) ~ Rna
Yn,l Wn717 Un71,Xn,l ~ eXp(Yn,l(ﬁzzn,l,én) - ¢(7A71,1;Z7l,17@n))7

with respect to the measure v. Since (cf,nl,Rl) has the same distribution

A

as (én, M, Rn) for each n > 1, by arguing along sub-sequences, without loss
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of generality, we may assume conditions (A.1), (A.11) and (A.1xX) hold almost
surely, when @,, takes the following form:

(Wn,h Un,la Xn,l) ~ RL;
Vo1 lWat,Unt, X1~ exp(Yor ()2, 1 0) = ()2, ).

Condition (A.11) only concerns P and is verified in Lemma B.1. Further,
again by arguing along sub-sequences, we may assume almost surely, ||n] —
1ol — 0, which is condition (A.1v) with 7 = 1. Finally, by construction,
NI ]HIL and ¢/ — CT, that is, condition (A.vIi) holds.

With all conditions verified, we apply Theorem A.5 and conclude that for
almost surely w € €,

dprok (En(cl(w),nl(w),RL(w)), LW(CT(W),HL(LU))) 0, asn — oo.

Note that the above statement is true if we argue along sub-sequences, which
completes the proof for the in-probability convergence. O

Now we prove Theorem 3.2.

Proof. Recall that S in (2.7) is the limiting distribution of the test statis-
tics S,, and its law is a fized element in M(R). Further, recall the coupling
{(cf,n! ,RI):n >1}and (C,H') in Theorem C.1, and in particular LZDO((CT,]HITY)
is a random element in M(R). Thus for some ¢ > 0, we have

pr (dProk (»Coo ((CT,]HU;), S) > 26) > 07
where the second argument in dp,ok(-,-) refers to the law of S. Then due to
Theorem C.1, we have

liminf pr (dprok (Ln(ch,mi, RY), S) =€) >0,

n—roo

which completes the proof since (cf,nf,Rl) and (é,,7,,, R,) have the same

n? n?

distribution for each n > 1. O

Appendix D: Proofs regarding power analysis

In this subsection, we consider the rejection probabilities under the local al-
ternatives Hi ,, : Ay, = Bo/+/n defined in (3.3), where recall that the constant
By # 0 does not depend on n. Further, recall that the other parameters n,
and ¢, as well as the distribution of (W, U, X), do not depend on n. That is,
conditional on (W, U, X) = (w, u, z), the v-density of Y = y is

exp (y (noTzco + /\nuxco) - ¢(ngz60 + Anuxm)) )

where nl'z., = afw + Bou + Y0ze. Denote by P, the joint distribution of

(Y,W,U,X),and by P, =n~!>"" | p, the empirical measure on S induced by

D;,i € [n], where dp, is the Dirac measure at D;, and define G,, = \/n(P,—P,,).
Next, we consider the identifiable and non-identifiable case separately.
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D.1. Identifiable case - power analysis

Recall the definitions of V() v v 52 iy (2.5), and g( ) and gg,), in

c,mr Voemr VG cn

(A.11). In the identifiable case, vy # 0.

Proof of Theorem 3.3. We start with the first statement regarding the score test
statistics .S, based on the original data. The proof is similar to that for Theorem
A.3, and we only show key calculations.

By similar arguments as for Theorem A.1, A.2 and 2.1, under the local al-
ternatives Hy,, in (3.3), we can show that the maximal likelihood estimators
(MLE) (é,,7,,) have a y/n-convergence rate in dg-metric, i.e.,

Vi (Vien =l + llin, = mol) = Ope (D).

Since (é,,7),,) is the MLE, we have

\/_ZZ“%Y d)( ien Tl n)):G7Lg£ Tl +\/_Pngc Sl

By a similar argument as for Lemma A.6, Gng(éi’)ﬁ = Gngg?% +0pr(1). Further,

1 1 1 1
ViPagd o = aPugll, +vaPlgl, —gll, |
1
=@ \/ﬁPnggo)ﬁ + opr(1),
:( ) Vt(zo?no \/_(nn - 770) + BO(Vgi?'r[O)T + OPT(1)7

where (1) can be verified by similar arguments as for Lemma A.7, and (2) is
due to the Taylor Theorem and that ||7,, — 1o/|?> = opr(n"1/2) and \/n\, = By

under the Hy ,. From condition (C.1), VCO),, is invertible, and thus we have

Vi, = 10) = (V)T Guglyln, + Bo(V )MV )T + 0pe(1). (D.1)

€0,Mo €0,Mo €0,Mo

By similar arguments as above and for Lemma A.6 and A.7, we have

S =CGugly +ViPugir,
= GugP, + VIPag +ViPalg — 9P 14 op(1)
= Gng Dy, — VI, V(i —mg) + BV, +ope(1)
=Gngp, =V, (VI ) Gug Y, + BooZ, ) + 0pe(1).

€0,Mo co;M
Since cov (G, (gﬁi?% - Véﬁ?%(Vg)’no)_lgg?m)) converges to o2 n,» Dy the
Lindeberg-Feller central limit theorem, S,, ~ N(BOUCO,UO Ugomo) under Hy ,,.
Next, we study the bootstrap distribution of S} under H;,. Consider the
triangle array setup in Appendix A with @Q,, given in (B.l). By similar arguments
as for Theorem 3.1(i), for each sub-sequence, we may extract a further sub-

sequence such that conditions (A.1)-(A.vil) with 7 = 0 hold almost surely.
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Then by Theorem A.3, we have that the bootstrap distribution of S} converges
weakly to N(0,02 ) in probability. As a result, the limit of the rejection

? 7 Co,Mg

probabilities under Hy ,, in (3.3) is
P(|Zs + Booz | > 0cqm, |27 (a/2)]),

which completes the proof. O

D.2. Non-identifiable case - power analysis

Recall the definition of V) V& Vi3 in (2.5) and VIV, Vi in (3.4). Recall

the zero mean Gaussian process {((AM)T, Ag))T : ¢ € [4,u]} in Section 2.1,
that is tight in (£2°([¢,u]))%*3 and uniformly p-continuous, where p(ci,co) =
|e1 —ca| for any ¢1, co € R. Further, recall that C and S are defined in Subsection
3.3, and define

o ) 1A D ()
Hi= (VY )AL + BV Y).

For any 6 > 0 let K5 = {(c,h) € [(,u] x R¥2 : ¢ € [(,u],||h| < §}. For any
(c,h) € [¢,u] x R¥*+2 | define the following functions on the observation space S:

@cyh,n = \/E(Soc,n(ﬁ»h/\/ﬁ - 9060,770)7

+(2)
fc,n = (y - ¢,(770TZco + )\nu‘)(co))u‘)(m

—(3 —(4

-fg : = ¢//(ngzco)UXCZCv fi ) = ¢//(ngZCU)XCOMXC'

Proof of Theorem 3.4. In the non-identifiable case, 79 = 0. We start with the
first statement regarding the score test statistics .S, based on the original data.
The proof is similar to that for Theorem A.5, and we only show key calculations.

By similar arguments as for Theorem A.1, A.4 and 2.2, under the local alter-
natives Hi ,, in (3.3), we can show that the maximal likelihood estimators (MLE)
(¢n,7,,) have a \/n-convergence rate in dy-metric, i.e., b, = /2|71, — 0y =
Opr(1). Note that by definition,

(én,hn) = sargmax  Gn@.p., + VPiBep -
(e,h)€[l,u] xRd+2

Further, since 79 = 0, A, = Bo/v/n, and v/n||n,, — 1yl = Op:r(1), we have

Sp=Gn[(Y— ¢ nd Zey + MNlUX.)UX;,
+ VAP [(¢ (0 Zey + MlhXey) — &' (NG Zoy)UX:, ]
— VNP [(¢ (A,)T Ze,) — &' (nd Ze,) ) UX:,]

= Gu[F 1+ BoPa[Fo)] = Pol(F) N + 0pe(1).
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By similar arguments as for Lemma A.8-A.10, for any 6 > 0, in (£>°(Kj;))*+6,
VP pn ~1RTVQ) bt BTV
—(3 s -
Pa((F: )7 ] Ve ~
B [(Fe)T] | (esh) € K5 o~ v (e, h) € K,
Gﬂ@c,h,n hTAgl)
G 7(2) AEQ)

For each ¢ € [¢,u], the maximizer and the maximum value of the function
R2 5k RTAY + Boh" VY — IhTV) h € R are respectively:

(VO 1 AD 4 BoV®), and

C,Mo

1 T _

L (a0 + By ) (i) Al + BV,
Further, note that {((A{)T, AP)T : ¢ e [¢,u]} is uniformly p-continuous, and
so are VS%O,VE?,)]O,VC(’?,})O and V¥, ®) due to (C.I), and that h, = O, (1).
Then by the continuous mapping theorem, we have

R —(2) Gy —(4) T A @2 (5)
(cm hm anén,nv Pn[fén ] ’]P)n[fén ]) ~ (C> ]HL A@ ) V@)n07 V@)n0)7
and further S,, converges in distribution to S.

Next, we study the bootstrap distribution of S} under H; ,. Consider the
triangle array setup in Appendix A with @, given in (B.1). Since m,/n — 0,
by similar arguments as for Theorem 3.1(ii), for each sub-sequence, we may
extract a further sub-sequence such that conditions (A.1)-(A.1v) with 7 = 1,
(A.vr) with By = 0 and (A.1X) hold almost surely. Then by Theorem A.5, we
have that the bootstrap distribution of S}, converges weakly to S in probability,
since S has the same distribution as S when B; = 0. The proof is complete. [
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