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in a certain sense, the matrix ® behaves like a low-rank perturbation of a
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1. Introduction

Motivation. Kernel methods play a central role in statistical machine learn-
ing. They have extensively been used in many problems such as classification,
clustering, regression, as well as principal component analysis and have shown
to exhibit better performances than traditional statistical techniques [18, 20].
At the core of these methods is the notion of kernel matrices, constructed as
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follows: Let x1,--- ,x, be n observations in RP, the entries of the kernel matrix
are given by:
_ k(xiaxj)v 7'75]

K= { 0, i=7. (1)
where k is a function of two variables, referred to as the kernel. A common type
of these kernel matrices include inner-product kernel random matrices obtained
by selecting function k as k(z;,z;) = f(zlz;) where f is a given real-valued
function. Kernel methods operate exclusively with the kernel matrix, be it by
computing its principal eigenvectors like in kernel clustering [17] or by solving
a convex problem involving it, as in support vector machine algorithms [14]. A
recent line of research works has been concerned with studying the properties of
large random kernel matrices when the dimension of the data and the sample size
get large and are commensurable. It follows on the important wave of research
focusing on the study of large sample covariance matrices given by % > zizl
which have been the interest of several generations of mathematicians. For more
details, the reader can refer to [8] and the references therein.

First works analyzing the spectrum of kernel random matrices were due to
El Karoui [11, 10], who was interested in the kernel random matrices of the
form {f (xiT:cj)}Zj:l where {z;};_, are zero-mean independent and identically

distributed random vectors with covariance %C, C being a p X p matrix of
bounded spectral norm. More precisely, it was proven under the asymptotic
setting in which the number of samples n and that of features p grow large
and converge to a constant, that kernel random matrices are equivalent (up to
some additive deterministic matrix and proper scaling) to the standard large
sample covariance matrix, extensively studied in the literature. The key idea
in the work of [11] lies in the observation that the kernel function is applied
entry-wise to the random variable 7 x;, which converges fast to its mean. The
behavior of the kernel random matrix is then characterized by applying a Taylor-
expansion of each element around its mean. However, practical machine learning
applications like clustering call for more involved models, among which is the
Gaussian mixture model. Based on this model, and following the same Taylor-
expansion approach of [11], it was proven in [7] and subsequently in [1] that the
underlying kernel random matrix behaves as a “spiked random model”, that is
a finite rank perturbation of (a matrix similar) to a Wishart random matrix
model [4]. The work in [7] provides valuable insights into the impact of the
kernel function and the data model on the clustering performance, unveiling the
sufficient growth rates in the distances between covariances and means to ensure
non-trivial clustering performance. More particularly, assume that data are
drawn from a mixture of ¢ Gaussian distributions associated with class Cy,-- -, C,
such that data samples from class C, follow a Gaussian distribution with zero
mean and covariance %Ca. It can be easily seen that, under the assumption
that all covariance matrices have uniformly bounded spectral norms, the off-

diagonal elements of the kernel random matrix K := {f (ac;fpxj)}?j:l can be
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Taylor-expanded as:

16Fag) = O+ Oaf et T a2 10078 =1 n i £ 5 @)

while the diagonal elements can be expressed as:
1 1
flafa) = f(l—)Tr(Ca)) +0(p~?) (3)

Clearly, if for a # b, %Tr(C’a) - %Tr(C’b) = O(1), perfect clustering can be
performed without invoking spectral clustering. Indeed, it suffices, in this case,
to investigate the diagonal elements of K as they would tend to different limits
reflecting the class to which each observation belongs. From this, it is clear that
the use of spectral clustering becomes relevant only when for all a = 1,--- ¢,
%Tr(C’a) are asymptotically the same. In this case, all diagonal elements tend
to the same limits, and as such, they cannot be used to perform clustering. Let
ce =%, “tC; where for i = 1,--- ¢, n; refers to the number of observations
in class C; and define for @ = 1,--- , ¢, matrix CY as: Cf = C, — C°. Based
on the above discussion and in order to not alter the convergence rate in (3),
it is thus sensible to assume that %Tr(Ca) - ;—)Tr(C'O) = %Tr(Cg) = O(p~2).
Combining (2) and (3) together, and letting 7 = %’H(C"), we can easily deduce

that the kernel random matrix K is asymptotically equivalent to K, given by
1.

K, = FOT+(F(0) - 0) - O) L+ £ OXTX 4+ T 5 (o2
(4)
where X = [z1,---,2,]. In [8], noticing that the spectral norm

C
n

{(si#j (sz"Tj)z}i j=1 {%Tr(cacb)]‘nal’nb}
g p a,b=1

is O(p~2), the authors argued that the matrix {6i¢j(xij)2}zj:1 contains

the necessary information to perform clustering, while the matrix f/(0)X7X

represents the noise part. On the lookout for better performances, one is tempted

to cancel the noise by choosing f such that f'(0) = 0 and f”(0) # 0. In this

case, the equivalent matrix Fg satisfies

K, = 10+ () - ron g+ 10 { Lncucn,n, b

C

+0)(p7 %),
=1

a,b=
5)
where O”.”(p’%) represents a matrix with a spectral norm of order O(p~2).
Equation (5) reveals that, under this particular choice of function f, matrix
Kg is up to a vanishing matrix deterministic, which suggests the possibility

1The asymptotic equivalence herein is in the sense that | K — K 4|| tends to zero as n and
p grow large with % — ¢p



Covariance discriminative power 295

of perfectly clustering observations in the asymptotic regime. However, this
conclusion is not guaranteed to hold if we further assume that for all a,b €
{1,---,¢}, %Tr(CgC’b) = O(p~2). To see this, it suffices to expand %Tr(CaCb)
as:

1 1 1 1 1
-Tr(C,Cp) = =Tr(C;C°) + =Tr(Cy C°) + =Tr(CLCy) + =Tr((C° 2
p (CaCs) , ( ) 5 (CyC7) . (CaCy) p ((C°))

One can easily check that under the assumption %Tr(Cg Cy) =0(p~2)

where for a square matrix A, ||A|| stands for its spectral norm. Going back
to (4), it becomes clear that in case %Tr(Cfl’Cb) = O(p~2), spectral clustering
based on K does not perform better than random guess clustering if f is such
that f’(0) # 0, since K would be equivalent (up to a non-informative matrix)
to the noise part f/(0)X7X. On the other hand, selecting f/(0) = 0 cancels
out the noise term, but fg becomes equivalent (up to a vanishing matrix with

a,b=1

spectral norm O(p~2)) to a deterministic non-informative matrix. The findings
of [7] could not inform of whether clustering can be performed based on the
inner-product kernel random matrix K. The present work aims to fill this gap.
In view of (4), the answer to this question boils down to analyzing the clustering
task using the following random matrix:

& = Vi (T b, g

where the factor /p aims to apply a kind of a “zoom” on the vanishing pertur-
bation matrix expected to carry information about clustering.

Contributions and summary of the obtained results. This paper is
concerned with the problem of clustering n observations z1, - - - , x,, drawn from a
Gaussian mixture model with ¢ classes, in which observations from cluster &, k =
1,---,c follow a Gaussian distribution with zero mean and covariance %Ck. 0)§
interest is the asymptotic setting in which the total number of samples n, that
of samples in each class n,,a =1, ---c and the number of features p grow large
while their ratios 7+ and % are equal to constants ¢, > 0 and ¢g > 0, respectively.

We further assume that the covariance matrices satisfy %Tr(C'g Cy) = O(p~2),
which as earlier mentioned, requires selecting the kernel function f such that
f/(0) = 0. Under this growth regime, and as shown above, the eigenvectors of
the kernel matrix K = { f(xiij)}ijl are informative for clustering tasks if

those of matrix ® are also informative. Based on this observation, we redefine
our task to that of analyzing the leading eigenvectors and eigenvalues of matrix
® in (7). Decomposing ¢ as:

n

® =0+ p{E [(«]2;)%0is5]},,_,
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where
n

®=./p {(J:,;T:Ej)25i¢j} - vp{E [(xij)25i¢j] }i,jzl

we prove that ® is a sort of a spiked random matrix with matrix
T, \2 n
\/ﬁ{E [(xz zj) 51’#]’} }i,j:1

playing the role of the finite-rank perturbation while ® stands for the high-rank
random matrix. A major result of the present work is to show that ® behaves as
a standard Wigner matrix presenting possibly isolated eigenvalues that escape
from the bulk. However, these isolated eigenvalues do not carry information
about clustering. The clustering information is indeed carried by the isolated
eigenvalues of matrix ® and their associated eigenvectors that are produced by
the presence of the finite-rank perturbation matrix /p {E [(z] z;)?8;%;] }n

In a nutshell, our contributions can be summarized as follows:

ig=1"

e We show (Theorem 1) that in the asymptotic regime wherein n,p grow to
infinity with % = cp and 7* = ¢, the matrix ® behaves as a real symmet-
ric Wigner matrix, in the sense that its empirical eigenvalue distribution
converges towards the semi-circle law. This result is in perfect agreement
with that of [6], which asserts that the asymptotic behavior will involve
only the contribution of a Wigner matrix once f’(0) = 0. Note that the re-
sult in [6] is restricted to the case of standard Gaussian random matrices,
and as such, could not be used to handle our specific setting. Moreover, our
approach is very different from [6] and mainly relies on Gaussian calculus
tools as the basic instruments.

e We analyze the asymptotic behavior of bilinear forms involving the re-
solvent of ® (Theorem 2). Particularly, we highlight a striking difference
in the behavior of these quantities that, to the authors’ knowledge, has
never been encountered when dealing with Gram random matrices.

e We show that almost surely for n large enough, the limiting support is
composed of the support of the semi-circle law plus possibly two spikes,
the positions of which are derived. Moreover, almost surely, all eigenvalues
lie within a neighborhood of the limiting support.

e Finally, to allow a thorough understanding of the clustering performance,
we characterize the leading eigenvectors and eigenvalues of the kernel
matrix ®.

Related works. This work, initially motivated by the previous work of [7], fits
in the recent line of research aiming at analyzing kernel random matrices with
elements 1
T

Kij = %f(\/z_m )8 - (8)
Indeed, matrix ® can be thought of as a specific instance of the class of kernel
matrices in the form of (8) with f = 22. Compared to the kernel random ma-
trices studied in [11], the multiplication by /p inside function f produces fluc-
tuating off-diagonal elements. As a consequence, the Taylor-expansion method
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originally developed in [11] and later generalized in [15] for uniform distribu-
tion over balls and in [7] for Gaussian mixture models is not applicable. In a
series of recent works in [6], [12], and [9], new tools have been developed to
study the behavior of kernel random matrices in the form of (8). Contrary to
the kernel random matrices studied in [11], a completely different behavior has
been unveiled, according to which kernel random matrices following the model
(8) behave as deformed Wigner-like matrices. However, all these results concern
observations with isotropic covariance structure and hence could not be applied
to understand the performance of kernel clustering methods. Compared to these
works, our contribution differs as follows. (7) First, we study the behavior of ker-
nel random matrices in (8) for f = x? and when data are drawn from a Gaussian
mixture model with ¢ classes. As discussed earlier, the choice f = 2% aims at
examining the “covariance discriminative power” of inner-product kernel ran-
dom matrices K = {f(xlrzvj)}?j:l, for which, to cancel the noise, f is selected
such that f/(0) = 0. (i) Second, we characterize both the eigenvalues and the
leading eigenvectors of ®, which allows us to gain a deeper understanding of the
clustering performance. On a technical level, we develop a new approach that
combines both Gaussian calculus and the Stieltjes transform tool. We believe
that this approach can provide the underpinning for a unified theoretical frame-
work to analyze general inner-product kernel random matrices in the form of
(8).

Notations: In the remainder of the article, uppercase characters will stand for
matrices, lowercase for scalars or vectors. The transpose and hermitian operation
will be denoted by (.)T or (.)f. The multivariate Gaussian distribution of mean
p and covariance C' will be denoted N (u, C). The notation V = {Y/ij}?:’TLj:l
denotes the matrix with (4, j)— entry V;; (scalar or matrix) 1 <i<n,1<j<T
while {V;}!"_, is the row-wise concatenation of the V;’s and {Vj}jT:1 the column-
wise concatenation of the V;’s. The i-th element of vector v is denoted by [v];,
while the (7,7)-th entry of matrix A may be denoted by either A;; or [A];;.
The operator D(v) = D{va}ﬁzl is the k x k diagonal matrix with vy,..., v
as its diagonal elements. When A is a matrix, the operator D(A) refers to the
diagonal matrix formed by the diagonal elements of A. The identity matrix of
size p is denoted by I, while the vector in m x 1 of all ones is denoted by 1,.
The notation ||.|| refers to either the Euclidean norm of vectors or the operator
norm of matrices while the notation ||.||s refers to the ¢ norm for vectors.
For A and B matrices with the same size, we denote the Hadamard product of
A and B by A® B. For scalars z,, and 7, z, = O(r,) means that there exists
a constant K independent of p and n such that |z,| < K|r,|. For a sequence
of random variables x,, the notation x, = O(r,) means that for every n and
D strictly positives, pPP [z, > prp] — 0. We also define d4 as the indicator
function of set A. For deterministic scalars x, and v, the notation z, = O, (v,)
means that |z,| < v,P(|z])R(|Sz|~1) for some polynomials P and R with non-
negative coefficients and whose parameters are independent of the dimensions
n and p. Finally, we denote by E;, the expectation with respect to vector xy
and by vary, its corresponding variance.
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2. Assumptions and main results

Consider p-dimensional independent real Gaussian vectors zq,...,x,. For
ni,...,n such that ny + ...+ n, = n, we assume that
—1
mn1+...+nj,1+17~'~amn1+...+anN(Oap Cj)

for Cy,...,C, € RP*P,

Let j € {1,---,n}. Then, for all integer k € [Zf«;} ne+ 1,37, nT}, we
define Cy) as C) = Cj. In other words, C) denotes the covariance matrix of
observation xj. Hence, observations xj can be written as:

1 1
= 5l %
where z, ~ N(0, 1)
Further, define C° =35, ~(; and, for each i, C7 = C; —C°. The matrices
Ci,...,C. additionally satisfy the following rate conditions.

Assumption 1 (Growth Rates). Asp — oo, we have the following assumptions:

(i) n/p=co € (0,00)
(i) for each a € {1,...,¢c}, ng/n =cq € (0,00)
(iii) ¥ a,b e {1,--- ,c}, %trC;’Cb =O0(p2)
(iv) all matrices Cy, k =1,--- | c have bounded spectral norm, that is:

li C .
oo Tim sup [Crll < o0

We shall further assume that %tr ((Co)2> and %tr ((CO)4> converge, and de-
fine:
1
w=12 lim —tr ((00)2)

p—o p

Q=+v2,/ lim ltr ((00)4)

p—oo P
Moreover, we assume that:
Q 1
max (‘ —y/—tr ((C°)4>
V2 P

for some constant K independent of p.

1

& La (o)) kot

V2 p

i

As a direct consequence of Item ¢4:) in Assumption 1, we have:

L CiCt =0 (9)

1 1
EtrCSC{,’ =O0(p~2). (10)
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To prove (9), it suffices to replace C° by > ¢_, 2C; and then apply item i) to
each element of the obtained sum. Similarly, (10) can be proven by substituting
Cy by C, —C° and using (9) together with item ¢4¢) in Assumption 1. Moreover,
it also holds that for any sequence of p x p matrices (A4,) with uniformly bounded

spectral norm, we have:
1

}gtr (Co4,) =0 ) (11)

which can be directly shown by noting that

1 o 1 02 l r 2
Lz < S Lo ().

A possible choice of covariance matrices that satisfy Assumption 1-ii7) is when
for instance, Cy — Cp has rank /p for any a # b in {1,...,c} or when it has
O(/p) eigenvalues of order 1 and the others converging to zero. In this case, it
can be easily seen that %tr C°Cy = O(p~2) and %tr CcoCy =O0(p~2).

This paper is concerned with the clustering task using the kernel:

o= ﬁ{(xng)26i¢j}

Particularly, we aim to determine the conditions under which clustering using
® leads to a non-trivial behavior in the growth rate regime of Assumption 1.
As explained earlier, these conditions also imply the non-trivial behavior of
the clustering performance using the kernel matrix K = { f (xiij)}:.lj:l with
1'(0) = 0. |

To assess the clustering performance, it is a fundamental first step to under-
stand the asymptotic spectral behavior of the kernel matrix ®. This forms the
main objective of the present work. We will proceed in two steps. First, we will
study the asymptotic behavior of matrix ® obtained by element-wise centering
of &:

1
[@];; = VP <(%‘T%‘)2 2 tr C[i]Om) 0itj (12)

in the growth regime defined in Assumption 1. Particularly, our main results
are as follows:

1) The empirical spectral distribution of matrix ® converges almost surely
towards the semi-circle distribution, (Theorem 1)
2) Bilinear forms involving the resolvent matrix of ® have deterministic
equivalents in the large n,p regime, which we characterize in Theorem
2,
3) Almost surely, for n large enough, all the eigenvalues of ® are located in
a neighborhood of the semi-circle distribution plus possibly two spikes at
2 2
positions 2 + G and —copf2 — %5, (Theorem 4).
These results set the stage for the second part of our work (section 3), in which

we study the behavior of spectral clustering using matrix ®.
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For the first part of our work, the fundamental tool is the Stieltjes transform.
For z € C\R, we denote the resolvent of matrix ® by:

Q=) = (@ — 21,)"

and the Stieltjes transform of the expectation of the empirical measure of the
eigenvalues of ® by:

gn(2) = %trEQ(z)

We will prove that:
1 a.s.
- trQ(z) — m(z)

where m(z) is the unique Stieltjes transform solution of the following fixed point
equation:
1

 z+ cow?m(z)

m(z) =

This allows us to achieve the first goal of the present work, which is to prove
the convergence of the empirical distribution of matrix ® to the semi-circle
distribution. The latter result is formally stated in the following Theorem, the
proof of which is postponed to Section 5.1.

Theorem 1. Let Assumption 1 hold true. Denote by A1, --- , A, the eigenvalues
of ®. Then, the empirical spectral distribution p, = %Z?:l 6, converges al-
most surely (in the weak convergence of probability measures) to the probability
measure p with density:

1

where 8 4 is the indicator function of set A. Moreover, the support of the limiting
density is S = [—2\/%% 2 cow] .

Theorem 1 can be leveraged to approximate in the almost sure sense func-
tionals of the eigenvalues of matrix ® by virtue of the Portmanteau Lemma,
thus leading to the following corollary:

Corollary 1. Let Assumption 1 hold true and f be a continuous bounded func-
tion. Then,

/ SO pn (dX) — / F)u(dX) 250,

Corollary 1 prefigures the asymptotic behavior of functionals of the eigenval-
ues of matrix ®. However, it cannot be used to infer that of the eigenvectors. As
shall be seen next, a key step in analyzing the asymptotic behavior of the eigen-
vectors of ® (or a perturbation of it) is to characterize the asymptotic behavior
of bilinear forms associated with the resolvent matrix in the form of aXQ(2)b,
where a, and b,, are two vectors in C"*!. This is the purpose of the following
Theorem, the proof of which is deferred to Section 5.2.
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Theorem 2. Consider the setting of Assumption 1. Let {an} and {b,} be
two sequences of vectors in C™ ' with bounded Euclidean norm. Then, for any

z € C\R,

co?m3(2)

T T a.s.,
1,1, b, — 0.
1= Q2m2(z))

T — (aT'v,)) m(z) —
anQ(Z)bn ( nbn) (2) p(

where here 1, is the n X 1 vector of all ones and thus 1n1£ is the n X n matriz
of all ones.

Theorem 1 and Theorem 2 imply that the resolvent matrix @ is equivalent
to

Q2com?(2)
(1 - Q2cfm?(2))

Q=m(2)I, + 1,17
p

where the equivalence is in the sense that %tr A X, — %tr A,Y, — 0 and
al (X, — Y,)b, — 0 for every sequence of deterministic matrices A, with
bounded spectral norm and sequence of vectors a,,, b, having bounded Euclidean
norms. In other words, by reference with this definition, matrix @ is equivalent
to a rank-one perturbation of a scaled identity. As far as classical random ma-
trix models are considered, this behavior is met when the random matrix under
study is modeled by a finite-rank perturbation of a high-rank random matrix.
Based on this, we can anticipate that matrix ® may possess a spike outside the
support of the semi-circle law, which explains the presence of the rank one ma-

trix %%15 Such a spike should correspond to the real values x for
0

which m?(z) = Qzlcz. This question is discussed in Theorem 4, which confirms
0

the possible existence of spikes outside the main bulk of the semi-circle law.
But before moving to Theorem 4, we shall present the following result con-
cerning the asymptotic limit of quadratic forms involving two resolvent matrices.

Theorem 3. Consider the setting of Assumption 1. Let {an} and {b,} be two
sequences of deterministic vectors in C™*1 with bounded Euclidean norm. Let
D,, be a n X n sequence of diagonal matrices with uniformly bounded diagonal
elements. Define for z1,z2 € C\R, g(z1, 22) as:

g(z1, 22) = (1 — wW?com(z1)m(z2)) " tm(z1)m(z2)aTb

m(zl)m(z'g)coﬂ2 {mQ(zl) +m?(z2) + m(z1)m(z) — chsz(zl)m%zQ)}

- _ 1
x (1= Q%ctm®(z1)) 1(1 — Q*cim?(22)) 1(1 —w2eom(z1)m(z2)) t=a’1,1%
p
Then,

CLZQ(Zl)DnQ<Z2)bn - m(21)m(zg)a5Dnbn

= m{a (o) (D))ger,22) o1, 2) 25 0.
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where:
COQ2m3(z2)m(zl)aTD1"T}Zb COQQm3(zl)m(22)aT%Db
1—Q2c2m?(22) 1—Q2c2m?2(2)
T
% tr(D)Q2m?2(21)m?(29) (1 + CgQQm(Zl)m(ZQ))CLT%b

(1 - chgm2(zl)) (1 - Q2C(2Jm2(22))

’F(Zh 2’2) =

+

Proof. See Section 5.3 O

Theorem 4 (Almost sure location of the eigenvalues of ®). Consider the setting

of Assumption 1. Let A1, --- , A\, be the eigenvalues of ®. Let p = oS+ “;—; For
€ > 0, define §¢ as

Sc [—2 cow—e,Q\/%w—i—e] if Q< “éo
[—2/Cow — €,2\/cow + €] U[p—€,p+ €] U[—p—€,—p+¢€ otherwise.

Then, with probability 1 for all large n:
i, 1 <i<n}nR\S =0.

Proof. See Section 5.4. O

Remark 1. From Cauchy-Schwartz inequality, it follows that 1—1) tr ((00)4) >

%tr ((00)2) or equivalently Q > w. Hence, if ¢ > 1, 2 > f_cj In such a case,
we expect at least two spikes at positions p and —p escaping from the main bulk
of the semi-circle law. While in theory Theorem 4 could not infer exactly on the
exact number of the spikes, simulations in Fig. 1 suggest that there are exactly

2 spikes at position p and —p.

Remark 2. The result in Theorem 4 is in agreement with [12, Theorem 1.7],
which shows that under the i.i.d. case with all C}’s equal to the identity matrix,
polynomial kernel matrices might have two spikes outside the main bulk of the
semi-circle law. Although restricted to f(x) = x2, our work extends the result
in [12] to Gaussian mixture models.

Remark 3. The convergence results in Theorem 2 and Theorem 3 can be
easily extended to all z € T := C\ ([-2,/cw, 2,/cow] U {—p, p}) using standard
arguments based on Montel’s theorem. Particularly, for Theorem 2, the recipe
is as follows. The random quantity al Q(z)b, and its deterministic equivalent in
Theorem 2 are analytic and bounded on any compact support of Z. It follows
from Montel’s theorem that there exists a subsequence for which al'Q, ()b, —
COQQ’mS(z) T

~ a—zEmr () In 1,11'b, converges to a holomorphic function on

each compact set of C\Z. Since this limiting function is zero for all compacts

alb,m(z)
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Fic 1. Histogram of the eigenvalues of ® and the semi-circle law, for (a) n = 4800 and
p = 1600 and (b) n = 1600 and p = 4800. All C;’s are equal to Ip. The semi-circle law is
superposed in red, and the locations of two observed spikes is highlighted with red arrows.

of C\R, it is thus also zero for all z € C\Z. Thus, the convergence of Theorem
2 holds for all z € C\Z. The same argument is valid to extend the convergence
result of Theorem 3 to all z € Z.

3. Applications: Spectral clustering using {/p(x7 z;)*8;; }

In this section, we show how the previous results can be leveraged to gain a
better understanding of the performance of spectral kernel clustering based on

the matrix:
n

¢ = {(Izrf”j)z‘si#j}i,j=1 :
To begin with, we decompose P as:

n

~ 1
D=+ {—3 trC[i]C[j](i#j}
P2

i,j=1

The behavior of matrix @ is studied in the previous section, where we showed
that ® behaves like a Wigner matrix plus possibly a one-rank perturbation. It is

thus not informative from a clustering perspective; the information about clus-
n

tering in ® is rather carried by the finite rank matrix {% tr Cy) C[j]éi#}
p2 .

i,7=1
To continue, we note that

1 n 1 n o
{thfcmcm&#} Z{Etrcmcm} +O(p72)  (13)

i,j=1 ,5=1
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where Oy | (p_%) refers to a matrix with O(p_%) spectral norm. Next, for a,b =
1,---,c, decomposing 4 tr(C,Cy) as:
pZ

1 1 1 1 1
— t1(CaCh) = — t1(CLC5) + —5 tr(C7C°) + — tr(CyC°) + — tr((C°)?)
b= b= bz bz bz
we can easily see that matrix M defined as:
1 ¢
M= —5 t1(CoCy)1p, 15,
pz a,b=1
can be written in matrix form as follows:
1 1 1 1,17
M==JAJT + = Jall + =1,aTJT + g (14)
p p p p
where J = [j1,...,j.] € R"*¢, with j; being the canonical vector of class i,

taking 1 at the positions in which z; belongs to class i and zero otherwise and

A, a and (8 are given by:
1 C
a:=q—tr CfC"}
{\/1_7 i=1

e %tr ()?) (15)

1 (&3
A::{—trCfC‘?} )
VP ! i,j=1

Then, in view of (13), we obtain:
s — _1
=0 +0(p 2) (16)

where ® writes as: _
b :=d+ M (17)

Behavior of the eigenvalues. Matrix ® follows a spiked random model per-

turbed by a finite rank deterministic matrix. From standard results of random
matrix theory, we expect all its eigenvalues to be located asymptotically within
Se except for finitely many of isolated eigenvalues escaping from S.. Determin-
ing the almost sure location of such eigenvalues is of fundamental importance
to understand how kernel clustering works in high-dimensional settings. Since
B1,1% has only one non-zero eigenvalue of order /D, by the Weyl’s inequali-
ties, the n — 1 smallest eigenvalues of ® are located almost surely in a compact
interval, satisfying

_ 1 1 1
(@) < [|@|, + H;JAJT + 2—)Ja1§ + ]—)lnaTJT

2

while the largest eigenvalue cannot be bounded. The following theorem charac-
terizes the location of the eigenvalues of ® that escape from Se.
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Theorem 5. Let k, A\1--- ,Ac—1 be the c largest eigenvalues of ® such that
K> A > ... > Ae_1. Then, there exist K1 and Ko deterministic constants
such that:

Ki\/p <k < Kao/p

Moreowver,

KB as g

VP VP
1

Assume that 7 tr C;Cy converges and let:

1 C
T := {,/cm/cb lim —tngCO}
n—oo \/p b bt

Denote by vy > vy > -+ > 1.1 the ¢ — 1 largest eigenvalue of T. Then, under

Assumption 1, if fori € {1,--- ¢}, v; > \/%_0 and v; ¢ {Q, —Q}, then

w?

a.s. A

Ai == pi = cov; + o
(2

Proof. See Appendix C.1 O

Combining the results of Theorem 4 and Theorem 5, it can be seen that
the eigenvalues of ® that converge to values outside the support of the semi-
circular law are informative except possibly for eigenvalues converging to p and
—p which appear only when Q > \/‘“—Cfo Thus, in practice, it is important to get
estimates of Q and w in order to: 1) estimate the support of the semi-circular
law, 2) determine if non-informative eigenvalues converging to g and —p may
appear. The values of w and 2 depend on the unknown covariances. However,
as can be seen below, they can be estimated based on the observations from all
classes. Indeed, we may use the Poincaré-Nash inequality stated later in (31) to
prove that:

1 = 1
var [ LSS (a2 | = o) (18)
n — <« p
=1 j=1
J#i
1 1
var | E x?xjxjrxkxgxmxﬁxi :O(F) (19)
i,3,k,m
i#)#RAm

The proof of the above results follows from very similar derivations used in the
paper for variance control and is thus omitted. It follows from (18) and (19)

that:
LSSl - S Bl ) 250 (20)

i=1 j=1 i=1 j=1
J#i JAi
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and
1 1 a.s.
— x?xjx?xkxfmmxaxi - — g E[m?xjmjrxkxzxmxgxi] =0
n n
i kam ik
i#g m i#jFERFEM

(21)
On the other hand, taking the expectation over the distributions of the obser-
vations, we obtain:

n n
1 (a) (TL — 1) 1
= Bzl x;)? = —tr(Cpy Cy)) = —tr((C°)*) + O(p~ 2
ZZ i) npggp 4C) Sr((C)) + 0 h)
1= j =1 j3=
Jj#i J#i
(22)
1
= o tr((C7)%) + O(p~?) (23)
where (a) follows from Assumption 1—(4i7). Similarly,
1 1 1
¥ Zk: Elef 2ja] o omtmai] = Zk: 5 (C1C1iCri Cron)
1,],k,m 1,0,k, M
i) #hAm i) #hAm
n—1)(n—2)(n —3)itr((C°)*
R T RN
p
1. .
= 03]—)“((0 ) +0(p™7)
(24)

where (24) follows from (11). Combining (20) and (21), consistent estimators
for w and €2 can be obtained as:

N (25)

o =
i=1 j#£i
N 2p?
_ T, T o T
Q= s E T T TR T T T (26)
i Jem
it

Behavior of the eigenvectors The clustering performance depends on the
degree of alignment between the eigenvectors of ® associated with the isolated
eigenvalues and hence referred to as from now on isolated eigenvectors and the
columns of J. A perfect clustering performance would be obtained in case of
perfect alignment. In our case, because of the noise matrix ®, a perfect align-
ment does not hold, making the eigenvectors of ® fluctuate around the classes’
index vectors ji,--- ,je, ji being the canonical vector of class i. Assessing the
alignment of isolated eigenvectors of ® to these vectors is an important step
towards gauging the clustering performance. In the sequel, we will focus only on
the eigenvalues of ® that converge to one of the {pl}f;ll defined in Theorem 5.
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Let @, be an eigenvector of ® associated with the isolated eigenvalue con-
verging to p. Then, @, may be decomposed as:

C

o p Ja PP
upfg ap——— + o wy,

a=1 Vv T

where w’ is a vector of unit norm supported on the indices of class a and
orthogonal to j, while o € R and ¢ > 0 are scalars to be determined. Similarly,
for two isolated eigenvalues and bounded eigenvalues of ® converging to p; and
p2, it is of interest to study the correlation:

. T .
- Ja NV Ja
O—Zl,m - (upl - aZ1 ﬁ) D(Ja) <up2 - agz\/—n—a>

where D(j,) is the diagonal matrix formed by the entries of the canonical vector
Ja of class a.

Theorem 6. Consider the setting of Theorem 4. Let i1,ia € {1,...,c—1}.
Let (N, ,Tp, ) and (N, ,1,,, ) be the eigenpairs of ® such that i, and Ap,,
converge respectively to p;, and p;,. Let (v, ,Vp, ) and (vp,,,V,,,) be the eigen-
pairs of T associated with p;, and p;, where vy, and vy, have unit multiplicity.
Assume that for k = 1,2, \/co|vp, | > w, v, & {0, —Q} with p = coQ + “’—92
Then, for any a,b € {1,...,c} and j = 1,2,

2

abiap 25 (1 - %%) Vo, vl (27)

Moreover, ,
TP Z—Z% (28)
Proof. The proof is in Appendix C.2 U

Remark 4. (The Largest eigenvector is the most informative) Since x — cox +
2

W

“- is an increasing function when x > , the largest isolated eigenvalue p; is

Cy
associated with the largest v; eigenvalue (;)f T. The fluctuations of the entries of
this eigenvector around o' are the smallest compared to those of other isolated
eigenvectors, and is as such less prone to the noise induced by the presence of
matrix ®. On the other hand, as far as the isolated eigenvalue approaches the
bulk, its associated eigenvector becomes more noisy presenting the highest level

of fluctuations.

Remark 5. (Isolated eigenvectors are asymptotically decorrelated) Since O'gil pig
converges to zero whenever p;, # p;,, an interesting outcome of Theorem 6 is
that the dominant eigenvectors of matrix ® associated to bounded eigenvalues
have negligible correlation and thus can be treated independently when it comes

to clustering. This behavior is a consequence of the fact that, although the xz;’s
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Fic 2. Distribution of the eigenvalues of ® along with the semi circle law, for p = 1024,
c=3,¢c1=c3=025and c2 =0.5, C; =Ip + %WiWiT when Wy € RPXVP with i.i.d N(0,1)
entries.

have different covariance matrices per class, ® asymptotically behaves like a ma-
trix with i.i.d. entries and thus does not asymptotically capture the difference
in covariances as do the isolated eigenvectors.

Remark 6. (Expression of i) Since the eigenvectors are defined up to a sign,
we may impose without restriction that a£? > 0 for s the smallest index a for
which a¢ # 0. Thus from Theorem 6, we find for each a,

pi &S . A _iw_Q T
al’ — sign ([vzvi La) 1 5 [Uwi ]aa.

Co V;

Numerical results For the sake of illustration, we represent in Figure 2 the
distribution of the eigenvalues of ® along with the semi-circle law when obser-
vations can belong to 3 different classes with proportions ¢; = ¢3 = 0.25 and
co = 0.5. We assume that observations are drawn from p = 1024 dimensional
Gaussian distributions with mean zero and covariance C; = I, + Qi%WiWiT
where W; is p x /p standard Gaussian matrix and ¢y = 2,0, = 3 and 03 = 4.
The total number of observations is taken to be 5000. As seen from this figure, ®
has two isolated eigenvalues which are bounded and one large eigenvalue scaling
with p. We further investigate the behavior of the eigenvectors associated to the
eigenvalues converging to the values p; and ps specified in Theorem 5. Figure 3
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Fic 3. Isolated eigenvectors of ® converging towards p1 and p2 as specified in Theorem 5
versus deterministic approximations of ab + VO3, p; @S per Theorem 6, for n = 5000,

p=1024, c=3,¢c1 =c3 =1/4 and c = 0.5, C; = I, + %WiWiT with W; € RPXVP with
i.i.d. N(0,1) entries.

represents these largest eigenvectors along with the theoretical approximations
provided by Theorem 6. We note a high accuracy of the provided approxima-
tions. Moreover, we note that the largest eigenvector presents the lowest variance
and thus is less sensitive to the noise caused by matrix ®.

4. Mathematical tools and preliminary results

This section is dedicated to the proof of our main results in Theorems 1- 4.
Throughout this section, we shall adopt the following notation. We write xp =

Ci]zk and define Z = [z1, -+, 2,] and X = [z1,...,2,]. The element (i, ;) of
matrix A will be denoted as A;; or [A]; ;. Our object of interest is the resolvent
matrix, which we recall is defined as

Qz) = (2 - ZIn)_1
where @ is defined in (12).The proof relies heavily on standard tools from Gaus-

sian calculus as well as linear algebra relations, which we provide below for the
reader’s convenience.

4.1. Mathematical tools

The following results will be of constant use throughout the proof of our main
results.
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. Differentiation formula:

8 i 1

Qu _ -2 Z(a:bTa:s) [05 xb} (QisQur + Qusr Qi) - (29)
0Z s - r

Integration by Parts formula for Gaussian functionals: Let f be a C!

function polynomially bounded together with its derivatives. Consider

Z € RP*™ a standard normal Gaussian matrix. Then,

_ = [9f(2)
Blzs/(2) =& |52 (30)
Poincaré-Nash inequality: Let Z and f as above, then:
< of(2)?
wn(f(2) < -3 k|| 55 (31)
i=1j=1 v

Identities involving the resolvent: Define vector £ € R™ with elements:

[6e]; = VP [(w) 20)* — By )]

We denote by &, i) vector § where the k-th entry is replaced by zero.
Let @ be matrix ® where we replace the k-th row and k-th column by
zero-entry vectors. Define Qp = (P — zIn)fl. It is thus easy to notice
that @ does not depend on x; and that [Qk]kj = 0 for k # j. These
properties will be extensively used in the proofs. Moreover, the diagonal
elements of @ satisfy [3, Theorem A 4]:

-1
Cz4 f(ql;y_k.)Qkf(k,—k)

Qk (32)

Furthermore, the off-diagonal element Q;;, with (i # k) is given by [3, page

A71):

_ el Qrék,—k)
2+ &l 1y Qubk,—k)

where e; denotes the i-th canonical vector of C™.

Qik

= —Qre] Qr€r,—r) (33)

The integration by parts formula along with the Poincaré-Nash inequality will
be extensively used to find deterministic approximations of functionals depend-
ing on the resolvent matrix and the observations @1, -+ ,x,. Let f(Q,{z;};—;)
denote a scalar functional of interest. At a high level, we proceed into the fol-
lowing steps. First, we use the Poincaré-Nash inequality to find an upper bound
of the variance. If this upper bound goes to zero with a rate O(p~17¢) for some
€ > 0, then, from Markov inequality, the problem amounts to finding a determin-
istic approximation for the expectation of f(Q, {z;}? ;). This is then performed
by using the Integration by Parts formula (30) together with the differentiation
formula (29).
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4.2. Preliminary results
4.2.1. Useful inequalities

We gather in this section some matrix estimates which will be of constant use
in the proof of our results.

Lemma 1. Let A be a n x n matrixz. Then,
ID(A)1n]leo < [IA]

Proof. The proof follows by noticing that | D(A)1,||cc = maxg=1,... n |Akk| and
using the fact that forall k =1,--- | n,

[ Akk| < (Al 0
Lemma 2. Let A and B be two n x n matrices. Then,
[AB| < [[A]ll|B]].
Moreover, denoting by ® the Hadamard product, we also have:
1A® Bl < [|A[[||B]l

Lemma 3. Let A be n X n matriz. Then, the following inequality hold true,

4]l < \/tr(A4T)

4.2.2. Useful approximations of random quantities

In this section, we introduce some important results that will be extensively
used in the proof of our main theorems. These results facilitate the assessment
of random quantities involving the resolvent matrix. We shall for the reader’s
convenience, recall the notation x, = O(r,) where z,, is a sequence of random
variables and 7, is a rate decreasing with p. The notation z, = O(r,) implies
that for every n and D strictly positives P [z, > p"r,] = o(p~ 7). As shown in
[7], the notation O(.) has the property that the maximum of a collection of
n® random variables for any constant C' of order O(r,) is still O(r,). Using
standard concentration inequalities, we can show that this notation holds for
many functionals of Gaussian vectors. Particularly, if z, and w, are two inde-
pendent standard normal vectors and A, a sequence of deterministic or random
matrices with bounded spectral norm that are independent of z, and w,, then
%ZpTprp =0(p~?).

Let Ay p, A2, and A3z, be sequences of p x p deterministic matrices with

spectral norm uniformly bounded in p. Let k € {1,--- ,n}. Define the n x n
matrix Sy such that its (b1, bs) entry is given by:
[Sklyyb, = (2, Avpa) (5, A2p2k) (24, A3 p2b,) Oktby Shtty- (34)

The following result, controlling the spectral norm of this matrix is extensively
required in the proofs of our results.
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Lemma 4. Let Sy be as in (34). Then,
ISkl = O(p~").
Proof. We can write Sj, as:
Sy = D X" A3 , X Dy,

where Dk = D{ngl,p$k6b¢k}Z:1, Dk = D{ngQ,p$k6b¢k}Z:1 and X =
[21,...,2n]. The result follows since | Di|| = O(p~/2), ||[Dil = O(p~2) and
| XTA;3,X|| = O(1) as per [2]. O

Lemma 5. Let Wy, and Wa,, be two sequences of positive random variables
such that there exists constant K > 1 for which

EW,, < Kp™" (35)
EWy, < K (36)
EW}, < Kp® (37)

for some positive constants o and r. Assume that W1, = O(1). Then, for any
€ > 0, we have
E W1 ,Wa,] <2Kp "t

Proof. Let € > 0. We have:
E Wi, Wap] = E[Wi,Wap 8w, ,>pe1] +E [Wip,Wapd(w, ,<pe]
< EWZ, W2, /B Wi, 2 ] + P E (W)

<VEKpiy\/P[Wy, >p|+ Kp'*e

The result of the lemma follows by noticing that P [W;, > p] = o(p~!) for
any [ > 0, which follows from the definition of O(p~") for random variables
described in the notation section. Taking [ = 2r + 5 — 2¢ finishes the proof. [

Remark 7. Lemma 5 offers a practical way to control the expectation of the
product of the two random variables W1 ;, and W3 5, in which the fourth moment
of one random variable, (here W ,) can be coarsely bounded by a constant that
scales with p®. This situation occurs for instance when W, represents the
maximum of random variables with bounded moments 2. If Wy , additionally
satisfies W1, = O(1), the growth rate of the expected value of the product
of these random variables will be essentially determined by that of W5 ,. For
instance, when Wy, = 1 and W1, = O(1) satisfying the conditions of Lemma 5,
then, for any small € > 0,
E[W1,,] = O(p")

2 Assuming W1, = maxi<p<p |Ys| where Y,k = 1,---,p have all finite moments. Then,

E[Wip|* <E[YF_, [Vill* <pP 320 E[lYe|Y)
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The asymptotic characterization of the behavior of quadratic forms has played
a key role in proving many illustrative results of the field of random matrix the-
ory. It turns out that in the currently studied case, quadratic forms of different
nature involving vector §(; _j) will arise. Studying these new kinds of quadratic
forms is essential to our analysis, and is the purpose of the following lemma.

Lemma 6 (Behavior of quadratic forms involving vector { _xy ). Let k €
{1,--- ,n}. Let A be a n x n symmetric matriz independent of xy. Denote by
Ey the expectation operator with respect to xy. Define vector d as the n x 1
vector with elements:

L 2T Oz — S5 Tr(CpCryy)  fori#k
g, = { 7 T p Gl (38)
0, otherwise.
Define also matriz X as the n X n matrix with elements:
T 32 ; ;
5, — (z; Cyxy)*  fori #.k and j # k (39)
0 otherwise.
Then,
2
Ei [,y A1y | = df Ady + 1o A (40)

Moreover, we also have for any e > 0:

2s
Ey ‘fﬁ,,k)AE(k,—k) —Erly _mAl—r| = lAI*00@ ") (41)

for s € N*.
Proof. See Appendix A.1 O
Corollary 2. Letk € {1,...,n}. Let A be a nxn symmetric matriz independent

of x,. Let a and b be n x 1 wvector independent of xi. Denote by Eji the
expectation operator with respect to xy. Then,

1
B [€hs, -y 4ab” A 0| | < NalllollAIPOC) (42)
Proof. 1t follows from Lemma 6 that
2
o [g(Tk’_k)AabTAg(k,_k)} = dT AabT Ady, + EbTAEkAa (43)
where dj, and ¥, are defined in (38) and (39). Noting that ||dx| = O(ﬁ) and
that || X]| = O(1), we can upper-bound the first and second terms in the above
equality as:
1
|di; Aab” Ady| < HA||2||aH||b||O(5),
1

2
]]—DbTAzkAa < aApllallAoc)

hS!

which proves (42). O
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4.2.8. Useful properties of the Stieltjes transform of the semi-circle distribution
Lemma 7. Let z € C\ [-2,/cow,2\/cow]. Let m(z) be the unique Stieltjes
transform solution of the following fixed-point equation:

1

M) = eem? ()

Then, m(z) satisfies the following properties:

1. m(z) is analytic in C\ [—2y/cow, 2\/cow]
2. V{z € C,|z| > 2,/cow},

< b
|z = 2y/cow

8. Let a > 0 be a strictly positive scalar. Then, it holds that

Im(2)|

(J1 - ozmz(z)‘)71 < (|z] + 2y/cow)* <4|%z|_4 + %|§z|_2> . (44)

Moreover, if |z| > Qﬁﬁw, /4 + W%O‘CO , then:

4
|1 —amz(z)| > 2 |Z|

(l2] +2y/cow)*

Proof. The proof is in Appendix A.2. O

4.2.4. Variance evaluations of resolvent based quantities

In this section, we leverage the Poincaré-Nash inequality to evaluate the variance
of quadratic forms and weighted averages of diagonal elements of the resolvent
matrix.

Lemma 8. Let z € C\R. Let {a,} and {b,} be two sequences of deterministic
vectors with unit norm in R"¥1. Then, for any ¢ > 0:

E[ lak Qb, — Eaf@bnfﬂ =0,(p~ %) forseN* (46)

var (% Z Qiiai7n> =0, (p_2+€). (47)
i=1

Proof. For the sake of simplification, we shall remove the subscript n from a,
and b,,.

1. The proof of (46) is performed by induction on s. For s = 1,

E |aTQb —E [aTQb] |2 = var (aTQb)
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Using Poincaré-Nash inequality, we can upper-bound the variance of a” Qb
as follows:

P on T
da’ Qb |2
of
<
var(a® Qb) _gk: { 7 ‘ ] (48)
To prove the desired result, we shall show that:
D n T
0 b2
S A D < el o) (49)
= io 9Zu

For that, we rely on the differentiation formula in (29) to obtain:

’izn:aibjz(mzxk [ ]xs] szng

n

NE

y4 n T 2

=i 9% I=1 k=1 i=1 j=1 s2k
P n n o n N 9
833D aiby Y @lan) [ Qu
=1 k=1 i=1j=1 btk

M)~

= 8 Z‘GTQGIC Z(l’?mk)[ k]$s Qb’
1=1 k=1 sk
p n 2

+8Y° )aTQeS S (@Tay) [C[i]ms]le{cgb‘ (50)
=1 k=1 sk

We will only treat the first term as the second one can be handled in the
same manner. Expanding the sum of the first term, we obtain:

2

aTQekZ Ty Tf) [ s] €, Tob (51)

1 s#k

=8> > > |a"Qex (2l wp) (@], ar)al, Clyas, [QV]s, [QF B, (52)

k=1 Sl#k Sz;ﬁk

=8> |a"Qer?b" QS,QM (53)

k=1

NE

23

=1

7

3

where S} is the n X n matrix with entries
[Sk]8182 = ($£$k>($£$k>$£0[k]xs2
From Lemma 4, the spectral norms of matrices Sy satisfy:

_ -1
max |5k =00

Using the fact >, _; |a” Qex|? is bounded by |3z|~2||al|?, we thus prove
(49), and hence (46) follows by Lemma 5. Assume now that (46) holds
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true up to s — 1 € N*. Note that

S S 2
E[|a”Qv~E [ Qt] "] = (E [[a” Qb — Ea" Qb))
+ var (a” Qb — Ea”Qb)’
Using the induction assumption, along with Cauchy-Schwartz inequality,
the first term in the above equation can be shown to be O, (p~5t¢). It

remains thus to prove the same result for the second term. Based on the
Poincaré-Nash inequality,

T T )e 2 - ol T Apys—1 da" Qb ’
var(a” Qb — Ea” Qb)° < s E g E Qb —Ea' QD) 0z
1=1 k=1
p n T 2
da” Qb
_ 2 T T A1\ 2(s—1)
s°E l Qb — Ea' Qb) lg_l kg ’ 27

Using (49) along with the induction assumption, we obtain:
var(a? Qb — Ea” Qb)* = O, (p~ ).

2. Proof of var (\/ﬁ S aZQ“> = O, (p~2%¢). From Poincaré-Nash inequal-

ity, we have:
1 n n BQ 2
i 0.: | < “
ar <\/H é azQu) > Z aZlk
16

- ;EZ QD {ai}i; (@8:Q") P{aiti, "],

1

k=
= [tr QD {a;};, (Q5:Q™) D {ai}i_ 1QH)}

< gE[IIQH ISk e ((D {ai}izy)®)]

P n

Y E

=1 k=1

S|

where the last inequality follows from the fact that tr(AB) < || A|| tr(B) for
A and B two n X n matrices with B being hermitian non-negative. Since

tr((D {ai}?zl)z) = |la||? is bounded, we obtain: var (ﬁ Sy aiQii> =
OZ(pinre)' |
Lemma 9. Let = € C\R. For j € {1,...,n}, let (Ap;),cn. be a sequence of

p X p matrices satisfying limsup, maxi<;j<n ||4;pl < co. Then, for any s € N*
and € > 0

2s

1 T 1 _ —2s5+€
11%13;32(“1@ ; 7}3 <xk Ap iz — ]—?trC’ p,J> Qjx| =0,(p ) (54)
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Proof. See Appendix A.3 O

Lemma 10. Let z € C\R. Let a be a unit norm deterministic vector in R™*1.
Then, for any € > 0 and s € N*,

E{ |la” Quéh,— 1) ’28} =0.(p™*")

Proof. The proof is carried out by induction on s. For s = 1, the result follows
by applying Corollary 2. Let s € N. Assume that the result holds true for all
k < s—1, and let us prove it for k = s. To begin with, we decompose aTQ;cf(k’,k)
as:

a" Qrék,—ry = a" Quér,—x) — Ex {GTng(k,—k)} +Ej [GTng(k,—k)}
and apply Jensen inequality to obtain:
2s s— 2s
E|a” Qré—r)| < 2* 1E[ ‘GTQ&(/C,%) — Eg {aTQkf(k,fk)} }

25} (55)

4 22571E[ ‘Ek [QTng(lc,—k)}

The second term in the right-hand side of the above inequality is O, (p~*7¢) by
Corollary 2. To handle the first quantity, we use the following equality:

E, [ ‘aTng(h_k) _E, [aTng(k,_k)} 28} (56)

— var, ((aTng(k,,k) _E, {aTng(k,,k)} ))

T e

where vary, is the variance with respect to the random vector . Hence,
ST
-3 o (010 -5 )

il (58)

To treat the second term in (58), we apply Cauchy-Schwartz inequality to find:

o - st

25—2
< Eg [ ‘GTQkf(k,fk) — Eg [aTng(k,fk)} ‘ }Val‘k (a” Quér,—1))

+ ’Ek { ‘aTQkf(k,_k) — Eg [GTQkf(k,—k)]

+E U]Ek [ ’GTng(k,fk) — Ey {GTQkf(kﬁk)}

By Corollary 2,

B 1
vary (" Qré(,—1)) < Exla” Qréi—i[* < llall?|Sz2| 20(};)
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Hence using Lemma 5 along with the induction assumption, we obtain:
|
To conclude, it remains thus to handle the first term in (58). For that, we use
Poincaré-Nash inequality, which leads to:

vary, ((aTQkf(k,_k) _E, [aTng(k,—k)] ) s>
8(aTQk§(k,_k) —Ey {aTng(k,—k)Ds 2

E UEk [ ’aTQkﬁ(k,fk) — Ey [GTQkf(k,fk)]

2
] — 0.7 (59)

NE

= 0Z,
— Ik
_ S B, (o7 251 | 9a” Quér,—k 2 60
—;8 (a QrEk,—k) — k[a ng(k,fk)}) T Z (60)
p ol T - 2(s—1)
= 428 (a Qr€(k,—r) — Ex [a ng(k,fk)})
=1
2
1
% |3 (0T Qul; (¢ T ) [Cﬁc]xj}l (61)
i#k
2. T T A1)
=4s (a Qr&(k,—k) — Ex [a ng(k,—k)}) a’ QrSkQra (62)
where S}, is the n x n matrix with elements
[Skljuge = 05126850 (], 1) (2], 212, Clig,y -
From Lemma 4, ||Sk| = O(p~!), hence,
la" QrSkQral < [Sz27*|lallPO(p™") (63)

From the induction assumption, it follows that

T T Hs=1) —st1+e
E(a” Qrék,—x) — Ex [a Qkﬁ(k,—k)D =0.(p )-
This, together with (63) and Lemma 5 leads to
E [Vark ((GTQkf(k,fk) —Ex [aTQkf(k,fk)}> )] =0.(p—°") (64)
Combining (64) with (59), we thus prove the desired result. O

A direct corollary of Lemma 10 is the following result:

Corollary 3. Leti # k with i,k € {1,--- ,n}. Then, for any € > 0,

]E[|Qik|2s] — Oz(p—s-‘re)
for s € N and s > 1. Moreover,

E[Qit] = O-(p™"") (65)
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Proof. Recalling (33), we have:

Qir = —Qrrel Quér,—r)
Hence,

E[|Qurl"] < 1921 7°E lef Quéoe— ]

From Lemma 10, ]E“e?Qkf(k’,k)P] = O,(p~*%¢), and thus so is E[|Qm|s} To

prove (65), we decompose Qi as:

Qir = —(Qrr — ElQur))e] Qr€r,—r) — BlQrrle! Quéir,—rk) (66)

and use Lemma 10 along with Lemma 8, to prove that

E [(Qir — E[Qri])ef Qréir,—1)] = O-(p~'7) (67)

Computing the expectation with respect to zj, we can show that:

1 1
E[e?ng(k,—k)} = % %E[[Qk]il@?c{k}xl - ]—)tf(C[k] C[l]))} (68)
1 . 1
== (@ Chya — ~ te(CpC
7 lg%;}]E[[Qk] 1z Cry o (Crw [z]))}

1 1
+ %E[[Qk]ﬁ(ﬁcmxi - Etr(c[k]c[i]))] (69)

The second term in the above inequality is obviously O, (p~!*€). The control
of the first term can be performed using Lemma 9. To see this, we define Xy
as the n — 1 x n — 1 matrix made up of the columns of X except the k-th

one and denote by &1, -+ ,&,_1 its corresponding columns. Then, we form the
n—1xn—1matrix &, = {/p ((#7,)? - E[(z]7,)?]) 61-#}?;:11 and introduce

its associated resolvent Q(z) = (¥ — zI,,_1)~'. With this, it takes no much
effort to notice that the first term is given by

\/15 Z E {[Qk]il (szC[k]fl - E[f?C[k]fz])}
[

which is clearly O, (p~'7¢) by Lemma 9. We thus obtain:
E{ezTng(k,fk)] = 0.(p™'") (70)

Combining (67) and (70), we thus prove that the expectation of both quantities
in (66) are O, (p~*¢) which shows (65). O
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4.2.5. Other important results

Lemma 11. Let k,b and j integers in the set {1,...,n}. Let A1, and Az, be
two sequences of p X p matrices possibly random but independent of x; and have
spectral norms of order O(1). Then, for any small € > 0,

2

T T —2
max E Y al Ay poal A pmiQa| = 0.(p7>)
SJsn .

s¢{k,b,j}

Proof. See Appendix A.4. O

Lemma 12. Let j,k € {1,--- ,n} with j # k. Let Ay p, Az jp. Asjp and
Ay jp be four sequences of p x p matrices with bounded spectral norm. Then, for
any € > 0, we have:

maX]E E : E , Ly Al,] pLkLp AZ,J pLj Ly i As 23pLr Ly A47]7PxJQbT

r@{jk} b¢{j.r.k}
=0. (p73+6)
Proof. See Appendix A.6 O
Lemma 13. Let k € {1,--- ,n}. Let b be a unit norm deterministic vector in

R™. Let ¢ be a random vector in R™ independent of xy such that ||c||> = O(1)
Then, for z € C\R and any small e:

Z Z [Qribrci] — E[[Qk],, brer]) = O.(p~ ).

r#k I£k
where by and ¢, denote the r-th and the [-th entries of a and b, respectively.

Proof. See Appendix A.5 |

4.3. Expression of matriz EQ;; using the integration by parts
formula

The objective of this section is to develop the diagonal elements of the resolvent
matrix using the integration by Parts formula. From the resolvent identity:

QP =1, +z2Q,

we have for 1 < j <n,

11
EQjj=—-+- ;E Q) Prj]
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Working on the rightmost term (with k # j) by expanding ®j; as a function of
Z, we have:

[ij‘bkj]
1 1
4% z: 2: E: O] a L) [ o [ o B 208 iy Zuk Zi Q]
a,b=110,1'"=1m,m’'=1
1
— p—%t CCHE [Qji] (71)

Using the integration by parts formula in (30) along with the differentiation
formula in (29), we obtain:

E(ZiZy j Zi Zms Qi)
=E[Zibvm Zmk Q| + B ZikZvj Z,

8ij ]
"0 Z;

=E[Zixb1m ZmiQjik]

— 2B Zu 21§ Dot Y _(a 5) [Cé]l'b}  (Q45Qur + QjrQvj) ]
b#j

Plugging the above equation into (71), we ultimately get:

1 1
E:E@ﬂémFﬂME:—E@ﬂ%Wk—EUCWQMQM]

k#j k#j \/_
-2 Z Z E [x?xkxzxjxfC[j]x,-(ijQ,-k + ijer)]
ki T
Hence,
zEQj; = =14+ oj(2) + B(2) + v, (2) + 0;(2) (72)

where «;(2), 5;(2),7v,(2) and 0;(z) write as:

1 1
%@FJHZ}—(de%——WQW%OQM] (73)
iz VP P
2
z) = —QZE {(x;‘rmk) sz[j]kuijkk} (74)
k#j
vi(2) = =23 Y E o]l wa Cpa, Qi Qrr] (75)
k#j r¢{j,k}
0;(z) = —22 ZE [m?zkxijxfC[j]erijrj] (76)
k#j r#j

The decomposition in (72) will play a key role in the proof of our main results,
as will be seen in section 5.
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5. Proof of the main results
5.1. Proof of Theorem 1

The proof of Theorem 1 will rely on (72) in which quantities «;(z),v;(2) and
0;(z) constitute error terms that converge to zero in the asymptotic regime.
Indeed, a direct application of Lemma 9 allows us to show that:

e o (2)] = 0- (). (77)

To control 7;(z) and 0;(z), we will rely on Lemma 11. Indeed, by Lemma 11,

— —3+e
max [y;(2)] = O:(p7>™) (78)

To handle 6;(z), we start by decomposing it as:
0i(z) = —22 Z E [xkaxijxij]xr@jk@rj]

k#5 r¢{j.k}
— ZZE x; Topafzjof CljweQ)rQuj)
k#j
Then, using Lemma 11 and the approximations in Corollary 3, it unfolds that:
. —1+e€
max 16,(2)] = 0.7, (79)

Finally, to treat (;(z), we use the fact that =i Cjazy, — £ tr(C[k]Cm) =0(p2)
in combination with Lemma 5 to obtain:

2
= -2 Z ( tr C[k]C[j ) EQkkEij + Oz(p_5+€) (80)
k#]

_¢ COZEQMEQMO (p~57°) (81)

k=1

where (81) follows from the fact that g tr Cpi,) Cpj1 = w+O(p~2). Now, putting
(77), (78), (79) and (81) together with (72), we obtain:

2EQj; = —1 — w2cogn(2)EQy; + 0. (p~2+) (82)
Summing (82) over index j, we get
w?eog? (2) + 2gn(z) + 1= O, (p~2 7). (83)

where we recall that g, (z) = 1 trEQ(z). Reaching this equation, termed as
“Master equation” in [5], it can be proven by following the same steps in [5]

that: )
gn(2) = m(2)| = O.(p~27°). (84)

The weak convergence of the spectral measure of ® to the semi-circle law follows
from using the fact that % tr @ — g, (z) converge almost surely to zero. This ends
up the proof of Theorem 1.
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5.2. Proof of Theorem 2

Theorem 2 provides a deterministic equivalent for bilinear forms of the resolvent
matrix Q(z).Due to the almost sure convergence of alQ(2)b, — aZEQ(z2)b,, to
zero, guaranteed by Lemma 8, the problem amounts to finding an asymptotic
approximation for al EQ(z)b,,. It can be easily seen by injecting the approxima-
tion in (84) into (82) that the contribution of the diagonal elements, given by
S hei @k nbenE[Q(2)],, can be approximated by m(z)a”b. It remains thus to
study the contribution of the off-diagonal elements which we denote by:

n

T(an,bn,2) = Z Z ke, nbr n Bl[Q(2)]kr] (85)

k=1r#k

where ay , and b, refers to the k-th and r-th elements of vectors a,, and b,
respectively. This is performed in three steps. In a first step, we establish an
equation between Y(an, by, 2) and the quantities {a, ;(z)}} ,—; defined as:

- 1 1
arsle) <E[3 (e Copmn ~ S CloCup) @] (50)

In the second step, we establish an equation between &, ; and T(%, ej,z) where

e; is the j-th canonical vector of R". Gathering these results, we obtain a linear
equation whose solution is a deterministic equivalent for T(%, bn, 2). Plugging

this deterministic equivalent back into the relations obtained in the first and
the second step, we finally derive a deterministic equivalent for Y (ay, by, z) and

dr,j (Z)

5.2.1. Step 1: Expression for Y(an, by, 2)

Proposition 1. Let {a,} and {b,} be two sequences of vectors in C"*1 with
bounded Euclidean norm. Then for any z € C\R and any small positive €

T(anbns2) = = D S kb [Quel drr(2) + 02 (p737) . (87)

k=17r#k
Moreover, if by, is such that Y p._, |bn k| is uniformly bounded in n, then (87)
becomes:

n

T(ana by, Z) = - Z Z ak,an,n]E [Qkk] @k,r(z) + 0, (p71+€) . (88)
k=1r#k

Proof. See Appendix B.1 O
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5.2.2. Step 2: Expression for &, ;(z)

Proposition 2. Let r and j be two integers in {1,...,n}. The following ap-
proximation holds true:

1 1
arj(2) = =5 D) E(Qui) T (==, ¢5,2)= tr((C°)*)
J p2 ; \/1—7 J P
2 o 1 4 _5
- 7 L EQuIEIQy ] (%)) + 067 (39)
Proof. See Appendix B.2 O

5.2.3. Step 3: Asymptotic equivalents for &, ; and Y(an,bn,2)

Proposition 3. The following approximations hold true:

1 com?(2)Q%aX1,1%, 1
Z n?n? 40, 90
p  1—c302m2(z) (=) (90)

- Lo mP(2)Q°
Gy j(2) = D W

Y(an,bn,z) =

+Oz(p_%)7 T7j:17"'7n (91)

If by, is such that >_}'_; |b, x| is uniformly bounded in n, then (90) becomes:

1 com?(2)Q%al1,170, _3
T(anabnaz) = - 1— C(%QQ’ITLQ(Z) + OZ<p 4) (92)

Proof. Combining (89) and (87), we obtain:

T(an,bn,z ZZak nbrnE Qkk ZE Qll ,Epy 2 )%tr((CO)Z’:)

pt k=1 rtk \f
QZZaknmeQkk ZEQu @rr]= tr<<c°>>+oz<p—%>
k=1 r#k
(93)
1 1 .
=p—kzk E[Qux] Z [QuIY (5 by 2)r((C)')
ZzaknmeQkaEQ” Qe t((C)") + 0.(7)

k=1r=1 =1
(94)
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Particularizing (94) for a,, = 7’ we obtain:
Y22 b2) = 2 S EQu) 3 B@uT(E b (o))
—F0n,2) = kk ll n,<2) LI
)= 2O LB QT b
2 n n n N
+ = > EQw] > E[Qu] Y brn [er} r((C°)Y) +0:(p™ 1)
p? k=1 =1 r=1
(95)
L,
= (g0 (2))?T (=X, by, 2)Q% + 202 (g0 (2) ZbT WE[Qr]
VP
+0:(p™%) (96)
Using (82) and (84), we can easily see that:
E[Qr] —m(z) = O:(p™=+)
Thus,
(1 - cg*m?(2)) T(l—n b, 2) = cQQ2m3(z)£b +0 (p_i)
’ V. " VP
Invoking Lemma 7, it can be shown that:
(1—&0’m?(2))”" = 0.(1)
Hence,
1 A0?m3(z) 1T
T~ — 0" " \® n
(\/ﬁ7bnaz) 1fch2m2(z) \/—b + 0 ( ) (97)

Plugging (97) back into (94), we thus obtain:

1co2m3(2)ar1,,1%0,
——= (2 )2n2 3 '*‘OZ(p_%)
p 1 —cgPm2(z)

Y(an,bn,2z) =

The proof of (92) follows along the same lines by using the approximation (88)
of Proposition (1), while that of (91) follows by plugging the approximations in
(92) into (89). O

5.2.4. Concluding.

We end up the proof of Theorem 2 by noticing that " ;_; arbsEQrr = a”bm(z)+
0. (p7%+6)'
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5.3. Proof of Theorem 3

For the sake of simplification, we remove the subscript n from the notation of a.,,
b, and D,,. Following the same kind of calculations as in the proof of Lemma
8, we can show that for any z1, 20 € C\R, and s € N*,

B[ o7 (1) DQ(=2)b ~ B[ Q1) D=2 | = 0.0077)

Therefore, the proof of Theorem 3 amounts to finding an asymptotically deter-

ministic equivalent for E[QTQ(Zl)DQ(ZQ)b}. To begin with, we expand it as:

n n n

[a Q(21)DQ(22) } ZZZE[az (20))in Dir[Q(22)] k505 (98)

i=1 j=1 k=1
=Z1+ 2o+ 23+ Zy4 (99)

where

ZZ 3 E[az (20)], Dk [Q(ZQ)]kjbj}

i=1j=1k¢{i,j}

Z - z 5" E [u: (@)l Da (@), b

J=1i#j
=Y Y B [ur QG Dy @), b)]
Jj=11i#j

Zy = ZE a; [Q Dy; [Q(Z2)]m bil

Using the fact that E[[Q(2)]i] — m(z) = O.(p~2+¢), we approximate Z, as:
Zy = m(z1)m(z2)a” Db + O, (p~7+°) (100)

while Z5 can be treated as follows:

=3 > @k Q) — E[Q(],]) Dii [Q(22)],; b

j,l i

+ Z Za E ;| DiiE [[Q( )]”] b

J=1i#j

~Y Y aE JDAE [[Q(2)],, ] by + 0-(0737°)

J=1i#j
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since, applying Cauchy-Schwartz Lemma on the first term of the above equa-
tion, we obtain:

J=1i#j
< J > a?DIE|[Q(z1)]; —E [Q(zmnfd > 1IQz)bL:I
=0.(p~7")

Recalling the definition of Y(ay,, by, ) in (85), we may write Zs as:
Zy =" a:DiE([Q(21)]ii] T(er, b, 22) + Ox(p~#7)
i=1

= Z a;Dy; Y (ei,b, z9)m(z1) + O-(p~27°)

i=1
Using (92), we thus obtain:

co®m?>(z2)m(z1) T 1,17 1
Zy = D—/2b+0, 101
2T 11— 02@m2(z) ¢ P +O:07) (101)

Similarly, we can prove that:

coS2m3(z1)m(z2) 71,1%
1—c202m2(2) P

Zs = Db+ O, (p™%) (102)

It remains thus to treat the quantity Z;. Using (33), we get:
Zy = ZE[Dkkﬁg;;,_k)Qk(Zl)abTQk(ZQ)f(k,—k) [Q(zl)]kk[Q(zﬂ]kk}
k=1

= m(z1)m(22) Z Dy E [g(Tk,—k)Qk(zl)abTQk(ZQ)f(kﬁk)} +0, (pféﬂ)
k=1

= m(z1)m(z2) 3 DuE [df Qu(21)ab” Qi (z2)d]
k=1

+m(z1)m(22)§ Z DkkE[aTQk(zl)szk(22)b} + Oz(p—%+6)
k=1

where the last equality follows from Lemma 6 and ¥y is defined in (39). To
treat the first term, we will make use of the following statements

E[[df Qu()e] | = 0.(7) (103)
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var(df Qr(2)c) = O.(p~2T¢) (104)

where ¢ € C"*! is deterministic with bounded norm and z € C\R. The proof
of (103) follows by noting that ||dx||> = O(p~!) whereas the proof of (104) is
based on standard calculations using the Poincaré-Nash inequality and is thus
omitted. Based on (103) and (104), we approximate the first term in Z; (with
an error O, (p~27¢)) as follows

m(z1)m(z2) Y DiyE [d{@k(zl)abTQk(ZQ)dk]
k=1

= m(z1)m(z2) Z Dy E [dek(zl)a] E [bTQk(Zz)dk] + 0. (If%“) (105)
k=1

= m(z1)m(z2) Y DiiE [dfQ(21)a] E b7 Q(z2)di] +O:(p™%)  (106)
k=1

where the last equality follows from Lemma 13. To continue, we note that the
following relation holds true

E {CTQ(Z)dk] = Z Cibu,i(2) + O (p~ ') (107)

with z € C\R, ¢ being a n x 1 vector with bounded norm and é ;(z) defined
n (86). To prove it, we shall expand E {CTQ(Z)dk} as:

E{CTQ(Z)dk} = iczg %E[ (ijC[k]ﬂfj - %tr(C[k]C[j])> [Q(z”ij} (108)

= i ¢ Z %E[ (x;‘rc[k]a?j - %tr(C[k]CU])) [Q(z)]”}

i=1  j#i

+ gci%ﬂi[ (xiTC[k]xi - %tr(C[k]C[i1)> ([Q(2)]ii — E[[Q(z)}“])}

_ ;Q%E[ (l'gc[k]wk - %tr(@mC[;q)) [Q(z)]zk] (109)

and note that the two last quantities in (109) are O,(p~'7¢). With (107) at
hand, the first term in Z; can be apprroximated by:

m(z1)m(z2) Y DiE [d{ Qk(zl)abTQk(,zQ)dk] (110)
k=1

=m(z2)m(z2) Y Dix Y aidini(21) Y bjdinj(z2) + 0.(p7 57 (111)
k=1 i=1 j=1
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We may now invoke Proposition 3 to replace &y (z1) and ég j(22) by their
asymptotic equivalents. In doing so, we obtain:

m(z1)m(z2) Y DiyE {szk(zl)abTQk(zg)dk}

k=1

1 c2m3(z1)m3(22) Q% Tﬂb .
= ;tr(D) (1— chQmQ(Zz))(l _ 0092m2(21)) +0.(p™ %) (112)

It remains now to handle the second term in Z;. Adapting the calculations of
[11] to our setting (Page 14-20 in [11]), we can prove that:

12 = Z%tr«C")“)(lnlz — 1) - <}? tr((C%)2)2 Ll = O~ H).

Hence,

Z DkkE[ Qi (21)2KQk(22) } (113)
— m(zl)m(@)]; Z D <p tr((C’°)2)> 2 E[a” Qu(21)Qx(22)0)
k=1
4 m(zl)m(ZQ)% S Dy (% tr((C°)4)) E[a” Qi) 1";
k=1

T 1
" Qu(z2)b] + 0. (1)

(114)
Using Lemma 13 and the fact that
max(var(a’ Q(z dn var(bT' Q(z In = —lte
(var(a” Q( )\/2—))7 (0" Q( )\/2—)) O0:(p™ ™),
we thus obtain:
ZDkkE[ Qr(21) 2k Qr(22) } (115)
1 ARG
- m(zl)m(@); k; Dy (- tx((C )4))51@[&@(21)1“] E [15@(22)@
22)]% Zpkk(% tr((C°)%))°E [aTQ(zl)Q(ZQ)b] +O.(p 1)
k=1
—mzmzzr l1" ) ’E|aTQ(» z
= m(z)m(z) tr(D)( ix(C°)) B[ Q1) @(=2)0)
m () (22)y, (D) a"1,17b + 0.(p %) (116)

p(1 = L2cfm?(21)) (1 — Q2cfm?(22))
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where (116) follows by using Theorem 2. Combining (112) and (116), we con-
clude that:

7 = m(zl)m(@)aﬁ% ir(D)E[a” Q(21)Q (=)0

m?2(z1)m? (ZQ)}% tr(D)Q%a’1,11b % tr(D)cidm3(z)m? (ZQ)QLLCLT#I)
P = 022 (1)) (1 — 2Zm () | (1= RO (1)) (1 — A2 ()
+0.(p7 %) (117)

Combining (117), (101), (102) and (100), we obtain:

1
E[a"Q(:1)DQ=2)b] = m(z1)m(z) ) tr(D)w’E " Q(=1)Q(=2)0
m?2(z1)m? (zg)% tr(D)Q%a’1,11b 03941—17 tr(D)m‘g(zl)m?’(zQ)aTl"T}Eb
P = O2Gm2 (1)) (1 — 2Zm (=) | (1= GO (1) (1 — A2 (7))
coQ?m3(z2)m(z1)a’ D 1";5 b 0092m3(21)m(zg)aT%Db
1 —Q2c2m?2(20) 1—c302m2(21)

+ m(z1)m(z2)a" Db+ O (p~ ) (118)

Setting D = I,,, we obtain:

E [GTQ(Zl)Q(ZQ)b] = w?com(z1)m(z2)E [aTQ(zl)Q(zz)b} +m(z1)m(z2)a’b
(119)
+ m(z1)m(zo)co? [mz(zl) +m?(29) + m(z1)m(z) — chzm2(zl)m2(22)}
X (1 - QZC(Q)mQ(zl)>71 (1 - Q%gm2(zQ)) 71%&“151; FO.(p %) (120)
thus yielding:
E[a”Q(z1)Q(2)b] = g(z1,20) + 0.(p7¥) (121)
with
g(21, 22) = (1 — w?com(z1)m(z2)) " m(z1)m(z2)a’ b

+ m(zl)m(22)0092 [mz(zl) + m2(22) + m(z1)m(z2) — chQm2 (zl)m2 (22)}

x(1- QQCng(zl))fl (1- QQC§m2(z2))71(1 — wQCOm(zl)m(zg))_l%aTlnlgb

(122)

Plugging (121) into (118), we get:

E[aTQ(zl)DQ(ZQ)b} — m(z1)m(z0)aT Db + m(z1)m(z2)w? % tr(D)g(z1, z2)
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+7‘~(Z1,22) +Oz(p7i) (123)
where
2,3 Tlaly 2.3 Tlnly
cof¥*m?(z2)m(z1)a” D=7=b  co¥*m?(z1)m(22)a” == Db
1—Q2c2m?2(29) 1—Q2c2m?2(21)
tr(D)2m? (21)m? (22) (1 + Q2m(z1)m(z5))aT 2l
(1 — Q2cgm2(21)) (1 — QQC%mQ(ZQ))

’F(Zl, 22) =

1
+ P

(124)

5.4. Almost sure location of the eigenvalues of ® (Proof of Theorem

4)

The goal of Theorem 4 is to characterize the location of the eigenvalues of ®
in the asymptotic regime. To this end, we will resort to the tools developed in
[13], which consists in analyzing the difference g,,(z) — m(z). If this difference
converges to zero faster than O(p~1), then it can be proven under other mild as-
sumptions that all the eigenvalues are almost surely located in the neighborhood
of the limiting support S = [—2 cow, 2\/%@ . Unfortunately, this does not hold
in our case, since g, (z) —m(z) = O,(p~2+¢). The analysis of the location of the
eigenvalues becomes thus less trivial and requires a deeper investigation of the
difference ¢,,(z) — m(z). As a matter of fact building on the ideas of [5, 16, 19],
the characterization of the location of eigenvalues of ® requires us to investigate
the behavior of each term in the difference g,(z) — m(z) that converges slower
than O(p~1). More specifically, we consider showing that

f(z) +

gn(2) — m(2) = h(z) + }j«z) ro.p ) (125)

=

o]
=

mleo|

where f(z), h(z) and k(z) should be determined in terms of m(z) (and not in
terms of elements of E(Q(z)). The key idea behind the technique of [5] consists
in proving that f(z), h(z) and k(z) are Stieltjes transforms of some distributions
and characterizing their associated supports. It turns out that in our case, the
supports of the distributions associated with the Stieltjes transforms f(z), h(z)
are included in & while the support of that of l;(z) may present two spikes
outside S. As will be shown next, this will imply that the support of the limiting
eigenvalue distribution of ® is S plus possibly the two spikes that arise in the
support of the distribution of Stieltjes transform k(z). Proving (125) is the heart
matter of the proof Theorem 4. To pave the way towards this, we need to derive
deterministic equivalents of some quantities that will appear in our derivations.
This is performed in the following next section.

5.4.1. Some preliminaries

Lemma 14. Let k,b be two integers in {1,--- ,n} such that b # k. Let Ay, and
Az, be two sequences of p X p deterministic matrices with uniformly bounded
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spectral norms. Let z € C\R. Then,
E (2] A1 priai Az peeQur)

- _gp*%m?(z)% w ((C°) 4, %tr (€ 41,) +0.07%)

Proof. Using the relation Qpr = —ebTng(k’,k)Qkk when b # k and invoking
Lemma 10 and Lemma 8, we obtain:

E [2f A prai Az prrQue] = —E [2f A1 paral As parel Q-1 Qur]  (126)
= —E[a] Ay prra] Az prie] Quéin,—i) JEQkk + O.(p~>™) (127)

1
=-KE [Qkk}]E {beAl,pxkbeAg,pa:k Z \/]—7 [Qk]bl ((gjgxl)g — I;:CZTC[]C]Q?[)}
l#k
3 1
—E[Qi]E[p™ 2 2] A1 ,Clig Az Y | [Quly (2] Cpymr — » tr Cpy Cpyy) |
I#k
0.2+ (128)

2 — €
=~ E|Qu] ) > E[[Qk] 25 A2 pCrymia] Cpg Arpan] +0=(p72%)  (129)
£k
2 —2+¢
=~ BIQu) 5 S E ([0 o] s Cgeia] Gy pm] +0.67) (130
£k
2 941 o2\ L 0\2 _z
=) (42, (C%) )z—?tr ((c) A1,) + 0.7 ) (131)

The second term in (128) can be proven to be O, (p~2+¢) by applying Lemma 9
as in the proof of Corollary 3. Equality (130) in which [Q]u is replaced by [Q]u
follows from Lemma 13, while (131) follows by noticing that the term obtained
by taking b = [ is the most dominant. O

Lemma 15. Let j,k € {1,--- ,n} such that j # k. Let Ay p, Asp and Asp
be three sequences of p X p deterministic matrices with spectral norms bounded
uniformly in p. Then,

Z E [ngl7p$ijTA2,pxijTA3,pkubj}
b {j,k}
-3 1 012 1 o 0\2 -z
= —2np 2m2(z); tr ((C ) Ag,p) ]—Jtr (C A1, (C°) A3’p) +0,.(p™9%)

Proof. Again, using the relation Qy; = —ebTng(jw,j)ij for b # j, we have:

Z E [mfAl7pxijTA2,pxijTA3,pﬂ?kaj}

b¢{s.k}

=~ Y E[af Avpujay Az prjaf Asprvey Qi€(,—) Qi)
bg{s.k}
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=— > E[af Ay pajaf Ay prja] As parer Qi—j] EQjj + O-(p~>T)
b {j,k}
(132)

where equation (132) follows by using the relation ef Q;&(;, ;) = b%’;j to write:

> E [} Avpaial Agprja As prrel Qi —i)(Qs5 — E(Qj5))]
b (5, k}

=- Z E {xk A pxjTy T4, pTiTh TAg pTh——"
b {4k}

Qv;

QN (Q]J (Q]J)) (133)

and then applying Lemma 11 and Lemma 8 to prove the desired. Next, expand-
ing £(;,—j, we get:

T T T
E E [xk Ay pTizy A2 pTiTy, A37pkubj]

b¢{s.k}
— Z_\/TE xi Ay pajai Ag prjal As pxkz Qjl,, (2] Top)? _Exl [ Cim) |EQj;
b¢{j.k} I#j
2T Craz 1
— Y Elaf Ay prjaf Ag prjad Asprk Y [Qj}bl(%__% tr Cpy1C1) |EQj;
b {5k} 1#] p
+ 0, (p72+6)
2T Craz 1
:_ZE[$5A27P0[j]Al’kanggxpka[Qj}bl(% —— tr O 0 JEQy;
b {4.k} 1#] p p

x A C l'l —2+4e€
- Z Z2E QJ %xlTC[J]Al pTkTp b A ka]EQJJ +0.(p~*")
b {jk} 1] p*
(134)

al As x —9te
=D % [Q;]bb ; 324, Sy Ao pCrypny CmAl,prk} EQj; + 0:(p™*")
b (k)
(135)

o 1 o o _T
= Y 2E[Q;],, — tr ((C°)?Az,) = tr (C°Ay,, (C°)? A3 ) EQj; + O.(p™ 1)
b .k} p2 p
(136)

5 1 1 7
_ -3 02 - 0\2 - o 0\2 -7
= ~2np” i (z).tr ((C) Am)ptr (o A1, (C°) Ag,p)+oz(p ) (137)

Equation (134) follows by taking the expectation with respect to z;. In equation
(135), we used Lemma 11 to show that the summand of the first term in (134)
over b # is O, (p~2%¢), and handled the second term as in the proof of Corollary
3 by using Lemma 9 to show that it is O.(p~27¢). Next, to obtain equation
(136), we use the same arguments as in the proof of Corollary 3 to interpret



334 A. Kammoun and R. Couillet

the diagonal elements of @); as those of another resolvent matrix formed by
discarding the observation x;. This allows us to obtain var([Q;]s) = O(p~27°)
from Lemma 8 and hence up to an error O,(p~2%¢), [Q,]s can be replaced by
its expectation. Finally, we use Lemma 13 to replace Q}; by ) and obtain the
desired by taking the expectation with respect to the distribution of x; and xy,
and then using (11). O

5.4.2. Precise estimation of the approximation g,(z) — m(2)

With these Lemmas at hand, we are now in position to prove the estimation in
(125). To this end, recall the relation involving the diagonal elements of Q:

2EQjj = =1+ a;(2) + Bj(2) +7;(2) + 6;(2)

where a;(2), 8;(2),7;(2) and 0;(z) are given by (73)-(76). To prove (125), we
shall first derive asymptotic equlvalents that approximate all these quantities
up to an error of order O, (p~1).

Asymptotic equivalent for «;(z). Recall that:

aj(z) =

1 1
— E |2LCrazr — = tr (CyaChs ;
\/ﬁ; [k ek = (CwCliy) Qr;

From Proposition 3, it unfolds that:

CO ( )Q2 _5
3 = _— Oz 4
OéJ(Z) P 1— COQ2m2(Z) + (p )
Asymptotic equivalent for (;(z). Using the Integration by Parts formula,
we decompose 3;(z) as:

Bj(2) = Bji(z) + Bj2(2) + Bj3(2), (138)
where

Bj1(z) =—— ZE zf Cjje)* Qi Q]

k#j
Bj2(2) \/ﬁ ZZ]E wi, Oy, i, Oy ©5Qj; Qo Q]

k#j b#j

8

ﬂj,g(z) = % Z Z]E [x{C[j]xkxijxfc[j]xba:ngijQkajj]

k£j bj

By distinguishing the cases b = k and b ¢ {k,j}, we may decompose 3;2(z)
as:

Bia(z Z Z E [z}, Cpyjzray wjay Cpyjapty ©5Qui Qi Qui]
k753 bg{k,j}
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8
+ % ;]E {(‘rgcb]xk) (xk :L‘]) Qk]Qkak]

Using the facts that
7o) = (L) + 0 = (L)) + o
(z, Cljjzk)” = 5 (Cy y)) +0m™2) = ptr(( )?)) +0(2)

. Cpjjek= Etr(c[k]cm) +0(p~2) = 2;tr((C") )+O0(p~?)

together with Lemma 11, Lemma 14 and Lemma 15, we obtain:

8 1
=N~ ((C°))EQmEQy; Y. E[afajal Crmpafa;Qu)]
VPP b (s}

8 (1 2 3
e (; " (CO)2> e gEQkkE (2 2;)*Qrs] + O:(p™2)

Bja(z) =

_ 2 — 1 0\ 2 21 o\4 4 —2 1 0\2 * 4
= —16n°p S(I—jtr(C)) Etr((C))m(z)—Ian (;tr(C)) m*(z)
+0.(p77) (140)

As for 8 3(2), we can see from Lemma 11 that the contribution of the summand
over b # {7, k} is O, (p~21¢). This leads to:

Bja(z ZE [ ka wk (xkxj) QkJQJJQkk} +O.(p~ )
k#]

== Z ( ( ) ) EQukEQ;;E [(21 ;)2Qr;] + 0-(p~ %)

4
= —16np~? <]1) tr (C°)2> m*(z) + 0.(p~ %) (141)

where the second equality follows from (139) and Lemma 8, while the last equal-
ity follows from Lemma 14.

It remains thus to handle the term 3; 1(z). For that, we apply the Integration
by Parts formula to obtain:

Bj2(2) = v1 + V2 +v3 + U4

2 1
v = —— Z —tr C[k]C[j]E [xfC[j]kakajj]
p py p

4
Uy = _F > R (2] Cl Cy Crijar Qi Q)
2

vg = Z Z E [z} Cijjenai Cly Crwsay 1 Qjk Qo Quk
p\[ k#j b7k
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Z ZE J:k (] TkT C[ ]C[k]xbzb J?kakaka]
lc;é] b#k

The term vy can be treated by applying again the Integration by Parts formula,
thus leading to:

2~ (1 ’
v = —= Z (— trC[k]Cm> E[Qkk@jj}
Pl \P

8
- trck]CJ] Z E [z} zra{ CiyCljjorQuk QrrQys]
p\[ k#y b#k
8
- trCklcy] > B [af ) Cg CrijanQnQu; Q|
p\/_ ki 7 bk

The first term in v; can be decomposed as:

2
— Z ( tr C[k C[] > [Qka” Z < trck]c > E [Qkajj]

k;éj k
2 2
2 2

2
E—— Z ( tr C’[k]C’[J]) E [(Qrr — EQri) (Qj; — EQjj)]

2 2 1 2
22 Z < trC| ]C[J]) EQuEQs; + (ptr (c@)) EQ? (142)

Using Cauchy-Schwartz inequality and the variance control in Lemma 8, we
obtain:

2
- Z ( tr Cg) ) E[(Qmr — EQui) (Qj5 — EQj)] = O-(p~3 %) (143)
On the other hand, it follows from Lemma 8 that:

g (zl? " (C[Qﬂ)fEQJQ‘j - %% tr ((C°)%) (BQyp)* + 0.0~ H+)  (149)

p
Plugging (143) and (144) into (142), we get:

— —Z trO[k [Qka”] (145)
k;éj

= —w?cogn(2)EQ;; + g(% tr ((C°)°))* (EQ;))°

- - Z tl“ C[k]C[J]) — MQ]EijEQkk + 0. (p_%+e) (146)
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The last term in v; can be shown O, (p~27¢) using the result of Lemma 11,
while the second term can be treated by Lemma 14 to yield:

8 1
—— Y —trCyCyy D E [2] ] Oy Cryj e QuaQun Q5]
Pv/P zg P btk

_ _16n2p (]13 r ((00)2)>2 %tr () m* ) +0.07%)  (47)

Combining (146) and (147), we thus obtain:

n

1 1
= —MQCogn(Z)Eij — ;Z [2(5 tr C[k]C[j]>2 — WQ}]Eij]EQkk (148)
k=1

2

2
+ 2=t ((C°)?))*m?(2) — 16n%p 3 (%tr((CO)Q)) 1tr((C’°)4)m4(z)

L

pp D

+0.(p7F) (149)
Similarly, using Lemma 11, we can easily see that v3 = O,(p~2%¢), while

following the same approach as before, we can prove that vy and vy can be
approximated as:

vy = —— =t ((0°)4) m2(2) + 0, (p~ %) (150)
3 9 (1 02 1 oy4) 4 -3
v = —16p~%n (2—)@ ((c ) )) i ((c ) )m () +0.(p-%) (151

Combining (149), (150) and (151), we thus get:

n

2
Bi1(z) = —wcogn(2)EQ;; — % > [2 (% tr C[k]%’]) - WZ] EQ;;EQkk

k=1

#2(1u (<C°>2))2m2<z> - (o)) m e
(

p
— sy Ga tr <co>2)) L () ) m) + 0.7 1) (152)

Plugging (152), (140), (141) into (138) leads to:

n

1 1
Bi(2) = —w?cogn(2)EQj; — » > [2(]; tr CpyyCp)” — W EQ5E Qs

k=1

o3 (e (@) - S () e

— 48n?p~3 <11_7 tr ((00)2)> : }1? tr ((00)4) m?*(z)
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1 & 1 1
= —w?cogn(2)EQ,; — P > [2(5 tr CiCpyp)” = w?]BQy;EQuk + ngmQ(z)
k=1

()t et

— 8cop~ 1w4m4( )+ Oz(p_%)

Asymptotic equivalent for 6;(z). Using the Integration by Parts formula,
we decompose 6;(z) as:

QJ(Z) = 0j71(2’) + 9j72(Z) + 0]‘73(2) + 9}4(2’) (153)

where

(z)=-2> > E [p eI Cpan)’ QuiQy

k#5ré{j.k}

6
i2(2) = — Z Z ZE (2} zjaf Crjmral Chyanal Qi QuiQy5]
VP k#5 r¢{j.k} b#j

4
0;3(2) = 7% S 30 Y E[afCymeal vl Cmpat ©Qr QuiQsj]
P ki v¢ 5ok v

4
054(2) = 7 > > D R[] Cweat wiaf Chmer] 7,QkQur Q5]
Pz ré Gy b2

Based on Lemma 11, we can see that the contribution of the sum over b ¢ {k, j}
in 6;2(2) is O.(p~ 2+6) Hence,

b2 = Z Z x’f xjx{c[j]meijQrkng[j]kukajj] + Oz(p—%+e)
k7£] r¢{j.k}

= Oz(p_§+€)

where the last equality follows from Lemma 11 along with the fact that for
k # j, afz; = O(p~2) and E|Q4;|> = O.(p~27¢) by Lemma 8. Similarly,
it follows from Lemma 11 that the contribution of the sum over b ¢ {k,j} in
0,3(2) is O.(p~21¢), which leads to:

1
Z 3" E ol Cyzral sl z;Q] — tr ((C°)°)EQrEQ;;
VP iz d i p

+ OZ(piiJrE)
2

— 82 (2) <%tr((0°)2)> %tr (€)) +0.0°%)  (159)
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c2 1 1 o 4 -2
= AW tr r((©))mi(z) + 0.7 ) (155)

where (154) follows from Lemma 15. The quantity 6,4 can be shown to be
0, (p_%‘“). To see this, we first decompose it as:

Z Z Z xk C[j]xrxijng[j]xbxngijQbTij}
k;ﬁj r¢{j,k} b¢{jrk}

_Z Z z)? (2l x;) QJkQTTQJJ]

k#ﬂ ré{j.k}

+ _Z Z Cijjzrz, ijerk Cljjerxy, %Q]kQM]
k#J ré{dk}

The first term is O, (p_%*‘e) as per Lemma 12. The second and third terms can
also be shown to be O (p~27¢) and O, (p~21¢) respectively using Lemma 11.

It remains to deal with 6;,(z). Based on the Integration by Parts formula,
0;1(z) can be decomposed as:

(2)=-2) Z E [QrrQjjz) Cly Cpiy Clyj ]
k#ﬂvé{lm}

+4) > Y —E[efza] CChz,a] CyjarQriQunQs]
k#j r¢{j,k} b¢{k 7’}

+4Y N LB [0 a0l g Cppra? Clyaon @2 Q15]
k#j ré{k,g} P*

+4Y D> > % 3 E [z§ zxx) Cpy Crjjray Ol rQuk Qur Q)
K2 1 {kg) b¢{k i

+4Z Z (&) xa] Oy Oy CrijesQurQrr Q]
ki rg{kg} P

+8Y, D Z E [ @y CiyClyzray ClijanQerQin Q)
k#are{ky}baékp

Based on Lemma 11 and the variance evaluations in Lemma 8, we can prove
that the first, fourth and fifth terms, which we denote by 6;11(2), 6;1.4(2)
and 6,1 5(z) are the dominant ones, while all other terms are 0.(p~2+). To
handle the first term, we note that we may replace in the first term @Q;; by
m(z) and z C;)Cly Cpryr by %tr((C’o)‘l)) with an error O.(p~3). Hence, using
Proposition 3, we obtain:

Oj11(2) = -2 Z E [Qr1 Q5w Cpj1Crry ]
Wz rg gy ¥
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__4m (ltr((c°)4)) m'(z) +0.(p7 %) (156)

P2 ((00) ) ma(e)

On the other hand, we may use Lemma 11 and Lemma 15 to approximate
9]' 1 4(2) as:

0j1,4(2 —42 Z Z E 2] iz Cpy Cljjar e CljjarQurQerQy5]
ki r¢{k.j} b¢{k.r} p?

=4 Z Z Z m? z)p_%E [mbTxkx'bTC[k]C[j]x,«xZC[j]kubr]
k#j r¢{k,j} b¢{k,r}
+ Oz(p_%+€)

=S (% tr (<C°>4)) i)+ 0.m%) (157)

Finally, to treat ;1 5(z) we use the Integration by Parts formula and follow
the same kind of approximation as before to obtain:

01,52 —42 Z —E [zl zpal CuyCryaral Cljmi Qe QrrQys]
ki rg (ki) P*

=13, > rE {(mzc[klcmxr)zQkaMQa‘j} +0.(p73")
k#jrg¢{k,j}

n

- 5 1 2 _ 31
4Dy v <ptfc[r10[k Cu) E [QurQrr Q5] + O-(p™27)
1r=1
1

k=

1y

k=1r

NgER

p ptrc[v-}c[k]c[j])2E Q] E[Qr] E[Qy5] + 0. (p~ +9)

(158)

where the last equality follows from the variance control in Lemma 8. Note that
we cannot replace the diagonal elements of the resolvent matrix by m(z) or the
covariance matrices by C°, since this would produce an error of order O, (p_%)
which is bigger than O(p~%). Combining (156), (157) and (158), we obtain

4, (Gu(E)h)'mie) sl 1
051(2) = =0~ 221 ((C°)Ym2(z) e,

1

tr ((C°)*))*m*(2)

24303 00 0) B QU E QI BIQ) + 0.7

k=1r=1
(159)

Using the fact that the dominant terms in 6;(2) are 6;1(z) and 0; 3(z), we get:
2

ig_(e(0) o

P1- QPL;% tr ((00)4) m2(z)

2 —1 21 o4 4
03() = ~dcple? o ((C°)') (=) -
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n

n 2
+4ZZP g( tI‘C C[k]C[J]> EQkkEQTTEij

k=1r=1
—sept (Lar (1)) i)+ 0.7

Asymptotic equivalent for v;(z). Using the Integration by Parts formula,
we may decompose 7;(z) as:

Y5 (2) = 7,1(2) +75,2(2) +75,3(2) +v5,4(2) +75,5(2)

where
2

1) =23 B | (e )’ 0
k#] T#]

Vi2( Z O E [w Cpywead wiai Cryymna) ©5Q55Quok Q]
k#J r#j b#j

.32 \/ﬁZZZE e ]]:crxb LTy CJ]IW xJQJkaJQTJ}
k#j r#j b#j

,7j4 ﬁZZZE xk [5]Tr Ly xﬂxbcj]xkx ijerijjk}
k#j r#j b#j

Vi Z DY E[af Cpyywead wjai Criymie) 25Q5;QurQin]

k#] r#] b#]

We will start by handling «;2(2). Using Lemma 11, it is easy to see that
summand over indexes b ¢ {j,k} and r ¢ {j, k} is O.(p~2+¢). Hence,

Yi2( Z Z xk C[J‘]xr“fngxgc[j]xerijijQkam‘]
k#] ré¢{k.j}

= Z Y E [af Cpyjaway i Clyana Q55 QunQr] + 0= (p™27)
VP i v

4 1
= % ZmQ(Z)E tr ((00)2) Z E [sz[j]ITxngxzijrj}
Py

rg{j.k}
2
—Z( r((c) )) m?(2)E [(«F2;)°Quy] + 0.(p~4+)

k#J
— _8n%p3 (% tr ((C°)2)>2 ]19 tr ((C°)4> mi(z)
— 8np 2 (% o ((C°)2>)4 mi(2) + 0.(p~ 1)

where the last equality follows from Lemma 14 and Lemma 15. Using Lemma
11, we can see that v, 3(2) and 7, 4(2) are O.(p~2¢). It remains thus to treat
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the term 7, 5(2). Again, using Lemma 11, it can be shown that the summand
over indexes 7 ¢ {j,k} and b ¢ {j, 7, k} is O.(p~27¢), thus leading to:

4
15(2) = /b Z Z]E [} Cenay, wjay, Opzray 2QurQ;;Qjk)
p k#j b#j
4
+ P Z Z E [} Cyjzraf wjaf, Crjane! 2;QrQ55Qjk)
k#j r¢{jk}
4 L
+ 52 3 Bl Ol w2 QQnQn] + 007 )
k#j rg{j.k}
4
== ZE [k Crjyaen)? (2 7) > Qrr Q5 Qi
\/ﬁ k#j
4 .
" NG > E[@fCya) (@ )’ QikQs5 Q] + 0=(p~ 2 1)
b k#j ré¢{jk}
2 E [(zf Crjae)® (2 27)? Qur@5; Qjk ] + O ( —ate)
E“ 1Tk EZj kkC ik z\P
\/ﬁ k#j

where the last equality follows from Lemma 11. By Lemma 15,

4
NG Z E[(zf, Cpjan)® (@ 7) Qrr Q5 Qjk |
k#j

— 78np*2(1—1) tr ( (CO)Z ))4m4(2) + Oz(pig)
Thus,
Yo = —Sp (% o ((00)2)> m*(z) + 0.(p™ %)

It remains thus to handle v;1(z). We may use Lemma 11 to show that the
summand over index r ¢ {j, k} is O.(p~27¢). This leads to:

1
%1(2) = =2 ZE[E (aF Clyn)” Q%] + 0-(p~5+)

ki
,%(% tr(C°)2)2 ;JE[ 2] 4 0. (p i)
- —%(% tr ((00)2) ) (]E Q%] —E {(ij)QD +0.(p~ ")

Using Lemma 8, we can replace Q;; by m(z) with an error O, (p’%“), thus
giving:

= <2 (OB + 2 (bt ((€)))° + 0.0
1a(5) = =2 (G (CF) B (@), + 20 (2) (3 (7)) + O+
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It remains to find approximate equivalents for the diagonal elements of Q2.
From the proof of Theorem 3, we can see that:

m?2(z) 1

E[Q7], = +0-07)

1 — cow?m?(z)

Plugging the equivalent of E [QQ]“ into the expression of v, 1(z) and using the

asymptotic approximations of v;2(z) and v;5(2), we ultimately get:

1 wm?(2) Loy o 45 51 oy4), 4

400 4 i
v H(2) + 0:(p™ 1)

Proof of (125). For j =1,...,n, based on the asymptotic approximations for
a;(z), Bj(2), 0;(z) and v;(z), we can write zEQ;; as:

(2)+ Apr(2) + 0:-(p~1), j=1,...,n.

»J

=

EQy=—1 - w’eoEQygn(2) + 4,

where

w?m?(z) — ldcow*m?(2) + 12c2wmb(2)
N 1 — w2eom?(z)

LQhmi(z) - 22022 (2)
1—c202m2(z)

2
—2c3p 1 Q' m? (2) — 160—Ow292m4(z) +
p

We should recall that in (125), functions f(z), h(z) and k(z) should be ex-
pressed solely in terms of m(z) and not in terms of elements of EQ. However,
replacing diagonal elements of EQ by m(z) could not help to identify these
functions, as this would result in an error bigger than O(p~!). In the sequel, we
propose an iterative approach that allows us to compute the error we made by
replacing the diagonal elements of Q(z) by m(z).

Derivation of f(z). For j = 1,...,n, denote by f;j(z) = EQ,; — m(z). Then,
substituting EQ;; by f;(z) + m(z) into (160) and using the fact zm(z) +
w?com?(z) + 1 = 0, we obtain:

2

D 2 A (€))

2fi(2) = —w?co f(2)m(z) — w?com(z ’

3I>—‘
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n

1 .
> [2(]; trCpyCp))” —w?m?(2) + 0.(p™ 1), j=1,...,n

k=1

1
p
Again, leveraging the relation z + w?com(z) = —% leads to
1 n 2
fi(2) = w?ecom?( Zfl Ez [ ( tr Oy € ) - w21 m3(z)
[t k=1
; 1 ? 5
—4n’p~2m?(2) ( tr ((00)3)) +0.(p~%), j=1,...,n.
p

The above equations define a linear system in the vector f(z)=[f1(z), - , fa(2)] T
which can be written as:

T 'fl2 9
(In—w2com2(z)ﬂ)f — ldlnm3(z)—4—§m4(z)(l ((00)3)) 1,4+0.(p” )1,
p p2 p

where § the n x n matrix given by

2
§={2 ( tr Cli Cly ) - W2}Z,j:1
Since ’1 — w?eom?(z ’_ ) from Lemma 7, we have:

ﬂdZ?@H%L@%ﬂn

where
_s 3\ ) 2
(o) = Lmd (oo, 4 Lm0l  An?pTimi(z) (Ler (o)) 1
z _pm z n np(]_*wQCOmZ(Z)) n 17w200m2(z) N
(161)

Recalling that:
1
gul2) = m(z) = 17} (2)

we thus obtain: .

gn(2) = m(z) = ~17F(2) + 0=(p7 )

The quantity 217 f(z) represents thus the error of order O, (p ~2) in the differ-
ence gn(z) — m(z). From that, we identify f(z) as f(z) = p2 1"f(z) where

f(z)=0.(077)
and f(z) simplifies as:

1 mdenTer,  AntpTimi() (% tr((C")S)>2
/) = ﬁn(l —wleom?(z)) 1 — w2eom?(z)
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Derivation of h(z). To derive h(z), we define for j = 1,...,n hj(z) =
EQ;; — m(z) — fj (z) where ?J(z) is the j-th entry of vector f. Following the
same approach as for the derivation of f(z), we substitute in (160) EQ;; by
hj(z) +m(z) +7j (2). Using (161) and the relation zm(2) +w?com?(z) +1 = 0,
we obtain after simplifications:

zhj(z) = —w?com(z)h;(z) — w200m(z)% Z hi(2)

-
Il
—

n n . 1 2 2
+4 “2m?(z) [ —tr O CCryy | — ~tr (C°)? +0.(p7h),
;;p (p [r1~ [k~ ]) ( ) p
which, using (2 + w?com(z)) ™! = —m(z), leads to:
hj(z2) = w?com (z)% hi(2) (162)
1=1
—4Y > imi(e) [(% tr Oy CaCl)” (% tr ((C°)°))] +0.(7"),
k=1r=1
(163)
Denote by h(z) = [h1(2), ..., ha(2)]". Then,
T
(I, — w200m2(z)1"%)h
" & 5 1 2 1 ° 27yn
:*4{Zzpﬁm“(z)[(;trC[rlc[kJCm) - (Gu((© )Y
k=1r=1
+ Oz(p_l)ln
and thus: _
h(z) = h(z) + 0:(p™ "1,
where
n o n s 1 2 2 n
h(z) = —4 “zm?(z) [ —trCppCCry | — | —tr (c°)? 1 .
{;;P ( 1y []) ( ( )) }]:1
dw?eqm®(z)p~ 2 - |
T —OwQC((m?f;(z)) (]_1 2.2 [t CnCuC)” — (S tr ((¢)))*])1n

we thus obtain:

gulz) = m(z) = 17F(:) + 1) + 047
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The quantity 217h(z) represents thus the error of order O, ( ~%) in the differ-
ence g, (z) — m(z). From that, we identify h(z) as h(z) = p1 flTh( ) where:
gn(2) =m(z) —p 2 f(z) =p1h(z) = O:(p™")

and
i) =2 YD T (O’ - G e ((€)'))’)

Asymptotic equivalent for k(z). We will now determine an asymptotic
equivalent for the term vanishing at rate O, (p’i). To this end, we define for
J=1...,n, kj(z) = EQj; — m(z) — f;(2) — hj(2) and substitute EQ;; by
m(z) + f;(2) + hj(2) + k;(2) in (160), which yields after simplification
En: —w cof l En: — wleok;(2)m(2)

— n —

zkj(2) = —w?com(z

ﬁl}—‘

3 by (ml)Fu(2) + mIT(2)) + 8?2y > 7 (c)’))?
k=1 —y
+whﬂp7%nf(@(%tr(C°y32fﬂz)%*A; (2) + 0. (p 1)

Similarly, using the relation (z + w?com(z)) = —

ﬁ, we obtain:

k() = wcom?( %Z )+ weom()7 () L)
+= Z% (2)(Fe(2) + £;(2)) — 8m*(2)
- 4n2p*5m3(z)(% tr (C’o)g)zfj (2) —m(2)Ap-1(2) + Oz(pfi)
Define k(z) = [k1(2), ..., kn(2)]". Then, the above equality can be equivalently

written as:

1,17

n ) k(z) = wlcom(2)

(In — w?com?(2)

n

{Zak] } — 8m? ()% (2) (étrw")‘”’ I

—dn?pim(z) (% tr(C°)" ) F(2) = m(z)Ap1(2)1n + O:(p~ )1,

or equivalently,

k(z) =k(z) + O.(p™ )1,
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with
_ .7 whem?(2) (f(2))* 1 _
k(z) = W2C(]m(z)f(z) \(/Zﬁ) + p(lo_ 2 007(712(2,))) I, + I—jmz(Z)(Sf(Z)
w2com*(2)1%5f(2) wzcom‘l(z)chS?(z)
+ pn(1l — w2eom?(z)) { Z Ok f] = np(l — w2com?(2)) Ln

_ 8mi(x)n’p?

f<z><1tr<<0°>3>> o= B (:) (5 1 (€))7 ()
)

1 — w2com?(z) D

4m®(z)n’*p~3 -, 1 013112 m(z)Ap-1 (2
11— w200m2(z)f(z)(]; tr ((C%)7)) 1n - 1- wQCOmQ(z)

Recalling that:

Ly

ga(2) = m(2) = ~(17F(2) + 17T(=) +17k(2))

we thus obtain:

1 = 1 1
gn(2) —m(z) = =17 F(z) + =1Th(2) + —1Tk(z) + O.(p™ )
n n n
from which, we identify k(z) as k(z) = % where

gn(z) —m(2) = p~ 2 f(2) = p i h(z) — p~ k() = O.(p7)

and

Hey = Lom) (FE) | 2m?(@)7 () o

1 —w?com?(2) n(l — w2com?(z))
12m3(z)n?p=2 - 1 32 m(z)pA,-1(z)
- 1_w200m2(2)f(z)(5tr((0 )))" - 1 — w2eom?(z)

With this, we complete the proof of (125), which will be the key for the analysis
of the support of the empirical measure of ®.

5.4.3. Concluding.

With the approximation in (125) at hand, we are now ready to determine the
limiting support of the empirical measure of ®. We first need to prove that f (2),
h(z) and k(z) are Stieljtes transforms of some distributions and determine the
supports thereof. To this end, we will resort to the following Lemma.

Lemma 16. [16, Lemma 9.1] Let A be a distribution on R with compact support.
Define its Stieltjes transform | : C\R — C by:

l(z):A(xiz>

Then 1 is analytic in C\R and has analytic continuation to C\supp(A). More-
over,
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c1) 1(z) = 0 as |z| — oo,
ca) There exists a constant C > 0, k € N and a compact set K C E containing
supp(A) such that for any z € C\R,

1(2)] < C'max {dist(z, K)~*,1}

c3) for any ¢ € C°(R,R) with compact support,

ca) Iflim; o [20(2)| = 0, then it holds that:
A(1) =0.

Conversely if K is a compact subset of R and if | : C\K — C is an analytic
function satisfying c1) and c2) above, then 1 is the Stieltjes transform of a com-
pactly supported distribution A on R. Moreover, supp(A) is exactly the set of
singular points of | in K.

From the expressions of f(z) and h(z), we can easily see that both of them

are analytic on C\ [—2,/Gw, 2\/cow| except k(z) which presents singularities
(through the term A,-1(2)) for z such that

1
=+—. 164
miz) =% (164)
This singularity falls outside the support if 2 > ﬁ, in which case the 2z’s
satisfying (164) are given by the two isolated complex values {—p, p} where
2
p=cofd+ %
Proposition 4. f(z) and B(z) are the Stieltjes transforms of distributions A
and Aj, with support S = [—2\/%% 2 cow] while l~c(z) is the Stieltjes transform
of Ay, with support S = S U{—p, p}. Moreover, A(1) = Aj(1) = Ag(1) = 0.

Proof. We will prove the result only for f (2). The same reasoning can be applied
to h(z). For k(z), some slight modifications should be made to account for the
singularities {—p,5}. According to Lemma 16, it suffices to show that f(z)
satisfy conditions ¢; and ¢y of Lemma 16. Let |z| > 41/3cow, then there exist
positive constants C' such that:

- (2] 4+ 2y/cow)* (|| + 2+/cow)*
1/ (Z)’SC{|z|4<|z|—2 e |z|4<|z—2\/aw>4}

Hence f(z) converges to zero as |z| goes to infinity. It remains to check the
condition ¢z). To this end, we follow the same approach in [5]. We define the

interval®:
K =[-1-2y/cow, 1+ 2\/cow]

3Note that if k(z) was considered and Q >
K=[-5-1,5+1]

ﬁ, then the interval K should be set to
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Let D = {z € C,0 < dist(z, K) < 1}. We need to distinguish the following
cases:

o Let z € DNC\R with £z € K. We have dist(z, K) = |Sz| < 1. Then, it
is clear that there exists a constant Cy such that:

|f(z)| < CO\%ZFS = Cydist(z, K)*S = (Cpmax (dist(z, K)*g, 1)

e Let z € DNC\R with Rz ¢ K. Since f(2) is bounded on compact subsets
of C\ [—2\/50.1, 2\/%@, we easily deduce that there exists a constant Cy
such that for any z € D with Rz ¢ K,

}JZ(Z)‘ < ) < Cydist(z, K)™® = Oy max (dist(z, K) ™%, 1)

e Since |f(z)| — 0 when |z| — oo, f(2) is bounded on C\D. Thus, there
exists some constant Cy such that for any z € C\D,

|f(z)| < (5 = Cymax (dist(z, K)78, 1)

This shows that condition ;) is satisfied. Hence, f(z) is the Stieltjes transform
of a distribution A7 whose support is in S. Moreover, as lim|;|_,o 2f(2) = 0,
we have Az(1) = 0. d

Using Proposition 4, we prove the following Lemma which evaluates the speed
of convergence of the first moment as well as the central moments of 1 tr(®) for
1 smooth, constant on the complementary of a compact interval and vanishing
on S = [-2,/cw, 2\/cow| U {—p, p}:

Lemma 17. Assume that € >

\/C%w. For all smooth function v constant on the
complementary of a compact interval and vanishing on S = [—2\/%% 2 cow] U
{_)5’ ﬁ}:

1 _s5
| tr(w(@)] =06 (165)

) (166)

for each 1 > 1.

Proof. Using the inverse Stieltjes transform, it holds that for any smooth func-
tion 1. with compact support:

2 [tr (8 /mw+ A+ 30+ Ay

— — lim § | Y.(x)Rp(z + iy)dx
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using the ideas of [13},

Z lim \;/¢C o (x + iy)dx O(pfg)

T y—0t

In order to prove (165), we follow the approach in [16]. We denote « the constant
for which ¢(x) = k for = lying outside a compact set. Function . = ¢ —
k is compactly supported and [ ¢c(\)du(A) = —k. Moreover, we have from
Proposition 4, Af(¢) = Ay (¢e) = Ag(¥e) = 0. Hence,

CE[tr (§(®))] = 2 B [or (.(®))] + 5+ O )
= 0(p71)

In order to prove (166), we proceed by induction on I. For [ = 1, using the
Poincaré-Nash inequality, we have:

var(l tr(P))
1 P n t ’(ﬁ
< 2 E
1 P n 8CI)
<2 L Bl @ G il
A L ;
= s ZZ ‘tI‘iﬁ {(El T [Cﬁclxl]ié#kél#

1 2
+ (xlTxk) {Cﬁ]ka 5]’7&1517’5’6}21@:1’
2

_ 7172 Zp: Zn:E > (@), (2] xa) [Cé}%]i

i=1j=1 |a#j

= 717/7(23 Z Z Z [1' C[J]l'all'fxazijzal [¢/(©)]a1j [’('Z/((I))]a?j}

J=1a1#j ax#j

16 <
< nQZEU[w’(CI))]alj ‘[1/)’(@ a2 ‘x ,Cly :ca1|max|x zal}max|x xa2|}
j=1
Define R as:
v, = 1o T, | 62, Cly,

It is easy to see that |R|| = O(p~27¢) by bounding the Frobenuis norm, for
instance. Let h(x) = |¢'(x)| Hence:

var (o (0(@)) < 15 e (@) Ri(®) < B R] 0 (a)

n
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From (165), EX tr h?(®) = O(p~1). Using the fact that ||R|| = O(p~27¢) along
with Lemma 5 we obtain for any e small and positive,

(% trq/)(@)) — 0~ = 00 F)

Assume now that (166) holds for all [ # k — 1. We will prove it for [ = k. Note
that:

1 1 2%k 1 1 £\ 2
B~ trg(®) ~E—tr o[ = (E!Etrd)(@) —E_—tra| ) (167)
+ Var(% trp(P) — E% trw(@)k

The Holder inequality can be used to treat the first term in the right-hand side
of the above equation. This leads to:

]E}% tr o (®) — E%trq>|’“ < \/]E%trz/;(@) - E%tr¢|2k2\/var(% tr (7))

Using the induction assumption, it unfolds that:

2

<E‘%trw(¢>)—ﬂi%tr¢>‘k> Op~%)

We will now handle the second term in the right-hand side of (167). Using the
Poincaré-Nash inequality, we obtain:

Var(% tr ((®)) — JE% tw(@))k
0L try(@)

P& 1 1 -
<D RE[ wh(®) ~E (@) | ]
i=1 j=1 !
16k 11 -
<= E[|Etr¢(q>)—1€%tw(q>)\2(k Dtrh(@)Rh(@)]
16k /1 1 = *
<— (]E‘gtrw@)—lﬁlatrw(fb)}%) ’E|trh(<I>)Rh(<I>)|k

Recall that .
E [tr h(®)Rh(®)|" < E[|R||" |tr h*(D)|
where ||R||* = O(p~2+¢); From Lemma 5, it suffices thus to treat E |tr h2(<I>)|k.

We have:

E|trh%(®)|" < 267'E [tr h2(@) — Etr h2(@)[" 4 281 [Etr n2(@)[*

< 2B [ h2(@) — Bt k(@) 2\ B[t h2(®) ~ Btr b2 (@)
+ 281 B e h2(®)|"
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Using the induction assumption along with (165), it unfolds that:
E [tr h(®)Rh(®)[" = O(p~ *+)

Let k, =E |% trop(P) — ]E% tr(P) |2k. From the previous derivations, it is easy
to see that there exists positive constants C; and Cs such that:
1

-5k e
kp < Cip~ 27 + Cokp® p~ 4 (168)

Let u, = nppgk. To conclude the proof, it suffices to check that u, is a bounded
sequence. Expressing (168) in terms of wu,, we obtain:

< Oy + Oy (up) ' "F pmite
up <Cr+Ca(up) Fp

or equivalently:
1 1
uf < Cyuf '+ Cypite

thus proving that u, is a bounded sequence. This finishes the proof of Lemma
17. O

A direct consequence of Lemma 17 is that for any v satisfying the condition
of Lemma 17,
trp(®) 22 0.

We will now terminate the proof of Theorem 4. We will consider only the case
when Q > —~—. Let € > 0, and take 1) smooth such that

Vcow
o Y(x)=1,Vx ¢ [—%/cTw—e,Qﬁw—l—e]U[—ﬁ—e,—ﬁ—ke]u[ﬁ—@ﬁ%—e]

o Y(z) =0,Vz € [-2\/cow—§,2\/Cow+§|U[—p—5, —p+ 5| U[p— ]
e 0 <¢(x) <1 elsewhere

o+

[l
[l

Function 1 satisfies the conditions of Lemma 17. Hence, we have:
trp(®) 22 0.

Since tr¢)(®P) is greater than the number of eigenvalues lying outside

S = [_2\/%&1—6,2\/%&1—'—6]U[_ﬁ—G,—ﬁ—E]U[ﬁ—C,ﬁ‘FG},

we conclude that almost surely for n large enough, there is no eigenvalue of ®
outside S°¢.

Appendix A Proof of the preliminary results
A.1 Proof of Lemma 6

Proof of (40). Decomposing &, —r) = {k,—k) — Ex [E(k7_k)] + Eg [ﬁ(k)_k)] we
may expand Eg [f(j;c)_k)Af(k’,k)} as:

E[¢fk, -0 ALe—0)] = B[ (€ — Ba[E-+]) " A€ — Ex[E )]
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+ Bk [0k, -1 | AR € fwk)] (169)
1 1
=E; Z Z :ck 2)% — —wlTC[k]xz)Alm (\/ﬁ(wam)Q - —xﬁC[k]xm)]
1k mk VP VP
(170)
+> Z Clyz — = trC[kJCm)Alm(ixf@C[szm - iﬂrc[mc[m])
I#£k m#k pz VP p2
(171)
25 o G (172)
Pz m;ﬁk
1 1
+) Z Crgr = —5 tr Ciy Oy ) Aum (—= 21, Ciig . — —5 t1(Cag Clny))
I#£k m#k pz VP p2
(173)

where the last equality follows by using the fact that
E [(ZTAlz — tI‘(Al))(ZTAQZ — tI(AQ))] = 2tI‘(A1A2)

for z standard Gaussian random vector in R**! with A;, Ay n x n matrices.
Proof of (41). The proof of (41) will be carried out by induction on s. For
s = 1, using Poincaré-Nash inequality, we obtain:

2 a1 A 2
Eg ‘f@,_k)/lﬁ(k,—k) - Ekf(Tk,_k)Af(k,—k)‘ <> Ey D%| }
J

j=1

Hence, to prove the result for s = 1, it suffices to establish that:

i|a§(k —k) fk —k

where O(p~1) should be understood in the sense of the convergence of random
variables as described in the notation section. Moreover, as will be shown next,
the inequality in (174) will also help in the proof of the result for s > 1. Given
that:

ag(j;’_k)Agk,fk
0Z;n

” < 4o (174)

_y Y Op(afwa)® Ap(fes)® 3 03 1 Cliy Clay Aap (. 70)
6Z ik azjk

azk bk ark bk
.rk Jia ab Ly C[k] C[b]

_ZZ 3Zk )

a#k bk

we have: .

P00 1ALk~

Z| (k,—k)“S(k, )|2§d1+4d2
‘ 0Zjy,

j=1
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p
. Op(xfxy) 2 Agy(xlzy)? 2
o= S el e

Both @; and as can be shown to satisfy:
a < [lAPo(™), (175)
as < [|AJ*0(p™). (176)

Proving (175) and (176) implies directly the sought-for result in (174). To prove
(175), we upper-bound @; as:

<3| 33 ety

j=1  a#k b#k

1
z T 3 T \2(2
< IGpZ [| szk Tq [Cﬁdxa] Agp(zg ) | }
J=1 azk btk J
X 2
= ].6;02 Z Z Z [‘r{xalxgmtmmg;c[k]xalAalblAagbg (‘T{xbl)z (xg‘rbz) ]
a1#kbi#kaz#kbaF#k
= 16p1" D} A" S, AD?1
< 16p% (| D[ AI1? (| Skl

where Dy, = D {beJ:kJ#k}Z:l and [Sk]aha2 = a?fxalmaTzC[k]xalexa25a1¢k5a2¢k.
From Lemma 4, ||S|| = O(p~!). Thus, (175) follows using the fact that ||Dy|| =
O(p~'7?).

On the other hand, &y can be treated as:

1
g < 42 | Z Z l‘k Tg)— k]‘ra] Aab]_? tr C’[k]O[b]|2

] 1 a#k b#k

= - Z Z Z Z Xy Tay T, xa2xa20[k %1 - tr Cly Cbl] —t1 Cl Clpy)
alfkbl;ﬁk}az;ﬁkbz#k)

X AalblA

a2b2
]—71T'D{ tr(C’[k]C[b2 )51;275]@}
= |Al*O(™)

We assume that (41) holds for all integer k = 1,...,s— 1, and consider proving
it for k = s. For that, we use the following relation

n

A SAD{pter]Cbl ab#k} 1

b1=1

n

bo=1

2s

Ex g(k —i) A&k, k) Ekg(jl;,—k)Ag(k,fk)
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s 2
= (Blelh -y A0 — Exlh iy Ace0|")
+ vary, ((f(q;c,_k)Af(k,fk) - ]Ekﬁ(Tk,—k)Af(k,fk))s)

The first term of the above equation can be handled using the induction as-
sumption along with the Cauchy-Schwartz inequality to find:

(Ex|€0k, -1y Ak k) — Ekf(Tk,_k)AE(k,—k)|)25
= Bk |€l 1) Ak, —k) — Bl 1) Ak, —r) |2(871)
X B €0 1y Ab(k,—k) — Ex€{h, 1y Al (k) |2
= [ A*O@™*)
The second term can be treated using the Poincaré-Nash inequality as follows:

vary [(5(7;;,_k)14§(k,—k) - ]Ekﬁ(qf;,_k)Aﬁ(k,—k))s}
P OEl A&
(k,—k)“1S(k,—k) |2

20T T 2(s—1) ,
< Bi[5°[6l - Ak ) — Br&limn Al -n| D | oz |
=1 ’
Since Y?_, | Xty Aty 0 12 4|20(p) by (174) and

2(s—1) — _s €
B [|€0, 1) A k=) — Bl _p) A (k,—1) | | = AIPE Dot

by the induction assumption, we have by Lemma 5,

vary, [(5@,%%5@,—@ *EkS(Tk,_k)Aé(k,—kJ } = [|A[[**O(p~="°)

A.2 Proof of Lemma 7

We will only prove the inequalities (44) and (45) in the last item as the first two
items have been established in [5].

Proof of (44). Since w?com?(z) = —1 — zm(z), we have:
| —am?(z) =1+ @ azm(z)
o w?cy w2cy

)%
(dX)
w co/|/\—z|2u

To show (44), we start by noticing that:

|

11— am2(2)| > max (|R(1 — amQ(z))| NR{OES amQ(z))D (177)
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In view of (177), it suffices thus to study |R(1 — am?(2))| and |S(1 — am?(2))|.
Let z = z + 1y. Then, due to the symmetry of y, |3(1 —am?(2))| can be
simplified as:

‘% (1 — amz(z))’

a 2,/cow A " 2.\/cow A i
_w260|y| /O ()\_x)2+y2ﬂ( )_/0 ()\+$)2+y2ﬂ( )
2,/Ccow 2
_ 2yl n u(d) (175)
w?co Jo (A=) +y*) (A +2)*+9?)

On the other hand,

R(1 — am? (z)){ can be expanded as:

R (1—am?(2))]

=1+ ot o (/ (A_Q;erzu(w) —/%u(cﬂ))
—1+ wziCO * uﬂico /me (A=) + ;j)Q(JEQA e IC)
e @+ 0) /0 2veae - m)zzAiZz?)xi( ;f?f)z e TIC

_ 2Veow P(J:,y,/\)
- ‘/0 (A= 2)24+12) (A + )2 +y2)“(d/\) (179)

where
. 200 4 9 9 2a 9 9 2a
P(.’E,y,)\) ._(2—’_0}260))\ Ax(4+w260)+>\y(4+w200)
+ 227 (2 + y?) + 293 (2% + )
Consider the following two cases: |z| > |y| and |z| < |y].
Case 1: |z| > |y|. Tt follows from (178) that
2 2/cow 4)\2
1— 2 > ay / dA
e Gz g )y T Grar e

Then, for 0 < A < 2,/cyw,

max (A — 2)2 + 3%, (A +2)2 +y%) <202 + 2|2 < 2(|2* + (2y/cow)?)

. (180)
< 2(|2] + 2/cw)

Hence,

aly?| /2 e aly|?

1 —am?(2)| > Ap(d)\) = —— I

am®(2)] 2 w?eo(|z] + 2y/cow)? Jo H(dA) 2(|z] + 24/cow)?
(181)
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Case 2: |z < |y|. In this case, (—2® +y?)(4+ 3%) > 0. Hence, using (179), we
obtain:
2y4 /QW y4
1—am?(z)| > —2F— )= ————— 182
| (2)] 2 EEENCE L 4(J2] + 2,/cow)? (182)

To prove (44), we combine (181) and (182) to obtain:
2
1= am?(2)| 7 < (J2] + 2v/eow) (4927 + ~[32] )

Proof of (45). To show (45), we will exploit the following inequality

1= am?(2)| = [R(1 — am?(2))]

Note first that if |z| > 2\/5\/%(4), /4 + M%O‘CO, then necessarily

2
max(|z|, |y|) > 2v/cowq/4 + wzac (183)
0

Based on (183), we consider the following two cases:

Case 1: |y| = max(|x], |y|). In this case, (—22 + y?)(4 + wzz‘zo) > 0. Hence, using
(179) along with (180), we obtain:
20z[* [2VOU 1 (dA 4
11— am?(z)| > LIRS 2 (184)

= A 2ye)t © S(E 2y

Case 2: |z| = max(|z[, |y|). In this case, from (183), it holds that

2«
>2 4 .
|z| > 2¢/cowq /4 + oo

Under this condition, it can be easily checked that function A — (2 + w%io At —
A2a?(4 + 32%-) is a decreasing function on (0,2,/cow) and thus achieves its
minimum at A\ = 2,/cow. As a result, in view of (179), |R(1 — am?(z))| can be

lower-bounded as follows:

w200

—am2 z
[R (1= am?())] > (A=) +92) (A4 22 + 47

1(dA)

(185)

/gﬁw 7460w2x2(4+ 2 )+x4+(:c2 +y2)2
0

4
> (156)

(I2] +2/cow)?

where (186) follows from the fact that since |z| > 2,/cowy/4 + wzz—(zo,

20 )2 > 0.

zt — degw?(4 +

w?cy
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Combining (184) and (186), we note that in either case |y| = max(|z|,|y|) or

|| = max(|z[, [y]),
[2]*

1—am?@z)|>—""
| am Z)| = 8(|Z|+2\/%w)4

which proves the desired result.

A.3 Proof of Lemma 9

To ease the notations, we denote by dj, ; the quantity:

1 1
dpj = — (foj,pxk - }—jtr(C[k]Cu]))%;ﬁj

VP

The aim of Lemma 9 is to show that:

]EH de,ijj ”

=y

| =0-7*) (187)

By Lemma 5, proving that
2s
Ej || > disQui| | < (19217 + 19270 02+ (188)
y

suffices to show the desired result (187). Thus, in what follows, we consider

showing (188) by induction on s. For s = 1, we decompose E; [| Zk# di,j Qr;j |2]
as:

E; H Z die,j Qrj |2] = var] \/— Z dk,]QkJ + |E Z dlekJ (189)
k#j k#j k#j

Using Poincaré-Nash inequality, the treatment of the first term in the right-hand
side of (189) boils down to showing that:

¢ an] —4 —2
21> szl < I9:7007) (190)

Indeed, using the differentiation formula in (29), we obtain:

5@
SIS,

=1 k#j
p

= 24 de] Z Ty l’])[ [J]ajb} (QkJQbJ +QJJQb'If)‘
I=1  k#j b#j

< 8|[1"D{dx,;}3-1 Q) Sl Z|Z ;) [C[j Ty lQb]|

1=1 b#j



Covariance discriminative power 359

p 1
+81Q5; XD 1T D{dk s Q] ) [C Ryl (191)
I=1 b#j
2
=8 ’ [1TD{dk,j}Z:1QL [Q75;Q]
+8]Qj; P17 Dy 3 111 QS;Q  D{dy ;i 1 (192)

where S; is the n X n matrix with elements

[S5]b1by = (] b, ) (@] Toy )], Clj) T, 80,258, 25 (193)
and D{dy ;}}_, is the diagonal matrix with diagonal elements d; ;,...,dy ;.

Obviously the spectral norm of S; is O(p~!) by Lemma 4 and so is that of
D{dk,;}7_,- From this, it is easy to see that (190) holds true.

It remains thus to treat the second term in the right-hand side of (189). We
consider proving that:

B [ dijQus] |* < (192174 + 192 )0(p?) (194)
k#j

Noticing that for k # j, di ; is independent of x;, we obtain:

B[ D s Qs

k]

= | D" diiElQus]|” (195)

k#j

- ‘deﬁ ijek: ng(] —7) H (196)
k#j

< 2|deﬂ [(Qj; — (Q)Jj)ek:ij(J —J) Hz
k#j
2
+2 Z di, i Ej[Qj5]E [e;}Fng(j,fj)]} (197)
k#j

To establish (194) and thus complete the proof for s = 1, we propose to show
that the following inequalities hold true:

2
> 4 Eil(Qs — Ei(Qi)ef Qiéiial| 192700078 (198)
k#j
2
| S e (@i B [ @it | <182 *0672) (199)
k#j

Proof of (198). From Corollary 2, it holds that

1
E;l|ef Q-] < [321720() (200)
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while using Poincaré-Nash inequality, we have:

) 0Qy; |”
E;|1Qs5 — E;[Qy]l } = ZEJ‘H 97 }

=1

=16) > E; [fbel%xg;%xa Cliw,1Q51°Qn, Qs

b1#£j b2#j
= 16E; [|ij\2[QHSjQ]jj}

ﬂ%%@ (201)

Using the fact that maxy |dy ;| = O(p~'), we obtain (198) by combining (200)
and (201) and applying Cauchy-Schwartz inequality.

Proof of (199). Computing the expectation over z; of the term E; [ef Q;&(;.— ],
we get:

2
dej 1Qj;]E [engf(j,—j)]]
k#j
2
1 1

— X 0105 ¥ @il (5o — S xClocly))| (202

oy — VP p

n n 2

= |B;[Q;;11" D{d; } o1 Qi D{dm j } o1 1] (203)
< |92 7P| D{di i} (204)

Hence, using the fact that ||D{dg;}||* = O(p~*), (199) follows.
Assume that (188) holds for all integer k = 1,...,s — 1, and let us prove it
for k = s. To begin with, we use the following relation:

| 0 ] =[5 S| I+ v | S]] oo
k#j k#j k#j

and apply the Cauchy-Schwartz inequality together with the induction assump-
tion to treat the first term of the right-hand side of (205) as follows:

‘Ej H de,ij]‘ s} i <E; H de,ijj 28_2]]Ej H de,ijj‘Q] (206)
k#j k#j ki

< (1927 + 20 0> (207)

To handle the second term in (205), we invoke the Poincaré-Nash inequality to
obtain:

2

> dQu| | < B [SQ‘deQkﬁ*sz: Sy ‘2%‘; | (08)

k#j k#j I=1 |k#j

varj |:
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and use (190) in combination with the induction assumption and Lemma 5, to
ultimately get:

var; H %d;kaj
#J

et st r0p g (209)

From (207) and (209) and based on the decomposition in (205), we thus prove
the desired result for £ = s, which completes the proof.

A.4 Proof of Lemma 11

For simplicity, we remove the subscript p from the notation of A; ), and A ,,.
We will treat the case of k = j since all other cases follow similarly. Call ﬂib the
quantity: '

W, =2l Ajzjaf Asz Qs

Xbj = Z 1911)

s¢{b.j}

With these notations, Lemma 11 aims to show that:

and let xp; be:

E[xusl?] = 0-72+). (210)
Decomposing xp; as:

Xbj = Xbj — Ej[xps] + Ej[x;]

we obtain:
Ellxes %) < 2E |0~ E; Do +2E | (B [y ])? ] = 2E[var, (o)) +2E | (B [xes))?]

where var; is the variance with respect to the distribution of z;. To prove the
desired result in (210), it suffices to show that:

Efvar; (x1,)] = O:(p~*") (211)
E[(E;[xws])?] = 0:(p72) (212)

Proof of (211). Based on Poincaré-Nash inequality, we can upper bound
var;(xp;) as:

2
o,
varyu) <3| 30

=5 |y 0%

(213)

Using the differentiation formula in (29), we obtain:

varj (ij) S 221 + 8Z2
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where
2
1 1

2= %[C[E]Alxs}lngzstsj (214)

=1 |s¢{b,j}

» 2
Zy= | > alAiwzy Asws Y (v ;) [CRmai(Qui Qs + Qi Qus)

=1 |s¢{b,j} q#]

(215)

Using Lemma 5, the proof of (210) reduces to showing that Z; = O, (p~2) for
i=1,2.
Treatment of Z;. Expanding Z;, we obtain:

1
Zl = E E —szlAlc[j]A1$52$gA2$513317;1423732@51]'@:2]‘ (216)
. b
s1¢{b,j} s2¢{b.5}

_ %[stjQHLj (217)

where Sp; is the n x n matrix with elements:
Sbj = xz;Alc[j]A1$52$gA2mslngZxSQ531¢{b7j}632¢{b,j}

By Lemma 4, ||Sy;|| = O(p~?!). Thus Z; = O(p~2).
Treatment of Z5. Clearly, Zs can be upper-bounded as Zs < 2751 + 2755
where Z3; and Zso are given by:

2 2
p 1
Zor=| Y alAvzgaf A, Q| DD (g 2)[ClaeliQq (218)
s¢{b,j} =1 |q#j
» 2
Zo2 = QP Y| D wlAvwjaf Asas Y (g w5)[CFw)iQus (219)
I=1 |s¢{b,j} p—y

Denote by D, the n x n diagonal matrix with diagonal elements:
[Dp)ss = x{A2$563¢{b7j}, s=1,....n
and by §; the n x n matrix with elements:
T T T
[Silarg = (quxj)(xquj)mqlC[j]xqzéqﬁﬁj‘sqz#j
With these notations quantities Zo; and Zso can be written in a matrix form
as:

Zor = [Q8Q");5| [ X" 41X D40 (220)

jj‘
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ZQQ = |ij\Qx?AlXDbQSjQHDbXTAlxj (221)

Using the fact that [|S;]| = O(p~!) and | Dy|| = O(p~2), we can easily deduce
that Za; = O(p~2) and Zas = O(p~2). Hence Zy = O(p~?2), which completes
the treatment of Zs.

Proof of (212). Using (33), obtain:

E; [ij] =B Y —alAizjaf Asw.Qjiel Qi€ )]
s¢{b.j}
Since E;[zT Ayx;eT Q€ —j)] = 0, we get:
E; [Xba} =E;[ Y —al Avzja] Aswael Qi€ (@5 — E[Qy5)]
s¢{b.j}
Applying Cauchy-Schwartz inequality, we can bound E[|E;xs;|?] as:

E[|E;xb; %]
2
<E Z \/ Qjﬁ(j,—j)\Q]\/Ej[|IfA1Ij|2|ij*E[ijHZH%TAﬂsP!]
s¢{b,j}
(222)
<E[ Y Bi[lef Qi P] D Eiflat Ava Qs — EIQy1Plaf Asa, 2]
s¢{b,j} s¢{b,j}
(223)

Using Corollary 2, it can be shown that 35 o0, . Ejllel Q;€(,—5[?] can be
bounded by |3z|720(1). On the other hand, it follows from Lemma 8 that
E[|Q;; — E[Q;;1*]] = O.(p~'*¢). Noting that for s ¢ {b,j}, both quantities
|zL Ayz;)? and |z} Aszs|? are O(p~™!), we show (212) by applying Lemma 5.

A.5 Proof of Lemma 13

Recall that Qj = (P, — zIn)fl. From the resolvent identity Q@ — Qr = Q(Py —
D)Qy, we have:

k]lr = Z Z le([q)k]ms - (bmé) [Qk]sr
m=1s=1
== 3 VBun ((Fen)? — 5 CyCi ) [,

m#k

_ Z @Qlk( (Jc;‘fggs)Q _ %tr C[k]C[s]) Q]

s#k

= =2 VPQu ((xfxs)z - Z%tf Clag C[s]) Q] (224)

s#k
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where the last equality follows from the fact that [Q],, = 0 when r # k. Using
(224), we obtain:

Z Z E [blCrer —biey [Qk]lr}

Ik r£k

=— ; ; ; VPE [bgcTng (@&l ((x{xs)Q - ]% tr(Cpy c[s]))}

= ; ; #Zk VPE [blCrG?Qkf(k»,—k)Qkk Q] <($£$5)2 - ]% tr Ol C[s]):|
=E [b" Quér,—ryc" Quéire,—1) Qu] (225)
=E {bTng(k»*k)cTQkf(k,fk)(Qkk - E[Qkk])} (226)
+ E[Quk]E [bTQkf(h—k)CTQkf(k,—k)} (227)

It follows from Corollary 2 that:

1
B B Q1" Qe < QeI MIO)

Hence, using Lemma 5,

E {bTng(k,fk)CTQkf(k,fk)} =0.(p7 ') (228)

On the other hand, using Lemma 10 along with Corollary 3, we can easily see
that:

E{bTQkE(k,fk)CTQkS(k,fk)(Qkk - E[Qkk])] =0.(p~ ') (229)
Combining (228) and (229), we thus prove the sought-for result.
A.6 Proof of Lemma 12

For ease of notations, we shall drop the subscript j,p from matrices Ay j p,
k=1,2,3,4. Call éif the quantity:

fiok T T T T
Hi’b =z, Ay, Asz oy, Aszrx, Ay Qo

_ N>k

o= > > o

ré¢{jk} bg{jrk}
With these notations, Lemma 12 is equivalent to showing:

and let © be:

E[l6f] = 0p=) (230)

Decomposing © as:

© =0 —E,[0] + E;[0] (231)
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we obtain:
E[l0f] < 2E[|0 - E;[0]12] + 2E[ |E;[6]” | = 2Elvar,(©)] + 2E| [E;[0]|* ]

where var; is the variance with respect to the distribution of x;. To prove the
desired result, we will prove that

E[var;(0)] = O.(p~**°) (232)
E[|E;(©)*] = 0.(p~*") (233)

Proof of (232) Based on Poincaré-Nash inequality, and using the differentiation
formula in (29), var;(©) can be bounded as:

var;(0) < zp:Ej “ Z Z

=1 r¢{jk} bg{r.jk}

"
067"
07

ﬂ <861+ &+8&+8) (234)

where
- T T 1 1 T 2
& = Z ’ Z Z xp Arapay, Azz,— |:C[§]A2$Cb:| lxr A4$ijr| (235)
=1 r¢{jk}bg{r.jk} VP
P
1 1 2
62 = Z ’ Z Z l‘;AlkagAgl‘r— {C[i]Agxb}lnggiijr| (236)
=1 r¢{j,k}bg{r.j.k} VP

p 1
1 2
§3=Z|Z Z ZmbTAwkfogxra:bTAngfo4mj(xsij)[C[E]xS]ZijQST|
1=1r¢ {5,k pg{r.j,k} s7#]

(237)
p
64 - Z ’ Z Z Znglxksz3xr$gA2xjng4$j
=1 r¢{j,k}bg¢{rj,k} s#j
1 2
X (mfffj)[C[j-]xs]szrstl . (238)

The treatment of &; and & is similar. The same also holds for {5 and &,. We
will thus only show that & = O(p~3) and &3 = O(p~2). Then (232) follows from
Lemma 5.

Treatment of {. For ¢ = 1,---,4, and j = 1,--- ,n, denoting by D;, the
diagonal matrix whose r-th diagonal element is given by mfAtxjérg{ k,j} and by
S; the n X n matrix with entries:

[S)]b1,0, = @, Az, Avoia], AsClj Asi, Ob, 2100, 2100, 2k

we may write £ in a matrix form as:

& = %x%CASXDM(Q —D(Q))S;(Q" = D(Q™))D;ju X" Aszi
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where we recall that D(Q) denotes the diagonal matrix formed by the diagonal
elements of Q and X = [xy,--- ,x,]. Since ||S;]| = O(p~!) and | D, 4] = O(p~2),
we obtain:

&G =0(7).

Treatment of 3. To treat &3, we decompose it as the difference between two
terms associated with indexes b ¢ {j,k} and b = r. In doing so, we obtain:

&3 < 2(&31 + £32) (239)

where

P B N
fglzz Z Z Z ol Ayepal Aswpal Az ol Ay jala; [C[j.]acs]lijer
=1 r¢{j,k} b@{j.k} s#J

(240)

P . 5
£39 = Z ‘ Z ZxZAlxkngngxfAngfo4xjmzxj [C[E]xS}ZQ”QST
=1 g (k) 57

(241)
Let S*j the n X n matrix with elements:
[S1s1,52 = Ty 2%, Olji s, 03, 05051 2505025
Quantity £31 can be written in a matrix form as:
¢ T T T 3 2
£31 = Z Z |:£Ck A3XD]"4Q1| . I:.’Ej AQXDk,lQ}jms T [C[";]xs]l (242)
=1 s#j
2 N
= ‘ {I?AQXDle} ’ IEAgXDj74QSjQHDj74XTA3$k (243)
J
=0(p™?) (244)

1

where the last estimate stems from the fact that || D; || = O(p~2) and ||S;|| =
O(p™).

Similarly, €32 can be written in a matrix form as:

2 1 T 2
632 = Z ‘ [QDkwlpk,3Dj,4Dj72Q [02 ws]l(xs xj)’ (245)
= sjr ]
= {QDk,1Dk,3Dj,4Dj72QSjQHDkJ'Dkyg'DjA'DjQQH} y (246)
23
=0(p~) (247)

Combining (244) with (247) we get &3 = O(p~3).
Proof of (233). Using the integration by part formula, we may simplify E;(©)
as:

E](@) = @j,1 + @jyz + 9j73 (248)
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where ©;1,0,2 and ©; 3 are given by:

1
0= 3 Ej[—x{AlxkngQC[j]A4xrx{A3erbr (249)
r¢{jk}b¢{jkr}

\/_ DD '{ZszAlkabTAﬂjfo?»xr%T-AélC[ﬂxs
r@{j.k} b¢{sk,r}y  s#i

X x ijijsr} (250)

\/_ Z Z {Z a:bTA1xka:gAnga:gAgx,szLLC[j]
r@{jk} b¢{jkr} i

X LT ijersb} (251)
The proof of (233) amounts to showing that for i = 1,2, 3, E[|©;;|*] = O.(p~3*°).

Treatment of E[|©,]?]. Using Cauchy-Schwartz inequality, we can bound
|@j’1|2 as:
]

xT A x,|?
E[|©;,] { > b As | > ’ > E; {9517 Ay ACpy A4erbr}
o P o eetmn
(252)
=0.(p") (253)

where the last estimate follows by using the fact that ng{] Ky leF Asz.,|?

O(1) and that E| ‘Zbg{J o} [mb Alxkxb AQCJ]A4erbT} = 0.(p~2*°)] from
Lemma 11.

Treatment of E[|0;2|?]. To begin with, we decompose ©; 2 as the sum of two
terms associated with index s ¢ {j,r} and with s = r, respectively:

Oj2=0;21+0;22 (254)
where
-2
021 = — > Y B Y el Al Aswsel Agwral AiCla
r¢{j.k}v¢{j.kr}t s¢{jr}
X ‘szijstr}

—2
B2 = 7 Z Z E; [mb Ala:kxb Agscja:k A3.TTLU AsCrjjzy
r¢{j.k} bg{s.k,r}

X X, l'ijbQ'r‘r] (255)
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The term E[©, 5 1|? can be handled using Cauchy-Schwartz inequality in com-
bination with Lemma 11 as follows:

E[|©;2.1]%
< é]E{ Z lzT Asxy|? (256)
LTI!
X Z ’EJ[ Z af Ayxpal Asx;Quy Z x?A4C[j]xs(xij)QST}‘2}
r¢{j,k} b {j.k,r} sg{j.r}
(257)
4 2
S 7]]‘3{ Z |$?A3Ik‘2 Z Ej H Z nglzkngngij‘ :|
P rgGkY b Gk}
2
XEJ-H Z fo4C[j]xs(xzxj)QST ” (258)
s¢{j,r}

Using Lemma 11 along with Lemma 5, we obtain E[|©;2,1]?] = O,(p737¢). On
the other hand, using the fact that E|E;X|*> < E|X|?, we can upper-bound

E[\GJQQF] as:

E[‘@j,2,2|2i| §§E|:‘ Z mngx,«(a:ij)erm Z wEAlxkngQijjb|2}

PGk bg{5.k}
(259)
8
—I——EU Z x;‘gAgxrxfmjQTTx,TAlxkx,TAngQjTﬂ (260)
PG
=0.(p?*9) (261)

where the last estimate follows by Lemma 11.

Treatment of E[|©, 3]?]. Writing ©; 3 in a matrix form, we get:
O3
= —% Z E; [fogxrmfA4CmXD{xSij5s¢j}QD{a:bTAngéw{j’k’T}}
r¢{jk}
X XTC[j].’EijT}

Using the facts that:

=

JngngT. =0(p2)
ID{a @80} = O™ 2)
E[Q;r*] = 0:(p™ 1)
we obtain IE|9J-73|2 = 0,(p~3+e).

=
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Appendix B Proof of Proposition 1 and Proposition 2
B.1 Proof of Proposition 1

To simplify the exposition of the proof, we remove the subscript n in the notation
of ay,n and by, and the argument z from Y(a,b, z). In addition, we introduce
the following quantity:

gk =2+ El i Qrék—n)

Using (33) and (32), we may decompose Y(a,b) as:

n

T(a,b) = > arbE [e] Quér -5 ] (262)
k=1r#k

=3 > aboE [e] Qb k) (Er(gr) "] (263)
k=1 1k

ey Qu€k,—k) (Ek,—py Qubir,—k) — Ek[f(zl;,k)Qkfk])}

- Z Z akaE[ 9k (Ex(gr))

k=1r#k
(264)

=T1(a,b) + €(a,b) (265)

where

n

Yi(a,b)=> > abE [ef Qué,—1)(Ex(gr) "]

k=1r#k
- T Qulh 1) (5 0 Qulh—r) — Exl€l, ) Q]
e(a,b) = *ZzakbrE[ kS(k k)( (k, k)gkkE:v(g:)) kIS(k,—k) % kSk )}
k=1r#k

Based on (265), the proof amounts to showing that:

Ti(a,b) ==Y arbedn E(Qur) + O-(p37) (266)
k=17r#k
e(a,b) = 0(p~2 ") (267)

and to check that the estimates in (266) and (267) hold true with an error
O.(p~'") when >_}'_, |by| is uniformly bounded in n.
Proof of (266) Taking the expectation with respect to xx, we obtain:

Tiab) =3 Y ab Y E [[kaiw Cgor — ~ tr(Cips Ciy)) (B (i)~
k=1r#k £k VP p

(268)
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= Zzakb ZE [Qk " (xf Cpyars — %tr(c[k]c[l]))(gk)l} (269)

k=1r#k £k

1 — Ex(gn
+ZZakb ZE[Qk \/—331 [ Oy = ptr(q’f]q”))%}

k=1r#k 1%k
(270)
=T11(a,b) + ¢ (CL, b) (271)
where
1
Tia(0.0) = 303 aute S [1Qun - o Clgm — L (Clg a0

k=1r#£k t#k \/_ p

(272)

Qﬁiki%%_L_( (7Mﬂan ————tr((7u:(7 )9k — Er(gk))

-3 3y~ 90 (Ex(g1)) )

k=1rsk (£k

(273)

To control €1 (a,b), we use the fact that Qy is independent of x to obtain:

I

k=1r#kl¢{r.k}

e lult (o] Cpggars — L 4x(Clg Cp)) (9 — Ek(gk))Q}
g (Ergr)?

T _E i
_ ZZakb E [ Qs rr\f(wr Clyzr — %“(chm))%#;))]

k=1r#k
(274)

Both terms involved in the expression of €;(a, b) can be shown to be O, (p~+¢).
Indeed, the first term can be upper-bounded using Cauchy-Schwartz inequality
as follows:

" 1 —E(ge)”]
> ab Y E {[Qk] \/_(xl O[szptﬂ%q””%,ﬁ

k=1r#k 1¢{r,k}

(275)
e 1 1 2
<1973 3 lawllvel | E[| Y 1@uln—= (o Cpgme = = tr(CrgCa))| |
k=1r#k 1¢{rk} VP p
Elgr — Ex(gr)l* (276)

where we used in (276) the fact that max(|(gx) |, |(Ex(gx))"Y]) < [S2]7L To
continue, we leverage Lemma 9 and Lemma 6 along with Lemma 5 to show that

1 1
E[ 7 ;[Qk]rl(fzfc[k]xl - ;tr(c[k]c[l]))f} =0.(p7°") (277)
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and
Elgr — Ex(ge)|* = 0. (p7>™) (278)

Using these estimates, we can easily check that the upper bound in (276) is
O, (p~1*¢). Similarly, using the fact that

1
VP
together with (278), we prove that the second term in the right-hand side of
(274) is also O, (p~1te).
Now, recalling that Qxr = —(gx) ™!, T11(a,b) can be decomposed as:

1 _
(z} Oy — Etr(c[k]c[r])) =0(p™ ")

T11(a,b) Zzakb > E[[Qklr Clir — —tr(c[k]c[z]))E(Qkk)}
k=1 12k 1k p
+ Z > akby > E[[Qkln Cgzr — 1Uf(C[k]C[z]))(E(Qkk) — Q)]
k=1 1k 14k p
(279)

Obviously the second term in the right-hand side of (279) is O,(p~2+¢) and
becomes O, (p~**¢) when > ;_, |bg| is uniformly bounded in n. This can be

shown by decomposing it as in (274) and then using Lemma 8 together with
(277). We thus obtain

T =33 ab S E[Q, 5 Cugr = tr(C CrE(Q)

k=1 12k 12k
+ 0, (p7%+6)

and the estimate becomes O(p~'7¢) when Y_,_, |by| is uniformly bounded in n.
To complete the proof of (266), we first note that by Lemma 134,

Z Z arE[Qri]b Z E|l { Qrlri Cry — = tr(C[k] O[l]))] (280)
k=1 r;ék £k
= Z > akE[Qrlbr ZE[ z] Cpyay — 1tlf(C[zc]C[z]))} +0.(p™')
k=1 71k 1%k p
(281)

Here, it is worth mentioning that (266) is not exactly proved since, to make «,
appear, first, the index [ should be different from r (and not different from k)
and second matrix Cf;) should be (Y, instead. For the moment, we focus on
fixing the first problem and consider showing that:

ZZ%E Qrkbr ZE[ xz [ Cryyt — %tr(C[ ]C[l]))}

k=1r#£k £k

n
4Here, we apply Lemma 13 with vector ¢ = {m?jC[k]zr - %tr(C[k] C[T])}r:l'
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1 1
= E E agE Qkk b E E{ JJZ C[k T — —tI‘(C[k]C[l]))] + Oz(pfiJrE)
k=1 r#k £ \/_ p
(282)

where the error in (282) becomes O, (p~*¢) when Y."_, |b,| is bounded. To
show (282), we start from the following decomposition:

ZZmE Qrrbr ZE[ f z] Cpgay — %tr(c[k}cuﬂ)}

k=1 r;ék 14k

= Z > aEQuklbr Y E[[Q]n%(ﬁcmxz - %tr(C[k]C[z]))}

k=1r#k l¢{r,k}

+ kZl #ZkakE Qrk]b E[[Q] \f(m Cleyzr — 1t]f(C’[k]C[r]))} (283)
- ;;:ak]E Qurlbr ;E[ \f (a Craga — %tr(C[k]CU]))]

_ ;;m& Qb E[[Q] \/_(Jck Cluy i — %tr(qr]qk]))}

+ Z ; aE[Qui]brE Q] f@c Cryy, — % tr(CiCp))| (284)

1 1
- ZZ%E Qulp- 3 () \f (ai Cij = I;tr(c[klcm))] +0:(p727)

k=1 r;ék lyﬁ'r‘
(285)

and the error in (285) becomes O, (p~'*¢) when }_"'_, |b,| is bounded. To obtain
(285), we used the fact that Y ,_, > vk lax||br| = O(p) and becomes O(,/p)

when Y_"_, |b.| is bounded together with \/_( fepm—1 - tr(CCpy)) = O(p™1)

and E|Q,x|? = O.(p~17¢). All this allows us to show that the second term in
(284) satisfies:

(286)
and becomes O(p~'7¢) when Y_""_, |b,| is bounded. The last term in (284) can
be handled by noticing that E[%( al Oy, — %tr(C[k] Cry))] = 0, which allows
us to write it as:

Z Z akE[Qkk]brE [[Q]rr

k=1r#k

ZZ%E Qrk]b, B [[Q] \/—( * Cryn = %tr(c[r]c[k]))] | =0.074)

k=1r#k

1
() Clywr — Etr(c[k]c[r]))]

Slis
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= > aEQulbE [ch],.,. - E[va})%(ﬁ Car — }quk] Cp))
k=1r#k

(287)

Using the facts that

E||Qr, — ElQu]2] = 0.(071+) %(wqu]xr - %tr(c[k]c[r])) =00

- 1 1 1.
Z ZakE[Qkk]brE [[Q]rr_(xgc[k]xr — —tr(CyCy)) | = 0:(p™27)
k=1r#k VP p

288
and becomes O, (p~11¢) when Y _'_, |b,| is bounded. Combining (286) and (288
we thus prove (285) and hence (266).

Proof of (267). First, considering the decomposition of gk_1 as:

—~
N2 N

91" = (Ergr) ™" + Brlgr) — g)(g6) " (Brge) ™ (289)
= (Brgr) ™" = (§lriy@r€ik—r) — Brl€ls 1y Qulr—r)) (98) ' (Ergr) ™"
(290)

we can write €(a, b) as:
€(a,b) = e2(a,b) + €3(a,b)
where

arbrel Quir,—k) (€l 1y @rEk,—r) —Er €0y 1y Queh,—1)])

€2(a, b):—z ZE[ (Ergr)? |

k=1r#k

(201)
2
abrel Qur,— k) (€0 1y @rbik,—k) —Er €l 1y Quéih,—1)])

es(a, b):Z ZE[ (Exgk)%gr }

k=1r#£k
(292)
Based on Cauchy-Schwartz inequality, we can upper-bound e3(a,b) as:
les(a,b) <D \akIIbr||32|_3\/E[Ie,TQké(k,_k) %]
k=1r#k
X IR, o @uéor ) — Beleh 1 Quéor ]l (293)

and hence, using Lemma 6 and Lemma 10, we can easily check that e3(a,b) =
O.(p~27¢) and becomes O (p~ ) when 37, |by| is uniformly bounded in 7.
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It remains thus to check that es(a,b) = O, (p~1+¢). The proof relies on comput-
ing the expectation of e3(a, b) with respect to xy. For that, it suffices to compute
the following quantity:

[ =Ey [G?Qkf(k,—k) (5(71;,_k)Qk€(k7—k) - Ek[f(q;;,_k)Qké(h—k)])}

Particularly, we prove that I',. is given by:

I, =81y, + 42, (294)
with
=3 > > v 2 [QunlQulmgw Cyzqrg Cymia] Cynm (295)
1k mAk gtk
1
Iy = Z Z Zp Qk rl Qk]mq (l‘ C[k - = tr(C[k]C’[q])) (xlTC[k]l‘m)Z

£k m#£k gk p

(296)

Before proving (294), let us see how it leads to (267). Indeed, in view of (292)
and Lemma 5, it suffices to check that:

> bl =00 (297)
r#k
Z bTFZ,r = O(p_%) (298)
r#k

and that >, b,I'1, = O(p~ %) when > h_y |bnk| is uniformly bounded in n.
To prove (297), we write >, _; b,I'1» in a matrix form as:

S by, = p 20T QuD { XT Oy X (Qu © X Clg Xi) XF Cig Xi} 1
r#k
where X = [z, ,x,] and X}, is matrix X with the k-th column and the k-th

row replaced by zero vectors. Then (297) follows by applying Lemma 1 and using
the fact that the spectral norm of X,CTCM X}, is O(1). Moreover, we can easily

see that when Y 7_, |b, x| is uniformly bounded in n, D 1 = O(p~2).
Similarly, we may write Z#k b,I's , in a matrix form as:

ZbrFQ,r
r#k

1 n
:p_%bTQk(XgC[k]Xl © XgC[k]Xl)Qk'D{ (xZC[k]xq—; tr(C[k]C[q]))aqyék}qzll

and hence (298) holds true. To complete the proof, it remains thus to check
(294). For that, we decompose E(k,—k) as:

Ek—k) = Ek,—k) — Exl§(k,—1)] + B[k, 1))
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T
and expand f(k,_k)Qkﬁ(k),k) as

i) Qe h,—) = (5(7;;,7;@) - Ek[&(j;g,fk)]) Qr (Ege—r) — Erl€k,—1)))
+ 2Bk (€0 _1]Qk (§e—r) — Bil€r—)]) + Erl€f ] QuEi €k, —x] (299)

Using (299), I'; can be further written as:

T, = Ey [eZng(k,—k) (E(Tk,_k) - Ek[f(jz;,_kﬂ) Qk (§k,—1) — Ek[ﬁ(k,—k)])}
+ 2By [e] Quéih,—mErl&l 1)@k (Ek—k) — ErlEr—)])]
+ Ey, { Q& (k1) Er[E, 1) |QrEr[E(x, k)]}
—Eg {GZng(k,—k)Ek[g(k,—k)]Qkf(k,—k)} (300)
Using again (209), the first term in (300) is also given by:

Ex [e) Qu€r—r) (Elk ) — Erl€lk 1)) Qr (Ek—k) — Erl€rn—)])]

=Ex[e] Qr(Ek—r) —Br €k, —0)) (0 —i) —Brl€ 1)) @ (€t —i) — B € (.- )]
+ Ei [e) QuErlEk,—i)] (€0 _ry) — Ex [f(k,—kﬂ)Qk (ﬁ(k,—k) — Eilér,—r])] (301)
=p2 > > > [QulniEx [((szwk)Q - %xfc[k]xl)((xﬁwk)z - %xﬁcmxm)

I£k m#£k gk
1
% [Qklmgl(aT21)” — ];wTC[w}
1
+22 Y > > @kl Czr — = tr(Cry Cpy))
l#k m#k q#k p
1 1
x Eg [((m wp)? — ECUT Cly] xm)[Qk]mq((xTxk)z - Z—)ff C[k]mq)} (302)
Now, using the fact that E(27 A1z — tr A1) (21 Aoz — tr Ag) (2] Azzy —tr A3) =
8tr A; Ay Az and E(2f A2y — tr Ay) (2] Azzy — tr Ay) = 2tr Ay A, where 2 is a
real standard Gaussian vector, we obtain,
[ Qr€(k,—k) (§k k)~ ]Ek[ﬁ(Tk,fk)]) Qi (&1 —Ek[f(k,—k)])]

=802 ) Y [QulnilQulmg (@ Cligan) (2L Clyge) (2] Cyg 1)
I#£k m#k q#k

1
+2p 2 Z Z Z Qrlr Q] ma (xl (K] T1 — 5tr(C[k]C[z]))(xﬁc'[k]l“q)2

Ik m#k q#k
(303)

In the same way, we handle the second term in (300) to obtain:

2Ex [ef Qué,—r)Brl&h _k]Qk (Se—r) — Erl€—n)])]
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=ap72 > > [Qulnil Q] ma (w ClZTm — = (C[k]C[7n]))($ZC[k]xz)z
l#k m#k q#k
(304)
The third term in (300) can be simplified as:
[ Qr(k—k) ErlE, 1) | QrEr[Ex, k)]}

=p 2 Z Z Z[Qk]rl [Qklmq(z] Cpyar — %tr(c[k]c[l]))

£k m#£k q£k
1 1
X (xﬁC[k]xm - ]—)tT(C[k]C[m]))(quTC[k]qu — Etr(C[k]C[q])) (305)

Finally, to treat the last term in (300), we use Lemma 6 to get:
—Eg [eTQkf k=) B[k, | QR —h)

=275 3 N[ Qklimg (2 Clrgwm) (2 Cgag — = tlf(C[k Clq))

l#k m#k q#k
1
9753 > S Q[ Qulmg (@] Cyr — = t2(Cipy Cpy) (306)
12k m£k g7k P
1 1
X (xf@O[k]ajm — ]—?tr(C[k]C[m]))(ng[k]l‘q — Etr(C[k]C[q])) (307)

Taking the sum of (303)-(307), we can see that (305) and the second term in
(303) cancels out with the first term in (307), thus yielding (294). This completes
the proof.

B.2 Proof of Proposition 2
Using the Integration by Part formula, we decompose &, ; as:

arj; = X1+ X2

where

= ——ZZE 2, Cey Cpryeny w1 Qur Q)
P iz btk

= Z ZE 2, Ol Cryray Qi Qo]
Pz vk

We will prove that:

a=-= > ElQw]E] ng]—tr((0°))+02(p‘%) (308)

2
p =1 k=1
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X2 = 0.(p~ 1) (309)

which obviously leads to the desired result.
Treatment of y;. Using Lemma 11, we can prove that:

=—= Z > E [2] CiyCpyanad 21 Qu;] ElQki] + O:(p™2*)

Pz bt
From the Integration by Parts formula, it follows that:
3.
X1 =x11+xi2 +xi3+0:(p727) (310)

where 11, x12 and y13 are given by:

X11 = — ZZ Co)Ciiy Cr 2k Qo5 | EQrek (311)
k;éj ok P

X12 = ZEQkaZE a2yl OOy Ol 26 Qs5 Quy | (312)
? kit bk s#b

X13 = ZEQkaZE a2yl OO Ol 2o Qu; Qs (313)
k#g b#k s#b

The quantity x11 can be worked out as:

n

2 1
Xu=-—5 ZE[(foqb}Cw]C[rlxk —pu C[k]C[b]C[k]C[T'])ij}EQkk

b=1 k=1
(314)
2
2 Z Z = t1 Ot Cpyy Criy Cro EQu EQir + 0= (p™2 ™) (315)
2 n n 1 l
= — 53>~ tr Oy Clyy Oy CpriEQu EQus + 0= (p™3F) (316)
p b=1 k=1 p
2 n n 1 i
=3 (= tr Ca CluCpaCior = — 1 ((C)") ) EQuEQu
p b=1 k=1 p
2 n. o n 1 o\ 4 _34c
s EQukEQp;—tr ((C°)7) + 0:(p™27) (317)
P = p
9 n n 1 v .,
== 03 2 2 EQuEQy tr((C°)7) + 0:(7 1) (318)
b=1k=1

where (316) follows from the fact (Zzzl x%C[bJ CiiClrywr — % tr Cpi) Cp Criy C[T])
is O(1) and (318) from EQp; = O,(p~'7¢) for b # j and %tr Ciy)Cy) Cir) Cpr) —
%tr ((00)4) = O(p~%) by (11). It remains thus to study the two last terms in
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x1- We start by decomposing x13 as:

Xlg— ZE Q] Z Z ]E[x TpTg C 1Ck Clr xkxkbengeb} (319)

? ki bk s¢{b,k}
Z EQulY> Y. E[@len)a] CoyCraCrimiQuQu]  (320)
? kAj b#k s¢{b,k}

Both terms can be shown to be O, (p~ %+E) by using Cauchy-Schwartz inequality
and invoking Lemma 11. We will treat only the first term as the second one can
be treated in a similar fashion.

‘E[ ZE Qkk Z Z [xsTmbchC[b]C[k]C[j]xkfchbestb] ’ (321)
k#j bk s¢ {bk}
2
< — Z |E Qkk Z |J)k l‘b‘ |Qb]|2 E‘ Z le‘beO C [j]-ersb
k#] b#k s¢{b,k}
(322)
=0,(p~27) (323)

The treatment of x12 is more difficult. First, using the same calculations as for
X13, We can approximate 12 as:

X12 = ZE Q) ZE Qub) ZE[GI 2yl Oy C Oy, besj} .(p™2)
p kg btk s£b
(324)

It can be readily seen that the summand corresponding to s € {7, k} leads to a
quantity that is O, (p~2). Indeed, for s = j, we have:

— Z E[Qkk] ZE Qup]E [-T;rmbxfc[b]C[k]C[r]xkxgwajj}

p? k;ﬁy bk
— = > ElQu] Y BlQuEIQ,E |eF 22T CyCgCranaf | + 0-(p747)
ey b (k.7
= — ZE Qkk Z E be Q”} ( C[b]C[k]C[r]C[k]C[b]) + Oz(p*%+e)
P bg (k.1}
=0.(p~ %) (325)
Similarly, the contribution of the summand corresponding to s = k can be

proven to be O, (p_%+6). As a matter of fact,

—= ZE (Qrk] ZE [Qup]E { zfxp) ) CiyCly ]kakj}
-y bk
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= %ZE[Q%] Z E[Qw]E [(xk )’} C[b}c[k]c[r]kukj} +0.(p73%9)

P? ki bt {k.5}
(326)
which is O (p~2¢) by Lemma 11. Combining (325) and (326) leads to:
X12 (327)
=— ZE Qkk] ZE Qub) Z [$Z$b$ZC[b]C[k]C[r]ﬂﬁkIgﬁbesj} +0.(p~?)
* ki brk s¢ {bk.j)
(328)

——Z Z Z [Qrk|E[Qu]E [J:fxbxfc’[b]C[k]C[r]mkxfbesj}+02(p_%)
s=1k¢{s,jtb¢{k,s}
(329)

Denote by k¢ the following quantity:
Z Z E[Qxk]E[Qup]a zp] C 1Ck Clr xkxk Ty
k#{sj} b¢{k,s}

Then, x12 can be given by:

4 & 4

7 2 Ellss ~Elna))Qu] + Bl JEQy]
s=1

4 n
X12 = —3 E[Hst'] =
p? ; T ph

To conclude it suffices to show that:

]E["{s] = Oz(l) (330)

var(ks) = O.(p~ 1) (331)

Indeed if (330) and (331) are satisfied, then y12 = O,(p~21¢) since for s # j
E[Qs;] = O.(p~'1¢) from Corollary 3 and E[|Q;;]?] = O.(p~'T¢) from Lemma
10. The proof of (330) follows by computing the expectation over the variables

Zs, T, Tp while (331) follows easily by invoking Poincaré-Nash inequality. We
omit the details for the sake of brevity.

Treatment of y,. Using again the Integration by Part formula, we obtain

X2 = X21 T X22 + X23 + X24 + X25

where
2
Xo1 = —— Z ZE [z Cl) O Ciig 6 Qi Qo |
k#j bk

Xo2 = —= Z Z Z E [zl 2] Cryavay Cpy Oy Quk Qs Qo]
p\[ ket btk sk
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ZZZE ol ral Cpyapay Cp Cpi i Qi Qsk Qok |
p\f k#j b#k s#k

Xoq4 = —— ZZZE rl iyl C[k]xbxb C[k]C[r]kukastkg]
p\/_ k#j bk s#k

ZZZE l’ TRy C[k]xbxb C[k]C[r]Ikaerkaj]
p\/_ k#j b#k s#k

X23 =

X25 =

We can prove that o1 is O, (p‘g ). Indeed, x21 can be further decomposed as:
Xo1 = —— Z ZE K CiiCrrCras — = trC C[k]C[r]C[k]) ijQbk:|
k#j b;ék

Z Z = t1 Cpp) Cliy Cpr) O E [Qiej Qo]
k£ b;ék

where the first term in the right-hand side of the above equation is O, (p_%"’e)
5
due to Lemma 9 while the second term is O,(p~1) since:

2 Z Z =t Cpp) iy Ol O E [Qij Qo]

k;éjb;ék
:zlt ( )ZZE [Q1; Qui) + O-(p~ 1)

»’ k#7 b#k
izl r o\4 T o _ 73
= 5, ()27 @~ D@) (@ -D@)], | +0:(7)
=0.(p —i)

where D(Q) denotes the diagonal matrix whose diagonal elements are those of
@. To handle x99, we start by decomposing it as:

X22 = —ZZ Z E [zl zpal Cpyasa] Oy ClrarQuiQs; Qur]
p‘/— kg 57k b {Is}

ZZE xl gl C’[kx Ty C[k]C[r]kakangsk]
p\/_ k#j s#k

Using Lemma 11, the first term in y22 can be treated as follows:

ZZ Z [ 22l Opyapai Oy C xk:Qkaéijk]‘
k;éj s#k b {k,s}

ZZ\/ |$T$stg’ |Qrk|? }\IE) Z T Cpyapri C k]Cr]kabk

k;éj s#k b {k,s}
= OZ(piéjLe)
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The second term in oo is obviously O, (p_%“) which implies that:

3.
x22 = O, (p~27)

Using a similar decomposition to that used in x99, we can also prove that
X2z = O,(p~27¢) and x24 = O,(p~27¢). As for xa5, we can easily see that the

3
contribution of the summand associated with s ¢ {b,k} is O,(p~27¢), leading
to:

4 ol
Xos = ——= > Y B [2] wpa] Clyma] Cry Clywn Qi QuoQun] + O=(p~27)
VP2 v

DD E [wf zaf CrgCrymaQuy) —tr ((CuCr) )EQuEQx
p\/_ k£ bk

+ Oz(p7§+€) = OZ(p7§+6)

where the last approximation follows from the application of Lemma 11.

Appendix C Proofs of Theorem 5 and Theorem 6
C.1 Proof of Theorem 5

Let A be an isolated eigenvalue of ®. Being an isolated eigenvalue, A lies outside
the support §€ defined in Theorem 4. Then, from linear algebra results, we have:

det(fb—i—%[J 14{‘4 BMJ” /\In>:0

or equivalently:

det (QA1 +% [J 1] [ 6] [J 1,] ) =0.

where Q) = (P — /\In)_l. Since A is not in the spectrum of ®, @), is well defined
with probability 1 for n and p sufficiently large. An isolated eigenvalue of matrix

® satisfies thus:
6] 7 1] ):0.

A

det (In—kQ,\% [J 1] [A

Using Sylvester’s identity, we thus obtain:

JTQxT  1JTQ\1,
i (1 [F 7 BN [4 o) o

or equivalently:

Lot 3T QA+ 3T Qulna” - LITQuJa+ B3I OrL ] 0

det{ SLEOATA+ 1O 1,a” 141 lTQ,\Ja—i—ﬂllTQ,\l
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Evaluating the determinant as a block-matrix determinant, we then find that
an isolated eigenvalue of matrix ® should satisfy:

1 1
<1 +-17Qx\Ja + 6—12@1“)
p p
1 1
« det [Ic + 5JTQw1 + ];JTQW@T

(L7 QaTa+ BLITQAL, ) (L1IZQATA + 1110 1,07
. 1+ 117QxJa + ALIZQAL,

} —0. (332)

As discussed before, from Weyl’s inequalities, we know that the largest eigen-
value of ® is unbounded, while the n—1 remaining eigenvalues are bounded and
thus are located asymptotically in a compact interval of the form [—C, C] where
C is some constant greater almost surely than co€2 + %" + 1l %JAJT + %Jalz +
%1HQTJTH2 + € where € > 0 is a small positive real. Among these eigenvalues,
we focus on isolated eigenvalues that lie in [—C, C]\S.. For such eigenvalues,
and for any small €, there exists a positive constant C’ such that:

1 1
1 QT AL 2 Vi (¢ - (333)

To prove the above statement, it suffices to notice that:

ﬁ COm()\) a.s.

1 1 1
— (14 =1TQ\J -17Q\1,, ) - = 0.
( +p nQ)\ a/+6p nQ/\ ) \/ﬁlfchQmQ(A) —

VP

and hence for n and p sufficiently large:

>

1 1 1 B colm(N)|
s Yoy ga s ghiTgu,] s £ colmONI
VP ' p @ ﬂp @ VP |1 = cgQ2m2 (N

where € can be taken as small as desired. To continue, we use the fact that
function A — m(A) is analytic on [—C,C]\S,, hence for all A € [-C,C\S.,
|m(A)] is bounded by some constant L. From the relation m(\) = 1

T X FwZegmZ(N\)?
we thus have: 1
N> —=———, Vie[-C,C\S..
M| = G [-C.CN\
Moreover, T2 Zm2(2) > 1+Q§03L2. All this together gives:

-1

)\ p—
L > Loy (0 wtar) ™ (4 %4 02)

which proves (333). We thus showed that an isolated eigenvalue of ® lying in a
compact interval necessarily satisfies for sufficiently large n and p:

) 1 1
H()) = det [IC + EJTQAJA + ];JTQAlnaT
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(277 QxJa+BLITQA1, ) (317QaTA+ 11T Q)1 a7
1+ L1TQ Ja+ BL1TQAL,

} =0 (334)

Using Theorem 2, and exploiting the fact that the fact ¢’ A = 0 where ¢ =
[e1y. ..y cc]T, we can prove that H(\) converges to H()\) given by:

H(\) = det [I. + com(N)T].
Let p be such that that H(p) = 0. Then p satisfies
det (I. + com(p)T) =0 (335)
or equivalently m(p) = — CO% where v is one of the c—1 non-zero eigenvalues of 7.
Since A — m(A) is an increasing function from (2,/cow, o00) onto (—1/(/cow), 0)

and from (—o0, —2,/cow) onto (0,1/(y/cow)), the condition for existence of p
satisfying (335) is that there exists v, a non-zero eigenvalue of T such that cov >
\/Cow, in which case a spike appears at the position p = cov+ %2 Since the rank
of T is at most ¢—1, there can be no more than c—1 spikes p; ... p.—1 associated
with vy, ,v._1 non-zero-eigenvalues of 7. They are eventually located at

\;’—CT). Going back to (332), the

largest eigenvalue of @, which we denote by r satisfies:

2
positions p; = cov; + %, on condition that v; >

1 1
1+ 51562,«“7@ + %15@&1,1 = 0. (336)

We can show that there exists C; and C5y positive constants such that:

Civp <k <Cop

One possible way to show that is to start off from the observation that:
coff = [|ll2 < K < coff + |22

and exploit the fact that for ¢ > 0 chosen as small as desired, and n and p

sufficiently large,
2

[|®]] < max(2+/cow, cof2 + %) +e.
Since:
1
< \—1 == a||—

17Q,.J
’Q“ VR

we have: 1
“17Q.Ja 2 0,
D

On the other hand,

1 a.s.
B 1TQuLn+ 5% 250,
Using (336), we thus obtain:
B as

Sik
=
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C.2 Proof of Theorem 6
C.2.1 Proof of (27)

We first recall that:

Pl oL rg ar L Loy g 337
O Y Y R T W T A S I
where II) = ﬁpij ﬁz Then, for any a,b € {1,...,c}, From residue calculus, we
J
have: ) ) )
ST = —— ¢ —JT (B —20,) T
D 2m Je, p

for n sufficiently large, where C, is a complex (positively oriented and with
winding number one) contour circling around p;; only. Using (16), we can easily

see that:

(P T A g 1
ST = = CppJ (®—z2L,)" J+o(1)

where ® is defined in (17) as:

P a’ B

Using Woodbury matrix inverse identity, we may write:

6:<I>+1[J 1n][A a] [ 1.]"

Y@t

p
_ %JTQ(,Z)J —[ITQ()TA+ LITQ() e LITQ(2)a + BLITQ(2)L,]
1J7Q(2)J
x G(z)™! {ZilTQ((j))J]
D n
where
oy — L4 2 JTQ(2)JA+ 1JTQ(2)1na”  2JTQ(2)Ja+ 17 Q(2)1n
= 11014+ LIQ() 6T 14 1TQ()a + 217Q()1,

Define b(z), I(z) and y(z) as:
o) = I Q() o + By T QU

() = Z—I)AJTQ(Z)ln + %1;{ ()1na

B

V) =1+ %ﬁwwa + 2171,
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ry —1
Let R(z) = (IC + LITQ(2)JA + LITQ(2)1,a7 — M) ) . Then,

7(2)

_ R(z)b(z)

i | S 16)
~EEEE 7 @) 2T (DR()M)

Using these notations, we thus obtain:

1 _
—JT(® - 21,)" 1T

p
- %JTQ(z)J ~ [An(2) + A1a(2) Az (2) + Az ()] E‘lgg((;)ﬂ

where
A (2) = %JTQ(Z)JAR(Z) - %JTQ(Z)lnaTR(z) (338)
Ap(2) = — %J%@)M% _ B%JTQ(Z)ln% (339)
Aoy (2) = ;JTQ(Z)R(Z)JAz((’?) - ;JTQ(z)lnaTR(z)z((z)) (340)
Azz(2) = (v7H(2) + 772 (2)IT R(2)b(2)) b(=) (341)

Now exploiting Theorem 2, the following approximations are obtained for z € C,:

1, c302m?(z2) T as,
1 CoTTL(Z)QT a.s,
—17 J— — 0.
D Q) 1 —Q2c3m?2(z) -
1 m(z)co as,
1T 1, — — 0
D Q)1 1—c202m2(z) —0
from which we obtain the following convergence results,

Aq1(2) — com(z)D(g)AD(g)% (I + com(2)T) "' D(c)~2
m(z)coca™ 1 -1 1 as,

- mp@g (Ie + com(2)T) ~D(c)"2 =0,

T
Ana(z) + —EL 503 (1 4 com(=)T) Do) 250,

1 —0Q2c2m2(z)
Agl(z) ﬂ 0,
AQQ(Z) —C ﬂ 0

by using the facts that (I. + com(2)7)~ /e = /¢, a’c = 0 and Ac = 0. It

can be proven using for instance Vitali’s convergence Theorem [8, Theorem
3.11] that the convergence of all the above terms is uniform on C,. Now since
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(Ic + com(2)T)~'\/e = /¢, the terms involving (I. + com(z)T)~'/c/c will
produce zero-residue when integrated over C,. We thus obtain after calculations:

1 1+ /= -1
~ 5 CPEJ (<I>—zIn) J

— —% com(z % )2 (I + com(z )7’)71 D(g)%dz 2%00.

Assuming a multiplicity 1 for Vpi, the eigenvalue of 7 mapped with the value

pi; for which (I. + com(p;,)T) is singular. Let V,, € R°*! be its associated
eigenvector. We finally get after residue calculus,

1 2 1 a.s
I—jJTH)\J - Co(l — d 2

from which it follows:

C.2.2  Proof of (28)

To evaluate ap , we start by expanding ¢ as:

Piy Piq Pig

a _ T PN Piy _Pig
aﬁhpiz - uﬂi1D(Ja)upi2 Qa = Qg

We will prove later that it suffices to Compute 1 JTH)\1 D,I1,J and D, = D(j,).

—a aT
where Iy, = 4y, 4, and II), = upwu

integral relation is given by:

piy? whlch according to the Cauchy

—JTHMD I,.J

o ff LT @ - aaL) " D (@ - 22L,) " Tdzadzs + o1)
7TZ

where C,, and C,, are complex contours circling around p;, and p;, respectively.
Based on the same approach as before, applying Woodbury’s identity on each

— -1
inverse (<I> — zlln) and noticing that the generated cross-terms will have zero
residue, we obtain that almost surely:

1
]_)JTHAlDaH)\QJ = ]{ j{ [A11(Z1) + A1a(z1) Aoi(z1) + A22(2’1)]
c,, Jc,

57 Q(21)DaQ(22) ] %JTQ(ZI)DaQ(@)ln} |:A11( 2)" + Aia(z2)"
S15Q(21)DaQ(22)  S17Q(21)DaQ(22) 10 | | Azi(22)" + Asa(z2)”

+o(1)

(2m2)?

X dz1dzo
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Anticipating that the terms of type Ag;(z) + A22(2) will not provide any residue
at the end of calculus, we will thus focus on evaluating:

1 1
G b b A+ () SITQEDQE)T (An () + Ara(e))
Now, from Theorem 3, we have:

%JTQ(Zl)DaQ(ZZ)J - {COCam(zl)m(ZQ)D({&:u}ﬁ_l)

e c2w? m?(z1)m?(z2)
+ cqCp (1 — w2com(z1)m(z2))

+a2(21,22)D({8i=a}i_1)Le ()" + as(z1, ZZ)Ql?;D({éia}f_l)} =50

D(c) + q1(z1, z2)c ()"

where ¢;j(z1,22), j =1,...,3, are analytic functions on C,, and C,,, where here
{d;= a}C 1 is the ¢ x 1 vector of all zeros except 1 at position a. Again, using the
fact that (I + com(2)T) ™'/ = /¢, we deduce that the quantities g;(z1, 22),

j =1,...,3 will not contribute to a residue in the final expression. We thus
obtam.
fJTHMD Iy, J

27rz ,74 7{ com(z1)m(z2)D(c )% (Ic + com(z1) )AID({JiZa}?:l)
x (I, +com 29) 'T) 'D(c )2dz1d22

m2(z1)m?2(zy 1 -1
b b A ey P! e+ am T

(1 = w2ecom(z1)m(z2))

x (I. + Com(ZQ)T) "'D(c )2dzld22 2%0.

Then, after residue calculus, we obtain:
L7
—J 1\, DIy, J
p

L mlp)mn) oy o
- D)2V, VI D({8iza}i,)V,, VI D

Co ml(ph)m/(piz)yill/iz (Q)Q Pi1 ¥ piy ({ 1—&}121) Piz Y piy (2)2
B 5pi1:pi2w20am2(pi1) (p12)D( )z VPHVPT; D(c )% s

(1= eomlpn) o) oo v,

Exploiting the fact that m(p;;) = —

—L_ for i = 1,2 and the relation m/(z) =
0V1j

m?(z) (1 — w?com? (z))fl, we thus obtain:

1
Z;JTHM D,IIy,J
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a.s. W2 UJ2 c 1
(125 (1 101, VP V00

2 2
wcq w T p
+ 2 (1—607> D(c)? Voi Voo, D(c)* 0pi =pi,
1 11
With the above convergence at hand, we are now ready to study the convergence
of T iy First, we prove that if p;, # pi,, then
a a.s.
Opi, pis — 0.

For that, we consider two different cases.
Case 1. Either [V}, ] =0 or [V}, ], = 0. In this case,

Assume that [V, ] or [V, ] is zero. Then, if pi, # pi,, it is easy to see

that %JTHMDGHAQJ =% 0 and $J7I,J =% 0. Let d;, and d;, be such

that lim inf > 0 and lim inf > 0. Such d;;, and

\/7 pz Jdi, \/7 /JL Jdi,
d;, must exist according to the asymptotic analysis in the previous section. We
can thus write:

[%JTHMDQH,\QJ}

diyd; i i
oo, = L2 ot ag® (342)
Piq Pig l]T 4 ,l’lT j
pJdi, Uiy PpiyJdin

and hence under the condition that [Vpil]a or [Vpiz]a are zero and p;, # pi,,

agilpm — 0. Now, if p;, = p;, and [Vpil]a or [Vpiz]a are zero, then abitaliz 50
infinitely often. Using (342)
a a.s, w2ca
O'Pil Piy COV?I

Now assume that [Vpil]a and [Vﬂi2]a are different from zero. Then, d;, and d;,
can be chosen equal to a. if p;; # p;,, then:
[%JTHMDGHM J}

piy P
_ aa _ Olall aalz

Tpiria 1 1 . piy P
7]y [ o)

where sign(z) returns 1 if z > 0 and —1 if < 0. If p;, # p;,, one can easily
check using the above equation that

a

a a.s.
Opirpis 0.
while if p;; = ps,, we have similarly to above:

2
a a.s, W Cq

Opiipiy 7 cor?
i1

In conclusion, we thus have:

2
a a.s, W'Cq

T iy piy — o2 CPii=Pig
11
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