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Abstract

In this paper, we consider multi-dimensional mean reflected backward stochastic
differential equations (BSDEs) with possibly non-convex reflection domains along
inward normal direction, which were introduced by Briand, Elie and Hu [6] in the
scalar case. We first apply a fixed-point argument to establish the uniqueness and
existence result under an additional bounded condition on the driver. Then, with
the help of a priori estimates, we develop a successive approximation procedure to
remove the additional bounded condition for the general case.
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1 Introduction

Let (Ω,F ,P) be a complete probability space under which B is a d-dimensional
standard Brownian motion. Suppose (Ft)0≤t≤T is the natural filtration generated by
B augmented by the P-null sets and P is the sigma algebra of all progressive sets of
Ω× [0, T ]. The present paper is devoted to the study of the following multi-dimensional
BSDE with mean reflection over the time interval [0, T ],{

Yt = ξ +
∫ T
t
f(s, Ys, Zs)ds−

∫ T
t
ZsdBs + ηT − ηt, ∀t ∈ [0, T ],

E[Yt] ∈ D, ∀t ∈ [0, T ],
(1.1)

in which the terminal condition ξ is an Rm-valued FT -measurable random vector, the
driver f : Ω × [0, T ] × Rm × Rm×d → Rm is a measurable map with respect to P ×
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Multi-dimensional BSDEs with mean reflection

B(Rm)×B(Rm×d) and the mean of the solution Yt is forced to stay within a possibly non-
convex domain D ⊂ Rm. Our aim is to investigate the solvability of the mean reflected
BSDE (1.1) under a natural Skorokhod type condition (see Definition 3.1), where the
solution η is a deterministic function with bounded variation.

When the constraint is not on the mean of the solution but on the paths of the
solution, i.e., Yt ∈ D, the reflected BSDE (1.1) was first introduced by El Karoui et
al. [21] in the scalar case. Since then, great progress has been made in this field,
as it has rich connections with partial differential equations (PDEs) and mathematical
finance. For instance, the authors applied the reflected BSDEs to provide a probabilistic
interpretation for an obstacle problem of parabolic PDEs in [21] and El Karoui, Pardoux
and Quenez [22] found that the price of an American option could be represented as
the unique solution to the reflected BSDE under a Skorokhod type condition. Moreover,
various types of scalar-valued constrained BSDEs have been formulated due to their
financial motivations. For examples, Buckdahn and Hu [9] used the constrained BSDEs
driven by both a Wiener process and a Poisson random measure to analyze the option
pricing with constrained portfolios in an incomplete market; Cvitanić and Karatzas [17]
considered a type of Dynkin games via the BSDEs with two reflecting barriers. For more
research on this field, we refer the reader to [18, 25, 26, 27, 28, 29, 37, 39] and the
references therein.

In the reflected BSDEs theory, the research of the multidimensional case is signif-
icantly more difficult than that of the scalar case. In [24], Gegout-Petit and Pardoux
first obtained the existence and uniqueness results for the case of normal reflection in
convex domains, which was generalized by Klimsiak, Rozkosz and Słomiński to the case
of time-dependent random convex regions in [34]. On the other hand, motivated by the
optimal switching problems, certain types of multi-dimensional reflected BSDEs with
oblique direction of reflection were also investigated, see e.g., [1, 12, 13, 14, 30, 33].
Recently, Chassagneux and Richou [16] established the solvability of general obliquely
reflected BSDEs in convex reflection domains.

The theory of multidimensional reflected stochastic differential equations (SDEs)
with non-convex reflection domains has been studied systematically (cf. [20, 36, 40]).
However, there are only few papers dealing with the multidimensional reflected BSDEs
with non-convex reflection domains due to the complicated structure. We would like to
mention that [8, 23] considered certain types of multidimensional reflected BSDEs in
non-convex domains. Recently, Chassagneux, Nadtochiy and Richou [15] first established
well-posedness results for general multidimensional reflected BSDEs with non-convex
domains satisfying a weak star-shape property.

In contrast with the aforementioned paths constraints, the BSDEs with mean con-
straints were formulated recently to analyze partial hedging of financial derivatives in
mathematical finance. In order to deal with quantile hedging problems, Bouchard, Elie
and Réveillac [2] considered a new type of BSDEs, where the terminal value satisfies
a type of mean constraint. Inspired by this, Briand, Elie and Hu [6] introduced the
scalar-valued BSDEs with mean reflection to investigate the super-hedging problem
under running risk management constraint. In this framework, the solution Y is required
to satisfy the following type of mean constraint:

E
[
`(t, Yt)

]
≥ 0, ∀t ∈ [0, T ],

where `(t, ·) is a collection of (possibly random) non-decreasing real-valued map.
Subsequently, Hibon et al. [31] considered quadratic BSDEs with mean reflection

and Hu, Moreau and Wang [32] dealt with generalized mean reflected BSDEs, whose
drivers also depend on the law of the solution Y . With the help of interacting particles
systems, [5, 7, 8] studied the approximation of mean reflected SDEs and BSDEs. We
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Multi-dimensional BSDEs with mean reflection

also refer to Djehiche, Elie and Hamadène [19] which formulated a mean-filed type
of reflected BSDEs motivated by applications in pricing life insurance contracts with
surrender options.

Recently, Briand et al. [4] introduced multi-dimensional mean reflected BSDEs with
normal reflection, in which the marginal probability distribution PYt of the solution Y is
required to stay within a subset of P2(Rm)1, i.e.,

PYt ∈
{
µ ∈ P2

(
Rm
)
, H(µ) ≥ 0

}
, ∀t ∈ [0, T ].

Here the function H : P2(Rm)→ R is concave. Based on this, the authors also studied
the associated propagation of chaos and established a probabilistic interpretation for an
obstacle problem of PDEs stated on the Wasserstein space. Note that the framework
of [4] coincides with the one of [6] when the constraint acts only on the mean of the
solution, i.e.,

`(t, x) = x and H(µ) =

∫
xµ(dx).

We refer to [4, Remark 4] for more details on their connections. Motivated by the
results of [4, 6, 36], we want to investigate the multidimensional BSDE (1.1) with mean
reflection in a possibly non-convex domain D.

In view of the arguments of [36, 40], we assume that the constraint domain D

satisfies uniform exterior sphere and uniform interior cone conditions. Note that the
well-posedness of deterministic multi-dimensional Skorokhod Problem is crucial for our
main result as in [6]. Indeed, when the driver f does not depend on the unknowns y and
z, it follows from (1.1) and the non-randomness of the solution η that

E[Yt] = E

[
ξ +

∫ T

t

fsds

]
+ ηT − ηt, E[Yt] ∈ D, ∀t ∈ [0, T ],

which can be regarded as a deterministic Skorokhod problem. In this case, we can first
define the component η and then solve a standard BSDE to find the components Y and
Z. Based on this observation, we can construct an iteration map for the general case.
The key point is to prove that the map is a contraction.

To this end, we firstly establish a priori estimates for solutions to the mean reflected
BSDE (1.1) through Itô’s formula and the associated Skorokhod condition. Compared
with the one dimensional case, we cannot obtain the explicit form of the component η as
in [6]. Fortunately, the solution η is deterministic and then we adapt the discretization
technique introduced by [40] to obtain

d|η|0s ≤ C(r0, δ, α)E
[
|f(s, Ys, Zs)|

]
ds, ds-a.e.

which gives a priori estimate for the total variation |η|0T .
Note that the uniform estimate for d|ηn|0t is crucial to construct a contraction map in

the case of non-convex reflection domains, see Remark 4.2 for details. Then, we apply
a fixed-point argument to establish the existence result under the following additional
condition on the driver,

E[|f(t, Y nt , Z
n
t )|] is uniformly bounded by some integrable function gt ∈ L1([0, T ]).

Finally, with the help of a priori estimates, we develop an approximation procedure for
the general case through an appropriate truncation argument. Consequently, we are
able to prove the existence and uniqueness of solution to the BSDE (1.1) with mean
reflection in a non-convex domain, which extends the relevant results in [4]. In addition,

1The collection of all probability measures over (Rm,B(Rm)) with finite second moment.

EJP 28 (2023), paper 103.
Page 3/26

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP991
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Multi-dimensional BSDEs with mean reflection

when the constraint domain is convex, we show that the solution can be constructed by
a penalization approach as in [24].

Since the constraint is only on the mean of the solution, the structure of the multi-
dimensional mean reflected BSDE (1.1) is simpler than that of [4]. Therefore, we can
employ the arguments of [36, 40] to tackle the non-convex reflection domains case.
On the other hand, compared with the case of multidimensional reflected BSDEs with
non-convex domains in [15], the non-randomness of the solution η plays an important
role in our arguments, which makes it easier to establish a priori estimates and construct
a contraction map.

The paper is organized as follows. In Section 2, we recall some basic results of deter-
ministic multi-dimensional Skorokhod Problem. In Section 3, we state the main result
involving the existence and uniqueness for solution of the mean reflected BSDE (1.1),
and some a priori estimates. Section 4 is devoted to the proof of the main result.

Let us finish this introduction by giving some notations which will be used frequently
in this paper.

Notation

For each Euclidian space E, we denote by 〈·, ·〉 and | · | its scalar product and the
associated norm, respectively. For each p ≥ 1, consider the following collections:

• Lp(E) is the space of E-valued FT -measurable random vectors ξ satisfying E[|ξ|p] <
∞;

• Hp(E) is the space of E-valued F -progressively measurable processes (zt)0≤t≤T
satisfying

E

[(∫ T

0

|zt|2dt
) p

2
]
<∞;

• H1,p(E) is the space of E-valued F -progressively measurable processes (zt)0≤t≤T
satisfying

E

[(∫ T

0

|zt|dt
)p]

<∞;

• Sp(E) is the space of E-valued F -adapted continuous processes (yt)0≤t≤T satisfying

E
[

sup
0≤t≤T

|yt|p
]
<∞;

• C(E) is the space of E-valued continuous functions on [0, T ];

• V(E) is the space of E-valued continuous functions (ηt)0≤t≤T satisfying η0 = 0 and
|η|0T <∞, where |η|st is the total variation on [s, t] for each 0 ≤ s ≤ t ≤ T .

In what follows, for a given set of parameters α, C(α) will denote a positive constant
only depending on these parameters and may change from line to line.

2 Multi-dimensional Skorokhod problem

In this section, we will review some basic notions and results about multi-dimensional
Skorokhod problem, which will be used in subsequent discussions.
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Let D be a non-empty open connected subset of Rm with the boundary ∂D. Denote
by D the closure of D. For each x ∈ ∂D, we define Kx as the set of all inward normal
unit vectors at x, i.e.,

Kx :=
⋃
r>0

K(x, r) and K(x, r) :=
{
n ∈ Rm : |n| = 1, B(x− rn, r) ∩D = ∅

}
, (2.1)

where B(x, r) := {y ∈ Rm : |y − x| < r}.
Definition 2.1 (Skorokhod Problem). Given a function ψ ∈ C(Rm) satisfying ψT ∈ D.
Then (φ, η) ∈ C(D)× V(Rm) is said to be a solution of Skorokhod problem for (D,ψ) (for
short, SP(D,ψ)) if for each t ∈ [0, T ]

(i) φt = ψt + ηt;

(ii) |η|0t =
∫ t
0
1{φ(s)∈∂D}d|η|0s and ηt =

∫ t
0
γsd|η|0s for some Borel measurable function γ

satisfying γs ∈ Kφs d|η|0s-a.e.

Next, we introduce the following two assumptions on the domain D, which have been
used in Lions and Sznitman [36] and Saisho [40] to guarantee the well-posedness of
SP(D,ψ).

(H1) (uniform exterior sphere condition) There exists a constant r0 > 0 such that

Kx = K(x, r0) 6= ∅ for all x ∈ ∂D.

(H2) There exist two constants δ > 0 and α ∈ (0, 1] satisfying the following property: for
any x ∈ ∂D there exists a unit vector lx such that

〈lx,n〉 ≥ α for any n ∈
⋃

y∈B(x,δ)∩∂D

Ky.

Remark 2.2. (i) It is easy to check that n ∈ K(x, r) if and only if 〈x− y,n〉 ≤ 1
2r |x− y|

2

for all y ∈ D (see Remark 1.2 in [36] or Remark 1.1 in [40]).
(ii) If D is a convex set, it is easy to see that D satisfies (H1) for any r0 > 0.

Remark 2.3. (i) The following uniform interior cone condition is very useful, which is
slightly stronger than (H2):

(H2′) (uniform interior cone condition) There exist two constants δ > 0 and β ∈
(0, 1) satisfying the following property: for any x ∈ ∂D there exists a unit vector lx
such that

C(y, lx, β) ∩B(x, δ) ⊂ D for any y ∈ B(x, δ) ∩ ∂D,

where C(y, lx, β) is the convex cone with vertex y, i.e.,

C(y, lx, β) :=
{
z ∈ Rm : 〈z − y, lx〉 > β|z − y|

}
.

(ii) It was shown in Bramson, Burdzy and Kendall (see [3, Section 2]) that the uniform
interior cone condition is equivalent to the following Lipschitz boundary condition.

Lipschitz domain: A domain D ⊂ Rm is said to be Lipschitz if there exists δ > 0

such that for all x ∈ ∂D, there exists an orthonormal basis e1, e2, . . . , em and a
Lipschitz function f : Rm−1 → R such that

B(x, δ) ∩D =
{
y ∈ B(x, δ) : f(y1, . . . , ym−1) < ym

}
,

where yi := 〈y, ei〉, i = 1, . . . ,m.
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According to Remark 2.3, we give some interesting examples of D which satisfy (H1)
and (H2).

Example 2.4. (1) Any bounded convex domain with piecewise smooth boundary satisfies
(H1) and (H2). Such as balls, polyhedrons and cylinders.

(2) (Unbounded) half planes, polyhedral cones and circular cones satisfy (H1) and
(H2), e.g., see Figure 1 (a).

(3) If the domain D satisfies (H1) and (H2), and {Bi}ni=1 is a family of balls such that
{∂Bi}ni=1, ∂D are non-tangential, then D \ (

⋃n
i=1Bi) satisfies (H1) and (H2), e.g., see

Figure 1 (b).

(a) Cone. (b) Non-convex domain.

Figure 1: Domains satisfying (H1) and (H2)

In this paper, we need to consider the following multi-dimensional Backward Sko-
rokhod Problem.

Definition 2.5 (Backward Skorokhod Problem). Given a function ψ ∈ C(Rm) with ψT ∈ D.
Then (φ, η) ∈ C(D)× V(Rm) is said to be a solution of Backward Skorokhod problem for
(D,ψ) (for short, BSP(D,ψ)) if for each t ∈ [0, T ]

(i) φt = ψt + ηT − ηt;
(ii) |η|0t =

∫ t
0
1{φ(s)∈∂D}d|η|0s and ηt =

∫ t
0
γsd|η|0s for some Borel measurable function γ

satisfying γs ∈ Kφs d|η|0s-a.e.

Remark 2.6. Note that (φ, η) is a solution to BSP(D,ψ) if and only if (φ̃, η̃) is a solution
to SP(D, ψ̃), where (ψ̃t, φ̃t, η̃t) = (ψT−t, φT−t, ηT − ηT−t) for any t ∈ [0, T ].

Theorem 2.7. Suppose that assumptions (H1) and (H2) are satisfied. Then there is a
unique solution to BSP(D,ψ). Moreover, φ(t, ψ) and η(t, ψ) are continuous in (t, ψ).

Proof. The proof is immediate from Saisho [40, Theorem 4.1] and Remark 2.6.

The following lemmas are crucial for our main results.

Lemma 2.8. Assume that assumptions (H1) and (H2) are fulfilled. Suppose that (φn, ηn)

is the unique solution of BSP(D,ψn) for each n ≥ 1 and there exist three functions φ, ψ, η
such that

sup
n≥1
|ηn|0T <∞ and lim

n→∞
sup

0≤t≤T

(
|φnt − φt|+ |ψnt − ψt|+ |ηnt − ηt|

)
= 0.

Then (φ, η) is the unique solution of BSP(D,ψ).
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Proof. The proof is immediate from the proof of [36, Theorem 1.1] or that of [40,
Theorem 4.1].

Lemma 2.9. Let assumptions (H1) and (H2) be satisfied and (φ, η) be the unique
solution of BSP(D,ψ). Assume that ψ has finite total variation. Then, there exists a
constant C(r0, δ, α) such that for any 0 ≤ s ≤ t ≤ T ,

|η|st ≤ C(r0, δ, α)|ψ|st . (2.2)

Proof. According to Theorem 2.7 and Remark 2.6, (φ̃, η̃) solves SP(D, ψ̃) with

φ̃t = φT−t, ψ̃t = ψT−t, η̃t = ηT − ηT−t, t ∈ [0, T ].

Note that |η|st = |η̃|T−tT−s and |ψ|st = |ψ̃|T−tT−s, it suffices to show that (2.2) holds for η̃ and ψ̃.
The proof is from [40, Theorem 4.1] by some appropriate modifications.

For each n ≥ 1, we denote ψn by

ψ̃nt = ψ̃k2−n , k2−n ≤ t < (k + 1)2−n, k ≥ 0.

In view of Remark 1.4 in [40], there exists a unique solution (φ̃n, η̃n) to SP(D, ψ̃n), i.e.,

φ̃nt = ψ̃nt + η̃nt , t ∈ [0, T ].

It follows from the proof of [40, p. 467] that η̃n converges to η̃ uniformly on [0, T ]. Define

Tn,0 = inf
{
t ≥ 0 : ψ̃nt ∈ ∂D

}
∧ T ;

tn,l = inf
{
t > Tn,l−1 : |ψ̃nt − ψ̃nTn,l−1

| ≥ δ/2
}
∧ T ;

Tn,l = inf
{
t ≥ tn,l : ψ̃nt ∈ ∂D

}
∧ T.

Recalling the proof of [40, pp. 465–466] and using the fact that ∆s,t(ψ̃) ≤ ∆0,T ;|t−s|(ψ̃),
we can find an integer n0 ≥ 1 and a constant h > 0 such that for all n ≥ n0,

Tn,l − Tn,l−1 ≥ h, if Tn,l < T, (2.3)

and for each l ≥ 1, we have for all s, t ∈ [Tn,l−1, Tn,l]

|η̃n|st ≤ C(r0, δ, α)
(
1 + exp

{
C(r0, δ, α)

(
1 + ∆0,T ;|t−s|

(
ψ̃n
))})

∆s,t

(
ψ̃n
)
, (2.4)

where for any 0 ≤ s ≤ t ≤ T and θ > 0

∆s,t(ψ̃) := sup{|ψ̃t1 − ψ̃t2 | : s ≤ t1, t2 ≤ t},

∆0,T ;θ(ψ̃) := sup
{
|ψ̃(t1)− ψ̃(t2)| : 0 ≤ t1, t2 ≤ T, |t1 − t2| ≤ θ

}
.

It follows from (2.3) that for any s, t ∈ [0, T ], there exist integers 1 ≤ in ≤ jn such
that s ∈ [Tn,in−1, Tn,in ] and t ∈ [Tn,jn−1, Tn,jn ]. Then for any θ > 0, there is a partition
s = t0 ≤ t1 ≤ · · · ≤ tnθ = t such that

[tk−1, tk] ⊂
[
Tn,l−1, Tn,l

]
for some in ≤ l ≤ jn, and |tk − tk−1| ≤ θ, for all k = 1, 2, . . . , nθ.

Thus applying (2.4) yields that for any θ > 0,

|η̃n|st =

nθ∑
k=1

|η̃n|tk−1

tk

≤ C(r0, δ, α)
(
1 + exp

{
C(r0, δ, α)

(
1 + ∆0,T ;θ

(
ψ̃n
))}) nθ∑

k=1

∆tk−1,tk

(
ψ̃n
)

≤ C(r0, δ, α)
(
1 + exp

{
C(r0, δ, α)

(
1 + ∆0,T ;θ+2−(n−1)(ψ̃)

)})
|ψ̃n|st .

(2.5)
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Sending θ → 0 in (2.5), we have

|η̃n|st ≤ C(r0, δ, α)
(
1 + exp

{
C(r0, δ, α)

(
1 + ∆0,T ;2−(n−1)(ψ̃)

)})
|ψ̃n|st .

Note that η̃n converges to η̃ uniformly on [0, T ] and

lim
n→∞

∆0,T ;2−(n−1)(ψ̃) = 0, |ψ̃n|st ≤ |ψ̃|
(s−2−n)∨0
(t+2−n)∧T .

Consequently, we obtain

|η̃|st ≤ lim inf
n→∞

|η̃n|st ≤ C(r0, δ, α)|ψ̃|st ,

which ends the proof.

3 Mean reflected BSDEs

The main purpose of this section is to study the solvability of the multidimensional
mean reflected BSDE (1.1). In what follows, we make use of the following conditions on
the terminal value ξ and the driver f .

(H3) The terminal condition ξ ∈ L2(Rm) satisfies that E[ξ] ∈ D and the driver f(t, 0, 0)

is in the space of H1,2(Rm).

(H4) There exists a constant λ > 0 such that for any t ∈ [0, T ], y1, y2 ∈ Rm and
z1, z2 ∈ Rm×d

|f(t, y1, z1)− f(t, y2, z2)| ≤ λ(|y1 − y2|+ |z1 − z2|).

Definition 3.1. A triplet (Y,Z, η) ∈ S2(Rm)×H2(Rm×d)×V(Rm) is said to be a solution
to the BSDE (1.1) with mean reflection if it satisfies equation (1.1) and the component
ηt changes only when E[Yt] is on the boundary of D such that

(i) |η|0t =
∫ t
0
1{E[Ys]∈∂D}d|η|0s;

(ii) there exists a measurable function γ : [0, T ]→ Rm such that γs ∈ KE[Ys] d|η|0s-a.e.
and

ηt =

∫ t

0

γsd|η|0s.

Remark 3.2. In [4], Briand et al. introduced the following multi-dimensional mean
reflected BSDEs with normal reflection:{

Yt = ξ +
∫ T
t
f(s, Ys, Zs)ds−

∫ T
t
ZsdBs +

∫ T
t
DµH(PYs)(Ys)dKs, ∀t ∈ [0, T ],

PYt ∈
{
µ ∈ P2

(
Rm
)
, H(µ) ≥ 0

}
, ∀t ∈ [0, T ],

∫ T
0
H(PYt)dKt = 0,

(3.1)

in which DµH denotes the Lions’ derivative (see [11, 35]). When the constraint acts only
on the mean of the solution, i.e., H(µ) =

∫
xµ(dx), (3.1) reduces to{

Yt = ξ +
∫ T
t
f(s, Ys, Zs)ds−

∫ T
t
ZsdBs + (KT −Kt),∀t ∈ [0, T ],

E[Yt] ≥ 0,∀t ∈ [0, T ],
∫ T
0
E[Yt]dKt = 0,

which is the same as the equation (1.1) with the convex domain D = {x ∈ Rm, x > 0}.
We refer to [4, Remark 4] for more details on this topic.

Now we are ready to state the main result of this paper.

Theorem 3.3. Suppose that assumptions (H1)–(H4) hold. Then the BSDE (1.1) with
mean reflection admits a unique square integrable solution (Y, Z, η) ∈ S2(Rm) ×
H2(Rm×d)× V(Rm).
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Multi-dimensional BSDEs with mean reflection

Remark 3.4. In [15], Chassagneux, Nadtochiy and Richou studied the multidimensional
reflected BSDEs with the following possibly non-convex domain D:

D =
{
y ∈ Rm : φ(y) < 0

}
,

where φ ∈ C2(Rm) satisfies compactness, smoothness and a weak star-shape property
(see [15, Assumption 1.1]). It is easy to check that the domain D satisfies conditions (H1)
and (H2). Due to the adaptedness issues, the a priori estimate for the total variation
d|η|0t is much more complicated in this case, which has quadratic terms in z (see [15,
Lemma 2.1]).

In what follows, we are going to prove Theorem 3.3. Firstly, we state some useful
a priori estimates for solutions to the BSDE (1.1) with mean reflection, which is much
more delicate and involved compared with the scalar-valued case.

Lemma 3.5. Assume that assumptions (H1)–(H4) are satisfied. Let (Y, Z, η) be a square
integrable solution to the mean reflected BSDE (1.1). Then

E

[
sup

0≤s≤T
|Ys|2 +

∫ T

0

|Zs|2ds
]

+
(
|η|0T

)2 ≤ C(r0, δ, α, λ, T )E

[
|ξ|2 +

(∫ T

0

|f(s, 0, 0)|ds
)2]

.

(3.2)

Proof. Note that the Lipschitz continuity of f implies

2
〈
y, f(t, y, z)

〉
≤ 2|y||f(t, 0, 0)|+

(
2λ+ 3λ2

)
|y|2 +

1

3
|z|2, ∀(y, z) ∈ Rm ×Rm×d. (3.3)

Setting a = (2λ+ 3λ2) + b for some constant b > 0 which is to be determined later. Using
the inequality (3.3) and applying Itô’s formula to eat|Yt|2 yields that

eat|Yt|2 + b

∫ T

t

eas|Ys|2ds+
2

3

∫ T

t

eas|Zs|2ds

≤ eaT |ξ|2 + 2

∫ T

t

eas|Ys||f(s, 0, 0)|ds+ 2

∫ T

t

eas〈Ys, dηs〉 − 2

∫ T

t

eas〈Ys, ZsdBs〉

≤ eaT |ξ|2 + 2 sup
0≤s≤T

|Ys|
∫ T

t

eas|f(s, 0, 0)|ds+ 2

∫ T

t

eas〈Ys, dηs〉 − 2

∫ T

t

eas〈Ys, ZsdBs〉.

(3.4)

Now set φt = E[Yt] and ψt = E[ξ +
∫ T
t
f(s, Ys, Zs)ds]. It is easy to check that (φ, η) is the

unique solution to BSP(D,ψ). Since ψ has finite total variation and

|ψ|st ≤
∫ t

s

|E
[
f(r, Yr, Zr)

]
|dr for all 0 ≤ s ≤ t ≤ T,

it follows from (2.2) in Lemma 2.9 that

d|η|0t ≤ C(r0, δ, α)|E
[
f(t, Yt, Zt)

]
|dt. (3.5)

Note that ηt =
∫ t
0
γsd|η|0s for some Borel measurable function γ satisfying γs ∈ KE[Ys]

d|η|0s-a.e. Thus, we obtain

2E

[∫ T

t

eas〈Ys, dηs〉
]

≤ 2C(r0, δ, α)

∫ T

t

easE[|Ys|]|E
[
f(s, Ys, Zs)

]
|ds

≤ C(r0, δ, α)
(
2λ+ 3C(r0, δ, α)λ2

) ∫ T

t

easE
[
|Ys|2

]
ds+

1

3

∫ T

t

easE
[
|Zs|2

]
ds

+ 2C(r0, δ, α)E
[

sup
0≤s≤T

|Ys|
] ∫ T

t

easE
[
|f(s, 0, 0)|

]
ds.

(3.6)
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Multi-dimensional BSDEs with mean reflection

Setting b = C(r0, δ, α)(2λ+ 3C(r0, δ, α)λ2) and taking expectations on both sides of (3.4),
we have

sup
0≤s≤T

easE
[
|Ys|2

]
+ E

[∫ T

0

eas|Zs|2ds
]

≤ 3E
[
eaT |ξ|2

]
+ 6E

[
sup

0≤s≤T
|Ys|

∫ T

t

eas|f(s, 0, 0)|ds
]

+ 6C(r0, δ, α)E
[

sup
0≤s≤T

|Ys|
]
E

[∫ T

0

eas|f(s, 0, 0)|ds
]
.

Then we deduce that for any ε ∈ (0, 1)

sup
0≤s≤T

E
[
|Ys|2

]
+ E

[∫ T

0

|Zs|2ds
]

≤ 1

ε
C(r0, δ, α, λ, T )E

[
|ξ|2 +

(∫ T

0

|f(s, 0, 0)|ds
)2]

+ εE
[

sup
0≤s≤T

|Ys|2
]
.

(3.7)

According to (3.5) and (3.7), we derive that

|η|0T ≤ C(r0, δ, α, λ, T )

{
1√
ε

(
E

[
|ξ|2 +

(∫ T

0

|f(s, 0, 0)|ds
)2]) 1

2

+
√
ε
(
E
[

sup
0≤s≤T

|Ys|2
]) 1

2

}
.

(3.8)

On the other hand, it follows from the definition of (1.1) that for any s ∈ [0, T ],

|Ys| ≤ |ξ|+ |η|0T +

∫ T

0

|f(r, 0, 0)|dr + λ

∫ T

0

|Zr|dr + sup
0≤r≤T

∣∣∣∣∫ T

r

ZudBu

∣∣∣∣+ λ

∫ T

s

|Yr|dr.

Applying Gronwall’s inequality, we have

|Ys| ≤ eλ(T−s)
(
|ξ|+ |η|0T +

∫ T

0

|f(r, 0, 0)|dr + λ

∫ T

0

|Zr|dr + sup
0≤r≤T

∣∣∣∣∫ T

r

ZudBu

∣∣∣∣),
which together with Burkholder-Davis-Gundy’s (BDG’s) inequality implies

E
[

sup
0≤s≤T

|Ys|2
]
≤ C(λ, T )E

[
|ξ|2 +

(
|η|0T

)2
+

(∫ T

0

|f(s, 0, 0)|ds
)2

+

∫ T

0

|Zs|2ds
]
. (3.9)

Putting (3.7), (3.8) and (3.9) together, we conclude that

E
[

sup
0≤s≤T

|Ys|2
]
≤ C(r0, δ, α, λ, T )

(
1

ε
E

[
|ξ|2 +

(∫ T

0

|f(s, 0, 0)|ds
)2]

+ εE
[

sup
0≤s≤T

|Ys|2
])
.

Taking ε small enough so that C(r0, δ, α, λ, T )ε = 1
2 , we can get the desired result, which

completes the proof.

Corollary 3.6. Assume that the same conditions hold as in Lemma 3.5. Then for any
p ≥ 2,

E

[
sup

0≤s≤T
|Ys|p +

(∫ T

0

|Zs|2ds
) p

2
]

+
(
|η|0T

)p
≤ C(p, r0, δ, α, λ, T )E

[
|ξ|p +

(∫ T

0

|f(s, 0, 0)|ds
)p]

.
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Multi-dimensional BSDEs with mean reflection

Proof. Without loss of generality, assume that the right-side hand of the above inequality
is finite. Since η is a deterministic function, it follows from Lemma 3.5 that

(
|η|0T

)p ≤ C(p, r0, δ, α, λ, T )E

[
|ξ|p +

(∫ T

0

|f(s, 0, 0)|ds
)p]

. (3.10)

Note that (Yt + ηt − ηT , Zt)0≤t≤T solves the following standard BSDE:

Ỹt = ξ +

∫ T

t

f̃(s, Ỹs, Z̃s)ds−
∫ T

t

Z̃sdBs, ∀t ∈ [0, T ],

whose generator is given by f̃(s, y, z) = f(s, y + ηT − ηs, z). In view of [41, Theorem
4.4.4], we deduce that

E

[
sup

0≤s≤T
|Ys|p +

(∫ T

0

|Zs|2ds
) p

2
]

≤ 2p−1E

[
sup

0≤s≤T
|Ỹs|p +

(
|η|0T

)p
+

(∫ T

0

|Z̃s|2ds
) p

2
]

≤ C(p, λ, T )E

[
|ξ|p +

(∫ T

0

|f(s, ηT − ηs, 0)|ds
)p

+
(
|η|0T

)p]
≤ C(p, λ, T )E

[
|ξ|p +

(∫ T

0

|f(s, 0, 0)|ds
)p

+
(
|η|0T

)p]
,

which together with (3.10) indicates the desired result. The proof is complete.

Lemma 3.7. Assume that assumptions (H1), (H3) and (H4) hold. Let (Y i, Zi, ηi) be
a square integrable solution to (1.1) corresponding to the data (ξi, f i), i = 1, 2. Then,
there exists a constant C(λ, T ) such that

E

[
sup
t∈[0,T ]

|Ŷt|2 +

∫ T

0

|Ẑs|2ds
]

≤ C(λ, T )e
2
r0

(|η1|0T+|η
2|0T )E

[(
|ξ1 − ξ2|+

∫ T

0

|f1
(
s, Y 2

s , Z
2
s

)
− f2

(
s, Y 2

s , Z
2
s

)
|ds
)2]

,

where ̂̀t = `1t − `2t for `t = Yt, Zt, ηt.

Proof. Denote by

I = E

[(
|ξ1 − ξ2|+

∫ T

0

|f1
(
s, Y 2

s , Z
2
s

)
− f2

(
s, Y 2

s , Z
2
s

)
|ds
)2]

,

and
at =

(
2λ+ 2λ2

)
t+ r−10

(
|η1|0t + |η2|0t

)
.

Applying Itô’s formula to eat |Ŷt|2 on [t, T ], we have

eaT |ŶT |2 − eat |Ŷt|2 =

∫ T

t

eas |Ŷs|2das − 2

∫ T

t

eas
〈
Ŷs, f

1
(
s, Y 1

s , Z
1
s

)
− f1

(
s, Y 2

s , Z
2
s

)〉
ds

+

∫ T

t

eas |Ẑs|2ds− 2

∫ T

t

eas
〈
Ŷs, f

1
(
s, Y 2

s , Z
2
s

)
− f2

(
s, Y 2

s , Z
2
s

)〉
ds

− 2

∫ T

t

eas〈Ŷs, dη̂s〉+ 2

∫ T

t

eas〈Ŷs, ẐsdBs〉,
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Multi-dimensional BSDEs with mean reflection

which together with

2
〈
Y 1
s − Y 2

s , f
1
(
s, Y 1

s , Z
1
s

)
− f1

(
s, Y 2

s , Z
2
s

)〉
≤
(
2λ+ 2λ2

)
|Y 1
s − Y 2

s |2 +
1

2
|Z1
s − Z2

s |2

indicates

eat |Ŷt|2 +
1

2

∫ T

t

eas |Ẑs|2ds

≤ eaT |ξ1 − ξ2|2 + 2

∫ T

t

eas |Ŷs||f1
(
s, Y 2

s , Z
2
s

)
− f2

(
s, Y 2

s , Z
2
s

)
|ds

− 1

r0

∫ T

t

eas |Ŷs|2d
(
|η1|0s + |η2|0s

)
+ 2

∫ T

t

eas〈Ŷs, dη̂s〉 − 2

∫ T

t

eas〈Ŷs, ẐsdBs〉.

(3.11)

Note that |ηi|0t =
∫ t
0
1{E[Y is ]∈∂D}d|η|

0
s and ηit =

∫ t
0
γisd|ηi|0s for some Borel measurable

function γi satisfying γis ∈ KE[Y is ]
d|ηi|0s-a.e. Then recalling assumption (H1) and assertion

(i) of Remark 2.2, we obtain

E

[∫ T

t

eas〈Ŷs, dη̂s〉
]

=

∫ T

t

eas
〈
E
[
Y 1
s

]
−E

[
Y 2
s

]
, γ1s
〉
d|η1|0s

+

∫ T

t

eas
〈
E
[
Y 2
s

]
−E

[
Y 1
s

]
, γ2s
〉
d|η2|0s

=

∫ T

t

eas
〈
E
[
Y 1
s

]
−E

[
Y 2
s

]
, γ1s
〉
1{E[Y 1

s ]∈∂D}d|η1|0s

+

∫ T

t

eas
〈
E
[
Y 2
s

]
−E

[
Y 1
s

]
, γ2s
〉
1{E[Y 2

s ]∈∂D}d|η2|0s

≤ 1

2r0

∫ T

t

easE
[
|Ŷs|2

]
d
(
|η1|0s + |η2|0s

)
.

(3.12)

In view of (3.11), we derive that for any t ∈ [0, T ]

E

[
eat |Ŷt|2 +

∫ T

t

eas |Ẑs|2ds
]

≤ 4eaTE

[
|ξ1 − ξ2|2 +

∫ T

t

|Ŷs||f1
(
s, Y 2

s , Z
2
s

)
− f2

(
s, Y 2

s , Z
2
s

)
|ds
]
.

(3.13)

On the other hand, it follows from

η̂t = Ŷ0 −E[Ŷt]−E

[∫ t

0

(
f1
(
s, Y 1

s , Z
1
s

)
− f2

(
s, Y 2

s , Z
2
s

))
ds

]
and (3.13) that

sup
t∈[0,T ]

|η̂t|2

≤ C(λ, T )

(
sup
t∈[0,T ]

E

[
|Ŷt|2 +

∫ T

0

|Ẑs|2ds+

(∫ T

0

|f1
(
s, Y 2

s , Z
2
s

)
− f2

(
s, Y 2

s , Z
2
s

)
|ds
)2])

≤ C(λ, T )eaT
(
I + E

[∫ T

0

|Ŷs||f1
(
s, Y 2

s , Z
2
s

)
− f2

(
s, Y 2

s , Z
2
s

)
|ds
])
.
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Recalling the definition of (1.1) and using BDG’s inequality and (3.13), we have

E
[

sup
0≤s≤T

|Ŷs|2
]

≤ C(λ, T )eaT
(
I + E

[∫ T

0

|Ŷs||f1
(
s, Y 2

s , Z
2
s

)
− f2

(
s, Y 2

s , Z
2
s

)
|ds
])

≤ C(λ, T )eaT
(
I +

1

2
C(λ, T )eaTE

[(∫ T

0

|f1
(
s, Y 2

s , Z
2
s

)
− f2

(
s, Y 2

s , Z
2
s

)
|ds
)2])

+
1

2
E
[

sup
0≤s≤T

|Ŷs|2
]
.

It follows that

E
[

sup
0≤s≤T

|Ŷs|2
]
≤ C(λ, T )e2aT I,

which is the desired result.

The following lemma is a direct consequence of Lemma 3.7.

Lemma 3.8. Suppose assumptions (H1), (H3) and (H4) hold. Then the BSDE (1.1)
with mean reflection has at most one square integrable solution.

Proof. The proof is immediate from Lemma 3.7 by taking (ξi, f i) = (ξ, f), i = 1, 2.

Compared with the uniqueness, the existence of solution to the mean reflected
BSDE (1.1) is much more complicated, which will be stated in the next section. In what
follows, we deal with the case of convex reflection domains to illustrate our main idea.

Lemma 3.9. Suppose that assumptions (H1)–(H4) are fulfilled. Assume also that the
generator f is independent of the first unknown y. Then the BSDE (1.1) with mean
reflection admits a unique square integrable solution.

Proof. Let (Ỹ , Z̃) be the S2(Rm)×H2(Rm×d)-solution to the following standard BSDE:

Ỹt = ξ +

∫ T

t

f(s, Z̃s)ds−
∫ T

t

Z̃sdBs, ∀t ∈ [0, T ]. (3.14)

Set ψt = E[ξ +
∫ T
t
f(s, Z̃s)ds]. It is easy to check that ψ ∈ C(Rm) with ψT = E[ξ] ∈ D. By

Theorem 2.7, there exists a unique solution (φ, η) to BSP(D,ψ). Set Yt = Ỹt− ηt + ηT and
Zt = Z̃t. It follows that (Y,Z) ∈ S2(Rm)×H2(Rm×d) solves the following BSDE

Yt = ξ +

∫ T

t

f(s, Zs)ds−
∫ T

t

ZsdBs + ηT − ηt, t ∈ [0, T ].

Note also that

E[Yt] = E

[
ξ +

∫ T

t

f(s, Zs)ds

]
+ ηT − ηt = ψt + ηT − ηt = φt ∈ D.

Therefore, (Y, Z, η) is a square integrable solution of the BSDE (1.1). The uniqueness
follows from Lemma 3.8 and the proof is complete.

Note that a non-empty convex set satisfies assumption (H1) with any r0 > 0. Then it
follows from assertion (i) of Remark 2.2 that for any x ∈ ∂D and n ∈ Kx

〈x− y,n〉 ≤ 0, ∀y ∈ D. (3.15)
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Theorem 3.10. Suppose that assumptions (H2)–(H4) are satisfied. If the domain D is
convex, then the mean reflected BSDE (1.1) has a unique square integrable solution.

Proof. For any given (U, V ) ∈ H2(Rm)×H2(Rm×d), it follows from Lemma 3.9 that the
following BSDE with mean reflection{

Yt = ξ +
∫ T
t
f(s, Us, Vs)ds−

∫ T
t
ZsdBs + ηT − ηt, ∀t ∈ [0, T ],

E[Yt] ∈ D, ∀t ∈ [0, T ]
(3.16)

has a unique solution (Y,Z, η) ∈ S2(Rm)×H2(Rm×d)× V(Rm). Now we define a map

Φ: H2
(
Rm
)
×H2

(
Rm×d

)
→ H2

(
Rm
)
×H2

(
Rm×d

)
,

(U, V ) 7→ (Y,Z).
(3.17)

Then it suffices to show that the map Φ is a contraction.
For each i ∈ {1, 2}, denote by (Y i, Zi, ηi) the solution to (3.16) corresponding to the

data (U i, V i) ∈ H2(Rm) × H2(Rm×d). Denote by ̂̀ = `1 − `2 for ` = Y,Z, η, U, V and
a = 4λ2 + 1. Then applying Itô’s formula to eat |Ŷt|2 and using a similar analysis as in
Lemma 3.7, we obtain

−|Ŷ0|2 = a

∫ T

0

eas|Ŷs|2ds− 2

∫ T

0

eas
〈
Ŷs, f

(
s, U1

s , V
1
s

)
− f

(
s, U2

s , V
2
s

)〉
ds

+

∫ T

0

eas|Ẑs|2ds− 2

∫ T

0

eas〈Ŷs, dη̂s〉+ 2

∫ T

0

easŶsẐsdBs

≥
∫ T

0

eas
(
|Ŷs|2 + |Ẑs|2

)
ds− 1

2

∫ T

0

eas
(
|Ûs|2 + |V̂s|2

)
ds

− 2

∫ T

0

eas〈Ŷs, dη̂s〉+ 2

∫ T

0

easŶsẐsdBs,

(3.18)

where we have used the fact that

2
〈
Ŷs, f

(
s, U1

s , V
1
s

)
− f

(
s, U2

s , V
2
s

)〉
≤ 4λ2|Ŷs|2 +

1

2

(
|Ûs|2 + |V̂s|2

)
in the last inequality. In view of (3.15), we get

E

[∫ T

0

eas〈Ŷs, dη̂s〉
]

=

∫ T

0

eas
〈
E
[
Y 1
s

]
−E

[
Y 2
s

]
, γ1s
〉
1{E[Y 1

s ]∈∂D}d|η1|0s

+

∫ T

0

eas
〈
E
[
Y 2
s

]
−E

[
Y 1
s

]
, γ2s
〉
1{E[Y 2

s ]∈∂D}d|η2|0s

≤ 0.

(3.19)

Putting (3.18) and (3.19) together yields that

E

[∫ T

0

eas
(
|Ŷs|2 + |Ẑs|2

)
ds

]
≤ 1

2
E

[∫ T

0

eas
(
|Ûs|2 + |V̂s|2

)
ds

]
.

Therefore, the map Φ has a unique fixed point (Y,Z) ∈ H2(Rm)×H2(Rm×d). We denote
η by

ηt = Y0 − Yt −
∫ t

0

f(s, Ys, Zs)ds+

∫ t

0

ZsdBs, t ∈ [0, T ].

It follows from the definition of the map Φ that η ∈ V(Rm) satisfies (i) and (ii) in
Definition 3.1. Finally, with the help of BDG’s inequality, we have Y ∈ S2(Rm), which
ends the proof.
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Remark 3.11. Note that (3.15) is crucial to construct a contraction map in the proof
of Theorem 3.10. In the non-convex reflection domains case, (3.19) should be replaced
by (3.12), and then we need to estimate d|η|0s, which results in the main difficulty.

Remark 3.12. In the case of convex reflection domains, the solution to the mean
reflected BSDE (1.1) can be also constructed through a penalization approach as in [24],
see Theorem A.5 in the appendix.

4 The existence

This section is devoted to the study of the existence results of multi-dimensional
mean reflected BSDEs with non-convex reflection domains. In what follows, we shall
combine a fixed-point argument and a truncation technique to deal with it through a
priori estimates established in Section 3.

Firstly, we employ a fixed-point argument to show the existence of solutions under an
additional condition on the generator.

Lemma 4.1. Suppose that assumptions (H1)–(H4) are satisfied. Assume in addition
that there exists a nonnegative process g ∈ H1,1(R) such that

|f(t, y, z)| ≤ gt, ∀(t, y, z) ∈ [0, T ]×Rm ×Rm×d.

Then the BSDE (1.1) with mean reflection admits a unique square integrable solution.

Proof. Using the same notations as in the proof of Theorem 3.10. In particular, we can
also define the map Φ as in (3.17). Setting

at =
(
4λ2 + 1

)
t+ b

∫ t

0

E[gs]ds

for some constant b > 0 which is to be determined later. According to the derivation
of (3.18), we have

−|Ŷ0|2 =

∫ T

0

eas |Ŷs|2das − 2

∫ T

0

eas
〈
Ŷs, f

(
s, U1

s , V
1
s

)
− f

(
s, U2

s , V
2
s

)〉
ds

+

∫ T

0

eas |Ẑs|2ds− 2

∫ T

0

eas〈Ŷs, dη̂s〉+ 2

∫ T

0

eas ŶsẐsdBs

≥
∫ T

0

eas
(
|Ŷs|2 + |Ẑs|2

)
ds− 1

2

∫ T

0

eas
(
|Ûs|2 + |V̂s|2

)
ds

+ b

∫ T

0

eas |Ŷs|2E[gs]ds− 2

∫ T

0

eas〈Ŷs, dη̂s〉+ 2

∫ T

0

eas ŶsẐsdBs.

(4.1)

Taking expectations on both sides of (4.1) yields that

E

[∫ T

0

eas
(
|Ŷs|2 + |Ẑs|2

)
ds

]
≤ 1

2
E

[∫ T

0

eas
(
|Ûs|2 + |V̂s|2

)
ds

]
+ 2E

[∫ T

0

eas
〈
Ŷs, dη̂(s)

〉]
− b

∫ T

0

easE
[
|Ŷs|2

]
E[gs]ds.

(4.2)

In view of (3.12), we derive

E

[∫ T

0

eas
〈
Ŷs, dη̂(s)

〉]
≤ 1

2r0

∫ T

0

easE
[
|Ŷs|2

]
d
(
|η1|0s + |η2|0s

)
. (4.3)
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Next we need to estimate the right-hand side of (4.3), where Lemma 2.9 plays an
important role. Indeed, denote by φit = E[Y it ] and ψit = E[ξ +

∫ T
t
f(s, U is, V

i
s )ds] for each

t ∈ [0, T ], i = 1, 2. Then we see that (φi, ηi) is the unique solution of BSP(D,ψi). It is easy
to check that ψi has finite total variation with

|ψi|st ≤ E

[∫ t

s

|f
(
r, U ir, V

i
r

)
|ds
]
≤
∫ t

s

E[gr]dr, 0 ≤ s ≤ t ≤ T, i = 1, 2. (4.4)

Thus it follows from (4.4) and Lemma 2.9 that there exists a constant C(r0, δ, α) such
that

d|ηi|0s ≤ C(r0, δ, α)E[gs]ds, ds-a.e., i = 1, 2.

Consequently, setting b = 2C(r0,δ,α)
r0

and recalling (4.2), (4.3), we deduce that

E

[∫ T

0

eas
(
|Ŷs|2 + |Ẑs|2

)
ds

]
≤ 1

2
E

[∫ T

0

eas
(
|Ûs|2 + |V̂s|2

)
ds

]
,

which implies that the map Φ defined in (3.17) has a unique fixed point (Y,Z). Finally,
by a similar analysis as in the proof of Theorem 3.10, we can get the desired result.

Remark 4.2. In Lemma 4.1, we assume an additional bounded condition on the driver,
which implies that

d|ηn|0s ≤ C(r0, δ, α)E
[
|f
(
s, Y ns , Z

n
s

)
|
]
ds ≤ C(r0, δ, α)E[gs]ds, ds-a.e. (4.5)

Here, (Y n, Zn, ηn) is Picard iteration sequence with respect to the mean reflected
BSDE (1.1). Then, we are able to prove the convergence of (Y n, Zn) under the following
norm:

E

[∫ T

0

exp

((
4λ2 + 1

)
t+

2C(r0, δ, α)

r0

∫ t

0

E[gs]ds

)(
|Y nt |2 + |Znt |2

)
dt

] 1
2

.

In general, it is difficult to establish a priori estimate: E[|f(s, Y ns , Z
n
s )|] ≤ E[gs] for some

process g ∈ H1,1(R).

Next, we utilize an approximation approach to remove the above additional condition
when the terminal value has a finite moment of order p > 2. For this purpose, we
introduce the following approximating sequence (fn)n≥1:

fn(t, y, z) = f
(
t,ΠBn(y),ΠBn(z)

)
, ∀(t, y, z) ∈ [0, T ]×Rm ×Rm×d, (4.6)

where ΠBn is the projection on Bn := {x ∈ E : |x| ≤ n} for each Euclidian space E.

Remark 4.3. Note that |ΠBn(x) − ΠBn(y)| ≤ |x − y| for any x, y ∈ E. Hence under
assumption (H4), fn also satisfies (H4) with the same Lipschitz constant λ.

Lemma 4.4. Suppose that assumptions (H1), (H2) and (H4) are satisfied. Assume
in addition that ξ ∈ Lp(Rm) and f(·, 0, 0) ∈ H1,p(Rm) for some p > 2. Then the mean
reflected BSDE (1.1) has a unique square integrable solution.

Proof. Without loss of generality, assume that p < 4. It is easy to check that for any
(t, y, z) ∈ [0, T ]×Rm ×Rm×d,

|fn(t, y, z)| ≤ |f(t, 0, 0)|+ 2λn ∈ H1,p
(
Rm
)
⊂ H1,1

(
Rm
)
,

where fn is given by (4.6). Thus, it follows from Lemma 4.1 that the following BSDE
with mean reflection{

Y nt = ξ +
∫ T
t
fn
(
s, Y ns , Z

n
s

)
ds−

∫ T
t
Zns dBs + ηnT − ηnt , ∀t ∈ [0, T ],

E
[
Y nt
]
∈ D, ∀t ∈ [0, T ]

(4.7)
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admits a unique square integrable solution (Y n, Zn, ηn) for each n ≥ 1. In view of
Corollary 3.6 and noting that fn(t, 0, 0) = f(t, 0, 0), we have

sup
n≥1

E

[
sup

0≤t≤T
|Y nt |p +

(∫ T

0

|Zns |2ds
) p

2
]

+ sup
n≥1

(
|ηn|0T

)p ≤M (4.8)

with

M := C(p, r0, δ, α, λ, T )E

[
|ξ|p +

(∫ T

0

|f(s, 0, 0)|ds
)p]

.

In the rest of the proof, we will prove that the limit of (Y n, Zn, ηn) is the desired solution,
which will be divided into two steps.

Step 1. The convergence. For any fixed k ≥ n, set ̂̀k,nt = `kt − `nt for `t = Yt, Zt, ηt.
Note that

|fk
(
t, Y nt , Z

n
t

)
− fn

(
t, Y nt , Z

n
t

)
| ≤ λ

(
|Y nt |1{|Y nt |>n} + |Znt |1{|Znt |>n}

)
.

Then with the help of Lemma 3.7, we derive that

E

[
sup

s∈[0,T ]

|Ŷ k,ns |2 +

∫ T

0

|Ẑk,ns |2ds
]

≤ C(λ, T )e
2
r0

(|ηk|0T+|η
n|0T )E

[(∫ T

0

(
|Y ns |1{|Y ns |>n} + |Zns |1{|Zns |>n}

)
ds

)2]
.

(4.9)

Applying Hölder’s inequality yields that

E

[(∫ T

0

(
|Y ns |1{|Y ns |>n} + |Zns |1{|Zns |>n}

)
ds

)2]
≤ C(p, T )E

[(∫ T

0

(
|Y ns |

4
p1{|Y ns |>n} + |Zns |

4
p1{|Zns |>n}

)
ds

) p
2
]

≤ C(p, T )

np−2
E

[
sup

0≤t≤T
|Y nt |p +

(∫ T

0

|Zns |2ds
) p

2
]

≤ C(p, T )M

np−2
,

(4.10)

where we have used (4.8) in the last inequality. Since |ηn|0T is uniformly bounded, it
follows from (4.9) that

lim
k,n→∞

E

[
sup

0≤s≤T
|Y ns − Y ks |2 +

∫ T

0

|Zns − Zks |2ds
]

= 0. (4.11)

Note that

η̂k,nt = Ŷ k,n0 −E
[
Ŷ k,nt

]
−E

[∫ t

0

(
fk
(
s, Y ks , Z

k
s

)
− fn

(
s, Y ns , Z

n
s

))
ds

]
.

Recalling (4.10) and (4.11), we obtain

lim
k,n→∞

sup
0≤t≤T

|η̂k,nt |2

≤ C(λ, T ) lim
k,n→∞

E

[
sup

0≤s≤T
|Ŷ k,ns |2 +

∫ T

0

|Ẑk,ns |2ds+
C(p, T )M

np−2

]
= 0.

(4.12)
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Consequently, putting (4.11) and (4.12) together, we can find a triple of processes
(Y,Z, η) ∈ S2(Rm)×H2(Rm×d)× V(Rm) so that

lim
n→∞

(
E

[
sup

0≤s≤T
|Y ns − Ys|2 +

∫ T

0

|Zns − Zs|2ds
]

+ sup
0≤t≤T

|ηnt − ηt|
)

= 0. (4.13)

Step 2. The solution. Recalling the definition of fn, we have

|fn
(
t, Y nt , Z

n
t

)
− f(t, Yt, Zt)| ≤ λ

(
|Y nt − Yt|+ |Znt − Zt|

)
+ λ(|Yt|1{|Yt|>n} + |Zt|1{|Zt|>n}),

which together with (4.13) indicates that

lim
n→∞

E

[∫ T

0

|fn
(
s, Y ns , Z

n
s

)
− f(s, Ys, Zs)|ds

]
≤ lim
n→∞

{
C(λ, T )E

[
sup

0≤s≤T
|Y ns − Ys|2 +

∫ T

0

|Zns − Zs|2ds
] 1

2

+
C(λ, T )

n
E

[
sup

0≤s≤T
|Ys|2 +

∫ T

0

|Zs|2ds
]}

= 0.

(4.14)

Thus, letting n → ∞ in (4.7), we conclude that (Y, Z, η) satisfies equation (1.1). It
remains to show that the component η satisfies (i) and (ii) in Definition 3.1, which
is equivalent to prove that (φ, η) is the solution of BSP(D,ψ) with φt := E[Yt] and

ψt := E[ξ +
∫ T
t
f(s, Ys, Zs)ds].

Set

φnt := E
[
Y nt
]

and ψnt := E

[
ξ +

∫ T

t

fn
(
s, Y ns , Z

n
s

)
ds

]
for all n ≥ 1.

It is clear that (φn, ηn) is the solution of BSP(D,ψn) for each n ≥ 1. Recalling (4.8), (4.13)
and (4.14), we have

sup
n≥1
|ηn|0T <∞ and lim

n→∞
sup

0≤t≤T

(
|φnt − φt|+ |ψnt − ψt|+ |ηnt − ηt|

)
= 0,

which together with Lemma 2.8 indicates the desired result. The proof is complete.

Finally, we are ready to complete the proof of Theorem 3.3.

The proof of Theorem 3.3. It suffices to prove the existence. Set

ξ(n) := ξ1{|ξ|≤n} + E[ξ1{|ξ|>n}], f
(n)(t, y, z) := f(t, y, z)− f(t, 0, 0)1{|f(t,0,0)|>n}, ∀n ≥ 1.

(4.15)
It is easy to check that the data (ξ(n), f (n)) satisfies the following condition:

• ξ(n) is bounded and E[ξ(n)] = E[ξ] ∈ D.

• f (n)(t, 0, 0) is bounded and fn satisfies (H4).

By Lemma 4.4, there exists a unique square integrable solution (Y (n), Z(n), η(n)) to the
following BSDE with mean reflection:{

Y
(n)
t = ξ(n) +

∫ T
t
f (n)

(
s, Y

(n)
s , Z

(n)
s

)
ds−

∫ T
t
Z

(n)
s dBs + η

(n)
T − η(n)t , ∀t ∈ [0, T ],

E
[
Y

(n)
t

]
∈ D, ∀t ∈ [0, T ].

(4.16)

It is obvious that

|f (n)(t, 0, 0)| ≤ |f(t, 0, 0)|, E
[
|ξ(n)|2

]
≤ 4E

[
|ξ|2
]
, n ≥ 1,
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which together with Lemma 3.5 implies

sup
n≥1

E

[
sup

0≤t≤T
|Y (n)
t |2 +

∫ T

0

|Z(n)
s |2ds

]
+ sup
n≥1

(
|η(n)|0T

)2
≤ C(r0, δ, α, λ, T )E

[
|ξ|2 +

(∫ T

0

|f(s, 0, 0)|ds
)2]

.

(4.17)

The rest of the proof is similar to that of Lemma 4.4. For readers’ convenience, we give
the sketch of the proof.

Step 1. The convergence. For any fixed k ≥ n, set ̂̀(k,n)t = `
(k)
t − `(n)t for `t =

Yt, Zt, ηt. Note that

|f (k)
(
t, Y

(n)
t , Z

(n)
t

)
− f (n)

(
t, Y

(n)
t , Z

(n)
t

)
| ≤ |f(t, 0, 0)|1{|f(t,0,0)|>n}.

Applying Lemma 3.7 yields that

E

[
sup

0≤s≤T
|Ŷ (k,n)
s |2 +

∫ T

0

|Ẑ(k,n)
s |2ds

]
≤ C(λ, T )e

2
r0

(|η(k)|0T+|η
(n)|0T )E

[
|ξ(k) − ξ(n)|2 +

(∫ T

0

|f(s, 0, 0)|1{|f(s,0,0)|>n}ds
)2]

.

(4.18)

Since |ξ(n)| ≤ |ξ|+ E[|ξ|], we can use dominated convergence theorem to obtain

lim
n→∞

E

[
|ξ(n) − ξ|2 +

(∫ T

0

|f(s, 0, 0)|1{|f(s,0,0)|>n}ds
)2]

= 0. (4.19)

Then it follows from (4.17)–(4.19) that

lim
k,n→∞

(
E
[

sup
0≤s≤T

|Ŷ (k,n)
s |2

]
+ E

[∫ T

0

|Ẑ(k,n)
s |2ds

])
= 0.

Consequently, in view of the derivation of (4.12), we also have

lim
k,n→∞

sup
0≤t≤T

|η̂(k,n)t | = 0.

Step 2. The solution. It is clear that there exists a triple of processes (Y, Z, η) ∈
S2(Rm)×H2(Rm×d)× V(Rm) such that

lim
n→∞

(
E
[

sup
0≤s≤T

|Y ns − Ys|2
]

+ E

[∫ T

0

|Zns − Zs|2ds
]

+ sup
0≤t≤T

|ηnt − ηt|
)

= 0. (4.20)

By a similar analysis as in the proof of Lemma 4.4 (Step 2), we obtain

lim
n→∞

E

[∣∣∣∣∫ T

0

|f (n)
(
s, Y (n)

s , Z(n)
s

)
− f(s, Ys, Zs)|ds

∣∣∣∣] = 0, (4.21)

which indicates that that (Y, Z, η) satisfies (1.1) by letting n→∞ in (4.16). Moreover, η
satisfies (i) and (ii) in Definition 3.1. The proof is complete.

A Approximation by penalization method

In this appendix, we shall use a penalization method to construct the unique solution
to the mean reflected BSDE (1.1) when the reflection domain is convex inspired by the
results of [24]. Indeed, the unique solution can be represented as the limit of a sequence
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of penalized mean-filed BSDEs. Moreover, we can remove assumption (H2) in the convex
case.

Assume that the domain D is convex. Then, for any x ∈ Rm, there exists a unique
point Π(x) ∈ D such that

|x−Π(x)| = d(x,D) := inf{|x− y| : y ∈ D}.

The following properties of the inward normal reflection is important for our subsequent
discussions.

Lemma A.1 ([24, 38]). (i) For any x ∈ Rm, x′ ∈ D,〈
x′ − x, x−Π(x)

〉
≤ 0. (A.1)

(ii) For any x, x′ ∈ Rm, 〈
x′ − x, x−Π(x)

〉
≤
〈
x′ −Π

(
x′
)
, x−Π(x)

〉
. (A.2)

(iii) There exist a point x0 ∈ D and a constant κ > 0 such that for any x ∈ Rm,〈
x− x0, x−Π(x)

〉
≥ κ|x−Π(x)|. (A.3)

Since ∂D is not regular, let us recall the approximation of D in [24]: For any ε > 0,
there exists a convex regular domain Dε (with smooth boundary) such that

sup
x∈D

d(x,Dε) < ε and sup
x∈Dε

d(x,D) < ε.

It is easy to check that |d(x,D) − d(x,Dε)| ≤ ε. Denote by Πε the projection from Rm

to Dε.

Lemma A.2 (Lemma 2.2 and Corollary 2.3 in [24]). There exists a constant γ > 0 such
that for any ε < 1 and x ∈ Rm,

|Π(x)−Πε(x)| ≤ γ
√
ε2 + εd(x,Dε),

and
|Π(x)−Πε(x)|1{d(x,Dε)>ε} ≤ γ

√
ε
√
d(x,Dε)1{d(x,Dε)>ε}.

Now, we introduce the following penalized mean-filed BSDEs:

Y nt = ξ+

∫ T

t

f
(
s, Y ns , Z

n
s

)
ds−n

∫ T

t

(
E
[
Y ns
]
−Π
(
E
[
Y ns
]))

ds−
∫ T

t

Zns dBs, 0 ≤ t ≤ T. (A.4)

According to the results of [10] up to a slight modification, the BSDE (A.4) has a unique
solution (Y n, Zn) ∈ S2(Rm)×H2(Rm×d) under assumptions (H3) and (H4). Then, we
define

ηnt = −n
∫ t

0

(
E
[
Y ns
]
−Π

(
E
[
Y ns
]))

ds, ∀t ∈ [0, T ]. (A.5)

The penalized term ηn forces the mean of the solution Y n to stay within the domain D.
We will show that (Y n, Zn, ηn) converges as n→∞ and the limit is the unique solution
to the BSDE (1.1) with mean reflection.

Lemma A.3. Suppose that assumptions (H3) and (H4) hold. Then,

E

[
sup

0≤s≤T
|Y ns |2 +

∫ T

0

|Zns |2ds
]
≤ C(λ, T )E

[
|x0|2 + |ξ|2 +

(∫ T

0

|f(s, 0, 0)|ds
)2]

,

|ηn|0T ≤ C(λ, T, κ)E

[
|x0|2 + |ξ|2 +

(∫ T

0

|f(s, 0, 0)|ds
)2]

.
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Proof. The main idea is from [24]. For reader’s convenience, we give the sketch of the
proof. By a standard calculus, applying Itô’s formula to |Y nt − x0|2 yields that for any
t ∈ [0, T ],

E

[
|Y nt − x0|2 +

∫ T

t

|Zns |2ds
]

= E
[
|ξ − x0|2

]
+ 2E

[∫ T

t

〈
Y ns − x0, f

(
s, Y ns , Z

n
s

)〉
ds

]
− 2n

∫ T

t

〈
E
[
Y ns
]
− x0,E

[
Y ns
]
−Π

(
E
[
Y ns
])〉

ds.

(A.6)

Since the third term in the right-hand side of (A.6) is non-positive according to (A.3), we
have

E

[
|Y nt − x0|2 +

∫ T

t

|Zns |2ds
]
≤ E

[
|ξ − x0|2

]
+ 2E

[
sup

0≤t≤T
|Y nt − x0|

∫ T

0

|f(s, x0, 0)|ds
]

+
(
2λ+ 2λ2

)
E

[∫ T

t

|Y nt − x0|2ds
]

+
1

2
E

[∫ T

t

|Zns |2ds
]
.

In view of Gronwall’s inequality, we obtain

sup
0≤t≤T

E
[
|Y nt −x0|2

]
≤ C(λ, T )

(
E
[
|ξ−x0|2

]
+E

[
sup

0≤t≤T
|Y nt −x0|

∫ T

0

|f(s, x0, 0)|ds
])
, (A.7)

and then

E

[∫ T

0

|Zns |2ds
]
≤ C(λ, T )

(
E
[
|ξ − x0|2

]
+ E

[
sup

0≤t≤T
|Y nt − x0|

∫ T

0

|f(s, x0, 0)|ds
])
. (A.8)

On the other hand, recalling the definition of (A.4) and noting that ηn is deterministic,
we get

|ηnT − ηnt |2

=

∣∣∣∣E[ξ − Y nt +

∫ T

t

f
(
s, Y ns , Z

n
s

)
ds

]∣∣∣∣2
≤ C(λ, T )

(
|x0|2 + E

[
|ξ|2 +

(∫ T

0

|f(s, 0, 0)|ds
)2

+ sup
0≤t≤T

|Y nt − x0|
∫ T

0

|f(s, x0, 0)|ds
])
,

(A.9)

where we have used (A.7) and (A.8) in the last inequality. Note that

sup
0≤t≤T

|Y nt − x0|2

≤ 4

(
|ξ − x0|2 +

(∫ T

0

|f
(
s, Y ns , Z

n
s

)
|ds
)2

+ sup
0≤t≤T

|ηnT − ηnt |2 + sup
0≤t≤T

∣∣∣∣∫ T

t

Zns dBs

∣∣∣∣2).
It follows from (A.7)–(A.9) and BDG’s inequality that

E
[

sup
0≤t≤T

|Y nt − x0|2
]

≤ C(λ, T )E

[
|x0|2 + |ξ|2 +

(∫ T

0

|f(s, 0, 0)|ds
)2

+ sup
0≤t≤T

|Y nt − x0|
∫ T

0

|f(s, x0, 0)|ds
]

≤ C(λ, T )E

[
|x0|2 + |ξ|2 +

(∫ T

0

|f(s, 0, 0)|ds
)2]

+
1

2
E
[

sup
0≤t≤T

|Y nt − x0|2
]
.

(A.10)

Putting (A.8) and (A.10) together, we deduce that the first inequality holds.
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Finally, recalling (A.3) and (A.6)–(A.8), we obtain

2nκ

∫ T

0

|E
[
Y ns
]
−Π

(
E
[
Y ns
])
|ds

≤ C(λ, T )

(
E
[
|ξ − x0|2

]
+ E

[
sup

0≤t≤T
|Y nt − x0|

∫ T

0

|f(s, x0, 0)|ds
])
.

It follows that

|ηn|0T ≤
C(λ, T )

2κ
E

[
|x0|2 + |ξ|2 +

(∫ T

0

|f(s, 0, 0)|ds
)2]

,

which ends the proof.

Lemma A.4. Suppose that assumptions (H3) and (H4) are fulfilled. Let f(·, 0, 0) be in
the space of H2(Rm). Then, there exists a constant C(λ, T ) such that

sup
0≤t≤T

|E
[
Y nt
]
−Π

(
E
[
Y nt
])
|2 ≤ C(λ, T )

n
E

[
|x0|2 + |ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds
]
,

and ∫ T

0

|E
[
Y nt
]
−Π

(
E
[
Y nt
])
|2dt ≤ C(λ, T )

n2
E

[
|x0|2 + |ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds
]
.

Proof. Consider the distance between E[Y n] and the regular domain Dε. Set ϕε(x) =

d2(x,Dε). It is clear that ϕε ∈ C1(Rm) with 5ϕε(x) = 2(x−Πε(x)). Note that

E
[
Y nt
]

= E[ξ] +

∫ T

t

E
[
f
(
s, Y ns , Z

n
s

)]
ds− n

∫ T

t

(
E
[
Y ns
]
−Π

(
E
[
Y ns
]))

ds

which indicates that

ϕε
(
E
[
Y nt
])

= ϕε
(
E[ξ]

)
+ 2

∫ T

t

〈
E
[
Y ns
]
−Πε

(
E
[
Y ns
])
,E
[
f
(
s, Y ns , Z

n
s

)]〉
ds

− 2n

∫ T

t

〈
E
[
Y ns
]
−Πε

(
E
[
Y ns
])
,E
[
Y ns
]
−Π

(
E
[
Y ns
])〉

ds.

Similar to the derivation of (32) in [24], with the help of Lemma A.2, we have

−2n

∫ T

t

〈
E
[
Y ns
]
−Πε

(
E
[
Y ns
])
,E
[
Y ns
]
−Π

(
E
[
Y ns
])〉

ds

≤ C(γ)nε2 − n
∫ T

t

ϕε
(
E
[
Y ns
])
1{d(E[Y ns ],D)>ε}ds.

Note that ϕε(E[ξ]) ≤ ε2 since E[ξ] ∈ D. Therefore, we deduce that

ϕε
(
E
[
Y nt
])

+ n

∫ T

t

ϕε
(
E
[
Y ns
])
1{d(E[Y ns ],D)>ε}ds

≤ C(γ)nε2 + 2

∫ T

t

|ϕε
(
E
[
Y ns
])
| 12E

[
|f
(
s, Y ns , Z

n
s

)
|
]
ds

≤ C(γ)nε2 + 4εE

[∫ T

t

|f
(
s, Y ns , Z

n
s

)
|ds
]

+ 2

∫ T

t

|ϕε
(
E
[
Y ns
])
| 12E

[
|f
(
s, Y ns , Z

n
s

)
|
]
1{d(E[Y ns ],D)>ε}ds

≤ C(γ)nε2 + 4εE

[∫ T

t

|f
(
s, Y ns , Z

n
s

)
|ds
]

+
2

n
E

[∫ T

t

|f
(
s, Y ns , Z

n
s

)
|2ds

]
+
n

2

∫ T

t

ϕε
(
E
[
Y ns
])
1{d(E[Y ns ],D)>ε}ds.
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Letting ε→ 0, we have for any t ∈ [0, T ]

d2
(
E
[
Y nt
]
, D
)

+
n

2

∫ T

t

d2
(
E
[
Y ns
]
, D
)
ds ≤ 2

n
E

[∫ T

t

|f
(
s, Y ns , Z

n
s

)
|2ds

]
,

which implies the desired result by Lemma A.3.

Now we are in a position to state the main result.

Theorem A.5. Suppose that assumptions (H3) and (H4) hold and f(·, 0, 0) is in the
space of H2(Rm). Then the mean reflected BSDE (1.1) has a unique square integrable
solution (Y,Z, η). Moreover, there exists a constant C(λ, T ) such that

E

[
sup

0≤s≤T
|Y ns − Ys|2 +

∫ T

0

|Zns − Zs|2ds
]

+ sup
0≤t≤T

|ηnt − ηt|2

≤ C(λ, T )

n
E

[
|x0|2 + |ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds
]
.

Proof. Since the convex domainD satisfies (H1), the uniqueness follows from Lemma 3.8.
It suffices to show that the limit of (Y n, Zn, ηn) is a solution to the BSDE (1.1) with mean
reflection. Applying Itô’s formula to |Y kt − Y nt |2 yields that for any t ∈ [0, T ]

E
[
|Y kt − Y nt |2

]
+ E

[∫ T

t

|Zks − Zns |2ds
]

= 2E

[∫ T

t

〈
Y ks − Y ns , f

(
s, Y ks , Z

k
s

)
− f

(
s, Y ns , Z

n
s

)〉
ds

]
+ 2k

∫ T

t

〈
E
[
Y ns
]
−E

[
Y ks
]
,E
[
Y ks
]
−Π

(
E
[
Y ks
])〉

ds

+ 2n

∫ T

t

〈
E
[
Y ks
]
−E

[
Y ns
]
,E
[
Y ns
]
−Π

(
E
[
Y ns
])〉

ds

≤ 2
(
λ+ λ2

)
E

[∫ T

t

|Y ks − Y ns |2ds
]

+
1

2
E

[∫ T

t

|Zks − Zns |2ds
]

+ 2(k + n)

∫ T

t

〈
E
[
Y ks
]
−Π

(
E
[
Y ks
])
,E
[
Y ns
]
−Π

(
E
[
Y ns
])〉

ds,

where we have used (A.2) in the last inequality. By Lemma A.4, we have∫ T

t

〈
E
[
Y ks
]
−Π

(
E
[
Y ks
])
,E
[
Y ns
]
−Π

(
E
[
Y ns
])〉

ds

≤ C(λ, T )

kn
E

[
|x0|2 + |ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds
]
.

It follows that

sup
0≤t≤T

E
[
|Y kt − Y nt |2

]
+ E

[∫ T

0

|Zks − Zns |2ds
]

≤
(

1

k
+

1

n

)
C(λ, T )E

[
|x0|2 + |ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds
]
.

In view of the fact that

ηlt = E
[
ηlt
]

= E

[
Y lt − ξ −

∫ T

t

f
(
s, Y ls , Z

l
s

)
ds

]
, l = k, n,
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we deduce that

sup
0≤t≤T

|ηkt − ηnt |2 ≤ C(λ, T )

(
sup

0≤t≤T
E
[
|Y kt − Y nt |2

]
+ E

[∫ T

0

|Zks − Zns |2ds
])
.

On the other hand, by the definition of (A.4), we get

sup
0≤t≤T

|Y kt − Y nt |2

≤ C(λ, T )

{∫ T

0

(
|Y ks − Y ns |2 + |Zks − Zns |2

)
ds

+ sup
0≤t≤T

|ηkt − ηnt |2 + sup
0≤t≤T

∣∣∣∣∫ T

t

|Zks − Zns |dBs
∣∣∣∣2}.

Putting the above three inequalities together, we derive that

E

[
sup

0≤s≤T
|Y ks − Y ns |2 +

∫ T

0

|Zks − Zns |2ds
]

+ sup
0≤t≤T

|ηkt − ηnt |2

≤
(

1

k
+

1

n

)
C(λ, T )E

[
|x0|2 + |ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds
]
.

Consequently, we can find a triple of processes (Y, Z, η) ∈ S2(Rm)×H2(Rm×d)× V(Rm)

so that (Y n, Zn, ηn) converges to (Y,Z, η).
It remains to show that (Y,Z, η) is a solution to the BSDE (1.1) with mean reflection.

Passing n→∞ in (A.4), we see that (Y,Z, η) satisfies the first equation in (1.1). In view
of Lemma A.4, d(E[Yt], D) = limn→∞ d(E[Y nt ], D) = 0, and then E[Yt] ∈ D.

For any ζ ∈ C(D), in view of (A.1) we have∫ T

0

〈
ζt −E

[
Y nt
]
, dηnt

〉
= −n

∫ T

0

〈
ζt −E

[
Y nt
]
,E
[
Y nt
]
−Π

(
E
[
Y nt
])〉

dt ≥ 0.

Note that E[Y nt ] and ηnt converge to E[Yt] and ηt uniformly in t respectively, and

sup
n≥1
|ηn|0T ≤ C(λ, T, κ)E

[
|x0|2 + |ξ|2 +

(∫ T

0

|f(s, 0, 0)|ds
)2]

.

In the spirit of Lemma 5.8 in [24], we have∫ T

0

〈
ζt −E[Yt], dηt

〉
= lim
n→∞

∫ T

0

〈
ζt −E

[
Y nt
]
, dηnt

〉
≥ 0.

Finally, by a similar analysis as in the proof of [40, pp. 469–470] and Remark 2.2 (or see
[24, Lemma 2.1]), we can prove that η satisfies (i) and (ii) in Definition 3.1. The proof is
complete.
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