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Abstract

We prove time-dependent versions of Kingman’s subadditive ergodic theorem, which
can be used to study stochastic processes as well as propagation of solutions to PDE
in time-dependent environments.
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1 Introduction and main results

During the last half-century, Kingman’s subadditive ergodic theorem [8] and its
versions (in particular, by Liggett [10]) have been a crucial tool in the study of evolution
processes in stationary ergodic environments, including first passage percolation and
related models as well as processes modeled by partial differential equations (PDE) which
satisfy the maximum principle. Typically, the theorem is used to show that propagation of
such a process in each spatial direction has almost surely some deterministic asymptotic
speed. This can also often be extended to existence of a deterministic asymptotic
propagation shape when the propagation involves invasion of one state of the process
(e.g., the region not yet affected by it) by another (e.g., the already affected region).

Kingman’s theorem concerns a family {Xm,n} (n > m ≥ 0) of random variables on a
probability space which satisfy the crucial subadditivity hypothesis

Xm,n ≤ Xm,k +Xk,n for all k ∈ {m+ 1, . . . , n− 1}, (1.1)

together with E[X0,n] ∈ [−Cn,∞) for some C ≥ 0 and each n ∈ N. Also, {Xm,n} is
stationary in the sense that the joint distribution of {Xm+n,m+n+k | (n, k) ∈ N0 ×N} is

independent of m ∈ N0. It then concludes that X := limn→∞
X0,n

n exists almost surely,
and

E[X] = lim
n→∞

E [X0,n]

n
= inf
n≥1

E [X0,n]

n
.
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Time-dependent subadditive theorems

Moreover, X is a constant if {Xm,n} is also ergodic, that is, any event defined in terms
of {Xm,n} and invariant under the shift (m,n) 7→ (m+ 1, n+ 1) has probability either 0
or 1.

A typical use of such a result in the study of PDE is described in Example 5.1 below.
We let Xm,n be the time it takes for a solution to the PDE to propagate from me ∈ Rd
to ne ∈ Rd (see the example for details), with e some fixed unit vector (i.e., direction).
Subadditivity is then guaranteed by the maximum principle for the PDE, and Kingman’s
theorem may therefore often be used to conclude existence of a deterministic propagation
speed in direction e, in an appropriate sense and under some basic hypotheses.

However, this approach only works when the coefficients of the PDE are either inde-
pendent of time or time-periodic. The present work is therefore motivated by our desire
to apply subadditivity-based techniques to PDE with more general time dependence of
coefficients (and to other non-autonomous models), in particular, those with finite tempo-
ral ranges of dependence as well as with decreasing temporal correlations. Despite this
being a very natural question, we were not able to find relevant results in the existing
literature. We thus prove here the following two results, and also provide applications to
a time-dependent first passage percolation model (see Examples 5.2 and 5.3 below). In
the companion paper [13] we apply these results to specific PDE models (as described in
Example 5.1), namely reaction-diffusion equations and G-equations.

Our first main result in the present paper applies when the process in question (or
rather the environment in which it occurs) has a finite temporal range of dependence,
with F±t being the sigma-algebras generated by the environment up to and starting from
time t, respectively. It mirrors Kingman’s theorem, with a weaker stationarity hypothesis
(3) below (analogous to [10]) but under the additional hypothesis (6). The latter is the
natural requirement that if the process propagates from some “location” m to another
location n, starting at some time t, it cannot reach n later than the same process starting
from m at some later time t + s, at least when s is sufficiently large. In the case of
PDE, maximum principle will often guarantee this if the (non-negative) time-dependent
propagation times Xt

m,n (i.e., from location m to n, starting at time t ∈ [0,∞)) are defined
appropriately (see Example 5.1). We also note that (1) below is the natural version
of (1.1) in the time-dependent setting.

Theorem 1.1. Let (Ω,P,F) be a probability space, and {F±t }t≥0 two filtrations such
that

F−s ⊆ F−t ⊆ F and F ⊇ F+
s ⊇ F+

t

for all t ≥ s ≥ 0. For any t ≥ 0 and integers n > m ≥ 0, let Xt
m,n : Ω → [0,∞) be a

random variable. Let there be C ≥ 0 such that the following statements hold for all such
t,m, n.

(1) Xt
m,n ≤ Xt

m,k +X
t+Xtm,k
k,n for all k ∈ {m+ 1, . . . , n− 1};

(2) E
[
X0

0,1

]
<∞;

(3) the joint distribution of {Xt
m,m+1, X

t
m,m+2, . . . } is independent of (t,m);

(3) Xt
m,n is F+

t -measurable, and {ω ∈ Ω |Xt
m,n(ω) ≤ s} ∈ F−t+s for any s ≥ 0;

(4) F−t and F+
t+C are independent;

(5) Xt
m,n ≤ Xt+s

m,n + s for all s ∈ [C,C + c], with some c > 0.

Then

lim
n→∞

X0
0,n

n
= lim
n→∞

E
[
X0

0,n

]
n

= inf
n≥1

E
[
X0

0,n

]
+ C

n
almost surely. (1.2)

Moreover, if C ∈ N and Xt
m,n are all integer-valued, then it suffices to have c = 0 in (6).

Remarks. 1. Of course, it suffices to assume (1) and (6) only almost surely.
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Time-dependent subadditive theorems

2. There would be little benefit in using different C in (5) and (6) because (5) clearly
holds with any larger C, while iterating (6) yields (6) for all s ∈ [kC, kC + kc] and any
k ∈ N.

3. The ergodicity hypothesis in [8] is here replaced by (5) (or by (5∗) below).
4. Property F+

s ⊇ F+
t for t ≥ s makes {F+

t }t≥0 technically a backward filtration.

Our second main result allows for an infinite temporal range of dependence of the
environment, provided this dependence decreases with time in an appropriate sense,
and we then also need a uniform bound in place of (2).

Theorem 1.2. Assume the hypotheses of Theorem 1.1, but with (2) and (5) replaced by

(2∗) X0
0,1 ≤ C;

(5∗) lims→∞ φ(s) = 0, where

φ(s) := sup
{
|P[F |E]− P[F ]|

∣∣ t ≥ 0 & (E,F ) ∈ F−t ×F+
t+s & P[E] > 0

}
.

Then

lim
n→∞

X0
0,n

n
= lim
n→∞

E
[
X0

0,n

]
n

in probability, (1.3)

and if there is α > 0 such that lims→∞ sαφ(s) = 0, then also

lim
n→∞

X0
0,n

n
= lim
n→∞

E
[
X0

0,n

]
n

almost surely. (1.4)

Moreover, if C ∈ N and Xt
m,n are all integer-valued, then it suffices to have c = 0 in (6).

Remarks. 1. Again, using different C in (2∗) and (6) would not strengthen the result.
2. We will actually prove this result with φ(s) being instead the supremum of∑

i≥0

|P[Fi ∩ Ei]− P[Fi]P[Ei]|

over all {(Ei, Fi) ∈ F−ti × F
+
ti+s}i≥0 with t0, t1, · · · ≥ 0 and E0, E1, . . . pairwise disjoint

(which is clearly no more than φ(s) from (5∗)).
3. We will also show that without assuming lims→∞ sαφ(s) = 0, we still have

lim inf
n→∞

X0
0,n

n
≥ lim
n→∞

E
[
X0

0,n

]
n

almost surely. (1.5)

Organization of the Paper. We prove Theorem 1.1 in Section 2 and the claims in
Theorem 1.2 in Sections 3 and 4. Section 5 contains applications of our results to two
models, PDE and first passage percolation in time-dependent environments.

2 Finite temporal range of dependence

Let us first prove a version of Theorem 1.1 withN0-valued random variables and C = 0

in (5). Theorem 1.1 will then easily follow. Let us denote {X = s} := {ω ∈ Ω |X(ω) = s}.
Theorem 2.1. Let (Ω,P,F) be a probability space, and {F±t }t∈N0 two filtrations such
that

F−0 ⊆ F
−
1 ⊆ · · · ⊆ F and F ⊇ F+

0 ⊇ F
+
1 ⊇ . . . . (2.1)

For any integers t ≥ 0 and n > m ≥ 0, let T tm,n : Ω→ N0 be a random variable. Let there
be C,C ′ ∈ N such that the following statements hold for all such t,m, n.

(1’) T tm,n ≤ T tm,k + T
t+T tm,k
k,n for all k ∈ {m+ 1, . . . , n− 1};
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(2’) E
[
T 0

0,1

]
≤ C ′;

(3’) the joint distribution of {T tm,m+1, T
t
m,m+2, . . . } is independent of (t,m);

(4’) T tm,n is F+
t -measurable, and {T tm,n = j} ∈ F−t+j for any j ∈ N0;

(5’) F−t and F+
t are independent;

(6’) T tm,n ≤ T t+Cm,n + C.

Then

lim
n→∞

T 0
0,n

n
= lim
n→∞

E
[
T 0

0,n

]
n

= inf
n≥1

E
[
T 0

0,n

]
n

almost surely. (2.2)

Proof. First, we claim that almost surely we have

lim sup
n→∞

T 0
0,n

n
≤ lim
n→∞

E
[
T 0

0,n

]
n

= inf
n≥1

E
[
T 0

0,n

]
n

. (2.3)

The proof of (2.3) is similar to the proof of [2, Lemma 6.7], although there the analogs of
T tm,n were bounded random variables; the idea goes back to [8], where the analogs of
T tm,n were t-independent. For any integers n > m > 0, (4’) shows that for any i, j ∈ N0

we have
{T 0

0,m = i} ∈ F−i and {T im,n = j} ∈ F+
i .

Therefore (5’) and (3’) yield

P
[
T 0

0,m = i & T im,n = j
]

= P
[
T 0

0,m = i
]
P
[
T im,n = j

]
= P

[
T 0

0,m = i
]
P
[
T 0

0,n−m = j
]
.

Summing this over i ∈ N0, we find that T
T 0
0,m

m,n (= T
T 0
0,m(·)

m,n (·)) has the same distribution as
T 0

0,n−m. Thus from (1’) we obtain

E
[
T 0

0,n

]
≤ E

[
T 0

0,m

]
+ E

[
T
T 0
0,m

m,n

]
≤ E

[
T 0

0,m

]
+ E

[
T 0

0,n−m
]
.

Fekete’s subadditive lemma thus implies that the equality in (2.3) holds.
For any n ∈ N, let tn0 := 0 and ξn0 := T 0

0,n, and then for i ∈ N define recursively

tni := tni−1 + ξni−1 and ξni := T
tni
in,(i+1)n.

By iteratively applying (1’), we get for any k ∈ N,

T 0
0,kn ≤

k−1∑
i=0

ξni . (2.4)

Similarly as above, it follows from (3’)–(5’) that for any j0, j1, . . . , jk−1 ∈ N0 we have

P [ξni = ji for i = 0, . . . , k − 1] = P
[
ξni = ji for i = 0, . . . , k − 2 & T

∑k−2
i=0 ji

(k−1)n,kn = jk−1

]
= P [ξni = ji for i = 0, . . . , k − 2] P

[
T

∑k−2
i=0 ji

(k−1)n,kn = jk−1

]
= P [ξni = ji for i = 0, . . . , k − 2] P

[
T 0

0,n = jk−1

]
= . . . =

k−1∏
i=0

P
[
T 0

0,n = ji
]
.

Summing this over all indices but i shows that ξni has the same law as T 0
0,n for each i.

This, (2’), and (2.4) with n = 1 then show that for any k ∈ N,

E
[
T 0

0,k

]
≤
k−1∑
i=0

E
[
ξ1
i

]
= kE

[
T 0

0,1

]
≤ C ′k. (2.5)
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Also, the above computation shows that ξn0 , . . . , ξ
n
k−1 are jointly independent random

variables for all n and k, so the strong law of large numbers yields

lim
k→∞

1

k

k−1∑
i=0

ξni = E
[
T 0

0,n

]
almost surely.

Thus (2.4) and the equality in (2.3) yield that for any ε > 0 there is nε ∈ N such that

lim sup
k→∞

T 0
0,knε

knε
≤
E
[
T 0

0,nε

]
nε

≤ (1 + ε) lim
n→∞

E
[
T 0

0,n

]
n

almost surely. (2.6)

Now fix any l ∈ {0, . . . , nε − 1} and note that (1’) yields for all k ∈ N0,

T 0
0,knε+l ≤ T

0
0,knε + T

T 0
0,knε

knε,knε+l
. (2.7)

Since T
T 0
0,knε

knε,knε+l
has the same distribution as T 0

0,l, we obtain from (2.5) that

∑
k≥0

P

[
T
T 0
0,knε

knε,knε+l
> (knε + l)ε

]
≤
∑
k≥0

P
[
T 0

0,l > kε
]
≤ 1

ε
E
[
T 0

0,l

]
<∞.

Borel-Cantelli Lemma then implies that lim supk→∞
1

knε+l
T
T 0
0,knε

knε,knε+l
≤ ε almost surely.

This and (2.7) for each l ∈ {0, . . . , nε − 1}, together with (2.6), now show that

lim sup
n→∞

T 0
0,n

n
≤ ε+ (1 + ε) lim

n→∞

E
[
T 0

0,n

]
n

almost surely.

Taking ε→ 0 now yields the inequality in (2.3).
Next, for each (t,m) ∈ N2

0 let

Ztm := lim inf
n→∞

T tm,m+n

n
.

It follows from (6’) that Zt+Ckm is non-decreasing in k ∈ N. But since the law of Ztm is
independent of (t,m) by (3’), we must almost surely have Zt+Ckm = Ztm for all k ∈ N.
However, this and (3’) imply that Ztm is independent of F−t+Ck for all k ∈ N, while (4’)
shows that it is also measurable with respect to the σ-algebra generated by

⋃
s≥t F−s .

This shows that there is a constant Q ∈ [0,∞) such that Ztm = Q almost surely for each
(t,m) ∈ N2

0.
In view of (2.3), to prove (2.2) it remains to show that

Q ≥ lim
n→∞

E
[
T 0

0,n

]
n

. (2.8)

Our proof of this is related to the approach of Levental [9] in the t-independent case,
which is in turn based on [6]. However, t-dependence complicates the situation here,
which is why we first needed to show that Ztm is in fact (t,m, ω)-independent to con-
clude (2.8) (in [9], it was sufficient to allow ω-dependence at first). Fix any ε > 0, and
denote Qε := Q+ ε and

N t
m := min

{
n ≥ 1

∣∣T tm,m+n ≤ nQε
}

(which also depends on ε but we suppress this in the notation). It follows from Ztm = Q

a.e. that almost surely we have N t
m < ∞ for all (t,m) ∈ N2

0, and (3’) yields that N t
m
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has the same distribution as N0
0 . Moreover, N t

m is F+
t -measurable by (4’). Next, let

Mε ∈ [1,∞) be a large constant such that

E
[
T 0

0,11{N0
0>Mε}

]
≤ ε. (2.9)

Let now t0 := 0 and r0 := 0, and for k ≥ 0 define recursively

rk+1 := rk +N tk
rk

1{Ntkrk≤Mε} + 1{Ntkrk>Mε} and tk+1 := tk + T tkrk,rk+1
.

Fix any n ∈ N. We will now use {rk}k≥1 to divide the “propagation” from 0 to n into
several “steps”. Since this sequence is strictly increasing for each ω ∈ Ω, the random
variable

Kn := min{k ∈ N0 | rk ≥ n−Mε}

is well defined, and satisfies 0 ≤ Kn ≤ n − 1 and rKn ∈ [n −Mε, n − 1]. Applying (1’)
iteratively Kn times yields

T 0
0,n ≤

Kn−1∑
k=0

T tkrk,rk+1
+ T

tKn
rKn ,n =: Sn + T

tKn
rKn ,n (2.10)

(note that, e.g., T
tKn
rKn ,n = T

tKn(·)(·)
rKn(·)(·),n(·)). If N tk

rk
≤Mε, then

T tkrk,rk+1
≤ (rk+1 − rk)Qε,

while if N tk
rk
> Mε, then rk+1 = rk + 1. Hence we obtain

Sn ≤
Kn−1∑
k=0

(rk+1 − rk)Qε +

Kn−1∑
k=0

T tkrk,rk+11{Ntkrk>Mε} ≤ rKnQε +

n−1∑
k=0

T tkrk,rk+11{Ntkrk>Mε}.

(2.11)
We now want to take expectation on both sides of (2.11). From (4’) we see that for

any i, j ∈ N0 we have {rk = i & tk = j} ∈ F−j . Since T ji,i+1 and N j
i are F+

j -measurable,
from (5’), (3’), and (2.9) we obtain

E
[
T tkrk,rk+11{Ntkrk>Mε}

]
=
∑
i,j≥0

E
[
T ji,i+11{Nji>Mε}1{rk=i & tk=j}

]
=
∑
i,j≥0

E
[
T ji,i+11{Nji>Mε}

]
P [rk = i & tk = j]

= E
[
T 0

0,11{N0
0>Mε}

]
≤ ε.

So (2.11) and rKn ≤ n yield

E [Sn]

n
≤ E[rKn ]Qε

n
+ ε ≤ Q+ 2ε. (2.12)

Finally, we claim that E
[
T
tKn
rKn ,n

]
≤ C ′M2

ε ; this together with (2.10) and (2.12), and

then taking ε→ 0, will yield (2.8). To this end we note that 1 ≤ n− rKn ≤Mε implies

T
tKn
rKn ,n ≤ max

l∈{1,...,min{Mε,n}}
T
tKn
n−l,n. (2.13)

Since {tKn = j} ∈ F−j and T jn−l,n is F+
j -measurable, we obtain from (5’), (3’), and (2.5),

E
[
T
tKn
n−l,n

]
=
∑
j≥0

E
[
T jn−l,n1{tKn=j}

]
=
∑
j≥0

E
[
T jn−l,n

]
P [tKn = j] = E

[
T 0

0,l

]
≤ C ′l.
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Therefore indeed

E
[
T
tKn
rKn ,n

]
≤

Mε∑
l=1

C ′l ≤ C ′M2
ε ,

so (2.8) holds and the proof is finished.

Proof of Theorem 1.1. Let us first assume that c ≥ 1 and define

T tm,n := dXt
m,n + Ce (∈ N0).

Let us redefine F−t to be F−t−C for t ≥ C and {∅,Ω} for t ∈ [0, C) (i.e., shift F−t to the right
by C) and let C ′ := E

[
dX0

0,1 + Ce
]
. After restricting t to N0, it is clear that T tm,n satisfies

hypotheses (2’)–(6’) of Theorem 2.1, with max{dCe, 1} in place of C. And (1’) also holds
because if n > k > m ≥ 0 are integers, then (1) and (6) with s := dXt

m,n+Ce−Xt
m,n yield

T tm,n = dXt
m,n +Ce ≤

⌈
X
t+Xtm,k
k,n +Xt

m,k + C

⌉
≤
⌈
X
t+T tm,k
k,n + T tm,k + C

⌉
≤ T t+T

t
m,k

k,n +T tm,k.

Hence (2.2) proves (1.2) with the last numerator being E
[
dX0

0,n + Ce
]
. Note that this

argument also applies in the setting of the last claim in Theorem 1.1 and without d·e.
To get (1.2) as stated and for any c > 0, let S ≥ 1

c , G±t := F±t/S , and Y tm,n := SX
t/S
m,n.

Since the above argument applies with (G±t , Y tm,n, SC, Sc) in place of (F±t , Xt
m,n, C, c),

we obtain (1.2) with the last numerator being E
[

1
S dS(X0

0,n + C)e
]
. Taking S → ∞

yields (1.2).

3 Time-decaying dependence I

In this section we will prove the first claim in Theorem 1.2 and the corresponding
integer-valued claim. Let us first prove a version of the latter with weaker (2∗) and
stronger (5∗).

Theorem 3.1. Let (Ω,P,F) be a probability space, and {F±t }t∈N0 two filtrations satisfy-
ing (2.1). For any integers t ≥ 0 and n > m ≥ 0, let Xt

m,n : Ω→ N0 be a random variable.
Let there be C ∈ N such that for all such t,m, n we have (1) and (3) from Theorem 1.1,
and

(2∗∗) E
[
X0

0,1

]
+ E

[
(X0

0,1)2
]
<∞;

(4∗∗) Xt
m,n is F+

t -measurable, and {Xt
m,n = j} ∈ F−t+j for any j ∈ N0;

(5∗∗) lims→∞ φ(s) = 0, where

φ(s) := sup

{∣∣∣∣P[F |E]

P[F ]
− 1

∣∣∣∣ ∣∣∣∣ t ∈ N0 & (E,F ) ∈ F−t ×F+
t+s & P[E]P[F ] > 0

}
.

(6∗∗) Xt
m,n ≤ Xt+C

m,n + C.

Then (1.3) holds.

Proof. From (5∗∗) we know that for each ε > 0, there is Cε ∈ N which is a multiple of C
from (6∗∗) and

φ(Cε) ≤ ε. (3.1)

Let us then define (again suppressing ε in the notation for the sake of clarity)

T tm,n := Xt
m,n + Cε.

As before, one can easily check that (1), (2∗∗), (3), (5∗∗), and (6∗∗) still hold with Xt
m,n

replaced by T tm,n, and (4∗∗) can be replaced by
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(4”) T tm,n is F+
t -measurable, and {T tm,n = j} ∈ F−t+j−Cε for any j ∈ N0.

Next, let

X := lim inf
n→∞

E
[
X0

0,n

]
n

. (3.2)

As before, for any ε > 0 and n ∈ N, let tn0 := 0 and ξn0 := T 0
0,n, and then for i ∈ N define

recursively

tni := tni−1 + ξni−1, ξni := T
tni
in,(i+1)n, and µni := E [ξni ] .

By (1) we have T 0
0,kn ≤

∑k−1
i=0 ξ

n
i for each k ∈ N. Also, since (4”) yields

{tni = k} ∈ F−k−Cε and {T kin,(i+1)n = j} ∈ F+
k , (3.3)

it follows from (3) and (3.1) that

µni =
∑
k,j≥0

j P
[
T kin,(i+1)n = j & tni = k

]
≤ (1 + ε)

∑
k,j≥0

j P
[
T kin,(i+1)n = j

]
P [tni = k]

= (1 + ε)
∑
j≥0

j P
[
T 0

0,n = j
]

= (1 + ε)E
[
T 0

0,n

]
= (1 + ε)µn0 .

(3.4)
We can similarly obtain

E [ξni − Cε] ≤ (1 + ε)(µn0 − Cε) (3.5)

and
E [ξni − Cε] ≥ (1− ε)(µn0 − Cε) (3.6)

because ξni ≥ Cε. Invoking (1) and (3.4) with n = 1 yields for C ′ε := E[X0
0,1] + Cε,

µn0 ≤
n−1∑
i=0

µ1
i ≤ (1 + ε)nµ1

0 ≤ (1 + ε)C ′εn. (3.7)

This implies that X ≤ (1 + ε)C ′ε.
Let us now pick nε ∈ N such that

E
[
T 0

0,nε

]
nε

≤ X + ε, (3.8)

which exists by (3.2). Then (4”) shows that for any integers n > m > 0 and i, j ∈ N0 we
get

{T 0
0,m = i} ∈ F−i−Cε and {T im,n = j} ∈ F+

i .

Therefore (3) and (3.1) yield

E

[
T
T 0
0,m

m,n

]
=
∑
i,j≥0

j P
[
T im,n = j & T 0

0,m = i
]
≤ (1 + ε)

∑
i,j≥0

j P
[
T im,n = j

]
P
[
T 0

0,m = i
]

= (1 + ε)
∑
j≥0

j P
[
T 0

0,n−m = j
]

= (1 + ε)E
[
T 0

0,n−m
]
.

(3.9)
For any n ∈ N write n = knε + l, where k ∈ N0 and l ∈ {0, . . . , nε − 1}. By applying (1)
and the above computations recursively, we obtain

E
[
T 0

0,n

]
≤ E

[
T 0

0,(k−1)nε+l

]
+ E

[
T
T 0
0,(k−1)nε+l

(k−1)nε+l,n

]
≤ E

[
T 0

0,(k−1)nε+l

]
+ (1 + ε)E

[
T 0

0,nε

]
≤ · · · ≤ E

[
T 0

0,l

]
+ (1 + ε)kE

[
T 0

0,nε

]
.
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Thus (3.8) yields

E
[
T 0

0,n

]
n

≤
E
[
T 0

0,l

]
n

+
(1 + ε)knε(X + ε)

n
which then implies

lim sup
n→∞

E
[
X0

0,n

]
n

= lim sup
n→∞

E
[
T 0

0,n

]
n

≤ (1 + ε)(X + ε).

Since ε > 0 was arbitrary, this and (3.2) show that

lim
n→∞

E
[
X0

0,n

]
n

= X. (3.10)

Next we claim that there is C∗ > 0 such that for any ε ∈ (0, 1], n ∈ N, and i 6= j we
have

Var [ξni ] ≤ C∗n2 and Cov
[
ξni , ξ

n
j

]
≤ C∗εn2. (3.11)

We postpone the proof of (3.11) to the end of the proof of (i). Since tnk =
∑k−1
i=0 ξ

n
i , we

now have

Var [tnk ] =

k−1∑
i=0

Var [ξni ] + 2
k−1∑
i=0

k−1∑
j=i+1

Cov
[
ξni , ξ

n
j

]
≤ (1 + εk)C∗n

2k.

Chebyshev’s inequality then yields

P

[∣∣∣∣ tnk − E[tnk ]

k

∣∣∣∣ > Cε

]
≤ Var [tnk ]

C2
εk

2
≤ 1 + εk

C2
εk

C∗n
2.

Since E[tnk ] =
∑k−1
i=0 µ

n
i , this and (3.4) imply

P

[
tnk
k
> (1 + ε)µn0 + Cε

]
≤ 1 + εk

C2
εk

C∗n
2.

For any N ∈ N write N = kn+ l, where k ∈ N0 and l ∈ {0, · · · , n− 1}. Then (1) yields

X0
0,N ≤ T 0

0,N ≤ T 0
0,kn + T

T 0
0,kn

kn,kn+l ≤ t
n
k + T

T 0
0,kn

kn,kn+l.

Denoting τnN := T
T 0
0,kn

kn,kn+l, we get E[τnN ] ≤ (1 + ε)2C ′εn by (3.9) and (3.7), as well as

P

[
X0

0,N

N
> (1 + ε)

µn0
n

+
Cε
n

+
τnN
kn

]
≤ 1 + εk

C2
εk

C∗n
2. (3.12)

Now, for each ε > 0 pick nε ∈ N such that

lim
ε→0

Cε
nε

= 0 = lim
ε→0

εn2
ε

C2
ε

. (3.13)

If we then take n = nε in (3.12) and then N → ∞ (so that k → ∞), for each δ > 0 we
obtain

lim sup
N→∞

P

[
X0

0,N

N
> (1 + ε)

µnε0

nε
+
Cε
nε

+ δ

]
≤ C∗εn

2
ε

C2
ε

.

Since µnε0 = E[X0
0,nε ] +Cε and limε→0 nε =∞ by (3.13), taking ε→ 0 in this estimate and

using (3.10) and (3.13) shows that limN→∞P
[
X0

0,N

N > X + 2δ
]

= 0 for all δ > 0. That is,

lim sup
N→∞

X0
0,N

N
≤ X in probability. (3.14)

EJP 28 (2023), paper 96.
Page 9/23

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP990
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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Let us now assume that there is δ > 0 and a sequence nk →∞ such that

P

[
X0

0,nk

nk
−X < −2δ

]
≥ 4δ. (3.15)

Since for all large enough k we have
E[X0

0,nk
]

nk
≥ X − δ by (3.10), we obtain

P

[
X0

0,n

n
−X < −2δ

]
≤ P

[
X0

0,nk
− E

[
X0

0,nk

]
nk

< −δ

]
≤ 1

δ
E

[(
X0

0,nk
− E

[
X0

0,nk

]
nk

)
+

]

≤ 1

δ

δ2 + P

[
X0

0,nk
− E

[
X0

0,nk

]
nk

> δ2

]
+
∑
i≥1

P

[
X0

0,nk
− E

[
X0

0,nk

]
nk

> i

] .

Since Var[X0
0,nk

] ≤ C∗n2
k by (3.11) with i = 0, for M := dC∗δ2 e+ 1 we obtain

∑
i≥M

P

[
X0

0,nk
− E

[
X0

0,nk

]
nk

> i

]
≤
∑
i≥M

1

n2
ki

2
Var

[
X0

0,nk

]
≤ δ2.

But (3.10) and (3.14) also show that for all large enough k we have

P

[
X0

0,nk
− E

[
X0

0,nk

]
nk

> δ2

]
+

M−1∑
i=1

P

[
X0

0,nk
− E

[
X0

0,nk

]
nk

> i

]
≤ δ2.

Hence for all large enough k we obtain

P

[
X0

0,nk

nk
−X < −2δ

]
≤ 3δ,

which contradicts (3.15). It follows that limn→∞P
[
X0

0,n

n −X < −δ
]

= 0 for each δ > 0,

so this and (3.14) yield (1.3).
It therefore remains to prove (3.11). Similarly as in (3.4), for any (i, n) ∈ N0 ×N and

with ξ̃ni := ξni − Cε, we get

E

[(
ξ̃ni

)2
]
≤ (1 + ε)E

[(
T 0

0,n − Cε
)2]

= (1 + ε)E
[(
X0

0,n

)2]
,

as well as
E
[(
ξ1
i

)2] ≤ (1 + ε)E
[(
T 0

0,1

)2]
. (3.16)

Since Var[ξni ] = Var[ξ̃ni ], to prove the first claim in (3.11), it suffices to show E[
(
X0

0,n

)2
] ≤

C∗
2 n

2 for some C∗ > 0 and all n ∈ N. We can use T 0
0,n ≤

∑n−1
i=0 ξ

1
i (due to (1)) and (3.16)

to obtain

E
[(
X0

0,n

)2] ≤ E [(T 0
0,n

)2] ≤ nE[n−1∑
i=0

(ξ1
i )2

]
≤ (1 + ε)n2E

[(
T 0

0,1

)2]
,

which yields this estimate with C∗ := 4E
[(
X0

0,1 + C1

)2]
.

To prove the second claim in (3.11), we apply (4∗) to get that for any i, i′, j, j′, k, l ∈ N0

satisfying l > k we have

{tnk = i′} ∈ F−i′−Cε , {T i
′

kn,(k+1)n = i} ∈ F−i′+i−Cε ∩ F
+
i′ ,

{tnl = j′} ∈ F−j′−Cε , {T j
′

ln,(l+1)n = j} ∈ F+
j′ .

(3.17)
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Note that l > k implies j′ ≥ i + i′ whenever P[T i
′

kn,(k+1)n = i & tnk = i′ & tnl = j′] > 0

because
tnl = tnk + ξnk + · · ·+ ξnl−1 ≥ tnk + ξnk = tnk + T

tnk
kn,(k+1)n.

Recalling that ξ̃nk = T
tnk
kn,(k+1)n − Cε ≥ 0, it follows from the above, (3), (3.1), and (3.5)

that

E
[
ξ̃nk ξ̃

n
l

]
=

∑
i,j,i′,j′≥0

ij P
[
T j
′

ln,(l+1)n = j + Cε & tnl = j′ & T i
′

kn,(k+1)n = i+ Cε & tnk = i′
]

≤ (1 + ε)
∑

i,j,i′,j′≥0

ij P
[
T j
′

ln,(l+1)n = j + Cε

]
P
[
tnl = j′ & T i

′

kn,(k+1)n = i+ Cε & tnk = i′
]

= (1 + ε)
∑

i,j,i′≥0

ij P
[
T 0

0,n = j + Cε
]
P
[
T i
′

kn,(k+1)n = i+ Cε & tnk = i′
]

= (1 + ε)E
[
ξ̃n0

]
E
[
ξ̃nk

]
≤ (1 + ε)2E

[
ξ̃n0

]2
,

where in the inequality we used that the summand in the first sum vanishes when
j′ < i′ + i+ Cε. Also note that (3.6) yields

E
[
ξ̃nk

]
E
[
ξ̃nl

]
≥ (1− ε)2E

[
ξ̃n0

]2
,

hence

Cov [ξnk , ξ
n
l ] = Cov

[
ξ̃nk , ξ̃

n
l

]
≤ 4εE

[
ξ̃n0

]2
= 4εE

[
X0

0,n

]2
. (3.18)

Now the second claim in (3.11) follows by (3.10), and the proof of (i) is finished.

Next we adjust this proof to obtain the integer-valued version of the first claim in
Theorem 1.2. We will use in it the following lemma.

Lemma 3.2. For E,F ∈ F , let

Ψ(E,F ) := max{s ∈ Z | (E,F ) ∈ F−t ×F+
t+s for some t ∈ N0}

(if there is no such s, then Φ(E,F ) := −∞). Assume that Akj , Bk ∈ F (k, j ∈ N0) are
such that B0, B1, . . . are pairwise disjoint, and so are Ak0 , A

k
1 , . . . for each k ∈ N0. If

s := min{Ψ(Bk, A
k
j ) | j, k ∈ N0} ≥ 0 and S := sup{f(j, k) |P[Akj ∩ Bk] > 0} for some

f : N2
0 → [0,∞), then with φ from Remark 2 after Theorem 1.2 we have∑

j,k≥0

f(j, k)
∣∣P[Akj ∩Bk]− P[Akj ]P[Bk]

∣∣ ≤ 2Sφ(s).

Proof. Let
U± :=

{
(j, k) ∈ N2

0

∣∣ ± (P[Akj ∩Bk]− P[Akj ]P[Bk]) > 0
}
,

and let U±k := {j ∈ N0 | (j, k) ∈ U±} for each k ∈ N0. Then∑
(j,k)∈U+

f(j, k)
∣∣P[Akj ∩Bk]− P[Akj ]P[Bk]

∣∣
≤ S

∑
k≥0

P
 ⋃
j∈U+

k

Akj ∩Bk

− P
 ⋃
j∈U+

k

Akj

P[Bk]

 ,

which ≤ Sφ(s) because if tk ∈ N0 is minimal such that Bk ∈ F−tk , then
⋃
j∈U+

k
Akj ∈ F

+
tk+s.

The same estimate holds for the sum over U−, finishing the proof.
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Theorem 3.3. Assume the hypotheses of Theorem 3.1, but with (2∗∗) and (5∗∗) replaced
by (2∗) and lims→∞ φ(s) = 0 for φ from Remark 2 after Theorem 1.2 (with s, t0, t1, · · · ∈
N0). Then (1.3) holds.

Proof. This proof follows along the same lines as the one of Theorem 3.1, with some
minor adjustments. From (1), (2∗), and (3) we see that for any integers t ≥ 0 and
n > m ≥ 0 we have

Xt
m,n ≤ C(n−m). (3.19)

With the φ considered here, let Cε ∈ N be such that

φ(Cε) ≤
ε

2
, (3.20)

and let T tm,n, X, t
n
i , ξ

n
i , µ

n
i be defined as before. Then (3.19), Lemma 3.2, and (3) yield

µni =
∑
k,j≥0

j P
[
T kin,(i+1)n = j & tni = k

]
≤
∑
k,j≥0

j P
[
T kin,(i+1)n = j

]
P [tni = k] + (Cn+ Cε)ε

=
∑
k,j≥0

j P
[
T 0

0,n = j
]
P [tni = k] + (Cn+ Cε)ε

= µn0 + (Cn+ Cε)ε

(3.21)

instead of (3.4). Similarly, we obtain

E [ξni − Cε] ≤ µn0 − Cε + Cnε. (3.22)

and
E [ξni − Cε] ≥ µn0 − Cε − Cnε. (3.23)

Using (1) and (3.21) in place of (3.4), we now get

µn0 ≤ C ′εn (3.24)

in place of (3.7), with C ′ε := E
[
X0

0,1

]
+ Cε + Cε.

Next, similarly to (3.21) and using Lemma 3.2 and (3.19), we can replace (3.9) by

E

[
T
T 0
0,m

m,n

]
=
∑
i,j≥0

j P
[
T im,n = j & T 0

0,m = i
]

≤
∑
i,j≥0

j P
[
T im,n = j

]
P
[
T 0

0,m = i
]

+ (C(n−m) + Cε)ε

= E
[
T 0

0,n−m
]

+ (C(n−m) + Cε)ε.

(3.25)

With this, we again obtain (3.10).
The proof of (3.11) is also adjusted similarly to (3.21). We now obtain

E

[(
ξ̃ni

)2
]
≤ E

[(
T 0

0,n − Cε
)2]

+ (Cn)2ε = E
[(
X0

0,n

)2]
+ (Cn)2ε

and
E
[
(ξ1
i )2
]
≤ E

[
(T 0

0,1)2
]

+ (C + Cε)
2ε,

which yields the first claim in (3.11) as before (with a different C∗). In the proof of the
second claim, we use (3.22) in place of (3.5), as well as ξ̃nk ≤ Cn (due to (3.19)). We also
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use the same adjustment as in (3.21), but now replacing the sum over k by the sum over

(i, i′, j′) (with A(i,i′,j′)
j := {T j

′

ln,(l+1)n = j} when we use Lemma 3.2). This and (3.19) show
that

E
[
ξ̃nk ξ̃

n
l

]
=

∑
i,j,i′,j′≥0

ij P
[
T j
′

ln,(l+1)n = j + Cε & tnl = j′ & T i
′

kn,(k+1)n = i+ Cε & tnk = i′
]

≤
∑

i,j,i′,j′≥0

ij P
[
T j
′

ln,(l+1)n = j + Cε

]
P
[
tnl = j′ & T i

′

kn,(k+1)n = i+ Cε & tnk = i′
]

+ (Cn)2ε

=
∑

i,j,i′≥0

ij P
[
T 0

0,n = j + Cε
]
P
[
T i
′

kn,(k+1)n = i+ Cε & tnk = i′
]

+ (Cn)2ε

= E
[
ξ̃n0

]
E
[
ξ̃nk

]
+ (Cn)2ε ≤ E

[
ξ̃n0

]2
+ CnεE

[
ξ̃n0

]
+ (Cn)2ε.

This, (3.23) applied with i = k, l, and ξ̃n0 ≤ Cn then yield the second claim in (3.11) with
C∗ := 4C2.

Now, the proof of (3.12), but with (3.4), (3.7), and (3.9) replaced by (3.21), (3.24),
and (3.25), shows that

P

[
X0

0,N

N
>
µn0
n

+ Cε+
(1 + ε)Cε

n
+
τnN
kn

]
≤ 1 + εk

C2
εk

C∗n
2,

where τnN := T
T 0
0,kn

kn,kn+l satisfies E[τnN ] ≤ (C ′ε + (C + Cε)ε)n. This then implies (3.14) as
before, and the rest of the proof is identical to the proof of Theorem 3.1.

We can now prove the first claim in Theorem 1.2 similarly to the proof of Theo-
rem 1.1.

Proof of the first claim in Theorem 1.2. Let us first assume that c ≥ 1. Let

T tm,n := dXt
m,n + Ce (∈ N0)

and restrict t to N0. Similarly to the proof of Theorem 1.1, we find that T tm,n satisfies
hypotheses (1), (3), (4∗∗), (6∗∗) of Theorem 3.3 (with Xt

m,n replaced by T tm,n), but with
max{dCe, 1} in place of C in (6∗∗). Hence iteration of (6∗∗) shows that it also holds for
T tm,n and C ′ := 2 max{dCe, 1} in place of C. From (2∗) for Xt

m,n we see that T tm,n also
satisfies (2∗) with C ′ in place of C.

Let now φ be as in Remark 2 after Theorem 1.2. Note that if we define φ̃(s) as
in that remark but only with s, t0, t1, · · · ∈ N0, then φ̃ ≤ φ. Therefore our hypothesis
lims→∞ φ(s) = 0 implies the last hypothesis in Theorem 3.3 as well. That theorem for
T tm,n now yields (1.3).

For c ∈ (0, 1), we let G±t and Y tm,n be as in the proof of Theorem 1.1. The above
argument with (G±t , Y tm,n, SC, Sc) in place of (F±t , Xt

m,n, C, c) then again concludes (1.3).
Finally, in the setting of the last claim in Theorem 1.2 we can just apply Theorem 3.3

directly to Xt
m,n (with φ̃ above).

4 Time-decaying dependence II

In this section we will prove the second claim in Theorem 1.2, as well as the corre-
sponding integer-valued claim.

Proof of the second claim in Theorem 1.2. Similarly to the proof of the first claim in
Theorem 1.2, this again follows from the corresponding integer-valued claim. Hence,
without loss, we can restrict t to N0 and assume that Xt

m,n only takes values in N0.
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The first claim in Theorem 1.2 yields

lim
n→∞

X0
0,n

n
= lim
n→∞

E
[
X0

0,n

]
n

=: X ≥ 0 in probability. (4.1)

Let us now prove

lim sup
n→∞

X0
0,n

n
≤ X almost surely. (4.2)

As in the proof of Theorem 3.1, let T tm,n := Xt
m,n + Cε some Cε ∈ N that is a multiple

of C and (3.20) also holds. Then (1’), (3’), (6’) from Theorem 2.1 hold and so does (4”)
from the proof of Theorem 3.1, while (2’) is replaced by T 0

0,1 ≤ C + Cε, and (5∗) also
holds.

For any n ∈ N, define tni and ξni as at the start of the proof of Theorem 3.1. From (4”)
we again get (3.17) for any i, i′, j, j′, k, l ∈ N0, and the argument after (3.17) again shows
that if l > k, then j′ ≥ i + i′ whenever P[T i

′

kn,(k+1)n = i & tnk = i′ & tnl = j′] > 0. Then
the argument from the proof of the second claim in (3.11) in the proof of Theorem 3.3
(which uses Lemma 3.2) shows that for any ν, ν′ ∈ N we have

P [ξnk ≥ ν& ξnl ≥ ν′] =
∑

i−ν,j−ν′,i′,j′≥0

P
[
T j
′

ln,(l+1)n = j& tnl = j′&T i
′

kn,(k+1)n = i& tnk = i′
]

≤
∑

i−ν,j−ν′,i′,j′≥0

P
[
T j
′

ln,(l+1)n = j
]
P
[
tnl = j′ & T i

′

kn,(k+1)n = i & tnk = i′
]

+ ε

=
∑

i−ν,j−ν′,i′≥0

P
[
T 0

0,n = j
]
P
[
T i
′

kn,(k+1)n = i & tnk = i′
]

+ ε (4.3)

≤ P
[
T 0

0,n ≥ ν′
] ∑
i−ν,i′≥0

P
[
T i
′

kn,(k+1)n = i
]
P [tnk = i′] + 2ε

= P
[
T 0

0,n ≥ ν′
]
P[T 0

0,n ≥ ν] + 2ε.

Now fix some K ∈ N. From (1’) we see that for any n ∈ N we have

T 0
0,Kn ≤

K−1∑
i=0

T
tni
in,(i+1)n. (4.4)

From (4.1) we see that there is ε-independent nK ∈N such that for all n≥ max{CεK,nK},

P

[
T 0

0,n

n
−X ≥ 2

K

]
≤ P

[
X0

0,n

n
−X ≥ 1

K

]
≤ 1

2K2
. (4.5)

From (1), (2∗), and (3) we get T
tni
in,(i+1)n ≤ Cε + Cn ≤ (C + 1)n for these n and all i ∈ N0.

This means that if only one of the numbers

gni :=
T
tni
in,(i+1)n

n
−X − 2

K
(i ∈ {0, . . . ,K − 1})

is positive, then (4.4) yields

T 0
0,Kn

Kn
−X ≤

K−1∑
i=0

(
gni
K

+
2

K2

)
<
C + 1

K
+

2

K
=
C + 3

K
.
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The same estimate holds if each of these numbers is less than C+1
K . These facts, (4.3),

(3’), and (4.5) now imply that for any n ≥ max{CεK,nK} we have

P

[
T 0

0,Kn

Kn
−X ≥ C + 3

K

]
≤

∑
0≤i,j<K & i 6=j

P

[
gni ≥

C + 1

K
& gnj ≥ 0

]

≤ K2P

[
gn0 ≥

C + 1

K

]
P [gn0 ≥ 0] + 2K2ε

≤ 1

2
P

[
T 0

0,n

n
−X ≥ C + 3

K

]
+ 2K2ε.

We can now apply this estimate iteratively with Kn,K2n, . . . in place of n and obtain
for any n ≥ max{CεK,nK} and q ∈ N,

P

[
T 0

0,Kqn

Kqn
−X ≥ C + 3

K

]
≤ 2−q P

[
T 0

0,n

n
−X ≥ C + 3

K

]
+ 4K2ε ≤ 2−q + 4K2ε.

This of course also yields

P

[
X0

0,Kqn

Kqn
−X ≥ C + 3

K

]
≤ 2−q + 4K2ε. (4.6)

The hypothesis shows that there is A ∈ N such that Cε ≤ Aε−A for all ε ∈ (0, 1). Let

C ′ ≥ CK := AKnK and MK := 2AK,

with C ′ ∈ N. Then for any q ∈ N, (4.6) with ε := 2−q and n := 2AqC ′ (≥ max{CεK,nK})
yields

P

[
X0

0,C′Mq
K

C ′Mq
K

−X ≥ C + 3

K

]
≤ 5K22−q. (4.7)

By the Borel-Cantelli Lemma we then obtain

lim sup
q→∞

X0
0,C′Mq

K

C ′Mq
K

≤ X +
C + 3

K
almost surely. (4.8)

Now apply (4.8) with C ′ taking all the values in

UK := {CK , CK + 1, . . . , CKMK} .

Then for any large n, there is (C ′, q) ∈ UK ×N such that C ′Mq
K ≤ n ≤ C ′M

q
K +C−1

K n and

X0
0,C′Mq

K

C ′Mq
K

≤ X +
C + 4

K
.

So by (1) and (2∗) we have X0
0,n ≤ X0

0,C′Mq
K

+ CC−1
K n, which yields

lim sup
n→∞

X0
0,n

n
≤ X +

C + 4

K
+ CC−1

K almost surely.

By taking K →∞, we conclude (4.2).
It remains to prove

X ≤ lim inf
n→∞

X0
0,n

n
almost surely. (4.9)

EJP 28 (2023), paper 96.
Page 15/23

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP990
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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We will do this with only assuming lims→∞ φ(s) = 0 (rather than lims→∞ sαφ(s) = 0),
and without the use of the proof of (4.2). This will then also prove Remark 3 after
Theorem 1.2.

For any t,m, n, j ∈ N0 with j ≥ n, let

Y tm;n,j := min
n≤i≤j

Xt
m,m+i

i
and Ztm := lim

n→∞
lim
j→∞

Y tm;n,j = lim inf
n→∞

Xt
m,m+n

n
.

Zt+Ckm is non-decreasing in k ∈ N by (6) (with c = 0), and since the law of Ztm is
independent of (t,m) by (3), we almost surely have Zt+Ckm = Ztm for all k ∈ N. Moreover
we claim that Z0

0 is almost everywhere constant (which implies that Ztm is a.e. equal to
the same constant for each (t,m) ∈ N0).

If this is not the case, let c := Var[Z0
0 ] > 0. From (1), (2∗), and (3) we have

max

{
Z0

0 , Y
t
0;n,j ,

Xt
0,n

n

}
≤ C for all t, n, j ∈ N0 with j ≥ n ≥ 1. (4.10)

Let δ := c
4C(C+1) . By (3) and Ergorov’s Theorem, there δ-dependent n, j ∈ N2 with j ≥ n

such that for any t ∈ N0 we have

|Y t0;n,j − Zt0| ≤ δ on some Ωtδ ⊆ Ω with P[Ωtδ] ≥ 1− δ.

Also since Z0
0 = ZCk0 a.e. for all k ∈ N, (4.10) and Var[Z0

0 ] = c imply

Cov
[
Y 0

0;n,j , Y
Ck
0;n,j

]
≥ Cov

[
Z0

0 , Y
Ck
0;n,j

]
− (C + C2)δ ≥ Cov

[
Z0

0 , Z
Ck
0

]
− 2(C + C2)δ ≥ c

2
.

(4.11)
Next note that by (4), (4.10), and the definition of Y 0

0;n,j we have

Y 0
0;n,j is F−Cj-measurable and Y Ck0;n,j is F+

Ck-measurable.

This, Lemma 3.2, (4.10), and Y t0;n,j only taking rational values show for any k ≥ j ≥ n ≥ 1,

E
[
Y 0

0;n,jY
Ck
0;n,j

]
=
∑
p,q∈Q

pqP
[
Y Ck0;n,j = p & Y 0

0;n,j = q
]

≤
∑
p,q∈Q

pqP
[
Y Ck0;n,j = p

]
P
[
Y 0

0;n,j = q
]

+ C2φ(C(k − j))

= E
[
Y 0

0;n,j

]
E
[
Y Ck0;n,j

]
+ C2φ(C(k − j)),

(4.12)

Hence Cov
[
Y 0

0;n,j , Y
Ck
0;n,j

]
≤ C2φ(C(k − j)), which contradicts with (4.11) if we take k

large enough (because (5∗) holds).
Therefore Z0

0 is indeed almost everywhere equal to some constant Q ∈ [0, X].
Then (4.9) is just X ≤ Q, so we only need to prove this. For any ε > 0 and K ∈ N, let us
define

T tm,n := Xt
Km,Kn + Cε (4.13)

(which depends on ε,K but we suppress this in the notation). Then again (1’), (3’), (6’)
from Theorem 2.1 hold and so does (4”) from the proof of Theorem 3.1, while (2’) is
replaced by T 0

0,1 ≤ CK + Cε, and (5∗) also holds. From (1’), (3’), and T 0
0,1 ≤ CK + Cε we

obtain for any t,m, n ∈ N0,
T tm,m+n ≤ CKn+ Cε. (4.14)

Note that to prove X ≤ Q, it suffices to show that

E[T 0
0,n]

n
≤ KQ+KCε+ ε(Cε + 2) +

M ′K,ε
n

(4.15)
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holds for each ε > 0 and K ∈ N, with some n-independent M ′K,ε. This is because after
dividing (4.15) by K and taking n→∞, we obtain from (4.1),

X = lim
n→∞

E[X0
0,Kn]

Kn
≤ Q+ Cε+

ε(Cε + 2)

K
.

Taking K → ∞ and then ε → 0 now yields X ≤ Q, so we are indeed left with prov-
ing (4.15).

This is done similarly to the argument in the proof of (2.8), with KQ in place of Q.
Fix ε > 0 and K ∈ N, let Qε := KQ + ε (as at the start of that proof), and let T tm,n be

from (4.13). Note that for any t,m ∈ N0 we have lim infn→∞
T tm,m+n

n = KQ almost surely
because Ztm = Q almost everywhere. Define

N t
m,Mε, tk, rk, Sn

as in the proof of (2.8), and follow that proof, with two adjustments near the end where
(5’) was used. The first is the estimate on

E
[
T tkrk,rk+11{Ntkrk>Mε}

]
.

From (4”) we have for any i, j ∈ N0 that {rk = i & tk = j} ∈ F−j−Cε , and T ji,i+1 and N j
i

are F+
j -measurable. Hence we can use (5∗), (4.14), and Lemma 3.2 instead of (5’) (as

well as (3’) and (2.9) as before) to obtain

E
[
T tkrk,rk+11{Ntkrk>Mε}

]
=
∑
i,j≥0

E
[
T ji,i+11{Nji>Mε}1{rk=i & tk=j}

]
≤

∑
i,j,l≥0

lP
[
T ji,i+1 = l & N j

i > Mε

]
P [rk = i & tk = j] + (CK + Cε)ε

= E
[
T 0

0,11{N0
0>Mε}

]
+ (CK + Cε)ε ≤ (CK + Cε + 1)ε.

(4.16)

This then yields
E[Sn]

n
≤ KQ+ (CK + Cε + 2)ε (4.17)

in place of (2.12). The second place is the estimate on E[T
tKn
n−l,n], but here we can simply

use (4.14) to obtain
E[T

tKn
n−l,n] ≤ CKl + Cε.

This and (2.13) yield

E[T tKnrKn ,n
] ≤

Mε∑
l=1

E
[
T
tKn
n−l,n

]
≤Mε(CKMε + Cε) =: M ′K,ε. (4.18)

This, (4.17), and (2.10) now show (4.15), and the proof is finished.

5 PDE and first passage percolation in time-dependent environ-
ments

Our main motivation for this work was its application in the proof of homogeniza-
tion for reaction-diffusion equations with time-dependent coefficients in several spatial
dimensions in our companion paper [13]. The first crucial step is a proof of existence
of asymptotic shapes of propagation (called Wulff shapes) for these PDE. These were
previously proved to exist for reaction-diffusion equations with time-independent spa-
tially periodic reactions under appropriate hypotheses, first in 1979 by Gärtner and
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Freidlin [4], but analogous results for (still time-independent or time-periodic) spatially
stationary ergodic reactions, by the second author and Lin [11, 14], are much more
recent. The latter results employ Kingman’s subadditive ergodic theorem, which raises
the question of their extension to the case of time-dependent reactions. In [13] we
obtained such extensions, using Theorems 1.1 and 1.2.

Moreover, these theorems can also be used to study propagation of solutions to
other PDE with time-dependent coefficients, as the following example shows. In [13]
this was used to prove homogenization for Hamilton-Jacobi PDE called G-equations
(an earlier result for environments with finite temporal ranges of dependence was
obtained by Burago, Ivanov, and Novikov in [2]), and we refer the reader to that paper
for further discussion and references concerning homogenization for reaction-diffusion
and Hamilton-Jacobi PDE.

Example 5.1. Consider some PDE on [0,∞)×Rd with space-time stationary coefficients,
for which the maximum principle holds. Assume that (5) resp. (5∗) holds when F±t
are σ-algebras generated by the coefficients restricted to [0, t] × Rd and [t,∞) × Rd,
respectively. Fix some compactly supported “bump” function u0 : Rd → [0,∞), and for
any (t′, x′) ∈ Rd let ut

′,x′ solve the PDE with initial value ut
′,x′(t′, ·) := u0(· − x′). Then

for any y ∈ Rd let

Xt′(x′, y) := inf
{
t ≥ 0

∣∣∣ut′,x′(t+ t′, ·) ≥ u0(· − y)
}
,

so that Xt′(x′, y) can be thought of as the time it takes for ut
′,x′ to propagate from x′ to

y, starting at time t′ (this of course depends on the random parameter ω). Let us also
assume that u0 was chosen so that for some C ≥ 0 and all t′ ≥ C we have u0,0(t′, ·) ≥ u0.

Fix any t ∈ [0,∞) and unit vector e ∈ Sd−1, and let Xt,e
m,n := Xt(me, ne). Then (4) is

obvious from the definition of Xt,e
m,n, while maximum principle, space-time stationarity of

coefficients, and u0,0(t′, ·) ≥ u0 for all t′ ≥ C yield (1), (3), and (6). Hence if (2) resp. (2∗)
holds, Theorem 1.1 resp. 1.2 can be used to show that the limit

lim
n→∞

X0,e
0,n

n
(5.1)

exists and equals a constant function of ω (almost surely or in probability). Of course,
its reciprocal then represents the deterministic asymptotic speed of propagation in
direction e for this PDE.

In fact, if X
t′ (x′,y)
|x′−y| is bounded below and above by positive constants c0 ≤ c1 whenever

|x′−y| ≥ 1, then (2) and (2∗) clearly hold, asymptotic propagation speeds in all directions
are between 1

c1
and 1

c0
, and the PDE even has a deterministic asymptotic shape of

propagation (i.e., a Wulff shape). Indeed, a version of a standard argument going
back to [12, 3] (see [13]) can typically be used to show that there is a convex open set
S ⊆ Rd, containing and contained in the balls centered at the origin with radii 1

c1
and 1

c0
,

respectively, such that if St(ω) := {x ∈ Rd |X0(0, x) ≤ t}, then for any δ > 0 we have

(1− δ)tS ⊆ St(ω) ⊆ (1 + δ)tS,

either for almost every ω ∈ Ω and all large-enough t ≥ 0 (depending on ω and δ) or on
sets (of ω) whose measures converge to 1 as t→∞.

The next two examples concern an application of our results to a different model, first
passage percolation in time-dependent environments, which we introduce next. Let Vd
be the set of edges of the lattice Zd, that is, each v ∈ Vd connects two points A,B ∈ Zd
which share d − 1 of their d coordinates and differ by 1 in the last coordinate (these
can be either directed edges or not). Let us consider a traveler moving on the lattice
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Zd from point A to B. The traveler can move along any path γ made of a sequence of
edges vγ1 , v

γ
2 , . . . , v

γ
nγ , where each vγi connects some points Ai−1 and Ai, with A = A0 and

B = Anγ . Let us denote by ΓA,B the set of all such paths. Let us assume that the travel
time for any edge v, if it is reached by the traveler at time t, is some number τ tv ≥ 0. For
any γ ∈ ΓA,B and any time t0, define recursively (for i = 1, 2, . . . , nγ) the times

ti := ti−1 + τ
ti−1

vγi
and T t0γ := tnγ − t0.

That is, ti is the time of arrival at the point Ai, and T t0γ is the travel time along γ when
the starting time is t0. Finally, let

Xt(A,B) := inf
{
T tγ
∣∣ γ ∈ ΓA,B

}
(5.2)

be the shortest travel time from A to B when starting at time t.
When the travel times are independent of t, this is of course the standard first passage

percolation model, introduced by Hammersley and Welsh [5]. Their work was extended
by Kingman [8], whose subadditive ergodic theorem was in turn employed by Richardson
[12] in the proof of a (Wulff) shape theorem for this model. Further improvements and
extensions, including those by Cox and Durrett [3] and Kesten [7], were obtained by
many authors in the last five decades, and we refer the reader to the review [1] for a
comprehensive discussion and an extensive list of references.

Let us consider one of the following two setups when time-dependence is included in
the model above. Let ξtv ≥ 0 be some number, and let τ tv be either the first time such that∫ τtv

0

ξt+sv ds = 1, (5.3)

or let

τ tv := inf
{
s+

(
ξt+sv

)−1
∣∣∣ s ≥ 0

}
. (5.4)

In the first case, one can think of ξt+sv as the instantaneous travel speed along v at time
t+ s, which changes due to changing road conditions (so

∫ τ
0
ξt+sv ds is distance traveled

in time τ ). In the second case, one can think of ξt+sv as the (constant) speed of a train
leaving one end of v at time t+ s (which could be zero if there is no such train), and the
traveller chooses the one that brings him to the other end at the earliest time.

Now for any e ∈ Zd we can define Xt,e
m,n := Xt(me, ne), so that asymptotic speed of

travel in direction e is |e| divided by the reciprocal of (5.1), provided that limit exists (and
preferably is also deterministic). Theorems 1.1 and 1.2 can again be used to show this,
either almost surely or in probability, if the speeds ξtv are random variables satisfying
appropriate hypotheses.

Note that hypotheses (1) and (6) in these theorems will always be satisfied (the latter
with c := ∞ and any C ≥ 0) for both models (5.3) and (5.4). If there is L < ∞ such
that for all (t, v) ∈ [0,∞)× Vd we have

∫ t+L
t

ξsvds ≥ 1 or sup{ξsv | s ∈ [t, t+ L]} ≥ 1
L when

we define τ tv via (5.3) or via (5.4), respectively, this will also guarantee (2∗) (and so (2)
as well). Finally, we will let F−t be the σ-algebra generated by the family of random
variables

{ξsv | s ∈ [0, t] & v ∈ Vd}, (5.5)

and F+
t the σ-algebra generated by the family of random variables

{ξsv | s ≥ t& v ∈ Vd}, (5.6)

which will guarantee (4).
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We note that (3) follows from space-time stationarity of ξtv. For any y ∈ Zd, the
translation σy(x) := x+y on Zd induces a translation map on Vd, which we also call σy. If
(Ω,F ,P) is the involved probability space, then the speeds ξtv are space-time stationary
provided there is a semigroup of measure-preserving bijections

{Υ(s,y) : Ω→ Ω}(s,y)∈[0,∞)×Zd

such that Υ(0,0) = IdΩ, for any (s, y), (r, z) ∈ [0,∞)×Zd we have

Υ(s,y) ◦Υ(r,z) = Υ(s+r,y+z),

and for any (t, s, v, y, ω) ∈ [0,∞)2 × Vd ×Zd × Ω we have

ξtv(Υ(s,y)ω) = ξt+sσy(v)(ω).

Hence if the speeds ξtv are also space-time stationary, we will only need to check (5) or
(5∗).

We can construct space-time stationary environments with appropriately time de-
creasing correlations by sampling space stationary environments, and below we provide
two examples of this. Let (Ω0,F0,P0) be a probability space and let σy be as above. We
say that a random field η : Vd × Ω0 → R is space stationary, if there is a semigroup of
measure-preserving bijections {Υy : Ω0 → Ω0}y∈Zd such that Υ0 = IdΩ0 , for any y, z ∈ Zd
we have Υy ◦Υz = Υy+z, and for any (v, y, ω) ∈ Vd ×Zd × Ω0 we have

η(v,Υyω) = η(σy(v), ω).

Let us assume below that η satisfies this as well as 1
L ≤ η ≤ L for some L ≥ 1.

Example 5.2. Let Ω := [0, C)× ΩN0
0 have the product probability measure (with some

C > 0 and the uniform measure on [0, C)). Consider the above setting, with

ξtv(ω) := η(v, ωb(t+a)/Cc) (5.7)

for ω = (a, ω0, ω1, . . . ) ∈ Ω. That is, the speeds ξtv always change after time interval
C, starting from some time a ∈ [0, C). Then they are clearly space-time stationary.
Moreover, if F±t are defined via (5.5) and (5.6), then F−t and F+

t+C are independent
for each t ≥ 0 because random variables α(ω) := η(v1, ωi) and β(ω) := η(v2, ωj) are
independent for any v1, v2 ∈ Vd and any distinct i, j ∈ N0. The above discussion now
shows that Theorem 1.1 applies to Xt,e

m,n above for any e ∈ Zd, so 1
nX

t,e
0,n converges to

some ω-independent constant almost surely.
Moreover, for any (A,B, t) ∈ Z2d × [0,∞) (and with L above) we clearly have

L−1|A−B|1 ≤ Xt(A,B) ≤ L|A−B|1, (5.8)

where |e|1 := |e1| + · · · + |ed| is the L1 norm, so the deterministic limit (5.1) is from
[ 1
L |e|1, L|e|1]. Let us denote by B1

r (0) the ball in Rd with respect to the L1 norm, with
radius r and centered at the origin. Then as in Example 5.1, we can show that there is
convex open S ⊆ Rd, containing B1

1/L(0) and contained in B1
L(0), such that if St(ω) is the

set of all A ∈ Zd with X0(0, A) ≤ t (for t ≥ 0 and ξsv from (5.7)), then for almost every
ω ∈ Ω we have that for any δ > 0 and all large-enough t ≥ 0 (depending on ω and δ),

(1− δ)tS ∩Zd ⊆ St(ω) ⊆ (1 + δ)tS ∩Zd. (5.9)

That is, S is again the deterministic asymptotic shape of all points reachable from the
origin in large times (after scaling by t).
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Example 5.3. Consider a Poisson point process with parameter λ > 0 on R, defined on
some probability space (Ω′,F ′,P′), and let Nt be the corresponding counting process
(i.e., Nt is the number of points in the interval (0, t]). We now let Ω := Ω′ × ΩN0

0 have the
product probability measure, and for ω = (ω′, ω0, ω1, . . . ) ∈ Ω we let

ξtv(ω) := η(v, ωNt)

(again considering the setup described before Example 5.2). That is, now the interval
after which the speeds ξtv change has an exponential distribution. The speeds are again
space-time stationary, and (5∗) holds with φ(s) := e−λs when F±t are defined via (5.5)
and (5.6). Indeed, if Gt,s := {Nt+s = Nt} for t, s ≥ 0, then P[Gt,s] = e−λs and events E
and F ∩Gct,s are independent whenever E ∈ F−t and F ∈ F+

t+s (see below). This includes
F = Ω, which yields for general E ∈ F−t and F ∈ F+

t+s,

0 ≤ P[F ∩Gt,s ∩ E] ≤ P[Gt,s ∩ E] = P[Gt,s]P[E].

Therefore |P[F ∩Gt,s|E]− P [F ∩Gt,s]| ≤ P[Gt,s] and so

|P[F |E]− P [F ]| ≤
∣∣P[F ∩Gct,s|E]− P [F ∩Gct,s]

∣∣+ P[Gt,s] = e−λs.

The discussion before Example 5.2 therefore shows that Theorem 1.2 applies to Xt,e
m,n

above for any e ∈ Zd, so 1
nX

0,e
0,n converges to some ω-independent constant almost surely.

And just as before, we can again also conclude (5.8) and (5.9).
It remains to prove independence of E and F ∩ Gct,s for any E ∈ F−t and F ∈

F+
t+s. Let us denote v0, v1, . . . all the edges in Vd and for m,J ∈ N0 let Y Jm(ω) :=

(η(v0, ωm), . . . , η(vJ , ωm)). By Dynkin’s π-λ Theorem, it suffices to show that P[E ∩ F ∩
Gct,s] = P[E]P[F ∩Gct,s] for

E =
{
Y JNti

∈ Ai for i = 1, . . . , n
}

and F =
{
Y JNti

∈ Ai for i = n+ 1, . . . , 2n
}
,

with arbitrary J ∈ N0, Borel sets A1, . . . , A2n ⊆ RJ , and times

0 ≤ t1 < · · · < tn = t < t+ s = tn+1 < · · · < t2n.

Note that Nti ≥ Nti−1
for all i (let t0 := 0, so Nt0 ≡ 0), and for any k1, . . . , k2n ∈ N0 we

have

P
[
Nti −Nti−1

= ki for i = 1, . . . , 2n
]

=

2n∏
i=1

(λ(ti − ti−1))ki

ki!
e−λ(ti−ti−1) =:

2n∏
i=1

pi,ki

(clearly
∑
k∈N0

pi,k = 1). Since Gct,s = {Ntn+1 > Ntn}, with K2 := (kn+1, . . . , k2n) we
obtain

P
[
F ∩Gct,s

]
=

∑
K2∈N×Nn−1

0

P
[
Y J
Ntn+

∑i
j=n+1 ki

∈Ai &Nti −Nti−1
= ki for i = n+ 1, . . . , 2n

]

=
∑

K2∈N×Nn−1
0

(
2n∏

i=n+1

pi,ki

)
P
[
Y J∑i

j=n+1 ki
∈Ai for i = n+ 1, . . . , 2n

]

because the σ-algebras F ′×{∅,ΩN0
0 } and {∅,Ω′}×FN0

0 are independent, random variables
{Nti−Nti−1

}i=1,...,2n are jointly independent, and the joint distribution of {Y Jm, Y Jm+1, . . . }
is independent of m. But then with K1 := (k1, . . . , kn) we similarly obtain the desired
claim
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P
[
E ∩ F ∩Gct,s

]
=

∑
(K2,K1)∈N×N2n−1

0

P
[
Y J∑i

j=1 ki
∈Ai &Nti −Nti−1

= ki for i = 1, . . . , 2n
]

=
∑

(K2,K1)∈N×N2n−1
0

(
2n∏
i=1

pi,ki

)
P
[
Y J∑i

j=1 ki
∈Ai for i = 1, . . . , 2n

]

=
∑

K1∈Nn0

(
n∏
i=1

pi,ki

)
P
[
Y J∑i

j=1 ki
∈Ai for i = 1, . . . , n

]
∑

K2∈N×Nn−1
0

(
2n∏

i=n+1

pi,ki

)
P
[
Y J∑i

j=1 ki
∈Ai for i = 1, . . . , 2n

]

=
∑

K1∈Nn0

(
n∏
i=1

pi,ki

)
P
[
Y J∑i

j=1 ki
∈Ai for i = 1, . . . , n

]
∑

K2∈N×Nn−1
0

(
2n∏

i=n+1

pi,ki

)
P
[
Y J∑i

j=n+1 ki
∈Ai for i = n+ 1, . . . , 2n

]
= P[E]P

[
F ∩Gct,s

]
,

where we also used kn+1 ≥ 1 in the third equality.
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