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Abstract

We use a new method via p-Wasserstein bounds to prove Cramér-type moderate
deviations in (multivariate) normal approximations. In the classical setting that W is a
standardized sum of n independent and identically distributed (i.i.d.) random variables
with sub-exponential tails, our method recovers the optimal range of 0 6 x = o(n1/6)

and the near optimal error rate O(1)(1+x)(logn+x2)/
√
n for P (W > x)/(1−Φ(x))→

1, where Φ is the standard normal distribution function. Our method also works for
dependent random variables (vectors) and we give applications to the combinatorial
central limit theorem, Wiener chaos, homogeneous sums and local dependence. The
key step of our method is to show that the p-Wasserstein distance between the
distribution of the random variable (vector) of interest and a normal distribution grows
like O(pα∆), 1 6 p 6 p0, for some constants α,∆ and p0. In the above i.i.d. setting,
α = 1,∆ = 1/

√
n, p0 = n1/3. For this purpose, we obtain general p-Wasserstein

bounds in (multivariate) normal approximations using Stein’s method.
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1 Introduction

Moderate deviations date back to Cramér (1938) who obtained expansions for tail
probabilities for sums of independent random variables about the normal distribution.
For independent and identically distributed (i.i.d.) random variables X1, · · · , Xn with
EX1 = 0 and Var(X1) = 1 such that Ee|X1|/b 6 C < ∞ for some b > 0, it follows from
Petrov (1975, Ch.8, Eq.(2.41)) that∣∣∣∣P (W > x)

P (Z > x)
− 1

∣∣∣∣ = O(1)(1 + x3)/
√
n (1.1)

for 0 6 x 6 O(1)n1/6, where W = (X1 + · · ·+Xn)/
√
n, Z ∼ N(0, 1) and O(1) is bounded

by a constant that depends on b and C. The range 0 6 x 6 O(1)n1/6 and the order of the
error term O(1)(1 + x3)/

√
n are optimal. von Bahr (1967) obtained a multi-dimensional

generalization of the result of Cramér (1938) for sums of independent random vectors.
The classical proof of (1.1) depends on the conjugate method, which relies heavily

on the independence assumption. A related method is by controlling the cumulants
of the random vector of interest; see Saulis and Statulevičius (1991). In dimension
one, Chen, Fang and Shao (2013) developed Stein’s method (Stein (1972)) to obtain
Cramér-type moderate deviation results for dependent random variables. They needed a
boundedness condition, which corresponds to assuming |Xi| 6 b for an absolute constant
b in the above i.i.d. setting. Recently, Liu and Zhang (2021) relaxed the boundedness
condition and obtained results for sums of locally dependent random variables and for
the combinatorial central limit theorem (CLT).

In this paper, we use a new method via p-Wasserstein bounds to prove Cramér-
type moderate deviations. For two probability measures µ and ν on Rd, d > 1, their
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From p-Wasserstein bounds to moderate deviations

p-Wasserstein distance, p > 1, is defined by

Wp(µ, ν) =

(
inf
π

∫
Rd×Rd

|x− y|pπ(dx, dy)

)1/p

, (1.2)

where | · | denotes the Euclidean norm and π is a measure on Rd ×Rd with marginals µ
and ν. For two random vectors X,Y ∈ Rd, we also write Wp(X,Y ) = Wp(L(X),L(Y )).
The key idea of our method, explained in more detail in Section 2, is that for a random
variable W of interest and a standard normal variable Z, if we can show

Wp(W,Z) 6
Cp√
n

(1.3)

for all 1 6 p 6 n1/3 and an absolute constant C, then, by a smoothing argument, we can
recover the optimal range 0 6 x = o(n1/6) for the relative error |P (W > x)/P (Z > x)−1|
to vanish and obtain nearly optimal error rate O(1)(1 + x)(1 + log n+ x2)/

√
n subject to

the logarithmic term (cf. (1.1)). This method enables us to prove moderate deviation
results for dependent random variables as long as we can prove results similar to (1.3)
and we give applications to the combinatorial CLT, Wiener chaos, and homogeneous sums
in Section 3. The method also works for multi-dimensional approximations (cf. Sections 4
and 5).

It is well known that classical Cramér-type moderate deviation results can be used to
prove strong approximation results. See, for example, Komlós, Major and Tusnády (1975,
Eq.(2.6)) and the survey by Mason and Zhou (2012). As far as we know, this is the first
time that the reverse direction is explored. It is made possible by recent advances in
p-Wasserstein bounds. In particular, we adapt the approach (cf. Section 6) of Bonis (2020)
to obtain p-Wasserstein bounds for general dependent random vectors. See Theorems 2.1
and 7.1 for the results via (generalized) exchangeable pairs and Theorem 5.1 for local
dependence.

Here, we introduce some of the notations to be used in the statement of results.
More notations will be introduced when they are needed in the proofs. | · | denotes
the Euclidean norm, ‖ · ‖H.S. denotes the Hilbert-Schmidt norm and ‖ · ‖op denotes the
operator norm. ⊗ denotes the tensor product. For a random vector X and p > 0, we
set ‖X‖p := (E|X|p)1/p. For a random matrix Y and p > 0, we set ‖Y ‖p := (E‖Y ‖pH.S.)1/p.
For the function ψα : [0,∞)→ [0,∞), α > 0, defined as

ψα(x) := exp(xα)− 1,

the Orlicz (quasi-)norm of a random vector X is defined as

‖X‖ψα := inf{t > 0 : Eψα(|X|/t) 6 1}. (1.4)

Unless otherwise stated, we use c and C to denote positive absolute constants, which
may differ in different expressions. For a positive integer q, we set [q] := {1, . . . , q}. For
a finite set S, we denote by |S| the cardinality of S.

2 Our approach

2.1 p-Wasserstein bounds

The first step in our approach is proving a p-Wasserstein bound between the distribu-
tion of the random vector of interest and a normal distribution. We obtain the following
p-Wasserstein bound using exchangeable pairs.
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From p-Wasserstein bounds to moderate deviations

Theorem 2.1. Let (W,W ′) be an exchangeable pair of d-dimensional random vectors
satisfying the approximate linearity condition

E[W ′ −W |G] = −Λ(W +R) (2.1)

for some invertible d × d matrix Λ, d-dimensional random vector R and σ-algebra G
containing σ(W ). Assume Λ = λId for some λ > 0 (see Theorem 7.1 for a more general
case). Assume that E|W |p < ∞ for some p > 1 and E|D|4 < ∞, where D = W ′ −W .
Then we have

Wp(W,Z) 6 C

∫ ∞
0

e−t

(
‖Rt‖p +

‖E‖p
ηt(p)

+ min

{ √
d

ηt(p)
,
‖E[D⊗2|D|21{|D|6ηt(p)}|G]‖p

λη3
t (p)

})
dt

(2.2)

6 C

(∫ ∞
0

e−t‖Rt‖pdt+
√
p‖E‖p + pd1/4

√
‖E[D⊗2|D|2|G]‖p

λ

)
, (2.3)

where Z ∼ N(0, Id) is a d-dimensional standard Gaussian vector, ηt(p) :=
√

(e2t − 1)/p,

Rt := R+E[Λ−1D1{|D|>ηt(p)}|G], E :=
1

2
E[Λ−1D ⊗D|G]− Id, (2.4)

and C is an absolute constant.

We defer the proof of Theorem 2.1 to Section 6. The proof heavily relies on the
techniques developed in Bonis (2020). However, the concrete error bound and the
explicit dependence on p that yields optimal moderate deviation results are new. Such
p-Wasserstein bounds can also be obtained under other dependency structures, e.g.,
generalized exchangeable pairs (cf. Theorem 7.1) and local dependence (cf. Theorem 5.1).

Next, we give a corollary of Theorem 2.1 in dimension one.

Corollary 2.1 (The case d = 1). Under the setting of Theorem 2.1, assume d = 1. We
have

Wp(W,Z) 6 C

(
‖R‖p +

√
p‖E‖p + p

√
λ−1‖E[D4|G]‖p

)
. (2.5)

Proof of Corollary 2.1. The corollary is a direct consequence of Theorem 2.1 except that
we bound the additional term from Rt by

C

∫ ∞
0

e−t‖E[λ−1D1{|D|>
√

(e2t−1)/p}|G]‖pdt

6C
√
pλ−1‖E[D2|G]‖p

∫ ε

0

e−t√
e2t − 1

dt+ Cp3/2λ−1‖E[D4|G]‖p
∫ ∞
ε

e−t

(e2t − 1)3/2
dt

6C
√
p‖E‖p + C

√
p

∫ ε

0

e−t√
e2t − 1

dt+ Cp3/2λ−1‖E[D4|G]‖p
∫ ∞
ε

e−t

(e2t − 1)3/2
dt,

which is bounded by the summation of second and third error terms in (2.5) by choosing
an appropriate ε as at the end of the proof of Theorem 2.1.

2.2 From p-Wasserstein bounds to moderate deviations in dimension one

The next step in our approach is proving moderate deviation results using
p-Wasserstein bounds. The following result enables such transition in dimension one.
In most of our applications of the following result, r0 = α1 = 1. See Theorem 4.2 for a
multi-dimensional result.
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From p-Wasserstein bounds to moderate deviations

Theorem 2.2. Let W be a one-dimensional random variable and Z a standard normal
variable. Suppose that

Wp(W,Z) 6 A max
16r6r0

pαr∆r for 1 6 p 6 p0 (2.6)

with some constants α1, . . . , αr0 > 0, A > 0, p0 > 1 and ∆1, . . . ,∆r0 > 0. Suppose also
that ∆ := max16r6r0 ∆r satisfies | log ∆| 6 p0/2. Then there exists a positive constant C
depending only on α1, . . . , αr0 and A such that∣∣∣∣P (W > x)

P (Z > x)
− 1

∣∣∣∣ 6 C(1 + x)

{
max

16r6r0
(| log ∆|+ x2)αr∆r + ∆

}
(2.7)

for all 0 6 x 6
√
p0 ∧minr=1,...,r0 ∆

−1/(2αr+1)
r .

We remark that becauseWp(W,Z) increases in p, to apply Theorem 2.2, we only need
to verify the upper bound onWp(W,Z) for sufficiently large p, for example, for p > 2 in
our applications.

Proof of Theorem 2.2. In this proof, we use C to denote positive constant, which depends
only on α1, . . . , αr0 and A and may be different in different expressions. First we prove
the claim when ∆ < 1/e. Set

p = log(1/∆) +
x2

2
, ε = A max

16r6r0
pαr∆re.

Because | log ∆| 6 p0/2 and x 6
√
p0 by assumption, we have p 6 p0.

Without loss of generality, we may take W and Z so that ‖W −Z‖p =Wp(W,Z). Then

P (W > x) = P (W > x, |W − Z| 6 ε) + P (W > x, |W − Z| > ε)

6 P (Z > x− ε) + P (|W − Z| > ε)

= P (Z > x) + P (x− ε < Z 6 x) + P (|W − Z| > ε).

Let φ(·) denote the standard normal density function. Since

P (x− ε < Z 6 x) =

∫ x

x−ε
φ(z)dz 6 φ((x− ε) ∨ 0)ε

and

P (|W − Z| > ε) 6 (‖W − Z‖p/ε)p (Markov’s inequality)

6 (A max
16r6r0

pαr∆r/ε)
p (by (2.6))

= e−p = ∆e−x
2/2,

we obtain

P (W > x) 6 P (Z > x) + φ((x− ε) ∨ 0)ε+ ∆e−x
2/2.

Similarly, we deduce

P (Z > x) = P (Z > x+ ε) + P (x < Z 6 x+ ε)

6 P (W > x) + P (|W − Z| > ε) + P (x < Z 6 x+ ε)

6 P (W > x) + φ(x)ε+ ∆e−x
2/2.
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From p-Wasserstein bounds to moderate deviations

Consequently, we obtain

|P (W > x)− P (Z > x)| 6 φ((x− ε) ∨ 0)ε+ ∆e−x
2/2. (2.8)

Noting that pαr 6 C({log(1/∆)}αr + x2αr ) and x 6 ∆
−1/(2αr+1)
r for all r, we obtain

ε 6 C max
16r6r0

∆r({log(1/∆)}αr + x2αr )

6 C max
16r6r0

∆r({log(1/∆r)}αr + ∆−2αr/(2αr+1)
r )

6 C max
16r6r0

∆1−2αr/(2αr+1)
r = C max

16r6r0
∆1/(2αr+1)
r ,

(2.9)

where the third inequality follows from the inequality log t 6 βt1/β for all t > 1 and β > 0.
In particular, we have xε 6 C by the assumption on x. Now, if x > ε, we have

φ((x− ε) ∨ 0) 6 φ(x)exε 6 Cφ(x).

Birnbaum’s inequality yields

φ(x)

P (Z > x)
6

2√
4 + x2 − x

=

√
4 + x2 + x

2
6 1 + x. (2.10)

Hence, by (2.8),∣∣∣∣P (W > x)

P (Z > x)
− 1

∣∣∣∣ 6 C(1 + x)(ε+ ∆) 6 C(1 + x){ max
16r6r0

(| log ∆|+ x2)αr∆r + ∆},

where the second inequality follows by the definition of ε. In the meantime, if x 6 ε, we
have

1

P (Z > x)
6
√

2π(1 + ε)eε
2/2 6 C,

where the first inequality follows by (2.10) and the second by (2.9) (recall that we assume
∆ = max16r6r0 ∆r < 1/e). Combining this with (2.8) gives∣∣∣∣P (W > x)

P (Z > x)
− 1

∣∣∣∣ 6 C(ε+ ∆) 6 C(1 + x){ max
16r6r0

(| log ∆|+ x2)αr∆r + ∆}.

So we complete the proof of (2.7).
It remains to prove (2.7) when ∆ > 1/e. In this case, we have ∆r > 1/e for some r,

so x 6 ∆
−1/(2αr+1)
r 6 e1/(2αr+1) 6 e. Thus,

1

P (Z > x)
6 (1 + e)

√
2πee2

by (2.10). Hence (2.7) holds with C > e(1 + e)
√

2πee2 .

2.3 Sums of independent random variables

Finally, we illustrate our approach in the classical setting of sums of independent
random variables.

Let W = 1√
n

∑n
i=1Xi, where {X1, . . . , Xn} are independent with EXi = 0 for all i and

Var(W ) = 1. Suppose
b := max

16i6n
‖Xi‖ψ1 <∞, (2.11)

where ‖ · ‖ψ1
is the Orlicz norm defined in (1.4). This is equivalent to b being the smallest

positive constant such that Ee|Xi|/b 6 2 for all i. Let Z ∼ N(0, 1). To apply Theorem 2.1,
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From p-Wasserstein bounds to moderate deviations

we construct an exchangeable pair (which is standard in Stein’s method) as follows. Let
I be a uniform random index from {1, . . . , n} and independent of everything else. Let
{X ′1, . . . , X ′n} be an independent copy of {X1, . . . , Xn}. Let

W ′ = W − 1√
n
XI +

1√
n
X ′I =: W +D.

Let G = σ(X1, . . . , Xn). It is straightforward to verify that

E(D|G) = −W
n
.

Therefore, we can apply Theorem 2.1 with R = 0 and λ = 1/n to boundWp(W,Z).
We have

‖Rt‖p 6 ‖
n∑
i=1

Yi1{|Yi|>ηt(p)}‖p, ‖E‖p 6 ‖
n∑
i=1

(Y 2
i −EY 2

i )‖p,

and

λ−1‖E[D41{|D|6ηt(p)}|G]‖p 6 ‖
n∑
i=1

Y 4
i 1{|Yi|6ηt(p)}‖p

6
n∑
i=1

EY 4
i + ‖

n∑
i=1

(Y 4
i 1{|Yi|6ηt(p)} −E[Y 4

i 1{|Yi|6ηt(p)}])‖p,

where Yi = (X ′i−Xi)/
√
n. We employ the following lemma to bound these quantities. See

Kuchibhotla and Chakrabortty (2022, Theorem 3.1 and Remark 3.1) for a related result
in dimension one and the literature on such concentration inequalities for sub-Weibull
distributions.

Lemma 2.1. Let ξ1, . . . , ξn be independent random vectors in Rd such that
maxi=1,...,n ‖ξi‖ψα 6 M for some M > 0 and α ∈ (0, 1]. Then, there is a constant
Cα > 0 depending only on α such that, for any p > 2 and any real numbers a1, . . . , an,∥∥∥∥∥

n∑
i=1

ai(ξi −Eξi)

∥∥∥∥∥
p

6 CαM

√√√√p

n∑
i=1

a2
i + p1/α max

16i6n
|ai|

 .

Proof. First, by symmetrization, we have∥∥∥∥∥
n∑
i=1

ai(ξi −Eξi)

∥∥∥∥∥
p

6 2

∥∥∥∥∥
n∑
i=1

aiεiξi

∥∥∥∥∥
p

,

where ε1, . . . , εn are i.i.d. Rademacher variables independent of everything else. Next,
let ζ be a symmetric random variable such that P (|ζ| > t) = e−t

α

for all t > 0. Then we
have P (|εiξi| > t) 6 2 exp(−(t/M)α) = 2P (M |ζ| > t) for all i = 1, . . . , n and t > 0. Thus,
by Theorem 3.2.2 in Kwapień and Woyczyński (1992),

P

(∣∣∣∣∣
n∑
i=1

aiεiξi

∣∣∣∣∣ > t

)
6 48P

(
6M

∣∣∣∣∣
n∑
i=1

aiζi

∣∣∣∣∣ > t

)

for any t > 0, where ζ1, . . . , ζn are independent copies of ζ. This particularly implies that∥∥∥∥∥
n∑
i=1

aiεiξi

∥∥∥∥∥
p

6 CM

∥∥∥∥∥
n∑
i=1

aiζi

∥∥∥∥∥
p

.
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From p-Wasserstein bounds to moderate deviations

Finally, by Corollary 1.2 in Bogucki (2015),∥∥∥∥∥
n∑
i=1

aiζi

∥∥∥∥∥
p

6 Lα

√√√√p

n∑
i=1

a2
i + p1/α max

i=1,...,n
|ai|

 ,

where Lα > 0 depends only on α. All together, we obtain the desired result.

Now, for any r > 1, from b := max16i6n ‖Xi‖ψ1 and the equivalence of sub-exponential
tails and linear growth of Lr-norms (cf. Vershynin (2018, Proposition 2.7.1)),

‖Yi1{|Yi|>ηt(p)}‖r 6 η−1
t (p)(EY 2r

i )1/r 6 Cr2η−1
t (p)b2/n, ‖Y 2

i ‖r 6 Cr2b2/n,

and
‖Y 4

i 1{|Yi|6ηt(p)}‖r 6 η2
t (p)‖Y 2

i ‖r 6 Cr2η2
t (p)b2/n.

Hence, ‖Yi1{|Yi|>ηt(p)}‖ψ1/2
6 Cη−1

t (p)b2/n, ‖Y 2
i ‖ψ1/2

6 Cb2/n and ‖Y 4
i 1{|Yi|6ηt(p)}‖ψ1/2

6
Cη2

t (p)b2/n. So we obtain by Lemma 2.1, for p > 2,∫ ∞
0

e−t‖Rt‖pdt 6 C

√
np+ p2

n

∫ ∞
0

e−t
√
p

√
e2t − 1

b2dt 6 C(
p√
n

+
p5/2

n
)b2,

√
p‖E‖p 6 C(

p√
n

+
p5/2

n
)b2,

and ∫ ∞
0

e−t min

{
1

ηt(p)
,
‖E[D41{|D|6ηt(p)}|G]‖p

λη3
t (p)

}
dt

6
∫ ∞

0

e−t min

{ √
p

√
e2t − 1

,
Cp3/2b4

n(e2t − 1)3/2

}
dt+ C

∫ ∞
0

e−t
p/
√
n+ p5/2/n√
e2t − 1

b2dt

6 C(
p√
n

+
p5/2

n
)b2.

Here, we evaluate the integrals as in the proof of Theorem 2.1. Consequently, from (2.2),

Wp(W,Z) 6 C(
p√
n

+
p5/2

n
)b2, ∀ p > 2. (2.12)

Note that Var(W ) = 1 6 Cb2. Therefore, we can apply Theorem 2.2 with r0 = α1 = 1,
∆1 = b2/

√
n and p0 = (

√
n/b2)2/3, which implies that:

Corollary 2.2. Let W = 1√
n

∑n
i=1Xi, where {X1, . . . , Xn} are independent with EXi = 0

for all i, Var(W ) = 1 and b := max16i6n ‖Xi‖ψ1
<∞. Then there exist positive absolute

constants c and C such that∣∣∣∣P (W > x)

P (Z > x)
− 1

∣∣∣∣ 6 C
(1 + x)(1 + | log(n/b4)|+ x2)b2√

n

for all 0 6 x 6 (n/b4)1/6 and b2√
n
6 c.

Remark 2.1. Corollary 2.2 recovers the bound (1.1) when x >
√

log n. It seems im-
possible to avoid the log n term using our approach because such a term will appear
even if we only aim to bound the Kolmogorov distance using p-Wasserstein bounds and a
smoothing argument.

An inspection of the proof shows that we can replace the range of x by 0 6 x 6
c0(n/b4)1/6 with any absolute constant c0 (the constant C will then depend on c0). Because
our primary interests are vanishing relative errors and the order of magnitude, we will
not worry about such absolute constants and state our results in a form that we find
convenient.
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From p-Wasserstein bounds to moderate deviations

3 Applications to Cramér-type moderate deviations in dimension
one

In this section, we provide more applications in dimension one, including the combi-
natorial CLT, Wiener chaos and homogeneous sums.

3.1 Combinatorial CLT

Let X = {Xij , 1 6 i, j 6 n} be an n× n array of independent random variables where
n > 2, EXij = cij , Var(Xij) = σ2

ij > 0. Assume without loss of generality that (cf. Remark
1.3 of Chen and Fang (2015))

ci· = c·j = 0,

where ci· =
∑n
j=1 cij/n, c·j =

∑n
i=1 cij/n. Let π be a uniform random permutation of

{1, . . . , n}, independent of X, and let

S =

n∑
i=1

Xiπ(i). (3.1)

It is known that E(S) = 0 and (cf. Theorem 1.1 of Chen and Fang (2015))

B2
n := Var(S) =

1

n− 1

n∑
i,j=1

c2ij +
1

n

n∑
i,j=1

σ2
ij , (3.2)

sup
x∈R
|P (W 6 x)− P (Z 6 x)| 6 C

n

n∑
i,j=1

E
∣∣Xij

Bn

∣∣3, (3.3)

where

W =
S

Bn
, (3.4)

and Z ∼ N(0, 1). Cramér-type moderate deviation results were obtained by Frolov
(2022) and Liu and Zhang (2021). Here, we use our approach to prove a version of such
moderate deviation results.

Theorem 3.1. Under the above setting, assume

b := max
16i,j6n

‖Xij‖ψ1 <∞. (3.5)

Then there exist positive absolute constants c and C such that, for

∆ :=
n1/2b2

B2
n

6 c, 0 6 x 6 ∆−1/3,

we have ∣∣∣∣P (W > x)

P (Z > x)
− 1

∣∣∣∣ 6 C(1 + x)(1 + | log ∆|+ x2)∆.

Remark 3.1. Because Frolov (2022)’s result is stated under a different condition and he
did not provide a rate of convergence, here we only compare our result with that in Liu

and Zhang (2021). In our notation, their bound is C(1 + x3)n
1/2b2

B2
n

(n
1/2b
Bn

)5. From (3.2), we

have B2
n 6 Cnb2 and B2

n in general can be of smaller order than nb2. Therefore, except
for the logarithmic term in the error rate, our bound is in general better.

We prove Theorem 2.1 via the following p-Wasserstein bound between W and Z.

Proposition 3.1. Under the assumptions of Theorem 3.1, there exists a positive absolute
constant C such that

Wp(W,Z) 6 C(
p
√
n

B2
n

+
p5/2

B2
n

)b2 ∀ p > 2. (3.6)
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From p-Wasserstein bounds to moderate deviations

In the following, we prove Theorem 3.1 using Proposition 3.1. The proof of Proposi-
tion 3.1 is deferred to Section 7.2.

Proof of Theorem 3.1. We apply Theorem 2.2 with r0 = α1 = 1 and

∆1 := ∆ =
n1/2b2

B2
n

, p0 = ∆
−2/3
1 = (

B2
n

n1/2b2
)2/3.

The conditions in Theorem 2.2 are satisfied by choosing c in the statement of Theorem 3.1
to be sufficiently small and using B2

n 6 Cnb2 from (3.2) to reduce the bound (3.6) to
Cpn1/2b2/B2

n for 2 6 p 6 p0.

3.2 Moderate deviations on Wiener chaos

Let X be an isonormal Gaussian process over a real separable Hilbert space H. Given
an integer q > 2, we consider the q-th multiple Wiener–It̂o integral W = Iq(f) of f ∈ H�q

with respect to X. Here, H�q denotes the q-th symmetric tensor power of H. Here
and below, we use standard concepts and notations in Malliavin calculus. We refer to
Nourdin and Peccati (2012) for all unexplained notations.

We assume Var(W ) = q!‖f‖2H⊗q = 1 for simplicity. The celebrated fourth moment
theorem states that (cf. Theorem 5.2.6 in Nourdin and Peccati (2012))

sup
x∈R
|P (W 6 x)− P (Z 6 x)| 6

√
q − 1

3q
(EW 4 − 3),

where Z ∼ N(0, 1). Schulte and Thäle (2016) obtained a corresponding Cramér-type
moderate deviation result. Here, we use our approach to prove a version of such
moderate deviation results.

To state our result, we need to introduce mixed injective norms of elements in H�q

which were originally introduced in Latała (2006) (see also Lehec (2011)). A partition
of [q] is a collection of nonempty disjoint sets {J1, . . . , Jk} such that [q] =

⋃k
l=1 Jl. We

denote by Πq the set of partitions of [q]. For any h ∈ H�q and J = {J1, . . . , Jk} ∈ Πq,
define

‖h‖J := sup{〈h, u1 ⊗ · · · ⊗ uk〉H⊗q : ul ∈ H⊗|Jl|, ‖ul‖H⊗|Jl| 6 1, l = 1, . . . , k}.

In the remainder of this section, Cq denotes a positive constant, which depends only on
q and may be different in different expressions.

Theorem 3.2. Under the above setting, let

∆ := max
r∈[q−1]

max
J∈Π2q−2r

‖f⊗̃rf‖J ,

where f⊗̃rf denotes the symmetrization of f ⊗r f with ⊗r the r-th contraction operator
(cf. Nourdin and Peccati (2012, Eq. (B.3.1) & (B.4.4))). If

0 6 x 6 min
r∈[q−1]

min
J∈Π2q−2r

‖f⊗̃rf‖−1/(|J |+2)
J , (3.7)

then∣∣∣∣P (W > x)

P (Z > x)
− 1

∣∣∣∣ 6 Cq(1 + x)

{
max
r∈[q−1]

max
J∈Π2q−2r

(| log ∆|+ x2)
1+|J |

2 ‖f⊗̃rf‖J + ∆

}
. (3.8)

The proof of Theorem 3.2 is deferred to Section 7.3.
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Remark 3.2 (Optimality on the range of x). Condition (3.7) is sharp when q = 2. To see
this, assume that H is infinite-dimensional and let (ei)

∞
i=1 be an orthonormal basis of

H. Taking f = 1√
2n

∑n
i=1 e

⊗2
i , we obtain W = 1√

2n

∑n
i=1(X(ei)

2 − 1) (cf. Theorem 2.7.7

in Nourdin and Peccati (2012)). Since X(ei) are i.i.d. standard normal variables, W
is a normalized sum of i.i.d. random variables with the centered χ2-distribution with
1 degree of freedom. Meanwhile, since |〈

∑n
i=1 e

⊗2
i , u1 ⊗ u2〉H⊗2 | 6 ‖u1‖H‖u2‖H for any

u1, u2 ∈ H by Bessel’s inequality and the equality can be attained,

‖f⊗̃1f‖{1},{1} =
1

2n

∥∥∥∥∥
n∑
i=1

e⊗2
i

∥∥∥∥∥
{1},{1}

=
1

2n
.

Also,

‖f⊗̃1f‖{1,2} =
1

2n

∥∥∥∥∥
n∑
i=1

e⊗2
i

∥∥∥∥∥
H⊗2

=
1

2
√
n
.

Thus, (3.7) is rewritten as 0 6 x 6 min{(2n)1/4, (4n)1/6}. In view of Theorem 2 in Petrov
(1975, Chapter VIII), this condition is sharp to obtain a bound like (3.8).

When q > 2, it is unclear whether (3.7) is sharp or not. By an analogous argument
to the above but using Theorem 2 in Linnik (1961), we can show that x must satisfy
x = O(∆−1/(2q−2)−ε) for any ε > 0, where ∆ := ‖f⊗̃1f‖{1},...,{2q−2}. However, (3.7)

requires at least x = O(∆−1/(2q)).

Next, we make connections to the fourth moment theorem. For any J ∈ Π2q−2r with
r ∈ [q − 1], we have |J | 6 2q − 2r 6 2q − 2 and

‖f⊗̃rf‖J 6 ‖f⊗̃rf‖H⊗(2q−2r) 6 ‖f ⊗r f‖H⊗(2q−2r) 6 ‖f‖2H⊗q = 1/q!,

where the first inequality is from ‖h‖J 6 ‖h‖H⊗(2q−2r) for any h ∈ H�(2q−2r), the second
inequality is from the definition of symmetrization and the triangle inequality, the third
inequality follows by the Cauchy–Schwarz inequality. Therefore, noting that the function
(0, 1) 3 δ 7→ δ(y + | log δ|)(2q−1)/2 ∈ (0,∞) is increasing for any y > (2q − 1)/2, we
particularly obtain by Theorem 3.2∣∣∣∣P (W > x)

P (Z > x)
− 1

∣∣∣∣ 6 Cq(1 + x)(1 + | log ∆|+ x2)(2q−1)/2∆

6 Cq(1 + x)(1 + | log ∆|+ x2)(2q−1)/2∆

(3.9)

for all 0 6 x 6 ∆−1/(2q), where

∆ := max
r∈[q−1]

‖f ⊗r f‖H⊗(2q−2r) .

From Nourdin and Peccati (2012, Eq. (5.2.6)), we have ∆ 6 Cq
√
EW 4 − 3. Therefore,

we obtain a Cramér-type moderate deviation result for the fourth moment theorem:

Corollary 3.1. Under the above setting,∣∣∣∣P (W > x)

P (Z > x)
− 1

∣∣∣∣ 6 Cq(1 + x)(1 + | log κ4(W )|+ x2)(2q−1)/2
√
κ4(W )

for all 0 6 x 6 κ4(W )−1/(4q), where κ4(W ) = EW 4 − 3 is the fourth cumulant of W .

Remark 3.3 (Comparison with Schulte and Thäle (2016)). Using the method of cumulants,
Schulte and Thäle (2016) give in their Theorem 5 a Cramér-type moderate deviation
result for multiple Wiener-It̂o integrals in the following form: Let

α(q) :=

{
(q + 2)/(3q + 2) if q is even,

(q2 − q − 1)/(q(3q − 5)) if q is odd.
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From p-Wasserstein bounds to moderate deviations

Then, there are constants c0, c1, c2 > 0 depending only on q such that, for ∆−α(q) > c0
and 0 6 x 6 c1∆−α(q)/(q−1),∣∣∣∣log

P (W > x)

P (Z > x)

∣∣∣∣ 6 c2(1 + x3)∆α(q)/(q−1). (3.10)

On the other hand, by the inequality | log(1 + y)| 6 2|y| for |y| 6 1/2, our simplified
bound (3.9) implies that there are constants c′0, c

′
1, c
′
2 > 0 depending only on q such that,

for ∆ 6 c′0 and 0 6 x 6 c′1∆−1/(2q),∣∣∣∣log
P (W > x)

P (Z > x)

∣∣∣∣ 6 c′2(1 + x)(1 + | log ∆|+ x2)(2q−1)/2∆.

We compare this bound with (3.10). Note that ∆ 6 1. Then, since we can easily check
that α(q) + 1/(2q) < 1/2 if and only if q > 5, Theorem 5 in Schulte and Thäle (2016)
imposes a weaker condition on x than ours when q < 5. However, note that we need
x3∆α(q)/(q−1) = o(1) to get a vanishing bound in (3.10). This condition is always stronger
than our condition x2q∆ = o(1) because α(q) 6 1/2. Moreover, under the condition
x3∆α(q)/(q−1) = o(1), we always have x2q∆ = o(x3∆α(q)/(q−1)) since

α(q)

3(q − 1)
6

q − 1− α(q)

(2q − 3)(q − 1)
.

So our bound always gives a better rate of convergence to 0 than (3.10).

3.3 Homogeneous sums

Let X1, . . . , Xn be independent random variables with mean 0 and variance 1. We
consider a multilinear homogeneous sum of these variables, i.e. a random variable of the
form

W =

n∑
i1,...,iq=1

f(i1, . . . , iq)Xi1 · · ·Xiq ,

where q > 2 and f : [n]q → R is a symmetric function with vanishing diagonals
(i.e. f(i1, . . . , iq) = 0 whenever ir = is for some indices r 6= s). W has mean 0 by
assumption. For simplicity, we assume that W has variance 1, i.e.

Var[W ] = q!

n∑
i1,...,iq=1

f(i1, . . . , iq)
2 = 1.

W is a prominent example of degenerate U -statistics of order q, and limit theorems for
such statistics have been well-studied in the literature. In particular, the prominent
work of de Jong (1990) established the following sufficient conditions for the asymptotic
normality: W converges in law to N(0, 1) if the following conditions are satisfied:

(i) The fourth cumulant of W converges to 0. That is, EW 4 converges to 3.

(ii) The maximal influence

M(f) := max
i∈[n]

n∑
i2,...,iq=1

f(i, i2, . . . , iq)
2

converges to 0.

Corresponding absolute error bounds were investigated in e.g. Nourdin, Peccati and
Reinert (2010); Döbler and Peccati (2017) and Fang and Koike (2022). For example,
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Corollary 2.1 in Fang and Koike (2022) gives the following optimal 1-Wasserstein bound
(throughout this section, Cq denotes a constant, which depends only on q and may be
different in different expressions):

W1(W,Z) 6 Cq

√
|EW 4 − 3|+

(
max
i∈[n]

EX4
i

)q
M(f),

where Z ∼ N(0, 1). However, to our knowledge, no relative error bound for this type
of CLT is available in the literature (but see Remark 3.5). Using our approach, we can
obtain such a bound as follows:

Theorem 3.3. Under the above setting, assume that there exits a constant K > 1 such
that ‖Xi‖ψ2 6 K for all i ∈ [n]. Let

M := max
i∈[n]

EX4
i , ∆ := K2q

√
|EW 4 − 3|+MqM(f)(1 ∨ | logM(f)|2q−2),

and assume ∆ < 1. Then, for all 0 6 x 6 ∆−
1

2q+1 ,∣∣∣∣P (W > x)

P (Z > x)
− 1

∣∣∣∣ 6 Cq(1 + x)(| log ∆|+ x2)q∆. (3.11)

Although Theorem 3.3 is the first moderate deviation result corresponding to de Jong
(1990)’s CLT for homogeneous sums in the literature, the bound seems suboptimal. In
fact, for the case of q = 2 and |Xi| 6 K a.s., we can obtain the following optimal result.
Its proof is a straightforward but very tedious modification of the proof of Theorem 3.3
and we leave it to the appendix. The proof technique would work for general q if we
introduce appropriate notations, but computation of mixed injective norms becomes
extremely complicated. We do not pursue it further in this paper.

Theorem 3.4. Under the above setting, assume that q = 2 and there exists a constant
K > 1 such that |Xi| 6 K a.s. for all i ∈ [n]. Set F = (f(i, j))16i,j6n. Then, there exists a
positive absolute constant C such that∣∣∣∣P (W > x)

P (Z > x)
− 1

∣∣∣∣ 6 CK4(1 + x)(| log ‖F‖op|+ x2)‖F‖op (3.12)

for all 0 6 x 6 ‖F‖−1/3
op .

Remark 3.4 (Optimality of Theorem 3.4). The error bound and the range of x in Theo-
rem 3.4 are optimal. To see this, assume that n is even and Xi are i.i.d. with EX3

i 6= 0.
Define the function f as

f(i, j) =

{
1/
√

2n if {i, j} = {2k − 1, 2k} for some positive integer k,

0 otherwise.

Then we have

W =

n/2∑
k=1

X2k−1X2k +X2kX2k−1√
2n

=
1√
n/2

n/2∑
k=1

X2k−1X2k.

So W is a normalized sum of n/2 i.i.d. random variables with mean 0 and variance 1.
Since E[X3

2k−1X
3
2k] = (EX3

1 )2 6= 0, we need the condition x = o(n1/6) to get a vanishing
relative error bound, and in this case the optimal bound is of the form c(1 + x3)/

√
n for

some constant c > 0. This result is recovered by Theorem 3.4 when x >
√

log n since
‖F‖op = O(n−1/2).
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Remark 3.5 (Comparison with Saulis and Statulevičius (1991)). Saulis and Statulevičius
(1991) give Cramér-type moderate deviation results for polynomial forms of independent
random variables in their Theorem 5.1 using the method of cumulants. Their result is in
terms of

max
r,s∈[q]
r+s=q

√√√√√
 max
i1,...,ir∈[n]

n∑
ir+1,...,iq=1

|f(i1, . . . , iq)|

 max
i1,...,is∈[n]

n∑
is+1,...,iq=1

|f(i1, . . . , iq)|


and is not directly comparable with the fourth-moment-influence bound in Theorem 3.3.
Therefore, we only compare their result with ours in the setting of Theorem 3.4. Suppose
that X1, . . . , Xn are i.i.d. Then, under the assumptions of Theorem 3.4, Saulis and
Statulevičius (1991, Theorem 5.1) leads to a bound of the form CK4(1 + x3)‖F‖op,∞,
where ‖F‖op,∞ is the `∞-operator norm of F : ‖F‖op,∞ := max16i6n

∑n
j=1 |f(i, j)|. Since

‖F‖op 6 ‖F‖op,∞ by Theorem 5.6.9 in Hohn and Johnson (2013), our bound is better
except for the logarithmic term in the error rate.

Theorem 3.3 is a straightforward consequence of the following p-Wasserstein bound
and Theorem 2.2:

Proposition 3.2. Under the assumptions of Theorem 3.3, for any 2 6 p 6M(f)−1/2,

Wp(W,Z) 6 Cqp
q∆.

The proof of Proposition 3.2 is deferred to Section 7.4.

Proof of Theorem 3.3. We first note that M(f) 6
∑n
i1,...,iq=1 f(i1, . . . , iq)

2 = 1/q! 6 1/2.

We apply Theorem 2.2 with r0 = 1, α1 = q, ∆1 = ∆ and p0 = M(f)−1/2. Then, it
remains to check | log ∆| 6 p0/2 and

√
p

0
> ∆−1/(2q+1). Since M > (EX2

1 )2 = 1, we have

∆ >
√
M(f). This and the assumption ∆ < 1 give the desired result.

4 Moderate deviations in multi-dimensions

In this section, we study moderate deviations in multi-dimensions. We first apply The-
orem 2.1 to obtain a p-Wasserstein bound for multivariate normal approximation of sums
of independent random vectors. All the proofs for the results in this section are deferred
to Section 7.5.

Theorem 4.1. Let W = n−1/2
∑n
i=1Xi ∈ Rd, where {X1, . . . , Xn} are independent,

E(Xi) = 0 for all i, and Var(W ) = Id. Suppose ‖Xi‖ψ1
6 b for all 1 6 i 6 n. Let

Z ∼ N(0, Id). Then, for any p > 2, we have

Wp(W,Z) 6 C(
pd1/4

√
n

+
p5/2

n
)b2. (4.1)

Remark 4.1 (Dimension dependence). The dependence on the dimension d of the bound
(4.1) is suboptimal. In fact, when we assume |Xi| 6 b a.s. instead of ‖Xi‖ψ1

6 b and
X1, . . . , Xn are i.i.d., Theorem 1 in Bonis (2020) gives a bound of the form Cpb

√
d/n

with Cp a constant depending only on p (we can use Lemma 6.1 to bound the first term
of the right hand side on Eq.(9) therein). In the meantime, since b >

√
E[|Xi|2] =

√
d,

the right hand side of (4.1) is at least of order O(b
√
d3/2/n). As we already remarked

after Theorem 2.1, the proof of this theorem (and hence Theorem 4.1) uses the same
strategy as in Bonis (2020), and we can indeed derive a bound of order O(b

√
d/n)

from Theorem 2.1 under the boundedness assumption. We also remark that the order
O(b

√
d/n) is optimal due to Proposition 1.2 in Zhai (2018).
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We can use p-Wasserstein bounds to obtain moderate deviation results in the multi-
dimensional setting. In the following theorem, we provide an analogous result as The-
orem 2.2 for |P (|W | > x)/P (|Z| > x) − 1|. For simplicity, we only state a result corre-
sponding to r0 = 1 in Theorem 2.2, which suffices for the applications we consider. We
remark that our approach can be used to obtain upper bounds on |P (W /∈ A)/P (Z /∈
A) − 1| for more general convex sets A ⊂ Rd as long as we have a suitable control on
P (Z ∈ Aε\A−ε)/P (Z /∈ A) for small ε > 0, where Aε\A−ε contains all x ∈ Rd within
distance ε away from the boundary of A.

Theorem 4.2. Let W be a d-dimensional random vector, d > 2, and Z ∼ N(0, Id).
Suppose

Wp(W,Z) 6 Apα∆ for 1 6 p 6 p0

with some constants α > 0, A > 0, ∆ > 0, | log ∆| 6 p0/4 and log(κ(d)) 6 p0/4 with
κ(d) := 2(d/2)−1Γ(d/2). Suppose further that

d(d log d)α∆ 6 B1 (4.2)

and
d∆| log ∆|α 6 B2, if 0 < α 6 1/2. (4.3)

Then there exists a positive constant CA,α,B1,B2 depending only on α, A, B1 and B2 such
that ∣∣∣∣P (|W | > x)

P (|Z| > x)
− 1

∣∣∣∣ 6 CA,α,B1,B2(1 + x)(| log ∆|+ d log d+ x2)α∆ (4.4)

for all 0 6 x 6 min{∆−1/(2α+1),
√
p0}.

The following Cramér-type moderate deviation result for sums of independent random
vectors is an easy consequence of Theorem 4.1, Theorem 4.2 with α = 1, p0 = ∆−2/3 and
the fact that d = E|W |2 6 Cb2.

Theorem 4.3. Under the setting of Theorem 4.1 with d > 2, let

∆ :=
d1/4b2√

n
.

Then there exist positive absolute constants c and C such that, for

d2(log d)∆ 6 c, 0 6 x 6 ∆−1/3,

we have ∣∣∣∣P (|W | > x)

P (|Z| > x)
− 1

∣∣∣∣ 6 C(1 + x)(d log d+ | log ∆|+ x2)∆.

Remark 4.2. The result in Theorem 4.3 recovers the optimal range 0 6 x = o(n1/6) (cf.
von Bahr (1967)) for the relative error to vanish. Although it is known that the error
rate can be improved because of the symmetry of Euclidean balls, see, for example,
von Bahr (1967) and Fang, Liu and Shao (2021), their proofs depend on the conjugate
method, which relies heavily on the independence assumption. Our approach works for
the dependent case (cf. Theorems 5.2 and 5.3).

5 Local dependence

A large class of random vectors that can be approximated by a normal distribution
exhibits a local dependence structure. Roughly speaking, we assume that the random
vector W is a sum of a large number of random vectors {Xi}ni=1 and that each Xi is
independent of {Xj : j /∈ Ai} for a relatively small index set Ai. Variations of such local
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dependence structure and normal approximation results with absolute error bounds
can be found in, e.g., Baldi and Rinott (1989), Barbour, Karoński and Ruciński (1989)
and Chen and Shao (2004). Moderate deviation results (relative error bounds) under
local dependence were recently obtained by Liu and Zhang (2021) in dimension one.
See Remark 5.2 for a comparison.

Throughout this section, we assume n > 2.

5.1 Bounded case

We first provide a p-Wasserstein bound for multivariate normal approximation of sums
of locally dependent, bounded random vectors.

Theorem 5.1. Let W = n−1/2
∑n
i=1Xi ∈ Rd with E(Xi) = 0 for all i and Var(W ) = Id.

We assume that for each i, there is a neighborhood Ai ⊂ {1, . . . , n} such that Xi is
independent of {Xj : j /∈ Ai}. Assume further that for each i and j ∈ Ai, there exists a
second neighborhood Aij such that {Xi, Xj} is independent of {Xk : k /∈ Aij}. Let

Bij := {(k, l) : k ∈ {1, . . . , n}, l ∈ Ak, k or l ∈ Aij}.

Suppose
|Xi| 6 bn, |Xij | 6 b′n, |Ai| 6 θ1, |Bij | 6 θ2,

where Xij denotes the jth component of Xi and | · | denotes the cardinality when applied
to a set. Then there exist positive absolute constants c and C such that, for

2 6 p 6 min{θ1

θ2
,

c

θ2
1b

2
n

}n (5.1)

we have, with Z ∼ N(0, Id),

Wp(W,Z) 6 Cp

(
d(θ1θ2)1/2b′ 2n + θ2

1b
3
n log n√

n

)
. (5.2)

Remark 5.1. We will adapt the proof of Theorem 2.1 to prove Theorem 5.1 in Section 7.6.
Without exchangeability, we can not use the symmetry trick in (6.8). Therefore, because
of the integrability issue of 1/(e2t − 1) for t near 0, we get an additional logarithmic term
in (5.2) (cf. Section 6.2).

Using Theorem 5.1 together with Theorems 2.2 and 4.2, we obtain the following
moderate deviation result for sums of locally dependent, bounded random vectors.

Theorem 5.2. Under the same condition as in Theorem 5.1, for d = 1, there exist
positive absolute constants c and C such that, if

∆1 :=
(θ1θ2)1/2b′ 2n + θ2

1b
3
n log n√

n
6 c,

then, for 0 6 x 6 ∆
−1/3
1 ,∣∣∣∣P (W > x)

P (Z > x)
− 1

∣∣∣∣ 6 C(1 + x)(1 + | log ∆1|+ x2)∆1.

For d > 2, let

∆d :=
d(θ1θ2)1/2b′ 2n + θ2

1b
3
n log n√

n
.

Then, there exist positive absolute constants c and C such that, for d2(log d)∆d 6 c and

0 6 x 6 ∆
−1/3
d , we have∣∣∣∣P (|W | > x)

P (|Z| > x)
− 1

∣∣∣∣ 6 C(1 + x)(| log ∆d|+ d log d+ x2)∆d.
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Proof of Theorem 5.2. Note that d = E(WTW ) 6 θ1b
2
n and 1 6 θ1b

′ 2
n . First consider the

case d = 1. Let p0 = ∆
−2/3
1 . If ∆1 is sufficently small, then | log ∆1| 6 p0/2 and moreover,

using d 6 θ1b
2
n and 1 6 θ1b

′ 2
n ,

p0 = ∆
−2/3
1 6 min{(θ1n

θ2
)1/3, (

n

θ2
1b

2
n

)1/3},

which is bounded by the right-hand side of (5.1). Theorem 5.2 then follows from Theo-
rem 2.2 with r0 = α1 = 1 and Theorem 5.1. The case d > 2 follows by using Theorem 4.2
with α = 1 instead of Theorem 2.2.

5.2 Unbounded case

Next, we consider the unbounded case. We will do truncation and use Bernstein’s
inequality to control the truncation error. For this purpose, we need to assume that the
index set {1, . . . , n} can be partitioned into L groups g1, . . . , gL such that for each group
gl, the summands {Xi : i ∈ gl} are independent. We give two examples below. The next
theorem, whose proof is deferred to Section 7.6, provides a moderate deviation result
under this setting.

Theorem 5.3. Under the setting of Theorem 5.2, replace the boundedness conditions
|Xi| 6 bn and |Xij | 6 b′n by ‖Xij‖ψ1 6 b. Assume in addition the above partition condition
with L groups. Let

∆d :=
dLb log n+ d(θ1θ2)1/2b2 log2 n+ d3/2θ2

1b
3 log4 n√

n
.

For d = 1, there exist positive absolute constants c and C such that, if ∆1 6 c and
0 6 x 6 ∆

−1/3
1 , then∣∣∣∣P (W > x)

P (Z > x)
− 1

∣∣∣∣ 6 C(1 + x)(1 + | log ∆1|+ x2)∆1. (5.3)

For d > 2, there exist positive absolute constants c and C such that, if d2(log d)∆d 6 c

and 0 6 x 6 ∆
−1/3
d , then∣∣∣∣P (|W | > x)

P (|Z| > x)
− 1

∣∣∣∣ 6 C(1 + x)(| log ∆d|+ d log d+ x2)∆d. (5.4)

Example 5.1. In m-dependence (cf. Hoeffding and Robbins (1948)), it is assumed that
Xi is independent of {Xj : |i− j| > m}. We obtain the following corollary of Theorem 5.3
for the case d = 1.

Corollary 5.1. Let {X1, . . . , Xn} be a sequence of m-dependent random variables with
m > 1, E(Xi) = 0 and ‖Xi‖ψ1

6 b. Let W = 1√
n

∑n
i=1Xi. Suppose Var(W ) = 1. Let

∆ =
m2b3 log4 n√

n
.

Then there exist positive absolute constants c and C such that, for

∆ 6 c, 0 6 x 6 ∆−1/3,

we have ∣∣∣∣P (W > x)

P (Z > x)
− 1

∣∣∣∣ 6 C(1 + x)(1 + | log ∆|+ x2)∆.
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Proof of Corollary 5.1. Under m-dependence, {X1, . . . , Xn} can be partitioned into L =

m+ 1 groups such that the X’s in each group are independent. Moreover, the quantities
appearing in the statement of Theorem 5.3 can be taken as

θ1 � m, θ2 � m2.

Using 1 6 Cmb2, we have, ∆1 6 C∆. The corollary then follows from (5.3).

Example 5.2. In graph dependency structure (cf. Baldi and Rinott (1989)), each index
i ∈ {1, . . . , n} is represented by a node in a simple graph and {Xi : i ∈ A} is assumed to
be independent of {Xj : j ∈ B} if A and B are disconnected. In such graph dependency
structure, if the maximum degree of the dependency graph is deg∗, then L can be taken
as L = deg∗+1. This is because each time we take out a group of independent summands,
we can do it in a way that the max degree is decreased by 1. Therefore, Theorem 5.3
also applies. We omit the straightforward result.

Remark 5.2. Liu and Zhang (2021) obtained a moderate deviation result under local
dependence in dimension one using a different method. Their result is stated under a
more general condition and does not have the additional logarithmic terms. However,
the dependence on the neighborhood size and b in their result is worse than ours. For
example, under m-dependence, the bound using their Theorem 2.1 with κ � m and
an �

√
n/(mb) is ∣∣∣∣P (W > x)

P (Z > x)
− 1

∣∣∣∣ 6 C(1 + x3)
m9b7√
n
,

while our bound is (cf. Corollary 5.1), subject to logarithmic terms,∣∣∣∣P (W > x)

P (Z > x)
− 1

∣∣∣∣ .log C(1 + x3)
m2b3√
n
.

Moreover, our approach generalizes easily to multi-dimensions.

6 Proof of the p-Wasserstein bound

In this section, we prove Theorem 2.1. Without loss of generality, we may assume Z
is independent of G and W ′.

We introduce some notations. Let k ∈ N. Given families of real numbers a =

(ai1,...,ik)16i1,...,ik6d and b = (bi1,...,ik)16i1,...,ik6d, we set

〈a, b〉 :=

d∑
i1,...,ik=1

ai1,...,ikbi1,...,ik , |a| :=
√
〈a, a〉 =

√√√√ d∑
i1,...,ik=1

a2
i1,...,ik

.

Note that, if k = 2, 〈a, b〉 = 〈a, b〉H.S. and |a| = ‖a‖H.S.. For x1, . . . , xk ∈ Rd, we define

x1 ⊗ · · · ⊗ xk := (x1,i1 · · ·xk,ik)16i1,...,ik6d.

If x1 = · · · = xd =: x, we write x1⊗· · ·⊗xk = x⊗k for short. Also, if a function f : Rd → R

is k-times differentiable at w ∈ Rd, we set

∇kf(w) :=

(
∂kf

∂wi1 · · · ∂wik
(w)

)
16i1,...,ik6d

. (6.1)

Given a family of random variables X = (Xi1,...,ik)16i1,...,ik6d and p > 0, we set

‖X‖p := (E|X|p)1/p
.

We denote by φ the d-dimensional standard normal density. For brevity, we write ηt
instead of ηt(p) throughout this section.
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6.1 Auxiliary estimates

For every t > 0, we set Ft := e−tW +
√

1− e−2tZ. It is straightforward to check that
Ft has a smooth density ft with respect to N(0, Id). Moreover, ft is strictly positive by
Lemma 3.1 of Johnson and Suhov (2001). Therefore, we can define the score of Ft with
respect to N(0, Id) by ρt(w) = ∇ log ft(w), w ∈ Rd. We use C to denote positive absolute
constants, which may differ in different expressions.

Proposition 6.1. Let p > 1 and t > 0. Under the assumptions of Theorem 2.1, we have

‖ρt(Ft)‖p 6 Ce−t

(
‖Rt‖p +

‖E‖p
ηt

+ min

{√
d

ηt
,
‖E[D⊗2|D|21{|D|6ηt}|G]‖p

λη3
t

})
.

We need some lemmas to prove Proposition 6.1.

Lemma 6.1 (Lemma A.3 of Fang and Koike (2022)). Let Y = (Yij)16i,j6d be a d × d

positive semidefinite symmetric random matrix. Let F and G be two random variables
such that |F | 6 G. Suppose that E|YijG| <∞ for all i, j = 1, . . . , d. Let G be an arbitrary
σ-field. Then we have

‖E[Y F |G]‖H.S. 6 ‖E[Y G|G]‖H.S..

Lemma 6.2 (Lemma A.4 of Fang and Koike (2022)). Let Y be a random vector in Rd such
that E|Y |k <∞ for some integer k > 2. Let G be an arbitrary σ-field. Then

|E[Y ⊗k|G]| 6 ‖E[Y ⊗2|Y |k−2|G]‖H.S..

Lemma 6.3. Let F be a random vector in Rm whose components are of the form
Q(Z1, . . . , Zd), where Q is a polynomial of degree 6 k. Then, for every p > 0,

‖F‖p 6 κkp‖F‖2,

where κp := e
√

(p/2− 1) ∨ 1.

Proof. Since |F |2 is a polynomial of degree 6 2k in Z1, . . . , Zd by assumption, we have
by Theorem 5.10 and Remark 5.11 of Janson (1997)

‖F‖p = ‖|F |2‖1/2p/2 6 (p/2− 1)k/2‖|F |2‖1/22

if p > 4. Since we have ‖|F |2‖p/2 6 ‖|F |2‖2 if p < 4, we obtain

‖F‖p 6 {(p/2− 1) ∨ 1}k/2‖|F |2‖1/22 . (6.2)

Next, we have by Theorem 5.10 and Remark 5.13 of Janson (1997)

‖|F |2‖2 6 e2k‖|F |2‖1 = e2k‖F‖22. (6.3)

The desired result follows from (6.2)–(6.3).

Given a bounded measurable function h : Rd → R and t > 0, we define the function
Tth : Rd → R by

Tth(w) = Eh(e−tw +
√

1− e−2tZ), w ∈ Rd.

One can easily check that Tth is infinitely differentiable and

∇kTth(w) =
(−1)k

(e2t − 1)k/2

∫
Rd
h(e−tw +

√
1− e−2tz)∇kφ(z)dz, k = 1, 2, . . . . (6.4)
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Lemma 6.4. Let X and X ′ be two d-dimensional random vectors such that |X ′ −X| is
bounded, and set Y := X ′−X. Then, for any integer l > 0, bounded measurable function
h : Rd → R and t > 0, we have

〈∇lTth(X ′)−∇lTth(X), Y ⊗l〉 =

∞∑
k=1

1

k!
〈∇l+kTth(X), Y ⊗(l+k)〉 in L∞(P ).

Proof. By assumption, there is a constant M > 0 such that |Y | 6M and supx∈Rd |h(x)| 6
M . Using (6.4), we deduce

|〈∇kTth(w), Y ⊗k〉| 6 M

(e2t − 1)k/2

∫
Rd
|〈∇kφ(z), Y ⊗k〉|dz

6
M

(e2t − 1)k/2

√∫
Rd

(
〈∇kφ(z), Y ⊗k〉

φ(z)

)2

φ(z)dz.

Thus, we have by Lemma 4.3 of Fang and Röllin (2015)

|〈∇kTth(w), Y ⊗k〉| 6 M

(e2t − 1)k/2

√
k!|Y ⊗k|2 =

M
√
k!|Y |k

(e2t − 1)k/2
6

Mk+1
√
k!

(e2t − 1)k/2
.

Hence, for any integer K > 0, we have by Taylor’s expansion∣∣∣∣∣〈∇lTth(X ′)−∇lTth(X), Y ⊗l〉 −
K∑
k=1

1

k!
〈∇l+kTth(X), Y ⊗(l+k)〉

∣∣∣∣∣
6 sup
u∈[0,1]

1

(K + 1)!

∣∣∣〈∇l+K+1Tth(X + uY ), Y ⊗(l+K+1)〉
∣∣∣ 6 M l+K+1

√
(l +K + 1)!

(K + 1)!(e2t − 1)(l+K+1)/2
.

Since the last quantity tends to 0 as K →∞, we complete the proof.

For every t > 0, let

Dt := D1{|D|6ηt}, Wt := W +Dt.

Note that we have

Wt =

{
W ′ if |D| 6 ηt,

W if |D| > ηt.

One can check that (W,Wt) is an exchangeable pair. In fact, for any u, v ∈ Rd, we have

E[e
√
−1(u·W+v·Wt)] = E[e

√
−1(u·W+v·W ′)1{|D|6ηt}] +E[e

√
−1(u·W+v·W )1{|D|>ηt}]

= E[e
√
−1(u·W ′+v·W )1{|D|6ηt}] +E[e

√
−1(u·W+v·W )1{|D|>ηt}]

= E[e
√
−1(u·Wt+v·W )1{|D|6ηt}] +E[e

√
−1(u·Wt+v·W )1{|D|>ηt}]

= E[e
√
−1(u·Wt+v·W )],

where the second equality follows from the exchangeability of (W,W ′). Also, using (2.1)
and recalling (2.4), one can easily check

E[Wt −W |G] = −Λ(W +Rt). (6.5)

Let us set

τt := E

[
Λ−1Dt

(
1− 1

2

〈∇φ(Z), Dt〉
φ(Z)

√
e2t − 1

+
1

2

∞∑
k=3

ak
(−1)k〈∇kφ(Z), D⊗kt 〉
φ(Z)(e2t − 1)k/2

)
|G ∨ σ(Z)

]
,

(6.6)
where ak := 1

k! −
1

4(k−2)! . As in the proof of Lemma 6.4, one can check that the series

inside the conditional expectation in (6.6) converges in L1(P ), so τt is well-defined.
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Lemma 6.5. E[τt|Ft] = 0 for all t > 0.

Proof. It suffices to prove E[τth(Ft)] = 0 for any bounded measurable function h : Rd →
R. We have by exchangeability

E[Λ−1Dt{Tth(W ) + Tth(Wt)}] = 0.

Applying Lemma 6.4, we obtain

E

[
Λ−1Dt

{
Tth(W ) +

∞∑
k=0

1

k!
〈∇kTth(W ), D⊗kt 〉

}]
= 0. (6.7)

Now, we have again by exchangeability

E
[
Λ−1Dt〈∇2Tth(W ), D⊗2

t 〉
]

= −E
[
Λ−1Dt〈∇2Tth(Wt), D

⊗2
t 〉
]
. (6.8)

Hence we obtain

E
[
Λ−1Dt〈∇2Tth(W ), D⊗2

t 〉
]

= −1

2
E
[
Λ−1Dt〈∇2Tth(Wt)−∇2Tth(W ), D⊗2

t 〉
]

= −1

2
E

[
Λ−1Dt

∞∑
k=1

1

k!
〈∇k+2Tth(W ), D

⊗(2+k)
t 〉

]

= −1

2
E

[
Λ−1Dt

∞∑
k=3

1

(k − 2)!
〈∇kTth(W ), D⊗kt 〉

]
.

Inserting this into (6.7), we deduce

E

[
Λ−1Dt

{
2Tth(W ) +Dt · ∇Tth(W ) +

∞∑
k=3

ak〈∇kTth(W ), D⊗kt 〉

}]
= 0. (6.9)

Meanwhile, we have by (6.4)

∇kTth(w) =
(−1)k

(e2t − 1)k/2
Eh(e−tw +

√
1− e−2tZ)

∇kφ(Z)

φ(Z)
.

Inserting this into (6.9) and using the definition of Ft, we obtain 2E[τth(Ft)] = 0. Hence
we complete the proof.

Proof of Proposition 6.1. Recall

ak :=
1

k!
− 1

4(k − 2)!
, κp := e

√
(p/2− 1) ∨ 1.

We divide the proof into two steps.
Step 1. We first prove the following inequality:

‖ρt(Ft)‖p 6 e−t

(
‖Rt‖p +

κp√
e2t − 1

‖Et‖p +
1

2

∞∑
k=3

|ak|κkp
√
k!

(e2t − 1)k/2

∥∥E[(Λ−1Dt)⊗D⊗kt |G]
∥∥
p

)
,

(6.10)
where

Et := E − 1

2
E[(Λ−1D)⊗D1{|D|>ηt}|G].

We have by Lemma 2 of Bonis (2020)

ρt(Ft) = E

[
e−tW − e−2t

√
1− e−2t

Z|Ft
]

= e−tE

[
W − 1√

e2t − 1
Z|Ft

]
. (6.11)
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Hence, Lemma 6.5 yields

ρt(Ft) = e−tE

[
W− 1√

e2t − 1
Z+τt|Ft

]
= e−tE

[
−Rt+

1√
e2t − 1

EtZ+
1

2

∞∑
k=3

akE

[
Λ−1Dt

(−1)k〈∇kφ(Z), D⊗kt 〉
φ(Z)(e2t − 1)k/2

|G ∨ σ(Z)

]
|Ft

]
.

Therefore, we have by the Jensen and Minkowski inequalities

‖ρt(Ft)‖p 6 e−t
(
‖Rt‖p +

1√
e2t − 1

‖EtZ‖p

+
1

2

∞∑
k=3

|ak|
(e2t − 1)k/2

∥∥∥∥∥E
[

Λ−1Dt
〈∇kφ(Z), D⊗kt 〉

φ(Z)
|G ∨ σ(Z)

]∥∥∥∥∥
p

 . (6.12)

Now, Lemma 6.3 yields

E[|EtZ|p|G] 6
(
κ2
pE[|EtZ|2|G]

)p/2
and

E

[∣∣∣∣∣E
[

Λ−1Dt
〈∇kφ(Z), D⊗kt 〉

φ(Z)
|G ∨ σ(Z)

]∣∣∣∣∣
p

|G

]

6

κ2k
p E

∣∣∣∣∣E
[

Λ−1Dt
〈∇kφ(Z), D⊗kt 〉

φ(Z)
|G ∨ σ(Z)

]∣∣∣∣∣
2

|G

p/2

.

Note that, conditional on G, EtZ ∼ N(0, EtE
T
t ). Thus we have

E[|EtZ|2|G] = |Et|2.

Meanwhile, we have by Lemma 4.3 of Fang and Röllin (2015)

E

∣∣∣∣∣E
[

Λ−1Dt
〈∇kφ(Z), D⊗kt 〉

φ(Z)
|G ∨ σ(Z)

]∣∣∣∣∣
2

|G


=

d∑
j=1

E

∣∣∣∣∣ 〈∇kφ(Z),E[(Λ−1Dt)jD
⊗k
t |G]〉

φ(Z)

∣∣∣∣∣
2

|G


6 k!

d∑
j=1

∣∣E[(Λ−1Dt)jD
⊗k
t |G]

∣∣2 = k!
∣∣E[(Λ−1Dt)⊗D⊗kt |G]

∣∣2 .
Consequently, we obtain

‖EtZ‖p 6 κp‖Et‖p

and ∥∥∥∥∥E
[

Λ−1Dt
〈∇kφ(Z), D⊗kt 〉

φ(Z)
|G ∨ σ(Z)

]∥∥∥∥∥
p

6 κkp
√
k!
∥∥E[(Λ−1Dt)⊗D⊗kt |G]

∥∥
p
.

Inserting these estimates into (6.12), we obtain (6.10).

EJP 28 (2023), paper 83.
Page 22/52

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP976
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


From p-Wasserstein bounds to moderate deviations

Step 2. We have by Lemma 6.1

|Et| 6 |E|+ (2λ)−1 min{|E[D⊗2|G]|, η−2
t |E[D⊗2|D|2|G]|}

6 |E|+ (2λ)−1 min{2λ(|E|+
√
d), η−2

t |E[D⊗2|D|2|G]|}

6 2|E|+ (2λ)−1 min{2λ
√
d, η−2

t |E[D⊗2|D|2|G]|}.

We also have by Lemmas 6.1 and 6.2

|E[D
⊗(k+1)
t |G]| 6 |E[D⊗2

t |Dt|k−1|G]| = |E[D⊗2|D|k−11{|D|6ηt}|G]|
6 min{ηk−1

t |E[D⊗2|G]|, ηk−3
t |E[D⊗2|D|2|G]|}

6 2ληk−1
t |E|+ min{2ληk−1

t

√
d, ηk−3

t |E[D⊗2|D|2|G]|}.

Inserting these estimates into (6.10) and noting κp 6 e
√
p as well as

∑∞
k=3 |ak|ek

√
k! <∞,

we obtain the desired result.

6.2 Proof of Theorem 2.1

By Eq.(3.8) of Ledoux, Nourdin and Peccati (2015),

Wp(W,Z) 6
∫ ∞

0

‖ρt(Ft)‖pdt, p > 1. (6.13)

Strictly speaking, this bound was only proved when W has a bounded C∞ density h
with respect to N(0, Id) such that h > η for some constant η > 0 and |∇h| is bounded
(cf. Eq.(32) of Otto and Villani (2000)). However, this restriction can be removed by a
similar argument as in Section 8 of Bonis (2020). For completeness, we give a formal
proof in Appendix A.2 of the appendix.

(2.2) follows by combining (6.13) with Proposition 6.1.
Next, take ε > 0 arbitrarily. We have∫ ∞

0

e−t min

{√
d

ηt
,
‖E[D⊗2|D|2|G]‖p

λη3
t

}
dt

6
√
pd

∫ ε

0

e−t√
e2t − 1

dt+
p3/2‖E[D⊗2|D|2|G]‖p

λ

∫ ∞
ε

e−t

(e2t − 1)3/2
dt.

Since ∫ ε

0

e−t√
e2t − 1

dt 6
∫ ε

0

1√
2t
dt =

√
2ε

and ∫ ∞
ε

e−t

(e2t − 1)3/2
dt 6

∫ ∞
ε

1

(2t)3/2
dt =

1√
2ε
,

taking

ε =
p‖E[D⊗2|D|2|G]‖p

2
√
dλ

,

we obtain∫ ∞
0

e−t min

{√
d

ηt
,
‖E[D⊗2|D|2|G]‖p

λη3
t

}
dt 6 Cpd1/4

√
‖E[D⊗2|D|2|G]‖p

λ
.

Also, observe that ∫ ∞
0

e−t√
e2t − 1

dt =
1

2

∫ 1

0

1√
1− x

dx = 1.

Inserting these estimates into (2.2), we obtain (2.3).

EJP 28 (2023), paper 83.
Page 23/52

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP976
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


From p-Wasserstein bounds to moderate deviations

7 More proofs

7.1 Generalized exchangeable pairs

Here we record a p-Wasserstein bound for generalized exchangeable pairs. Let X
be a general space and suppose (X,X ′) is an exchangeable pair of X -valued random
variables. Let W := W (X) ∈ Rd be the random vector of interest, W ′ := W (X ′) and
D := W ′ −W . Suppose there exists an antisymmetric function G := G(X,X ′) ∈ Rd (i.e.,
G(X,X ′) = −G(X ′, X) a.s.) such that

E(G|σ(X)) = −(W +R). (7.1)

Suppose the law of W is approximately N(0, Id) and we are interested in bounding

Wp(W,Z).

The formulation (7.1) with d = 1 was first proposed by Chatterjee (2007) for concen-
tration inequalities (see also Zhang (2022) for Kolmogorov bounds). In Corollary 2.11 of
Döbler (2023) for 1-Wasserstein bounds, he considered the case d = 1, W =

∑m
l=1Wl and

E[W ′l −Wl|X] = −λlWl. In this case, we can choose G in (7.1) to be G =
∑m
l=1

W ′l−Wl

λl
.

For d > 1, the setting of Reinert and Röllin (2009) corresponds to G = Λ−1(W ′ −W ).

Theorem 7.1. Under the above setting, assume that E|W |p < ∞ for some p > 1 and
E|G||D|3 <∞. Then we have

Wp(W,Z) 6 C

(∫ ∞
0

e−t‖Rt‖pdt+
√
p‖E‖p + p

√
‖E[|G||D||σ(X)]‖p‖E[|G||D|3|σ(X)]‖p

)
,

where Z ∼ N(0, Id) is a d-dimensional standard Gaussian vector,

Rt := R+E[G1{|D|>
√

(e2t−1)/p}|σ(X)], E :=
1

2
E[G⊗D|σ(X)]− Id,

and C is an absolute constant.

Proof of Theorem 7.1. The proof is a straightforward modification of that of Theorem 2.1.
We use the notation therein. Let

Gt := G1{|D|6ηt}.

We start from the identity

E[Gt{Tth(W ) + Tth(Wt)}] = 0.

Following the proof of Proposition 6.1 except that we change Λ−1Dt therein by Gt
and use |E[Y1 ⊗ · · · ⊗ Yk|σ(X)]| 6 E[|Y1 ⊗ · · · ⊗ Yk||σ(X)] = E[|Y1| · · · |Yk||σ(X)] instead
of Lemmas 6.1 and 6.2, we obtain

‖ρt(Ft)‖p

6Ce−t
(
‖Rt‖p+

√
p

√
e2t − 1

‖E‖p+min

{√
p‖E[|G||D||σ(X)]‖p√

e2t − 1
,
p3/2‖E[|G||D|3|σ(X)]‖p

(e2t − 1)3/2

})
.

Then, the theorem follows by optimizing the integration as in the proof of Theorem 2.1.
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7.2 Proof for combinatorial CLT

Proof of Proposition 3.1. In this proof, we use C to denote positive absolute constants,
which may differ in different expressions.

Step 1. The exchangeable pair. Let Yij = Xij/Bn and hence, W =
∑n
i=1 Yiπ(i). We

construct an exchangeable pair (W,W ′) by uniformly selecting two different indices
I, J ∈ {1, . . . , n}, independent of X and π, and let

W ′ = W +D = W − YIπ(I) − YJπ(J) + YIπ(J) + YJπ(I).

Let G = σ(X, π). It is known that (cf. Eq. (3.3) of Chen and Fang (2015))

E(W ′ −W |G) = −λ(W +R), (7.2)

where

λ =
2

n− 1
, R = − 1

n

n∑
i,j=1

Yij .

For 1 6 i 6= j 6 n, let

Y (ij)
π := −Yiπ(i) − Yjπ(j) + Yiπ(j) + Yjπ(i).

For t > 0 and p > 2, let ηt(p) =
√

(e2t − 1)/p be as in Theorem 2.1. For any given
permutation π, because of the assumption ‖Xij‖ψ1 6 b, we have, following the same
argument as in Section 2.3 for the independent case,

‖Y (ij)
π 1{|Y (ij)

π |>ηt(p)}
‖ψ1/2

6 Cη−1
t (p)

b2

B2
n

, (7.3)

‖(Y (ij)
π )2‖ψ1/2

6
Cb2

B2
n

, (7.4)

‖(Y (ij)
π )41{|Y (ij)

π |6ηt(p)}
‖ψ1/2

6 Cη2
t (p)

b2

B2
n

.

We will apply the p-Wasserstein bound (2.2), which we recall:

Wp(W,Z) 6 C

∫ ∞
0

e−t
(
‖Rt‖p +

‖E‖p
ηt(p)

+ min

{
1

ηt(p)
,
‖E[D41{|D|6ηt(p)}|G]‖p

λη3
t (p)

})
dt,

where

Rt := R+E[λ−1D1{|D|>ηt(p)}|G], E :=
1

2
E[λ−1D2|G]− 1.

Step 2. Bounding Rt. For the above exchangeable pair, we have

Rt = − 1

n

n∑
i,j=1

Yij +
1

n

∑
16i<j6n

Y (ij)
π 1{|Y (ij)

π |>ηt(p)}
.

Because of centering (i.e., ci· = c·j = 0), we have

1

n

n∑
i,j=1

Yij =
1

n

n∑
i,j=1

(Yij −EYij).

From Lemma 2.1 and ‖Yij‖ψ1
6 b/Bn, we have

‖ 1

n

n∑
i,j=1

Yij‖p 6
Cb

nBn
(
√
pn2 + p) 6 C(

p
√
n

B2
n

+
p5/2

B2
n

)b2,
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where we used B2
n 6 Cnb2 from (3.2) in the last inequality.

To deal with the second term in Rt, we separate
∑

16i<j6n into O(n) sums, each
sum is over a collection of O(n) disjoint pairs (i, j). For example, {1 6 i < j 6 n} =

∪n−1
l=1 (I(1)

l ∪ I
(2)
l ), where

I(1)
l = {1 6 i < j 6 n : j − i = l, i ∈ {kl + 1, . . . , (k + 1)l}, k > 0 an odd integer},

I(2)
l = {1 6 i < j 6 n : j − i = l, i ∈ {kl + 1, . . . , (k + 1)l}, k > 0 an even integer}.

Consider such a sum ∑
(i,j)∈I

Y (ij)
π 1{|Y (ij)

π |>ηt(p)}
.

Conditioning on the unordered pair {π(i), π(j)} for all (i, j) ∈ I, it is a sum of O(n)

independent random variables, each with mean 0 and ‖ · ‖ψ1/2
6 Cη−1

t (p)b2/B2
n (cf. (7.3)).

From Lemma 2.1, we obtain

‖
∑

(i,j)∈I

Y (ij)
π 1{|Y (ij)

π |>ηt(p)}
‖p 6 Cη−1

t (p)
b2

B2
n

(
√
pn+ p2).

Combining the above bounds, we obtain∫ ∞
0

e−t‖Rt‖pdt 6 C(
p
√
n

B2
n

+
p5/2

B2
n

)b2.

Step 3. Bounding E. Note that

E :=
1

2λ
E[D2|G]− 1

=
1

2λ
E[D2|G]− 1

2λ
E[D2] +

1

2λ
E[D2]− 1

=
1

2n

∑
16i<j6n

[
(Y (ij)
π )2 −E(Y (ij)

π )2
]

+
1

2λ
E[D2]− 1

=:H21 +H22.

From exchangeability and the linearity condition (7.2), we obtain

H22 =
1

2λ
E(W ′ −W )2 − 1 =

1

2λ
(−2E[(W ′ −W )W ])− 1

=E(RW ) = − 1

n
E

 n∑
i,j=1

Yij

n∑
k=1

Ykπ(k)

 = − 1

n2
E

 n∑
i,j=1

Yij

n∑
k,l=1

Ykl

 .
From (3.2), we have

|H22| =
1

n2
E(

n∑
i,j=1

Yij)
2 =

1

n2
Var(

n∑
i,j=1

Yij) 6
1

n
.

Now we turn to bounding H21. Write

H21 =
1

2n

∑
16i<j6n

[
(Y (ij)
π )2 −Eπ(Y (ij)

π )2
]

+
1

2n

∑
16i<j6n

[
Eπ(Y (ij)

π )2 −E(Y (ij)
π )2

]
,

where Eπ denotes the conditional expectation given the permutation π. From a similar
argument as in bounding Rt and using (7.4) for the first term, we obtain

‖ 1

2n

∑
16i<j6n

[
(Y (ij)
π )2 −Eπ(Y (ij)

π )2
]
‖p 6 C(

√
pn

B2
n

+
p2

B2
n

)b2.
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Now we turn to bounding the second term of H21. Let

ξij :=
Eπ(Y

(ij)
π )2 −E(Y

(ij)
π )2

n3/2b2/B2
n

,

and hence,
1

2n

∑
16i<j6n

[
Eπ(Y (ij)

π )2 −E(Y (ij)
π )2

]
=
n1/2b2

2B2
n

∑
16i<j6n

ξij .

In the remainder of this step, we show that with V =
∑

16i<j6n ξij and if p > 2, we have

‖V ‖p 6 C(
√
p+

p√
n

), (7.5)

and hence ∫ ∞
0

e−t
‖E‖p
ηt(p)

dt 6 C(
p
√
n

B2
n

+
p5/2

B2
n

)b2,

where we used B2
n 6 Cnb2 again to simplify the upper bound. To prove (7.5), let

h(t) = EetV . We have

h′(t) =
∑

16i<j6n

Eξije
tV =

∑
16i<j6n

1

n(n− 1)

∑
16k 6=l6n

E{E[ξije
tV |π(i) = k, π(j) = l]}

=
∑

16i<j6n

1

n(n− 1)

∑
16k 6=l6n

aijklE{E[etV |π(i) = k, π(j) = l]}, (7.6)

where

aijkl :=
E(−Yik − Yjl + Yil + Yjk)2 −E(−Yiπ(i) − Yjπ(j) + Yiπ(j) + Yjπ(i))

2

n3/2b2/B2
n

.

Next, it is known that we can define a new permutation πijkl such that it differs from π

only in absolutely bounded finite number of arguments and (cf. (3.14) of Chen and Fang
(2015))

L(πijkl) = L(π|π(i) = k, π(j) = l). (7.7)

Let

Vijkl =
∑

16u<v6n

1

n3/2b2/B2
n

[
Eπijkl(Y (uv)

πijkl
)2 −E(Y (uv)

π )2
]
.

From its construction and the bound |ξij | 6 C/n3/2, we have

|Vijkl − V | 6 Cn
1

n3/2
=

C√
n
.

Therefore, using the inequality |ex − 1| 6 |x|e|x| for all x ∈ R, we obtain

|etVijkl − etV | = |et(Vijkl−V ) − 1|etV 6 |t| C√
n
eCt/

√
netV . (7.8)

Also, by (7.6) and (7.7),

h′(t) =
∑

16i<j6n

1

n(n− 1)

∑
16k 6=l6n

aijklE[etVijkl ].
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In addition, observe that∑
16i<j6n

1

n(n− 1)

∑
16k 6=l6n

aijklE[etV ] = E[etV ]
∑

16i<j6n

∑
16k 6=l6n

E[ξij1{π(i)=k,π(j)=l}]

= E[etV ]
∑

16i<j6n

E[ξij ] = 0.

Consequently, for t 6
√
n,

|h′(t)| =

∣∣∣∣∣∣
∑

16i<j6n

1

n(n− 1)

∑
16k 6=l6n

aijkl(E[etVijkl ]−E[etV ])

∣∣∣∣∣∣
6 C

|t|√
n

∑
16i<j6n

1

n(n− 1)

∑
16k 6=l6n

|aijkl|E[etV ]

6 C
|t|
n2

∑
16i<j6n

1

n(n− 1)

∑
16k 6=l6n

E[etV ] 6 C|t|E[etV ] = C|t|h(t),

where the first inequality follows by (7.8) and the second by ‖Yij‖ψ1
6 b/Bn. Hence, by

Gronwall’s inequality, we have

h(t) = EetV 6 eCt
2

for |t| 6
√
n. (7.9)

(7.9) means that V is sub-gamma with variance factor C and scale parameter 1/
√
n in

the sense of Boucheron, Lugosi and Massart (2013, Section 2.4). Then, by Theorem 2.3
in Boucheron, Lugosi and Massart (2013) and Stirling’s formula,

‖V ‖p 6 C(
√
p+ p/

√
n), p > 2

which is (7.5).

Step 4. Bounding D4. We have

λ−1E[D41{|D|6ηt(p)}|G] =
1

n

∑
16i<j6n

[(Y (ij)
π )41{|Y (ij)

π |6ηt(p)}
]

=
1

n

∑
16i<j6n

[
(Y (ij)
π )41{|Y (ij)

π |6ηt(p)}
−Eπ(Y (ij)

π )41{|Y (ij)
π |6ηt(p)}

]
+

1

n

∑
16i<j6n

Eπ(Y (ij)
π )41{|Y (ij)

π |6ηt(p)}
.

Following a similar argument as in the previous two steps, we obtain∫ ∞
0

e−t min

{
1

ηt(p)
,
‖E[D41{|D|6ηt(p)}|G]‖p

λη3
t (p)

}
dt

6C
∫ ∞

0

e−t
p
√
n/B2

n + p5/2/B2
n√

e2t − 1
b2dt+

∫ ∞
0

e−t min

{ √
p

√
e2t − 1

,
Cp3/2nb4

B4
n(e2t − 1)3/2

}
dt

6C(
p
√
n

B2
n

+
p5/2

B2
n

)b2.

Combining all the above bounds proves (3.6).
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7.3 Proof for moderate deviations on Wiener chaos

Throughout this subsection, Cq denotes a positive constant, which depends only on q
and may be different in different expressions. For the proof, in addition to Theorem 2.2,
we use Latała (2006)’s sharp moment estimates for Gaussian homogeneous sums. For
later use in Section 7.4, we state the following generalization obtained in Adamczak and
Wolff (2015).

Lemma 7.1 (Adamczak and Wolff (2015), Theorem 1.3). Let G be a standard Gaussian
vector in Rn. Then, for every polynomial Q : Rn → R of degree at most q and every
p > 2,

C−1
q

q∑
r=1

∑
J∈Πr

p|J |/2‖E∇rQ(G)‖J 6 ‖Q(G)−EQ(G)‖p 6 Cq

q∑
r=1

∑
J∈Πr

p|J |/2‖E∇rQ(G)‖J ,

where ∇rQ is defined by (6.1) and we regard E∇rQ(G) as an element of (Rn)�r.

The next result follows from Lemma 7.1 via a standard approximation argument.

Lemma 7.2. For any h ∈ H�q and p > 2,

‖Iq(h)‖p 6 Cq
∑
J∈Πq

p|J |/2‖h‖J . (7.10)

Proof. We prove the claim when H is infinite-dimensional; the finite-dimensional case is
similar and easier. Let (ei)

∞
i=1 be an orthonormal basis of H. Then (ei1 ⊗ · · · ⊗ eiq )∞i1,...,iq=1

is an orthonormal basis of H⊗q. For every n ∈ N, define

hn :=

n∑
i1,...,iq=1

ai1,...,iqei1 ⊗ · · · ⊗ eiq ,

where ai1,...,iq = 〈h, ei1 ⊗ · · · ⊗ eiq 〉H⊗q . Then we have ‖hn − h‖H⊗q → 0 as n → ∞.
By hypercontractivity (cf. Theorem 2.7.2 of Nourdin and Peccati (2012)), this implies
‖Iq(hn)− Iq(h)‖p → 0 as n→∞. Also, it is straightforward to check that ‖hn − h‖J → 0

as n→∞ for all J ∈ Πq. Therefore, it suffices to prove (7.10) with h replaced by hn.
By Theorems 2.7.7 and 2.7.10 in Nourdin and Peccati (2012), we have Iq(hn) =

Q(X(e1), . . . , X(en)) for some polynomial Q : Rn → R of degree at most q. Then, for any
j1, . . . , jr ∈ [n],

∂j1,...,jrQ(X(e1), . . . , X(en)) = 〈DrIq(hn), ej1 ⊗ · · · ⊗ ejr 〉H⊗r .

Since EDrIq(hn) = 0 if r < q and DqIq(hn) = q!hn, we obtain

E∇rQ(X(e1), . . . , X(en)) =

{
0 if r < q,

q!A if r = q,

where A = (ai1,...,iq )16i1,...,iq6n. Regarding A as an element of (Rn)�q, we can easily
check that ‖A‖J = ‖hn‖J for all J ∈ Πq. Thus, the desired result follows from Lemma 7.1.

Proof of Theorem 3.2. According to Theorem 2.2, it suffices to prove

Wp(W,Z) 6 Cq max
r∈[q−1]

max
J∈Π2q−2r

p(1+|J |)/2‖f⊗̃rf‖J (7.11)

for all p > 2. By Proposition 3.7 in Nourdin, Peccati and Swan (2014),

τ(w) = E[〈−DL−1W,DW 〉H|W = w], w ∈ R,
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gives a Stein kernel for W (in the sense that it satisfies Eq.(2.3) in Ledoux, Nourdin
and Peccati (2015) with ν the law of W ). Hence, using the Stein kernel bound for
p-Wasserstein distance (cf. Proposition 3.4(ii) in Ledoux, Nourdin and Peccati (2015)),
we obtain

Wp(W,Z) 6 C
√
p‖τ(W )− 1‖p.

By Eq.(5.2.2) in Nourdin and Peccati (2012),

τ(W ) =
1

q
‖DW‖2H = 1 + q

q−1∑
r=1

(r − 1)!

(
q − 1

r − 1

)2

I2q−2r(f⊗̃rf).

Thus, by Minkowski’s inequality and Lemma 7.2,

‖τ(W )− 1‖p 6 Cq

q−1∑
r=1

∑
J∈Π2q−2r

p|J |/2‖f⊗̃rf‖J .

Consequently, we obtain (7.11).

7.4 Proof for homogeneous sums

Throughout this section, C denotes a positive absolute constant and Cq denotes
a positive constant depending only on q, respectively. Note that their values may be
different in different expressions. Also, given a function g : [n]q → R, we write

‖g‖ =

√√√√ n∑
i1,...,iq=1

g(i1, . . . , iq)2.

We will frequently use the following inequality throughout the proof.

Lemma 7.3 (Adamczak and Wolff (2015), Theorem 1.4). Let X = (X1, . . . , Xn) be a
random vector with independent components. Suppose that there is a constant K > 0

such that ‖Xi‖ψ2
6 K for all i = 1, . . . , n. Then, for every polynomial Q : Rn → R of

degree at most q and every p > 2,

‖Q(X)−EQ(X)‖p 6 Cq

q∑
r=1

Kr
∑
J∈Πr

p|J |/2‖E∇rQ(X)‖J .

Proof of Proposition 3.2. First, note thatM(f) 6 ‖f‖2 = 1/q! 6 1/2. Hence | logM(f)| >
log 2 and pM(f) 6 p

√
M(f) 6 1.

Step 1. The exchangeable pair. Let X∗ = (X∗1 , . . . , X
∗
n) be an independent copy of

X := (X1, . . . , Xn). Also, let I ∼ Unif[n] be an index independent of X and X∗. Define
X ′ = (X ′1, . . . , X

′
n) by

X ′i =

{
X∗i , if i = I,

Xi, otherwise.

Then we set

W ′ =

n∑
i1,...,iq=1

f(i1, . . . , iq)X
′
i1 · · ·X

′
iq .

It is easy to check L(X,X ′) = L(X ′, X); hence, L(W,W ′) = L(W ′,W ). Moreover,

D := W ′ −W =

n∑
i1,...,iq=1
∃r:ir=I

f(i1, . . . , iq)(X
′
I −XI)

q∏
r=1:ir 6=I

Xir

= q(X ′I −XI)QI(X),
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where, for every i = 1, . . . , n, Qi is an n-variate polynomial defined as

Qi(x1, . . . , xn) :=

n∑
i2,...,iq=1

f(i, i2, . . . , iq)xi2 · · ·xiq .

Hence

E[D|X] = − q
n
W.

Therefore, by Corollary 2.1

Wp(W,Z) 6 C
√
p‖E‖p + Cp

√
n

q
‖E[D4|X]‖p =: H1 +H2, (7.12)

where

E =
n

2q
E[D2|X]− 1.

Step 2. Bounding H1. Observe that

n

2q
E[D2|X] =

q

2

n∑
i=1

(1 +X2
i )Qi(X)2.

Define an n-variate polynomial Q as

Q(x1, . . . , xn) =
q

2

n∑
i=1

(1 + x2
i )Qi(x1, . . . , xn)2.

Observe that Q has total degree 2q and degree 2 in xi for every i ∈ [n]; the latter
follows from the fact that f is vanishing on diagonals. Using the latter property, one can
easily verify that, with G ∼ N(0, In), EQ(X) = EQ(G) and E∇rQ(X) = E∇rQ(G) for all
r = 1, . . . , 2q. Hence, by Lemmas 7.1 and 7.3,

H1 6 Cq
√
pK2q‖Q(G)− 1‖p. (7.13)

Let e1, . . . , en be the standard basis of Rn. Without loss of generality, we may assume
that Gi = G(ei) (i = 1, . . . , n) for some isonormal Gaussian process G over H = Rn.
Then, for every i = 1, . . . , n, we have

Qi(G) = Iq−1(fi),

where Iq denotes the q-th multiple Wiener–It̂o integral with respect to G and

fi :=

n∑
i2,...,iq=1

f(i, i2, . . . , iq)ei2 ⊗ · · · ⊗ eiq .

Thus we obtain

Q(G)− 1 =
q

2

n∑
i=1

(1 +G2
i )Iq−1(fi)

2 − 1

=
q

2

n∑
i=1

(G2
i − 1)Iq−1(fi)

2 +

{
q

n∑
i=1

Iq−1(fi)
2 − 1

}
=: H11 +H12.
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To evaluate H11, observe that G2
i − 1 = I2(e⊗2

i ) by Theorem 2.7.7 in Nourdin and Pec-
cati (2012). Also, by the product formula for multiple Wiener–It̂o integrals (cf. Theorem
2.7.10 in Nourdin and Peccati (2012)),

Iq−1(fi)
2 =

q−1∑
r=0

r!

(
q − 1

r

)2

I2q−2−2r(fi⊗̃rfi).

Using the product formula again and noting that f(i, i2, . . . , iq) = 0 if ir = i for some r as
well as ei · ej = 0 if i 6= j, we obtain

H11 =
q

2

q−1∑
r=0

r!

(
q − 1

r

)2

I2q−2r

(
n∑
i=1

e⊗2
i ⊗̃(fi⊗̃rfi)

)
. (7.14)

Let r ∈ {0, 1, . . . , q − 1} be fixed. By Lemma 7.2,∥∥∥∥∥I2q−2r

(
n∑
i=1

e⊗2
i ⊗̃(fi⊗̃rfi)

)∥∥∥∥∥
p

6 Cq
∑

J∈Π2q−2r

p|J |/2

∥∥∥∥∥
n∑
i=1

e⊗2
i ⊗̃(fi⊗̃rfi)

∥∥∥∥∥
J

. (7.15)

Observe that∥∥∥∥∥
n∑
i=1

e⊗2
i ⊗̃(fi⊗̃rfi)

∥∥∥∥∥
{1},...,{2q−2r}

6 sup
u∈Rn:|u|61

n∑
i=1

u2
i ‖fi⊗̃rfi‖H⊗(2q−2r−2)

and ∥∥∥∥∥
n∑
i=1

e⊗2
i ⊗̃(fi⊗̃rfi)

∥∥∥∥∥
J

6

∥∥∥∥∥
n∑
i=1

e⊗2
i ⊗̃(fi⊗̃rfi)

∥∥∥∥∥
H⊗(2q−2r)

6

√√√√ n∑
i=1

‖fi⊗̃rfi‖2H⊗(2q−2r−2)

for any J ∈ Π2q−2r. By the Cauchy–Schwarz inequality,

‖fi⊗̃rfi‖H⊗(2q−2r−2) 6
n∑

i2,...,iq=1

f(i, i2, . . . , iq)
2.

Hence we obtain ∥∥∥∥∥
n∑
i=1

e⊗2
i ⊗̃(fi⊗̃rfi)

∥∥∥∥∥
{1},...,{2q−2r}

6M(f)

and ∥∥∥∥∥
n∑
i=1

e⊗2
i ⊗̃(fi⊗̃rfi)

∥∥∥∥∥
J

6

√√√√M(f)

n∑
i1,...,iq=1

f(i1, . . . , iq)2 =

√
1

q!
M(f)

for any J ∈ Π2q−2r. Inserting these estimates into (7.15), we deduce∥∥∥∥∥I2q−2r

(
n∑
i=1

e⊗2
i ⊗̃(fi⊗̃rfi)

)∥∥∥∥∥
p

6 Cq

(
pq−r−1/2

√
M(f) + pq−rM(f)

)
.

Combining this bound with (7.14) and pM(f) 6 1, we obtain

‖H11‖p 6 Cqp
q−1/2

√
M(f). (7.16)
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To evaluate H12, observe that Iq−1(fi) = q−1DIq(f) · ei for every i = 1, . . . , n, where D

denotes the Malliavin derivative with respect to G and

f :=

n∑
i1,...,iq=1

f(i1, . . . , iq)ei1 ⊗ · · · ⊗ eiq .

Hence

H12 = q−1
n∑
i=1

(DIq(f) · ei)2 − 1 = q−1‖DIq(f)‖2H − 1.

Therefore, by the proof of Theorem 3.2,

‖H12‖p 6 Cq

q−1∑
r=1

∑
J∈Π2q−2r

p|J |/2‖f⊗̃rf‖J 6 Cqp
q−1 max

r∈[q−1]
‖f ⊗r f‖,

where, for every r ∈ [q], the function f ⊗r f : [n]2q−2r → R is defined as

f ⊗r f(i1, . . . , i2q−2r) =

n∑
j1,...,jr=1

f(i1, . . . , iq−r, j1, . . . , jr)f(iq−r+1, . . . , i2q−2r, j1, . . . , jr).

Combining this with Lemma 2.1 in Koike (2023), we obtain

‖H12‖p 6 Cqp
q−1
√
|EW 4 − 3|+MqM(f). (7.17)

By (7.13), (7.16) and (7.17), we conclude

H1 6 Cqp
qK2q

√
|EW 4 − 3|+MqM(f). (7.18)

Step 3. Bounding H2. First, by Lemma 7.3

‖Qi(X)‖s 6 CqK
q−1s(q−1)/2

√
Infi(f)

for any i ∈ [n] and s > 2, where

Infi(f) :=

n∑
i2,...,iq=1

f(i, i2, . . . , iq)
2.

Hence we have (cf. Lemma A.4 in Koike (2023))

P (|Qi(X)| > t) 6 Cq exp

−( t

C ′qK
q−1
√

Infi(f)

)2/(q−1)


for all t > 0, where C ′q > 0 is a constant depending only on q. Let

δi := C ′qK
q−1
√

Infi(f)|pq logM(f)|(q−1)/2.

Then, by Lemma 6.1 in Koike (2023),

E[|Qi(X)|s1{|Qi(X)|>δi}] 6 Cq

(
1 +

2s− 2/(q − 1)

s− 2/(q − 1)

)
{s(q − 1)}s(q−1)/2δsiM(f)pq

for any s > 2/(q − 1). Since 2/(q − 1) 6 2, we can apply this inequality with s = 4p and
then obtain

‖Qi(X)41{|Qi(X)|>δi}‖p 6 Cqp
2(q−1)δ4

iM(f)q. (7.19)
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Now we bound n
qE[D4|X] as

n

q
E[D4|X] = q3

n∑
i=1

E[(X ′i −Xi)
4|X]Qi(X)4

6 q3
n∑
i=1

E[(X ′i −Xi)
4|X]δ4

i + q3
n∑
i=1

E[(X ′i −Xi)
4|X]Qi(X)41{|Qi(X)|>δi}

=: H21 +H22.

(7.20)

We bound ‖H21‖p as

‖H21‖p 6 q3
n∑
i=1

E[(X ′i −Xi)
4]δ4

i + q3

∥∥∥∥∥
n∑
i=1

{E[(X ′i −Xi)
4|X]−E(X ′i −Xi)

4}δ4
i

∥∥∥∥∥
p

.

For the first term, we have

q3
n∑
i=1

E[(X ′i −Xi)
4]δ4

i 6 CqK
4

n∑
i=1

δ4
i 6 Cqp

2q−2K4qM(f)| logM(f)|2(q−1).

To bound the second term, note that ‖E[(X ′i − Xi)
4|X]‖ψ1/2

6 CK4. Therefore, by
Lemma 2.1, ∥∥∥∥∥

n∑
i=1

{E[(X ′i −Xi)
4|X]−E(X ′i −Xi)

4}δ4
i

∥∥∥∥∥
p

6 CK4

√√√√p

n∑
i=1

δ8
i + p2 max

16i6n
δ4
i


6 CqK

4q(p2q−3/2M(f)3/2 + p2qM(f)2)| logM(f)|2(q−1)

6 CqK
4qp2q−2M(f)| logM(f)|2(q−1),

where in the second inequality we used
∑n
i=1 Infi(f) = 1/q! and the last inequality follows

from the condition pM(f) 6 p
√
M(f) 6 1. All together, we obtain

‖H21‖p 6 CqK
4qp2q−2M(f)| logM(f)|2(q−1). (7.21)

In the meantime, noting that (Xi, X
′
i) and Qi(X) are independent, we have

‖H22‖p 6 q3
n∑
i=1

‖(X ′i −Xi)
4‖p‖Qi(X)41{|Qi(X)|>δi}‖p.

Using (7.19) and p
√
M(f) 6 1, we obtain

‖H22‖p 6 CqK
4p2qM(f)q

n∑
i=1

δ4
i 6 CqK

4qp2q−2M(f)| logM(f)|2(q−1). (7.22)

Combining (7.21) and (7.22) with (7.20) gives

H2 6 Cp
√
H21 +H22 6 CqK

2qpq
√
M(f)| logM(f)|q−1. (7.23)

By (7.12), (7.18) and (7.23), we complete the proof.
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7.5 Proof for moderate deviations in multi-dimensions

Proof of Theorem 4.1. The proof is almost identical to the arguments leading to (2.12),
except that we view Y ⊗2

i as a d2-vector, use ‖Y ⊗2
i ‖H.S. = |Yi|2 and Lemma 2.1 for

independent random vectors in Rd
2

. The factor d1/4 comes from the
√
d term in (2.2).

Proof of Theorem 4.2. In this proof, we use C := CA,α,B1,B2
to denote positive constants,

which depend only on α, A, B1 and B2 and may be different in different expressions. Let
f(x) := f(x; d) denote the density of the chi-distribution with d degrees of freedom, i.e.,

f(x) =
1

κ(d)
xd−1e−x

2/2, κ(d) := 2(d/2)−1Γ(d/2).

Note that log(κ(d)) 6 Cd log d. For d > 2 and x > 0, we have∫ ∞
x

yd−1e−y
2/2dy = xd−2e−x

2/2 +

∫ ∞
x

(d− 2)yd−3e−y
2/2dy > xd−2e−x

2/2.

Therefore,
f(x)

P (|Z| > x)
6 x. (7.24)

First we prove the claim when ∆ < 1/e. Set

p = | log ∆|+ log(κ(d)) +
x2

2
, ε = Apα∆e.

Because of the condition | log ∆| 6 p0/4, log(κ(d)) 6 p0/4 and x 6
√
p0, we have p 6 p0.

From the upper bound onWp(W,Z), we can couple W and Z such that ‖W−Z‖p 6 Apα∆.
We have

P (|W | > x) 6 P (|Z| > x− ε) + P (|W − Z| > ε)

= P (|Z| > x) + P (x− ε < |Z| 6 x) + P (|W − Z| > ε).

Since

P (x− ε < |Z| 6 x) =

∫ x

(x−ε)∨0

f(z)dz

and

P (|W − Z| > ε) 6 ε−p‖W − Z‖pp 6 (Apα∆/ε)p = e−p = ∆
1

κ(d)
e−x

2/2,

we obtain

P (|W | > x) 6 P (|Z| > x) +

∫ x

(x−ε)∨0

f(z)dz + ∆
1

κ(d)
e−x

2/2.

Similarly, we deduce

P (|Z| > x) = P (|Z| > x+ ε) + P (x < |Z| 6 x+ ε)

6 P (|W | > x) + P (|W − Z| > ε) + P (x < |Z| 6 x+ ε)

6 P (|W | > x) +

∫ x+ε

x

f(z)dz + ∆
1

κ(d)
e−x

2/2.

Consequently, we obtain

|P (|W | > x)− P (|Z| > x)| 6
∫ x+ε

(x−ε)∨0

f(z)dz + ∆
1

κ(d)
e−x

2/2.
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Note that (4.2) implies d(log d)∆2/(2α+1) 6 C. Therefore, using x 6 ∆−1/(2α+1), we have

ε 6 C∆(| log ∆|α + logα(κ(d)) + x2α) 6 C∆(| log ∆|α + ∆−2α/(2α+1))

6 C∆1−2α/(2α+1) = C∆1/(2α+1).
(7.25)

Note that ε 6 C and for 0 6 x 6 ∆−1/(2α+1), we have xε 6 C. Also note that (4.2) implies
d∆| log ∆|α 6 Cd∆2/(2α+1) 6 C if α > 1/2. If x > 1, we have, from (7.24),∫ x+ε

(x−ε)∨0
f(z)dz

P (|Z| > x)
6 Cε

f(x)

P (|Z| > x)
exε(

x+ ε

x
)d−1 6 Cxεedε/x

6Cxε exp
{
C
(
d∆| log ∆|α + d(d log d)α∆ + d∆ + d∆2/(2α+1)1{α>1/2}

)}
6Cxε,

where we used 1 6 x 6 ∆−1/(2α+1), (4.2) and (4.3). Therefore,∣∣∣∣P (|W | > x)

P (|Z| > x)
− 1

∣∣∣∣ 6 Cxε+ ∆ 6 C(1 + x)(| log ∆|+ d log d+ x2)α∆.

If x < 1, the conclusion follows from 1/P (|Z| > x) 6 C and

|P (|W | > x)− P (|Z| > x)| 6 C(ε+ ∆).

It remains to prove (4.4) when ∆ > 1/e. In this case, we have x 6 e and thus
1/P (|Z| > x) is bounded. Hence (4.4) holds with a sufficiently large CA,α,B1,B2

.

7.6 Proof for local dependence

Proof of Theorem 5.1. We adapt the proof of Theorem 2.1 and use the notation therein.
Let G = σ(X1, . . . , Xn). Let I be a uniform random index from {1, . . . , n} and independent
of everything else. Let D = −n−1/2

∑
j∈AI Xj . Because |Xj | 6 bn and |AI | 6 θ1, we have

|D| 6 θ1bn/
√
n. Because Xi is independent of {Xj : j /∈ Ai}, we have

E[(−
√
nXI)Tth(W +D)] = 0,

and hence,

E

[
(−
√
nXI)

{
Tth(W ) + 〈∇Tth(W ), D〉+

∞∑
k=2

1

k!
〈∇kTth(W ), D⊗k〉

}]
= 0.

Let

τt = E

[
(−
√
nXI)

(
1− 〈∇φ(Z), D〉

φ(Z)
√
e2t − 1

+

∞∑
k=2

1

k!

(−1)k〈∇kφ(Z), D⊗k〉
φ(Z)(e2t − 1)k/2

)
|G ∨ σ(Z)

]
.

Following the same argument leading to (6.12), we have

‖ρt(Ft)‖p 6 e−t
(

1√
e2t − 1

‖EZ‖p

+

∞∑
k=2

1

k!(e2t − 1)k/2

∥∥∥∥E [(−√nXI)
〈∇kφ(Z), D⊗k〉

φ(Z)
|G ∨ σ(Z)

]∥∥∥∥
p

)
,

where E = E[(−
√
nXI) ⊗ D|G] − Id. Following the same argument as in the proof

of Proposition 6.1, with γt =
√
e2t − 1, the first term is bounded by Ce−t

γt

√
p‖E‖p. The

second term with k = 2, is bounded by

Ce−tpθ2
1b

3
n√

nγ2
t

.
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From p-Wasserstein bounds to moderate deviations

The second term with k > 3, if γt > θ1bn
√
p/n, is bounded by

Ce−tp3/2θ3
1b

4
n

nγ3
t

.

Note that

d = E(WTW ) 6
nθ1

n
b2n = θ1b

2
n.

Let t0 be such that
√
e2t0 − 1 = θ1bn

√
p/n and assume it is 6 c for a sufficiently small

constant c > 0 as in the condition (5.1). Then, with W0 := e−t0W +
√

1− e−2t0Z, we have

Wp(W0, Z) 6
∫ ∞
t0

‖ρt(Ft)‖pdt

6C
√
p‖E‖p + C

∫ ∞
t0

e−t

e2t − 1
dt
pθ2

1b
3
n√
n

+ C

∫ ∞
t0

e−t

(e2t − 1)3/2
dt
p3/2θ3

1b
4
n

n

6C
√
p‖E‖p +

Cpθ2
1b

3
n log n√
n

.

This implies

Wp(W,Z) =et0Wp(e
−t0W, e−t0Z)

6et0Wp(e
−t0W,W0) + et0Wp(W0, Z) + et0Wp(Z, e

−t0Z)

6C
√
p‖E‖p +

Cpθ2
1b

3
n log n√
n

+
Cpd1/2θ1bn√

n

6C
√
p‖E‖p +

Cpθ2
1b

3
n log n√
n

,

where we used ‖
√

1− e−2t0Z‖p 6 Cθ1bn
√
p/n
√
dp (cf. Lemma 6.3) in the second inequal-

ity and d 6 θ1b
2
n in the last inequality. Note that

E =
1

n

n∑
i=1

∑
j∈Ai

(Xi ⊗Xj)− Id.

Denote the (u, v)-entry of the d× d matrix E by Euv. Then, for p > 2,

‖E‖p =

[
E(

d∑
u,v=1

E2
uv)

p/2

]1/p

6 dmax
u,v
‖Euv‖p.

Write Xi = (Xi1, . . . , Xid)
T and, from E(Euv) = 0,

Euv =
1

n

n∑
i=1

Xiu

∑
j∈Ai

Xjv − δuv =
2(θ1θ2)1/2b′ 2n√

n

n∑
i=1

∑
j∈Ai

[
XiuXjv −E(XiuXjv)

2(θ1θ2)1/2b′ 2n
√
n

]

=:
2(θ1θ2)1/2b′ 2n√

n

n∑
i=1

∑
j∈Ai

Xuv
ij =:

2(θ1θ2)1/2b′ 2n√
n

Vuv.

In the remainder of this proof, we show that if 2 6 p 6 θ1n/θ2 as in the condition (5.1),
then

‖Vuv‖p 6 C
√
p, (7.26)

and hence conclude (5.2).
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Let V (ij)
uv = Vuv −

∑
(k,l)∈Bij X

uv
kl . Then |Vuv − V (ij)

uv | 6
√
θ2/
√
θ1n. Hence, similarly to

the derivation of (7.8), we obtain

|etVuv − etV
(ij)
uv | 6 |t|

√
θ2

θ1n
et
√
θ2/
√
θ1netVuv (7.27)

for any t ∈ R. Also, with h(t) = EetVuv , we have

h′(t) = E[Vuve
tVuv ] =

n∑
i=1

∑
j∈Ai

E[Xuv
ij e

tVuv ].

Further, since

V (ij)
uv =

n∑
k=1

∑
l∈Ak

Xuv
kl −

n∑
k=1

∑
l∈Ak:k or l∈Aij

Xuv
kl =

∑
k/∈Aij

∑
l∈Ak:l/∈Aij

Xuv
kl ,

V
(ij)
uv is independent of Xuv

ij . Hence

n∑
i=1

∑
j∈Ai

E[Xuv
ij e

tV (ij)
uv ] =

n∑
i=1

∑
j∈Ai

E[Xuv
ij ]E[etV

(ij)
uv ] = 0.

Consequently, for |t| 6
√
θ1n/

√
θ2,

|h′(t)| =

∣∣∣∣∣∣
n∑
i=1

∑
j∈Ai

E[Xuv
ij (etVuv − etV

(ij)
uv )]

∣∣∣∣∣∣ 6 C|t|
√

θ2

θ1n

n∑
i=1

∑
j∈Ai

E[|Xuv
ij |etVuv ]

6 C|t|
√

θ2

θ1n

n∑
i=1

∑
j∈Ai

E[etVuv ]

(θ1θ2)1/2
√
n
6 C|t|E[etVuv ] = C|t|h(t),

where the first inequality follows by (7.27), the second by |Xij | 6 b′n, and the third by
|Ai| 6 θ1. Hence, by Gronwall’s inequality,

h(t) 6 eCt
2

for |t| 6
√
θ1n/

√
θ2. (7.28)

(7.28) means that Vuv is sub-gamma with variance factor C and scale parameter√
θ2/
√
θ1n in the sense of Boucheron, Lugosi and Massart (2013, Section 2.4). Then, by

Theorem 2.3 in Boucheron, Lugosi and Massart (2013) and Stirling’s formula,

‖Vuv‖p 6 C(
√
p+ p

√
θ2/
√
θ1n) 6 C

√
p,

where the last inequality follows by (5.1). This proves (7.26).

Proof of Theorem 5.3. We use C to denote positive absolute constants, which may dif-
fer in different expressions. We first do truncation. Let X̃ij := Xij1{|Xij |6b logn} −
EXij1{|Xij |6b logn}, X̃i = (X̃i1, . . . , X̃id)

T , W (l) = n−1/2
∑
i∈gl Xi, W̃ (l) = n−1/2

∑
i∈gl X̃i

and W̃ =
∑L
l=1 W̃

(l) = n−1/2
∑n
i=1 X̃i.

From ‖Xij‖ψ1
6 b and Koike (2021, Lemma 5.4), we have, for every positive integer

p,

E[|n−1/2(Xij − X̃ij)|p] 6 n−p/22p−1E[|Xij |p1{|Xij |>b logn}]

6n−p/22p−1p!2e−b logn/b(b log n+ b)p

=
p!

2

(
2b log n+ 2b√

n

)p−2
8(b log n+ b)2

n2
.
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Using the independence of the X’s within each group gl and the Bernstein inequality
(Boucheron, Lugosi and Massart (2013, Theorem 2.10)), we obtain

P (W
(l)
j − W̃

(l)
j >

√
2v0t+ c0t) ∨ P (−(W

(l)
j − W̃

(l)
j ) >

√
2v0t+ c0t) 6 e−t, ∀ t > 0,

where v0 = 8(b log n+ b)2/n, c0 = (2b log n+ 2b)/
√
n and Wj denotes the jth component

of W . Therefore, by Boucheron, Lugosi and Massart (2013, Theorem 2.3) we obtain, for
p > 1,

‖W (l)
j − W̃

(l)
j ‖p 6 C(

√
pv0 + pc0) 6

Cpb log n√
n

,

‖Wj − W̃j‖p 6
L∑
l=1

‖W (l)
j − W̃

(l)
j ‖p 6

CpLb log n√
n

,

and

‖W − W̃‖p 6
d∑
j=1

‖Wj − W̃j‖p 6
CpdLb log n√

n
. (7.29)

Using the triangle inequality, we have

Wp(W,Z) 6Wp(W, W̃ ) +Wp(W̃ , Z̃) +Wp(Z̃, Z), (7.30)

where Z̃ ∼ N(0,Var(W̃ )). Note that

|E[W̃jW̃k]−E[WjWk]|

=

∣∣∣∣∣ 1n
n∑
i=1

∑
i′∈Ai

{
E[Xij1{|Xij |6b logn}Xi′k1{|Xi′k|6b logn}]−E[XijXi′k]

}∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

∑
i′∈Ai

{
−E[Xij1{|Xij |6b logn}Xi′k1{|Xi′k|>b logn}]−E[Xij1{|Xij |>b logn}Xi′k]

}∣∣∣∣∣
62b log nmax

i

∑
i′∈Ai

E[|Xi′k|1{|Xi′k|>b logn}]

+ max
i

∑
i′∈Ai

√
E[X2

ij1{|Xij |>b logn}]E[X2
i′k1{|Xi′k|>b logn}]

6
Cθ1b

2 log2 n

n
,

where we used Koike (2021, Lemma 5.4) in the last inequality. This implies, from the
p-Wasserstein bound via Stein kernels by Ledoux, Nourdin and Peccati (2015, Proposition
3.4(ii)),

Wp(Z̃, Z) 6
Cp1/2dθ1b

2 log2 n

n
for all p > 2. (7.31)

Further, given a d × d matrix A, we write ‖A‖op,∞ := maxj=1,...,d

∑d
k=1 |Ajk|. Then, for

D := Id −Var(W̃ ) = Var(W )−Var(W̃ ), we have

‖D‖op,∞ = max
j=1,...,d

d∑
k=1

|E[WjWk]−E[W̃jW̃k]| 6 Cdθ1b
2 log2 n

n
.

Thus, assuming d1/2θ
1/2
1 b log n/

√
n to be sufficiently small as in the condition of Theo-

rem 5.3, we have

‖Var(W̃ )−1/2‖op,∞=‖(Id −D)−1/2‖op,∞=‖
∞∑
r=0

(2r)!

4r(r!)2
Dr‖op,∞ 6

∞∑
r=0

(2r)!

4r(r!)2
‖D‖rop,∞6C.
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From p-Wasserstein bounds to moderate deviations

Therefore, we can apply Theorem 5.1 to Var(W̃ )−1/2X̃i’s with b′n = Cb log n and bn =

Cd1/2b log n. In addition, we have

‖Var(W̃ )1/2‖op = ‖Var(W̃ )‖1/2op 6 ‖Var(W̃ )‖1/2op,∞ 6 (‖Id‖op,∞ + ‖D‖op,∞)1/2 6 C,

where the first inequality follows by Theorem 5.6.9 in Hohn and Johnson (2013). These
arguments imply that there exist positive absolute constants c and C such that, if

2 6 p 6 min{θ1

θ2
,

c

θ2
1db

2 log2 n
}n, (7.32)

then

Wp(W̃ , Z̃) 6 Cp

(
d(θ1θ2)1/2b2 log2 n+ θ2

1d
3/2b3 log4 n√

n

)
.

Combining this with (7.29)–(7.31) and noting 1 6 Cθ1b, we have

Wp(W,Z) 6 Cp∆d if (7.32) holds.

The upper bounds (5.3) and (5.4) then follow from Theorem 2.2 and Theorem 4.2
respectively by a similar argument as in the proof of Theorem 5.2.

A Appendix

A.1 Proof of Theorem 3.4

Theorem 3.4 is a straightforward consequence of the following p-Wasserstein bound
and Theorem 2.2:

Proposition A.1. Under the assumptions of Theorem 3.4, for any 2 6 p 6 2‖F‖−2/3
op ,

Wp(W,Z) 6 CpK4‖F‖op,

where C is a positive absolute constant.

Proof of Theorem 3.4. We first note that ‖F‖op 6 ‖F‖H.S. = 1/
√

2. We apply Theo-

rem 2.2 with r0 = α1 = 1, ∆1 = ‖F‖op and p0 = 2‖F‖−2/3
op . Then it remains to check

log ‖F‖−1
op 6 ‖F‖−2/3

op . This follows from the fact that log x 6 x2/3 for all x > 0.

Proof of Proposition A.1. We construct an exchangeable pair (W,W ′) in the same way
as in the proof of Proposition 3.2. So we obtain the bound (7.12). We derive refined
bounds for H1 and H2 using the assumption q = 2 and the boundedness of Xi. In the
proof, a symmetric function g : [n]r → R is also regarded as an element of (Rn)�r.
In particular, given a partition J ∈ Πr, we define the mixed injective norm ‖g‖J as
in Section 3.2. Note that, if two partitions J1,J2 ∈ Πr are such that any element of
J1 is contained in an element of J2, then ‖g‖J1

6 ‖g‖J2
by definition. Note also that

‖F‖op 6 ‖F‖H.S. = 1/
√

2 < 1. Also, we will freely use tensor notations introduced
in Section 6.

Step 1. Bounding H1. We decompose E as

E =

n∑
i=1

(X2
i − 1)Qi(X)2 +

{
2

n∑
i=1

Qi(X)2 − 1

}
=: E1 + E2. (A.1)

Define an n-variate polynomial Q̃ as

Q̃(x1, . . . , xn) =

n∑
i=1

(x2
i − 1)Qi(x1, . . . , xn)2 =

n∑
i=1

(x2
i − 1)

(
n∑

i′=1

f(i, i′)xi′

)2

.
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From p-Wasserstein bounds to moderate deviations

By Lemma 7.3,

‖E1‖p 6 C

4∑
r=1

Kr
∑
J∈Πr

p|J |/2‖E∇rQ̃(X)‖J . (A.2)

We bound summands of
∑4
r=1 in the following way.

Case 1: r = 1. Since E∇Q̃(X) = 0, we have

K
∑
J∈Π1

p|J |/2
∥∥∥E∇Q̃(X)

∥∥∥
J

= 0.

Case 2: r = 2. For j, k ∈ {1, . . . , n},

E∂j,kQ̃(X) = 2

n∑
i=1

f(i, j)21{j=k}.

Hence, using ‖f‖ = 1/
√

2 by standardization and
√
M(f) 6 ‖F‖op (we will use these

two facts implicitly in the remainder of the proof),

‖E∇2Q̃(X)‖{1,2} = 2

√√√√ n∑
j=1

(
n∑
i=1

f(i, j)2

)2

6 2
√
M(f)‖f‖ 6

√
2‖F‖op

and

‖E∇2Q̃(X)‖{1},{2} = ‖E∇2Q̃(X)‖op = 2M(f) 6 2‖F‖2op.

Therefore,

K2
∑
J∈Π2

p|J |/2
∥∥∥E∇2Q̃(X)

∥∥∥
J

6 CK2(
√
p‖F‖op + p‖F‖2op).

Case 3: r = 3. Since E∇3Q̃(X) = 0,

K3
∑
J∈Π3

p|J |/2
∥∥∥E∇3Q̃(X)

∥∥∥
J

= 0.

Case 4: r = 4. Define a function f1 : [n]4 → R as f1(j, k, l,m) = 1{j=k}f(j, l)f(j,m) for
j, k, l,m ∈ [n]. Then, for j, k, l,m ∈ [n],

E∂j,k,l,mQ̃(X) = 4!f̃1(j, k, l,m),

where f̃1 is the symmetrization of f1.

(i) Case |J | = 1. In this case, we have

∥∥∥E∇4Q̃(X)
∥∥∥
J

6 C

√√√√ n∑
j,l,m=1

f(j, l)2f(j,m)2 6 C‖F‖op‖F‖H.S. 6 C‖F‖op.

(ii) Case |J | = 2. Observe that∥∥∥E∇4Q̃(X)
∥∥∥
J

6
∥∥∥E∇4Q̃(X)

∥∥∥
{1,2},{3,4}

∨
∥∥∥E∇4Q̃(X)

∥∥∥
{1,2,3},{4}

.
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From p-Wasserstein bounds to moderate deviations

Since f is symmetric, we have

∥∥∥E∇4Q̃(X)
∥∥∥
{1,2},{3,4}

6 C sup
U,V ∈(Rn)⊗2:|U |∨|V |61

∣∣∣∣∣∣
n∑

j,l,m=1

UjjVlmf(j, l)f(j,m)

∣∣∣∣∣∣
+ C sup

U,V ∈(Rn)⊗2:|U |∨|V |61

∣∣∣∣∣∣
n∑

j,k,m=1

UjkVjmf(j, k)f(j,m)

∣∣∣∣∣∣
and

∥∥∥E∇4Q̃(X)
∥∥∥
{1,2,3},{4}

6 C sup
U∈(Rn)⊗3,v∈Rn:|U |∨|v|61

∣∣∣∣∣∣
n∑

j,l,m=1

Ujjlvmf(j, l)f(j,m)

∣∣∣∣∣∣
+ C sup

U∈(Rn)⊗3,v∈Rn:|U |∨|v|61

∣∣∣∣∣∣
n∑

j,k,l=1

Ujklvjf(j, l)f(j, k)

∣∣∣∣∣∣ .
For any U, V ∈ (Rn)⊗2,∣∣∣∣∣∣

n∑
j,l,m=1

UjjVlmf(j, l)f(j,m)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

Ujj(FV F )jj

∣∣∣∣∣∣
6 ‖U‖H.S.‖FV F‖H.S. 6 ‖F‖2op‖U‖H.S.‖V ‖H.S.

and∣∣∣∣∣∣
n∑

j,k,m=1

UjkVjmf(j, k)f(j,m)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

(UF )jj(V F )jj

∣∣∣∣∣∣
6 ‖UF‖H.S.‖V F‖H.S. 6 ‖F‖2op‖U‖H.S.‖V ‖H.S..

Hence ∥∥∥E∇4Q̃(X)
∥∥∥
{1,2},{3,4}

6 C‖F‖2op. (A.3)

In the meantime, for any U ∈ (Rn)⊗3 and v ∈ Rn,∣∣∣∣∣∣
n∑

j,l,m=1

Ujjlvmf(j, l)f(j,m)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

(
n∑
l=1

Ujjlf(j, l)

)
(Fv)j

∣∣∣∣∣∣
6

√√√√ n∑
j=1

(
n∑
l=1

Ujjlf(j, l)

)2

|Fv| 6 ‖F‖2op|U ||v|

and, with Uj = (Ujkl)16k,l6n,∣∣∣∣∣∣
n∑

j,k,l=1

Ujklvjf(j, l)f(j, k)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

(FUjF )jjvj

∣∣∣∣∣∣ 6 ‖F‖2op
n∑
j=1

‖Uj‖H.S.|vj |

6 ‖F‖2op|U ||v|.

Hence ∥∥∥E∇4Q̃(X)
∥∥∥
{1,2,3},{4}

6 C‖F‖2op.

Consequently, ∥∥∥E∇4Q̃(X)
∥∥∥
J

6 C‖F‖2op.
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(iii) Case |J | = 3. In this case, we have∥∥∥E∇4Q̃(X)
∥∥∥
J

=
∥∥∥E∇4Q̃(X)

∥∥∥
{1,2},{3},{4}

.

Hence, by (A.3), ∥∥∥E∇4Q̃(X)
∥∥∥
J

6 C‖F‖2op.

(iv) Case |J | = 4. In this case we have J = {{1}, {2}, {3}, {4}}. Therefore, by (A.3),∥∥∥E∇4Q̃(X)
∥∥∥
J

6 C‖F‖2op.

All together, we obtain

K4
∑
J∈Π4

p|J |/2
∥∥∥E∇4Q̃(X)

∥∥∥
J

6 CK4(
√
p‖F‖op + p2‖F‖2op).

Combining these bounds with (A.2) gives

‖E1‖p 6 CK4(
√
p‖F‖op + p2‖F‖2op). (A.4)

In the meantime, by a similar argument to the proof of Proposition 3.2 (cf. (7.13) and
the bound on ‖H12‖p therein),

‖E2‖p 6 CK2 max
J∈Π2

p|J |/2‖f⊗̃1f‖J .

Observe that

(
f⊗̃1f(j, k)

)
16j,k6n

=

(
n∑
i=1

f(i, j)f(i, k)

)
16j,k6n

= F 2.

Hence we have

‖f⊗̃1f‖{1,2} = ‖F 2‖H.S. 6 ‖F‖op‖F‖H.S. = ‖F‖op/
√

2

and

‖f⊗̃1f‖{1},{2} = ‖F‖2op.

Consequently,

‖E2‖p 6 CK4 max{√p‖F‖op, p‖F‖2op} 6 CK4√p‖F‖op. (A.5)

Combining (A.1), (A.4) and (A.5) gives

H1 6 C
√
p(‖E1‖p + ‖E2‖p) 6 CK4

(
p‖F‖op + p5/2‖F‖2op

)
6 CpK4‖F‖op, (A.6)

where the last inequality follows by the condition p‖F‖2/3op 6 2.

Step 2. Bounding H2. Since |X ′i −Xi| 6 2K a.s.,

n

2
E[D4|X] 6 8(2K)4

n∑
i=1

Qi(X)4. (A.7)
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From p-Wasserstein bounds to moderate deviations

By Lemma 7.3,

n∑
i=1

EQi(X)4 6 CK4
n∑
i=1

 n∑
j=1

f(i, j)2

2

6 CK4M(f)‖f‖2 6 CK4‖F‖2op (A.8)

and ∥∥∥∥∥
n∑
i=1

Qi(X)4 −
n∑
i=1

EQi(X)4

∥∥∥∥∥
p

6 C

4∑
r=1

Kr
∑
J∈Πr

p|J |/2

∥∥∥∥∥
n∑
i=1

E∇rQ4
i (X)

∥∥∥∥∥
J

. (A.9)

We bound summands of
∑4
r=1 in the following way.

Case 1: r = 1. For j ∈ {1, . . . , n},

E∂jQ
4
i (X) = 4f(i, j)E

(
n∑

i′=1

f(i, i′)Xi′

)3

.

Therefore, with

v :=

E( n∑
i′=1

f(1, i′)Xi′

)3

, . . . ,E

(
n∑

i′=1

f(n, i′)Xi′

)3
T

,

we have ∥∥∥∥∥
n∑
i=1

E∇Q4
i (X)

∥∥∥∥∥
{1}

= 4|Fv| 6 4‖F‖op|v|.

By Lemma 7.3,

|v|2 =

n∑
i=1

∣∣∣∣∣∣E
(

n∑
i′=1

f(i, i′)Xi′

)3
∣∣∣∣∣∣
2

6 CK6
n∑
i=1

(
n∑

i′=1

f(i, i′)2

)3

6 CK6‖F‖4op.

Hence

K
∑
J∈Π1

p|J |/2

∥∥∥∥∥
n∑
i=1

E∇Qi(X)

∥∥∥∥∥
J

6 CK4√p‖F‖3op.

Case 2: r = 2. For j, k ∈ {1, . . . , n},

E∂jkQ
4
i (X) = 12f(i, j)f(i, k)

n∑
i′=1

f(i, i′)2.

Hence

n∑
i=1

E∇rQ4
i (X) = 12Fdiag

(
n∑

i′=1

f(1, i′)2, . . . ,

n∑
i′=1

f(n, i′)2

)
F.

Therefore,∥∥∥∥∥
n∑
i=1

E∇rQ4
i (X)

∥∥∥∥∥
{1},{2}

=

∥∥∥∥∥
n∑
i=1

E∇rQ4
i (X)

∥∥∥∥∥
op

6 12‖F‖2opM(f) 6 12‖F‖4op

and ∥∥∥∥∥
n∑
i=1

E∇rQ4
i (X)

∥∥∥∥∥
{1,2}

=

∥∥∥∥∥
n∑
i=1

E∇rQ4
i (X)

∥∥∥∥∥
H.S.

6 12‖F‖2op

√√√√ n∑
i=1

(
n∑

i′=1

f(i, i′)2

)2

6 6
√

2‖F‖3op.
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Hence

K2
∑
J∈Π2

p|J |/2

∥∥∥∥∥
n∑
i=1

E∇2Q4
i (X)

∥∥∥∥∥
J

6 CK2(
√
p‖F‖3op + p‖F‖4op).

Case 3: r = 3. Since E∂jklQ4
i (X) = 0 for all j, k, l ∈ {1, . . . , n},

K3
∑
J∈Π3

p|J |/2

∥∥∥∥∥
n∑
i=1

E∇3Q4
i (X)

∥∥∥∥∥
J

= 0.

Case 4: r = 4. For j, k, l,m ∈ {1, . . . , n},

E∂jklmQ
4
i (X) = 24f(i, j)f(i, k)f(i, l)f(i,m).

(i) Case |J | = 1. In this case, we have

∥∥∥∥∥
n∑
i=1

E∇4Q4
i (X)

∥∥∥∥∥
J

= 24

√√√√ n∑
j,k,l,m=1

(
n∑
i=1

f(i, j)f(i, k)f(i, l)f(i,m)

)2

= 24

√√√√ n∑
i,i′=1

|(F 2)ii′ |4 6 24‖F 2‖op‖F 2‖H.S.

6 24‖F‖3op‖F‖H.S. = 12
√

2‖F‖3op.

(ii) Case |J | = 2. Observe that∥∥∥∥∥
n∑
i=1

E∇4Q4
i (X)

∥∥∥∥∥
J

6

∥∥∥∥∥
n∑
i=1

E∇4Q4
i (X)

∥∥∥∥∥
{1,2},{3,4}

∨

∥∥∥∥∥
n∑
i=1

E∇4Q4
i (X)

∥∥∥∥∥
{1,2,3},{4}

.

For any U, V ∈ (Rn)⊗2,

n∑
i=1

〈E∇4Q4
i (X), U ⊗ V 〉 = 24

n∑
i,j,k,l,m=1

f(i, j)f(i, k)f(i, l)f(i,m)UjkVlm

= 24

n∑
i=1

(FUF )ii(FV F )ii 6 24‖FUF‖H.S.‖FV F‖H.S.

6 24‖F‖4op‖U‖H.S.‖V ‖H.S..

Hence ∥∥∥∥∥
n∑
i=1

E∇4Q4
i (X)

∥∥∥∥∥
{1,2},{3,4}

6 24‖F‖4op. (A.10)

In the meantime, for any U ∈ (Rn)⊗3 and v ∈ Rn,

n∑
i=1

〈E∇4Q4
i (X), U ⊗ v〉 = 24

n∑
i,j,k,l,m=1

f(i, j)f(i, k)f(i, l)f(i,m)Ujklvm

= 24

n∑
i,j=1

f(i, j)(FUjF )ii(Fv)i,
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where Uj = (Ujkl)16k,l6n. Thus, by the Cauchy–Schwarz inequality,

n∑
i=1

〈E∇4Q4
i (X), U ⊗ v〉 6 24

√√√√ n∑
i,j=1

f(i, j)2|(Fv)i|2
n∑

i,j=1

(FUjF )2
ii

6 24‖F‖2op

√√√√ n∑
i=1

|(Fv)i|2
n∑
j=1

‖Uj‖2H.S.

6 24‖F‖3op|v||U |.

Hence ∥∥∥∥∥
n∑
i=1

E∇4Q4
i (X)

∥∥∥∥∥
{1,2,3},{4}

6 24‖F‖3op.

Consequently, ∥∥∥∥∥
n∑
i=1

E∇4Q4
i (X)

∥∥∥∥∥
J

6 24‖F‖3op.

(iii) Case |J | = 3. In this case, we have∥∥∥∥∥
n∑
i=1

E∇4Q4
i (X)

∥∥∥∥∥
J

=

∥∥∥∥∥
n∑
i=1

E∇4Q4
i (X)

∥∥∥∥∥
{1,2},{3},{4}

.

Therefore, by (A.10), ∥∥∥∥∥
n∑
i=1

E∇4Q4
i (X)

∥∥∥∥∥
J

6 24‖F‖4op.

(iv) Case |J | = 4. In this case we have J = {{1}, {2}, {3}, {4}}. Therefore, by (A.10),∥∥∥∥∥
n∑
i=1

E∇4Q4
i (X)

∥∥∥∥∥
J

6 24‖F‖4op.

All together, we obtain

K4
∑
J∈Π4

p|J |/2

∥∥∥∥∥
n∑
i=1

E∇4Q4
i (X)

∥∥∥∥∥
J

6 CK4(p‖F‖3op + p2‖F‖4op).

Combining these bounds with (A.9) and the condition p 6 2‖F‖−1
op , we obtain∥∥∥∥∥

n∑
i=1

Qi(X)4 −
n∑
i=1

EQi(X)4

∥∥∥∥∥ 6 CK4‖F‖2op. (A.11)

By (A.7), (A.8) and (A.11), we conclude

H2 6 CK4p‖F‖op. (A.12)

Combining (7.12), (A.6) and (A.12), we complete the proof.
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A.2 Removing the extra assumptions in derivation of (6.13)

In the literature, the bound (6.13) was formally established only when W has a
bounded C∞ density h with respect to N(0, Id) such that h > η for some constant η > 0

and |∇h| is bounded. In this appendix, we show this assumption can be replaced with
E|W |p <∞. Our argument is largely the same as in Section 8 of Bonis (2020). Below we
assume W and Z are independent without loss of generality.

Step 1. In this step, we prove (6.13) when W has a compactly supported C∞ density
f . Let U be a uniform random variable on [0, 1] independent of W and Z. Also, let
Z ′ ∼ N(0, Id) be independent of everything else. Take η ∈ (0, 1) arbitrarily, and define
Iη := 1{U6η} and W η := IηZ ′ + (1− Iη)W . Then, for any bounded measurable function
g : Rd → R,

Eg(W η) = ηEg(Z ′) + (1− η)Eg(W ) = η

∫
Rd
g(x)φ(x)dx+ (1− η)

∫
Rd
g(x)f(x)dx.

Hence η + (1− η)f/φ is a density of W η with respect to N(0, Id). In this case we already
have

Wp(W
η, Z) 6

∫ ∞
0

‖ρηt (F ηt )‖pdt, (A.13)

where F ηt := e−tW η +
√

1− e−2tZ and ρηt is the score of F ηt with respect to N(0, Id). By
the triangle inequality for the p-Wasserstein distance, we have

|Wp(W,Z)−Wp(W
η, Z)| 6Wp(W,W

η) 6 ‖W −W η‖p
= (EIη|W − Z ′|p)1/p = η1/p‖W − Z ′‖p.

Hence |Wp(W,Z)−Wp(W
η, Z)| → 0 as η ↓ 0.

Meanwhile, by Lemma 2 in Bonis (2020),

ρηt (F ηt ) = E

[
e−tW η − e−2t

√
1− e−2t

Z|F ηt
]
. (A.14)

In particular,

‖ρηt (F ηt )‖p 6 e−t(‖Z ′‖p + ‖W‖p) +
e−2t

√
1− e−2t

‖Z‖p.

Hence, by the reverse Fatou lemma,

lim sup
η↓0

∫ ∞
0

‖ρηt (F ηt )‖pdt 6
∫ ∞

0

lim sup
η↓0

‖ρηt (F ηt )‖pdt.

Therefore, we complete the proof once we show that ‖ρηt (F ηt )‖p → ‖ρt(Ft)‖p as η ↓ 0 for
any fixed t > 0. The latter follows once we verify the following two statements:

(i) ρηt (F ηt )→ ρt(Ft) as η ↓ 0 a.s.

(ii) {|ρηt (F ηt )|p : η ∈ (0, 1)} is uniformly integrable.

Proof of (i). For any bounded measurable function g : Rd → R,

Eg(e−tW η +
√

1− e−2tZ) = ηEg(e−tZ ′ +
√

1− e−2tZ) + (1− η)Eg(Ft)

= η

∫
Rd
g(x)φ(x)dx+ (1− η)

∫
Rd
g(x)ft(x)φ(x)dx,
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where ft is the density of Ft with respect to N(0, Id). Hence η + (1− η)ft is the smooth
density of F ηt with respect to N(0, Id), and thus

ρηt (F ηt ) = (1− η)∇ft(F ηt )/(η + (1− η)ft(F
η
t )).

Since ft is smooth and F ηt → Ft as η ↓ 0 a.s., we have ρηt (F ηt )→ ∇ft(Ft)/ft(Ft) = ρt(Ft)

as η ↓ 0 a.s.

Proof of (ii). Let

Gt := e−t(|W |+ |Z ′|) +
e−2t

√
1− e−2t

|Z|.

Then we have |ρηt (F ηt )|p 6 E[Gpt |F
η
t ] for any η ∈ (0, 1) by (A.14) and Jensen’s inequality.

Hence, for any K > 0,

E[|ρηt (F ηt )|p; |ρt(F ηt )|p > K] 6 E[E[Gpt |F
η
t ];E[Gpt |F

η
t ] > K].

Since EGpt < ∞, {E[Gpt |F
η
t ] : η ∈ (0, 1)} is uniformly integrable by Theorem 13.4 in

Williams (1991). Hence {|ρηt (F ηt )|p : η ∈ (0, 1)} is uniformly integrable as well.

Step 2. In this step, we prove (6.13) when W is bounded. Let N be a random variable
independent of W and Z and such that N has a C∞ density ψ and takes values in the
unit ball in Rd. Take ε > 0 arbitrarily and define W ε := W + εN . Then, for any bounded
measurable function g : Rd → R,

Eg(W ε) =

∫
Rd
E[g(W + εx)]ψ(x)dx = ε−d

∫
Rd
g(y)E[ψ((y −W )/ε)]dy.

Hence f(y) = ε−dE[ψ((y −W )/ε)] is a density of W ε. Since ψ is C∞ and compactly
supported, f is C∞. Also, since W is bounded, f is compactly supported. Thus, by Step
1,

Wp(W
ε, Z) 6

∫ ∞
0

‖ρεt (F εt )‖pdt, (A.15)

where F εt := e−tW ε +
√

1− e−2tZ and ρεt is the score of F εt with respect to N(0, Id). By
the triangle inequality for the p-Wasserstein distance, we have

|Wp(W,Z)−Wp(W
ε, Z)| 6Wp(W,W

ε) 6 ‖W −W ε‖p = ε‖N‖p.

Meanwhile, by Lemma 2 in Bonis (2020),

ρεt (F
ε
t ) = E

[
e−tW ε − e−2t

√
1− e−2t

Z|F εt
]

= E

[
E

[
e−tW ε − e−2t

√
1− e−2t

Z|Ft, N
]
|F εt
]

= E

[
E

[
e−tW − e−2t

√
1− e−2t

Z|Ft, N
]

+E
[
e−tεN |Ft, N

]
|F εt
]

= E[ρt(Ft)|F εt ] + εE
[
e−tN |F εt

]
,

where we used the independence between (W,Z) and N in the last line. Hence∫ ∞
0

‖ρεt (F εt )‖pdt 6
∫ ∞

0

‖ρt(Ft)‖pdt+ ε‖N‖p.

Consequently, letting ε ↓ 0 in (A.15), we obtain (6.13).
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Step 3. In this step, we prove (6.13) when E|W |p < ∞. Take R > 0 arbitrarily and
define WR := W1{|W |6R}. Since WR is bounded, we have by Step 2

Wp(W
R, Z) 6

∫ ∞
0

‖ρRt (FRt )‖pdt, (A.16)

where FRt := e−tWR +
√

1− e−2tZ and ρRt is the score of FRt with respect to N(0, Id). By
the triangle inequality for the p-Wasserstein distance, we have

|Wp(W,Z)−Wp(W
R, Z)| 6Wp(W,W

R) 6 ‖W −WR‖p = (E[|W |p1{|W>R|}])
1/p.

Since E|W |p <∞, we obtain |Wp(W,Z)−Wp(W
R, Z)| → 0 as R→∞ by the dominated

convergence theorem. Meanwhile, by Lemma 2 in Bonis (2020),

ρRt (FRt ) = E

[
e−tWR − e−2t

√
1− e−2t

Z|FRt
]

(A.17)

and

ρt(Ft) = E

[
e−tW − e−2t

√
1− e−2t

Z|Ft
]
. (A.18)

In particular,

‖ρRt (FRt )‖p 6 e−t‖W‖p +
e−2t

√
1− e−2t

‖Z‖p.

Hence, by the reverse Fatou lemma,

lim sup
R→∞

∫ ∞
0

‖ρRt (FRt )‖pdt 6
∫ ∞

0

lim sup
R→∞

‖ρRt (FRt )‖pdt.

Therefore, we complete the proof once we show that ‖ρRt (FRt )‖p → ‖ρt(Ft)‖p as R→∞
for any fixed t > 0. The latter follows once we verify the following two statements:

(i) ρRt (FRt )→ ρt(Ft) as R→∞ a.s.

(ii) {|ρRt (FRt )|p : R > 0} is uniformly integrable.

Proof of (i). For any u ∈ Rd,

|E[WRe
√
−1u·FRt ]| = |E[WRe

√
−1u·e−tWR

]E[e
√
−1u·

√
1−e−2tZ ]| 6 E|W |e−(1−e−2t)u2/2

(A.19)
and

|E[Ze
√
−1u·FRt ]| = |E[e

√
−1u·e−tWR

]E[Ze
√
−1u·

√
1−e−2tZ ]| 6 |u|e−(1−e−2t)u2/2. (A.20)

Hence, we can define a function gR : Rd → C as

gR(x) =
1

fR(x)(2π)d

∫
Rd
e−
√
−1u·xE

[(
e−tWR − e−2t

√
1− e−2t

Z

)
e
√
−1u·FRt

]
du, x ∈ Rd,

where fR(x) = (1− e−2t)−d/2E[φ((x− e−tWR)/
√

1− e−2t)] is the density of FRt . Similarly,
we can define a function g : Rd → C as

g(x) =
1

f(x)(2π)d

∫
Rd
e−
√
−1u·xE

[(
e−tW − e−2t

√
1− e−2t

Z

)
e
√
−1u·Ft

]
du, x ∈ Rd,

where f(x) = (1− e−2t)−d/2E[φ((x− e−tW )/
√

1− e−2t)] is the density of Ft. By Theorem
2 in Yeh (1974) and (A.17)–(A.18), we have gR(FRt ) = ρRt (FRt ) a.s. and g(Ft) = ρt(Ft) a.s.
Moreover, by (A.19), (A.20) and the dominated convergence theorem, gR(x)→ g(x) as
R→∞ for any x ∈ Rd. Hence ρRt (FRt )→ ρt(Ft) as R→∞ a.s.
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Proof of (ii). Let

Gt := e−t|W |+ e−2t

√
1− e−2t

|Z|.

Then we have |ρRt (FRt )|p 6 E[Gpt |FRt ] for any R > 0 by (A.17) and Jensen’s inequality.
Hence, for any K > 0,

E[|ρRt (FRt )|p; |ρt(FRt )|p > K] 6 E[E[Gpt |FRt ];E[Gpt |FRt ] > K].

Since EGpt <∞, {E[Gpt |FRt ] : R > 0} is uniformly integrable by Theorem 13.4 in Williams
(1991). Hence {|ρRt (FRt )|p : R > 0} is uniformly integrable as well.

References

R. Adamczak and P. Wolff (2015). Concentration inequalities for non-Lipschitz functions with
bounded derivatives of higher order. Probab. Theory Relat. Fields 162, 531–586. MR3383337

P. Baldi and Y. Rinott (1989). On normal approximations of distributions in terms of dependency
graphs. Ann. Probab. 17, 1646–1650. MR1048950
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