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Abstract

We prove higher order concentration bounds for functions on Stiefel and Grassmann
manifolds equipped with the uniform distribution. This partially extends previous work
for functions on the unit sphere. Technically, our results are based on logarithmic
Sobolev techniques for the uniform measures on the manifolds. Applications include
Hanson–Wright type inequalities for Stiefel manifolds and concentration bounds for
certain distance functions between subspaces of Rn.
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1 Introduction

In recent years, functions on the Stiefel manifold (i. e., the collection of all d-tuples of
orthonormal vectors in Rn) and on the closely related Grassmann manifold (the collection
of all d-dimensional linear subspaces of Rn) have attracted increasing attention from
various fields of research. A central reason is that they admit a wealth of applications in
various directions like data analysis, subspace estimation, computer vision or statistical
learning. In addition, they have also been studied from more theoretical points of view,
in particular in convex geometry but quite recently also in large deviations theory. For
a selection of various results, see e. g. [TVC08, HL08, WLT11, ZZJH18, LLY20] (data
analysis) and [LPT06, GKZ21, KP21] (including large deviation principles).

A frequent question which naturally arises in many applications is how to control
the fluctuations of some (Stiefel or Grassmann) functional around a typical value like
its expectation, i. e., one asks for suitable concentration of measure results. Often
times, the functional is of Lipschitz-type, which in classical situations (e. g., functions of
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Higher order concentration on Stiefel and Grassmann manifolds

independent sub-Gaussian random variables or in presence of a log-Sobolev inequality)
leads to sub-Gaussian tail bounds. For a brief review especially adapted to Stiefel
and Grassmann manifolds, cf. Section 1.2 below. However, this approach fails if the
functionals under consideration are no longer Lipschitz. Still, one may hope for useful
concentration bounds if they are Lipschitz of a “higher order”, which typically means that
their higher order derivatives are absolutely bounded. A classical example for order two
are quadratic forms. In this situation, various questions of interest include exponential
moment bounds, refined tail bounds with various levels of decay and centering around
non-deterministic quantities which may correspond to a suitable decomposition.

In this note, we provide higher order concentration results for Stiefel and Grassmann
manifolds equipped with the uniform distribution. Higher order concentration has
been studied in various settings in the past two decades, e. g. in [La06] (polynomials
in independent Gaussian variables) [AW15] (measures satisfying certain Sobolev-type
inequalities) as well as [KV00, SS12, AL12, KL15, GSS21a, GSS21b]. In this paper, we
especially continue the line of research begun in [BCG17, GSS19], where second and
higher order concentration results for the unit sphere were established (noting that the
unit sphere can be understood as a Stiefel manifold).

1.1 Grassmann and Stiefel manifolds

For any natural numbers d ≤ n, the Stiefel manifold Wn,d is the set of all d-tupels of
orthonormal vectors in Rn. Clearly, Wn,d may be written as

Wn,d = {A ∈ Rn×d : ATA = Id},

where Id ∈ Rd×d denotes the identity matrix. This is the representation we shall
use throughout this note. Wn,d is manifold of dimension dim(Wn,d) = nd − d(d + 1)/2.
Obviously, Wn,1 = Sn−1 (the unit sphere), Wn,n = O(n) (the orthogonal group), and
Wn,n−1 can be identified with the special orthogonal group SO(n) = {O ∈ O(n) : det(O) =

1}.
We may equip Wn,d with the subspace topology and distances inherited from Rn×d,

including the scalar product on Rn×d and the induced (Hilbert–Schmidt) norm

〈A,B〉 := tr(ATB), |A|2 ≡ ‖A‖2HS = tr(ATA) =
∑
i,j

A2
ij .

In particular, Wn,d is a compact topological space. The product of the orthogonal groups
O(n)×O(d) acts transitively on Wn,d by the two-sided multiplication On ×Od 7→ OnAOd,
turning Wn,d into a homogeneous space. Hence, it may be equipped with a unique
invariant (Haar) probability measure µn,d in the sense that if A ∼ µn,d (i. e., A has
distribution µn,d), OnAOd ∼ µn,d for any On ∈ O(n), Od ∈ O(d). We call µn,d the uniform
distribution on Wn,d. If G = (Gij)

d,n
i,j=1 is an n× d random matrix whose entries are i.i.d.

standard normal, then G(GTG)−1/2 ∼ µn,d, see [KPT20, Lemma 3.1].
There are several ways of introducing the closely related Grassmann manifold, i. e. the

set of all d-dimensional subspaces of Rn. For an overview, cf. e. g. [BZA20]. For instance,
identifying a subspace with its basis (which is unique up to orthogonal transformations),
we may understand the Grassmann manifold as the quotient Wn,d/O(d), identifying any
two X,X ′ ∈ Wn,d such that X ′ = XO for some O ∈ O(d). However, the calculus of
(higher order) derivatives on these equivalence classes turns out to be troublesome, and
therefore, we choose a different approach.

For any A ∈ Wn,d, πSt(A) := AAT ≡ PA is a projection matrix of rank d (more
precisely, the projection onto the subspace a basis of which is given by the columns of
A), and for any Od ∈ O(d), we have PAOd

= PA. Therefore, identifying elements of the
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Grassmannian with projection matrices, we may define

Gn,d := {P ∈ Rn×nsym : P 2 = P, rank(P ) = d},

where Rn×nsym denotes the space of the symmetric n × n matrices. Gn,d is a manifold of
dimension dim(Gn,d) = d(n− d). If d = 1, we get back the half-sphere (where θ and −θ
are identified), which can also be regarded as the projective space RPn−1. Depending on
the situation, we will either regard Gn,d as a submanifold of Rn×nsym or Rn×n (the latter is
often more convenient when taking derivatives), equipping it with the inherited topology
and distances similarly to the case of the Stiefel manifold (in particular, Gn,d is compact).

Many of the properties of Stiefel manifolds can be extended to Grassmann manifolds.
Especially, the group action O(n) 3 On 7→ POnA turns Gn,d into a symmetric (not just
homogeneous) space. We denote the uniform distribution on Gn,d by νn,d. Clearly, νn,d
is the pushforward of µn,d under the map πSt. If G = (Gij)

d,n
i,j=1 is an n × d random

matrix whose entries are i.i.d. standard normal, it follows from the discussion above that
G(GTG)−1GT ∼ νn,d.

1.2 Concentration results

If f : Wn,d → R is L-Lipschitz with mean µn,d(f) with respect to µn,d, a standard
concentration result (cf. e. g. [Le01, p. 27]) yields

µn,d(f − µn,d(f) ≥ t) ≤ exp(−(n− 1)t2/(8L2)). (1.1)

By switching to the pushforward, the same result also holds for (Gn,d, νn,d) with the
constant 8 replaced by 16 (cf. Section 6 for details, in particular Lemma 6.1).

The aim of this note is to extend results of type (1.1) to higher orders, involving Ck
functions and derivatives up to order k. Here, a Ck function on Wn,d (likewise, Gn,d) may
be understood as a function which admits an extension to some open neighborhood of
the manifold which is Ck-smooth. Let us first fix some notation. If A = (ai1...ik) ∈ Rm

k

is
any matrix or tensor of order k, we write

‖A‖HS :=
( ∑
i1,...,ik

a2i1...ik

)1/2
,

‖A‖op := sup
{ ∑
i1,...,ik

ai1...ikx
(1)
i1
· · ·x(k)ik

: x(j) ∈ Sm−1 ∀j
}

for the respective Hilbert–Schmidt and operator type norms. For any function g : Wn,d →
R and any p ≥ 1, we denote by ‖g‖p the Lp norm of g with respect to µn,d. If g is
matrix-valued (e. g., some tensor of derivatives), we use the short-hand notation

‖g‖HS,p := ‖‖g‖HS‖p =
(∫

Wn,d

‖g‖pHSdµn,d

)1/p
and similarly ‖g‖op,p.

In Section 3, we will introduce a notion of differentiability for functions on Wn,d. In
particular, using the intrinsic (Stiefel) gradient ∇W f ∈ Rn×d and assuming f : Wn,d → R

to be C1-smooth, we may reformulate (1.1) as

µn,d(f − µn,d(f) ≥ t) ≤ exp
(
− (n− 1)t2

8‖∇W f‖2HS,∞

)
. (1.2)

The same result holds for C1-smooth functions on (Gn,d, νn,d), involving the Grassmann
gradient ∇Gf ∈ Rn×nsym and with 8 replaced by 16.

EJP 28 (2023), paper 79.
Page 3/30

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP966
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Higher order concentration on Stiefel and Grassmann manifolds

Our first theorem complements (1.2) by a second order concentration bound for
functions on Stiefel manifolds of any order d ≤ n − 1 in the spirit of [BCG17] (cf. also
[SS21], where this approach to second order concentration has been generalized and
adapted to a wealth of different situations). In addition to the intrinsic gradient, this also
involves an intrinsic Hessian f ′′W ∈ Rnd×nd, a notion to be made precise in Section 3 as
well.

Theorem 1.1. Let f : Wn,d → R be a C2-smooth function such that µn,d(f) = 0.

1. Assuming ‖∇W f‖HS,2 ≤ 2/
√
n− 2 and ‖f ′′W ‖op,∞ ≤ 1, we have∫

Wn,d

exp
(n− 2

32e
|f |
)
dµn,d ≤ 2.

2. For C = 16e2/ log(2) and any t ≥ 0,

µn,d(|f − µn,d(f)| ≥ t) ≤ 2 exp
(
− n− 2

C
min

( t2

‖∇W f‖2HS,2

,
t

‖f ′′W ‖op,∞

))
.

3. If µn,d(∇W f) = 0, the bounds in parts 1 and 2 continue to hold with ‖∇W f‖HS,2

replaced by
√

8/(n− 2− 8d)‖f ′′W ‖HS,2.

Note that in part 3, the integral µn,d(∇W f) has to be understood componentwise. In
fact, the condition in part 3 can also be modified to ‖f ′′W ‖HS,2 ≤ b similarly as in [BCG17,
Theorem 1.1] (in particular, arriving at b-dependent bounds). We skip the details. With
only minor modifications, these results also hold for functions on Grassmann manifolds:

Theorem 1.2. Let f : Gn,d → R be a C2-smooth function such that νn,d(f) = 0.

1. Assuming ‖∇Gf‖HS,2 ≤
√
8/(n− 2) and ‖f ′′G‖op,∞ ≤ 1, we have∫
Gn,d

exp
(n− 2

64e
|f |
)
dµn,d ≤ 2.

2. For C = 32e2/ log(2) and any t ≥ 0,

νn,d(|f − µn,d(f)| ≥ t) ≤ 2 exp
(
− n− 2

C
min

( t2

‖∇Gf‖2HS,2

,
t

‖f ′′G‖op,∞

))
.

3. If νn,d(∇Gf) = 0, the bounds in parts 1 and 2 continue to hold with ‖∇Gf‖HS,2

replaced by
√

16/(n− 2− 16d)‖f ′′G‖HS,2.

In general, once we have a function f which is defined and smooth in a neighborhood
of Wn,d (which may be achieved by choosing a suitable extension of f ), we may also
formulate concentration of measure results involving the usual (Euclidean) derivatives
only. The same holds for functions defined in a neighborhood of Gn,d in Rn×nsym or Rn×n.

As shown in Sections 3 and 5, we always have |∇W f |, |∇Gf | ≤ |∇f |. In particular,
results depending on Euclidean derivatives are somewhat less accurate than bounds
involving intrinsic derivatives. On the other hand, the underlying calculus is typically
much less involved, especially as the order of the derivatives increases, and in many
situations, the usual derivatives may already be sufficient for meaningful concentration
bounds. Here, we have the following result, which complements [BGS19].

Theorem 1.3. Let f be a real-valued Ck-smooth function defined in some neighborhood
of Wn,d such that µn,d(f) = 0.
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1. Assuming ‖f (`)‖op,2 ≤ (4/(n − 2))(k−`)/2 for any ` = 1, . . . , k − 1 and ‖f (k)‖op,∞
≤ 1, we have ∫

Wn,d

exp
(n− 2

32e
|f |2/k

)
dµn,d ≤ 2.

2. For C = 4e2/ log(2) and any t ≥ 0,

µn,d(|f | ≥ t) ≤ 2 exp
(
− n− 2

Ck2
min

(
min

`=1,...,k−1

t2/`

‖f (`)‖2/`op,2

,
t2/k

‖f (k)‖2/kop,∞

))
.

The Grassmann version of this theorem reads as follows:

Theorem 1.4. Let f be a real-valued Ck-smooth function defined in some neighborhood
of Gn,d such that νn,d(f) = 0.

1. Assuming ‖f (`)‖op,2 ≤ (8/(n − 2))(k−`)/2 for any ` = 1, . . . , k − 1 and ‖f (k)‖op,∞
≤ 1, we have ∫

Gn,d

exp
(n− 2

64e
|f |2/k

)
dνn,d ≤ 2.

2. For C = 8e2/ log(2) and any t ≥ 0,

νn,d(|f | ≥ t) ≤ 2 exp
(
− n− 2

Ck2
min

(
min

`=1,...,k−1

t2/`

‖f (`)‖2/`op,2

,
t2/k

‖f (k)‖2/kop,∞

))
.

Examples where these results are applied to concrete situations and are briefly
compared to related bounds known from the literature are given in Section 7.

1.3 Overview

In view of the parametrizations of the manifolds via matrices, we first provide a brief
review on some basic facts about derivatives in matrix arguments and related topics in
Section 2. First and second order intrinsic derivatives for functions on Stiefel manifolds
are introduced and discussed in Sections 3 and 4, including a number of inequalities
relating first and second order. These results are adapted to Grassmann manifolds
in Section 5. The proofs of our main results are given in Section 6. Applications to
polynomial chaos (in particular of order 2), including concentration of the distance to a
given subspace, are provided in Section 7.

2 Basic facts about matrix calculus

The aim of this section is to fix some notation and to collect some basic facts about
matrix calculus mostly for the sake of reference. Most of the results are elementary and
will be stated without proofs.

If A = (Aij) is an n×m matrix (i. e., A ∈ Rn×m), we may vectorize it by setting

vec(A) := (A11, . . . , An1, A12, . . . , An2, . . . , A1m, . . . , Anm)T ,

i. e. vec(A) is the vector in Rnm with m n-blocks corresponding to the columns of A.
Occasionally, we will also need the inverse operation of vec, which we denote by mat.
For B ∈ Rnd×nd and U, V ∈ Rn×d, we introduce the short-hand notation

BV := Bvec(V ), 〈BV,U〉 := 〈Bvec(V ), vec(U)〉. (2.1)

There is an nm× nm permutation matrix Kn,m such that for any A ∈ Rn×m,

vec(AT ) = Kn,mvec(A). (2.2)
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Kn,m is uniquely defined by (2.2) and is called the (n,m) commutation matrix. Note that
KT
n,m = Km,n.

Vectorization is closely related to the Kronecker product A ⊗ B for any A ∈ Rn×m
and any B ∈ Rp×q. The following lemma lists some of its elementary properties.

Lemma 2.1. 1. The Kronecker product is bilinear and associative.

2. We have (A⊗B)T = AT ⊗BT .

3. A⊗B is invertible whenever A and B are invertible, and in this case, (A⊗B)−1 =

A−1 ⊗B−1.

4. For any A ∈ Rn×m, B ∈ Rp×q, C ∈ Rm×r, D ∈ Rq×s, we have (A ⊗ B)(C ⊗ D) =

(AC)⊗ (BD).

5. For any A ∈ Rn×m, B ∈ Rm×p, we have vec(AB) = (Ip ⊗ A)vec(B) = (BT ⊗
In)vec(A).

6. For any A ∈ Rn×m, B ∈ Rm×p, C ∈ Rp×q, we have vec(ABC) = (CT ⊗ A)vec(B) =

(Iq ⊗AB)vec(C) = (CTBT ⊗ In)vec(A).
7. For any A ∈ Rn×m and any B ∈ Rp×q, we have Kp,n(A⊗B)Km,q = B ⊗A.

If f : Rn×m → Rp×q is any differentiable (possibly matrix-valued) function of X ∈
Rn×m, we define

Df(X) := Dvec(f(X)) :=
df(X)

dX
:=

dvec(f(X))

dvec(X)
,

which is a pq ×mn matrix. Let us recall the usual differentiation rules for derivatives in
matrix arguments together with the derivatives of several standard types of functions.

Lemma 2.2. Let X ∈ Rn×m, A ∈ Rp×n and B ∈ Rm×q.

1. Let f(X) ∈ Rp×q, g(X) ∈ Rq×k be differentiable functions of X. Then, the product
rule holds:

D(f(X)g(X)) = (g(X)T ⊗ Ip)Df(X) + (Ik ⊗ f(X))Dg(X).

2. For differentiable functions f on Rq×k and g(X) ∈ Rq×k, the usual chain rule holds:

D[f(g(X))] = Df(g(X)) ·Dg(X).

3. We have dXT

dX = Kn,m.

4. We have d(AXB)
dX = BT ⊗A.

5. We have dtr(AX)
dX = vec(AT )T .

3 Derivatives on Stiefel manifolds

To formally introduce intrinsic derivatives of first and second order on Stiefel man-
ifolds, we follow and extend the spherical case as discussed in [BCG17]. If f is any
real-valued locally Lipschitz function on some metric space (M,d) (with no isolated
points), we may always define the generalized modulus of the gradient of f in x ∈M

|∇∗f(x)| = lim sup
x′→x

|f(x)− f(x′)|
d(x, x′)

. (3.1)

In particular, we may use (3.1) for functions f(X) on the Stiefel manifold Wn,d together
with the Euclidean (Hilbert–Schmidt) metric d(X,X ′) = |X −X ′|. Here we will always
write |∇∗f(X)| ≡ |∇W f(X)|, cf. the discussion after (3.2) below. Note we could also use

EJP 28 (2023), paper 79.
Page 6/30

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP966
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Higher order concentration on Stiefel and Grassmann manifolds

the (point-dependent) canonical instead of the Euclidean metric, which leads to different
notions of differentiability, cf. e. g. [EAS98].

To introduce a notion of differentiability of a function f on Wn,d which is consistent
with (3.1), recall that the tangent space in A ∈Wn,d is given by

TA := {N ∈ Rn×d : ATN +NTA = 0} = {N ∈ Rn×d : A ◦N = 0},

where for any M,N ∈ Rn×d (or M,N ∈ Rd×d as we shall also need later on), M ◦ N
denotes the “symmetric product”

M ◦N :=
1

2
(MTN +NTM),

which is a symmetric d×d matrix (for d = 1, this reduces to the Euclidean scalar product).
Hence, TA is the set of all the matrices N ∈ Rn×d such that ATN is antisymmetric. Now,
a function f : Wn,d → R is differentiable at A ∈Wn,d if it admits a Taylor expansion

f(A′) = f(A) + 〈M,A′ −A〉+ o
(
|A′ −A|

)
as A′ → A, A′ ∈Wn,d (3.2)

with some M ∈ Rn×d. The unique M0 of smallest (Euclidean) length among all such M is
called the intrinsic derivative or gradient of f at A and is denoted ∇W f(A). The length
of ∇W f(A) agrees with (3.1).

Once M ∈ Rn×d satisfies (3.2), any matrix M −B satisfies (3.2) as well if

〈B,A′ −A〉 = o(|A′ −A|)

as A′ → A, A,A′ ∈ Wn,d. The latter is equivalent to 〈B,N〉 = 0 for all N ∈ TA, i. e.
B ∈ T⊥A . Therefore, the minimization problems translates into

‖M −B‖HS → min over all B ∈ T⊥A ,

which is solved uniquely for the orthogonal projection M onto TA.
Often, it is convenient to consider functions f which are defined and smooth in an open

neighborhood of Wn,d, which may be achieved by choosing a suitable extension of the
function under consideration. In this case, we may take the Euclidean derivativeDf(A) ∈
R1×nd of f in A ∈Wn,d (cf. the previous section) and set ∇f(A) := mat(Df(A)T ) ∈ Rn×d
(the usual gradient rewritten as a matrix). Clearly, ∇f(A) satisfies (3.2), and we may
project it onto TA. This way, we get back ∇W f(A).
Proposition 3.1. Let f be defined and C1-smooth in a neighborhood of Wn,d. Then, the
intrinsic first derivative of f at A ∈Wn,d is given by the projection onto TA

∇W f(A) = ∇f(A)−A(A ◦ ∇f(A)). (3.3)

In particular, |∇W f(A)| ≤ |∇f(A)| for any A ∈Wn,d.

Defining the projection πA : Rn×d → TA by

πAM :=M −A(A ◦M), (3.4)

Proposition 3.1 states that ∇W f(A) = πA∇f(A). In particular, by the contractivity of
orthogonal projections, this shows that indeed, |∇W f(A)| ≤ |∇f(A)|.

Next, we introduce second order (intrinsic) derivatives (Hessians). For any C2-smooth
function f : Rn×d → R at a given point A ∈ Wn,d, consider the Taylor expansion up to
the quadratic term (using the notation (2.1))

f(A′) = f(A) + 〈∇W f(A), A′ −A〉+
1

2
〈B(A′ −A), A′ −A〉+ o

(
|A′ −A|2

)
(3.5)
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as A′ → A, A′ ∈ Wn,d, where B ∈ Rnd×nd is some matrix. The collection of all B’s
satisfying (3.5) represents an affine subspace of Rnd×nd. Therefore, among all of them,
there exists a unique matrix of smallest Hilbert–Schmidt norm. It is called the (intrinsic)
second derivative of f at the point X and will be denoted f ′′W (A).

If f is C2-smooth function on some open neighborhood of Wn,d, by the usual (Eu-
clidean) Taylor expansion, (3.5) holds with

B = f ′′(A)− (A ◦ ∇f(A))⊗ In, (3.6)

where f ′′(A) is the nd× nd matrix of the usual (Euclidean) second order derivatives of f
at A. Indeed, first note that

〈A(A ◦ ∇f(A)), A′ −A〉+ 1

2
〈((A ◦ ∇f(A))⊗ In)(A′ −A), A′ −A〉

=
1

2
〈(A′ +A)(A ◦ ∇f(A)), A′ −A〉 = 1

2
tr((A ◦ ∇f(A))(A′T +AT )(A′ −A))

=
1

2
tr((A ◦ ∇f(A))(A′TA−ATA′)) = 0,

where in the first identity we have used that by (2.1) and Lemma 2.1, part 5,

((A ◦ ∇f(A))⊗ In)(A′ −A) = vec((A′ −A)(A ◦ ∇f(A))),

the third step follows from A,A′ ∈ Wn,d and in the last one we use that the trace of
a product of a symmetric and an antisymmetric matrix is 0. Therefore, plugging (3.3)
and (3.6) into (3.5) leads to the usual Euclidean Taylor expansion (i. e. solely involving
the gradient ∇f(W ) and the Hessian f ′′(W )), as the additional terms in (3.3) and (3.6)
cancel out.

Given C ∈ Rnd×nd, the matrix B − C satisfies (3.5) if and only if

〈C(A′ −A), A′ −A〉 = o
(
|A′ −A|2

)
for A′ → A, A′ ∈Wn,d. Similarly to the first order case, this is equivalent to 〈CX,X〉 = 0

for allX ∈ TA. This condition defines a linear subspace L ofRnd×nd, and the minimization
problem translates into

‖B − C‖HS → min over all C ∈ L,

which is solved uniquely for the orthogonal projection of B onto the linear space L⊥ of all
matrices orthogonal to L. Since B is symmetric, we may restrict ourselves to symmetric
matrices. As a result, we obtain the following description.

Proposition 3.2. The intrinsic second derivative of f at each A ∈Wn,d is the symmetric
matrix which is given by the orthogonal projection

f ′′W (A) = PL⊥B, B = f ′′(A)− (A ◦ ∇f(A))⊗ In,

to the orthogonal complement of the linear subspace L = LA of all symmetric matrices
C in Rnd×nd such that 〈CX,X〉 = 0 for all X ∈ TA. Equivalently,

f ′′W (A) = PABPA,

where PA = AAT and PABPA is the nd× nd matrix which is defined by the relation

(PABPA)vec(V ) = vec(PAmat[Bvec(PAV )]) (3.7)

for any V ∈ Rn×d.
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Note that unless d = 1, the notation PABPA is not to be understood in the sense of
matrix multiplication but as defined by the relation (3.7). In particular, Proposition 3.2
implies that for all A ∈ Wn,d and V ∈ Rn×d, f ′′W (A)V ∈ TA, f ′′W (A)A = 0, and hence
〈f ′′W (A)V,A〉 = 0 for all V . Furthermore, we have the contraction property

‖f ′′W (A)‖HS ≤ ‖f ′′(A)− (A ◦ ∇f(A))⊗ In‖HS,

which also holds for the operator norm.
In the notation of (2.1), it is not hard to show that for any V ∈ Rn×d

f ′′(X)V = ∇〈∇f(X), V 〉

for the usual Euclidean derivatives. The analogue for intrinsic derivatives reads as
follows:

Proposition 3.3. Given a C2-smooth function f on Wn,d, for all A ∈Wn,d and V ∈ Rn×d,
we have

f ′′W (A)V = ∇W 〈∇W f(A), V 〉+ PA(∇W f(A)(A ◦ V )).

Here, the left-hand side has to be read as f ′′(W )vec(V ) and the right-hand side has to be
understood as vectorized.

In particular, if V ∈ TA, then PAV = V and A ◦ V = 0, so that we obtain

f ′′W (A)V = ∇W 〈∇W f(A), V 〉.

Proof. Consider the function ψV (A) := 〈∇W f(A), V 〉. In view of Proposition 3.1, any
smooth extension of f to a neighborhood of Wn,d also yields a smooth extension of ψV
which is given by

ψV (X) = 〈∇f(X), V 〉 − 〈X(X ◦ ∇f(X)), V 〉
= 〈∇f(X), V 〉 − tr(V TX(X ◦ ∇f(X))).

Let us calculate ∇ψV (X). First, we have

vec(∇〈∇f(X), V 〉) = f ′′(X)vec(V ).

Next, we consider

d

dX
[V TX(X ◦ ∇f(X))] = ((X ◦ ∇f(X))⊗ Id)

d(V TX)

dX

+ (Id ⊗ (V TX))
d(X ◦ ∇f(X))

dX
,

where we have applied Lemma 2.2, part 1. By Lemma 2.2, part 4,

d(V TX)

dX
= Id ⊗ V T ,

so that

((X ◦ ∇f(X))⊗ Id)
d(V TX)

dX
= (X ◦ ∇f(X))⊗ V T .

Moreover, using Lemma 2.2, parts 1&3, we have

d(XT∇f(X))

dX
= (∇f(X)T ⊗ Id)Kn,d + (Id ⊗XT )f ′′(X)

as well as
d(∇f(X)TX)

dX
= (XT ⊗ Id)Kn,df

′′(X) + Id ⊗∇f(X)T ,
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and hence, using Lemma 2.1, part 7, it follows that

d(X ◦ ∇f(X))

dX
=

1

2
(Id2 +Kd,d)((Id ⊗∇f(X)T ) + (Id ⊗XT )f ′′(X)).

Putting everything together, it follows by Lemma 2.2, parts 2&5, and (switching from
d/(dX) to vec(∇), hence transposing) Lemma 2.1, part 2, that

vec(∇ψV (X)) = f ′′(X)vec(V )− ((X ◦ ∇f(X))⊗ V )vec(Id)

− 1

2
((Id ⊗∇f(X)) + f ′′(X)(Id ⊗X))(Id2 +Kd,d)(Id ⊗ (XTV ))vec(Id).

Using Lemma 2.1, part 6, is possible to simplify this impression further. First, note that

((X ◦ ∇f(X))⊗ V )vec(Id) = vec(V (X ◦ ∇f(X))).

Moreover, we have
(Id ⊗ (XTV ))vec(Id) = vec(XTV )

and by (2.2), it follows that

Kd,dvec(X
TV ) = vec(V TX),

so that
1

2
(Id2 +Kd,d)(Id ⊗ (XTV ))vec(Id) = vec(X ◦ V ).

To continue,
(Id ⊗∇f(X))vec(X ◦ V ) = vec(∇f(X)(X ◦ V ))

as well as
(Id ⊗X)vec(X ◦ V ) = vec(X(X ◦ V )).

Putting everything together, we thus obtain

vec(∇ψV (X)) = f ′′(X)vec(V )− vec(V (X ◦ ∇f(X)))

− vec(∇f(X)(X ◦ V ))− f ′′(X)vec(X(X ◦ V )).

Restricting this from X ∈ Rn×d to A ∈Wn,d and recalling the projection PA, we therefore
have

vec(∇ψV (A)) = f ′′(A)vec(PAV )− vec(V (A ◦ ∇f(A)) +∇f(A)(A ◦ V )).

In terms of intrinsic derivatives (and now using the short-hand notation introduced in
Proposition 3.2), we obtain

∇WψV (A) = PAf
′′(A)PAV − PA[V (A ◦ ∇f(A))]− PA[∇f(A)(A ◦ V )].

Recall the matrix B = f ′′(A)− (A ◦ ∇f(A))⊗ In from (3.6). By Proposition 2.1, part 5,

B̃vec(V ) = ((A ◦ ∇f(A))⊗ In)vec(V ) = vec(V (A ◦ ∇f(A))),

so that if we write B = f ′′(A)− B̃, we obtain

∇WψV (A) = PAf
′′(A)PAV − PAB̃V − PA[∇f(A)(A ◦ V )]

= PAf
′′
W (A)PAV − PAB̃(V − PAV )− PA[∇f(A)(A ◦ V )]

in view of Proposition 3.2. As above, we note that

B̃V = (V − PAV )(A ◦ ∇f(A)),
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so that altogether, we arrive at

f ′′W (A)V = ∇W 〈∇W f(A), V 〉+ PA[(V − PAV )(A ◦ ∇f(A))]
+ PA[∇f(A)(A ◦ V )].

To finish the proof, it remains to note that

PA[(V − PAV )(A ◦ ∇f(A))] + PA[∇f(A)(A ◦ V )]− PA[∇W f(A)(A ◦ V )]

= PA[A(A ◦ V )(A ◦ ∇f(A))] + PA[A(A ◦ ∇f(A))(A ◦ V )]

= PA[A((A ◦ V ) ◦ (A ◦ ∇f(A)))] = 0,

where the last step follows by an easy calculation using ATA = Id.

4 Second order modulus of gradient

Recall that the generalized second order modulus of the gradient on the Stiefel
manifold Wn,d is defined by

|∇(2)f(A)| = |∇W |∇W f(A)||

= lim sup
A′→A

∣∣|∇W f(A)| − |∇W f(A′)|∣∣
|A−A′|

.

Typically, explicitly calculating |∇(2)f(A)| is not easy, however, and therefore, moti-
vated by the Euclidean or spherical calculus, we may hope for an estimate of the form
|∇(2)f(A)| ≤ ‖f ′′W (A)‖op. Indeed, we have the following result.

Proposition 4.1. For any C2-smooth function f on Wn,d, |∇W f | has finite Lipschitz
semi-norm, and for any A ∈Wn,d,

|∇(2)f(A)| = |∇W f(A)|−1|f ′′W (A)∇fW (A)|,

where the right-hand side has to be understood as ‖f ′′W (A)‖op if |∇W f(A)| = 0. In
particular, we always have

|∇(2)f(A)| ≤ ‖f ′′W (A)‖op.

Proof. Let us first prove that the function |∇W f(A)| has finite Lipschitz semi-norm. Since
the first two intrinsic derivatives of f are continuous and therefore bounded on the
compact manifold Wn,d, we obtain from Proposition 3.3 that

|∇W 〈∇W f(A), V 〉| ≤ C

for any V ∈ Rn×d such that |V | ≡ ‖V ‖HS = 1, where C is some constant independent of
A and V . Hence, the function A 7→ 〈∇W f(A), V 〉 has Lipschitz semi-norm bounded by C,
i. e.

|〈∇W f(A′), V 〉 − 〈∇W f(A), V 〉| ≤ Cd(A,A′)

for all A,A′ ∈Wn,d. Therefore, taking the supremum over all V and applying the triangle
inequality yields

||∇W f(A′)| − |∇W f(A)|| ≤ |∇W f(A′)−∇W f(A)| ≤ Cd(A′, A),

which had to be proven.
To show the identity for the second order modulus of the gradient, fix A ∈Wn,d. By

the definition of the intrinsic gradient and Proposition 3.3, we have

〈∇W f(A′), V 〉 = 〈∇W f(A), V 〉+ 〈Ṽ , A′ −A〉+ o(|A′ −A|),
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where
Ṽ = f ′′W (A)V − PA(∇W f(A)(A ◦ V )).

Moreover, a closer analysis (using the integral form of the Taylor formula and the
compactness of Wn,d, which implies that every continuous function is already uniformly
continuous) yields that the remainder term in the Taylor expansion can be bounded
independently of V ∈ Rn×d such that |V | = 1, i. e.

sup
|V |=1

|〈∇W f(A′), V 〉 − 〈∇W f(A), V 〉 − 〈Ṽ , A′ −A〉| ≤ ε(|A−A′|),

where ε(t) is some function which satisfies ε(t)→ 0 as t→ 0.
The next step is to rewrite the Taylor formula as

〈∇W f(A′), V 〉 = 〈∇W f(A) + L, V 〉+ o(|A′ −A|) (4.1)

for some L to be determined later. To this end, we first choose a suitable L̃ such that
〈Ṽ , A′ −A〉 = 〈L̃, V 〉. Obviously,

〈f ′′W (A)V,A′ −A〉 = 〈f ′′W (A)(A′ −A), V 〉.

Moreover,

PA(∇W f(A)(A ◦ V ))

= ∇W f(A)(A ◦ V )−A(A ◦ (∇W f(A)(A ◦ V )))

=
1

2
(∇W f(A)ATV +∇W f(A)V TA)−

1

4
(AAT∇W f(A)ATV

+AAT∇W f(A)V TA+AATV∇W f(A)TA+AV TA∇W f(A)TA).

Recall that 〈U, V 〉 = tr(UTV ) and that the trace is invariant under cyclic permutations.
Therefore, we may easily verify the general rules

〈UVW,X〉 = 〈UTXWT , V 〉, 〈UV TW,X〉 = 〈WXTU, V 〉, (4.2)

where V,X ∈ Rn×d and U ∈ Rn×n, W ∈ Rd×d in the first identity or U,W ∈ Rn×d in the
second one. We now apply these identities to all six terms appearing in PA(∇W f(A)(A ◦
V )) with V as above and X = A′ −A. For instance, for the first term this yields

〈∇W f(A)ATV,A′ −A〉 = 〈A∇W f(A)T (A′ −A), V 〉.

Proceeding similarly, we arrive at

〈∇W f(A)(A ◦ V ), A′ −A〉 = 〈A(∇W f(A) ◦ (A′ −A)), V 〉

as well as

〈A(A ◦ (∇W f(A)(A ◦ V ))), A′ −A〉 = 〈A((AT∇W f(A)) ◦ (A ◦ (A′ −A))), V 〉.

Altogether, we obtain

L̃ = f ′′W (A)(A′ −A)−A[∇W f(A) ◦ (A′ −A)− (AT∇W f(A)) ◦ (A ◦ (A′ −A))].

Now we define
L := f ′′W (A)(A′ −A)−A(∇W f(A) ◦ (A′ −A))

To see that (4.1) holds, it remains to show that L̃−L = o(|A′−A|) as A′ → A, A,A′ ∈Wn,d.
To this end, note that by an easy calculation,

A ◦ (A′ −A) = 1

2
(A′ −A)T (A−A′) = o(|A′ −A|).

EJP 28 (2023), paper 79.
Page 12/30

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP966
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Higher order concentration on Stiefel and Grassmann manifolds

From here, the claim immediately follows by compactness arguments.
Now we take an absolute value on both sides of the Taylor formula (4.1) and take the

supremum over all V such that vec(V ) ∈ Snd−1. This leads to

|∇W f(A′)| = |∇W f(A) + L|+ o(|A′ −A|).

Next, we write

|∇W f(A) + L|2 = |∇W f(A)|2 + 2〈∇W f(A), L〉+ |L|2.

Noting that

〈∇W f(A), A(A ◦ ∇f(A))〉 = tr(∇W f(A)TA(A ◦ ∇f(A))) = 0

since ∇W f(A)TA is antisymmetric (as ∇W f(A) ∈ TA) and A ◦ ∇f(A) is symmetric, we
obtain

〈∇W f(A), L〉 = 〈∇W f(A), f ′′W (A)(A′ −A)〉 = 〈U,A′ −A〉,

where

U := f ′′W (A)∇W f(A) ≡ f ′′W (A)vec(∇W f(A)).

Since |L|2 = O(|A′ −A|2), we obtain

|∇W f(A) + L|2 = |∇W f(A)|2 + 2〈U,A′ −A〉+ o(|A′ −A|).

If |∇W f(A)| > 0, it therefore follows that

|∇W f(A) + L| = |∇W f(A)|+ |∇W f(A)|−1〈U,A′ −A〉+ o(|A′ −A|).

Hence,

|∇W f(A′)| − |∇W f(A)| = |∇W f(A)|−1〈U,A′ −A〉+ o(|A′ −A|)

and thus

lim sup
A′→A

∣∣|∇W f(A′)| − |∇W f(A)|∣∣
|A′ −A|

= |∇W f(A)|−1 lim sup
A′→A

∣∣〈U,A′ −A〉∣∣
|A′ −A|

= |∇W f(A)|−1|∇WψU (A)|,

where ψU (A) := 〈U,A〉. As noted after Proposition 3.2, U ∈ TA, so that ∇WψU (A) = U .
Thus, we arrive at

|∇(2)
W (A)| = |∇W f(A)|−1|f ′′W (A)∇W f(A)|

if |∇W f(A)| > 0.
It remains to consider the case where |∇W f(A)| = 0. Here, L = f ′′W (A)(A′ −A), and

the Taylor formula reads

|∇W f(A′)| = |L|+ o(|A′ −A|).

It follows that

|∇(2)
W f(A)| = lim sup

A′→A

|∇W f(A′)|
|A′ −A|

= lim sup
A′→A

|f ′′W (A)(A′ −A)|
|A′ −A|

= lim sup
V→0,V ∈T⊥

A

|f ′′W (A)V |
|V |

= ‖f ′′W (A)‖op,

which finishes the proof.
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5 Derivatives on Grassmann manifolds

Let us adapt the results of the previous two sections to functions on Grassmann
manifolds. Much of what follows relies on similar arguments as in the Stiefel case,
and for this reason we will often only sketch the arguments. To introduce a notion of
differentiability on Gn,d, first recall that the tangent space in P ∈ Gn,d is given by

TP := {S ∈ Rn×nsym : S = SP + PS} ≡ {S ∈ Rn×nsym : S = [[S, P ], P ]},

where for any M,N ∈ Rn×n, [M,N ] = MN − NM denotes the matrix commutator. A
function f : Gn,d → R is differentiable at P ∈ Gn,d if it admits a Taylor expansion

f(P ′) = f(P ) + 〈M,P ′ − P 〉+ o
(
|P ′ − P |

)
as P ′ → P, P ′ ∈ Gn,d (5.1)

with someM ∈ Rn×nsym . Among all suchM , there exists a uniqueM0 of smallest (Euclidean)
length, called the intrinsic (first) derivative or gradient of f at P and denoted ∇Gf(P ).
The length of ∇Gf(P ) agrees with the generalized modulus of the gradient (3.1) applied
to the Grassmann manifold. In passing, note that unlike in case of the Stiefel manifold,
for Grassmann manifolds the Euclidean metric and the canonical metric lead to the
same notion of differentiablity. As in case of the Stiefel manifold, the minimization
problem (5.1) translates into

‖M −B‖HS → min over all B ∈ T⊥P ,

which is solved uniquely for the orthogonal projection M onto TP .
If we consider functions which are defined and smooth in an open neighborhood of

Gn,d in the ambient space, e. g. Rn×nsym , we may take the Euclidean gradient ∇f(P ) =

mat(Df(P )T ) (cf. Section 2) and project it onto TP , which gives back ∇Gf(P ). As the
projection πP : Rn×nsym → TP is given by

πPM := [P, [P,M ]] = PM +MP − 2PMP, (5.2)

we immediately arrive at the following analogue of Proposition 3.1.

Proposition 5.1. Let f be defined and C1-smooth in some open neighborhood of Gn,d in
Rn×nsym . Then, the intrinsic first derivative of f at P ∈ Gn,d is given by the projection onto
TP

∇Gf(P ) = πP∇f(P ) = [P, [P,∇f(P )]].
In particular, |∇Gf(P )| ≤ |∇f(P )| for any P ∈ Gn,d.

In fact, sometimes yet a further embedding might be convenient, so that we regard
Gn,d as a submanifold of Rn×n and take the Euclidean derivatives of some extension of f
to an open neighborhood in Rn×n. However, in this case, we may project ∇f(P ) onto the
tangent space of Rn×nsym (which equals Rn×nsym ) by applying the projection πsym : Rn×n →
Rn×nsym given by πsym(M) := (M +MT )/2. Then, we may proceed as in Proposition 5.1 for
πsym(∇f(P )).

For any C2-smooth function f on Gn,d at a given point P ∈Wn,d, the intrinsic second

order derivative is the matrix B ∈ Rn2×n2

of smallest Hilbert–Schmidt norm which
satisfies

f(P ′) = f(P ) + 〈∇Gf(P ), P ′ − P 〉+
1

2
〈B(P ′ − P ), P ′ − P 〉+ o

(
|P ′ − P |2

)
(5.3)

as P ′ → P , P ′ ∈ Gn,d. It will be denoted f ′′G(X). Considering functions f which
are defined and smooth in some open neighborhood of Gn,d in Rn×nsym , it is possible to
express the intrinsic second order derivative in terms of the Euclidean derivatives of f .
Instead of providing the details, we refer to [HHT07, Theorem 2.4] where corresponding
calculations have been done. Adapting them to our framework yields the following
analogue of Proposition 3.2.
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Proposition 5.2. The intrinsic second derivative of f at each P ∈ Gn,d is given by the
relation

f ′′G(P )V = πP f
′′(P )πPV − [P, [∇f(P ), πPV ]]

for any V ∈ Rn×nsym . Here, the expression on the right hand side has to be understood as

vec(πPmat[f ′′(P )vec(πPV )])− vec([P, [∇f(P ), πPV ]]).

Note that [P, [∇f(P ), πPV ]] ∈ TP . In particular, for all P ∈ Gn,d and V ∈ Rn×nsym ,
f ′′G(P )V ∈ TP , f ′′G(P )P = 0, and hence 〈f ′′G(P )V, P 〉 = 0 for all V ∈ Rn×nsym . Furthermore,
we have the contraction property

‖f ′′G(P )‖HS ≤ ‖f ′′(P )− [P, [∇f(P ), πPV ]]‖HS,

which also holds for the operator norm. Similarly to the first order case, sometimes it is
necessary to extend f to a smooth function on some neighborhood in Rn×n. In this case,
we may take the usual Euclidean Hessian f ′′(P ), from which we get back the Hessian on
Rn×nsym by considering πsymf ′′(P )πsym.

Moreover, we have the following analogue of Proposition 3.3.

Proposition 5.3. Given a C2-smooth function f on Gn,d, for all P ∈ Gn,d and V ∈ Rn×nsym ,
we have

f ′′G(P )V = ∇GψV (P )− [P, [∇Gf(P ), V ]].

Here, the left-hand side has to be read as f ′′G(P )vec(V ) and the right-hand side has to be
understood as vectorized.

In particular, if V ∈ TP it follows from [HHT07, Lemma 2.2] that

f ′′G(P )V = ∇G〈∇Gf(P ), V 〉.

Finally, we also have an analogue of Proposition 4.1.

Proposition 5.4. For any C2-smooth function f on Gn,d, |∇Gf | has finite Lipschitz semi-
norm, and for any P ∈ Gn,d,

|∇(2)
G f(P )| = |∇Gf(P )|−1|f ′′G(P )∇fG(P )|,

where the right-hand side has to be understood as ‖f ′′G(P )‖op if |∇Gf(P )| = 0. In
particular, we always have

|∇(2)
G f(P )| ≤ ‖f ′′G(P )‖op.

As the proofs of Proposition 5.3 and Proposition 5.4 are mostly an adaption of the
arguments known from the Stiefel case, we defer them to the appendix.

6 Proofs

To prepare the proofs of our main results, we briefly revisit the representations of
the Stiefel and Grassmann manifolds we use in this paper. In particular, we shall discuss
the Lipschitz properties of the map πSt : Wn,d → Gn,d, A 7→ AAT ≡ PA. Clearly, πSt is
2
√
d-Lipschitz as

‖AAT −A′A′T ‖HS ≤ ‖A(AT −A′T )‖HS + ‖(A−A′)A′T ‖HS ≤ 2
√
d‖A−A′‖HS

since ‖A‖HS, ‖A′‖HS =
√
d. However, this Lipschitz constant is too weak for our purposes.

To avoid the dependency on d, more subtle arguments are needed.
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Recall that if M1,M2 ⊂ Rn are two subspaces of dimension d, the principal angles θj ,
j = 1, . . . , d, between M1 and M2 are recursively defined by

cos θj = max
u∈M1

max
v∈M2

|〈u, v〉| = 〈uj , vj〉

subject to the constraints

〈ui, u〉 = 0, 〈vi, v〉 = 0, i = 1, 2, . . . , j − 1.

The vectors {u1, . . . , ud}, {v1, . . . , vd} are called the principal vectors of the pair (M1,M2).
The concept of principal angles goes back to Jordan. Here we mainly follow the survey
article [Ga08].

Note that the principal angles are uniquely defined and satisfy 0 ≤ θ1 ≤ . . . ≤ θd ≤ π/2,
while the principal vectors are not unique. However, they form orthonormal d-frames and
can thus be interpreted as elements U, V ∈Wn,d. Moreover, we have 〈ui, vj〉 = δij cos θi.
By [Af57], the respective orthogonal projections PU = πSt(U) and PV = πSt(V ) satisfy

PUPV uj = (cos2 θj)uj , PV PUvj = (cos2 θj)vj , j = 1, . . . , d,

i. e., the non-zero eigenvalues of the matrices PUPV and PV PU are cos2 θj , j = 1, . . . , d.
This relation extends to all A,B ∈ Wn,d such that A = UO and B = V O′ for some
O,O′ ∈ O(d) (since PA = PU and PB = PV ). Note also that by definition of the principal
angles, for any A,A′ ∈Wn,d

max
O∈O(d)

〈A,A′O〉 = 〈A,A′′〉 = tr(ATA′′) =

d∑
j=1

cos θj ,

where θj are the principal angles between the two subspaces induced by A and A′ and
A′′ is the Stiefel matrix maximizing the term on the left-hand side.

Lemma 6.1. The map πSt : Wn,d → Gn,d, A 7→ AAT = PA is
√
2-Lipschitz.

Proof. Using principle angles and the notation introduced above, we have

‖PA − PA′‖2HS = 2d− 2tr(PAPA′) = 2d− 2

d∑
j=1

cos2 θj = 2

d∑
j=1

(1− cos2 θj)

≤ 2

d∑
j=1

2(1− cos θj) = 2(2d− 2tr(ATA′′))

≤ 2(2d− 2tr(ATA′)) = 2||A−A′||2HS,

where in the first inequality we used that (1− x2)/(1− x) ≤ 2 for any x ∈ [0, 1].

One may wonder whether the map PA might even be 1-Lipschitz. However, simple
examples are sufficient to show that this cannot be true (e. g., consider d = 1 and the
vectors A = (1, 0, . . . , 0)T and A′ = (1/

√
n, . . . , 1/

√
n)T ).

The core of our arguments is a logarithmic Sobolev inequality for Stiefel and Grass-
mann manifolds. Even if we are not aware of a source where log-Sobolev inequalities for
Stiefel and Grassmann manifolds are rigorously formulated, they may easily be derived
by a simple projection argument. We emphasize that these inequalities are designed for
the representations of Wn,d and Gn,d we use all over this paper.

Proposition 6.2. 1. For any d < n, Wn,d satisfies a logarithmic Sobolev inequality
with constant 4/(n− 2), i. e. for any f : Wn,d → R sufficiently smooth,

Entµn,d
(f2) ≤ 8

n− 2

∫
Wn,d

|∇W f |2dµn,d.
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2. For any d < n, Gn,d satisfies a logarithmic Sobolev inequality with constant 8/(n−2),
i. e. for any f : Gn,d → R sufficiently smooth,

Entνn,d
(f2) ≤ 16

n− 2

∫
Gn,d

|∇Gf |2dνn,d.

Let us briefly mention that for d = 1 (i. e. the sphere), the optimal Sobolev constant is
known to be 1/(n− 1) as shown in [MW82]. In particular, even if Proposition 6.2 is not
fully accurate, the behavior of the Sobolev constant for large values of n agrees with the
optimal result in case of the sphere. Moreover, note that if d = n, Wn,n = O(n) has two
connected components, which in particular implies that a log-Sobolev inequality cannot
hold.

Proof of Proposition 6.2. First recall that if d < n, we have

Wn,d
∼= SO(n)/SO(n− d).

Indeed, identifying any matrix in SO(n) with its first n − 1 columns e1, . . . , en−1, this
follows readily using the projection map ϕ : SO(n) → Wn,d which is given by ϕ(e1, . . . ,
en−1) := (e1, . . . , ed). By [Me19, Theorem 5.16], the special orthogonal group SO(n)

equipped with the uniform probability measure and Hilbert–Schmidt metric satisfies a
log-Sobolev inequality with constant 4/(n− 2). Noting that the map ϕ is 1-Lipschitz, part
1 of the proposition therefore follows immediately.

To see part 2, it remains to note that (Gn,d, νn,d) is the the pushforward of (Wn,d, µn,d)

under πSt, which is
√
2-Lipschitz according to Lemma 6.1 (so that the Sobolev constant

is doubled).

In the sequel, we will give the proofs of the concentration bound for function on
Stiefel manifolds, i. e., Theorem 1.1 and Theorem 1.3. As already shown in [AS94],
logarithmic Sobolev inequalities imply certain Lp norm inequalities. In the situation
under consideration, for any locally Lipschitz function g : Wn,d → R and for any p ≥ 2,

‖g‖2p ≤ ‖g‖22 + 4(n− 2)−1(p− 2)‖∇W g‖2p. (6.1)

Using Proposition 3.1, we moreover have

‖g‖2p ≤ ‖g‖22 + 4(n− 2)−1(p− 2)‖∇g‖2p. (6.2)

Let us also recall that since µn,d satisfies a log-Sobolev inequality, it also satisfies a
Poincaré inequality with the same constant, i. e.

Varµn,d
(f) ≡

∫
Wn,d

(f − µn,d(f))2dµn,d ≤
4

n− 2

∫
Wn,d

|∇W f |2dµn,d (6.3)

for all f : Wn,d → R sufficiently smooth.

We now first prove Theorem 1.3. Note that its proof follow the lines of the proofs
established in [BGS19, GSS21b].

Proof of Theorem 1.3. Applying (6.2) to g = ‖f (`)‖op and recalling that for Euclidean
derivatives, |∇‖f (`)‖op| ≤ ‖f (`+1)‖op (cf. [BGS19, Lemma 4.1]), we obtain that

‖f (`)‖2op,p ≤ ‖f (`)‖2op,2 + 4(n− 2)−1(p− 2)‖f (`+1)‖2op,p
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for any ` = 1, . . . , k − 1, which yields

‖f‖2p ≤ ‖f‖22 +
k−1∑
`=1

(4(p− 2)

n− 2

)`
‖f (`)‖2op,2 +

(4(p− 2)

n− 2

)k
‖f (k)‖2op,∞

≤ 4

n− 2
‖f (1)‖22 +

k−1∑
`=1

(4(p− 2)

n− 2

)`
‖f (`)‖2op,2 +

(4(p− 2)

n− 2

)k
‖f (k)‖2op,∞

≤
k−1∑
`=1

(4(p− 1)

n− 2

)`
‖f (`)‖2op,2 +

(4(p− 1)

n− 2

)k
‖f (k)‖2op,∞ (6.4)

for any p ≥ 2, where the second step follows by Poincaré inequality.
To see part 1 of the theorem, plugging in the assumptions we arrive at

‖f‖2p ≤
( 4

n− 2

)k k∑
`=1

p` ≤ 1

1− p−1
( 4p

n− 2

)k
≤
( 8p

n− 2

)k
and therefore ‖f‖p ≤ (8p/(n − 2))k/2 for any p ≥ 2. If p ≤ 2, we may estimate ‖f‖p ≤
‖f‖2 ≤ (16/(n− 2))k/2. In particular, we obtain that for any m ≥ 1,

‖|f |2/k‖m = ‖f‖2/k2m/k ≤ γm

with γ = 16/(n− 2). In particular, by an easy calculation (cf. [BGS19, Eq. (2.17)], this
yields that

∫
Wn,d

exp(c′|f |)dµn,d ≤ 2 for c′ = 1/(2γe) as stated in part 1 of the theorem.
To show part 2, taking roots in (6.4) yields

‖f‖p ≤
k−1∑
`=1

(4(p− 1)

n− 2

)`/2
‖f (`)‖op,2 +

(4(p− 1)

n− 2

)k/2
‖f (k)‖op,∞.

Now, [GSS21b, Proposition 4] yields

µn,d(|f − µn,d(f)| ≥ t) ≤ 2 exp
(
− 1

C
min

(
min

`=1,...,k−1

t2/`

‖f (`)‖2/`op,2

,
t2/k

‖f (k)‖2/kop,∞

))
,

where we may choose

C =
4e2k2

log(2)(n− 2)
,

which completes the proof.

For the proof of Theorem 1.1, we moreover need the following lemma which relates
the L2 norms of the derivatives of first and second order under a centering assumption.

Lemma 6.3. Let f : Wn,d → R be a C2-smooth function which has centered first order
intrinsic derivatives, i. e. µn,d(∇W f) = 0. Then,∫

Wn,d

|∇W f |2dµn,d ≤
8

n− 2− 8d

∫
Wn,d

‖f ′′W ‖2HSdµn,d.

Proof. Write
|∇W f(A)|2 =

∑
i,j

〈∇W f(A), eij〉2,

where i ≤ n, j ≤ d and eij is the “indicator matrix” whose (i, j)-th entry equals 1 while
all other entries are zero. By assumption, the functions A 7→ 〈∇W f(A), eij〉 are centered.
Therefore, applying the Poincaré inequality (6.3) yields

n− 2

4

∫
Wn,d

〈∇W f(A), eij〉2dµn,d ≤
∫
Wn,d

|∇W (∇W f(A), eij〉)|2dµn,d.
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By Proposition 3.3, we have

∇W (∇W f(A), eij〉) = f ′′W (A)eij − PA(∇W f(A)(A ◦ eij)),

so that we may estimate∫
Wn,d

|∇W (∇W f(A), eij〉)|2dµn,d

≤ 2

∫
Wn,d

|f ′′W (A)eij |2dµn,d + 2

∫
Wn,d

|PA(∇W f(A)(A ◦ eij))|2dµn,d.

By contractivity and using |Aij |2 ≤ 1,

|PA(∇W f(A)(A ◦ eij))|2 ≤ |(∇W f(A)(A ◦ eij)|2 ≤ d|∇W f(A)|2.

Plugging in, summing up and noting that∑
i,j

|f ′′W (A)eij |2 = ‖f ′′W (A)‖2HS

(recall that i ≤ n, j ≤ d and f ′′W (A) is an nd× nd matrix) completes the proof.

Proof of Theorem 1.1. Obviously, we may argue as in the proof of Theorem 1.3 with (6.2)
replaced by (6.1) and [BGS19, Lemma 4.1] replaced by Proposition 4.1 (thus involving
intrinsic derivatives) to obtain

‖f‖2p ≤
4(p− 1)

n− 2
‖∇W f‖22 +

(4(p− 1)

n− 2

)2
‖f ′′W ‖2op,∞,

which is the “intrinsic analogue” of (6.4) for k = 2. Therefore, to see parts 1 and
2, we may just copy the proof of Theorem 1.3. Moreover, part 3 follows by applying
Lemma 6.3.

Finally, to address Theorem 1.2 and Theorem 1.4, note that for any locally Lipschitz
function g : Gn,d → R and for any p ≥ 2,

‖g‖2p ≤ ‖g‖22 + 8(n− 2)−1(p− 2)‖∇Gg‖2p,

which is an analogue of (6.1). From here, we may essentially copy the proofs of Theo-
rem 1.1 and Theorem 1.3 with the obvious adaptions (which, in particular, lead to slightly
different constants).

7 Concentration results for polynomial chaos

Arguably the most classical object in the study of higher order concentration is
polynomial chaos. In the context of Stiefel manifolds, by a polynomial chaos of order k
we refer to functionals of the form

fk(A) :=

n,d∑
i1,j1=1

· · ·
n,d∑

ik,jk=1

ci1j1,...,ikjkAi1j1 · · ·Aikjk ,

where ci1j1,...,ikjk are real-valued coefficients. For k = 1, 2, these are linear or quadratic
forms, respectively. Functionals of this type are for instance related to angles and
distances between such random subspaces like det(ATC), where A ∈Wn,d and C ∈ Rn×d
is a matrix of coefficients which might be random with, say, independent entries. (In
this case, det(ATC) is the scalar product of the exterior d-forms induced by A and C
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representing subspaces of dimension d.) In this section, we will mainly be interested in
the case of k = 2 but also provide some basic comments on other values of k.

In particular, information about the (mixed) moments of the Stiefel matrix entries
Aij of order up to k is needed. To this end, note that the Aij are identically distributed
uncorrelated random variables with mean zero and variance 1/n. Indeed, using the

invariance under orthogonal transformations we clearly have Aij
d
= Ak`, where

d
= means

equality in distribution, and also, multiplying suitable columns or rows by −1,∫
Wn,d

AijAk`dµn,d = −
∫
Wn,d

AijAk`dµn,d = 0

for any (i, j) 6= (k, `). Moreover, the Aij are centered since A
d
= −A, and we have

d =

n,d∑
k,`=1

A2
k` =

∫
Wn,d

n,d∑
k,`=1

A2
k`dµn,d = nd

∫
Wn,d

A2
ijdµn,d

for any (i, j). Some of these relations may also deduced from the fact that the marginal
distribution of each column of A is the uniform distribution on the sphere.

These results also imply that the entries of a Grassmannian (projection) matrix P
satisfy ∫

Gn,d

Pijdνn,d =

{
d/n, i = j

0, i 6= j
.

To see this, it suffices to note that writing P = PA = AAT , we have Pij =
∑d
k=1AikAjk.

7.1 First order results

To start, let us briefly study linear forms on Wn,d, which we may rewrite as

f1(A) = 〈V,A〉

for some matrix of coefficients V ∈ Rn×d. Since ∇W f1(A) = PA(V ) and the entries of A
are centered, (1.2) immediately yields

µn,d(|f1| ≥ t) ≤ 2 exp
(
− (n− 1)t2

8‖PA(V )‖2HS,∞

)
. (7.1)

One may also choose the vector of coefficients V at random according to some distribu-
tion with independent entries or dependent entries with higher order uncorrelatedness
conditions. In this case, results like (7.1) hold conditionally given V , for instance.
Functionals of this type may be regarded as natural generalizations of weighted sums
〈X, θ〉 = θ1X1 + · · · + θnXn with uniformly distributed weights θ = (θ1, . . . , θn) ∈ Sn−1
and some random vector X with higher order uncorrelated entries (cf. [BCG18, BCG20]),
replacing the sphere by the Stiefel manifold.

7.2 Second order results

The central object of this section are quadratic forms on Wn,d. Recall that a classical
(second order) concentration result for quadratic forms in independent subgaussian
random variables is the famous Hanson–Wright inequality, cf. [HW71]. It states that
for a random vector X = (X1, . . . , Xn) with independent centered components with
variance 1,

P(|XTMX − tr(M)| ≥ t) ≤ 2 exp
(
− 1

C
min

( t2

‖M‖2HS

,
t

‖M‖op

))
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for any t ≥ 0, where the constant C > 0 depends on the subgaussian norm of the
coordinates Xi.

We derive analogues of the Hanson–Wright inequality for Stiefel manifolds, i. e., we
consider

f2(A) = vec(A)TMvec(A) ≡ ATMA (7.2)

for some matrix M ∈ Rnd×nd which, for simplicity, we assume to be symmetric. Note
that the informal notation ATMA extends (2.1). For instance, to go back to the example
sketched at the beginning of this section, we may consider det(ATC), where for simplicity
we assume C ∈ Rn×d to be fixed, in the case of d = 2. Here,

det(ATC) =
( n∑
i=1

ai1ci1

)( n∑
j=1

ai2ci2

)
−
( n∑
i=1

ai1ci2

)( n∑
j=1

ai2ci1

)
= ATMA

for the matrix M with entries Mij,kl = (cijckl − cilckj)/2. More advanced examples will
be discussed in a further subsection.

In the next theorem, we present three different Hanson–Wright type inequalities for
Stiefel manifolds. Write

U :=
(∑
k,l

Mij,klAkl

)
i,j
, B :=M − (A ◦ U)⊗ In

for i, k ≤ n, j, l ≤ d, noting that ∇W f2(A) = 2PAU and f ′′2W (A) = 2PABPA.

Theorem 7.1 (Hanson–Wright type inequalities for Stiefel manifolds). 1. For any t ≥
0, we have

µn,d(|f2 − tr(M)/n| ≥ t) ≤ 2 exp
(
− 1

C
min

( (n− 2)2t2

‖M‖2HS

,
(n− 2)t

‖M‖op

))
,

where we may choose C = 128e2/ log(2).

2. For any t ≥ 0, we have

µn,d(|f2 − tr(M)/n| ≥ t) ≤ 2 exp
(
− 1

C
min

( (n− 2)t2

‖PAU‖2HS,2

,
(n− 2)t

‖PABPA‖op,∞

))
,

where we may choose C = 32e2/ log(2).

3. For any t ≥ 0, we have

µn,d(|f2 − tr(M)/n| ≥ t) ≤ 2 exp
(
− 1

C
min

( (n− 2− 8d)2t2

‖PABPA‖2HS,2

,
(n− 2)t

‖PABPA‖op,∞

))
,

where we may choose C = 256e2/ log(2).

For the notation used in parts 2 and 3, cf. (3.7). The three different analogues of the
classical Hanson–Wright inequality presented in Theorem 7.1 reflect a certain flexibility
which can turn out to be useful in applications (in particular, it would be hard to speak
of a single canonical Stiefel variant of the Hanson–Wright inequality). Certainly, part
1 is the most immediate analogue, involving quantities which can easily be calculated.
However, unlike parts 2 and 3, it does not make use of intrinsic derivatives and can
therefore be less accurate.

For instance, in the trivial case M = Ind (thus, f2(A)− tr(M)/n ≡ 0) part 1 does not
yield an optimal result, while parts 2 and 3 do. On the other hand, if Mij,kl = 1 for every
i, j, k, l, parts 1, 2 and 3 are not substantially different. As compared to part 2, part 3
is nearer to the classical Hanson–Wright inequality, but this is the cost of an additional
d-dependence in the subgaussian term, which can be avoided in part 2.

EJP 28 (2023), paper 79.
Page 21/30

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP966
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Higher order concentration on Stiefel and Grassmann manifolds

For explicit calculations of the L2 norms appearing in parts 2 and 3, note that we
may construct a uniformly distributed Stiefel element via A = OnIn,dOd, where On and
Od are distributed according to the Haar measure on SO(n) and on SO(d), respectively,
and In,d is the element in Wn,d whose columns are the first d unit vectors. Then
PA = AAT = OnIn,dI

T
n,dO

−1
n = (〈pdθj , pdθk〉)j,k=1,...,n (where On = (θ1, . . . , θn) and pd is

the projection to the first d coordinates). Thus rewriting ‖PAU‖2HS,2 resp. ‖PABPA‖2HS,2

as linear combinations of products of components of orthogonal matrices, we may now
average them over O(n) and O(d) by applying formulas from the Weingarten calculus.
The only non-vanishing products in this average are those whose indices are equal
subject to a scheme of two pair partitions which will determine a so-called Weingarten
function which is a rational function of n of order O(n−2) or smaller. For explicit
formulas covering our cases see in particular [CM09], table VII. For an introduction to
the underlying theory we refer to [CMN22] and for more details to e. g. [CS06, BCS11].

Proof of Theorem 7.1. To see part 1, we extend f2 to X ∈ Rn×d by the canonical choice
f2(X) = vec(X)TMvec(X) and apply Theorem 1.3, part 2. Clearly, f ′′(A) = 2M , and in
the subgaussian term, we use that by Poincaré inequality,

‖∇f‖HS,2 ≤
4

n− 2
‖f ′′‖HS,2

whenever ∇f has centered components (indeed, the proof is a simplification of the proof
of Lemma 6.3). To see parts 2 and 3, it remains to apply Theorem 1.1, parts 2 and 3,
respectively, using that ∇W f(A) = 2PAU and f ′′W (A) = 2PABPA.

7.3 Higher orders

Let us briefly comment on possible results for polynomial chaos of order k ≥ 3. In
general, similarly as in Theorem 7.1, part 1, one may derive concentration bounds for
fk by applying Theorem 1.3 (for order k). Here, for k = 3, by similar arguments as for
orders 1 and 2 (including symmetry) we may use that

∫
Wn,d

AijAklApqdµn,d = 0 for any
choice of the indices. However, already for k = 4 the calculation of the mixed moments
(e. g. with each index appearing twice) can turn out to be quite involved.

Using the Lp norm inequalities from Section 6, it is also possible to derive results
in the style of [AW15] (not only for polynomial chaos but also for general Ck functions)
which yield highly elaborate and accurate tail bounds in terms of a large family of
tensor-type norms. We will not pursue this direction in this note.

Note though that all these results will make use of Euclidean derivatives only. In fact,
the calculus of intrinsic derivatives gets increasingly involved as the order increases.
For functions on the sphere, in [BGS19] higher order concentration results depending
on spherical partial derivatives have been derived, which can be thought of as a sort of
intermediate object between Euclidean and intrinsic derivatives.

7.4 Applications

Typical applications of concentration inequalities for Stiefel and Grassmann function-
als include bounds for distances between subspaces. If E,F ⊂ Rn are two subspaces
of dimension d, canonical choices for the distance between them are ‖PE − PF ‖HS or
‖PE − PF ‖op. In the sequel, we will always choose one subspace at random, while the
other one is fixed.

As a start, we consider the following simple example, in which the function Gn,d 3
P 7→ |P − PF | ≡ ‖P − PF ‖HS is studied.
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Proposition 7.2. Let F ⊂ Rn be any fixed d-dimensional subspace of Rn, and denote by
PF the corresponding projection matrix. Then, for any t ≥ 0,

νn,d(||P − PF |2 − 2d(1− d/n)| ≥ t) ≤ 2 exp(−(n− 1)t2/(64d)).

Proof. Note that |P − PF |2 = 2(d− 〈P, PF 〉), which has expectation 2d(1− d/n) since∫
Gn,d

〈P, PF 〉dP = d/ntr(PF ) = d2/n.

Furthermore, the function Rn×n 3 X 7→ 2(d − 〈X,PF 〉) has derivative −2PF , which
has Euclidean (Hilbert–Schmidt) norm

√
d. The result now follows immediately by

combining (1.2) (in the Grassmann version) and Proposition 5.1.

It is possible to remove the square and consider fluctuations of |P − PF | by adapting
some of the arguments used in the proof of Lemma 7.4 below. We skip the details,
however, especially since we are rather interested in applying higher order concentration
results in what follows.

To this end, let us consider another distance between two subspaces E and F of
dimension d which has been studied in [WWF06] and subsequent papers. Here, we
chose any orthonormal basis of E, say, e1, . . . , ed, and set

dist(E,F ) :=
( d∑
j=1

dist(ej , F )
2
)1/2

,

where for any x ∈ Rn, dist(x, F ) = miny∈F |x− y| is the usual point-to-subspace distance
induced by the Euclidean norm. It is not hard to see that dist(E,F ) does not depend on
the choice of the orthonormal basis of E, cf. [WWF06, Theorem 1].

As above, let us fix F and consider the distance as a function of the subspace E.
In view of the definition via orthonormal bases (and the invariance under change of
the basis), we may then regard dist as a function on the Stiefel manifold Wn,d. That is,
writing A•j for the columns of A ∈Wn,d, we shall study the fluctuations of

dist(A,F ) :=
( d∑
j=1

dist(A•j , F )
2
)1/2

under µn,d. In this situation, the function fits into a framework which allows to derive
concentration bounds via Hanson–Wright inequalities similarly as in [RV13, Corollary
3.1], where distances of random vectors to a fixed subspace have been stuied. Under
the uniform distribution on the Stiefel manifold, we obtain the following result.

Proposition 7.3. Let F ⊂ Rn be any fixed d-dimensional subspace of Rn. Then, for any
t ≥ 0,

µn,d(|dist(A,F )− d/
√
n| ≥ t) ≤ 2 exp(−(n− 2)t2/C)

with C = 384e2/ log(2).

To prove Proposition 7.3, we need the following lemma, which is itself of independent
interest since it generalizes [RV13, Theorem 2.1] (cf. also [S23, Proposition 2.2]). In
essence, given any matrix M ∈ Rnd×nd it controls the fluctuations of the Euclidean
norm of MA around the Hilbert–Schmidt norm of M , rescaled by n−1/2 according to the
standard deviation of the entries of A ∼ µn,d.
Lemma 7.4. For any fixed M ∈ Rnd×nd, we have

µn,d(||MA| − ‖M‖HS/
√
n| ≥ t) ≤ 2 exp

(
− (n− 2)t2

C‖M‖2op

)
with C = 384e2/ log(2).
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Proof. Let Q =MTM , so that |MA|2 = ATQA (recall (2.1) and (7.2)) and tr(Q) = ‖M‖2HS.
Assuming that ‖M‖HS =

√
n, Theorem 7.1, part 1, yields

µn,d(||MA|2 − 1| ≥ t) ≤ 2 exp
(
− 1

C
min

( (n− 2)2t2

n‖M‖2op
,
(n− 2)t

‖M‖2op

))
≤ 2 exp

(
− n− 2

3C‖M‖2op
min(t2, t)

)
,

where the first step follows from ‖Q‖2HS ≤ ‖M‖
2
op‖M‖

2
HS = n‖M‖2op and ‖Q‖op ≤ ‖M‖

2
op,

and C = 128e2/ log(2).

Now, as in [RV13], we use the inequality |z − 1| ≤ min(|z2 − 1|, |z2 − 1|1/2), giving for
any t ≥ 0

µn,d(||MA| − 1| ≥ t
)
≤ µn,d(||MA|2 − 1| ≥ max(t, t2)).

Combining this with the first step and using that min(max(t, t2)2,max(t, t2)) = t2 yields

µn,d(||MA| − 1| ≥ t) ≤ 2 exp
(
− (n− 2)t2

3C‖M‖2op

)
,

i. e. the claim for for ‖M‖HS =
√
n. The general case now follows by considering

M̃ :=
√
nM‖M‖−1HS, noting that

µn,d(||MA| − ‖M‖HS/
√
n| ≥ t) = µn,d(||M̃A| − 1| ≥

√
nt‖M‖−1HS).

Proof of Proposition 7.3. Let PF be the orthogonal projection onto F , and denote by
A•j the columns of A. Then, dist(A•j , F ) = |PFA•j |. In particular, if M := Id ⊗ PF is
the nd × nd block diagonal matrix whose diagonal consists of d copies of the matrix
PF , dist(A,F ) = |MA|, so that we may apply Lemma 7.4. Here we use that ‖M‖2HS =

d‖PF ‖2HS = d2 and moreover that since d eigenvalues of PF are 1 and all other eigenvalues
are 0, we have ‖M‖op = ‖PF ‖op = 1.

In fact, it is not even necessary to consider subspaces F of the same dimension d. If
F ⊂ Rn is a subspace of any dimension m < n, the definitions of dist(E,F ) and dist(A,F )

continue to hold (even if dist(E,F ) is no longer symmetric in E and F in this case), and
with minimal adaptions in the proof of Proposition 7.3, one can show that

µn,d(|dist(A,F )−
√
md/n| ≥ t) ≤ 2 exp(−(n− 2)t2/C)

with C = 384e2/ log(2).

A Proofs of the results from Section 5

Proof of Proposition 5.3. Considering the function

ψV (P ) := 〈∇Gf(P ), V 〉 = 〈[P, [P,∇f(P )]], V 〉,

let us calculate ∇ψV (P ). Choosing some extension of f onto an open neighborhood of
Gn,d in Rn×n, the function

ψV (X) := 〈[X, [X,πsym(∇f(X))]], V 〉
= tr(V T (Xπsym(∇f(X)) + πsym(∇f(X))X − 2Pπsym(∇f(X))X))

is a smooth extension of ψV (P ). Note that πsym has derivative

dπsym(Y )

dY
=

1

2

d(Y + Y T )

dY
=

1

2
(In2 +Kn,n).

EJP 28 (2023), paper 79.
Page 24/30

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP966
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Higher order concentration on Stiefel and Grassmann manifolds

As a consequence, by chain rule,

dπsym(∇f(X))

dX
=

1

2
(In2 +Kn,n)f

′′(X).

Let us now calculate

d

dX
[V T (Xπsym(∇f(X)) + πsym(∇f(X))X − 2Xπsym(∇f(X))X)].

First, by Leibniz rule,

d

dX
[V TXπsym(∇f(X))]

= (πsym(∇f(X))⊗ In)(In ⊗ V T ) +
1

2
(In ⊗ (V TX))(In2 +Kn,n)f

′′(X)

= πsym(∇f(X))⊗ V T +
1

2
(In ⊗ (V TX))(In2 +Kn,n)f

′′(X).

Next, note that similarly,

d(πsym(∇f(X))X)

dX
=

1

2
(XT ⊗ In)(In2 +Kn,n)f

′′(X) + In ⊗ πsym(∇f(X)).

In particular, we obtain that

d

dX
[V Tπsym(∇f(X))X]

= (In ⊗ V T )
(1
2
(XT ⊗ In)(In2 +Kn,n)f

′′(X) + In ⊗ πsym(∇f(X))
)

=
1

2
(XT ⊗ V T )(In2 +Kn,n)f

′′(X) + In ⊗ (V Tπsym(∇f(X))).

Finally,

d

dX
[V TXπsym(∇f(X))X]

= ((XTπsym[∇f(X)])⊗ In)
d(V TX)

dX
+ (In ⊗ (V TX))

d

dX
[πsym(∇f(X))X]

= ((XTπsym[∇f(X)])⊗ In)(In ⊗ V T )

+ (In ⊗ (V TX))
(1
2
(XT ⊗ In)(In2 +Kn,n)f

′′(X) + In ⊗ πsym(∇f(X))
)

= (XTπsym[∇f(X)])⊗ V T +
1

2
(XT ⊗ (V TX))(In2 +Kn,n)f

′′(X)

+ In ⊗ (V TXπsym(∇f(X))).

Consequently, by chain rule,

d

dX
tr(V T (Xπsym(∇f(X)) + πsym(∇f(X))X − 2Xπsym(∇f(X))X))

= vec(In)
T
(
πsym(∇f(X))⊗ V T +

1

2
(In ⊗ (V TX))(In2 +Kn,n)f

′′(X)

+
1

2
(XT ⊗ V T )(In2 +Kn,n)f

′′(X) + In ⊗ (V Tπsym(∇f(X)))

− 2(XTπsym[∇f(X)])⊗ V T − (XT ⊗ (V TX))(In2 +Kn,n)f
′′(X)

− 2In ⊗ (V TXπsym(∇f(X)))
)
.
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Switching from d/(dX) to vec(∇) (and thus, transposing), we obtain

vec(∇ψV (X)) =
(
πsym(∇f(X))⊗ V +

1

2
f ′′(X)(In2 +Kn,n)(In ⊗ (XTV ))

+
1

2
f ′′(X)(In2 +Kn,n)(X ⊗ V ) + In ⊗ (πsym(∇f(X))V )

− 2(πsym(∇f(X))X)⊗ V − f ′′(X)(In2 +Kn,n)(X ⊗ (XTV ))

− 2In ⊗ (πsym(∇f(X))XTV )
)
vec(In).

Let us simplify this further. We have

(πsym(∇f(X))⊗ V )vec(In) = vec[V πsym(∇f(X))],

(In ⊗ (πsym(∇f(X))V ))vec(In) = vec[(πsym(∇f(X))V )],

((πsym(∇f(X))X)⊗ V )vec(In) = vec[V XTπsym(∇f(X))],

(In ⊗ (πsym(∇f(X))XTV ))vec(In) = vec[πsym(∇f(X))XTV )].

Recalling that πsym = (In2 +Kn,n)/2, we may further rewrite

1

2
f ′′(X)(In2 +Kn,n)(In ⊗ (XTV ))vec(In) = f ′′(X)πsymvec(X

TV ),

1

2
f ′′(X)(In2 +Kn,n)(X ⊗ V )vec(In) = f ′′(X)πsymvec(V X

T ),

f ′′(X)(In2 +Kn,n)(X ⊗ (XTV ))vec(In) = f ′′(X)πsymvec(X
TV XT )

Summing up and restricting to P ∈ Gn,d (which is symmetric, in particular),

vec(∇ψV (P )) = f ′′(P )πsymvec([P, [P, V ]]) + 2vec[πsym(V πsym(∇f(P )))]
− 4vec[πsym(V Pπsym(∇f(P )))].

Next we calculate the intrinsic derivatives. First, we need to project onto Rn×nsym by
applying πsym. Using the notation from Proposition 5.2, this yields

πsym∇ψV (P ) = πsymf
′′(P )πsymvec([P, [P, V ]]) + 2vec[πsym(V πsym(∇f(P )))]

− 4vec[πsym(V Pπsym(∇f(P )))].

Now we project onto TP by applying πP . This yields

∇GψV (P ) = πPπsymf
′′(P )πsymπP (V ) + 2πPvec[πsym(V πsym(∇f(P )))]

− 4πPvec[πsym(V Pπsym(∇f(P )))].

By Proposition 5.2, it follows that

f ′′G(P )V = ∇GψV (P )− 2πPvec[πsym(V πsym(∇f(P )))]
+ 4πPvec[πsym(V Pπsym(∇f(P )))]− [P, [πsym(∇f(P )), πPV ]].

Now, a direct calculation yields

− 2πPvec[πsym(V πsym(∇f(P )))] + 4πPvec[πsym(V Pπsym(∇f(P )))]
− [P, [πsym(∇f(P )), πPV ]]

= −[P, [πP∇f(P ), V ]] = −[P, [∇Gf(P ), V ]],

which finishes the proof.
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Proof of Proposition 5.4. Similarly as in the proof of Proposition 4.1, it follows from
Proposition 5.3 applied to any V ∈ Rn×nsym such that |V | ≡ ‖V ‖HS = 1 together with
compactness arguments that |∇Gf | has finite Lipschitz semi-norm.

To show the identity for second order modulus of gradient, fix P ∈ Gn,d and note that
by the definition of the intrinsic gradient and Proposition 5.3, we have

〈∇Gf(P ′), V 〉 = 〈∇Gf(P ), V 〉+ 〈Ṽ , P ′ − P 〉+ o(|P ′ − P |),

where
Ṽ = f ′′G(P )V + [P, [∇Gf(P ), V ]].

Moreover, using the integral form of the Taylor formula and the compactness of Gn,d,
which implies that every continuous function is already uniformly continuous, we see that
the remainder term in the Taylor expansion can be bounded independently of V ∈ Rn×nsym

such that |V | = 1, i. e.

sup
|V |=1

|〈∇Gf(P ′), V 〉 − 〈∇Gf(P ), V 〉 − 〈Ṽ , P ′ − P 〉| ≤ ε(|P ′ − P |),

where ε(t) is some function which satisfies ε(t)→ 0 as t→ 0.
We now rewrite the Taylor formula as

〈∇Gf(P ′), V 〉 = 〈∇Gf(P ) + L, V 〉+ o(|P ′ − P |) (A.1)

by choosing a suitable L such that 〈L, V 〉 = 〈Ṽ , P ′ − P 〉. Obviously,

〈f ′′G(P )V, P ′ − P 〉 = 〈f ′′G(P )(P ′ − P ), V 〉.

Moreover, write

[P, [∇Gf(P ), V ]] = P∇Gf(P )V − PV∇Gf(P )−∇Gf(P )V P + V∇Gf(P )P.

Adapting the identities (4.2) to U,W ∈ Rn×n and V,X(= P ′ − P ) ∈ Rn×nsym , we obtain

〈UTXWT , V 〉 = 〈UVW,X〉 = 〈WXU,V 〉,

where we have used the symmetry of V andX. If we apply the first identity to P∇Gf(P )V
and PV∇Gf(P ) and the second one to ∇Gf(P )V P and V∇Gf(P )P , we obtain

〈[P, [∇Gf(P ), V ]], P ′ − P 〉 = 2〈[∇Gf(P ), P (P ′ − P )], V 〉,

so that altogether, we may also set

L := f ′′G(P )(P
′ − P ) + 2[∇Gf(P ), P (P ′ − P )].

Now we take an absolute value on both sides of the Taylor formula (A.1) and take the
supremum over all symmetric V such that vec(V ) ∈ Snd−1. This leads to

|∇Gf(P ′)| = |∇Gf(P ) + L|+ o(|P ′ − P |).

Next, we write

|∇Gf(P ) + L|2 = |∇Gf(P )|2 + 2〈∇Gf(P ), L〉+ |L|2.

Note that as a trace of the product of a symmetric and an anti-symmetric matrix,
〈∇Gf(P ), [∇Gf(P ), P (P ′ − P )]〉 = 0. Therefore,

〈∇Gf(P ), L〉 = 〈∇Gf(P ), f ′′G(P )(P ′ − P )〉 = 〈U,P ′ − P 〉
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with U := f ′′G(P )∇Gf(P ). Since |L|2 = O(|P ′ − P |2), we obtain

|∇Gf(P ) + L|2 = |∇Gf(P )|2 + 2〈U,P ′ − P 〉+ o(|P ′ − P |).

If |∇Gf(P )| > 0, it therefore follows that

|∇Gf(P ) + L| = |∇Gf(P )|+ |∇Gf(P )|−1〈U,P ′ − P 〉+ o(|P ′ − P |).

Hence,
|∇Gf(P ′)| − |∇Gf(P )| = |∇Gf(P )|−1〈U,P ′ − P 〉+ o(|P ′ − P |)

and thus

lim sup
P ′→P

∣∣|∇Gf(P ′)| − |∇Gf(P )|∣∣
|P ′ − P |

= |∇Gf(P )|−1 lim sup
P ′→P

∣∣〈U,P ′ − P 〉∣∣
|P ′ − P |

= |∇Gf(X)|−1|∇GψU (P )|,

where ψU (P ) := 〈U,P 〉. As noted after Proposition 5.2, it holds that U ∈ TP , so that
∇GψU (P ) = U . Thus, we arrive at

|∇(2)
G f(P )| = |∇Gf(P )|−1|f ′′G(P )∇Gf(P )|

if |∇W f(P )| > 0.
It remains to consider the case where |∇Gf(P )| = 0. Here, L = f ′′G(P )(P

′ − P ), and
the Taylor formula reads

|∇Gf(P ′)| = |L|+ o(|P ′ − P |).

It follows that

|∇(2)
G f(P )| = lim sup

P ′→P

|∇Gf(P ′)|
|P ′ − P |

= lim sup
P ′→P

|f ′′G(P )(P ′ − P )|
|P ′ − P |

= lim sup
V→0,V ∈T⊥

P

|f ′′G(P )V |
|V |

= ‖f ′′G(P )‖op,

which finishes the proof.
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