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The Bessel line ensemble
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Abstract

In this paper, we construct the Bessel line ensemble, a countable collection of con-
tinuous random curves. This line ensemble is stationary under horizontal shifts with
the Bessel point process as its one-time marginal. Its finite dimensional distributions
are given by the extended Bessel kernel. Furthermore, it enjoys a novel resampling
invariance with respect to non-intersecting squared Bessel bridges. The Bessel line
ensemble is constructed by extracting the hard edge scaling limit of a collection of
independent squared Bessel processes starting at the origin and being conditioned
never to intersect. This process is also known as the Dyson Bessel process, and it
arises as the evolution of the eigenvalues of the Laguerre unitary ensemble with i.i.d.
complex Brownian entries.
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1 Introduction

Over the past decades, there has been significant attention in non-intersecting paths
formed by one-dimensional Markov processes conditioned never to intersect. Such
path structures naturally arise in the study of random matrix theory, growth processes,
directed polymers, interacting particle systems and tiling problems (see the surveys
[14, 13, 24, 31, 34]). A famous example of non-intersecting paths is the collection of
Brownian motions conditioned never to collide, known as the Dyson Brownian motion. In
this paper, we study another model of non-intersecting random curves, called the Dyson
Bessel process, and focus on its hard edge scaling limit.

1.1 Non-intersecting squared Bessel process

The Bessel process is one of the most important one-dimensional diffusion processes.
Let d ≥ 1 be an integer. The d-dimensional Bessel process is defined as the distance to
the origin of a d-dimensional Brownian motion [33, Ch. XI]. The index α = d−2

2 serves as
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The Bessel line ensemble

another natural parametrization for the d-dimensional Bessel process. We will use the
index α and call it the α-Bessel process. See Section 2 for more details. Throughout this
paper, we consider the parameter range α ≥ 0. Let Xα(t) be an α-Bessel process. Taking
the square of Xα(t), one obtains the squared α-Bessel process (BESQ), Y α(t) = (Xα(t))

2.

In this paper, we are mainly interested in the non-intersecting squared Bessel pro-
cess. This is also known as the Dyson (squared) Bessel process, analogous to the Dyson
Brownian motion. Fix N ∈ N and α ≥ 0. Let Y N,α1 (t), Y N,α2 (t), · · · , Y N,αN (t) be N inde-
pendent squared α-Bessel processes with zero initial values, i.e. Y N,αi (0) = 0 for all
1 ≤ i ≤ N . The non-intersecting squared Bessel process is obtained through conditioning
on {Y N,α1 (t) < Y N,α2 (t) < · · · < Y N,αN (t)} for all t ∈ (0,∞). This is a singular conditioning
and could be made rigorous via the Doob’s h-transform [29].

The non-intersecting squared Bessel process enjoys a beautiful interpretation as the
eigenvalue evolution of the Laguerre process [29]. Fix N ∈ N and α ∈ N ∪ {0}. Take
A(t) to be an N × (N + α) matrix with independent standard complex Brownian entries
(so that the real and the imaginary part both have variance t) and set M(t) = A(t)A(t)∗.
For t = 1/2, M(1/2) is known as the Wishart ensemble, one of the earliest random
matrix ensembles, introduced by Wishart [37] in 1928. The joint density function of the
eigenvalues of M(1/2) takes the following form

C(N,α)

N∏
j=1

(xj)
αe−xj ×

(
∆(~x)

)2
1{0 ≤ x1 < x2 < · · · < xN}

N∏
j=1

dxj . (1.1)

Here ∆(~x) =
∏

1≤i<j≤N (xj − xi) is the Vandermonde determinant and C(N,α) is an
explicitly computable constant, see [16, (1.5b)]. The Wishart ensemble is also referred
to as the Laguerre unitary ensemble (LUE) since it is unitarily invariant and its joint
eigenvalue distributions involve Laguerre polynomials. The study of the asymptotic
behavior of the eigenvalues of M(t) and its variants has been an important topic in the
random matrix community, see for instance [16, 17, 19, 23, 36]. There are three natural
asymptotic regimes, the bulk scaling, the soft edge scaling and the hard edge scaling.

In this paper we investigate the non-intersecting squared α-Bessel process, Y N,α :=

{Y N,α1 (t) ≤ · · ·Y N,αN (t)|t ≥ 0, 1 ≤ i ≤ N}, under the hard edge scaling. The hard edge
scaling zooms in near Y N,α1 and it bears the name due to the fact that all of Y N,αj are
non-negative and may not cross zero. More precisely, for 1 ≤ i ≤ N and t ∈ [−4N,∞),
define

LN,αi (t) := 4N · Y N,αi (1 + t/(4N)) . (1.2)

We refer to

LN,α :=
{
LN,αi (t)| t ∈ [−4N,∞), 1 ≤ i ≤ N

}
. (1.3)

as the scaled non-intersecting squared α-Bessel process. The finite dimensional conver-
gence of LN,α(t) has been well studied by analyzing determinantal formulas [18, section
11.7.3]. At time t = 0, LN,α(0) converges weakly to the α-Bessel point process. This
implies the convergence for any fixed time due to the following scaling invariance{

Y N,αi (t), 1 ≤ i ≤ N
}

(d)
==

{
t · Y N,αi (1), 1 ≤ i ≤ N

}
. (1.4)

Moreover, for any finite set I ⊂ R, {LN,αi (t), t ∈ I}Ni=1 converge weakly to the extended
α-Bessel point process with the correlation kernel (known as the extended Bessel kernel)
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The Bessel line ensemble

Kext : (R× [0,∞))2 → R given by

Kext((t, x), (s, y)) :=


−
∫ ∞

1/8

e−2(s−t)zJα(2
√
zx)Jα(2

√
zy) dz, t < s,

∫ 1/8

0

e−2(s−t)zJα(2
√
zx)Jα(2

√
zy) dz, t ≥ s.

(1.5)

Here Jα is the Bessel function of the first kind.

1.2 Gibbsian line ensembles

Aside from the perspective of determinantal structures, the non-intersecting Bessel
process is also worth investigating from the perspective of Gibbsian line ensembles. A
line ensemble is a countable collection of random discrete or continuous curves on some
interval in R (all defined on the same probability space). The defining property of a
Gibbsian line ensemble, the Gibbs property, is a resampling invariance. Let us illustrate
the Gibbs property using the Dyson Brownian motion, which is the law of N independent
Brownian motions, B1, B2, · · · , BN , all starting at the origin at time zero and conditioned
never to intersect.

The Dyson Brownian motion enjoys the Brownian Gibbs property, introduced in [9],
a resampling invariance under the following action. Select an index 1 ≤ k ≤ N and
erase Bk on a fixed time interval (a, b); then replace this erased curve with a new curve
on (a, b) according to the law of a Brownian bridge between the two existing endpoints
(a,Bk(a)) and (b, Bk(b)), conditioned to intersect neither the curve above nor the one
below. The invariance of the total law under this action is the Brownian Gibbs property.
The precise definition of the Brownian Gibbs property is slightly more general than this
and one may resample multiple neighboring paths simultaneously. It is convenient to
think of a line ensemble that satisfies the Brownian Gibbs property as N random curves
which locally have the distribution of N avoiding Brownian bridges.

Gibbsian line ensembles come in two different flavors where the underlying paths
are continuous or discrete. The corresponding Gibbs properties are often named after
the nature of the path measures, e.g. the Brownian Gibbs property, geometric Gibbs
property and exponential Gibbs property

Initiated in [9] for the construction of the Airy line ensemble, there has been a fruitful
development of techniques [10, 8, 11, 6, 38] which leverage the Gibbs property of
Gibbsian line ensembles to prove their tightness under scalings to the Airy line ensemble
and its closely related analogue, the KPZ line ensemble [10]. The Gibbs property has also
served as a powerful tool to establish path regularity for the Airy / KPZ line ensemble
[5, 22, 40, 39].

1.3 Main results

To our best knowledge, the study of Gibbsian line ensembles has been focused in
the Airy /KPZ regime. Moreover, the Gibbs property being investigated is either the
Brownian Gibbs property or its variants (positive temperature or discrete analogue).

The main object of study in this paper, the non-intersecting squared Bessel process
enjoys a novel Gibbs property, the squared Bessel Gibbs property such that it locally
resembles avoiding squared Bessel bridges. Through the squared Bessel Gibbs property,
we study its asymptotic behavior under the hard edge limit and prove a functional limit
theorem (Theorem 1.1(i)) for LN,α. This is in essence tightness for this family of curves.
Furthermore, we prove that the squared Bessel Gibbs property is preserved under the
subsequential limit.
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Theorem 1.1. Fix α ≥ 0. Let LN,α be defined as in (1.3). The following statements hold
true.

(i) LN,α is tight as N goes to infinity.

(ii) Any subsequential limit L∞,α enjoys the squared α-Bessel Gibbs property.

Together with the finite dimensional convergence result (see Theorem C.2), we prove
the existence of the Bessel line ensemble with index α.

Corollary 1.2. Fix α ≥ 0. There exists a continuous non-intersecting Gibbsian line
ensemble Bα := {Bαi (t), i ∈ N, t ∈ R} with 0 < Bα1 (t) < Bα2 (t) < · · · such that the
following statements hold. For any finite set I ⊂ R, the point process given by {Bαi (t), i ∈
N, t ∈ I} is a determinantal point process whose correlation kernel is given by Kext

defined in (1.5). Furthermore, Bα enjoys the squared α-Bessel Gibbs property.

In [2], it is further illustrated that all Bessel line ensembles indexed by a non-negative
integer can be naturally coupled together. The resulting random object is referred to as
the Bessel field.

1.4 Comparison between the Airy line ensemble and the Bessel line ensemble

The Airy line ensemble A is well known as a universal limit in the KPZ universality
class [7, 32], particularly the soft edge scaling limit of the Dyson Brownian motion. The
Bessel line ensemble B is constructed in this paper as a hard edge scaling limit of the
Dyson (squared) Bessel process. These two Gibbsian line ensembles share many basic
properties in common — both are non-intersecting, determinantal, stationary under
horizontal shifts. In this section, we make a comparison of their differences. In doing
so, we aim to illustrate the new challenges we encounter when adapting the Brownian
Gibbsian resampling techniques to the current setting.

One apparent difference is that the Airy line ensemble and the Bessel line ensembles
have different Gibbs properties. The Gibbs property of the Airy line ensemble uses
Brownian bridges to resample random curves. On the other hand, squared Bessel
bridges play this role for the Bessel line ensembles. Brownian motions/bridges are
the most well-studied stochastic processes and many exact formulas are available. In
contrast, calculations involving squared Bessel processes/bridges are more difficult. We
overcome this difficulty by viewing (squared) Bessel processes/bridges as solutions to
stochastic differential equations. This point of view allows us to obtain certain basic
controls of the squared Bessel bridges such as the modulus of continuity. This difference
also leads to the requirement for extra effort to prove stochastic monotonicity which we
explain in Section 1.5 in more detail.

Another major difference is that the Bessel line ensembles are stationary while the
parabolic Airy line ensemble has a parabolic shape. In the construction of the parabolic
Airy line ensemble in [9], this parabolic shape plays a crucial role in providing a uniform
lower bound for the random curves. Roughly speaking, if the k-th curve Ak drops too low
over an interval, it does not provide enough support for the curve above it to configure
parabolically. Without such a parabolic shape, we need another approach for the Bessel
line ensembles which we explain below.

Recall the definition of the scaled non-intersecting squared Bessel process LN,α
in (1.3). We want to show that for any ε > 0 and k ∈ N, there exists r > 0 such that

P

(
inf

t∈[0,1]
LN,αk (t) < r

)
< ε. (1.6)

Due to the ordering of the curves in LN,α, it suffices to prove (1.6) for the lowest curve,
i.e. k = 1.
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For fixed t0 ∈ R, LN,α1 (t0) is supported on (0,∞). Therefore, for any ε > 0, there
exists r(ε) > 0 such that

P
(
LN,α1 (t0) < r(ε)

)
< ε.

We want to use the squared Bessel Gibbs property to propagate the above bound to
a small interval containing t0. Let d > 0 be a small number. Suppose there exists a
t1 ∈ [t0 − d, t0 + d] such that LN,α1 (t1) < r(ε)/2. By choosing d small enough, through
a Gibbs resampling argument (see Section 5) we obtain that with a high probability
LN,α1 (t0) < r(ε). This implies

P

(
inf

t∈[t0−d,t0+d]
LN,α1 (t) < r(ε)/2

)
. ε.

Covering the interval [0, 1] by intervals with length 2d, we get

P

(
inf

t∈[0,1]
LN,α1 (t) < r(ε)/2

)
. d−1ε.

Recall the scaling invariance of the squared Bessel process (space and time are of the
same scale), we have d ∼ r(ε). Therefore,

P

(
inf

t∈[0,1]
LN,α1 (t) < r(ε)/2

)
. r(ε)−1ε.

In order to obtain a meaningful estimate, we need the tail estimate of LN,α(t0) near 0.
Combining the one-time convergence and the asymptotics for the Bessel point process,
we have r(ε) ∼ ε1/(1+α). We then arrive at

P

(
inf

t∈[0,1]
LN,α1 (t) < r(ε)/2

)
. εα/(1+α). (1.7)

For α > 0, (1.7) is sufficient by picking a new ε1 as ε(1+α)/α. However, (1.7) degenerates
when α = 0.

To deal with the degenerate case α = 0, a key observation we have is that for
the tightness, it suffices to show (1.6) for some k. Because the curves are ordered
LN,α1 < LN,α2 < . . . , a lower bound for LN,αk , k ≥ 2 should decay faster than the one for

LN,α1 . This is indeed the case for k = 2. It can be proved that

P(LN,02 (t0) ≤ ε1/2) . ε.

Therefore, in estimating LN,02 , we could replace r(ε) above by ε1/2 which is much larger
than ε.

We adapt the strategy above and sample both LN,01 and LN,02 together. The difficulty
then translates to controlling the joint density of two non-intersecting squared Bessel
bridges. The joint density is given in a determinantal form using the Karlin-Mcgregor
formula. In order to estimate lower and upper bounds of the joint density, we derive a
few inequalities regarding the modified Bessel functions (see Appendix A, Corollary A.4
and Lemma A.5). These inequalities serve as part of the main ingredients for the desired
uniform infimum bounds on a unit interval.

We remark that once having the infimum bound for LN,02 on an interval, one can use
the Gibbs property again to obtain the infimum bound for LN,01 . However, we do not
pursue it as the control on LN,02 is enough for proving tightness.
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1.5 The stochastic monotonicity Proposition 4.1

The stochastic monotonicity for non-intersecting Brownian bridges was first proved
in [9] and has played an important role in the construction of the Airy line ensemble.
Roughly speaking, the stochastic monotonicity says that the bridges almost surely
increase (or decrease) when the boundary values (endpoints, upper and lower barrier
curves) increase (or decrease). Stochastic monotonicity has served as a crucial tool
among the applications of Gibbsian line ensemble, mainly because it helps reduce the
complexity of the system, e.g. possibly random boundary data to manageable and
deterministic ones. The key idea of proving the monotonicity in [9] is to construct
the monotone coupling through invariant measures of two Monte-Carlo Markov chains
(known as Glauber dynamics), which are monotonically coupled. The authors of [9]
achieve so by exploiting monotone coupling for non-intersecting Bernoulli random walk
bridges and taking the diffusive limits to non-intersecting Brownian bridges.

In our case, LN,α enjoys the squared α-Bessel Gibbs property. It is natural to adapt
the same general framework to prove the stochastic monotonicity for squared Bessel
bridges. But unlike the convergence from simple random walk bridges to a Brownian
bridge, there is no such obvious choice of discrete random walk bridges which converge
to the squared Bessel bridge. We discretize the space C({1, 2, . . . , k} × [a, b],R) of k
continuous functions on the interval [a, b] and construct random walk bridges on it. Then
we run the same type of Markovian dynamics, i.e. the Glauber dynamics.

In order to show that the ordering is preserved by the Markov chains, we reduce the
desired result to a convexity condition (see (A.5)) on the transition density function of
the squared α-Bessel processes and prove it through ODE comparison. Interestingly,
this convexity was studied by Gronwall [21] (for a slightly smaller parameter regime)
motivated by a problem in wave mechanics.

It remains to verify the random walk bridges we construct converge to the squared
Bessel bridges. This further requires estimates (uniform supnorm and L1 norm) on the
transition density functions, which we establish in Appendix B.

Outline

This paper is organized as follows. In Section 2, we introduce the (squared) Bessel
process/bridge and some of their basic properties. Section 3 contains various definitions
necessary to describe squared Bessel Gibbsian line ensembles. Section 4 contains the
stochastic monotonicity for non-intersecting (squared) Bessel line ensembles. Sections 5
and 6 provide controls on the uniform upper/lower bound and on the normalizing con-
stants respectively. These lead to the proof of the main Theorem 1.1 in Section 7. In
Appendix A, we prove several properties for modified Bessel functions. Appendix B
records a technical step towards proving the stochastic monotonicity. We derive the
correlation kernel for the non-intersecting squared Bessel process and prove its conver-
gence in Appendix C.

Notation

We would like to explain some notation here. We use R+ to denote non-negative
real numbers [0,∞). The natural numbers are defined to be N = {1, 2, ...}. For integers
k1 < k2, let [k1, k2]Z := {k1, k1 + 1, . . . , k2}. For a closed set A ⊂ R or A ⊂ N × R,
we denote by C(A,R) the collection of continuous functions defined on A. We equip
C(A,R) with the topology of uniform convergence on compact subsets of A and denote
the sigma-field generated by Borel sets by C(A,R). For f ∈ C([a, b],R) and r > 0, the
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modulus of continuity is defined by

ω[a,b]

(
f, r
)

:= sup
s,t∈[a,b]
|s−t|≤r

|f(s)− f(t)|. (1.8)

More generally, for f ∈ C([1, k]Z× [a, b],R) and r > 0, the modulus of continuity is defined
as

ω[a,b],k

(
f, r
)

:= sup
1≤i≤k

sup
s,t∈[a,b]
|s−t|≤r

|f(i, s)− f(i, t)|. (1.9)

We denote by WN
+ the Weyl chamber restricted on non-negative reals

WN
+ := {(x1, x2, . . . , xN ) ∈ RN | 0 ≤ x1 < x2 < · · · < xN}.

Events are denoted in a special font E, their indicator functions are written as 1E and
the complements are written as Ec.
Acknowledgments. The author extends thanks to Ivan Corwin for helpful comments
on a draft of this paper and to Patrik Ferrari and Peter Forrester for pointing out many
references. The author is very grateful to Greg Lawler for many valuable discussions
and for his initial contributions to an earlier draft of this project.

2 Squared Bessel process

2.1 Basic properties for squared Bessel processes

In this section we introduce the squared Bessel processes and collect some of their
basic properties. We fix α ≥ 0 throughout this section. For brevity, we often omit the
dependence of α. For instance, we call a squared α-Bessel process simply a squared
Bessel process.

For x ≥ 0, a squared Bessel process starting at x2 is the solution to the following
stochastic differential equation (SDE):

dY (t) = (2α+ 2)dt+ 2
√
Y (t)dB(t), Y (0) = x2, (2.1)

where B(t) is a Brownian motion with diffusion parameter 1. If 2α + 2 is an integer,
Y (t) has the same law as the length of a vector with 2α+ 2 components of independent
Brownian motions. It is known that (2.1) has a unique strong solution which stays
positive for all t > 0 [33, Ch. XI, §1]. The transition density of a squared α-Bessel process
is given by [33, Ch. XI, Corollary 1.4]

qt(x, y) =

{
(2t)−1(y/x)α/2e−(x+y)/(2t)Iα

(
t−1√xy

)
, x > 0, y ≥ 0,

2−α−1

Γ(α+1) t
−α−1yαe−y/(2t), x = 0, y ≥ 0.

(2.2)

Here Iα(z) is the modified Bessel function of the first kind. Note that qt(x, y) enjoys a
scaling invariance,

qt(x, y) =t−1q1(t−1x, t−1y). (2.3)

To see qt(x, y) is continuous in x, define hα(z) := z−αIα(z). hα(z) has the following power
series expansion [1, (9.6.10)]

hα(z) = 2−α
∞∑
n=0

(z/2)2n

n!Γ(n+ α+ 1)
. (2.4)
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From this expansion, it is easy to check that hα(z) is an entire function. Expressing
qt(x, y) in terms of hα(z), we have

qt(x, y) = 2−1t−α−1yαe−(x+y)/(2t)hα
(
t−1√xy

)
(2.5)

Let Y (t) be a squared Bessel process which solves (2.1). X(t) :=
√
Y (t) is called a

Bessel process. From Ito’s formula, X(t) solves the SDE

dX(t) =
α+ 1/2

X(t)
dt+ dB(t), X(0) = x. (2.6)

Let pt(x, y) be the transition probability for a Bessel process. From (2.5), we have

pt(x, y) = t−α−1y2α+1e−(x2+y2)/(2t)hα
(
t−1xy

)
. (2.7)

It enjoys the Brownian scaling invariance pt(x, y) = t−1/2p1(t−1/2x, t−1/2y).

We are interested in the bridge processes induced from (squared) Bessel processes.
Intuitively, a Bessel bridge on [0, T ] is a Bessel process X(t) starting at x conditioned on
X(T ) = y for some x, y ≥ 0. Precisely, a process S(t), 0 ≤ t ≤ T is called a Bessel bridge
on [0, T ] with entrance and exit data (x, y) if given 0 < t1 < t2 < · · · < tk < T , the joint
density of (S(t1),S(t2), . . . ,S(tk)) equals

pt1(x, z1)pt2−t1(z1, z2) · · · pT−tk(zk, y)/pT (x, y). (2.8)

A Bessel bridge can be obtained through the Doob’s h-transform. Let X(t) be
a Bessel process starting at x which solves (2.6). It can be checked directly that
M(t) := pT−t(X(t), y)/pT (x, y) (the case y = 0 is understood by taking a limit) is a non-
negative martingale for t ∈ [0, T ). Moreover, through tilting the measure by M(t), X(t)

restricted on t ∈ [0, T ) is a Bessel bridge with entrance and exit data (x, y). Next, we
record the SDE for Bessel bridges. Define rt(x, y) := ∂

∂x log pt(x, y). Fix T > 0 and x, y ≥ 0.
From the Girsanov theorem [33, Ch. VIII], a Bessel bridge on [0, T ] with entrance and
exit data (x, y) satisfies the following SDE:

dX(t) =

(
α+ 1/2

X(t)
+ rT−t(X(t), y)

)
dt+ dB(t), X(0) = x. (2.9)

From (2.9), we have the following comparison between Bessel bridges and Brownian
motions. This is a special case of [25, Theorem 1’].

Lemma 2.1. Fix T > 0, x > 0 and y ≥ 0. Let S(t) be a Bessel bridge defined on [0, T ]

with entrance and exit data (x, y) and let B(t) be a Brownian motion starting at x. Then
for any T ′ ∈ (0, T ), the following holds. The law of S(t)

∣∣
t∈[0,T ′]

, viewed as a Borel measure

on C([0, T ′],R), is absolutely continuous with respect to the law of B(t)
∣∣
t∈[0,T ′]

.

Squaring a Bessel bridge with entrance and exit data (x, y), we obtain a squared
Bessel bridge with entrance and exit data (x2, y2).

Lemma 2.2. Fix T > 0. Let g : [0, T ] → (0,∞] be a lower semi-continuous function
and f : [0, T ] → [0,∞) be an upper semi-continuous function. Let x, y > 0 satisfy
f(0) < x < g(0) and f(T ) < y < g(T ). Let Q be a squared Bessel bridge on [0, T ] with
entrance and exit data (x, y). Then it holds that

P

(
inf

t∈[0,T ]
(g(t)−Q(t)) = 0

)
= 0 and P

(
inf

t∈[0,T ]
(Q(t)− f(t)) = 0

)
= 0.
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Proof. Let B(t) be a Brownian motion with B(0) =
√
x. We start by showing that for all

T ′ > 0,

P

(
inf

t∈[0,T ′]
(
√
g(t)−B(t)) = 0

)
= 0 and P

(
inf

t∈[0,T ′]
(B(t)−

√
f(t)) = 0

)
= 0.

Fix T ′ > 0. Denote Eg = {inft∈[0,T ′](
√
g(t) − B(t)) = 0} and Ef = {inft∈[0,T ′](B(t) −√

f(t)) = 0}. Note that B(T ′) and the bridge part B(t)− T ′−t
T ′ B(0)− t

T ′B(T ′) are indepen-

dent. Conditioned on any realization of B(t)− T ′−t
L′ B(0)− t

T ′B(T ′), there exists a unique
value of B(T ′) such that Eg occurs. Since B(T ′) is Gaussian, from the independence, we
have P(Eg) = 0. The proof of P(Ef ) = 0 is similar. In view of Lemma 2.1, it holds that

P

(
inf

t∈[0,T ′]
(g(t)−Q(t)) = 0

)
= 0 and P

(
inf

t∈[0,T ′]
(Q(t)− f(t)) = 0

)
= 0.

Since f(T ) < y < g(T ), the assertion follows by taking T ′ approach T .

Lemma 2.3. Fix T > 0 and x, x′, y, y′ > 0. Let Q and Q′ be independent squared Bessel
bridges on [0, T ] with entrance and exit data (x, y) and (x′, y′) respectively. Then

P

(
inf

t∈[0,T ]
(Q′(t)−Q(t)) = 0

)
= 0.

Proof. Using Lemma 2.1 to compare the square root of Q and Q′ with Brownian motions,
we have P

(
inft∈[0,T/2](Q′(t)−Q(t)) = 0

)
= 0. From (2.2) and (2.8), squared Bessel

bridges are reversible. Therefore, we have P
(
inft∈[T/2,T ](Q′(t)−Q(t)) = 0

)
= 0. Then

the assertion follows.

Through a time translation, we can easily define a Bessel bridge on an interval
[a, b] ⊂ R. The next proposition concerns a coupling of squared Bessel bridges. The
proof is postponed to the next subsection.

Proposition 2.4. Fix an interval [a, b] ⊂ R. There exists a probability space (Ω,P,F)

and a map Q from [0,∞)2 × Ω to C([a, b],R) which satisfies the following properties. For
each x, y ∈ [0,∞), Q(x, y, ·) is F -measurable and is distributed as a Bessel bridge on [a, b]

with entrance and exit data (x, y). Moreover, for any sequences xj → x0, yj → y0 and
ω ∈ Ω, it holds that

Q(xj , yj , ω) converges to Q(x0, y0, ω) uniformly on [a, b]. (2.10)

We emphasize that the convergence in Proposition 2.4 holds for all ω ∈ Ω. The next
lemma concerns the modulus of continuity (defined in (1.8)) of squared Bessel bridges.

Lemma 2.5. Fix R, η, ρ > 0 and [a, b] ⊂ R. There exists r = r(α,R, η, ρ, b − a) > 0 such
that the following holds. Let Q be a squared Bessel bridge defined on [a, b] with entrance
and exit data (x, y) ∈ [0, R]2. Then we have

P
(
ω[a,b](Q, r) < ρ

)
> 1− η.

Proof. Let (Ω,P,F) and Q be the probability space and the map given in Proposition 2.4.
Assume the assertion fails. There exists R, η, ρ > 0 such that the following holds. For any
n ∈ N, there exists xn, yn ∈ [0, R] such that P

(
ω[a,b](Q(xn, yn), n−1) > 2−1ρ

)
≥ η. This

implies for any m ≤ n, P
(
ω[a,b](Q(xn, yn),m−1) > 2−1ρ

)
≥ η. Without loss of generality,

we assume (xn, yn) converges to (x, y). From Proposition 2.4, Q(xn, yn) converges to
Q(x, y) uniformly. In particular, Q(xn, yn) converges to Q(x, y) in distribution. This
implies for all m ∈ N,

P
(
ω[a,b](Q(x, y),m−1) > 2−1ρ

)
≥ η.

It is impossible because Q(x, y) is a continuous process.
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Lemma 2.6. Fix R, η > 0 and [a, b] ⊂ R. There exists ρ = ρ(α,R, η, b− a) such that the
following holds. For any x, x′, y, y′ ∈ [R−1, R], let Q and Q′ be independent squared
Bessel bridges on [0, T ] with entrance and exit data (x, y) and (x′, y′) respectively. Then

P

(
inf

t∈[a,b]
(Q′(t)−Q(t)) ∈ (−ρ, ρ)

)
< η.

Proof. Assume the assertion fails. Arguing as in the proof of Lemma 2.5 and using (2.10),
there exists η > 0 and independent squared Bessel bridges Q, Q′ with positive entrance
and exit data such that P

(
inft∈[a,b](Q′(t)−Q(t)) = 0

)
≥ η. In view of Lemma 2.3, this is

impossible.

A similar contradiction argument yields the following general lemma.

Lemma 2.7. Fix an interval [a, b] ⊂ R. Let U be an open subset of C([a, b],R). Suppose
that P(Q ∈ U) > 0 for all squared Bessel bridges defined on [a, b]. Then for all R > 0

there exists A = A(α,R,U, b − a) > 0 such that P(Q ∈ U) ≥ A for all squared Bessel
bridges defined on [a, b] with entrance and exit data (x, y) ∈ [0, R]2.

Proof. Let (Ω,P,F) and Q be the probability space and the map given in Proposition 2.4.
Assume the assertion fails. There exist xn, yn ∈ [0, R] such that limn→∞P(Q(xn, yn) ∈
U) = 0. Without loss of generality, we assume (xn, yn) converges to (x, y). From (2.10),
Q(xn, yn) converges to Q(x, y) in distribution. This implies P(Q(x, y) ∈ U) = 0, which
contradicts to the assumption.

2.2 Proof of Proposition 2.4

In this section, we prove Proposition 2.4. We begin by writing the SDE (2.9) in the
integral form. (X,B) defined on a filtered probability space (Ω,Ft,P) is a weak solution
to (2.9) if the following holds.

1. B(t) is an Ft-adapted Brownian motion.

2. X(t), t ∈ [0, T ] is a continuous process which is adapted to Ft.

3. Almost surely X(t) > 0 for all t ∈ (0, T ), X(T ) = y and for all t ∈ [0, T ),

X(t) = x+

∫ t

0

α+ 1/2

X(s)
+ rT−s(X(s), y) ds+B(t). (2.11)

The next lemma concerns the monotonicity of the integral equation (2.11).

Lemma 2.8. Fix x2 ≥ x1 ≥ 0, y2 ≥ y1 ≥ 0 and a continuous function f(t). Let g1(t), g2(t)

be two continuous functions such that for i = 1, 2 gi(0) = xi, gi(T ) = yi and gi(t) > 0

for all t ∈ (0, T ). Suppose for i = 1, 2, gi satisfies the equation (2.11) with (x, y,B(t))

replaced by (xi, yi, f(t)). Then g2(t) ≥ g1(t) for all t ∈ [0, T ].

Proof. From the assumption, h(t) = g2(t)− g1(t) is differentiable on (0, T ) and satisfies
the equation

h′(t) = −(α+ 1/2)
h(t)

g1(t)g2(t)
+ rT−t(g2(t), y2)− rT−t(g1(t), y1).

We aim to show h(t) ≥ 0 for all t ∈ [0, T ]. From (A.9) and y2 ≥ y1, we have rT−t(g1(t), y2)−
rT−t(g1(t), y1) ≥ 0. This implies

h′(t) ≥ −(α+ 1/2)
h(t)

g1(t)g2(t)
+ rT−t(g2(t), y2)− rT−t(g1(t), y2). (2.12)
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From (2.7), rt(x, y) = −t−1x + t−1y(h′α/hα)
(
t−1xy

)
. In view of (2.4), rt(x, y) can be

extended as a smooth function for (t, x, y) ∈ (0,∞)×R2.
We divide the discussion into two cases. In case 1, we assume x1 > 0. For any

T0 ∈ [0, T ), in view of (2.12) and the smoothness of rt(x, y), there exists a constant C(T0)

such that for t ∈ [0, T0], h′(t) ≥ −C(T0)|h(t)|. Together with h(0) = x2 − x1 ≥ 0, we have
h(t) ≥ 0 for all t ∈ [0, T ). Note that h(T ) = y2 − y1 ≥ 0. The proof for case 1 is finished.

In case 2, we assume x1 = 0. By the continuity of g1(t) and the smoothness of rt(x, y),
there exists ε > 0 such that for all t ∈ (0, ε),

(α+ 1/2)

∣∣∣∣ h(t)

g1(t)g2(t)

∣∣∣∣ ≥ 2 |rT−t(g2(t), y2)− rT−t(g1(t), y2)| . (2.13)

We now show that h(t) ≥ 0 for t ∈ (0, ε). Suppose it fails. There exists some t0 ∈ (0, ε)

with h(t0) < 0. From (2.12) and (2.13), we have h′(t0) > 0. It is then simple to show that
h(t) < 0 and h′(t) > 0 for all t ∈ (0, t0]. This implies x2 − x1 = h(0) ≤ h(t0) < 0, which
contradicts the assumption. Having h(t) ≥ 0 for t ∈ (0, ε), an argument similar to case 1
ensures h(t) ≥ 0 for t ∈ [0, T ].

A direct consequence of Lemma 2.8 is that (2.9) enjoys pathwise uniqueness (see
[33, Ch. IX, § 1] for the definition). From the Yadama-Watanabe theorem [33, Ch. IX,
Theorem 1.7], every weak solution to (2.9) is also a strong solution. Moreover, there
exists a Borel measurable map Φx,y from C([0,∞),R) to C([0, T ],R) such that for any
Brownian motion B̃, (Φx,y(B̃), B̃) is a strong solution to (2.9).

From now on, we fix a filtered probability space (Ω,Ft,P) and an adapted Brownian
motion B(t). For x, y ∈ [0,∞) ∩Q, we define Sx,y := Φx,y(B). Let Ω0 be a full measure
subset of Ω such that for all ω ∈ Ω0 and x, y ∈ Q∩ [0,∞), (2.11) holds with X(t) replaced
by Sx,y(t).

Lemma 2.9. Let xn, yn be two convergent sequences of non-negative rational numbers
with x = limn→∞ xn and y = limn→∞ yn. Then for all ω ∈ Ω0, Sxn,yn(ω) converges
uniformly on [0, T ]. The limit solves (2.11). Moreover, the limit depends only on x and y
but not on the sequence xn or yn.

Proof. Throughout the proof, we fix ω ∈ Ω0. We denote Sx,y(ω) by Sx,y for brevity. Let
x±n , y

±
n , be sequences of non-negative rational numbers such that

• x+
n , y+

n are non-increasing and x−n , y−n are non-decreasing.

• x−n ≤ xn ≤ x+
n , y−n ≤ yn ≤ y+

n for all n.

• limn→∞ x±n = x and limn→∞ y±n = y.

From Lemma 2.8, Sx+
n ,y

+
n is non-increasing in n and Sx−n ,y−n is non-decreasing in n. This

implies for all t ∈ [0, T ], S±(t) := limn→∞ Sx
±
n ,y
±
n (t) exist. By the dominated convergence

theorem, S±(t) both satisfy (2.11). This implies S±(t) are continuous on t ∈ (0, T ). From
Sx−n ,y−n (t) ≤ S(t)± ≤ Sx+

n ,y
+
n (t), we have x−n ≤ lim inft→0 S±(t) and lim supt→0 S±(t) ≤ x+

n .
This ensures S±(t) are continuous at t = 0. The continuity of S±(t) at t = T can be
similarly derived. We can then apply Lemma 2.8 to get S+(t) = S−(t) =: S(t).

From Dini’s theorem, both Sx±n ,y±n converge to S uniformly. Together with Sx−n ,y−n (t) ≤
Sxn,yn(t) ≤ Sx+

n ,y
+
n (t), the uniform convergence of Sxn,yn follows. The fact that S(t)

depends only on x and y but not on xn or yn follows Lemma 2.8.

Next, we define Sx,y(t) on Ω for all x, y ≥ 0 through approximation. For any x, y ≥ 0,
let (xn, yn) be a sequence of non-negative rational pairs which converges to (x, y). Define

Sx,y(ω) :=

{
limn→∞ Sxn,yn(ω), ω ∈ Ω0,

linear interpolation between x and y, ω /∈ Ω0
(2.14)
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Lemma 2.9 guarantees that the limit exists and that the limit does not depend on how we
chose the sequence. In particular, Sx,y(ω) = Sx,y(ω) for all ω ∈ Ω0 and x, y ∈ Q ∩ [0,∞).

The next lemma shows that for all ω ∈ Ω, Sx,y depends continuously on x, y. The
proof is similar to the one for Lemma 2.9 and we omit the details.

Lemma 2.10. Let xn, yn be two convergent sequences of non-negative numbers with
x = limn→∞ xn and y = limn→∞ yn. Then for all ω ∈ Ω, Sxn,yn(ω) converges uniformly to
Sx,y(ω) on [0, T ].

Proof of Proposition 2.4. Without loss of generality, we may assume a = 0 and b = T .
Let Sx,y(t), x, y ∈ [0,∞) be a family of random curves coupled in the same probability
space (Ω,Ft,P) constructed above. From Lemma 2.9, (Sx,y, B) is a weak solution to (2.9)
for all x, y ≥ 0. In particular, Sx,y is distributed as a Bessel bridge with entrance and exit

data (x, y). Therefore, defining Q(x, y) :=
(
S
√
x,
√
y
)2

gives a coupling of squared Bessel

bridges. The uniform convergence is ensured by Lemma 2.10.

3 Basics of line ensembles

In this section we introduce basic notions necessary to define the squared Bessel
Gibbs property.

Definition 3.1 (Line ensembles). Let Σ ⊂ N and Λ ⊂ R be intervals that are closed. A
Σ × Λ-indexed line ensemble L is a random variable on a probability space (Ω,F ,P),
taking values in C(Σ× Λ,R) such that L is a measurable function from F to C(Σ× Λ,R).

We think of such line ensembles as multi-layer random curves. We will generally
write L : Σ × Λ → R even though it is not L, but rather L(ω) for each ω ∈ Ω which is
such a function. We will also sometimes specify a line ensemble by only giving its law
without reference to the underlying probability space. We write Li(·) :=

(
L(ω)

)
(i, ·) for

the label i ∈ Σ curve of the ensemble L.

Definition 3.2 (Convergence of line ensembles). Given a Σ×Λ-indexed line ensemble L
and a sequence of such ensembles

{
LN
}
N≥1

, we will say that LN converges to L weakly

as a line ensemble if for all bounded continuous functionals F : C(Σ×Λ,R)→ R, it holds
that as N →∞, ∫

F
(
LN (ω)

)
dPN (ω)→

∫
F
(
L(ω)

)
dP(ω).

This is equivalent to weak-∗ convergence in C(Σ× Λ,R) endowed with the topology of
uniform convergence on compact subsets of Σ× Λ.

The following definition gives the class of functions (f, g) which will serve as the
upper and lower boundary data for non-intersecting squared Bessel bridges. Even
though we allow f and g to have certain discontinuity below, in most cases f and g will
be continuous functions.

Definition 3.3. A pair of functions (f, g) defined on [a, b] satisfies the continuity assump-
tion if the following statements hold. First, f : [a, b]→ [0,∞) is upper semi-continuous
and g : [a, b]→ (0,∞] is lower semi-continuous. Second, f and g are continuous at a and
b. Third, for all t ∈ (a, b), f and g are one-sided continuous at t.

We now start to formulate the squared α-Bessel Gibbs property.

Definition 3.4 (Squared α-Bessel bridge ensemble). Fix k1 ≤ k2 with k1, k2 ∈ N, an
interval [a, b] ⊂ R and two vectors ~x, ~y ∈ Rk2−k1+1

+ . A [k1, k2]Z × [a, b]-indexed line
ensemble L = (Lk1 , . . . ,Lk2) is called a free squared α-Bessel bridge ensemble with

entrance data ~x and exit data ~y if its law P
k1,k2,[a,b],~x,~y
free is that of k2 − k1 + 1 independent

squared α-Bessel bridges defined on [a, b] with entrance and exit data (~x, ~y).
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Let (f, g) be a pair of functions defined on [a, b] which satisfies the continuity assump-
tion. The normalizing constant is the following non-intersecting probability

Zk1,k2,(a,b),~x,~y,f,g := E
k1,k2,(a,b),~x,~y
free

[
1{f < Jk1 < · · · < Jk2 < g on [a, b]}

]
, (3.1)

where J in the above expectation is distributed according to the measure Pk1,k2,(a,b),~x,~yfree .
If the normalizing constant is positive, we define the non-intersecting squared α-Bessel
bridge ensemble with entrance data ~x, exit data ~y and boundary data (f, g) to be a
[k1, k2]Z × [a, b]-indexed line ensemble with law Pk1,k2,(a,b),~x,~y,f,g given according to the
following Radon-Nikodym derivative relation:

dPk1,k2,(a,b),~x,~y,f,g

dPk1,k2,(a,b),~x,~yfree

(J ) :=
1{f < Jk1 < · · · < Jk2 < g on [a, b]}

Zk1,k2,(a,b),~x,~y,f,g
. (3.2)

Moreover, given a′ < b′ contained in (a, b), we define

Z
k1,k2,(a,b),~x,~y,f,g
(a′,b′) := E

k1,k2,(a,b),~x,~y
free

[
1{f < Jk1 < · · · < Jk2 < g on [a, a′] ∪ [b′, b]}

]
, (3.3)

where J in the above expectation is distributed according to the measure Pk1,k2,(a,b),~x,~yfree .
That is, the non-intersecting property is only required on [a, a′] ∪ [b′, b] but not on (a′, b′).
We similarly define

dPk1,k2,(a,b),~x,~y,f,g(a′,b′)

dPk1,k2,(a,b),~x,~yfree

(J ) :=
1{f < Jk1 < · · · < Jk2 < g on [a, a′] ∪ [b′, b]}

Z
k1,k2,(a,b),~x,~y,f,g
(a′,b′)

.

Note that dPk1,k2,(a,b),~x,~y,f,g(a′,b′)

/
dPk1,k2,(a,b),~x,~y,f,g(J ) is proportional to

1{f < Jk1 < · · · < Jk2 < g on [a′, b′]}.

This feature will be used in Section 6.

Remark 3.5. The normalizing constant is positive when the boundary values are ordered.
That is, f(a) < xk1 < · · · < xk2 < g(a), f(b) < yk1 < · · · < yk2 < g(b) and f < g on [a, b]

implies Zk1,k2,(a,b),~x,~y,f,g > 0.

The squared α-Bessel Gibbs property could be viewed as a spatial Markov property.
More specifically, it provides a description of the conditional law inside a compact set.

Definition 3.6 (Squared α-Bessel Gibbs property). Fix α ≥ 0. A Σ × Λ-indexed line
ensemble L satisfies the squared α-Bessel Gibbs property if for all [k1, k2]Z ⊂ Σ and
[a, b] ⊂ Λ, its conditional law inside [k1, k2]Z × [a, b] takes the following form,

Law of
(
L
∣∣
[k1,k2]Z×[a,b]conditional on L

∣∣
(Σ×Λ)\([k1,k2]Z×(a,b))

)
= Pk1,k2,(a,b),~x,~y,f,g (3.4)

Here f = Lk1−1 and g = Lk2+1 with the convention that if k1 − 1 /∈ Σ then f ≡ 0 and
likewise if k2 + 1 /∈ Σ then g ≡ +∞; we have also set ~x =

(
Lk1(a), · · · ,Lk2(a)

)
and

~y =
(
Lk1(b), . . . ,Lk2(b)

)
.

The following description of Gibbs property using conditional expectation is equiva-
lent. We will make use of it as it is convenient for writing the arguments. A Σ×Λ-indexed
line ensemble L enjoys the squared α-Bessel Gibbs property if and only if for any
[k1, k2]Z ⊂ Σ, (a, b) ⊂ Λ, and bounded Borel function F : C ([k1, k2]Z × [a, b],R) → R, it
holds P-almost surely that

E
[
F
(
L|[k1,k2]Z×[a,b]

)∣∣Fext

(
[k1, k2]Z × (a, b)

)]
= Ek1,k2,(a,b),~x,~y,f,g [F (Jk1 , . . . ,Jk2)] , (3.5)
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where ~x, ~y, f and g are defined as in Definition 3.6 and where

Fext ([k1, k2]Z × (a, b)) := σ (Li(s) : (i, s) ∈ Σ× Λ \ [k1, k2]Z × (a, b)) (3.6)

is the exterior sigma-field generated by the line ensemble outside [k1, k2]Z × (a, b). On
the left-hand side of the above equality L|[k1,k2]Z×[a,b] is the restriction to [k1, k2]Z × [a, b]

of curves distributed according to P, while on the right-hand side Jk1 , . . . ,Jk2 are curves
on [a, b] distributed according to Pk1,k2,(a,b),~x,~y,f,g.

We finish this subsection by the squared α-Bessel process of LN,α.

Proposition 3.7. For any α ≥ 0 and N ∈ N, the line ensemble LN,α defined in (1.3)
satisfies the squared α-Bessel Gibbs property.

Proof. Recall that Y N,α = (Y N,α1 (t), . . . , Y N,αN (t)) is the non-intersecting squared α-Bessel
process. This implies Y N,α satisfies the squared α-Bessel Gibbs property. The assertion
then follows by combining (1.2) and the scaling property of Bessel processes.

We finish this section with the strong Gibbs property, which enables us to resample
the trajectory within a stopping domain as opposed to a deterministic interval.

Definition 3.8. Let Σ ⊂ N and Λ ⊂ R be intervals that are closed. Consider a Σ × Λ-
indexed line ensemble L. For [k1, k2]Z ⊂ Σ, the random variable (l, r) is called a [k1, k2]Z-
stopping domain if for all ` < r,{

l ≤ `, r ≥ r
}
∈ Fext

(
[k1, k2]Z × (`, r)

)
.

The strong Gibbs property for squared α-Bessel Gibbsian line ensembles follows from
the same argument of the strong Gibbs property for Brownian Gibbsian line ensemble.
We omit the proof here and refer the readers to [10, Lemma 2.5]. Define

C(k1, k2) := {(`, r, fk1 , . . . , fk2) : ` < r, (fk1 , . . . , fk2) ∈ C([k1, k2]Z × [`, r],R)} .

We equip C(k1, k2) with the topology induced by the restriction map R×R×C([k1, k2]Z×
R,R).

Lemma 3.9 (Strong Gibbs property). Consider a Σ×Λ-indexed line ensemble L which
has the squared α-Bessel Gibbs property. Fix [k1, k2]Z ⊂ Σ. For all random variables (l, r)

which are [k1, k2]Z-stopping domains for L, the following strong squared α-Bessel Gibbs
property holds: for any bounded Borel function F : C(k1, k2) → R, it holds P-almost
surely that

E

[
F
(
l, r,L|[k1,k2]Z×(l,r)

)∣∣∣Fext

(
K × [l, r]

)]
= Pk1,k2,(l,r),~x,~y,f,g

[
F
(
l, r,Jk1 , . . . ,Jk2

)]
. (3.7)

Here ~x = {Li(l)}k2i=k1 , ~y = {Li(r)}k2i=k1 , f = Lk1−1 (or 0 if k1 − 1 /∈ Σ), g = Lk2+1

(or +∞ if k2 + 1 /∈ Σ). On the left-hand side L|[k1,k2]Z×[l,r] is the restriction of curves
distributed according to P and on the right-hand side Jk1 , . . . ,Jk2 is distributed according
to Pk1,k2,(l,r),~x,~y,f,g.

4 Stochastic monotonicity

In this section we prove the stochastic monotonicity, Proposition 4.1, following the
idea in the proof of [9, Lemmas 2.6-2.7]. Stochastic monotonicity will play a crucial role
in Sections 5 and 6 because it provides a method to bound the probability of certain
events for Gibbsian line ensembles without the knowledge of the normalizing constant.
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Proposition 4.1 (Stochastic monotonicity). Fix α ≥ 0, two positive integers k1 ≤ k2

and (a, b) ⊂ R. For i ∈ {1, 2}, let (~x(i), ~y(i)) ∈ Rk2−k1+1
+ × Rk2−k1+1

+ be vectors which
satisfy

x
(1)
j ≥ x

(2)
j , y

(1)
j ≥ y(2)

j for all j ∈ [k1, k2]Z.

For i ∈ {1, 2}, let (f (i), g(i)) be functions on [a, b] that satisfy the continuity assumption in
Definition 3.3. Assume that

f (1)(t) ≥ f (2)(t), g(1)(t) ≥ g(2)(t) for all t ∈ [a, b]

Further assume that for i ∈ {1, 2},

Zk1,k2,(a,b),~x
(i),~y(i),f(i),g(i) > 0. (4.1)

See (3.1) for the definition of Zk1,k2,(a,b),~x
(i),~y(i),f(i),g(i) .

Let Q(i) = {Q(i)
j }

k2
j=k1

be a [k1, k2]Z × [a, b]-indexed line ensemble whose law P(i)

is given by Pk1,k2,(a,b),~x
(i),~y(i),f(i),g(i) , the non-intersecting squared α-Bessel bridge line

ensemble (See Definition 3.4). Then there exists a coupling of the probability measures
P(1) and P(2) such that almost surely

Q(1)
j (t) ≥ Q(2)

j (t) for all j ∈ [k1, k2]Z and t ∈ [a, b].

Proof. Fix α ≥ 0. Without loss of generality, we assume [a, b] = [0, 1] and k1 = 1, k2 = k.
Take two sets of boundary data (~x(i), ~y(i), f (i), g(i)), i ∈ {1, 2} as described in Proposi-
tion 4.1. For i ∈ {1, 2}, let Q(i) be a [1, k]Z × [0, 1]-indexed line ensemble of the law

P(i) = P1,k,(0,1),~x(i),~y(i),f(i),g(i) . We seek to couple P(1) and P(2) in the same probability
space such that almost surely, Q(1)

j (t) ≥ Q(2)
j (t) for all j ∈ [1, k]Z and t ∈ [0, 1]. For

technical reasons, it is easier to couple the corresponding Bessel bridges. We denote
by Q(i) the measures on C([1, k]Z× [0, 1],R) which are the push-forward measures of P(i)

under the map hj(t) 7→
√
|hj(t)|. We split the argument into four steps.

Step one: we discretize the state space C([1, k]Z × [0, 1],R). Fix ` ∈ N and M ≥ 1.
Define

ΩM,` :=
{
z = (zj,n)

∣∣∣ j ∈ [1, k]Z, n ∈ [1, 2` − 1]Z, zj,n ∈M−1Z ∩ [0,M ]
}
. (4.2)

We assign weights W (i), i ∈ {1, 2} to members of ΩM,`. Let p(x, y) = p2−`(x, y) be the
transition density function of the α-Bessel process with time displacement 2−`. See (2.7)
for the explicit form of pt(x, y). We omit the subscript 2−` and set K = 2` for simplicity.

For any z(i) = (z
(i)
j,n) ∈ ΩM,`, define

W
(i)
free(z(i)) :=

k∏
j=1

K∏
n=1

p
(
z

(i)
j,n−1, z

(i)
j,n

)
, W (i)(z(i)) := W

(i)
free(z(i))G(i)(z(i)), (4.3)

where

G(i)(z(i)) := 1
{√

f (i)(n/K) < z
(i)
1,n < z

(i)
2,n < · · · < z

(i)
k,n <

√
g(i)(n/K), ∀n ∈ [1,K − 1]Z

}
.

Here we adopt the convention z(i)
j,0 =

√
x

(i)
j and z(i)

j,K =
√
y

(i)
j .

Define z(i),min = (z
(i),min
j,n ), j ∈ [1, k]Z and n ∈ [1,K − 1]Z by

z
(i),min
1,n := min{mM−1 ∈M−1Z |mM−1 >

√
f (i)(n/K)},

z
(i),min
j,n :=z

(i),min
1,n + (j − 1)M−1

(4.4)
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From f (1) ≥ f (2), we have z
(1),min
j,n ≥ z

(2),min
j,n . Because of the assumption (4.1), there

exists M0 such that for all M ≥ M0, we have z(i),min ∈ ΩM,` and W (i)(z(i),min) > 0.

From now on we always assume M ≥M0. We write Q(i)
M,`, i ∈ {1, 2}, for the probability

measures on ΩM,` such that

Q
(i)
M,`(z) ∝W (i)(z).

Note that ΩM,` can be identified as a subset of C([1, k]Z × [0, 1],R) through

h
(i)
j (t) =

{
z

(i)
j,n, t = n/K, n ∈ [0,K]Z

linear interpolation, others.
(4.5)

Therefore, Q(i)
M,` can be viewed as probability measures on C([1, k]Z × [0, 1],R).

Step two: we construct Markov chains to couple Q(1)
M,` and Q(2)

M,`. We introduce
the dynamics by assigning Poisson clocks at [1, k]Z × [1,K − 1]Z × {+,−}. If the clock

at (j, n,+) rings, we attempt to increase z
(i)
j,n to min{z(i)

j,n + M−1,M}. Define z(i),+ by

replacing z(i)
j,n with min{z(i)

j,n +M−1,M}.

z
(i),+
j′,n′ :=

{
min{z(i)

j,n +M−1,M}, (j′, n′) = (j, n),

z
(i)
j′,n′ , others.

(4.6)

Take a family of independent uniform random variables U j,n,s with support (0, 1). Here
(j, n, s) ∈ [1, k]Z × [1,K − 1]Z × {−,+}. If W (i)(z(i),+)/W (i)(z(i)) ≥ U j,n,+, we update
z(i) to z(i),+; otherwise we make no change. Similarly, if the clock at (j, n,−) rings,

we attempt to decrease z(i)
j,n to max{z(i)

j,n −M−1, 0}. Define z(i),− by replacing z
(i)
j,n with

max{z(i)
j,n −M−1, 0}. It follows that

z
(i),−
j′,n′ :=

{
max{z(i)

j,n −M−1, 0}, (j′, n′) = (j, n),

z
(i)
j′,n′ , others.

(4.7)

Such an update is accepted if W (i)(z(i),−)/W (i)(z(i)) ≥ U j,n,−.
We run two Markov chains z(1), z(2) on ΩM,` as described above with initial config-

urations z(i),int, i ∈ {1, 2}, respectively. These two Markov chains z(1), z(2) are coupled
through the same Poisson clocks and the same collection of uniform random variables.
It could be directly checked that Q(1)

M,` and Q(2)
M,` are invariant measures for z(1), z(2)

respectively. Moreover, z(i),min defined in (4.4) belongs to every communication class of
z(i). This implies z(1) and z(2) are irreducible. As a result, Q(1)

M,` and Q(2)
M,` are coupled by

taking the limits of these two Markov processes when time goes to infinity.

Step three: we show that Q(1)
M,` dominates Q(2)

M,` almost surely under the above

coupling. We make the following Claim 4.2. In view of Claim 4.2, z(1) always dominates
z(2). As a result, Q(1)

M,` dominates Q(2)
M,`.

Claim 4.2. Fix j ∈ [1,K − 1]Z. Let z(1), z(2) ∈ ΩM,k be two configurations which satisfy

W (i)(z(i)) > 0. We further assume that for all (j′, n′) ∈ [1, k]Z × [1,K − 1]Z, z(1)
j′,n′ ≥ z

(2)
j′,n′

and that z(1)
j,n = z

(2)
j,n. Let z(i),± be defined as in (4.6) and (4.7). Then it holds that

W (1)(z(1),+)/W (1)(z(1)) ≥W (2)(z(2),+)/W (2)(z(2)) (4.8)

and that

W (1)(z(1),−)/W (1)(z(1)) ≤W (2)(z(2),−)/W (2)(z(2)). (4.9)
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Now it suffices to prove Claim 4.2. We provide the argument for (4.8) and the
one for (4.9) is similar. Let z(1), z(2) ∈ ΩM,` be given as in Claim 4.2. In particular

z
(1)
j,n = z

(2)
j,n =: zj,n. If zj,n + M−1 > M , z(i),+ = z(i) and both sides of (4.8) equals 1.

If zj,n + M−1 ≥ z
(2)
j+1,n, then W (2)(z(2),+) = 0 and the assertion holds. Hence we may

assume zj,n +M−1 ≤M and zj,n +M−1 < z
(2)
j+1,n. By a direct computation,

W (i)(z(i),+)/W (i)(z(i)) =
p(z

(i)
j,n−1, zj,n +M−1)

p(z
(i)
j,n−1, zj,n)

×
p(zj,n +M−1, z

(i)
j,n+1)

p(zj,n, z
(i)
j,n+1)

.

We use the mean value theorem (MVT) as follows. Let f : R2 → R be a twice continuously
differentiable function and let a, b, c, d ∈ R. Apply the MVT to g(y) = f(a, y)− f(b, y), we

have f(a, c) − f(b, c) − f(a, d) + f(b, d) =
(
∂f
∂y (a, y)− ∂f

∂y (b, y)
)

(c − d) for some y. Apply

the MVT again, we have for some x,

f(a, c)− f(b, c)− f(a, d) + f(b, d) =
∂2f

∂x∂y
(x, y)(a− b)(c− d).

Apply this argument to log p, we get

log

(
p(z

(1)
j,n−1, zj,n +M−1)

p(z
(1)
j,n−1, zj,n)

/
p(z

(2)
j,n−1, zj,n +M−1)

p(z
(2)
j,n−1, zj,n)

)

=
∂2

∂x∂y
log p(x, y)(z

(1)
j,n−1 − z

(2)
j,n−1)M−1

for some (x, y) ∈ [z
(2)
j,n−1, z

(1)
j,n−1]× [zj,n, zj,n +M−1]. By Corollary A.3, ∂2

∂x∂y log p(x, y) ≥ 0.
Therefore, the above is non-negative. Similarly,

log

(
p(zj,n +M−1, z

(1)
j,n+1)

p(zj,n, z
(1)
j,n+1)

/
p(zj,n +M−1, z

(2)
j,n+1)

p(zj,n, z
(2)
j,n+1)

)
≥ 0.

The desired result (4.8) then follows.

Step four, a coupling of Q(1) and Q(2) can be obtained by letting M and ` go
to infinity. Recall that we identify ΩM,` as a subset of C([1, k]Z × [0, 1],R) through
linear interpolation (4.5) hence Q(1) and Q(2) are probability measures on C([1, k]Z ×
[0, 1],R). From Proposition B.1 in Appendix B, Q(i)

M,` converges weakly to Q(i). Since

Q
(1)
M,` dominates Q(2)

M,`, we conclude that Q(1) dominates Q(2). The proof is completed.

5 Uniform upper and Lower bounds

The main goal of this section is to prove Propositions 5.1 and 5.2, which establish
uniform upper and lower bounds of the curves in LN,α over bounded intervals. The
definition of the line ensemble LN,α(t) is in (1.2).

Proposition 5.1. Fix α ≥ 0. For any a < b, ε > 0 and k ∈ N, there exist R1 =

R1(α, ε, k, b − a) and N1 = N1(α, ε, k,max{|a|, |b|}) such that the following statement
holds. For any N ≥ N1, it holds that

P

(
sup
t∈[a,b]

LN,αk (t) > R1

)
< ε. (5.1)
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Proposition 5.2. Fix α ≥ 0. For any a < b, ε > 0, there exist r1 = r1(α, ε, b − a) and
N2 = N2(α, ε,max{|a|, |b|}) such that the following statement holds. For any N ≥ N2, it
holds that

P

(
inf

t∈[a,b]
LN,α2 (t) < r1

)
< ε. (5.2)

The starting point of showing Propositions 5.1 and 5.2 is the finite dimensional
convergence of LN,α to the extended α-Bessel point process {ξαi , i ∈ N} [18, Section
11.7.3]. See Appendix C for the convergence of the correlation kernel.

Theorem 5.3. Fix α ≥ 0, n,m ∈ N and t1 < t2 < · · · < tm. Then {LN,αi (tj)}, i ∈
[1, n]Z, j ∈ [1,m]Z converges in probability as N goes to infinity. Moreover, for any t ∈ R,
{LN,αi (t)}, i ∈ [1, n]Z converges weakly to {ξαi }, i ∈ [1, n]Z.

Lemma 5.4. Fix α ≥ 0. For any t ∈ R, i ∈ N, LN,αi (t) converges to ξαi in distribution.
Moreover, the convergence is locally uniformly in t in the following sense. For any L > 0,
r ≥ 0 and i ∈ N, it holds that

lim sup
N→∞

sup
t∈[−L,L]

P(LN,αi (t) ≤ r) ≤ P(ξαi ≤ r),

lim sup
N→∞

sup
t∈[−L,L]

P(LN,αi (t) ≥ r) ≤ P(ξαi ≥ r).
(5.3)

Proof. For fixed t, the convergence follows from Theorem 5.3. From (1.4) and (1.2),
LN,αi (t) has the same distribution as (1 + t/(4N))LN,αi (0). Locally uniform conver-
gence (5.3) then follows.

Propositions 5.1 and 5.2 are proved in Sections 5.1 and 5.2 respectively. For brevity,
we will denote LN,α by LN in the rest of the section.

5.1 Uniform upper bound

We begin with the following one point upper bound for LN .

Lemma 5.5. Fix α ≥ 0. For any L > 0, ε > 0 and k ∈ N, there exist R2 = R2(α, ε, k)

and N3 = N3(α, ε, k, L) such that the following statement holds. For any t ∈ [−L,L] and
N ≥ N3, it holds that

P(LNk (t) > R2) < ε.

Proof. Because P(ξαk <∞) = 1, there exists R2 = R2(α, ε, k) such that

P(ξαk > R2) < 2−1ε.

Apply Lemma 5.4 with r = R2, the existence of N3 follows from (5.3).

We are now ready to prove Proposition 5.1. The argument propagates the one-point
upper bound in Lemma 5.5 to uniform upper bound estimates through the Bessel Gibbs
property of LN .

Proof of Proposition 5.1. Let L = max{|a|, |b|}. We argue by induction on k and start
with k = 1. Take R2 = R2(α, 4−1ε, 1) as in Lemma 5.5. For N ∈ N, define the event

AN := {LN1 (a) ≤ R2,LN1 (b) ≤ R2}.

From Lemma 5.5, we have for N ≥ N3(α, 4−1ε, 1, L),

P(Ac
N ) < 2−1ε. (5.4)
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We proceed to bound P
({

supt∈[a,b] LN1 (t) > R1

}
∩ AN

)
for suitable R1. Let R1 be large

enough such that

P
1,1,(a,b),R2,R2

free

(
sup
t∈[a,b]

J (t) < R1

)
< 2−1ε,

where J (t) is distributed according toP1,1,(a,b),R2,R2

free . By the tower property of conditional
expectation, we have

P

({
sup
t∈[a,b]

LN1 (t) > R1

}
∩ AN

)
=E

[
1ANE

[
1

{
sup
t∈[a,b]

LN1 (t) > R1

} ∣∣∣∣Fext({1} × (a, b))

]]

By the Gibbs property Proposition 3.7, we have

E

[
1

{
sup
t∈[a,b]

LN1 (t) > R1

} ∣∣∣∣Fext({1} × (a, b))

]

=P1,1,(a,b),LN1 (a),LN1 (b),0,LN2

(
sup
t∈[a,b]

J (t) > R1

)
.

When AN occurs, LN1 (a) ≤ R2 and LN1 (b) ≤ R2. By the stochastic monotonicity Proposi-
tion 4.1,

1AN · E

[
1

{
sup
t∈[a,b]

LN1 (t) > R1

} ∣∣∣∣Fext({1} × (a, b))

]

≤1AN · P
1,1,(a,b),R2,R2

free

(
sup
t∈[a,b]

J (t) > R1

)
<1AN · 2−1ε.

Therefore,

P

({
sup
t∈[a,b]

LN1 (t) > R1

}
∩ AN

)
< 2−1ε. (5.5)

Combining (5.4) and (5.5), we conclude

P

(
sup
t∈[a,b]

LN1 (t) > R1

)
< ε.

We have established (5.1) for k = 1.
Next, we assume that k ≥ 2 and that (5.1) holds for k − 1. Define

R̄ := max{2−1R2(α, 4−1ε, k), R1(α, 4−1ε, k − 1, b− a)}.

Here R2(α, 4−1ε, k) is the constant in Lemma 5.5. For N ∈ N, consider the event

EN :=

{
LNk (a) ≤ 2R̄,LNk (b) ≤ 2R̄, and sup

t∈[a,b]

LNk−1(t) ≤ R̄

}
.

By Lemma 5.5 and the induction hypothesis, there exists N1 = N1(α, ε, k, L) such that
for all N ≥ N1,

P (Ec
N ) <

3

4
ε. (5.6)
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Take R1 = R1(α, ε, k, b− a) such that

P1,1,(a,b),2R̄,2R̄,R̄,∞

(
sup
t∈[a,b]

J (t) > R1

)
< 4−1ε.

Here J is distributed according to P1,1,(a,b),2R̄,2R̄,R̄,∞. By the tower property of condi-
tional expectation, we have

P

({
sup
t∈[a,b]

LNk (t) > R1

}
∩ EN

)
=E

[
1ENE

[
1

{
sup
t∈[a,b]

LNk (t) > R1

}∣∣∣∣Fext({k} × (a, b))

]]
.

By the Gibbs property Proposition 3.7, we have

E

[
1

{
sup
t∈[a,b]

LNk (t) > R1

} ∣∣∣∣Fext({k} × (a, b))

]

=P1,1,(a,b),LNk (a),LNk (b),LNk−1,L
N
k+1

(
sup
t∈[a,b]

J (t) > R1

)
.

When EN occurs, LNk (a),LNk (b) ≤ 2R̄ and LNk−1 ≤ R̄. By the stochastic monotonicity
Proposition 4.1,

1EN · E

[
1

{
sup
t∈[a,b]

LNk (t) > R1

} ∣∣∣∣Fext({k} × (a, b))

]

≤1EN · P1,1,(a,b),2R̄,2R̄,R̄,∞

(
sup
t∈[a,b]

J (t) > R1

)
<1EN · 4−1ε.

Combining the above, we have

P

({
sup
t∈[a,b]

LNk (t) > R1

}
∩ EN

)
< 4−1ε. (5.7)

Combining (5.6) and (5.7), we conclude

P

(
sup
t∈[a,b]

LNk (t) > R1

)
≤ P

({
sup
t∈[a,b]

LNk (t) > R1

}
∩ EN

)
+ P (Ec

N ) < ε.

We have established (5.1). The proof is finished.

5.2 Uniform lower bound

In this section, we prove Proposition 5.2. The main technical input is Proposition 5.6,
which shows a uniform lower bound over a small interval.

Proposition 5.6. Fix α ≥ 0. For any ε ∈ (0, 1] and L > 0, there exist N4 = N4(α, ε, L),
C = C(α) ≥ 1 and ν = ν(α) > 0 such that the following statement holds. For all N ≥ N4,
|t0| ≤ L and d = C−1ε1/(1+ν), it holds that

P

(
inf

t∈[t0−2d,t0−d]
LN2 (t) ≤ d2

)
< ε. (5.8)

By a union bound argument, we prove the uniform lower bound Proposition 5.2.
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Proof of Proposition 5.2. Let [a, b] ⊂ R. Take d = C−1ε1/(1+ν) as in Proposition 5.6 and
t0 ∈ [a, b]. Denote L = max{|a|, |b|}. By Proposition 5.6, there exists N4 = N4(α, ε, L)

such that for all N ≥ N4,

P

(
inf

t∈[t0−2d,t0−d]
LN2 (t) ≤ d2

)
< ε.

Covering [a, b] with dd−1(b − a)e intervals with length d and applying the union bound
estimate, we obtain that

P

(
inf

t∈[a,b]
LN2 (t) ≤ d2

)
< dd−1(b− a)eε ≤

(
C(b− a)ε−1/(1+ν) + 1

)
ε.

Because ν > 0, the right hand side could be made as small as possible. The assertion
then follows by re-choosing ε.

The rest of this section is devoted to proving Proposition 5.6. We first set up a lemma
which controls the lower tail of the second smallest particle in the α-Bessel point process,
i.e. ξα2 . This can be found in [36]. We provide the proof for completeness.

Lemma 5.7. Fix α ≥ 0. There exists positive constant c = c(α) and ν = ν(α) such that

P(ξα1 ≤ r) ≤ cr1+α + oα(r2),

and

P(ξα2 ≤ r) ≤ cr1+ν + oα(r2).

Proof. First consider the case when α > 0. For n ∈ N0 and s > 0, let E(n, r) =

P(ξαn < r, ξαn+1 ≥ r) be the probability that the number of ξαi in (0, r) is n. We adopt the
convention that ξ0 = 0.The explicit formula of E(n, r) can be found in [36, (1.23)]. In
[36], − logE(0, r) is denoted by R(r) and rR(r) is denoted by σ(r) or σ(r; 1). Therefore,
[36, (1.22)] gives the following asymptotic when r goes to zero:

−r d
dr

logE(0, r) = cαr
α+1 +O(rα+2).

Here cα = 1
22α+2

1
Γ(α+1)Γ(α+2) . Then we deduce

E(0, r) = 1− (α+ 1)−1cαr
α+1 +O(rα+2).

Hence,

P(ξα2 ≤ r) ≤ P(ξα1 ≤ r) = 1− E(0, r) = (α+ 1)−1cαr
α+1 +O(rα+2).

To conclude, for α > 0, the desired result holds with c = cα
α+1 and ν = α.

Next, we consider the case α = 0. Evaluating c0, we obtain E(0, r) = 1− 4−1r+O(r2).
From [36, (2.30)],

E(1, r)

E(0, r)
= 2−1r

(
I2
0 (r1/2)− r−1/2I0(r1/2)I1(r1/2)− I2

1 (r1/2)
)
.

Here I0 and I1 are modified Bessel functions of the first kind. As z goes to zero, we have
[1, (9.6.10)]

I0(z) = 1 +O(z2), I1 = 2−1z +O(z3).
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Hence

E(1, r) = E(0, r)× 2−1r
(
I2
0 (r1/2)− r−1/2I0(r1/2)I1(r1/2)− I2

1 (r1/2)
)

= 4−1r +O(r2).

As a result,

P(ξα2 ≤ r) = 1− E(0, r)− E(1, r) = O(r2).

From Lemma 5.7, we may derive the following one-point lower bound for LN1 and LN2 .

Lemma 5.8. Fix α ≥ 0 and let c = c(α), ν = ν(α) be the constants in Lemma 5.7.
There exists ε0 = ε0(α) such that for all 0 < ε ≤ ε0 and L > 0, there exists N5 =

N5(α, ε, L) which makes the following statement true. Let r2 = (ε/(2c))1/(1+α) and
r3 = (ε/(2c))1/(1+ν). For all N ≥ N5 and |t| ≤ L, it holds that

P(LN1 (t) < r2) < ε,

and

P(LN2 (t) < r3) < ε.

Proof. We present only the proof for the latter bound. The argument for the first one is
similar. From Lemma 5.7, P(ξ2 < r3) = 2−1ε+ oα(ε). Take ε0 small enough such that for
all 0 < ε ≤ ε0, P(ξ2 < r3) < 2

3ε. Apply Lemma 5.4 with r = r3, the existence of N5 follows
from (5.3).

We finish this section with the proof of Proposition 5.6. The proof relies on estimates
of transition densities for non-intersecting Bessel bridges.

Proof of Proposition 5.6. Let c, ν and ε0 be the constants in Lemma 5.8. Fix ε ≤ ε0 and
set d = (ε/(2c))1/(1+ν). We may assume that d ≤ 2−1. For |t0| ≤ L, denote

FN :=

{
inf

t∈[t0−2d,t0−d]
LN2 (t) ≤ d2

}
.

It is sufficient to show the following. For any 0 < ε ≤ ε0, there exists N4 = N4(α, ε, L)

and C0 such that for all N ≥ N4 and |t0| ≤ L,

P(FN ) < C0ε. (5.9)

Let R = R2(α, ε, 2) be the constant in Lemma 5.5 and T = R1/2. Consider the event

GN :=
{
LN2 (t0 + T ) ≤ R

}
.

From Lemma 5.5, there exists N = N3(α, ε, L) such that for all N ≥ N3, P(Gc
N ) < ε. We

aim to show that there exists N5(α, ε, L) ≥ N3 such that for all N ≥ N5,

P(FN ∩ GN ) < C1ε. (5.10)

This implies P(FN ) ≤ P(FN ∩ GN ) + P(Gc
N ) < (C1 + 1)ε, which is sufficient for (5.9).

Now we turn to (5.10). Consider the random variable

l :=

{
inf
{
t ∈ [t0 − 2d, t0 − d] | LN2 (t) ≤ d2

}
, if

{
t ∈ [t0 − 2d, t0 − d] | LN2 (t) ≤ d2

}
6= ∅,

t0 − d, if
{
t ∈ [t0 − 2d, t0 − d] | LN2 (t) ≤ d2

}
= ∅.
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This is the smallest time when LN2 goes below d2 if it does. By the tower property for
conditional expectation, we have

P
({
LN2 (t0) < d

}
∩ FN ∩ GN

)
= E

[
1FN1GNE

[
1
{
LN2 (t0) < d

}
| Fext({1, 2} × (l, t0 + T ))

]]
.

Denote ~x = (LN1 (l),LN2 (l)), ~y = (LN1 (t0 + T ),LN2 (t0 + T )) and g = LN3 |[l,t0+T ]. By the
strong Gibbs property Lemma 3.9,

E
[
1
{
LN2 (t0) < d

}
| Fext({1, 2} × (l, t0 + T ))

]
= P1,2,(l,t0+T ),~x,~y,0,g(J2(t0) < d). (5.11)

Here (J1,J2) is distributed according to P1,2,(l,t0+T ),~x,~y,0,g. We claim there exists C1

depending only on α such that

1FN · 1GN · P1,2,(l,t0+T ),~x,~y,0,g(J2(t0) < d) ≥ 1/C1 · 1FN · 1GN . (5.12)

Assuming for a moment this claim holds. Combining (5.11) and (5.12), we have

P(FN ∩ GN ) = E[1FN · 1GN ]

≤ C1E
[
1FN · 1GN · E

[
1
{
LN2 (t0) < d

}
| Fext({1, 2} × (l, t0 + T ))

]]
= C1P

({
LN2 (t0) < d

}
∩ FN ∩ GN

)
≤ C1P

(
LN2 (t0) < d

)
.

From Lemma 5.8, For N ≥ N5(α, ε, L), we have P
(
LN2 (t0) < d

)
< ε. This proves (5.10).

It remains to prove (5.12). We use C to denote a constant which depends only α and
its value may vary from line to line. Note that FN =

{
LN2 (l) ≤ d2

}
. By the stochastic

monotonicity Lemma 4.1, the left hand side of (5.12) is bounded from below by

1FN · 1GN · P1,2,(l,t0+T ),~x∗,~y∗,0,+∞(J2(t0) < d).

with ~x∗ = (d2, d2) and ~y∗ = (R,R).
We write x∗ = d2 and y∗ = R. Let τ := t0 − l. Note that d ≤ τ ≤ 2d. For any

0 ≤ z1 ≤ z2 ≤ d, we have

x∗z2 ≤ d2 ≤ τ2, y∗z2 ≤ R = T 2 and x∗y∗ ≤ R ≤ (τ + T )2. (5.13)

This verifies the assumption of Lemma A.5 with L = 1. Let (J1(t),J2(t)) be distributed
according to P1,2,(l,t0+T ),~x∗,~y∗,0,+∞. From Lemma A.5, the p.d.f at (J1(t0),J2(t0)) =

(z1, z2) has a lower bound

C−1
(
τ−1 + T−1

)2 qτ (x∗, z2)qτ (x∗, z1)qT (z2, y∗)qT (z1, y∗)

qτ+T (x∗, y∗)2
(z1 − z2)2.

Using (2.5), the above equals

2−2C−1(τ−1 + T−1)2α+4zα1 z
α
2 · (z1 − z2)2

×hα(
√
x∗z1/τ)hα(

√
x∗z2/τ)hα(

√
z1y∗/T )hα(

√
z2y∗/T )× hα(

√
x∗y∗/(τ + T ))−2

× exp

(
− x∗(τ−1 − (τ + T )−1)− y∗(T−1 − (τ + T )−1)− 2−1(z1 + z2)(τ−1 + T−1)

)
.

(5.14)

Here hα is an entire function. See (2.4) for the Taylor expansion of hα. In particular, hα
has non-negative coefficients and is increasing on (0,∞). From (5.13), the second line
in (5.14) has a lower bound. To bound the third line in (5.14), we use

x∗(τ
−1 − (τ + T )−1) ≤ τ−1x∗ ≤ d ≤ 1, y∗(T

−1 − (τ + T )−1) ≤ T−2y∗ ≤ 1,

2−1(z1 + z2)(τ−1 + T−1) ≤ (z1 + z2)/τ.
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Combining the above, (5.14) is bounded from below by

C−1τ−2α−4zα1 z
α
2 e
−(z1+z2)/τ (z1 − z2)2.

It follows that

P1,2,(l,t0+T ),~x0,~y0,0,+∞(J2(t0) < d) ≥ C−1τ−2α−4

∫ d

0

dz2

∫ z2

0

dz1 z
α
1 z

α
2 e
−(z1+z2)/τ (z1 − z2)2.

Using the change of variables (w1, w2) = (z1/τ, z2τ) and d/τ ≥ 1, the above is bounded
from below by

C−1

∫ 1/2

0

dw2

∫ w2

0

dw1 w
α
1w

α
2 e
−(w1+w2)(w1 − w2)2 =: C−1

1 .

This establishes (5.12). The proof is finished.

Remark 5.9. A similar and actually simpler argument based on the lower bound of LN1
in Lemma 5.8 can show that P

(
inft∈[0,d] LN1 ≤ d2

)
< ε for d ∼ ε1/(1+α). However, if α = 0,

this estimate is not enough to extend to a unit interval as in Proposition 5.2.

6 Normalizing constant

In this section, we give a lower bound for the normalizing constant. Let us recall
its definition. Given k ∈ N, (a, b) ⊂ R, two vectors ~x, ~y ∈ Rk+ and two semi-continuous
functions f, g : [a, b]→ R, the normalizing constants Z1,k,(a,b),~x,~y,f,g is defined in Defini-
tion 3.4. It represents the probability that k independent α-Bessel bridges, starting at ~x
at t = a and terminating at ~y at t = b, avoid each other as well as f(t) and g(t). We are
mainly concerned with the case in which (~x, ~y, f, g) are random variables. To be concrete,
let LN,α be the scaled line ensembles defined in (1.3). For N large enough such that
(a, b) ⊂ [−4N,∞) and N ≥ k + 1, we consider the random variable

Z1,k,(a,b),~x,~y,0,g,

where xi = LN,αi (a), yi = LN,αi (b) and g = LN,αk+1

∣∣
[−L,L]

. For Z1,k,(−L,L),~x,~y,0,g, the ran-

domness inherits from the boundary data, ~x, ~y and g. This random normalizing con-
stant appears naturally from the squared α-Bessel Gibbs property of LN,α. As long as
Z1,k,(a,b),~x,~y,0,g has a lower bound, LN,α on [1, k]Z× [a, b] behaves similarly to independent
squared α-Bessel bridges. See Definition 3.4. The main goal of this section is to show
that, under the law of LN,α, the random normalizing constants are not small with a high
probability. This is the content of Proposition 6.1 and is a key ingredient for proving the
tightness of LN,α in the next section.

Proposition 6.1. Fix α ≥ 0, k ∈ N and L ≥ 1. For any ε > 0, there exists δ1 =

δ1(α, k, L, ε) > 0 and N6 = N6(α, k, L, ε) > 0 such that for all N ≥ N6, it holds that

P(Z1,k,(−L,L),~x,~y,0,g < δ1) < ε.

Here xi = LN,αi (−L), yi = LN,αi (L) and g = LN,αk+1

∣∣
[−L,L]

.

In Section 6.1 we set up a resampling framework, state Proposition 6.3 and discuss
some of its consequences. These are used in Section 6.2 to prove Proposition 6.1.
Section 6.3 adapts the two-step resampling method in [40] to prove Proposition 6.3. For
brevity, we will denote LN,α by LN in the rest of the section.
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6.1 A resampling framework

We start by setting the resampling domain. We are interested in the behavior of
LN restricted on [−L,L], but we are in need of buffer regions for the curves in LN to
configure themselves. Fix k ∈ N, L ≥ 1. For j ∈ [1, k]Z, let

`j := −(k + 2− j)L, rj := (k + 2− j)L,

and

P := ∪kj=1 {j} × [`j , rj ],

bP :=
(
∪kj=1 {j} × ([`1, `j ] ∪ [rj , r1])

)
∪ {k + 1} × [`1, r1].

(6.1)

We will run resampling arguments on P and bP will be viewed as the boundary of P. In
other words, we will sample LNj on [`i, rj ].

Now we introduce the favorable boundary conditions, which are typical under the
law of LN . Let f = (f1, · · · , fk+1) ∈ C(bP,R) be functions. For R ≥ 1, we refer to the
following conditions as the R-Good conditions. Denote the collection of continuous
functions f ∈ C(bP,R) as G(k, L,R).

1. For all 1 ≤ j ≤ k, fj(t) ≤ R for t ∈ [`1, `j ] ∪ [rj , r1].

2. For all 2 ≤ j ≤ k, fj(t) ≥ R−1 for t ∈ [`1, `j ] ∪ [rj , r1]. fk+1(t) ≥ R−1 for t ∈ [`1, r1].

3. For all 1 ≤ j ≤ k, fj(t) < fj+1(x) for t ∈ [`1, `j ] ∪ [rj , r1].

Fix an element f ∈ G(k, L,R). We denote by Xf ⊂ C(P,R) the collection of continuous
functions J = (J1, . . . ,Jk) with Ji(`i) = fi(`i) and Ji(ri) = fi(ri) for all 1 ≤ i ≤ k. For
any continuous function J ∈ Xf , we may combine J and f to form a continuous function
in [1, k]Z × [`1, r1] as

Jf,i(t) :=

{
Ji(t), t ∈ [`i, ri],

fi(t), t ∈ [`1, `i) ∪ (ri, r1].
(6.2)

We start to set up the resampling argument. We consider line ensembles which
take values in Xf . Let {Qj , 1 ≤ j ≤ k} be independent squared Bessel bridges de-
fined on [`j , rj ] with Qj(`j) = fj(`j) and Qj(rj) = fj(rj). The law of Qj is given by

P
j,j,(`j ,rj),fj(`j),fj(rj)
free . We denote by Pfree the joint law of (Q1,Q2, . . . ,Qk) and view it as a

measure on Xf . Consider the events

NoInt :={Jf,1(t) < Jf,2(t) < · · · < Jf,k(t) < fk+1(t) for t ∈ [`1, r1]},

ÑoInt :={Jf,1(t) < Jf,2(t) < · · · < Jf,k(t) < fk+1(t) for t ∈ [`1,−L] ∪ [L, r1]}.

Denote by P and P̃ the laws of Pfree conditioned on NoInt and ÑoInt respectively. Equiva-
lently, the Radon-Nikodym derivatives of P and P̃ with respect to Pfree are given by

dP

dPfree
(J ) =

1NoInt(J )

Pfree(NoInt)
, (6.3)

dP̃

dPfree
(J ) =

1
ÑoInt

(J )

Pfree(ÑoInt)
. (6.4)

Note that

dP

dP̃
(J ) =

1

Z̃
1{J1(t) < J2(t) < · · · < Jk(t) < fk+1(t) for t ∈ [−L,L]}, (6.5)

for some normalizing constant Z̃. This relation will be used in the proof of Proposition 6.5.
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Remark 6.2. For k = 1, the measure P and P̃ are the same as P1,1,(`1,r1),f1(`1),f1(r1),0,f2

and P1,1,(`1,r1),f1(`1),f1(r1),0,f2
(−L,L) defined in Definition 3.4 respectively.

Consider the event that curves are separated at the endpoints of the interval [−L,L],

E := ∩kj=1

{
Jj(±L) ∈

[
(2j − 2)(2k)−1R−1, (2j − 1)(2k)−1R−1

]}
. (6.6)

Proposition 6.3 below provides a lower bound of P̃(E) and will be proved in Sec-
tion 6.3.

Proposition 6.3. Fix α ≥ 0, k ∈ N, L ≥ 1 and R ≥ 1. There exists a constant δ2 =

δ2(α, k, L,R) > 0 such that the following holds. For any (f1, f2, . . . fk+1) ∈ G(k, L,R), let
P̃ be the probability measure given in (6.4). Then we have

P̃(E) ≥ δ2.

Corollary 6.4. Fix α ≥ 0, k ∈ N, L ≥ 1 and R ≥ 1. There exists a constant δ3 =

δ3(α, k, L,R) > 0 such that the following holds. For any (f1, f2, . . . fk+1) ∈ G(k, L,R), let
P̃ be the probability measure given in (6.4). Then we have

P̃
(
Z1,k,(−L,L),~x,~y,0,fk+1 ≥ δ3

)
≥ δ2.

Here ~x = (Jj(−L))kj=1, ~y = (Jj(L))kj=1 and δ2 = δ2(α, k, L,R) is the small constant in
Proposition 6.3.

Proof. Recall that Z1,k,(−L,L),~x,~y,0,fk+1 (defined in Definition 3.4) is the following non-
intersecting probability

Z1,k,(−L,L),~x,~y,0,fk+1 := E
1,k,(−L,L),~x,~y
free [1{J1 < J2 < · · · < Jk < fk+1 on [−L,L]}] ,

where (J1, . . . ,Jk) are distributed according to P1,k,(−L,L),~x,~y
free .

When E (defined in (6.6)) happens, the boundary values ~x and ~y are separated at
least by (2k)−1R−1. This leads to the observation that if the curves Jj(t) stay close
to their linear interpolation functions on [−L,L], they will stay ordered over the full
interval [−L,L]. This idea has been used in [9]. Define the following event Osc, where
Jj , j = 1, 2, · · · , k do not deviate from their corresponding linear interpolation functions
by (4k)−1R−1,

Osc :=

{
sup

1≤j≤k
sup

t∈[−L,L]

∣∣Jj(t)− 2−1L−1 ((t+ L)Jj(L) + (L− t)Jj(−L))
∣∣ < (4k)−1R−1

}
.

Suppose E and Osc both occur, then (J1,J2, . . . ,Jk, fk+1) remain ordered on [−L,L].
In view of Lemma 2.7, there exists δ3 = δ3(α, k, L,R) > 0 such that for all ~z, ~w ∈ Rk+ with

|zi| ≤ 1 and |wi| ≤ 1, it holds that P1,k,(−L,L),~z,~w
free (Osc) > δ3. This implies that

Z1,k,(−L,L),~x,~y,0,fk+1 · 1E ≥ δ3 · 1E.

In particular, E ⊂
{
Z1,k,(−L,L),~x,~y,0,fk+1 ≥ δ3

}
. The desired result then follows from

Proposition 6.3.

Proposition 6.5. Fix α ≥ 0, k ∈ N, L ≥ 1 and R ≥ 1. There exists a constant δ4 =

δ4(α, k, L,R) > 0 such that the following holds. For any (f1, f2, . . . fk+1) ∈ G(k, L,R), let
P be the probability measure on Xf given in (6.3). Then for all ε ∈ (0, 1], we have

P
(
Z1,k,(−L,L),~x,~y,0,fk+1 ≤ εδ4

)
≤ ε.
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Proof. Let P̃ be the probability measure on Xf given in (6.4) and let X′ be the collection
of functions J ′ = (J ′1, . . . ,J ′k) with J ′i ∈ C([`i,−L] ∪ [L, ri],R). We denote by P′ and P̃′

the marginal law of P and P̃ on X′ respectively.
Recall that the Radon-Nikodym derivatives dP/dP̃ is given in (6.5). This implies

dP′

dP̃′
(J ′) =

1

Z ′
Z1,k,(−L,L),~x,~y,0,fk+1 . (6.7)

Here ~x = (J ′i (−L))ki=1, ~y = (J ′i (L))ki=1 and Z ′ is a normalizing constant. Denote by Ẽ
and Ẽ′ the expectation with respect to P̃ and P̃′ respectively. Then

Z ′ = Ẽ′
[
Z1,k,(−L,L),~x,~y,0,fk+1

]
= Ẽ

[
Z1,k,(−L,L),~x,~y,0,fk+1

]
.

Let δ2 = δ2(α, k, L,R) and δ3 = δ3(k, L,R) be the constants in Proposition 6.3 and
Corollary 6.4. It follows from Corollary 6.4 and Markov’s inequality that Z ′ ≥ δ2δ3.
From (6.7), we have

= P′
(
Z1,k,(−L,L),~x,~y,0,fk+1 ≤ εδ2δ3

)
= Ẽ′

[
1

Z ′
Z1,k,(−L,L),~x,~y,0,fk+1 · 1

{
Z1,k,(−L,L),~x,~y,0,fk+1 ≤ εδ2δ3

}]
≤ εδ2δ3

Z ′
· Ẽ′

[
1
{
Z1,k,(−L,L),~x,~y,0,fk+1 ≤ εδ2δ3

}]
≤ ε.

Picking δ4 = δ2δ3. Thus the assertion follows by noting that

P
(
Z1,k,(−L,L),~x,~y,0,fk+1 ≤ εδ2δ3

)
= P′

(
Z1,k,(−L,L),~x,~y,0,fk+1 ≤ εδ2δ3

)
.

6.2 Proof of Proposition 6.1

Recall that P, bP and G(k, L,R) are defined at the beginning of Section 6.1. Consider
the good boundary event

GBN (k, L,R) :=
{
LN
∣∣
bP ∈ G(k, L,R)

}
.

The following lemma shows that GBN (k, L,R) is a typical event under the law of LN .

Lemma 6.6. Fix α ≥ 0, k ∈ N, L ≥ 1. For any ε > 0, there exists R3 = R3(α, k, L, ε) and
N7 = N7(α, k, L, ε) such that the following holds. For any N ≥ N7, and R ≥ R3 we have

P(GBc
N (k, L,R)) ≤ ε.

Proof. The assertion follows directly from Propositions 5.1 and 5.2.

Now we are ready to prove Proposition 6.1.

Proof of Proposition 6.1. Fix k ∈ N and L ≥ 1. Given ε > 0, let R = R3(α, k, L, 2−1ε)

and N7 = N7(α, k, L, 2−1ε) in Lemma 6.6. We write GB for GBN (k, L,R) to simplify
notation. From Lemma 6.6, for all N ≥ N7, it holds that

P(GBc
N ) ≤ 2−1ε. (6.8)

Let F∗ext be the sigma-field generated by the restriction of LN on [1, N ]Z×[−4N,∞)\P.
Let δ4 = δ4(α, k, L,R) be the constant in Proposition 6.5. Applying the Gibbs property of
LN (see Definition 3.6), we have

E
[
1{Z1,k,(−L,L),~x,~y,+∞,LNk+1 ≤ 2−1εδ4} |F∗ext

]
= P

(
Z1,k,(−L,L),~z,~w,0,fk+1 ≤ 2−1εδ4

)
.

(6.9)
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On the left hand side of (6.9), ~x = (LNj (−L))kj=1 and ~y = (LNj (L))kj=1; on the right hand
side of (6.9), P is defined in (6.3) with f = LN |bP , ~z = (Jj(−L))kj=1, ~w = (Jj(L))kj=1 and
fk+1 = LNk+1

∣∣
[−L,L]

. Applying Proposition 6.5,

1GB · E
[
1{Z1,k,(`,r),~x,~y,0,fk+1 ≤ 2−1εδ4} |F∗ext

]
≤ 2−1ε · 1GB. (6.10)

Combining (6.8) and (6.10), we conclude

P
(
Z1,k,(−L,L),~x,~y,+∞,fk+1 ≤ 2−1εδ4

)
≤E

[
1GB · 1

{
Z1,k,(−L,L),~x,~y,+∞,fk+1 ≤ 2−1εδ4

}]
+ P(GBc) ≤ ε.

The assertion then follows by taking δ1 = 2−1εδ4 and N6 = N7.

6.3 Proof of Proposition 6.3

This section is devoted to proving Proposition 6.3, which shows that the curves are
well separated at ±L. Recall that P̃ is the probability measure on Xf defined in (6.4). We
will adapt a two-step inductive resampling in [40]. The goal is to have the curves stay
in the preferable region. In the first step, we inductively lower curves to the desired
heights. The second step is carried out inductively to raise curves properly in order to
separate them in the desired windows. These two steps are carried out in Lemma 6.7
and Lemma 6.8 respectively.

More precisely, for j ∈ [1, k]Z, denote

Aj :=

{
sup

t∈[`j+1,rj+1]

Jj(t) ≤ (2j − 3/2)(2k)−1R−1

}
.

Also, consider

Fj :=
{
Jj ∈

[
(2j − 2)(2k)−1R−1, (2j − 1)(2k)−1R−1

]
on [`j+1, rj+1]

}
∩
{
Jj ≥ (2j − 2)(2k)−1R−1 on [`j , rj ]

}
.

Lemma 6.7 provides a lower bound of P̃
(
∩kj=1 Aj

)
. Built on Lemma 6.7, Lemma 6.8 gives

a lower bound of P̃
(
∩kj=1 Fj

)
. Proposition 6.3 follows directly as ∩kj=1Fj ⊂ E.

We begin with Lemma 6.7. Recall that given J ∈ C(P,R), we may extend the domain
of J as Jf given in (6.2).

Lemma 6.7. Fix α ≥ 0, k ∈ N, L ≥ 1 and R ≥ 1. There exists a constant δ5 =

δ5(α, k, L,R) > 0 such that the following holds. For any (f1, f2, . . . fk+1) ∈ G(k, L,R), let
P̃ be the probability measure given in (6.4). Then we have

P̃
(
∩kj=1Aj

)
≥ δ5.

Proof. For notational ease, we use δ to denote positive constants that depend only on α,
k, L and R. The exact value of δ may change from line to line.

We start with the case k = 1, i.e., showing the lower bound for P̃(A1). Let Ẽ be the
expectation of P̃. From the Gibbs property and Remark 6.2,

Ẽ[1A1
| Fext({1} × (`1, r1))] = P

1,1,(`1,r1),f1(`1),f1(r1),0,Jf,2
(−L,L) (A1)

with Jf,2 defined in (6.2). Note that equivalently we have

P
1,1,(`1,r1),f1(`1),f1(r1),0,Jf,2
(−L,L) = P1,1,(`1,r1),f1(`1),f1(r1),0,g2
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with

g2(x) :=

{
Jf,2(x) x ∈ [`1,−L] ∪ [L, r1],

+∞ x ∈ (−L,L).

Note that g2 satisfies the continuity assumption in Definition 3.3. This implies that the
stochastic monotonicity, Proposition 4.1, applies. Therefore,

P1,1,(`1,r1),f1(`1),f1(r1),0,g2(A1) ≥ P1,1,(`1,r1),f1(`1),f1(r1),0,+∞(A1)

=P
1,1,(`1,r1),f1(`1),f1(r1)
free (A1) .

Let

a1 := inf
{
P

1,1,(`1,r1),x,y
free (A1)

∣∣∣ |x| ≤ R, |y| ≤ R} .
From Lemma 2.7, a1 is positive and depends only on α, k, L and R. As a result, it holds
that

P̃(A1) = Ẽ
[
Ẽ[1A1

| Fext({1} × (`1, r1))]
]
≥ P1,1,(`1,r1),f1(`1),f1(r1)

free (A1) ≥ δ.

This proves the desired result for k = 1.
Now we proceed by induction. Assume for some 2 ≤ j ≤ k, there exists δ > 0 such that

P̃
(
∩j−1
i=1Ai

)
≥ δ. We aim to show that for a smaller δ > 0, it holds that P̃

(
∩ji=1Ai

)
≥ δ.

By the Gibbs property and Remark 6.2,

Ẽ[1Aj | Fext({j} × (`j , rj))] = P
j,j,(`j ,rj),fj(`j),fj(rj),Jj−1,Jf,j+1

(−L,L) (Aj),

with Jf,j+1 defined in (6.2) and we adopt the convention that Jf,k+1 = fk+1. Note that

P
j,j,(`j ,rj),fj(`j),fj(rj),Jj−1,Jf,j+1

(−L,L) = Pj,j,(`j ,rj),fj(`j),fj(rj),gj−1,gj+1

with

gj−1(x) :=

{
Jj−1(x) x ∈ [`j ,−L] ∪ [L, rj ],

0 x ∈ (−L,L),

and

gj+1(x) :=

{
Jf,j+1(x) x ∈ [`j ,−L] ∪ [L, rj ],

+∞ x ∈ (−L,L).

We deduce that

Ẽ[1Aj | Fext({j} × (`j , rj))] = Pj,j,(`j ,rj),fj(`j),fj(rj),gj−1,gj+1(Aj)

≥ Pj,j,(`j ,rj),fj(`j),fj(rj),gj−1,+∞(Aj)

=
1

Z
E
j,j,(`j ,rj),fj(`j),fj(rj)
free

[
1Aj · 1{gj−1 < Jj on [`j , rj ]}

]
.

≥ Ej,j,(`j ,rj),fj(`j),fj(rj)free

[
1Aj · 1{gj−1 < Jj on [`j , rj ]}

]
.

Here the in the second equality we use Z to abbreviate

E
j,j,(`j ,rj),fj(`j),fj(rj)
free [1{gj−1 < Jj on [`j , rj ]}] .

In the first inequality we apply stochastic monotonicity and in the second inequality we
use the fact that the normalizing constant is bounded above by 1.
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Now we proceed to find a lower bound for

1Aj−1 · E
j,j,(`j ,rj),fj(`j),fj(rj)
free

[
1Aj · 1{gj−1 < Jj on [`j , rj ]}

]
.

Consider the event

Dj :=
{

sup
t∈[`j+1,rj+1]

Jj(t) ≤ (2j − 3/2)(2k)−1R−1
}
∩
{

inf
t∈[`j ,rj ]

Jj(t) ≥ (2j − 2)(2k)−1R−1
}
.

It is straightforward to check that Dj ⊂ Aj . As Dj and Aj−1 occur, Jj−1 < Jj over [`j , rj ].
Hence

1Aj · 1{gj−1 < Jj on [`j , rj ]} ≥ 1Dj · 1Aj−1 .

Consequently,

1Aj−1
· Ẽ[1Aj | Fext({j} × (`j , rj))]

≥1Aj−1E
j,j,(`j ,rj),fj(`j),fj(rj)
free

[
1Aj · 1{gj−1 < Jj on (`j , rj)}

]
≥1Aj−1P

j,j,(`j ,rj),fj(`j),fj(rj)
free (Dj).

Let

aj := inf
{
P
j,j,(`j ,rj),x,y
free (Dj) |R−1 ≤ |x|, |y| ≤ R

}
.

From Lemma 2.7, aj is positive and depends only on α, k, L,R. Together with the
induction hypothesis, we deduce

P̃
(
∩ji=1 Ai

)
=Ẽ

[ j−1∏
i=1

1Ai · Ẽ[1Aj | Fext({j} × (`j , rj))]

]
≥ aj · P̃

(
∩j−1
i=1 Ai

)
≥ δ.

This completes the induction argument and hence proves the desired result.

We proceed to prove Lemma 6.8. For j ∈ [1, k]Z, recall that

Fj :=
{
Jj ∈

[
(2j − 2)(2k)−1R−1, (2j − 1)(2k)−1R−1

]
on [`j+1, rj+1]

}
∩
{
Jj ≥ (2j − 2)(2k)−1R−1 on [`j , rj ]

}
.

The condition Jj ∈ [(2j − 2)(2k)−1R−1, (2j − 1)(2k)−1R−1] is what we want to achieve
while the other one is necessary along the induction argument we perform.

Lemma 6.8. Fix α ≥ 0, k ∈ N, L ≥ 1 and R ≥ 1. There exist a constant δ6 =

δ6(α, k, L,R) > 0 such that the following holds. For any (f1, f2, . . . fk+1) ∈ G(k, L,R),
let P̃ be the probability measure given in (6.4). Then we have

P̃
(
∩kj=1Fj

)
≥ δ6.

Proof. To simplify the notation, we use δ to denote positive constants that depend only
on α, k, L and R. The exact value of δ may change from line to line.

We run a resampling in a reversed order starting from the kth-layer and argue
inductively. We start by showing a lower bound for P̃

(
∩k−1
j=1 Aj ∩ Fk

)
.

Let [lk, rk] be a {k}-stopping domain such that

lk := sup
{
t0 ∈ [`k, `k+1] | Jk(t) > (2k − 3/2)(2k)−1R−1 for all t ∈ [`k, t0]

}
,

rk := inf
{
t0 ∈ [rk+1, rk] | Jk(t) > (2k − 3/2)(2k)−1R−1 for all t ∈ [t0, rk]

}
.

We set lk = `k or rk = rk if the set is empty respectively.
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Consider the event

F′k :=
{
Jk(lk) = Jk(rk) = (2k − 3/2)(2k)−1R−1

}
.

Because f ∈ G(k, L,R), Jk(`k),Jk(rk) ≥ R−1. This implies Ak ⊂ F′k. In view of
Lemma 6.7,

P̃
(
∩k−1
j=1Aj ∩ F′k

)
≥ δ.

We would like to have Jk stay in the preferable region

[(2k − 2)(2k)−1R−1, (2k − 1)(2k)−1R−1]

over [lk, rk]. Let

F′′k := {Jk ∈ [(2k − 2)(2k)−1R−1, (2k − 1)(2k)−1R−1] on [lk, rk]}.

Note that the occurrence of Ak−1 ∩ F′′k implies Jk−1 and Jk are ordered. In other words,
Ak−1 ∩ F′′k ⊂ {Jk−1 < Jk < fk+1 on [lk, rk]}. Hence

1{Jk−1 < Jk < fk+1 on [lk, rk]} ≥ 1Ak−1
· 1F′′k .

It follows that

1Ak−1
· 1F′k · Ẽ[1F′′k | Fext({k} × (lk, rk))]

= 1Ak−1
· 1F′k · P

k,k,(lk,rk),x,y,Jk−1,fk+1

(−L,L) (F′′k)

≥ 1Ak−1
· 1F′k · E

k,k,(lk,rk),x,y
free

[
1F′′k · 1{Jk−1 < Jk < fk+1 on [lk, rk]}

]
≥ 1Ak−1

· 1F′k · P
k,k,(lk,rk),x,y
free (F′′k).

Here x = y = (2k − 3/2)(2k)−1R−1. Take

bk := inf
`,r

{
P
k,k,(`,r),x,y
free

(
Jk ∈ [(2k − 2)(2k)−1R−1, (2k − 1)(2k)−1R−1]

)}
.

The infimum is taken over all ` ∈ [`k, `k+1] and r ∈ [rk+1, rk]. This implies

1Ak−1
· 1F′k · Ẽ[1F′′k | Fext({k} × (lk, rk))] ≥ bk1Ak−1

· 1F′k .

Together with ∩k−1
j=1Aj ∩ F′k ∩ F′′k ⊂ ∩

k−1
j=1Aj ∩ Fk, we deduce

P̃
(
∩k−1
j=1Aj ∩ Fk

)
≥P̃

(
∩k−1
j=1Aj ∩ F′k ∩ F′′k

)
= Ẽ

[ k−1∏
j=1

1Aj · 1F′k · Ẽ[1F′′k | Fext({k} × (lk, rk))]

]
≥bk · P̃

(
∩k−1
j=1Aj ∩ F′k

)
> δ.

In the last inequality, we used Lemma 2.7 to obtain the positivity of bk.
We next proceed by a reversed induction. Assume for some 1 ≤ i ≤ k − 1, we have

P̃
(
∩ij=1Aj ∩ ∩kj=i+1Fj

)
≥ δ.

We aim to show that for a smaller δ > 0, it holds that

P̃
(
∩i−1
j=1Aj ∩ ∩

k
j=iFj

)
≥ δ.

Here we adopt the convention that ∩0
j=1Aj means the total probability space.
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Let [li, ri] be a {i}-stopping domain such that

li := sup
{
t0 ∈ [`i, `i+1] | Ji(t) > (2i− 3/2)(2k)−1R−1 for all t ∈ [`i, x0]

}
,

ri := inf
{
t0 ∈ [ri+1, ri] | Ji(t) > (2i− 3/2)(2k)−1 ·R−1 for all t ∈ [t0, ri]

}
.

We set lk = `i or ri = ri if the set is empty respectively. Consider the event

F′i :=
{
Ji(li) = Ji(ri) = (2i− 3/2)(2k)−1R−1

}
.

Because f ∈ G(k, L,R), Ji(`i),Ji(ri) ≥ R−1. This implies Ai ⊂ F′i.
We would like to have Ji stay in the preferable region [(2i − 2)(2k)−1R−1, (2i −

1)(2k)−1R−1] over [li, ri]. Let

F′′i :=
{
Ji ∈ [(2i− 2)(2k)−1R−1, (2i− 1)(2k)−1R−1] on [li, ri]

}
.

Recall that Jf,i+1 is defined in (6.2). Note that the occurrence of Ai−1 ∩ F′′i ∩ Fi+1 implies
ordering between Ji−1, Ji and Jf,i+1, i.e. Ai−1∩F′′i ∩Fi+1 ⊂ {Ji−1 < Ji < Jf,i+1 in [li, ri]}.
Hence

1{Ji−1 < Ji < Jf,i+1 on [li, ri]} ≥ 1Ai−1 · 1F′′i .

As a result,

1Ai−1
· 1F′i · 1Fi+1

· Ẽ[1F′′i | Fext({i} × (li, ri))]

= 1Ai−1
· 1F′i · 1Fi+1

· Pi,i,(li,ri),x,y,Ji−1,Jf,i+1

(−L,L) (F′′i )

≥ 1Ai−1
· 1F′i · 1Fi+1

· Ei,i,(li,ri),x,yfree

[
1F′′i · 1{Ji−1 < Ji < Jf,i+1 in [li, ri]}

]
≥ 1Ai−1

· 1F′i · 1Fi+1
· Pi,i,(li,ri),x,yfree (F′′i ).

Here x = y = (2i− 3/2)(2k)−1R−1. Let

bi := inf
`,r

{
P
i,i,(`,r),x,y
free

(
Ji ∈ [(2i− 2)(2k)−1R−1, (2i− 1)(2k)−1R−1]

)}
.

The infimum is taken over all ` ∈ [`i, `i+1] and r ∈ [ri+1, ri]. Then we have

1Ai−1
· 1F′i · 1Fi+1

· Ẽ[1F′′i | Fext({i} × (li, ri))] ≥ bi1Ai−1
· 1F′i · 1Fi+1

.

Together with F′i ∩ F′′i ⊂ Fi, we have

P̃
(
∩i−1
j=1Aj ∩ ∩

k
j=iFj

)
≥P̃

(
∩i−1
j=1Aj ∩ ∩

k
j=i+1Fj ∩ F′i ∩ F′′i

)
=Ẽ

[ i−1∏
j=1

1Aj ·
k∏

j=i+1

1Fj · 1F′i · Ẽ[1F′′i | Fext({i} × (li, ri))]

]
≥bi · P̃

(
∩i−1
j=1Aj ∩ ∩

k
j=i+1Fj ∩ F′i

)
≥bi · P̃

(
∩ij=1Aj ∩ ∩kj=i+1Fj

)
≥ δ.

In the second to last inequality, we used Ai ⊂ F′i. In the last inequality, we used the
induction hypothesis and Lemma 2.7. The induction argument is finished and this finishes
the argument.

7 Proof of the main theorem

In this section we present the proof of our main theorem, Theorem 1.1. That is, we
show that the scaled line ensembles LN,α defined in (1.3) is tight as N varies. Moreover,
any subsequential limit also enjoys the squared Bessel Gibbs property.
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For the tightness of LN,α in the locally uniform topology, we use a criterion from [3,
Theorem 7.3]. Similar to the Arzelà–Ascoli theorem, one needs to check the one-point
tightness (as real-valued random variables) and control the modulus of continuity. See
Lemma 7.1 for more details. For us, one-point tightness follows from Theorem 5.3
and we focus on the modulus of continuity. The idea is to use the squared α-Bessel
Gibbs property, together with the lower bound on the random normalizing constants
in Proposition 6.1, to show that LN,α locally behave like independent squared α-Bessel
bridges, whose modulus of continuity is controlled by Lemma 2.5.

To show any subsequential limit has the Bessel Gibbs property, we adopt the frame-
work introduced in [9]. Let us briefly explain the main idea. Let (a, b) ⊂ R, x, y ∈ [0,∞)

and f(t), g(t) be two continuous functions defined on [a, b]. We assume f(t) < g(t),
f(a) < x < g(a) and f(b) < y < g(b). Let Q∗(t) be a squared α-Bessel bridge on [a, b]

which has entrance and exit values x and y, and is conditioned not to intersect with f(t)

and g(t). A natural way to sample Q∗(t) is to consider countable independent squared
α-Bessel bridges Q1(t),Q2(t), . . . with the same entrance and exit value. Let ` be the
(random) minimum integer that f(t) < Q`(t) < g(t). Then Q`(t) has the same distribution
as Q∗(t). Compared to Q∗(t), Q`(t) is more tractable when the boundary data (x, y, f, g)

change. This point of view allows us to prove the limiting squared α-Bessel Gibbs
property. Once again, we will denote LN,α by LN in the rest of the section.

7.1 Proof of tightness

The argument relies on a tightness criterion for continuous random functions. Fix
k ∈ N and [a, b] ⊂ R. Recall that the modulus of continuity of multiple functions is
defined in (1.9). Define the set

U[a,b],k

(
ρ, r
)

:=
{
J ∈ C([1, k]Z × [a, b],R)

∣∣ω[a,b],k

(
J , r

)
≤ ρ
}
.

The following tightness criterion is an immediate generalization of [3, Theorem 7.3].

Lemma 7.1. A sequence PN of probability measures on C([1, k]Z × [a, b],R) is tight if
the following two conditions are met.

(i) There exists t0 ∈ [a, b] such that the one-point distribution of Ji(t0) is tight for all
i ∈ [1, k]Z

(ii) For each ρ > 0 and η > 0, there exist r0 > 0 and an integer N0 such that for all
N ≥ N0, it holds that

PN
(
U[a,b],k(ρ, r0)

)
≥ 1− η.

We apply this tightness criterion to LN . More precisely, we seek to prove that for
any k ∈ N and L ≥ 1, the restriction of LN to [1, k]Z × [−L,L] (i.e. {LNi (t)|1 ≤ i ≤ k, t ∈
[−L,L]}) is tight as N varies. One-point tightness follows from Theorem 5.3, hence (i)
holds. It remains to control the modulus of continuity, i.e. to verify (ii).

Starting from now, we fix k ∈ N and L ≥ 1. Write PN for the law of LN and denote
event

UN (ρ, r) :=
{
LN
∣∣
[1,k]Z×[−L,L]

∈ U[−L,L],k(ρ, r)
}
.

We aim to verify that, for all ρ, η > 0, there exist r0 and N0 such that for N ≥ N0, it holds
that

PN
(
UN (ρ, r0)

)
≥ 1− η. (7.1)

For R > 0, we define the event

SN (R) = ∩ki=1

{
LNi (±L) ∈ [0, R]

}
.
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Let ZN be the shorthand of the normalizing constant Z1,k,(−L,L),~x,~y,0,g, with xi = LNi (−L),
yi = LNi (L) and g = LNk+1

∣∣
[−L,L]

. See Definition 3.4 for the definition of Z1,k,(−L,L),~x,~y,0,g.

Lemma 7.2. Fix α ≥ 0, k ∈ N and ρ, η, δ, R, L > 0. There exists r0 depending on
α, k, ρ, η, δ, R and L such that

1{ZN ≥ δ} ·1SN (R) ·EN
[
1UN (ρ,r0)

∣∣Fext ([1, k]Z × (−L,L))
]
≥ (1−η/2) ·1{ZN ≥ δ} ·1SN (R).

Proof. The proof is a combination of Lemma 2.5 and the Gibbs property Proposition 3.7.
Let ~x, ~y ∈ Rk be vectors with xi, yi ∈ [0, R]. Lemma 2.5 implies for r0 small enough, it
holds that

P
1,k,(−L,L),~x,~y
free (UN (ρ, r0)) ≥ 1− δη/2.

The Radon-Nikodym relation in (3.2) then implies

1{ZN ≥ δ} ·1SN (R) ·EN
[
1−1UN (ρ,r0)

∣∣Fext ([1, k]Z × (−L,L))
]
≤ 2−1η ·1{ZN ≥ δ} ·1SN (R).

The desired result then follows.

Proof of Theorem 1.1(i). To prove (7.1), it is enough to verify the following statement.
For any ρ, η > 0, there exists δ,R, r0 > 0 and N0 such that for all N ≥ N0, we have

PN

(
UN (ρ, r0) ∩ {ZN ≥ δ} ∩ SN (R)

)
> 1− η. (7.2)

Observe that the events {ZN ≥ δ} and SN (R) are Fext([1, k]Z × (−L,L))-measurable.
We can rewrite the left-hand side of (7.2) as

EN

[
1{ZN ≥ δ} · 1SN (R) · EN

[
1UN (ρ,r0)

∣∣Fext ([1, k]Z × (−L,L))
]]
. (7.3)

By choosing r0 to be the constant in Lemma 7.2. From Lemma 7.2,

(7.3) ≥ (1− η/2)PN [{ZN ≥ δ} ∩ SN (R)].

Let δ = δ1(α, k, L, η/4) and N6 = N6(α, k, L, η/4) be the constants in Proposition 6.1.
By Proposition 6.1, for N ≥ N6, it holds that PN ({ZN < δ}) ≤ η/4. Let R = R1(α, η/4, k,

2L) and N1 = N1(α, η/4, k, L) be the constants in Proposition 5.1. Proposition 5.1 implies
that for N ≥ N1, PN (SN (R)) ≥ 1− η/4. This implies that

PN ({ZN ≥ δ} ∩ SN (R)) ≥ 1− η/2. (7.4)

We conclude that
(7.3) ≥ (1− η/2)2 > 1− η,

which completes the proof of the inequality in (7.2). The desired tightness then follows.

7.2 Proof of limiting squared Bessel Gibbs property

In this section we seek to prove Theorem 1.1(ii), i.e., any subsequential limit of LN
enjoys the squared α-Bessel Gibbs property. Suppose L∞ is a subsequential limit of
LN . We abuse the notation and assume that LN converges weakly to L∞. We start by
showing that L∞ is strictly ordered with probability 1.

Lemma 7.3. Fix α ≥ 0, k ∈ N and L > 0. For any ε > 0, there exists ρ = ρ(α, k, L, ε) > 0

such that

P

(
inf

t∈[−L,L]
(L∞k+1(t)− L∞k (t)) < ρ

)
≤ ε.

EJP 28 (2023), paper 77.
Page 34/50

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP963
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The Bessel line ensemble

Proof. Fix ε > 0. Let R1 = R1(α, 8−1ε, k + 1, 2L) be given in Proposition 5.1 and r2 =

r2(α, 8−1ε) be given in Lemma 5.8. Set R := max(R1, r
−1
2 ) and

SN := ∩k+1
i=1

{
LNk+1(±L) ∈ [R−1, R]

}
.

Denote by PN the law of LN . From Proposition 5.1 and Lemma 5.8, we have PN (SN ) ≥
1− 2−1ε for N large enough.

Let ZN be the shorthand of the normalizing constant Z1,k+1,(−L,L),~x,~y,0,g, with xi =

LNi (−L), yi = LNi (L) and g = LNk+2

∣∣
[−L,L]

. Let δ1 = δ1(α, k + 1, L, 4−1ε) > 0 be the

constant given in Proposition 6.1. From Proposition 6.1, we have P(ZN < δ1) ≤ 4−1ε for
N large enough.

Set η = 4−1δ−1
1 ε and ρ = ρ(α,R, η, 2L) be the constant given in Lemma 2.6. Denote

EN :=

{
inf

t∈[−L,L]
(LNk+1(t)− LNk (t)) ∈ (−ρ, ρ)

}
.

We compute

PN (SN ∩ {ZN ≥ δ1} ∩ EN ) = EN [1SN · 1{ZN ≥ δ1}EN [1EN | Fext([1, k + 1]Z × (−L,L))]] .

From the Gibbs property, we have

EN [1EN | Fext([1, k + 1]Z × (−L,L))] =P1,k+1,(−L,L),~x,~y,0,g(EN )

≤Z−1
N P

1,k+1,(−L,L),~x,~y
free (EN ).

Here xi = LNi (−L), yi = LNi (L) and g = LNk+2

∣∣
[−L,L]

. From Lemma 2.6, we have

1SN · 1{ZN ≥ δ1} · Z−1
N P

1,k+1,(−L,L),~x,~y
free (EN ) ≤ δ−1

1 η = 4−1ε.

Therefore,

PN (SN ∩ {ZN ≥ δ1} ∩ EN ) ≤ 4−1ε.

Combining the above, we conclude that for N large enough,

PN (EN ) ≤ PN (SN ∩ {ZN ≥ δ1} ∩ EN ) + P((SN )c) + PN (ZN < δ1) ≤ ε.

Then the conclusion follows by taking N to infinity.

Fix an index i ∈ N and an interval (a, b) ∈ R. We will show that the law of L∞
is unchanged when one resamples the trajectory of L∞i between (a, b) according to a
squared Bessel bridge which avoids L∞i−1 and L∞i+1. Note that this is equivalent to the
squared Bessel Gibbs property for the i-th curve restricted to the interval (a, b). The
same argument could be easily generalized to take care of multiple curves resampling
so we choose to illustrate the argument with the single curve resampling. See Figure 1
for an illustration.

Note that C(N×R,R) (with the topology given at the end of Section 1) is separable
due to the Stone–Weierstrass theorem. Hence the Skorohod representation theorem [3,
Theorem 6.7] applies. There exists a probability space (Ω,B,P) on which LN for N ∈
N ∪ {∞} are defined and almost surely LN (ω)→ L∞(ω) in the topology of C(N×R,R).

Now we take countable, independent copies of the squared Bessel bridges constructed
in Proposition 2.4. That is, for all ` ∈ N, we have squared Bessel bridges Q`(x, y)(t)

defined on [a, b] with entrance and exit data (x, y). We note that because Q`(x, y)(t)
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LN,re LN

L∞,re L∞

(d)

(1)

a.s.(2)′ a.s.(2)

(d)

(1)′

Figure 1: (1) is equivalent to the squared Bessel Gibbs property when resampling a
single curve. The goal is to prove (1)’, which implies the squared Bessel Gibbs property
for the subsequential limit line ensemble. (1)’ follows from the convergence in (2) and
(2)’. (2) follows from the Skorohod representation theorem and (2)’ is proved in Lemma
7.4.

depends continuously on x, y, it is also measurable in x, y. We define the `-th candidate
of the resampling trajectory. For N ∈ N ∪ {∞}, define

LN,`i (t) :=

{
Q`(LNi (a),LNi (b))(t), t ∈ [a, b],

LNi (t), t ∈ (−∞, a) ∪ (b,∞).

For N ∈ N ∪ {∞}, we accept the candidate resampling LN,`i if it does not intersect
LNi−1 or LNi+1 on [a, b]. For N ∈ N ∪ {∞}, define `(N) to be the minimum value of ` of

which we accept LN,`i . That is,

`(N) := inf{` ∈ N | LNi−1 < L
N,`
i < LNi+1 on [a, b]}.

Write LN,re for the line ensemble with the i-th curve replaced by LN,`(N)
i . The line

ensemble LN,re satisfies the squared Bessel Gibbs property on {i} × [a, b].
From Lemma 7.3, {L∞i−1 < L∞i < L∞i+1} holds almost surely. Hence almost surely `(∞)

is finite. Suppose that `(N) converges to `(∞) almost surely. Then LN,re converges to
L∞,re in C(N×R,R) almost surely. Hence we have LN,re converges weakly to L∞,re as
N×R-indexed line ensembles. See Definition 3.2 As a consequence, L∞,re has the same
distribution as L∞.

Lemma 7.4. Almost surely `(N) converges to `(∞).

Proof. Let H be the event such that the following conditions hold

1. `(∞) <∞

2. inft∈[a,b] L∞,`i (t)− L∞i−1(t) 6= 0 for all ` ∈ N

3. inft∈[a,b] L∞i+1(t)− L∞,`i (t) 6= 0 for all ` ∈ N

4. LN converges to L∞ in C(N×R,R).

From the above discussion, conditions (1) and (4) hold with probability 1. Condition (2)
requires a squared Bessel bridge not to be “tangent” to L∞i−1. From Lemma 2.2 and the
independence between Q`(x, y) and L∞, (2) holds with probability 1. The same argument
holds for (3). In short, H defined above has probability 1.

We will show that when H occurs, `(N) converges to `(∞). From now on we fix ω ∈ H
and the constants below may depend on ω. By the definition of `(∞), for all t ∈ [a, b],

L∞i−1(t) < L∞,`(∞)
i (t) < L∞i+1(t).
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Because of (2.10) and the convergence of (LNi (a),LNi (b)) to (L∞i (a),L∞i (b)), LN,`(∞)
i

converges to L∞,`(∞)
i uniformly on [a, b]. Together with the fact that LNi±1 converges to

L∞i±1 uniformly on [a, b], we have for N large enough, LNi−1(t) < LN,`(∞)
i (t) < LNi+1(t) for

all t ∈ [a, b]. Therefore,

lim sup
N→∞

`(N) ≤ `(∞).

On the other hand, for all 1 ≤ ` < `(∞), we have either inft∈[a,b] L∞,`i (t)− L∞i−1(t) < 0

or inft∈[a,b] L∞i+1(t) − L∞,`i (t) < 0. We assume that inft∈[a,b] L∞,`i (t) − L∞i−1(t) < 0 occurs.
Then for N large enough, we have

inf
t∈[a,b]

LN,`i (t)− LNi−1(t) < 0

As a consequence,

lim inf
N→∞

`(N) ≥ `(∞).

Hence `(N) converges to `(∞) and the proof is finished.

A Results about (squared) Bessel Processes

In this section we record some basic properties of the transition probability of
(squared) Bessel processes. These results serve as inputs for the stochastic monotoncity
Proposition 4.1 and uniform lower bounds in Section 5.

A.1 Squared Bessel Process

Let Iα(z) be the modified Bessel function with index α. It solves the modified Bessel
equation [1, (9.6.1)]

z2I ′′α(z) + zI ′α(z)− (z2 + α2)Iα(z) = 0. (A.1)

Recall that hα(z) := z−αIα(z). From (A.1), hα(z) solves the equation

zh′′α(z) + (2α+ 1)h′α(z)− zhα(z) = 0. (A.2)

Lemma A.1. Fix α ≥ 0. For any z ≥ 0, it holds that

h′′α(z)

hα(z)
+ z−1h

′
α(z)

hα(z)
−
(
h′α(z)

hα(z)

)2

> 0. (A.3)

Remark A.2. In terms of the modified Bessel function, when z > 0, (A.3) is equivalent to

1 +
α2

z2
−
(
I ′α(z)

Iα(z)

)2

> 0. (A.4)

(A.4) was proved for α > 0 and z > 0 by Gronwall in [21] motivated by a problem in
wave mechanics.

Proof. Let Hα(z) := z−1h′α(z)/hα(z). By (A.2), (A.3) is equivalent to

−z2H2
α(z)− 2αHα(z) + 1 > 0.

Note that −z2u2 − 2αu + 1 = 0 has a positive solution u = Gα(z) := 1
α+
√
α2+z2

and a

negative solution. In view of (2.4), Hα(z) > 0 for all z ≥ 0. Therefore, it suffices to show
that Hα(z) < Gα(z). From (A.2), we derive

zH ′α(z) + z2H2
α(z) + 2(α+ 1)Hα(z)− 1 = 0.
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Through a direct calculation,

zG′α(z) + z2G2
α(z) + 2(α+ 1)Gα(z)− 1 =

1√
z2 + α2

> 0.

If α > 0, then Hα(0) = 1/(2α+ 2) < 1/(2α) = G(0). Through ODE comparison, Hα(z) <

G(z) for all z ≥ 0. When α = 0, the argument is similar using limz→0+ G0(z) = ∞. The
proof is finished.

Corollary A.3. Fix α ≥ 0. For any t > 0 and x, y ≥ 0, it holds that

∂2

∂x∂y
log qt(x, y) > 0. (A.5)

Proof. By the scaling property (2.3), it suffices to consider the case t = 1. By a direct
computation,

4
∂2

∂x∂y
log q1(x, y) =

h′′α(z)

hα(z)
+ z−1h

′
α(z)

hα(z)
−
(
h′α(z)

hα(z)

)2

, (A.6)

where z =
√
xy. Then (A.5) follows Lemma A.1.

Corollary A.4. Fix α ≥ 0. For any L > 0, there exists a constant C = C(α,L) > 0 such
that the following statement holds. For any x2 ≥ x1 ≥ 0, y2 ≥ y1 ≥ 0 and t > 0 that
satisfy x2y2 ≤ Lt2, we have

det
(
qt(xi, yj)

)
1≤i,j≤2

≥ C−1t−2qt(x1, y2)qt(x2, y1)(x2 − x1)(y2 − y1),

det
(
qt(xi, yj)

)
1≤i,j≤2

≤ Ct−2qt(x1, y2)qt(x2, y1)(x2 − x1)(y2 − y1).

Proof. As both hands of the above inequalities are continuous, it is sufficient to consider
the case x2 > x1 > 0 and y2 > y1 > 0. Moreover, we may assume t = 1 due to the scaling
invariance (2.3).

Note that

det
(
q1(xi, yj)

)
q1(x1, y2)q1(x2, y1)

=
q1(x1, y1)q1(x2, y2)

q1(x1, y2)q1(x2, y1)
− 1.

It suffices to show that

1

(x2 − x1)(y2 − y1)

(
q1(x1, y1)q1(x2, y2)

q1(x1, y2)q1(x2, y1)
− 1

)
(A.7)

is uniformly bounded from above and from below for x1, x2, y1, y2 as in the statement.
Since

log

(
q1(x1, y1)q1(x2, y2)

q1(x1, y2)q1(x2, y1)

)
= log q1(x1, y1) + log q1(x2, y2)− log q1(x1, y2)− log q1(x2, y1)

is a double difference term. Apply twice the mean value theorem and (A.6), we have

4

(x2 − x1)(y2 − y1)
log

(
q1(x1, y1)q1(x2, y2)

q1(x1, y2)q1(x2, y1)

)
=
h′′α(z)

hα(z)
+ z−1h

′
α(z)

hα(z)
−
(
h′α(z)

hα(z)

)2

.

Here z =
√
uv for some u ∈ (x1, x2) and v ∈ (y1, y2). Under the assumption x2y2 ≤ L,

0 ≤ z ≤ L. From (A.3), the above is bounded from above by C and from below by C−1

for some C depending only on L. This implies

exp(C−1(x2 − x1)(y2 − y1)) ≤ q1(x1, y1)q1(x2, y2)

q1(x1, y2)q1(x2, y1)
≤ exp(C(x2 − x1)(y2 − y1)) (A.8)

Notice that 0 ≤ (x2 − x1)(y2 − y1) ≤ x2y2 ≤ L. Subtracting 1 in (A.8) and dividing both
sides by (x2 − x1)(y2 − y1), then the desired assertion (A.7) follows from the mean value
theorem.
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Lemma A.5. Fix α ≥ 0. For any L > 0, there exists a constant C = C(α,L) such that the
following statement holds. Given τ, T > 0, x2 ≥ x1 > 0, y2 > y1 > 0 and z∗ > 0. Assume
that

x2z∗ ≤ Lτ2, y2z∗ ≤ LT 2 and that x2y2 ≤ L(τ + T )2.

Let ~x = (x1, x2) and ~y = (y1, y2). Let (J1(t),J2(t)) be distributed according to

P1,2,−τ,T,~x,~y,0,∞.

Then the joint density of (J1(0),J2(0)) = (z1, z2) is bounded from below by

C−1
(
τ−1 + T−1

)2 qτ (x1, z2)qτ (x2, z1)qT (z1, y2)qT (z2, y1)

qτ+T (x1, y2)qτ+T (x2, y1)
· (z2 − z1)2 · 1(0 < z1 < z2 ≤ z∗).

Proof. Through taking limits, it is enough to consider the case x2 > x1 > 0 and y2 > y1 >

0. By the Karlin-McGregor formula [26], the joint density of (J1(0),J2(0)) = (z1, z2) is
given by

det(qτ (xi, zj))1≤i,j≤2 det(qT (zi, yj))1≤i,j≤2

det(qτ+T (xi, yj))1≤i,j≤2
· 1(0 < z1 < z2).

When z2 ≤ z∗, we have x2z2 ≤ Lτ2 and y2z2 ≤ LT 2. Then the assertion follows by
applying Corollary A.4 three times for the three determinant terms respectively.

A.2 Bessel Process

We consider in this section pt(x, y), the transition probability of Bessel processes.
See (2.7) for its explicit form. From (A.5), we have

∂2

∂x∂y
log pt(x, y) ≥ 0. (A.9)

Lemma A.6. For any x ∈ [0,∞), p1(x, y) is strictly log-concave in y ∈ (0,∞).

Proof. For x = 0, the strict log-concavity follows directly from (2.7). For x > 0, from (2.7),
it suffices to show the strict log-concavity of z2α+1hα(z) for z ∈ (0,∞). This is proved in
[30, Theorem 4] and we present the argument below here for the reader’s convenience.
Using hα(z) = z−αIα(z), we compute

z2h2
α ·
(

log(z2α+1hα)
)′′

= −(2α+ 1)h2
α + z2hαh

′′
α − z2(h′α)2.

From (2.4), we can check that h′α(z) = zhα+1(z). Then the above equals

z2h2
α ·
(

log(z2α+1hα)
)′′

= −(2α+ 1)h2
α + z2hαhα+1 + z4hαhα+2 − z4h2

α+1.

Combining (2.4) and the Chu–Vandermonde identity [28, page 45], we have for any
α, β ≥ 0, hα(z)hβ(z) =

∑∞
n=0 cα,β,nz

2n with

cα,β,n =
2−α−β−2nΓ(2n+ α+ β + 1)

n!Γ(n+ α+ β + 1)Γ(n+ α+ 1)Γ(n+ β + 1)
.

A straightforward calculation shows that

z2hα
(

log(z2α+1hα)
)′′

= −(2α+ 1)cα,α,0 − (2α+ 1)

∞∑
n=1

n+ 2α− 1

2n+ 2α− 1
· cα,α,nz2n.

Because the coefficients in the above expansion are negative, the assertion follows.

EJP 28 (2023), paper 77.
Page 39/50

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP963
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The Bessel line ensemble

Corollary A.7. For any x ∈ [0,∞), there exists a unique maximum point y∗(x) of p1(x, ·).
limx→∞ |y∗(x)−x| = 0. y∗(x) is a smooth function in x. Moreover, supx∈[0,∞) |y∗(x)−x| ≤
L0 for some L0 > 0.

Proof. The existence and uniqueness of the maximum point p1(x, ·) follows directly from
Lemma A.6. From Iα(z) = (2πz)−1/2ez

(
1 +O(z−1)

)
when z goes to infinity [1, (9.7.1)], it

holds that

p1(x, y) = (2π)−1/2(y/x)α+1/2e−(y−x)2/2
(
1 +O(x−1y−1)

)
. (A.10)

This implies limx→∞ |y∗(x)−x| = 0. Clearly y∗(x) is the unique solution to ∂p1(x, y)/∂y =

0. By the inverse function theorem, y∗(x) is a smooth function in x. Then the boundedness
of |y∗(x)− x| follows.

Lemma A.8. There exist constants C0 and C1 such that

sup
x,y∈[0,∞)

p1(x, y) ≤ C0, (A.11)

and

sup
x∈[0,∞),M≥1

M−1
∞∑
j=0

p1(x, jM−1) ≤ C1. (A.12)

Proof. We start with prove (A.11). From Corollary A.7, supy∈[0,∞) p1(x, y) = p(x, y∗(x)).

Because limx→∞ |y∗(x)−x| = 0, we have from (A.10) that limx→∞ p1(x, y∗(x)) = (2π)−1/2.
Then (A.11) follows from the continuity of p(x, y∗(x)).

Next, we turn to (A.12). Let j0 = j0(x,M) := bMy∗(x)c. From Lemma A.6, p1(x, y)

is non-decreasing for y ∈ [0, y∗(x)] and is non-increasing for y ∈ [y∗(x),∞). By integral
comparison,

∑
0≤j≤j0−1

M−1p1(x, jM−1) ≤
∫ j0

0

p1(x, y) dy,
∑

j≥j0+2

M−1p1(x, jM−1) ≤
∫ ∞
j0+1

p1(x, y) dy.

Together with (A.11), for x ∈ [0,∞) and M ≥ 1,∑
j≥0

M−1p1(x, jM−1) ≤
∫ ∞

0

p1(x, y) dy +
2

M
sup

y∈[0,∞)

p1(x, y) ≤ 1 + 2C0.

(A.12) then follows by taking C1 = 1 + 2C0.

Lemma A.9. For any ε > 0, there exists L > 0 such that

sup
x∈[0,∞),M≥1

M−1
∑

|jM−1−x|≥L

p1(x, jM−1) ≤ ε. (A.13)

Proof. Let y∗(x) be the unique maximum point of p1(x, y) given in Corollary A.7. Let L0

be the constant in Corollary A.7. Then y∗(x) ∈ [x−L/2, x+L/2] for all L ≥ 2L0. Together
with the monotonicity of p1(x, y) on [0, y∗(x)] and [y∗(x),∞), it holds that

M−1
∑

|jM−1−z|≥L

p1(x, jM−1) ≤
∫
|y−x|≥L/2,y≥0

p1(x, y) dy. (A.14)

It suffices to show that by taking L large enough, the right hand side of (A.14) is small
for all x ∈ [0,∞).
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Given ε > 0. We aim to show that for L large enough, for all x ≥ 0 it holds that∫
|y−x|≤L/2,y≥0

p1(x, y) dy ≥ 1− ε.

Suppose the above fails. There exists a sequence xn such that∫
|y−xn|≤n,y≥0

p1(xn, y) dy < 1− ε.

In view of (A.10), the sequence xn is bounded. Let xnk be a convergent subsequence
of xn and x0 be the limit. Because p1(xnk , ·) converges to p1(x0, ·) locally uniformly, we
have for all L > 0, ∫

|y−x0|≤L/2,y≥0

p1(x0, y) dy < 1− ε.

This is impossible. The proof is finished.

B Discrete Approximation of non-intersecting Bessel Bridge En-
semble

In this section, we show that non-intersecting Bessel bridge ensembles can be
approximated through discretization. This completes the fourth step in the proof of
Proposition 4.1.

We begin by recalling the setting. Fix α ≥ 0, k ∈ N. Let (f, g) be a pair of functions
defined on [0, 1] that satisfies the continuity assumption in Definition 3.3. Let ~x, ~y ∈ Rk+
be two vectors. We consider the k independent squared α-Bessel bridges on [0, 1] with

entrance and exit data (~x, ~y). Their law is denoted by P1,k,(0,1),~x,~y
free . The law of the

non-intersecting Bessel bridge ensemble, denoted by P1,k,(0,1),~x,~y,f,g, is obtained from
conditioning P1,k,(0,1),~x,~y

free on the event that all of the curves mutually avoid each other
and f(x), g(x). See Definition 3.4 for details. To make sure P1,k,(0,1),~x,~y,f,g is well defined,
we assume that

Z1,k,(0,1),~x,~y,f,g > 0 (B.1)

See (3.1) for the definition of Z1,k,(0,1),~x,~y,f,g.
For technical reasons, we prefer to work with Bessel bridges instead of squared Bessel

bridges. We view P1,k,(0,1),~x,~y,f,g and P1,k,(0,1),~x,~y
free as Borel measures on C([1, k]Z×[0, 1],R).

We write Q and Qfree for the measures obtained by pushing forward P1,k,(0,1),~x,~y,f,g and
P

1,k,(0,1),~x,~y
free through the map h(t) 7→

√
|h(t)| respectively. The goal of this section is to

prove Proposition B.1, which approximates Q through discretization.
Take ` ∈ N and M ≥ 1 and let K = 2`. Recall that ΩM,` is defined in (4.2) and that

ΩM,` can be identified as a subset of C([1, k]Z × [0, 1],R) through (4.5). In other words,
we divide [0, 1] into K subintervals with equal lengths and use M as a parameter to
discretize the height of the curves.

The weights Wfree(z) and W (z) = Wfree(z)G(z) for z ∈ ΩM,` are defined in (4.3). Let
QM,`,free and QM,` be the probability measures on ΩM,` which is proportional to Wfree

and W respectively. In other words, for any z ∈ ΩM,`,

QM,`,free(z) ∝Wfree(z) and QM,`(z) ∝W (z). (B.2)

Through (4.5), QM,`,free and QM,` can be viewed as probability measures on C([1, k]Z ×
[0, 1],R). Moreover, G(z) is the indicator function of the set A` ⊂ C([1, k]Z × [0, 1],R)

defined by

A` := {h(t) ∈ C([1, k]Z × [0, 1],R) |
√
f(t) < h1(t) < · · · < hk(t) <

√
g(t)

for all t = n/K, n ∈ [1,K − 1]Z}.
(B.3)
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The Bessel line ensemble

Similarly, define

A := {h(t) ∈ C([1, k]Z × [0, 1],R) |
√
f(t) < h1(t) < · · · < hk(t) <

√
g(t) for all t ∈ [0, 1]}.

(B.4)

Because of (B.1), there exists `0 and M0 such that QM,`,free(A`) > 0 for all ` ≥ `0 and
M ≥ M0. From now on we always assume ` ≥ `0 and M ≥ M0. Clearly QM,` equals
QM,`,free conditioning on A`. In other words, for all Borel subsets E ⊂ C([1, k]Z× [0, 1],R),

QM,`(E) = QM,`,free(E ∩A`)
/
QM,`,free(A`). (B.5)

To compare, the measures of non-intersection/free Bessel bridges have the relation

Q(E) = Qfree(E ∩A)
/
Qfree(A). (B.6)

The goal is to prove the following proposition.

Proposition B.1. As M and ` go to infinity, QM,` converges weakly to Q.

We first show that as M goes to infinity, QM,`,free converges the marginal law of Qfree

restricted on t = n/K. We write Q`,free for such a law.

Lemma B.2. As M goes to infinity, QM,`,free converges to Q`,free weakly.

Proof. Under the law of QM,`,free or Q`,free, curves at different levels are independent
of each other. Therefore it suffices to consider the special case k = 1. Let x, y ∈ [0,∞)

be the entrance and exit data. In this proof we always use the convention that z0 =
√
x

and zK =
√
y. For simplicity, we denote pK−1(·, ·), the transition probability for Bessel

processes (2.7), by p(·, ·)
Let (z1, · · · , zK−1) be distributed according to QM,`,free. Given (w1, w2, . . . , wK−1) ∈

[0,∞)K−1, it holds that

QM,`,free(zj ≤ wj , for all j ∈ [1,K − 1]Z) =
∑

z∈ΩM,`
zj≤wj

K∏
j=1

p(zj−1, zj)

/ ∑
z∈ΩM,`

K∏
j=1

p(zj−1, zj).

It suffices to show that

lim
M→∞

M−K+1
∑

z∈ΩM,`

K∏
j=1

p(zj−1, zj) =

∫
RK−1

K∏
j=1

p(zj−1, zj)

K−1∏
j=1

dzj (B.7)

and that

lim
M→∞

M−K+1
∑

z∈ΩM,`
zj≤wj

K∏
j=1

p(zj−1, zj) =

∫
{zj≤wj}

K∏
j=1

p(zj−1, zj)

K−1∏
j=1

dzj . (B.8)

Next, we prove (B.7) and (B.8). Because p(x, y) is a continuous function, for any
L > 0, the following Riemann sum converges to the Riemann integral,

lim
M→∞

M−K+1
∑

z∈ΩM,`
|zj−zj−1|≤L, 1≤j≤K

K∏
j=1

p(zj−1, zj)

=

∫
{|zj−zj−1|≤L, 1≤j≤K}

K∏
j=1

p(zj−1, zj)

K−1∏
j=1

dzj .

(B.9)
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From Lemma A.8, Lemma A.9 and (2.3), for any m ∈ [1,K]Z, we have

M−K+1
∑

z∈ΩM,`
|zm−zm−1|>L

K∏
j=1

p(zj−1, zj) ≤ oL(1).

Here oL(1) denotes a quantity which converges to zero when L goes to infinity. In
particular, for all M ≥ 1,

M−K+1

∣∣∣∣∣∣∣∣
∑

z∈ΩM,`
|zj−zj−1|≤L, 1≤j≤K

K∏
j=1

p(zj−1, zj)−
∑

z∈ΩM,`

K∏
j=1

p(zj−1, zj)

∣∣∣∣∣∣∣∣ ≤ oL(1). (B.10)

Combining (B.9) and (B.10), (B.7) follows. The argument for (B.8) is similar and we omit
it. The proof is finished.

Lemma B.3. As ` goes to infinity, Q`,free converges to Qfree weakly.

Proof. It suffices to consider the case k = 1. Fix the entrance and exit data x, y ∈ (0,∞).
Let S be a Bessel bridge on [0, 1] with S(0) =

√
x and S(1) =

√
y. Note that Qfree is the

law of S. Let

S`(t) =

{
S(t) t = j/2`, j ∈ [0, 2`]Z,

linear interpolation, others.

ThenQ`,free is the law of S`. Because Bessel bridges are continuous, we have S` converges
uniformly to S almost surely. This implies Q`,free converges to Q` weakly.

Lemma B.4. Let Ā` and Ā be the topological closure of A` and A (defined in (B.3)
and (B.4)) in C([1, k]Z × [0, 1],R) respectively. Then Ā = ∩∞`=1Ā`.

Proof. Because of (B.1), A` and A are non-empty. It is straightforward to see that

∩∞`=1Ā` = {h(t) ∈ C([1, k]Z × [0, 1],R) |
√
f(t) ≤ h1(t) ≤ · · · ≤ hk(t) ≤

√
g(t)

t ∈ 2−`Z ∩ [0, 1] for some ` ∈ N},

and that

Ā = {h(t) ∈ C([1, k]Z × [0, 1],R) |
√
f(t) ≤ h1(t) ≤ · · · ≤ hk(t) ≤

√
g(t) for all t ∈ [0, 1]}.

Since (f, g) satisfies the continuity assumption in Definition 3.3,
√
f and

√
g are one-sided

continuous on (0, 1). This ensures Ā = ∩∞`=1Ā`.

Proof of Proposition B.1. Let ∂A` and ∂A be the topological boundaries of A` and A (de-
fined in (B.3) and (B.4)) respectively. Because Bessel bridges have continuous transition
densities, Q`(∂A`) = 0. Together with Lemma B.2, we have

lim
M→∞

QM,`,free(A`) = Q`,free(A`). (B.11)

Next, we aim to show that

lim
`→∞

Q`,free(A`) = Qfree(A). (B.12)
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Because g(x) is lower semi-continuous and f(x) is upper semi-continuous, A is an open
set in C([1, k]Z × [0, 1],R). Together with A ⊂ A` and Lemma B.3, we have

lim inf
`→∞

Q`,free(A`) ≥ lim inf
`→∞

Q`,free(A) ≥ Qfree(A)

Also, for any j ∈ N,

lim sup
`→∞

Q`,free(A`) ≤ lim sup
`→∞

Q`,free(Āj) ≤ Qfree(Āj).

From Lemma B.4, Ā = ∩∞j=1Āj . Hence we have lim sup`→∞Q`,free(A`) ≤ Qfree(Ā).
From Lemmas 2.2 and 2.3, Q(∂A) = 0. Therefore, lim sup`→∞Q`,free(A`) ≤ Qfree(A).
Then (B.12) follows. Combining (B.11) and (B.12), we have

lim
`→∞

lim
M→∞

QM,`,free(A`) = Qfree(A). (B.13)

To show that QM,` converges to Q weakly, it suffices to show that for any open subset
E ⊂ C([1, k]Z × [0, 1],R), we have

lim inf
`→∞

lim inf
M→∞

QM,`(E) ≥ Q(E). (B.14)

From now on, we fix an open set E ⊂ C([1, k]Z × [0, 1],R). Since E ∩A` is also open, we
have from Lemma B.2 lim infM→∞QM,`,free(E ∩A`) ≥ Q`,free(E ∩A`). Therefore,

lim inf
`→∞

lim inf
M→∞

QM,`,free(E ∩A`) ≥ lim inf
`→∞

Q`,free(E ∩A`).

Together with A ⊂ A` and Lemma B.3, we have

lim inf
`→∞

Q`,free(E ∩A`) ≥ lim inf
`→∞

Q`,free(E ∩A) ≥ Qfree(E ∩A).

Therefore,

lim inf
`→∞

lim inf
M→∞

QM,`,free(E ∩A`) ≥ Qfree(E ∩A). (B.15)

Then (B.14) follows by combining (B.5), (B.6), (B.13) and (B.15). This finishes the
proof.

C Extended Bessel Kernel

In this section we derive the multi-time correlation kernel for the non-intersecting
squared Bessel process and prove the convergence under the hard edge scaling in (1.2).
The results could also be found in [18, Section 11.7.3]. We provide the arguments for
the reader’s convenience. Note that our extended Bessel kernel differs from the one in
[18] up to some coefficients. This comes from that the scaling in [18] centers around
t = 1/2 while we center around t = 1.

Fix α ≥ 0 and N ∈ N. Consider an N non-colliding squared α-Bessel process
Y N,α1 (t) < Y N,α2 (t) < · · · < Y N,αN (t) with Y N,αj (0) = 0. We also use Y N,α(t) to denote the

vector (Y N,α1 (t), . . . , Y N,αN (t)). The density of Y N,α(1/2) is given in (1.1). Together with
the scaling property (1.4), the density of Y N,α(t) is

2−αN−N
2

t−N
2

C(N,α)

N∏
j=1

(xj/t)
αe−(2t)−1xj × (∆(~x))

2
1(~x ∈WN

+ )

N∏
j=1

dxj . (C.1)

Here ∆(~x) =
∏

1≤i<j≤N (xj − xi) is the Vendermonde determinant.
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For any s > t > 0, the transition probability from Y N,α(t) = ~x to Y N,α(s) = ~y can be
computed through the Karlin-McGregor formula [26] (see also [27, (1.6)]).

det [qs−t(xi, yj)1≤i,j≤N ]
∆(~y)

∆(~x)
· 1(~y ∈WN

+ )

N∏
j=1

dyj . (C.2)

Here qt(x, y) is the transition probability of squared Bessel processes defined in (2.2).
From (C.1) and (C.2), we can derive the joint density of Y N,α at multiple times. Fix an
arbitrary m ∈ N and 0 < t1 < t2 < · · · < tm. The joint density of (Y N,α(t1), . . . , Y N,α(tm))

is given by

2−αN−N
2

C(N,α)×
m∏
k=1

1(~x(k) ∈WN
+ )

× t−N
2

1

N∏
j=1

(t−1
1 x

(1)
j )αe−(2t1)−1x

(1)
j ×∆(x(1))

×
m−1∏
k=1

det
[
qtk+1−tk(x

(k)
i , x

(k+1)
j )1≤i,j≤N

]
×∆(x(m))×

m∏
k=1

N∏
j=1

dx
(k)
j .

(C.3)

For x, t > 0 and j ∈ N, we define

φαj (t, x) :=
Γ(j)

2j+αΓ(α+ j)
t−j(t−1x)αe−(2t)−1xLαj−1((2t)−1x), (C.4)

ψαj (t, x) :=2j−1tj−1Lαj−1((2t)−1x). (C.5)

Here Lαj−1(x) is the generalized Laguerre polynomial of degree j − 1,

Lαj−1(x) :=
x−αex

Γ(j)

dj−1

dxj−1
(xα+j−1e−x). (C.6)

Note that the following orthogonal relation holds.∫ ∞
0

dxxαe−xLαi (x)Lαj (x) =
Γ(α+ j − 1)

Γ(j − 1)
δij . (C.7)

Because the leading coefficient in Lαj−1(x) is (−1)j−1

Γ(j) , we have

det [φαi (t, xj)]1≤i,j≤N = (−1)
N(N−1)

2 · 2−αN−N
2

t−N
2
N∏
j=1

1

Γ(α+ j)

N∏
j=1

(xj/t)
αe−(2t)−1xj∆(~x),

det [ψαi (t, xj)]1≤i,j≤N = (−1)
N(N−1)

2

N∏
j=1

1

Γ(j)
×∆(~x).

Therefore, the joint density (C.3) can be expressed as

det
[
φαi (t(1), x

(1)
j )
]

1≤i,j≤N

×
m−1∏
k=1

det
[
qtk+1−tk(x

(k)
i , x

(k+1)
j )1≤i,j≤N

]
×det

[
ψαj (t(m), x

(m)
i )

]
1≤i,j≤N

×
m∏
k=1

1(~x(k) ∈WN
+ )

m∏
k=1

N∏
j=1

dx
(k)
j .

(C.8)
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Lemma C.1. For any 0 < t < s, the following statements hold.∫ ∞
0

φαi (t, x)ψαj (t, x) dx = δij . (C.9)

∫ ∞
0

φαj (t, x)qαs−t(x, y) dx = φαj (s, y). (C.10)

∫ ∞
0

qαs−t(x, y)ψαj (s, y) dy = ψαj (t, x). (C.11)

Proof. (C.9) is a reformulation of the orthogonality of generalized Laguerre polynomi-
als (C.7). The equality (C.10) is proved in [15, Lemma 3.4(ii)].

We proceed to prove (C.11). For j ∈ N, define

ψ̃j(x) :=

∫ ∞
0

qαs−t(x, y)ψαj (s, y) dy

We aim to show that ψ̃j(x) = ψαj (t, x). By the Cauchy-Binnet formula and (C.8), we have
for all N ∈ N,

det(ψ̃j(xi))1≤i,j≤N = (−1)N(N−1)/2
N∏
j=1

1

Γ(j)
×∆(x1, x2, . . . , xN ).

By induction, ψ̃j(x) is a polynomial of degree j − 1. Also, from (C.10) and (C.9) we have∫ ∞
0

φαi (t, x)ψ̃j(x) dx =

∫ ∞
0

φαi (s, x)ψαj (s, x) dx = δij .

As a result, ψ̃j(x) = ψαj (t, x).

In view of (C.8), Y N,α is determinantal. Moreover, from Lemma C.1 and the Eynard-
Mehta Theorem [12, 4], a correlation kernel is of the form

KN
α ((t, x); (s, y)) =− qs−t(x, y)1(t < s) +

N∑
j=1

ψαj (t, x)φαj (s, y). (C.12)

Consider the following gauge transformation:

K̃N
α ((t, x); (s, y)) =(x/y)α/2KN

α ((t, x); (s, y)). (C.13)

Note that K̃N is also a correlation kernel for Y N,α. Moreover, from (2.5) and (C.4),
K̃N
α ((t, x); (s, y)) extends smoothly to y = 0.

We consider the following hard edge scaling. For arbitrary (t, x), (s, y) ∈ R× [0,∞),
consider

(4N)−1K̃N
α ((1 + (4N)−1t, (4N)−1x), (1 + (4N)−1s, (4N)−1y)). (C.14)

It is a correlation kernel for LN,α defined in (1.3). The following theorem proves the
locally uniform convergence of the above correlation kernel.

Theorem C.2. For any (t, x) and (s, y) in R× [0,∞), the limit of (C.14) is given by
−
∫ ∞

1/8

e−2(s−t)zJα(2z1/2x1/2)Jα(2z1/2y1/2) dz, t < s,

∫ 1/8

0

e−2(s−t)zJα(2z1/2x1/2)Jα(2z1/2y1/2) dz, t ≥ s.

Moreover, for any L > 0, the convergence is uniform on ([−L,L]× [0, L])2.
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Proof. In view of (C.12), (C.14) consists of two parts. The first part contains the qs−t
term and the second part is a finite sum of ψαj φ

α
j . For the first part, we use the integral

representation which can be derived from [20, (6.633)].

qt(x, y) =(y/x)α/2
∫ ∞

0

e−2tzJα(2z1/2x1/2)Jα(2z1/2y1/2) dz.

Together with (4N)−1qt/(4N)(x/4N, y/4N) = qt(x, y), we have

− (x/y)α/2(4N)−1qα(s−t)/4N (x/4N, y/4N) · 1(t < s)

=−
∫ ∞

0

e−2(s−t)zJα(2z1/2x1/2)Jα(2z1/2y1/2) dz · 1(t < s).

(C.15)

Now we turn to the second part in (C.14). From the definitions of φαj and ψαj , we may

rewrite the expression of (x/y)α/2
∑N
j=1 ψ

α
j (t, x)φαj (s, y). It could be directly checked that

it equals

(t/s)
α/2

e−y/(2s) × 2−α−1 (xy/(ts))
α/2

N∑
j=1

Γ(j)

Γ(α+ j)
tj−1s−jLαj−1 (x/(2t))Lαj−1 (y/(2s)) .

Set M = 4N . Under the hard edge scaling, we have

(4N)−1(x/y)α/2
N∑
j=1

ψαj (1 + t/(4N), x/(4N))φαj (1 + s/(4N), y/(4N))

equals(
1 + t/M

1 + s/M

)α/2
exp

(
y

2M + 2s

)
× (2M)−1

(
xy

(2M + 2t)(2M + 2s)

)α/2

×
N∑
j=1

Γ(j)

Γ(α+ j)
(1 + t/M)j−1(1 + s/M)−j · Lαj−1

(
x

2M + 2t

)
Lαj−1

(
y

2M + 2s

)
.

(C.16)

We apply the asymptotic limit of Laguerre polynomial for j large. For j ∈ N, let
j̃ = j + 2−1(α− 1). Denote

Eαj−1(x) := Lαj−1(x)− Γ(α+ j)

Γ(j)
· ex/2x−α/2 · j̃−α/2 · Jα(2(j̃x)1/2). (C.17)

Here Jα(x) is the Bessel function of the first kind. From [35, (8.22.4)], for any c > 0,
there exists C depending on c such that for x ≤ cj−1

|Eαj−1(x)| ≤ Cex/2x2jα. (C.18)

Using (C.17) to substitute Lαj−1 in (C.16), it becomes(
1 + t/M

1 + s/M

)α/2
exp

(
y

2M + 2s

)
× (2M)−1

(
xy

(2M + 2t)(2M + 2s)

)α/2

×
N∑
j=1

Γ(j)

Γ(α+ j)
(1 + t/M)j−1(1 + s/M)−j

×

[
Γ(α+ j)

Γ(j)
e

x
4M+4t

(
x

2M + 2t

)−α/2
j̃−α/2Jα

(
2

(
j̃x

2M + 2t

)1/2
)

+ Eαj−1

(
x

2M + 2t

)]

×

[
Γ(α+ j)

Γ(j)
e

y
4M+4s

(
y

2M + 2s

)−α/2
j̃−α/2Jα

(
2

(
j̃y

2M + 2s

)1/2
)

+ Eαj−1

(
y

2M + 2s

)]
.
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Through a direct computation, we rewrite

(1 + t/M)

(
1 + t/M

1 + s/M

)−α/2
exp

(
− y

2M + 2s

)
× (C.16) = I + II + III + IV,

such that

I =(2M)−1
N∑
j=1

e−j(s−t)/MJα

(
2

(
j̃x

2M + 2t

)1/2
)
Jα

(
2

(
j̃y

2M + 2s

)1/2
)

×
[

Γ(α+ j)

Γ(j)
j̃−α

]
× ex/(4M+4t)+y/(4M+4s) ×

[(
1 + t/M

1 + s/M

)j
ej(s−t)/M

]
.

II =(2M)−1

(
x

2M + 2t

)α/2
ey/(4M+4s)

×
N∑
j=1

(
1 + t/M

1 + s/M

)j
j̃−α/2Jα

(
2

(
j̃y

2M + 2s

)1/2
)
Eαj−1

(
x

2M + 2t

)
.

III =(2M)−1

(
y

2M + 2s

)α/2
ex/(4M+4t)

×
N∑
j=1

(
1 + t/M

1 + s/M

)j
j̃−α/2Jα

(
2

(
j̃x

4N + t

)1/2
)
Eαj−1

(
y

4N + s

)
.

IV =(2M)−1

(
xy

(2M + 2t)(2M + 2s)

)α/2

×
N∑
j=1

Γ(j)

Γ(α+ j)

(
1 + t/M

1 + s/M

)j
Eαj−1

(
x

2M + 2t

)
Eαj−1

(
y

2M + 2s

)
From (C.18), II, III and IV converge to zero as N goes to infinity. And I (as a Riemann

sum) converges to ∫ 1/8

0

e−2(s−t)zJα(2z1/2x1/2)Jα(2z1/2y1/2) dz.

Therefore,

lim
N→∞

(C.16) =

∫ 1/8

0

e−2(s−t)zJα(2z1/2x1/2)Jα(2z1/2y1/2) dz. (C.19)

The desired result now follows by combining (C.15) and (C.19). It is straightforward
to check that the convergence in (C.19) is uniform on (t, x), (s, y) ∈ [−L,L]× [0, L].
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