
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 28 (2023), article no. 57, 1–48.
ISSN: 1083-6489 https://doi.org/10.1214/23-EJP947

Central limit theorems for stochastic gradient descent
with averaging for stable manifolds*
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Abstract

In this article, we establish new central limit theorems for Ruppert-Polyak averaged
stochastic gradient descent schemes. Compared to previous work we do not assume
that convergence occurs to an isolated attractor but instead allow convergence to
a stable manifold. On the stable manifold the target function is constant and the
oscillations of the iterates in the tangential direction may be significantly larger than
the ones in the normal direction. We still recover a central limit theorem for the
averaged scheme in the normal direction with the same rates as in the case of isolated
attractors. In the setting where the magnitude of the random perturbation is of
constant order, our research covers step-sizes γn = Cγn

−γ with Cγ > 0 and γ ∈ ( 3
4
, 1).

In particular, we show that the beneficial effect of averaging prevails in more general
situations.
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1 Introduction

We consider stochastic gradient descent (SGD) algorithms for the approximation of
minima of functions −F : Rd → R, where, at each point x ∈ Rd, we are only able to
simulate a noisy version of the gradient f(x) = DF (x).

Stochastic approximation methods form a popular class of optimisation algorithms
with applications in diverse areas of statistics, engineering and computer science. Nowa-
days, a key application lies in machine learning where it is used in the training of
neural networks. The original concept was introduced 1951 by Robbins and Monro
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CLTs for SGD with averaging for stable manifolds

[33] and since then analysed in various directions, see e.g. [4, 13, 39, 14, 10, 34]. In
previous research, a typical key assumptions is that −F has isolated local minima with
elliptic Hessian. Under this assumption, Sacks [36] proved a central limit theorem which
showed that, for step-sizes γn = Cγn

−1 with sufficiently large constant Cγ > 0, SGD
converges to a minimum of the objective function with rate n−1/2 which is typically the
best convergence rate that can be obtained. However, this particular choice for the
step-sizes has two disadvantages. First, the SGD typically needs too long (for practical
applications) to get into the vicinity of a local minimum of −F if the gradient flow itself
needs a long time to approach a minimum. Second, whether a choice of the constant Cγ
is appropriate depends on the ellipticity of the Hessian at the local minimum approached
by the SGD and in practical applications the latter is typically not known. Therefore,
one would like to work with larger step-sizes γn = Cγn

−γ with Cγ > 0 and γ ∈ ( 1
2 , 1). In

that case, the convergence to a minimum is typically of order n−γ/2, see e.g. [5, 21]. As
found by Ruppert [35] and Polyak [30, 31], it is still possible to get convergence of order
n−1/2 by considering the running average of the iterates instead of the iterates themself.
Following these original papers a variety of results were derived for the Robbins-Monro
algorithm and the Ruppert-Polyak average and we refer the reader to the monographs
[1, 29, 2, 25, 12, 22] for more details. We stress that previous research was focused
on dynamical systems that converge to isolated minimisers of −F and one of the main
contributions of this article is to show that the beneficial effect of averaging prevails
also in more general situations.

Classical convexity assumptions are often not met in practice and as an example
we outline an application from machine learning [38, 24]. Many risk functions for
the optimisation of the weights and biases of a neural network depend solely on the
realisation function that the network generates. For neural networks with ReLU acti-
vation function the positive homogeneity of the activation function entails that every
(representable) function possesses a non-discrete set of representations as deep learning
network, see e.g. [9]. For smooth activation functions, Cooper [6] applied a variant
of the implicit function theorem to show that, in an overparameterised setting, the set
M := {x ∈ Rd : f(x) = 0} forms a lower-dimensional submanifold of Rd.

It appears natural to ask for extensions on settings where the set of (local) minima
forms a stable manifold. So far research in that direction is very limited. Fehrman et al.
[16] established rates for the convergence of the target function of a stochastic gradient
descent scheme under the assumption that the set of minima forms a stable manifold.
We also mention the work by Tripuraneni et al. [37] where an averaging method for
SGD on submanifolds is introduced so that the Ruppert-Polyak result is applicable for
the approximation of an isolated stable minimum of a function defined on a Riemannian
manifold.

Let us introduce the central dynamical system considered in this article. Let
(Ω,F , (Fn)n∈N0

,P) be a filtered probability space and F : Rd → R a measurable and
differentiable function and set f = DF : Rd → Rd. Let M be a dζ -dimensional C1-
submanifold of Rd with

f
∣∣
M
≡ 0.

We consider an adapted dynamical system (Xn)n∈N0
satisfying for all n ∈ N

Xn = Xn−1 + γn(f(Xn−1) +Dn), (1.1)

where

(0) X0 is a F0-measurable Rd-valued random variable, the starting value,

(I) (Dn)n∈N is an Rd-valued, adapted process, the perturbation,

(II) (γn)n∈N is a sequence of strictly positive reals, the step-sizes.
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We briefly refer to (Xn)n∈N0
as the Robbins-Monro system. Furthermore, we consider

for n ∈ N the Ruppert-Polyak average with burn-in given by

X̄n =
1

b̄n

n∑
i=n0(n)+1

biXi, (1.2)

where

(III) (n0(n))n∈N is a N0-valued sequence with n0(n) < n for all n ∈ N and n0(n)→∞,

(IV) (bn)n∈N is a sequence of strictly positive reals and b̄n =
∑n
i=n0(n)+1 bi for n ∈ N.

Roughly speaking, we raise and (at least partially) answer the following questions.

• Is Ruppert-Polyak averaging still beneficial in the case of non-isolated minimizers?

• If so, what are good choices for the parameters introduced in (II) to (IV)?

We answer these questions by deriving central limit theorems for the performance of the
Ruppert-Polyak average on the event of convergence of (Xn)n∈N0 to some element of
the stable manifold M .

Let us be more precise. By assumption, M is a C1-manifold and we will impose
additional regularity assumptions on the tangent spaces (see Definition 2.4) that will
guarantee existence of an open neighbourhood M of M so that for each x ∈ M there
exists a unique closest element x∗ in M , the M -projection of x (cf. [11], [23]). We denote
by Mconv the event that (Xn)n∈N0

converges to an element of M and denote the limit by
X∞. Note that, on Mconv, the M -projection X∗n and X̄∗n are well-defined for sufficiently
large (random) n and we will provide stable limit theorems for

√
n(X̄n − X̄∗n) and n (F (X∞)− F (X̄n)),

on the event Mconv. It is natural to consider Ruppert-Polyak averaging only in the
case, where the Robbins-Monro scheme converges. In particular, this guarantees that
the average converges to the same limit. Our analysis is conducted in a very general
setup. However, we will make our findings transparent in the particular case, where the
perturbation is a sequence of square integrable martingale differences whose conditional
covariance converges to a random matrix Γ, almost surely, on Mconv. Here, we prove
that under appropriate assumptions to be found in Theorem 2.6 the Cesàro average

X̄n =
1

n− n0(n)

n∑
k=n0(n)+1

Xk

converges in the stable sense, on Mconv,

√
n (X̄n − X̄∗n)

stably
=⇒

(
Df(X∞)

∣∣
NX∞M

)−1
ΠNX∞M

N (0,Γ),

where the right-hand side stands for the random distribution obtained when applying
the orthogonal projection ΠNX∞M

onto the normal space of M at X∞ and the inverse
of the restricted random mapping Df(X∞)

∣∣
NX∞M

: NX∞M → NX∞M (which will exist

as consequence of a variant of the standard contractivity assumption) to a centered
Gaussian random variable with covariance Γ. Note that the order of convergence is
the same as for isolated attractors. Moreover, in the latter case the manifold M is zero
dimensional and NX∞M = Rd so that one recovers the classical result that, on Mconv,

√
n (X̄n −X∞)

stably
=⇒

(
Df(X∞)

)−1 N (0,Γ).
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Here and in the main theorems, we use stable convergence restricted to sets that are
not necessarily almost sure sets. The respective notion of convergence is introduced and
analysed in detail in Section A.

Still, there is a crucial difference between the setting with isolated attractors and the
one we discuss here. To explain this and later to do the proofs, we assume existence of
particular local manifold representations Ψ : U → Rd around some open sets U ⊂ Rd
which allow us to associate every x ∈M ∩ U with coordinates

Ψ(x) =

(
Ψζ(x)

Ψθ(x)

)
∈ Rdζ × {0}dθ ⊂ Rd

in such a way that for x ∈ U

Ψ(x∗) =

(
Ψζ(x)

0

)
.

In the representation we thus have well separated directions. The tangential directions
are the ones inRdζ×{0}dθ and the normal ones are the ones in {0}dζ×Rdθ with dθ = d−dζ .
On the event that (Xn)n∈N0

converges to some element of U ∩M the sequence has all
but finitely many entries in U . In the new coordinates the fluctuations in the normal
direction will behave as in the classical theory whereas the fluctuations in the tangential
direction are typically larger since there is no restoring force acting in this direction.
This explains why we need to compare X̄n with X̄∗n and not X∞ in the central limit
theorem. However, since F is locally constant on M , this analysis is sufficient to derive
a central limit theorem for the objective function value of the Ruppert-Polyak average
(F (X̄n))n∈N. While the fluctuations in the tangential direction do not appear in the limit
distribution, we will need to impose additional assumptions on the sequence of step-sizes
to show that these effects are negligible. More explicitly, in the setting with the highest
regularity (e.g. in the case where F : Rd → R is C3 and M is a C3-manifold) we allow
step-sizes γn = Cγn

−γ with Cγ > 0 and γ ∈ ( 3
4 , 1). In the case of isolated attractors one

typically allows exponents γ ∈ ( 1
2 , 1), see e.g. [35].

In the article, we use O-notation. For a multivariate function (fn) and a strictly
positive function function (gn) we write

fn = O(gn) if and only if sup
n

|fn|
gn

<∞

and

fn = o(gn) if and only if lim
n→∞

|fn|
gn

= 0

with the former notation making sense for arbitrary domains and the latter one for
domains being subsets of R. We also make use of the notation in a probabilistic sense,
see Section B for details.

2 The central limit theorem

In this section, we introduce the main result of the article, a central limit theorem for
the averaged Robbins-Monro scheme on Mconv. We start with introducing the central
definitions. Generally, for a C1-submanifold M ⊂ Rd we denote by TxM the tangent
space of M at x ∈M and by NxM = (TxM)⊥ the normal space of M at x.

Definition 2.1. A pair (F,M) consisting of a differentiable function F : Rd → R and a
dζ -dimensional C1-submanifold M of Rd is called approximation problem if the following
holds

(i) DF
∣∣
M
≡ 0
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(ii) f = DF is continuously differentiable on M and

(iii) for every x ∈ M , the differential Df(x) is symmetric and satisfies, for every
v ∈ NxM\{0},

〈v,Df(x)v〉 < 0. (2.1)

Set dθ = d− dζ .
Remark 2.2. If (F,M) is an approximation problem, then, for every x ∈M , the symmet-
ric matrix Df(x) admits an orthonormal basis of eigenvectors with the first dζ -vectors
spanning the tangential space TxM . By orthogonality, the remaining eigenvectors are in
NxM so that the restricted mapping Df(x)

∣∣
NxM

maps NxM into NxM . As consequence

of (2.1), the restricted mapping Df(x)
∣∣
NxM

: NxM → NxM is injective and, thus, one-
to-one. See Proposition 34 and Proposition 35 of [16] for examples of approximation
problems that arise in the training of neural networks.

Furthermore, we introduce a notion of regularity that entails error estimates for
certain Taylor approximations in our proofs. We will express our assumptions on the
vector field f and a certain local parametrisation of the manifold M in this notion.

Definition 2.3. Let U ⊂ Rd be an open set, g : U → Rd be a mapping and αg ∈ (0, 1].

(1) We say that g has regularity αg if g is continuously differentiable on U with αg-
Hölder continuous differential Dg.

(2) Let, additionally, M ⊂ Rd. We say that g : U → Rd has regularity αg around M if

(i) g is continuously differentiable onM∩U with αg-Hölder continuous differential
and

(ii) there exists a constant C such that for all x ∈M ∩ U and y ∈ U

|g(y)− (g(x) +Dg(x)(y − x))| ≤ C|y − x|1+αg .

We introduce certain kind of parametrisations of the manifold that will appear in our
proofs.

Definition 2.4. Let (F,M) be an approximation problem and αf , αΦ, αΨ ∈ (0, 1].

(1) Let U ⊂ Rd be an open set intersecting M . A C1-diffeomorphism Φ : UΦ → U is
called nice representation for M on U if the following is true:

(i) UΦ is a convex subset of Rd such that for (ζ, θ) ∈ Rdζ ×Rdθ

(ζ, θ) ∈ UΦ ⇒ (ζ, 0) ∈ UΦ

and Φ(UΦ ∩ (Rdζ × {0}dθ )) = U ∩M .
(ii) There exists a family (Px : x ∈M ∩ U) of isometric isomorphisms Px : Rdθ →

NxM such that for every (ζ, θ) ∈ UΦ ⊂ Rdζ ×Rdθ

Φ(ζ, θ) = Φ(ζ, 0) + PΦ(ζ,0)(θ). (2.2)

(2) We say that (F,M) has regularity (αf , αΦ, αΨ) if for every x ∈M there exists a nice
representation Φ : UΦ → U of M on a neighbourhood U of x such that

(i) the vector field f
∣∣
U

= DF
∣∣
U

has regularity αf around M ,
(ii) the mapping Φ has regularity αΦ around Rdζ × {0}dθ and

(iii) its inverse Ψ : U → UΦ has regularity αΨ.

Further, an open set U satisfying all the assumptions above are called nice repre-
sentation for M on U with regularity (αf , αΦ, αΨ).
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It is natural to ask for simple criteria to decide whether an approximation problem
has a certain regularity. We discuss this issue in the following remark.

Remark 2.5. 1. Let Ψ : U → V be a C1-diffeomorphism with regularity α ∈ (0, 1] and
let U ′ ⊂ Rd be a bounded and connected open set with U ′ ⊂ U . By Theorem 1.3.4
of [17], it follows that the inverse Ψ−1

∣∣
Ψ(U ′)

: Ψ(U ′) → U ′ has also regularity α.

Hence, an approximation problem has regularity (αf , α, α) if for every x ∈M there
exists a nice representation Φ : UΦ → U of M on a neighbourhood U of x such that

(a) the vector field f
∣∣
U

= DF
∣∣
U

has regularity αf around M ,
(b’) one of the mappings Φ or Ψ has regularity α.

2. Let (F,M) be an approximation problem, so that M is a C3-manifold. Section C
shows that for every x ∈ M there exist a neighbourhood U ⊂ Rd of x and a nice
representation Φ : UΦ → U ∈ C2. Thus, after shrinking UΦ we can guarantee
that DΦ is Lipschitz and, again with Theorem 1.3.4 of [17], Φ is invertible with
the differential of its inverse being a Lipschitz function. Hence, an approximation
problem has regularity (αf , 1, 1) if for every x ∈M there exists a neighbourhood U
of x such that

(a) f
∣∣
U

has regularity αf around M and
(b”) M is a C3-manifold.

Now we are able to state the main results.

Theorem 2.6. Let (F,M) be an approximation problem and suppose that (Xn)n∈N0
is

the Robbins-Monro system and (X̄n) the Ruppert-Polyak average as introduced in (1.1)
and (1.2) with (Dn), (γn), (bn), (b̄n) and (n0(n)) as in the introduction. Furthermore,
let Mconv denote the event that (Xn) converges to an element of M and denote by X∞
its limit which is a well-defined and measurable function on Mconv. We consider the
following assumptions:

(A.1) Regularity. (F,M) has regularity (αf , αΦ, αΨ), where αf , αΦ ∈ (0, 1] and αΨ ∈ ( 1
2 , 1].

(A.2) Assumptions on (γn) and (bn). Set α = αΨ ∧ αf ∧ αΦ and α′ = αΨ ∧ 1+α
2 > 1

2 .
Suppose that(

1− α

1 + 2α

)
∨
(

1− 1

2

αΦ

1 + αΦ

)
∨ 1

2α′
< γ < 1 and 1 + ρ > γα′, (2.3)

and set
γn = Cγn

−γ and bn = nρ.

(A.3) Assumptions on (n0(n)). (n0(n))n∈N is a N0-valued sequence with 0 ≤ n0(n) < n

for all n ∈ N that satisfies

n0(n) = o(n) and n0(n)−1 = o
(
n
− 1

2γ−1
1

1+αΦ ∧ n−
1
α

1−γ
2γ−1

)
. (2.4)

If ρ < γ − 1 we, additionally, assume that

n0(n)−1 = o
(
n−

1
1+αΦ

−(1+ρ)

γ−(1+ρ)

)
. (2.5)

(A.4) Assumptions onDn. For every x ∈M there exists an open neighbourhood U ⊂ Rd of
x such that (1U (Xn−1)Dn)n∈N is a sequence of uniformly L2-integrable martingale
differences. Moreover,

lim
n→∞

cov(Dn|Fn−1) = Γ, almost surely, on Mconv.
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Under the above assumptions the following is true:

1. CLT for the coefficients. On Mconv, one has

√
n (X̄n − X̄∗n)

stably
=⇒ ρ+ 1√

2ρ+ 1

(
Df(X∞)

∣∣
NX∞M

)−1
ΠNX∞M

N (0,Γ), (2.6)

where the right-hand side stands for the random distribution being obtained when
applying the F∞-measurable linear transform

(
Df(X∞)

∣∣
NX∞M

)−1
ΠNX∞M

onto a

normally distributed random variable N (0,Γ) with mean zero and covariance Γ.

2. CLT for the F -performance. On Mconv, one has

2n(F (X∞)− F (X̄n))
stably
=⇒

∣∣∣ ρ+ 1√
2ρ+ 1

(
Df(X∞)

∣∣
NX∞M

)−1/2
ΠNX∞M

N (0,Γ)
∣∣∣2,
(2.7)

where the right-hand side stands for the random distribution being obtained when
applying the respective F∞-measurable operations onto a normally distributed
random variable with mean zero and covariance Γ.

If assumption (A.1) is true, there are feasible choices for γ and ρ that satisfy (2.3) and
for every such choice there exist feasible choices for (n0(n))n∈N satisfying (A.3).

Theorem 2.6 is a special case of Theorem 2.9 below.

Remark 2.7. 1. It is straight-forward to verify that the factor ρ+1√
2ρ+1

appearing on the
right-hand side of (2.6) and (2.7) is minimal for ρ = 0. Furthermore, irrespective of
the choice of allowed parameters we always have 1 > γα′ so that ρ = 0 is always a
feasible choice, see (2.3). Thus, taking a Cesàro average is always optimal.

2. The choice of α’s that leads to the least restrictions on the choice of γ are αΦ = 1,
αΨ = 2

3 , αf = 1
2 . In that case all terms on the left-hand side of the γ-condition (2.3)

equal 3
4 so that we are allowed to choose γ in ( 3

4 , 1).

Remark 2.8. In this remark, we illustrate Theorem 2.6 in a particular optimisation
problem. Let F : Rd → R be given in terms of the expectation

F (x) = E[G(x, Y )],

where Y is a random variable taking values in a measurable space Y (we omit the σ-field
in order to simplify notation) and G : Rd × Y → R is a product-measurable function
satisfying the following regularity assumptions:

(i) F is C3 with Lipschitz continuous differential f ,

(ii) lim|x|→∞ F (x) = −∞,

(iii) for every y ∈ Y the function G(·, y) is C1 and one has, for every x ∈ Rd,

f(x) = E[∇xG(x, Y )],

(iv) the mapping

C : Rd 3 x 7→ cov(∇xG(x, Y ))

is continuous and

(v) there exist q > 2, CD < ∞ and a locally bounded, measurable function Q : Rd →
(0,∞) such that, for every x ∈ Rd,

E[|∇xG(x, Y )− f(x)|q]1/q ≤ CD Q(x).
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To design a dynamical system (Xn)n∈N0
as in (1.1) we fix Cγ > 0, γ ∈ ( 3

4 , 1), m ∈ N and
an Rd-valued random variable X0, choose (γn)n∈N = (Cγn

−γ)n∈N and an i.i.d. sequence
(Yn,i)n,i∈N of copies of Y that is also independent of X0 and consider

Dn =
1

mn

mn∑
i=1

∇xG(Xn−1, Yn,i)− f(Xn−1),

where mn = m ∨ dn−1/2Q(Xn−1)2e. Then (Dn)n∈N defines a sequence of martingale
differences w.r.t. the filtration (Fn)n∈N0

given by Fn = σ(X0)∨σ(Yk,i : k, i ∈ N with k ≤ n)

and (Xn)n∈N0
satisfies

Xn = Xn−1 + γn
1

mn

mn∑
i=1

∇xG(Xn−1, Yn,i), for n ∈ N.

As consequence of the Burkholder-Davis-Gundy inequality there exists a universal con-
stant Cq > 0 such that

E[|Dn|q|Fn−1]1/q ≤ Cq
1

m
1/2
n

E[|∇xG(x, Y )− f(x)|q]1/q
∣∣
x=Xn−1

≤ Cq CD
1

m
1/2
n

Q(Xn−1).

Hence, for an arbitrary bounded, open set U , one has

E[1U (Xn−1)|Dn|q]1/q ≤
CqCD
m1/2

sup
x∈D

Q(x) <∞

and (1U (Xn−1)Dn)n∈N is uniformly L2-integrable. Moreover, cov(Dn|Fn−1) = 1
mn
C(Xn−1)

and, on the event {(Xn)n∈N0
converges}, we have that mn → m and, by continuity of C,

that

cov(Dn|Fn−1) =
1

mn
C(Xn−1)

n→∞−→ 1

m
C(X∞) =: Γ.

This entails assumption (A.4) of Theorem 2.6. Let us verify the remaining assumptions.
Suppose that M is a C3-manifold for which (F,M) is an approximation problem

according to Definition 2.1. By Remark 2.5, (F,M) has regularity (1, 1, 1). We choose
bn ≡ 1 and note that by Remark 2.7, (A.2) is satisfied. Since 1/(4γ−2) < 1 we can choose
(n0(n))n∈N according to (A.3) and we consider the Césaro average

X̄n =
1

n− n0(n)

n∑
k=n0(n)+1

Xk.

Consequently, we have, on Mconv,

2mn(F (X∞)− F (X̄n))
stably
=⇒

∣∣∣(Df(X∞)
∣∣
NX∞M

)−1/2
ΠNX∞M

N (0, C(X∞))
∣∣∣2.

Let us discuss convergence of the dynamical system (Xn)n∈N0 .
(i) Locality of the process: First, we consider the event

L =
{

lim sup
n→∞

|Xn| <∞
}
.

By choice of (mn)n∈N and property (v),

E[|Dn|2|Fn−1]1/2 ≤ 1
√
mn

CD Q(Xn−1) ≤ CD n1/4.

Verifying the assumptions of Lemma D.1 for the choice (σRM
n )n∈N = (n

1−2γ
4 )n∈N we

deduce that under assumptions (i) to (v), we have P(L) = 1. In particular, this implies
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that, almost surely, mn = m for all but finitely many n ∈ N. In the case that F satisfies
(i) and (iii)-(v) but not necessarily property (ii), one can add an L2-regularisation term,
i.e., replace F by F̃ given by

F̃ (x) = F (x)− a

2
|x|2,

for a fixed a ∈ (0,∞). Then, DF̃ (x) = E[∇xG(x, Y )]− ax is again a Lipschitz continuous
function and the martingale noise remains the same. If a > ‖DF‖Lip(Rd), then clearly,
lim|x|→∞F (x) = −∞. Note that this transformation typically affects the set of optimal
points.

(ii) Convergence of the process: In [8] it is shown that (Xn)n∈N0
almost surely con-

verges, on L, if every critical point of F satisfies locally a Łojasiewicz inequality, i.e. for
all x ∈ {x′ ∈ Rd : f(x′) = 0} there exists a neighbourhood Ux ⊂ Rd of x, and parameters
βx ∈ [ 1

2 , 1), Łx > 0 such that, for all x′ ∈ Ux, we have

|f(x′)| ≥ Łx|F (x)− F (x′)|βx .

This assumption has the appeal that it is satisfied by every analytic function, see [26, 27].
Moreover, in Theorem 2.1 of [15] the following result is shown that resembles the
situation of Theorem 2.6: Let U ⊂ Rd be an open set and assume that F : U → R is
C2 and M ′ = {x ∈ U : f(x) = 0} forms a dζ′ -dimensional manifold. If, for all x ∈ M ′,
we have dζ′ = dim(ker(HessF (x))), then, for all x ∈M ′, x satisfies locally a Łojasiewicz
inequality.

(iii) Non-convergence to unstable points: Let M ′ ⊂ Rd be a smooth manifold of crit-
ical points such that there exists a C > 0 with HessF (x) has at least one positive
eigenvalue, for all x ∈M ′, all negative eigenvalues are bounded from above by −C and
all positive eigenvalues are bounded from below by C. Then, if the martingale noise is
uniformly bounded and uniformly exciting, meaning that there exists a C̃ > 0 such that,
for all n ∈ N and u ∈ Sd−1,

E[〈Dn, u〉+|Fn−1] ≥ C̃, (2.8)

it holds that P(d(Xn,M
′) → 0) = 0, see Theorem 3 in [28]. If (Dn)n∈N is not uni-

formly exciting then, for all n ∈ N, one can consider (D̃n)n∈N = (Dn + Λn)n∈N, where
(Λn)n∈N is a sequence of independent standard Gaussians, and set (F̃n)n∈N0 = (Fn ∨
σ(Λ1, . . . ,Λn))n∈N0 . Then, (D̃n)n∈N satisfies (2.8) as well as the conditions necessary for
proving locality and convergence.

We give a more general version of Theorem 2.6 which applies for a broad choice of
step-sizes, averaging parameters and stochastic noises.

Theorem 2.9. Let (F,M) be an approximation problem and suppose that (Xn)n∈N0
is

the Robbins-Monro system and (X̄n) the Ruppert-Polyak average as introduced in (1.1)
and (1.2) with (Dn), (γn), (bn), (b̄n) and (n0(n)) as in the introduction. Let (σRM

n ) and
(δdiff
n ) be sequences of strictly positive reals and set

σn =
1

b̄n

√√√√ n∑
l=n0(n)+1

(blδdiff
l )2.

Furthermore, let Mconv denote the event that (Xn) converges to an element of M and
denote by X∞ its limit which is a well-defined and measurable function on Mconv. We
consider the following assumptions:

(B.1) Regularity. (F,M) has regularity (αf , αΦ, αΨ), where αf , αΦ, αΨ ∈ (0, 1].
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(B.2) Technical assumptions on the parameters. Suppose that (γn) is a monotonically
decreasing sequence and

nγn →∞, γn → 0,

bn+1γn
bnγn+1

= 1 + o(γn), lim sup
n→∞

1

γn

σRM
n−1 − σRM

n

σRM
n

= 0, σRM
n−1 ≈ σRM

n , (2.9)

and for all sequences (L(n))n∈N with L(n) ≤ n and n− L(n) = o(n) one has

lim
n→∞

∑n
k=L(n)+1(bkδ

diff
k )2∑n

k=n0(n)+1(bkδdiff
k )2

= 0.

(B.3) Assumptions on (n0(n)). (n0(n))n∈N is a N0-valued sequence with 0 ≤ n0(n) < n

for all n ∈ N that satisfies n0(n) = o(n).

(B.4) Assumptions on Dn. For every x ∈M , there exist an open neighbourhood U ⊂ Rd
of x so that (1U (Xn−1)Dn)n∈N is a sequence of square integrable, martingale
differences satisfying for all ε > 0, on Mconv,

lim
n→∞

(δdiff
n )−2cov(Dn|Fn−1) = Γ, almost surely,

lim
n→∞

(σn)−2
n∑

m=n0(n)+1

b2m
b̄2n
E[1{|Dm|>εb̄nσn/bm}|Dm|2|Fm−1] = 0, in probability,

(2.10)

and

lim sup
n→∞

(σRM
n√
γn

)−1
E[1U (Xn−1)|Dn|2]1/2 <∞. (2.11)

(B.5) Technical assumptions to control the error terms. One has, as n→∞,

bn0(n)

b̄nγn0(n)

σRM
n0(n) = o(σn), (2.12)

(εRM
n )1+αΦ = o(σn), (2.13)

for

εRM
n :=

n∑
k=n0(n)+1

(
(
√
γkσ

RM
k )1+αΨ + γk(σRM

k−1)1+α
)

+

√√√√ n∑
k=n0(n)+1

γk(σRM
k )2,

εRP
n :=

1

b̄n

n∑
k=n0(n)+1

bk
(
γ
− 1−αΨ

2

k (σRM
k )1+αΨ + (σRM

k−1)1+α + σRM
k−1(εRM

n )α
)

= o(σn)

(2.14)

and ( 1

b̄n

n∑
m=n0(n)+1

bm(σRM
m )2

)(1+αΦ)/2

= o(σn). (2.15)

Under the above assumptions the following is true:
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1. CLT for the coefficients. On Mconv, one has

σ−1
n (X̄n − X̄∗n)

stably
=⇒

(
Df(X∞)

∣∣
NX∞M

)−1
ΠNX∞M

N (0,Γ), (2.16)

where the right-hand side stands for the random distribution being obtained
when applying the F∞-measurable transform

(
Df(X∞)

∣∣
NX∞M

)−1
ΠNX∞M

onto a

normally distributed random variable with mean zero and covariance Γ.

2. CLT for the F -performance. On Mconv, one has

2σ−2
n (F (X∞)− F (X̄n))

stably
=⇒

∣∣(Df(X∞)
∣∣
NX∞M

)−1/2
ΠNX∞M

N (0,Γ)
∣∣2, (2.17)

where the right-hand side stands for the random distribution being obtained when
applying the respective F∞-measurable operations onto a normally distributed
random variable with mean zero and covariance Γ.

Remark 2.10. If we, additionally, assume in the theorem that there exists L > 0, so that
for every x ∈M , the differential Df(x) satisfies, for every v ∈ NxM ,

〈v,Df(x), v〉 ≤ −L|v|2,

then assumption (2.9) can be relaxed to

bn+1γn
bnγn+1

= 1 + o(γn), lim sup
n→∞

1

γn

σRM
n−1 − σRM

n

σRM
n

< L, σRM
n−1 ≈ σRM

n .

We outline the structure of the proof of Theorem 2.9. Overall, we follow the martin-
gale CLT approach introduced in [36]. The proof is based on a martingale CLT given
in [19] that is generalised in the appendix (see Theorem A.5) to stable convergence
restricted to non-trivial events. To prove the result we first analyse linear systems (the
particular case where f is a matrix-multiplication) in Section 5. The general results are
proved by representing the iterates of the Robbins-Monro scheme in an appropriate
coordinate system and comparing the non-linear system with an appropriate linear
system. Appropriate coordinate representations are introduced and analysed in Sec-
tion 3. In order to control the perturbations, we derive an L2-estimate in Section 4,
see Theorem 4.1. The proof of the main results is carried out in Section 7, where the
representation of the orthogonal coordinates in terms of a perturbed system can be
found in (7.1). In order to keep the presentation simple, we collect and prove further
technical estimates in Section 6.

3 Geometric preliminaries

In this section, we discuss some geometric properties of the dζ -dimensional stable
manifold M . First, we derive that for an approximation problem (F,M) in sufficiently
small neighbourhoods of M the strength of attraction is uniformly bounded away from
zero. Afterwards, we discuss the well-definedness and regularity of the projection that
maps every point to its nearest neighbour in M .

Definition 3.1. Let (F,M) be an approximation problem. We call an open and bounded
set U ⊂ Rd intersecting M (F,M)-attractor with stability L and bound C, for C ≥ L > 0,
if

(i) M̄ ∩ U = M ∩ U and

(ii) for every x ∈M ∩ U and v ∈ NxM

−C|v|2 ≤ 〈v,Df(x)v〉 ≤ −L|v|2. (3.1)
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Lemma 3.2. Let (F,M) be an approximation problem and x ∈M , then x admits an open
neighbourhood U and constants C,L > 0 such that U is an (F,M)-attractor with stability
L and bound C.

Proof. Let Ψ : U → UΦ be a C1-diffeomorphism with U being an open neighbourhood of
x and UΦ ⊂ Rd such that Ψ(U ∩M) = UΦ ∩ (Rdζ × {0}dθ ).

First, we show that M̄ ∩U = M ∩U . Let z ∈ M̄ ∩U . Then there exists a M ∩U -valued
sequence (zn)n∈N with zn → z. Thus,

Ψ(zn) =

(
Ψζ(zn)

0

)
→ Ψ(z) with Ψζ(xn) = (Ψ1(xn), . . . ,Ψdζ (xn)).

Consequently, Ψi(z) = 0 for all i > dζ and, hence, z ∈M .
Second we show that for every bounded set U ′ ⊂ U with U ′ ⊂ U there exist C,L > 0

such that for all z ∈M ∩ U ′ and v ∈ NxM

−C|v|2 ≤ 〈v,Df(z)v〉 ≤ −L|v|2.

It suffices to show that

C := {(z, v) ∈ Rd ×Rd : z ∈M ∩ U ′, v ∈ NzM, |v| = 1}

is a compact set since then C and L can be chosen as

−C = min
(z,v)∈C

〈v,Df(z)v〉 and − L = max
(z,v)∈C

〈v,Df(z)v〉

with the minimum and maximum both being obtained and being in (−∞, 0). Since C is
bounded it remains to prove closedness. Let (zn, vn)n∈N be a C-valued sequence that
converges to (z, v). Since M ∩ U ′ = M ∩ U ′ is compact we have that z ∈ M ∩ U ′. We
denote by Φ the inverse of Ψ and note that for all vectors w ∈ Rdζ × {0}, ∂wΦ(zn) is in
TznM which is perpendicular to vn ∈ NznM . Hence,

0 = 〈∂wΦ(zn), vn〉 → 〈∂wΦ(z), v〉

and v ⊥ ∂wΦ(z). Since the considered vectors ∂wΦ(z) span the tangent space TzM it
follows that v ∈ (TzM)⊥ = NzM and we are done.

Remark 3.3. Let (F,M) be an approximation problem. Then, for x ∈M , equation (3.1)
is satisfied for all v ∈ NxM if the spectrum of Df(x) restricted to NxM is contained in
[−C,−L]. Indeed, there is always an orthonormal basis of eigenvectors v1, . . . , vd with
v1, . . . , vdζ spanning TxM and vdζ+1, . . . , vd spanning NxM and the equivalence follows
by elementary linear algebra.

The remark entails the following corollary.

Corollary 3.4. Let U be a (F,M)-attractor with stability L and bound C, x ∈ U ∩M and
v ∈ NxM . Then for every γ ∈ [0, C−1] one has

|v + γDf(x)v| ≤ (1− γL)|v|.

Proof. By Remark 3.3, the spectrum of the restricted mapping Df(x)
∣∣
NxM

: NxM →
NxM is contained in [−C,−L]. Hence, the spectrum of the restricted mapping (id +

γDf(x))
∣∣
NxM

is contained in [1− γC, 1− γL] ⊂ [0, 1− γL] which immediately implies the
result since the latter mapping is diagonalizable.

For the next proposition we need the additional assumption, that the error of the
first-order Taylor expansion of f is locally uniform. If f has regularity αf around M for
some αf ∈ (0, 1], this follows immediately.

EJP 28 (2023), paper 57.
Page 12/48

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP947
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


CLTs for SGD with averaging for stable manifolds

Proposition 3.5. Let U ⊂ Rd be an (F,M)-attractor with stability L and bound C.
Suppose that for x ∈ U and x′ ∈ U ∩M

f(x) = Df(x′)(x− x′) + o(|x− x′|) as |x− x′| → 0

with the small o term being uniform in the choice of x and x′. Then for every L′ ∈ (0, L)

and δ > 0 there exists ρ > 0 such that for

Uρδ :=
⋃
y∈M :

d(y,Uc)>δ

Bρ(y) (3.2)

one has for all x ∈ Uρδ and γ ∈ [0, C−1]

d(x+ γf(x),M) ≤ (1− γL′)d(x,M). (3.3)

Proof. Choose ρ ∈ (0, 1
2δ] such that for all x, x′ ∈ U with x′ ∈M and |x′ − x| ≤ ρ

|f(x)−Df(x′)(x− x′)| ≤ (L− L′)|x− x′|.

Let x ∈ Uρδ . Then, by definition of Uρδ there exists x′ ∈ M with d(x, x′) < ρ and
d(x′, U c) > δ. We denote by z ∈ M̄ an element with

d(x, z) = d(x, M̄) = d(x,M) < ρ.

Note that d(x′, z) ≤ d(x′, x) + d(x, z) < 2ρ ≤ δ so that z ∈ Bδ(x
′) ⊂ U and, hence,

z ∈ M̄ ∩ U = M ∩ U . Take v ∈ TzM and a C1-curve γ : (−1, 1) → M with γ(0) = z and
γ̇(0) = v. Then, since t 7→ d(γ(t), x)2 has a minimum in 0 we get that

0 =
d

dt
d(γ(t), x)2

∣∣∣
t=0

= 2〈z − x, v〉.

Thus x− z ∈ NzM . With Lemma 3.4 we obtain that for γ ∈ [0, C−1]

d(x+ γf(x),M) ≤ d(x+ γf(x), z) ≤ |(Id + γDf(z))(x− z)|+ γ|f(x)−Df(z)(x− z)|
≤ (1− γL)|x− z|+ γ(L− L′)|x− z| = (1− γL′)d(x,M).

We consider the projection onto M which is defined as follows. For x ∈ Rd we set

x∗ = argminy∈Md(x, y),

if there is a unique minimizer.
We will show that for a nice representation Φ : UΦ → U of M on some open and

bounded set U (in the sense of Definition 2.4) and its inverse Ψ we have

x∗ = Φ(Ψζ(x), 0)

for all x ∈ U that are sufficiently close to M . Here, Ψζ represents the first dζ coordinates
of Ψ, that is Ψζ(x) = (Ψ1(x), . . . ,Ψdζ (x)) for x ∈ U .

Lemma 3.6. Let δ > 0 and U ⊂ Rd an open and bounded set and Φ : UΦ → U a nice
representation for M on U .

(i) There exists ρ ∈ (0, δ/4] such that for every x ∈M with d(x, U c) > δ/2 and θ ∈ Rdθ
with |θ| < ρ it holds

Ψ(x) +

(
0

θ

)
=

(
Ψζ(x)

θ

)
∈ UΦ. (3.4)
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(ii) Suppose that ρ > 0 is as in (i). Then, for every x ∈ Uρδ , x∗ is well-defined and one
has the following:

(a) x∗ = Φ(Ψζ(x), 0),
(b) the segment connecting x and x∗ lies in U and
(c) |Ψθ(x)| = d(x,M) and d(x∗, U c) > δ/2.

Proof. (i): Let δ > 0 and note that

M ′ := {x ∈ M̄ : d(x, U c) ≥ δ/2} ⊂ M̄ ∩ U = M ∩ U

is a compact set. Hence, the continuous mapping

M ′ 3 x 7→ d(Ψ(x), U cΦ)

attains its minimum, say ρ′, which is strictly positive since Ψ does not attain values in
the closed set U cΦ. Obviously, property (i) holds for ρ = min(ρ′, δ/4).

(ii): Let ρ ∈ (0, δ/4] as in (i) and let x ∈ Uρδ . First we show that an element z ∈ M̄
with

d(x, z) = d(x, M̄) = d(x,M)

lies in M ∩ U and satisfies x − z ∈ NzM . By definition of Uρδ there exists x′ ∈ M with
d(x, x′) < ρ and d(x′, U c) > δ. Thus d(x′, z) ≤ d(x′, x) + d(x, z) < 2ρ and d(z, U c) ≥
d(x′, U c)− d(x′, z) > δ − 2ρ ≥ δ/2 so that z ∈ U and hence also z ∈ M̄ ∩ U = M ∩ U .

Take v ∈ TzM and a C1-curve γ : (−1, 1)→M ∩ U with γ(0) = z and γ̇(0) = v. Then,
since t 7→ d(γ(t), x)2 has a minimum in 0 we get that

0 =
d

dt
d(γ(t), x)2

∣∣∣
t=0

= 2〈z − x, v〉.

Thus x − z ∈ NzM . We recall that |x − z| = d(x, z) < ρ so that as consequence of the
representation property (2.2) there exists θ ∈ Rdθ with |θ| = |x− z| < ρ and

x = z + Pz(θ).

Moreover, recalling that d(z, U c) > δ/2 we get with (i) that (Ψζ(z), θ) is in UΦ and hence
x = Φ(Ψζ(z), θ). An application of Ψζ yields that Ψζ(x) = Ψζ(z) so that

z = Φ(Ψζ(z), 0) = Φ(Ψζ(x), 0)

is the unique minimizer and x∗ = z. Furthermore, with (3.4) the segment connecting x∗

and x, which is γ : [0, 1]→ Rd, t 7→ Φ(Ψζ(x), tθ) lies in U and

|Ψθ(x)| = |θ| = d(z, x) = d(x,M).

Proposition 3.7. Let (F,M) be an approximation problem with regularity (αf , αΦ, αΨ)

and suppose that all assumptions of Theorem 2.9 are satisfied. We call a triple (U, δ, ρ)

consisting of an open set U ⊂ Rd and δ, ρ > 0 feasible, if

• there exists a nice representation Φ : UΦ → U for M on U with regularity
(αf , αΦ, αΨ),

• U is an (F,M)-attractor with stability L and bound C for some values L,C > 0,

• (1U (Xn−1)Dn)n∈N is a sequence of L2-martingale differences satisfying (2.11),

• δ > 0 and ρ ∈ (0, δ/4] are such that (i) of Lemma 3.6 is true and inequality (3.3)
holds for a L′ ∈ (0, L).
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Then there exists a countable set of feasible triples (U, δ, ρ) such that the respective
subsets Uρδ of Rd cover the manifold M .

Proof. For every x ∈ Rd and every feasible triple (U, δ, ρ) we denote by

Rx(U, δ, ρ) = sup{r ≥ 0 : Bx(r) ⊂ Uρδ }

the radius of the triple (U, δ, ρ) at x. Note that by definition for x, y ∈ Rd, |Rx(U, δ, ρ)−
Ry(U, δ, ρ)| ≤ |x− y| so that the function

Rd 3 x 7→ Rx = sup{Rx(U, δ, ρ) : (U, δ, ρ) is feasible}

is Lipschitz continuous with Lipschitz constant 1. (Possibly, all function values are
infinite.)

Now fix a κ > 0 and a countable set Iκ ⊂ Rd such that⋃
z∈Iκ

Bz(κ/3) = Rd.

We construct a collection Uκ of feasible triples as follows. For every z ∈ Iκ with Rz ≥ 2κ/3

we add a triple with z-radius greater or equal to κ/2. For every z ∈ Iκ with Rz < 2κ/3

we do not add a triple. Then Uκ is countable and for every x ∈ M with Rx ≥ κ there
exists a z ∈ Iκ with |x− z| ≤ κ/3. Hence Rz ≥ 2κ/3 and we thus added a triple (U, δ, ρ)

with z-radius greater or equal to κ/2 which obviously contains x. Consequently, Uκ
is a countable set of feasible triples that covers at least {x ∈ M : Rx ≥ κ}. By a
diagonalisation argument, we obtain a countable set

⋃
n∈N U1/n of feasible triples that

covers
⋃
n∈N{x ∈M : Rx ≥ 1/n} = M .

Remark 3.8. We consider the setting of Theorem 2.9. Let U be a countable set of
feasible triples that covers M as in Lemma 3.7. For a feasible triple (U, δ, ρ) the set Uρδ
is open and we consider the event Uconv

δ,ρ that (Xn) converges to an element of M ∩ Uρδ .
Then the covering property of U ensures that

Mconv =
⋃

(U,δ,ρ)∈U

Uconv
δ,ρ

and by Lemma A.3 the proof of Theorem 2.9 is achieved once we showed stable conver-
gence on Uconv

δ,ρ for general feasible triples (U, δ, ρ).

4 L2-error bounds

In this chapter, we control the behaviour of the Robbins-Monro scheme around an
(F,M)-attractor at late times in terms of the distance to M in the L2-norm. We will
later need these estimates to control errors that we infer when comparing the original
dynamical system with a linearised one.

As in the chapters before, let (F,M) be an approximation problem and let U ⊂ Rd
be an (F,M)-attractor with stability L and bound C. We denote by f = DF the Jacobi
matrix of F and consider a dynamical system (Xn) given by

Xn = Xn−1 + γn(f(Xn−1) +Rn +Dn︸ ︷︷ ︸
=Un

) (4.1)

with

• X0 ∈ Rd is a fixed deterministic starting value,

• Rn being Fn−1-measurable and
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• Dn is Fn-measurable and (1U (Xn−1)Dn)n∈N is a sequence of square integrable
martingale differences.

Thus, in this chapter we also allow the process to have a predictable bias which should
be of lower order than the martingale noise. This assumption will be made precise in the
following theorem. We obtain the process introduced in (1.1) by choosing Rn ≡ 0.

Theorem 4.1. Let U ⊂ Rd be an (F,M)-attractor with stability L and bound C. Suppose
that for x ∈ U and x′ ∈ U ∩M

f(x) = Df(x′)(x− x′) + o(|x− x′|) as |x− x′| → 0

with the o-term being uniform in x and x′. Let (γn)n∈N and (σn)n∈N sequences of strictly
positive reals with limn→∞ γn = 0,

∑∞
n=1 γn =∞ and

L′′ := lim sup
n→∞

1

γn

σn−1 − σn
σn

< L (4.2)

and suppose that (Xn)n∈N0 satisfies recursion (4.1). Let δ, ρ > 0 be such that Prop. 3.5 is
true for a L′ ∈ (L′′, L), that is for all x ∈ Uρδ and γ ∈ [0, C−1] one has

d(x+ γf(x),M) ≤ (1− γL′)d(x,M).

Furthermore, assume that

lim sup
n→∞

σ−1
n E

[
1{Xn−1 ∈ Uρδ }|Rn|

2
]1/2

<∞ (4.3)

and

lim sup
n→∞

( σn√
γn

)−1

E[1{Xn−1 ∈ Uρδ }|Dn|2]1/2 <∞. (4.4)

Then, there exists a C̃ ∈ (0,∞) such that for all N ∈ N,

lim sup
n→∞

σ−1
n E

[
1{Xm∈Uρδ for m=N,...,n−1}d(Xn,M)2

]1/2
< C̃. (4.5)

Proof. Let L′ ∈ (L′′, L) and δ, ρ > 0 as in the theorem. By monotonicity it suffices to
restrict attention to large N . For sufficiently large constants C1 and C2 we can fix N0 ∈ N
such that for all n ≥ N0

γn ≤ C−1, E
[
1{Xn−1 ∈ Uρδ }|Rn|

2
]
≤ C1σ

2
n and E[1{Xn−1 ∈ Uρδ }|Dn|2] ≤ C2

σ2
n

γn
. (4.6)

Now fix N ≥ N0 and consider

Un = {∀l = N, . . . , n : Xl ∈ Uρδ }, for n ≥ N.

One has for n > N

E[1Un−1
d(Xn−1 + γn(f(Xn−1) +Rn +Dn),M)2]

≤ E[1Un−1
d(Xn−1 + γn(f(Xn−1) +Rn),M)2]︸ ︷︷ ︸

=:I1(n)

+ γ2
nE[1Un−1

|Dn|2]︸ ︷︷ ︸
=:I2(n)

. (4.7)

Moreover, by (3.3) one has on the event Un−1 for arbitrary a > 0

d(Xn−1 + γn(f(Xn−1) +Rn),M)2

≤ (1− L′γn)2d(Xn−1,M)2 + 2γnd(Xn−1,M)|Rn|+ γ2
n|Rn|2

≤ ((1− L′γn)2 + aγn) d(Xn−1,M)2 + (
1

a
γn + γ2

n)|Rn|2.
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Consequently, with (4.6)

I1(n) ≤ ((1− L′γn)2 + aγn)E[1Un−1d(Xn−1,M)2] + C1(
1

a
γn + γ2

n)σ2
n.

Now note that as n→∞, (1− L′γn)2 = 1− 2L′γn + o(γn). Moreover,

σn−1

σn
= 1 +

σn−1 − σn
σn

≤ 1 + L′′γn + o(γn)

so that

σ2
n−1

σ2
n

((1− L′γn)2 + aγn) ≤ (1 + 2L′′γn + o(γn))(1− (2L′ − a)γn + o(γn))

= 1− (2L′ − 2L′′ − a)γn + o(γn).

Recall that L′ > L′′ and we fix a, b > 0 such that 2L′ − 2L′′ − a > b. Then, for sufficiently
large n ∈ N

σ2
n−1

σ2
n

((1− L′γn)2 + aγn) ≤ 1− bγn

and by increasing N we can guarantee that the previous inequality holds for all n > N .
Thus,

σ−2
n I1(n) ≤ (1− bγn)σ−2

n−1E[1Un−1d(Xn−1,M)2] + C1(
1

a
+

1

C
)γn.

Additionally, we get with (4.6) that σ−2
n I2(n) ≤ C2γn. This implies that the expectation

ϕn := σ−2
n E[1Un−1d(Xn,M)2] (n ≥ N)

satisfies for n > N

ϕn ≤ σ−2
n (I1(n) + I2(n)) ≤ (1− bγn)ϕn−1 + (C1(a−1 + C−1) + C2)︸ ︷︷ ︸

=:C3

γn.

It follows that

ϕn −
C3

b
≤ (1− bγn)

(
ϕn−1 −

C3

b

)
and by iteration that

ϕn −
C3

b
≤
(
ϕN −

C3

b

) n∏
l=N+1

(1− bγl)→ 0,

where convergence follows since
∑∞
l=N+1 γl =∞. Therefore,

lim sup
n→∞

ϕn ≤
C3

b
.

Note that the statement remains valid with the same constant on the right-hand side
when increasing N .

5 The Ruppert-Polyak system for linear systems

In this section, we provide a central limit theorem for a particular linear system. It
will be the main technical tool for proving Theorem 2.9. More explicitly, we will show
that on the level of coordinate mappings the system is approximated up to lower terms
by the system analysed here.
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Again (γn)n∈N denotes a monotonically decreasing sequence of non-negative reals
which converges to 0. Additionally, (n0(n))n∈N is an increasing N0-valued sequence with
n0(n) ≤ n that tends to infinity and for each n ∈ N, let Hn be a Fn0(n)-measurable matrix.
We set for n, i, j ∈ N with i ≤ j

Hn[i, j] =

j∏
r=i+1

(1+ γrHn) and H̄n[i, j] =

j∑
r=i

γibr
bi
Hn[i, r]. (5.1)

Based on a sequence (Dl)l∈N of Rd-valued random variables we consider the dynamical
system (Ξn)n∈N with

Ξn :=
1

b̄n

n∑
i=n0(n)+1

biH̄n[i, n]Di (5.2)

and

b̄n =

n∑
i=n0(n)+1

bi.

Theorem 5.1. Let A ∈ F∞ and (δn)n∈N be a sequence of strictly positive reals. We
assume the following assumptions:

1. Technical assumptions on the parameters.

nγn →∞,
bn+1γn
bnγn+1

= 1 + o(γn)

and for all sequences (L(n))n∈N with n0(n) ≤ L(n) ≤ n and n−L(n) = o(n) one has

lim
n→∞

∑n
k=L(n)+1(bkδk)2∑n
k=n0(n)+1(bkδk)2

= 0.

2. Assumptions on Hn. (Hn)n∈N is a sequence of symmetric matrices with each Hn

being Fn0(n)-measurable and

lim
n→∞

Hn = H, almost surely, on A,

for a random symmetric matrix H with maxσ(H) < 0.

3. Assumptions on Dk. (Dk)k∈N is a sequence of square integrable martingale differ-
ences that satisfies for a random matrix Γ, on A,

(a) lim
m→∞

∥∥cov(δ−1
m Dm|Fm−1)− Γ

∥∥ = 0, almost surely, and

(b) for σn =
1

b̄n

√√√√ n∑
m=n0(n)+1

(bmδm)2 and all ε > 0, one has

lim
n→∞

σ−2
n

n∑
m=n0(n)+1

b2m
b̄2n
E
[
1{|Dm|> εb̄nσn

bm
}|Dm|

2
∣∣Fm−1

]
= 0, in probability.

Then, it follows that

σ−1
n Ξn

stably
=⇒ H−1N (0,Γ), on A,

where the right-hand side stands for the random distribution being obtained when
applying the F∞-measurable matrix H−1 onto a normally distributed random
variable with mean zero and covariance Γ.
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The proof relies on two technical estimates taken from [7]. Based on a monotonically
decreasing sequence (γn)n∈N of strictly positive reals we define times (tn)n∈N0

via

tn =

n∑
m=1

γm.

We cite [7, Lemma 2.3].

Lemma 5.2. If limn→∞ nγn =∞, then for every C > 0

lim
n→∞

1

n
#{l ∈ {1, . . . , n} : tn − tl ≤ C} = 0.

We cite [7, Lemma 2.2].

Lemma 5.3. We define for each l ∈ N the function Fl : [0,∞) → [0,∞) by demanding
that for every k ≥ l and s ∈ [tk−1 − tl−1, tk − tl−1)

Fl(s) =
γlbk
γkbl

.

If bn+1γn
bnγn+1

= 1 + o(γn), then

(i) Fl converges pointwise to 1

(ii) there exists a measurable function F̄ and n0 ∈ N such that Fl ≤ F̄ for all l ≥ n0 and∫ ∞
0

F̄ (s)(s ∨ 1)e−Lsds <∞.

The following lemma is a slight variation of [7, Lemma 2.6].

Lemma 5.4. Let (Hn)n∈N be a (deterministic) sequence of symmetric matrices that
converges to a matrix H with σ(H) ⊂ (−∞, 0). If bn+1γn

bnγn+1
= 1 + o(γn) then H̄n as defined

in (5.1) satisfies

lim sup
l,n→∞, tn−tl→∞

∥∥H̄n[l, n] +H−1
∥∥ = 0.

Proof. Let l, k ∈ N0 with l ≤ k. We will first provide an estimate for e(tk−tl)Hn−
∏k
r=l+1(1+

γrHn) on the basis of the following telescoping sum representation:

e(tk−tl)Hn −
k∏

r=l+1

(1+ γrHn) =

k∑
q=l+1

e(tq−1−tl)Hn(eγqHn − (1+ γqHn))

k∏
r=q+1

(1+ γrHn).

(5.3)

Each term in the latter sum is a product of three matrices and we will analyse the norm
of these individually.

We will use that the spectrum of a matrix depends continuously on the matrix. Let
λ(1), . . . , λ(d) denote the eigenvalues of H. For n ∈ N one can enumerate the eigenvalues
λ

(1)
n , . . . , λ

(d)
n of Hn in such a way that limn→∞ λ

(i)
n = λ(i) for every i = 1, . . . , d (see for

instance [3, VI.1.4]). By assumption, σ(H) ⊂ (−∞, 0) so that there exist C,L > 0, n0 ∈ N
with

σ(Hn) ⊂ [−C,−L] for all n ≥ n0.

Next note that for δ ≥ 0, 1 + δHn has eigenvalues 1 + δλ
(1)
n , . . . , 1 + δλ

(d)
n . These are

all elements of the interval [1 − δC, 1 − δL] and provided that δ ≤ 1/C we get that the
spectral radius and likewise the matrix norm of 1 + δHn are bounded by 1 − δL. By
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possibly increasing the value of n0 we can guarantee that for all k ≥ n0, γk ≤ 1
C . For

such n0 we conclude that for all k ≥ l ≥ n0 and n ≥ n0,

‖Hn[l, k]‖ =
∥∥∥ k∏
r=l+1

(1+ γrHn)
∥∥∥ ≤ k∏

r=l+1

(1− γrL)︸ ︷︷ ︸
≤e−γrL

≤ e−L(tk−tl). (5.4)

Moreover, e(tk−tl)Hn has eigenvalues exp{(tk − tl)λ(1)
n }, . . . , exp{(tk − tl)λ(d)

n } so that

‖e(tk−tl)Hn‖ ≤ e−L(tk−tl).

Recall further that for a d× d-matrix A

‖eA − (1+A)‖ ≤ 1

2
e‖A‖‖A‖2.

Altogether, we thus get with (5.3) that

‖e(tk−tl)Hn −Hn[l, k]‖ =
∥∥∥e(tk−tl)Hn −

k∏
r=l+1

(1+ γrHn)
∥∥∥

≤ 1

2
e−(tk−tl)L+γ1Leγ1‖Hn‖‖Hn‖2

k∑
q=l+1

γ2
q

≤ C ′e−(tk−tl)Lγl(tk − tl)

(5.5)

with C ′ := supn≥n0
‖Hn‖2eγ1(L+‖Hn‖) ≤ C2eγ1(L+C) <∞.

We note that, as Hn are symmetric matrices with σ(Hn) ⊂ [−C,−L] for all n ≥ n0,
Hn is invertible and

H−1
n → H−1.

Therefore, it suffices to show that

lim sup
l,n→∞, tn−tl→∞

∥∥H̄n[l, n] +H−1
n

∥∥ = 0.

To establish this we consider for n ≥ l ≥ n0, I1 = I1(l, n) = H̄n[l, n],

I2 = I2(l, n) =
γl
bl

n∑
k=l

bke
(tk−tl)Hn and I3 = I3(l, n) =

n∑
k=l

γke
(tk−tl)Hn

and omit the (l, n)-dependence in the notation.
We analyse ‖I1 − I2‖. Using Fl as introduced in Lemma 5.3 we get with (5.5) that

‖I1 − I2‖ ≤
n∑
k=l

γlbk
bl
‖Hn[l, k]− e(tk−tl)Hn‖

≤ C ′γl
n∑
k=l

γlbk
blγk

e−(tk−tl)L(tk − tl)γk

= C ′γl

n∑
k=l

∫ tk−tl−1

tk−1−tl−1

Fl(s)e
−(tk−tl)L(tk − tl) ds.

Each integral is taken over an interval (tk−1 − tl−1, tk − tl−1] and for the respective s we
get

tk − tl ≤ tk−1 − tl−1 ≤ s and tk − tl = tk − tl−1 − γl ≥ s− γl.
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Thus,

‖I1 − I2‖ ≤ C ′eγ1Lγl

∫ tn−tl−1

0

Fl(s)e
−sLs ds.

By Lemma 5.3, there exists an integrable majorant for the latter integrand. Hence,
‖I1 − I2‖ is uniformly bounded and converges to zero as l, n→∞ with l ≤ n.

We analyse ‖I2 − I3‖. One has

I2 − I3 =

n∑
k=l

(γlbk
blγk

− 1
)
γke

(tk−tl)Hn =

n∑
k=l

∫ tk−tl−1

tk−1−tl−1

(
Fl(s)− 1

)
e(tk−tl)Hn ds

and using that ‖e(tk−tl)Hn‖ ≤ e−L(tk−tl) we argue as before to get that

‖I2 − I3‖ ≤ eγ1L

∫ tn−tl−1

0

|Fl(s)− 1| e−Ls ds.

Again there exists an integrable majorant. Hence, ‖I2−I3‖ is uniformly bounded and with
dominated convergence and Lemma 5.3 we conclude that the latter integral converges
to zero as l, n→∞ with l ≤ n.

We analyse ‖I3 +H−1
n ‖. Using that H−1

n = −
∫∞

0
esHn ds we write

I3 +H−1
n =

n∑
k=l

∫ tk−tl−1

tk−1−tl−1

(e(tk−tl)Hn − esHn) ds−
∫ ∞
tn−tl−1

esHn ds.

For s ∈ (tk−1 − tl−1, tk − tl−1]

‖e(tk−tl)Hn − esHn‖ = ‖e(tk−tl)Hn(1− e(s−(tk−tl)Hn))‖

≤ e−(tk−tl)L(s− (tk − tl))Ce(s−(tk−tl))C ≤ C ′′e−Lsγl

with C ′′ = Ce(C+L)γ1 . Hence, we get with ‖esHn‖ ≤ e−Ls

‖I3 +H−1
n ‖ ≤ C ′′γl

∫ tn−tl−1

0

e−Ls ds+

∫ ∞
tn−tl−1

e−Ls ds ≤ C ′′

L
γl +

1

L
e−L(tn−tl−1).

Letting l, n→∞ with tn − tl →∞ the previous term tends to zero.
Altogether, it thus follows that

lim sup
l,n→∞, tn−tl→∞

∥∥H̄n[l, n] +H−1
∥∥︸ ︷︷ ︸

≤‖I1−I2‖+‖I2−I3‖+‖I3+H−1
n ‖+‖H−1

n −H−1‖

= 0.

Lemma 5.5. Let L,C ∈ (0,∞). If bn+1γn
bnγn+1

= 1 + o(γn) then there exist constants C̃ < ∞
and Ñ ∈ N such that for every symmetric matrix H with

σ(H) ⊂ [−C,−L]

one has for every l, n ∈ N with Ñ ≤ l ≤ n

‖H̄[l, n]‖ ≤ C̃,

where we denote

H[i, j] =

j∏
r=i+1

(1+ γrH) and H̄[i, j] =

j∑
r=i

γibr
bi
H[i, r].
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Proof. By Lemma 5.3, there exists Ñ ∈ N and a measurable function F̄ such that Fl ≤ F̄
for all l ≥ Ñ with ∫ ∞

0

F̄ (s)e−Lsds <∞.

By possibly increasing Ñ we can guarantee that γl <
1
C for all l ≥ Ñ . Note that

estimate (5.4) prevails for arbitrary symmetric matrices H with σ(H) ⊂ [−C,−L]. Hence,
for l, n ∈ N with Ñ ≤ l ≤ n

‖H̄[l, n]‖ =
∥∥∥ n∑
k=l

γlbk
bl
H[l, k]

∥∥∥ ≤ n∑
k=l

γlbk
bl

e−L(tk−tl)γk

=

n∑
k=l

∫ tk−tl−1

tk−1−tl−1

γlbk
blγk

e−L(tk−tl)γk ds ≤ eγ1L

∫ tn−tl−1

0

Fl(s)e
−sLds

≤ eγ1L

∫ ∞
0

F̄ (s)e−Lsds <∞,

which proves uniform boundedness.

We are now in the position to prove the main result of this section.

Proof of Theorem 5.1. For N ∈ N, L,C ∈ (0,∞) and n ≥ N we consider the events

AN..n,C,L = {σ(Hm) ⊂ [−C,−L] for m = N, . . . , n} and AN..∞,C,L =
⋂
m≥N

AN..m,C,L.

We will use Theorem A.6 to verify the statement on the event AN..∞,C,L ∩A. By assump-
tion, Hn → H, almost surely, on A, so that in particular, almost surely, on A,

minσ(Hn)→ minσ(H) and maxσ(Hn)→ maxσ(H) < 0.

Hence, up to nullsets,
A ⊂

⋃
N,r,l∈N

AN..∞,r, 1l
.

It thus suffices to prove the statement on A ∩AN..∞,C,L for fixed N ∈ N and C,L > 0,
see Lemma A.3, and we briefly write for n ≥ N

An = AN..n,C,L and A∞ = AN..∞,C,L.

We denote by Ñ and C̃ the respective constants appearing in the statement of
Lemma 5.5 and restrict attention to n ∈ N with n0(n) ≥ Ñ∨N . We will apply Theorem A.6

with (Z
(n)
m )m=1,...,n given by

Z(n)
m = 1An0(n)

1{m>n0(n)}
bm
b̄nσn

H̄n[m,n]Dm,

and with A and Γ in the Lemma replaced by A∩A∞ and H−1Γ(H−1)†, respectively. Once
we have verified that Theorem A.6 is applicable we conclude that, on A ∩A∞,

1

σn
Ξn =

n∑
m=1

Z(n)
m

stably
=⇒ H−1N (0,Γ)

which finishes the proof.
It remains to verify the assumptions of Theorem A.6. For m = 1, . . . , n0(n) we

have Z(n)
m = 0 and, for m = n0(n) + 1, . . . , n, 1An0(n)

H̄n[m,n] is Fn0(n)-measurable and
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hence Fm−1-measurable, and the respective matrix norm is uniformly bounded by C̃.

Consequently, (Z
(n)
m )m=1,...,n is a sequence of martingale differences satisfying for ε > 0

σ−2
n

n∑
m=n0(n)+1

E
[
1An0(n)

1{| bm
b̄n
H̄n[m,n]Dm|/σn≥ε}

∣∣∣bm
b̄n
H̄n[m,n]Dm

∣∣∣2∣∣∣Fm−1

]

≤ C̃2σ2
n

n∑
m=n0(n)+1

b2m
b̄2n
E
[
1{|Dm|≥ εb̄nσnC̃bm

}|Dm|
2
∣∣∣Fm−1

]
and the latter term tends to zero in probability on A, by assumption.

It remains to control the asymptotics of

Vn :=

n∑
m=1

cov(Z(n)
m |Fm−1)

= σ−2
n

n∑
m=n0(n)+1

b2mδ
2
m

b̄2n
1An0(n)

H̄n[m,n]cov(δ−1
m Dm|Fm−1)H̄n[m,n]†

on A ∩A∞. By Lemma 5.2, we can choose a sequence (L(n)) such that n0(n) ≤ L(n),

tn − tL(n) →∞ and n− L(n) = o(n).

Now, by assumption,
n∑

m=L(n)+1

(bmδm)2 = o((σnb̄n)2).

As consequence of Assumption (3.a)

κ := sup
m≥N

∥∥cov(δ−1
m Dm|Fm−1)

∥∥
is almost surely finite on A. We thus get that on A ∩A∞∥∥∥ n∑

m=L(n)+1

(
cov(Z(n)

m |Fm−1)− σ−2
n

b2mδ
2
m

b̄2n
H−1Γ(H−1)†

)∥∥∥
≤ σ−2

n

n∑
m=L(n)+1

b2mδ
2
m

b̄2n

(∥∥H̄n[m,n] cov(δ−1
m Dm|Fm−1) H̄n[m,n]†

∥∥+
∥∥H−1Γ(H−1)†

∥∥)

≤ 2κC̃2(σnb̄n)−2
n∑

m=L(n)+1

(bmδm)2 → 0, almost surely, on A ∩A∞.

(5.6)

By assumption,

ρn := sup
m=n0(n)+1,...,n

∥∥cov(δ−1
m Dm|Fm−1)− Γ

∥∥→ 0, almost surely, on A,

and, by Lemma 5.4,

ρ′n := sup
m=n0(n)+1,...,L(n)

∥∥H̄n[m,n] +H−1
∥∥→ 0, almost surely, on A.

Consequently, one has for m = n0(n) + 1, . . . , L(n), on A ∩A∞,

‖H̄n[m,n]cov(δ−1
i Dm|Fm−1)H̄n[m,n]† −H−1Γ(H−1)†‖

≤ ‖H̄n[m,n] +H−1‖‖cov(δ−1Dm|Fm−1)‖‖H̄n[m,n]†‖
+ ‖H−1‖‖cov(δ−1

m Dm|Fm−1)− Γ‖‖H̄n[m,n]†‖+ ‖H−1‖‖Γ‖‖H̄n[m,n]† + (H−1)†‖
≤ 2κC̃ρ′n + C̃2ρn
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and thus, on A ∩A∞,

∥∥∥ L(n)∑
i=n0(n)+1

(
cov(Z

(n)
i |Fi−1)− σ−2

n

b2i δ
2
i

b̄2n
H−1Γ(H−1)†

)∥∥∥ ≤ 2κC̃ρ′n + C̃2ρn → 0, a.s.

By definition, one has σ−2
n

∑n
i=n0(n)+1

b2i δ
2
i

b̄2n
= 1 so that together with (5.6) we obtain that

on A ∩A∞ ∥∥Vn −H−1Γ(H−1)†
)∥∥→ 0, almost surely.

This finishes the proof.

Remark 5.6. Theorem 5.1 remains true when replacing (σn)n∈N by (σ′n)n∈N given by

σ′n =
1

b̄n

√√√√ n∑
l=1

(blδl)2

and (n0(n))n∈N being a sequence with

n0(n)∑
i=1

b2i δ
2
i = o

( n∑
i=1

b2i δ
2
i

)
.

Indeed, in that case we have

σ2
n

(σ′n)2
= 1−

∑n0(n)
i=1 b2i δ

2
i∑n

i=1 b
2
i δ

2
i

→ 1.

6 Technical preliminaries

In this section, we provide some technical estimates. First, we deduce that the notion
of a regular function entails certain Taylor type error estimates. Technically, we need to
take care of the fact that segments connecting two points are not necessarily contained
in the domain of the function.

Lemma 6.1. Let U ⊂ Rd be an open and bounded set, g : U → Rd be a mapping and
αg ∈ (0, 1].

(i) If g has regularity αg, then for every δ > 0 there exists a constant Cg such that for
all x, y ∈ Uδ = {z ∈ U : d(z, U c) > δ}

(a) |g(x)| ∨ ‖Dg(x)‖ ≤ Cg,
(b) |g(y)− (g(x) +Dg(x)(y − x))| ≤ Cg|y − x|1+αg and
(c) ‖Dg(y)−Dg(x)‖ ≤ Cg|y − x|αg .

(ii) If g : U → Rd has regularity αg around a subset M ⊂ Rd, then there exists a
constant Cg such that for all x ∈M ∩ U and y ∈ U

(a) |g(x)| ∨ ‖Dg(x)‖ ≤ Cg and
(b) |g(y)− (g(x) +Dg(x)(y − x))| ≤ Cg|y − x|1+αg

and for all x, y ∈M ∩ U

(c) ‖Dg(y)−Dg(x)‖ ≤ Cg|y − x|αg .
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Proof. (i): g is continuous and thus bounded on the compact set Uδ ⊂ U so that
properties (a) and (c) follow from the Hölder continuity of Dg and the boundedness of
U . By Taylor’s formula property (b) holds for every x, y ∈ U with the constant sup ‖Dg‖
whenever the segment connecting x and y lies in U . Now suppose that properties (a)
and (c) are true for the constant C and that supx,y∈U d(x, y) ≤ C. We consider two points
x, y ∈ Uδ whose segment is not contained in U . Then we have that d(x, y) ≥ 2δ so that

|g(y)− (g(x) +Dg(x)(y − x))| ≤ |g(y)|+ |g(x)|+ |Dg(x)(y − x))|

≤ 2C + C2 ≤ 2C + C2

(2δ)1+αg
|y − x|1+αg .

Consequently, properties (a), (b) and (c) are true on Uδ for a sufficiently large constant Cg.
(ii): Note that properties (b) and (c) are true for a sufficiently large constant and

that (a) follows with the boundedness of U and (b).

Let now U denote an (F,M)-attractor with stability L > 0 and bound C and suppose
that Φ : UΦ → U is a nice representation for M on U of regularity (αf , αΦ, αΨ) with
αf , αΦ, αΨ ∈ (0, 1]. We fix δ > 0 and choose ρ ∈ (0, δ/4] as in (i) of Lemma 3.6 and again
denote by Uρδ the set

Uρδ =
⋃
y∈M :

d(y,Uc)>δ

Bρ(y).

Recall that by Lemma 3.6, for every x ∈ Uρδ there exists a unique closest element x∗ in
M and one has

x∗ = Φ(Ψζ(x), 0) ∈ U ∩M.

Now let (Xn) and (γn) as introduced in (1.1). We analyse the dynamical system based
on the nice representation introduced above. That means, for every n ∈ N, we define on
the event {Xn ∈ U} the coordinates(

ζn
θn

)
= Ψ(Xn) =

(
Ψζ(Xn)

Ψθ(Xn)

)
, (6.1)

where

Ψζ(x) =

Ψ1(x)
...

Ψdζ (x)

 and Ψθ(x) =

Ψdζ+1
(x)

...
Ψd(x)

 .

Crucial in our approach is the analysis of a linearised system. For a fixed element
x̄ = Φ(ζ̄, 0) ∈M ∩ U and every n ∈ N we define on the event that Xn−1 and Xn both are
in U the random variable Υn via(

ζn
θn

)
=

(
ζn−1

θn−1

)
+ γn

(( 0

Hx̄θn−1

)
+ Υn

)
, (6.2)

where Hx̄ is the matrix with

Hx̄θ = DΨθ(x̄)Df(x̄)(DΨ(x̄))−1

(
0

θ

)
.

Informally,

Υn = DΨ(Xn−1)Dn + error term

and we control the error term in the following lemma.
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Lemma 6.2. Suppose that Φ : UΦ → U is a nice representation for M on a bounded and
open set U with regularity (αf , αΦ, αΨ) ∈ (0, 1]3. Let δ > 0 and ρ ∈ (0, δ/4] as in (i) of
Lemma 3.6. There exists a constant C̃ ≥ 0 such that the following is true. If for x ∈ Uρδ ,
γ ∈ (0, γ0], u ∈ Rd one has

x′ := x+ γ(f(x) + u) ∈ Uδ,

then for every x̄ ∈M ∩ U , θ = Ψθ(x) and Υ ∈ Rd given by

Ψ(x′)−Ψ(x) = γ
(( 0

Hx̄θ

)
+ Υ

)
, where Hx̄θ = DΨθ(x̄)Df(x̄)(DΨ(x̄))−1

(
0

θ

)
, (6.3)

one has
|Υ−DΨ(x)u| ≤ C̃

(
γαΨ |u|1+αΨ + d(x,M)d(x, x̄)α

)
,

where α = αΨ ∧ αf ∧ αΦ.

Proof. Note that, by assumption, x, x′ and x∗ are all in Uδ/2 and we will use the Taylor-
type estimates of Lemma 6.1 without further mentioning. For x̄ ∈ M ∩ U we set
H̄x̄ = DΨ(x̄)Df(x̄)(DΨ(x̄))−1. Then,(

0

Hx̄θ

)
= H̄x̄

(
0

θ

)
since a vector (0, θ)† is mapped by (DΨ(x̄))−1 = DΦ(Ψ(x̄)) to a vector in NzM which is
mapped itself by Df(z) to a vector in NzM (see Remark 2.2) and then by DΨ(z) to a
vector in {0}dζ ×Rdθ . As consequence of (6.3) we get that

Υ =
1

γ
(Ψ(x+ γ(f(x) + u))−Ψ(x))− H̄x̄

(
0

θ

)
.

Using the αΨ-regularity of Ψ we get that

1

γ
(Ψ(x+ γ(f(x) + u))−Ψ(x)) = DΨ(x)(f(x) + u) +O(γαΨ(|f(x)|1+αΨ + |u|1+αΨ)).

Here and elsewhere in the proof all O-terms are uniform over all allowed choices of x,
x′, x̄ and γ. By Lemma 3.6, x has a unique closest M -element x∗ ∈ U ∩M and using the
αf regularity of f and the boundedness of U we get that

|f(x)| = |f(x)− f(x∗)| = O(|x− x∗|) = O(d(x,M)).

Hence,

1

γ
(Ψ(x+ γ(f(x) + u))−Ψ(x)) = DΨ(x)(f(x) + u) +O(γαΨ(d(x,M)1+αΨ + |u|1+αΨ)).

(6.4)

and with the αΨ-regularity of Ψ we get

DΨ(x)f(x) = DΨ(x∗)f(x) +O(|x− x∗|αΨ |f(x)|) = DΨ(x∗)f(x) +O(d(x,M)1+αΨ).

(6.5)

Furthermore, Lemma 3.6 yields that |θ| = d(x,M), so that with f(x∗) = 0

DΨ(x∗)f(x) = DΨ(x∗)Df(x∗)(x− x∗) +O(d(x,M)1+αf )

= DΨ(x∗)Df(x∗)(DΨ(x∗))−1︸ ︷︷ ︸
=H̄x∗

(
0

θ

)
+O(d(x,M)1+αf + d(x,M)1+αΦ). (6.6)
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Insertion of (6.4), (6.5) and (6.6) into the above representation of Υ gives together with
the uniform boundedness of γ and d(x,M)

Υ = DΨ(x)u+ (H̄x∗ − H̄x̄)

(
0

θ

)
+O(d(x,M)1+α + γαΨ |u|1+αΨ).

On the relevant domains DΨ, Df and DΦ are Hölder continuous with parameter α and
uniformly bounded so that ‖H̄x∗ − H̄x̄‖ = O(|x∗ − x̄|α). Since |θ| = d(x,M) we finally get
that

Υ = DΨ(x)u+O(d(x,M)|x̄− x∗|α + d(x,M)1+α + γαΨ |u|1+αΨ)

= DΨ(x)u+O(d(x,M)|x− x̄|α + γαΨ |u|1+αΨ).

Proposition 6.3. Let U be an (F,M)-attractor with stability L > 0 and bound C

and suppose that Φ : UΦ → U is a nice representation for M on U with regularity
(αf , αΦ, αΨ) ∈ (0, 1]3. Set α = αΨ ∧ αf ∧ αΦ. Let (Xn)n∈N0 be as in (1.1) satisfying the
following assumptions:

• (1U (Xn−1)Dn)n∈N is a sequence of square-integrable martingale differences,

• (γn)n∈N is a sequence of strictly positive reals with γn → 0 and
∑
γn =∞,

• (σRM
n )n∈N is a sequence of strictly positive reals with

L′′ := lim sup
n→∞

1

γn

σRM
n−1 − σRM

n

σRM
n

< L

and

lim sup
n→∞

(σRM
n√
γn

)−1

E
[
1U (Xn−1)|Dn|2

]1/2
<∞. (6.7)

Let δ > 0 and ρ ∈ (0, δ/4] be as in (i) of Lemma 3.6 and suppose that inequality (3.3) of
Prop. 3.5 is true on Uρδ for a L′ ∈ (L′′, L) that is d(x+ γf(x),M) ≤ (1− γL′)d(x,M) for
all x ∈ Uρδ and γ ∈ [0, C−1]. Then for every N ∈ N, as n→∞,

sup
m=n0(n)+1,...,n

|ζm − ζn0(n)| = OP
(
εRM
n

)
, on Uδ,ρN..∞,

where ζm (m ∈ N0) is well-defined via (6.1) on {Xm ∈ U},

εRM
n =

n∑
k=n0(n)+1

(
(
√
γkσ

RM
k )1+αΨ + γk(σRM

k−1)1+α
)

+

√√√√ n∑
k=n0(n)+1

γk(σRM
k )2 (6.8)

and
U
δ,ρ
N..n = {∀l = N, . . . , n : Xl ∈ Uρδ } and U

δ,ρ
N..∞ =

⋂
n≥N

U
δ,ρ
N..n.

Proof. By Theorem 4.1, there exists a constant C̃ ∈ (0,∞) such that for all N ∈ N

lim sup
n→∞

(σRM
n )−1E

[
1
U
δ,ρ
N..n−1

d(Xn,M)2
]1/2 ≤ C̃. (6.9)

We fix N ∈ N and briefly write Uk = U
δ,ρ
N..k for k ≥ N . By choice of ρ, Lemma 6.2 is

applicable on Uρδ and we conclude that for all m for which Xm−1 and Xm lie in Uρδ we
have

ζm = ζm−1 + γmDΨζ(Xm−1)Dm +O(γ1+αΨ
m |Dm|1+αΨ + γmd(Xm−1,M)1+α).
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Here we used the lemma with x = Xm−1, x′ = Xm, x̄ = X∗m−1 and γ = γm. Note that the
O-term is uniformly bounded over all realisations and allowed choices of m.

We consider n ∈ N with n0(n) ≥ N . On Un, one has for m = n0(n) + 1, . . . , n,

ζm − ζn0(n)

=

m∑
k=n0(n)+1

γkDΨζ(Xk−1)Dk︸ ︷︷ ︸
=:A

(1)
m

+O
( n∑
k=n0(n)+1

γ1+αΨ

k |Dk|1+αΨ + γkd(Xk−1,M)1+α
)

︸ ︷︷ ︸
=:A

(2)
m

.

For ease of notation we omit the n-dependence in the notation of the A-terms. We control

S(i)
n := sup

m=n0(n)+1,...,n

∣∣A(i)
m

∣∣
for the two choices of i separately.

By the boundedness of DΨζ , the sequence (1Uk−1
γkDΨζ(Xk−1)Dk)k=n0(n)+1,...,n de-

fines a sequence of square integrable martingale differences. Thus, we get with Doob’s
martingale inequality, the uniform boundedness of DΨζ and (6.7) that

E[|1UnS(1)
n |2] ≤ 4CΨE

[ n∑
k=n0(n)+1

1Uk−1
γ2
k|Dk|2

]
= O

( n∑
k=n0(n)+1

γk(σRM
k )2

)
.

Hence,

S(1)
n = OP

(√√√√ n∑
k=n0(n)+1

γk(σRM
k )2

)
, on U∞,

see Remark B.2. It remains to bound the second term.

Note that by assumption

E
[ n∑
k=n0(n)+1

1Uk−1
γ1+αΨ

k |Dk|1+αΨ

]
≤

n∑
k=n0(n)+1

γ1+αΨ

k E[1Uk−1
|Dk|2](1+αΨ)/2

= O
( n∑
k=n0(n)+1

(√
γkσ

RM
k

)1+αΨ
)

and, with (6.9),

E
[ n∑
k=n0(n)+1

γk1Uk−1
d(Xk−1,M)1+α

]
≤

n∑
k=n0(n)+1

γkE
[
1Uk−1

d(Xk−1,M)2
](1+α)/2

= O
( n∑
k=n0(n)+1

γk(σRM
k−1)1+α

)
,

so that (see again Remark B.2)

S(2)
n = OP

( n∑
k=n0(n)+1

((√
γkσ

RM
k

)1+αΨ
+ γk(σRM

k−1)1+α
))
.

Together with the respective bound for S(1)
N above, this finishes the proof of the proposi-

tion.
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Proposition 6.4. We assume the same assumptions as in Proposition 6.3. Then, for
every N ∈ N, we have

1

b̄n

n∑
k=n0(n)+1

bk(γαΨ

k |Dk|1+αΨ + d(Xk−1,M)d(Xk−1, X
∗
n0(n))

α) = OP
(
εRP
n

)
, on U

δ,ρ
N..∞,

(6.10)

where

εRP
n =

1

b̄n

n∑
k=n0(n)+1

bk
(
γ
− 1−αΨ

2

k (σRM
k )1+αΨ + (σRM

k−1)1+α + σRM
k−1(εRM

n )α
)
.

Proof. Fix N ∈ N, consider n ∈ N with n0(n) ≥ N and briefly write Uk = U
δ,ρ
N..k for

k ≥ N . First note that with Lemma 3.6 and the convexity of UΦ for k > n0(n), on U∞,

|Xk−1 −X∗n0(n)| ≤ |Xk−1 −X∗k−1|+ |X∗k−1 −X∗n0(n)|

≤ d(Xk−1,M) + CΦ|ζk−1, ζn0(n))|.

Using this inequality the left-hand side of (6.10) is transformed into the sum of three
terms that we will analyse independently below.

1) Analysis of the first term. First, we provide an asymptotic bound for

1

b̄n

n∑
k=n0(n)+1

bkd(Xk−1,M)d(ζk−1, ζn0(n))
α,

on U∞. By choice of ρ, we have validity of (4.5) and we get that

E
[ 1

b̄n

n∑
k=n0(n)+1

bk1Uk−1
d(Xk−1,M)

]
≤ 1

b̄n

n∑
k=n0(n)+1

bkE[1Uk−1
d(Xk−1,M)2]1/2

= O
( 1

b̄n

n∑
k=n0(n)+1

bkσ
RM
k−1

)
.

Hence,

1

b̄n

n∑
k=n0(n)+1

bk1Uk−1
d(Xk−1,M) = OP

( 1

b̄n

n∑
k=n0(n)+1

bkσ
RM
k−1

)
, on U∞.

With Proposition 6.3 we conclude that, on U∞,

1

b̄n

n∑
k=n0(n)+1

bkd(Xk−1,M)d(ζk−1, ζn0(n))
α

≤
( 1

b̄n

n∑
k=n0(n)+1

bkd(Xk−1,M)
)

sup
m=n0(n)+1,...,n

|ζm − ζn0(n)|α

= OP
( 1

b̄n

n∑
k=n0(n)+1

bkσ
RM
k−1(εRM

n )α
)
.

2) Analysis of the second term. Second, we analyse

1

b̄n

n∑
k=n0(n)+1

bkd(Xk−1,M)1+α.
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With (4.5) we get that

E
[ 1

b̄n

n∑
k=n0(n)+1

bk1Uk−1
d(Xk−1,M)1+α

]
≤ 1

b̄n

n∑
k=n0(n)+1

bkE[1Uk−1
d(Xk−1,M)2](1+α)/2

= O
( 1

b̄n

n∑
k=n0(n)+1

bk(σRM
k−1)1+α

)
,

so that

1

b̄n

n∑
k=n0(n)+1

bkd(Xk−1,M)1+α = OP
( 1

b̄n

n∑
k=n0(n)+1

bk(σRM
k−1)1+α

)
, on U∞.

3) Analysis of the third term. Similarly to before, we conclude that

E
[ 1

b̄n

n∑
k=n0(n)+1

bkγ
αΨ

k 1Uk−1
|Dk|1+αΨ

]
≤ 1

b̄n

n∑
k=n0(n)+1

bkγ
αΨ

k E[1{Xk−1∈U}|Dk|2](1+αΨ)/2

= O
( 1

b̄n

n∑
k=n0(n)+1

bkγ
− 1−αΨ

2

k (σRM
k )1+αΨ

)
with the obvious OP -bound on U∞. The statement is obtained by combining the three
estimates.

7 The proofs of the main results

7.1 Proof of Theorem 2.9

Proof of Theorem 2.9. 1) Feasible triples. Let (U, δ, ρ) be a feasible triple in the sense of
Proposition 3.7. We denote by Uconv = Uconv

δ,ρ the event that (Xn)n∈N0 converges to some
value in M ∩ Uρδ . As explained in Remark 3.8, the statement of Theorem 2.9 follows once
we showed stable convergence on Uconv.

2) Separating the directions. Recall that, by Lemma 3.6, for all x ∈ Uρδ there is a
unique closest M -element x∗ = Φ(Ψζ(x), 0) ∈M ∩Uρδ . For m ∈ N we define on the event
{Xm ∈ Uρδ } a random symmetric dθ × dθ-matrix Hm via

Hmθ = DΨθ(X
∗
m)Df(X∗m)(DΨ(X∗m))−1

(
0

θ

)
,

with symmetry following from Remark 2.2. For technical reasons, we set Hm = 0 on
{Xm ∈ Uρδ }c. Let N ∈ N and consider, for m ≥ N , the events

UN..m := {∀l = N, . . . ,m : Xl ∈ Uρδ },

UN..∞ :=
⋂

m′≥N

UN..m′ and Uconv
N..∞ := Uconv ∩UN..∞.

Note that
Uconv =

⋃
N∈N

Uconv
N..∞

so that as consequence of Lemma A.3 it suffices to prove stable convergence on Uconv
N..∞

for arbitrarily fixed N ∈ N. Note that, on Uconv, (Hl) converges to the symmetric random
matrix H with

Hθ = DΨθ(X∞)Df(X∞)(DΨ(X∞))−1

(
0

θ

)
.
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Set A = DΨθ(X∞)
(
Df(X∞)

∣∣
NX∞M

)−1
ΠNX∞M

and note that by monotonicity it suffices

to consider large N . We briefly write

Um = UN..m, U∞ = UN..∞ and Uconv
∞ = Uconv

N..∞.

In the following, we restrict attention to n ∈ N with n0(n) ≥ N and consider m ≥
n0(n). Note that

θ̄m =
1

b̄m

m∑
k=n0(n)

bkθk and ζ̄m =
1

b̄m

m∑
k=n0(n)

bkζk

are well-defined on Um, where (θk) and (ζk) are given by (6.1). Moreover, for m > n0(n),
we set on Um

Υ(n)
m =

1

γm
(Ψ(Xm)−Ψ(Xm−1))−

(
0

Hn0(n)θm−1

)
and on Ucm, Υ

(n)
m = 0. Now, on Um,

θm = θm−1 + γm(Hn0(n)θm−1 + πθ(Υ
(n)
m )), (7.1)

so that by the variation of constant formula

θm = Hn0(n)[n0(n),m]θn0(n) +

m∑
`=n0(n)+1

γlHn0(n)[`,m]πθ(Υ
(n)
l ),

with Hn0(n)[i, j] and H̄n0(n)[i, j] (i, j ∈ N with i ≤ j) being defined as in (5.1). Conse-
quently, on Un,

θ̄n =
bn0(n)

b̄nγn0(n)

H̄n0(n)[n0(n), n]θn0(n) +
1

b̄n

n∑
m=n0(n)+1

bm H̄n0(n)[m,n]πθ(Υ
(n)
m ) (7.2)

with the right-hand side being a random variable that is defined on the whole space Ω

and we take the previous formula as definition of the random variable θ̄n outside of Un.
3) Approximation by the linear system of Section 5. We set

Ξn :=
1

b̄n

n∑
m=n0(n)+1

bm H̄n0(n)[m,n]Dm

with Dm = 1Um−1
DΨθ(Xm−1)Dm. By Lemma 6.2, there exists a constant C̃1 such that,

on Un, for all n0(n) ≤ m ≤ n

|πθΥ(n)
m −Dm| ≤ C̃1

(
γαΨ
m |Dm|1+αΨ + d(Xm−1,M)d(Xm−1, X

∗
n0(n))

α
)
.

Assuming that N is sufficiently large, Lemma 5.5 yields existence of a constant C̃2 such
that, on Un,∣∣∣Ξn − 1

b̄n

n∑
m=n0(n)+1

bm H̄n0(n)[m,n]πθ(Υ
(n)
m )
∣∣∣

≤ C̃1C̃2
1

b̄n

n∑
m=n0(n)+1

bm
(
γαΨ
m |Dm|1+αΨ + d(Xm−1,M)d(Xm−1, X

∗
n0(n))

α
)
.

By Proposition 6.4, the latter term is of order OP
(
εRP
n

)
on U∞. Thus, assumption (2.14)

guarantees that the previous error term is of order oP (σn) on U∞.
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4) Analysis of Ξn. Recall that on Uconv
∞ , one has limn→∞Hn0(n) → H with H satisfying

Hθ = DΨθ(X∞)Df(X∞)(DΨ(X∞))−1

(
0

θ

)
.

By assumption, Df(X∞) as a linear mapping from NX∞M to NX∞M is invertible and
we get with elementary linear algebra that for θ ∈ Rdθ

H−1θ = DΨθ(X∞)
(
Df(X∞)|NX∞M

)−1
(DΨ(X∞))−1

(
0

θ

)
.

Note that (Dm)m≥N+1 is a sequence of martingale differences and one has, on Uconv
∞ , for

m > N ,

cov((δdiff
m )−1Dm|Fm−1) = DΨθ(Xm−1)(δdiff

m )−2cov(Dm|Fm−1)DΨθ(Xm−1)†

→ DΨθ(X∞) ΓDΨθ(X∞)†, almost surely.

Moreover, assumption (2.10) implies that for every ε > 0, on Uconv
∞ ,

σ−2
n

n∑
m=n0(n)+1

b2m
b̄2n
E
[
1{|Dm|> εb̄nσn

bm
}|Dm|

2
∣∣Fm−1

]
≤ (CΨ)2(σn)−2

n∑
m=n0(n)+1

b2m
b̄2n
E
[
1{|Dm|> εb̄nσn

CΨbm
}|Dm|2

∣∣Fm−1

]
→ 0, in probability.

Thus, Theorem 5.1 implies that, on Uconv
∞ ,

1

σn
Ξn

stably
=⇒ A N (0,Γ).

Together with step 2 (see Lemma B.4) we thus get that

1

σn

1

b̄n

n∑
k=n0(n)+1

bk H̄n[k, n]πθ(Υ
(n)
k )

stably
=⇒ A N (0,Γ), on Uconv

∞ .

5) Analysis of the contribution of θn0(n). By choice of Un, the asymptotic estimate
(4.5) holds. This entails together with property (ii) of Lemma 3.6 that, on U∞,

|θn0(n)| = d(Xn0(n),M) = OP (σRM
n0(n)).

Moreover, by Lemma 5.4, H̄n0(n)[n0(n), n] is uniformly bounded on U∞, so that, on U∞,

bn0(n)

b̄nγn0(n)

H̄n0(n)[n0(n), n]θn0(n) = OP
( bn0(n)

b̄nγn0(n)

σRM
n0(n)

)
,

which is of order oP (σn) by assumption (2.12). With step 3 we thus obtain that, on Uconv
∞ ,

θ̄n
stably
=⇒ A N (0,Γ).

6) Comparison of X̄n and Φ(θ̄n). On Uconv
n ,

X̄n =
1

b̄n

n∑
m=n0(n)+1

bm Φ(ζm, θm)

=
1

b̄n

n∑
m=n0(n)+1

bm

(
Φ(ζ̄n, θ̄n) +DΦ(ζ̄n, θ̄n)

(
ζm − ζ̄n
θm − θ̄n

)
+O

(
|ζm − ζ̄n|1+αΦ + |θm − θ̄n|1+αΦ

))
= Φ(ζ̄n, θ̄n) +O

( 1

b̄n

n∑
m=n0(n)+1

bm
(
|ζm − ζ̄n|1+αΦ + |θm − θ̄n|1+αΦ

))
,
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where we used convexity of UΦ and linearity of DΦ(ζ̄n, θ̄n). By Proposition 6.3, we get
that

sup
m=n0(n)+1,...,n

|ζm − ζn0(n)| = OP
(
εRM
n

)
, on Uconv

∞ ,

so that, on Uconv
∞ ,

1

b̄n

n∑
m=n0(n)+1

bm|ζm − ζ̄n|1+αΦ ≤
(

2 sup
m=n0(n)+1,...,n

|ζm − ζn0(n)|
)1+αΦ

= OP
(
(εRM
n )1+αΦ

)
.

By assumption (2.13), the previous expression is of order oP (σn). Moreover, using that
|a − b|1+αΦ ≤ (|a| + |b|)1+αΦ ≤ 2αΦ(|a|1+αΦ + |b|1+αφ) for a, b ∈ Rdθ ,

∑n
m=n0(n)+1 bm = b̄n

and Jensen’s inequality we conclude that, on U∞,

1

b̄n

n∑
m=n0(n)+1

bm|θm − θ̄n|1+αΦ ≤ 2αΦ
1

b̄n

n∑
m=n0(n)+1

bm(|θm|1+αΦ + |θ̄n|1+αΦ)

≤ 21+αΦ
1

b̄n

n∑
m=n0(n)+1

bm|θm|1+αΦ ≤ 21+αΦ

( 1

b̄n

n∑
m=n0(n)+1

bm|θm|2
)(1+αΦ)/2

.

(7.3)

Recall that, on U∞, |θm| = d(Xm,M) so that the bound of Theorem 4.1 implies that

E
[
1U∞

1

b̄n

n∑
m=n0(n)

bm|θm|2
]

= O
( 1

b̄n

n∑
m=n0(n)

bm(σRM
m )2

)
.

Using (7.3) we get, on U∞,

1

b̄n

n∑
m=n0(n)+1

bm|θm − θ̄n|1+αΦ = OP
(( 1

b̄n

n∑
m=n0(n)+1

bm(σRM
m )2

)(1+αΦ)/2)
.

Hence, this term is of order oP (σn), on U∞, by assumption (2.15). Altogether, we thus
get that

X̄n = Φ(ζ̄n, θ̄n) + oP (σn), on Uconv
∞ .

7) Synthesis. Note that on Uconv
∞ , from a random minimal n onwards all X̄n lie in Uρδ

and Ψ is Lipschitz on Uρδ , since it has regularity αΨ, so that we get with step 6 that

Ψ(X̄n) =

(
ζ̄n
θ̄n

)
+ oP (σn), on Uconv

∞ .

Consequently, by step 5, and Lemma B.4, one has

σ−1
n Ψθ(X̄n)

stably
=⇒ A N (0,Γ), on Uconv

∞ .

Now,

σ−1
n (Ψ(X̄n)−Ψ(X̄∗n)) =

(
0

σ−1
n Ψθ(X̄n)

)
stably
=⇒ Ā N (0,Γ), on Uconv,

with

Ā =

(
0

A

)
= DΨ(X∞)

(
Df(X∞)

∣∣
NX∞M

)−1
ΠNX∞M

.

Here we used that the image of Df(X∞)
∣∣
NX∞M

is in NX∞M so that

DΨζ(X∞)
(
Df(X∞)

∣∣
NX∞M

)−1
ΠNX∞M

= 0.
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Next, note that, on Uconv
∞ ,

X̄n − X̄∗n = Φ(Ψ(X̄n))− Φ(Ψ(X̄∗n))

= DΦ(Ψ(X̄∗n))(Ψ(X̄n)−Ψ(X̄∗n)) + o(|Ψ(X̄n)−Ψ(X̄∗n)|)

with DΦ(Ψ(X̄∗n))→ DΦ(Ψ(X∞)), almost surely, on Uconv
∞ . Hence, σ−1

n DΦ(X̄∗n)(Ψ(X̄n)−
Ψ(X̄∗n)) can be viewed as continuous function of (DΦ(Ψ(X̄∗n)), σ−1

n (Ψ(X̄n)−Ψ(X̄∗n)) which
itself converges stably, on Uconv

∞ , by Lemma A.4. Moreover, the above error term is of
order oP (σ−1

n ), on Uconv
∞ , so that with Lemma B.4,

σ−1
n (X̄n − X̄∗n)

stably
=⇒ Q N (0,Γ), on Uconv

∞ ,

with
Q = DΦ(Ψ(X∞))Ā =

(
Df(X∞)

∣∣
NX∞M

)−1
ΠNX∞M

= B.

Thus, we proved (2.16).
Finally, on Uconv

∞ , for sufficiently large n Taylor together with the fact that f(X̄∗n) = 0

imply that

F (X̄n)− F (X∞) =
1

2
Df(X̄∗n)(X̄n − X̄∗n)⊗2 + o(|X̄n − X̄∗n|2).

Moreover, using that Df = D2F is a symmetric matrix we conclude that

Df(X̄∗n)(X̄n − X̄∗n)⊗2 = (X̄n − X̄∗n)†D2F (X̄∗n)(X̄n − X̄∗n)

=
∣∣(D2F (X̄∗n))1/2(X̄n − X̄∗n)

∣∣2.
Consequently, σ−2

n Df(X̄∗n)(X̄n − X̄∗n)⊗2 is a continuous function of ((D2F (X̄∗n))1/2,

σ−1
n (X̄n − X̄∗n)) with the first component converging, almost surely, to (D2F (X∞))1/2, on
Uconv
∞ , and the second component converging stably as derived above. Hence, we get

stable convergence

2σ−2
n (F (X̄n)− F (X∞))

stably
=⇒

∣∣(Df(X∞)
∣∣
NX∞M

)−1/2
ΠNX∞M

N (0,Γ)
∣∣2.

7.2 Proof of Theorem 2.6

Proof of Theorem 2.6. First, we verify that for every triple (αf , αΦ, αΨ) as in (A.1) there
exist γ and ρ satisfying (2.3) and that for every such γ and ρ there exists (n0(n))n∈N
as in (A.3). By definition, α′ > 1

2 so that every term on the left-hand side of γ in
condition (2.3) is strictly smaller than one. Hence, γ and ρ can be chosen accordingly.

We prove existence of a N-valued sequence (n0(n)) with 0 ≤ n0(n) < n, n0(n) = o(n)

and
n0(n)−1 = o

(
n
− 1

2γ−1
1

1+αΦ ∧ n−
1
α

1−γ
2γ−1

)
.

By assumption (2.3), we have γ > (1− 1
2

αΦ

1+αΦ
)∨ (1− α

1+2α ) and elementary computations
imply that

1

2γ − 1

1

1 + αΦ
< 1 and

1

α

1− γ
2γ − 1

< 1.

Hence, the choice n0(n) = bnβ/2c with b·c denoting the rounding off operation fulfils
assumption (2.4) when choosing

β ∈
( 1

2γ − 1

1

1 + αΦ
∨ 1

α

1− γ
2γ − 1

, 1
)
.

Now, suppose that ρ− γ < −1. By assumption (2.3), we have

γ >
1 + αΦ

2

1 + αΦ
>

1

1 + αΦ
, (7.4)
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so that we can additionally assume that β >
(

1
1+αΦ

− (1 + ρ)
)
/(γ − (1 + ρ)) since the

right-hand side is strictly smaller than one. For this choice we then also have that

n0(n)−1 = o
(
n−

1
1+αΦ

−(1+ρ)

γ−(1+ρ)

)
.

Next, we verify the assumptions of Theorem 2.9 with σRM
n = n−γ/2 and δdiff

n ≡ 1. Note
that γ > 1− 1

2
αΦ

1+αΦ
implies that γ > 3

4 .
(B.1) + (B.3): Immediate consequences of the assumptions.
(B.2): By definition of (γn)n∈N one has nγn → ∞ and γn → 0. Furthermore, it is

elementary to check that

bn+1γn
bnγn+1

= 1 + (ρ+ γ)n−1 + o(n−1) = 1 + o(γn),

since γn = n−γ with γ < 1.
Moreover, note that

σRM
n−1 − σRM

n

σRM
n

=
γ

2n
+ o(n−1) = o(γn)

and, trivially, σRM
n−1 ≈ σRM

n . By assumption (2.3), 2ρ > 2γα′ − 2 > −1. Hence,

n∑
m=n0(n)+1

(bmδ
diff
m )2 ∼

∫ n

n0(n)

s2ρ ds =
[ 1

2ρ+ 1
s2ρ+1

]n
n0(n)

∼ 1

2ρ+ 1
n2ρ+1.

Similarly, for (L(n)) as in (B.2)

n∑
m=L(n)+1

(bmδ
diff
m )2 ∼

∫ n

L(n)

s2ρ ds =
[ 1

2ρ+ 1
s2ρ+1

]n
L(n)

= o
(
n2ρ+1

)
,

since L(n)2ρ+1 ∼ n2ρ+1. Consequently,

lim
n→∞

∑n
k=L(n)+1(bkδ

diff
k )2∑n

k=n0(n)+1(bkδdiff
k )2

= 0.

(B.4): The almost sure convergence of (cov(Dm|Fm−1))m∈N on Mconv is true by
assumption.

Let x ∈M . According to (A.4), we can fix an open neighbourhood U ⊂ Rd of x such
that (1U (Xn−1)|Dn|2)n∈N is uniformly integrable and denote by Uconv the event, that
(Xn) converges to a point in M ∩ U . Let ε, ε′ > 0 arbitrary. To verify (2.10) we note that

P
({

(σn)−2
n∑

m=n0(n)+1

b2m
b̄2n
E[1{|Dm|>εb̄nσn/bm}|Dm|2|Fm−1] > ε′

}
∩Uconv

)
≤ P

({
∃m ∈ {n0(n) + 1, . . . , n} : Xm−1 /∈ U

}
∩Uconv

)
+

1

ε′
E
[
(σn)−2

n∑
m=n0(n)+1

b2m
b̄2n
E[1U (Xm−1)1{|Dm|>εb̄nσn/bm}|Dm|2|Fm−1]

]
and we will verify that the previous two summands converge to zero as n→∞.

The first term converges to zero, since on Uconv the process stays in U from a random
index onwards. To verify that also the second term tends to zero we observe that

b̄n =

n∑
m=n0(n)+1

bm ∼
1

ρ+ 1
nρ+1,
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so that

σn =
1

b̄n

√√√√ n∑
m=n0(n)+1

(bmδdiff
m )2 ∼ ρ+ 1√

2ρ+ 1
n−1/2 → 0 (7.5)

and

b̄nσn ∼
1√

2ρ+ 1
nρ+

1
2 entails that inf

m=n0(n)+1,...,n
b̄nσn/bm →∞ as n→∞,

since ρ > − 1
2 and bm = mρ. Hence, by the uniform integrability of (1U (Xm−1)|Dm|2)m∈N

we get that

sup
m=n0(n)+1,...,n

E[1U (Xm−1)1{|Dm|>εb̄nσn/bm}|Dm|2]→ 0 (7.6)

and with σn →∞ we arrive at

lim
n→∞

(σn)−2
n∑

m=n0(n)+1

b2m
b̄2n
E[1U (Xm−1)1{|Dm|>εb̄nσn/bm}|Dm|2] = 0,

so that we established convergence to zero in probability on Uconv. Similarly to 3.7,
there exists a countable family U of open sets such that (1U (Xn−1)|Dn|2) is uniformly
integrable for all U ∈ U and

M ⊂
⋃
U∈U

U.

By the above argument, (2.10) holds on each Uconv with U ∈ U and hence also on

Mconv =
⋃
U∈U

Uconv.

Assumption (2.11) is true since
√
γn/σ

RM
n =

√
Cγ and (E[1U (Xm−1)|Dm|2])m∈N is

uniformly bounded by uniform integrability.
The other assumptions of (B.4) are immediate consequences of (A.4) and the fact

that δdiff
n ≡ 1 and σRM

n = n−γ/2.
(B.5): Using that b̄n ∼ 1

ρ+1n
ρ+1 we conclude that

σ−1
n

bn0(n)

b̄nγn0(n)

σRM
n0(n) ∼

√
2ρ+ 1

Cγ
n

1
2−(ρ+1)n0(n)ρ+γ−

γ
2 =

√
2ρ+ 1

Cγ

n0(n)ρ+
γ
2

nρ+
1
2

which tends to zero since, by assumption (2.3), ρ+ 1
2 > γα′ − 1

2 > 0, γ < 1 and n0(n) ≤ n.
We verify that (εRM

n )1+αΦ = o(σn).

εRM
n =

n∑
m=n0(n)+1

((
√
γmσ

RM
m )1+αΨ + γm(σRM

m−1)1+α) +

√√√√ n∑
m=n0(n)+1

γm(σRM
m )2

∼
n∑

m=n0(n)+1

(C
1+αΨ

2
γ m−γ(1+αΨ) + Cγm

−γ(1+ 1+α
2 )) +

√√√√ n∑
m=n0(n)+1

Cγm−2γ

= O
( n∑
m=n0(n)+1

m−γ(1+α′) +

√√√√ n∑
m=n0(n)+1

m−2γ
)

= O
(
n0(n)1−γ(1+α′) + n0(n)−γ+ 1

2

)
,
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where we used that γ(1 +α′) and 2γ are strictly bigger than 1 since γ > 3
4 and α′ > 1

2 . By

assumption γ > 1
2α′ so that 1 − γ(1 + α′) < −γ + 1

2 and εRM
n = O

(
n0(n)−γ+ 1

2

)
. By (2.4),

we thus get that

(εRM
n )1+αΦ = O

((
n0(n)−1

)(γ− 1
2 )(1+αΦ))

= o
(
n−

1
2

)
,

which is by (7.5) of order o(σn).
We verify that εRP

n = o(σn). One has by definition of α′

εRP
n =

1

b̄n

n∑
m=n0(n)+1

bm
(
γ
− 1−αΨ

2
m (σRM

m )1+αΨ + (σRM
m−1)1+α + σRM

m−1(εRM
n )α

)
= O

( 1

nρ+1

n∑
m=n0(n)+1

mρ
(
mγ

1−αΨ
2 − γ2 (1+αΨ)︸ ︷︷ ︸
=m−γαΨ

+m−γ
1+α

2 +m−
γ
2 n0(n)−α(γ− 1

2 )
))

= O
( 1

nρ+1

n∑
m=n0(n)+1

mρ
(
m−γα

′
+m−

γ
2 n0(n)−α(γ− 1

2 )
))

= O
(
n−γα

′
+ n−

γ
2 n0(n)−α(γ− 1

2 )
)
,

where we used that ρ− γα′ > −1 and ρ− γ
2 > −1 as consequence of (2.3). Recall that by

assumption γα′ > 1
2 and n0(n)−1 = o(n−

1
α

1−γ
2γ−1 ) so that εRP

n = o(n−
1
2 ) = o(σn).

Finally, we show that

1

b̄n

n∑
m=n0(n)+1

bm(σRM
m )2 = o(n

− 1
1+αΦ ).

We have
1

b̄n

n∑
m=n0(n)+1

bm(σRM
m )2 ∼ ρ+ 1

nρ+1

n∑
m=n0(n)+1

nρ−γ ,

so that in the case where ρ− γ > −1 the latter term is of order O(n−γ) = o(n
− 1

1+αΦ ) as
consequence of (7.4). In the case where ρ− γ = 1 we use that ρ+ 1 = γ > 1/(1 + αΦ) to
conclude that

1

nρ+1

n∑
m=n0(n)+1

m−1 ≤ 1

nρ+1
log(n) = o(n

− 1
1+αΦ ).

Finally, in the case where ρ− γ < −1 with (2.5)

1

nρ+1

n∑
m=n0(n)+1

mρ−γ = O
(n0(n)−γ+ρ+1

nρ+1

)
= o(n

− 1
1+αΦ ).

A Stable convergence

In this section, we introduce the concept of stable convergence on a set. It is a slight
generalisation of stable convergence introduced in [32].

Definition A.1. Let (Yn)n∈N be a sequence of Rd-valued random variables, A ∈ F and
K a probability kernel from (A,F|A) to (Rd,Bd). We say that (Yn) converges stably on A
to K and write

Yn
stably
=⇒ K, on A,

if for every B ∈ F and continuous and bounded function f : Rd → R

lim
n→∞

E
[
1A∩Bf(Yn)

]
= E

[
1A∩B

∫
f(y)K(·, dy)

]
. (A.1)
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In the case where A = Ω, we briefly say that (Yn) converges stably to K and write

Yn
stably
=⇒ K.

We give some central properties of stable convergence.

Theorem A.2. Let (Yn), A and K as in the previous definition and let E denote a ∩-stable
generator of F containing Ω. The following properties are equivalent.

(i) (Yn) converges stably to K on A.

(ii) For every B ∈ E and continuous and bounded function f : Rd → R

lim
n→∞

E
[
1A∩Bf(Yn)

]
= E

[
1A∩B

∫
f(y)K(·, dy)

]
.

(iii) For every B ∈ E and ξ ∈ Rd

lim
n→∞

E
[
1A∩Be

i〈ξ,(Yn)〉] = E
[
1A∩B

∫
ei〈ξ,y〉K(·, dy)

]
.

(iv) For every bounded random variable Υ and every bounded and continuous f : Rd →
R

lim
n→∞

E
[
1AΥf(Yn)

]
= E

[
1AΥ

∫
f(y)K(·, dy)

]
.

Proof. (ii)⇒ (i) : First, suppose that f : Rd → R is non-negative. It is standard to verify
that the set Ff of all sets B ∈ F with the property that

lim
n→∞

E
[
1A∩Bf(Yn)

]
= E

[
1A∩B

∫
f(y)K(·, dy)

]
is a Dynkin-system. Since Ff contains the generator E we thus have Ff = F and
we verified property (A.1) for non-negative f : Rd → R. For a general bounded and
continuous function f : Rd → R we write f = f̄ − c with a non-negative function
f̄ : Rd → R and a constant c ≥ 0. Clearly, (A.1) holds for f̄ and the constant function c
and by linearity of the integral and the limit we get that (A.1) also holds for f = f̄ − c.

(iii)⇒ (ii) : Follows from [20, Cor 3.8] where we set in the notation of the corollary
G = F|A with the ∩-stable generator {A ∩B|B ∈ E}.

(i)⇒ (iv) : For non-negative f and Υ, the asymptotic property follows by a monotone
class argument and the general case is derived by using linearity.

Lemma A.3. (i) Let A,A′ ∈ F and suppose that (Yn) converges stably to K and K ′ on
A and A′, respectively. Then for almost all ω ∈ A ∩A′ one has

K(ω, ·) = K ′(ω, ·).

In particular, the kernel appearing as limit is unique up to almost sure equivalence.

(ii) Let (Am)m∈N be a subfamily of F and suppose that for each m ∈ N, (Yn) converges
stably to Km on Am. Then there exists a probability kernel K from A :=

⋃
m∈NAm

to Rd such that for all m ∈ N and almost all ω ∈ Am

K(ω, ·) = Km(ω, ·)

and for every such kernel K we have

Yn
stably
=⇒ K, on A.
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Proof. (i): We first show uniqueness of stable limits. By basic measure theory, there
exists a countable set of bounded and continuous functions fn : Rd → R (n ∈ N) that
characterize a probability distribution on Rd. That means for two distributions µ and µ′

on Rd one has the equivalence

µ = µ′ ⇐⇒ ∀n ∈ N :

∫
fn dµ =

∫
fn dµ

′.

Suppose now that (Yn) converges to K and K ′ on a set A ∈ F . Let n ∈ N and

B+
n =

{
ω ∈ A :

∫
fn(y)K(ω, dy) >

∫
fn(y)K ′(ω, dy)

}
.

Then,

E
[
1B+

n

∫
fn(y)K(·, dy)

]
← E

[
1B+

n
fn(Ym)

]
→ E

[
1B+

n

∫
fn(y)K ′(·, dy)

]
,

so that

E
[
1B+

n

(∫
fn(y)K(·, dy)−

∫
fn(y)K ′(·, dy)

)]
= 0

and B+
n is a nullset. With the same argument we obtain that the event defined as B+

n

with > replaced by <, say B−n is a nullset. Consequently, B =
⋃
B+
n ∪

⋃
B−n , is a nullset

and for every ω ∈ A\B we have K(ω, ·) = K ′(ω, ·) due to the choice of (fn : n ∈ N).
Now suppose that K and K ′ are the stable limits of (Yn) on two distinct sets A and A′,

respectively. As one easily verifies the restrictions of K and K ′ to A∩A′ are stable limits
of (Yn) on A ∩A′ and thus they agree by the first part up to almost sure equivalence.

(ii): We first define a kernel K and verify that it is the stable limit on A. Note that
A′m := Am\

⋃m−1
k=1 Ak defines a partition (A′m)m∈N of A and set for ω ∈ A

K(ω, ·) =
∑
m∈N

1A′mKm(ω, ·). (A.2)

Fix B ∈ F and a bounded and continuous function f : Rd → R. We set Bm = B\
⋃m−1
k=1 Ak

and use stable convergence to Km on Am to conclude that

E
[
1A′m∩Bf(Yn)

]
= E

[
1Am∩Bmf(Yn)

]
→ E

[
1Am∩Bm

∫
f(y)Km(·, dy)

]
= E

[
1A′m∩B

∫
f(y)Km(·, dy)

]
.

Now dominated convergence implies that

E
[
1A∩Bf(Yn)

]
=
∑
m∈N

E
[
1A′m∩Bf(Yn)

]
→
∑
m∈N

E
[
1A′m∩B

∫
f(y)Km(·, dy)

]
= E

[
1A∩B

∫
f(y)K(·, dy)

]
,

where the integrable majorant is given by (C P(A′m))m∈N with C > 0 being a uniform
bound for f . We thus showed stable convergence on A to the particular kernel K. Note
that the previous arguments also apply for any kernel K with the property that for
all m ∈ N and almost all ω ∈ Am, K(ω, ·) = Km(ω, ·). It thus remains to show that
the particular kernel possesses the latter property. However, this is an immediate
consequence of part (i) since (Yn) converges stably to K|Am on Am so that K|Am and
Km agree up to nullsets.
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Lemma A.4. Let d′ ∈ N and (Xn)n∈N be a sequence of Rd
′
-valued random variables

that converges, in probability, on A, to a Rd
′
-valued random variable X∞. If (Yn)n∈N

converges stably to K on A, then the extended sequence (Xn, Yn)n∈N converges stably,
on A to the kernel

K̄(ω, d(x, y)) = δX∞(ω)(dx)K(ω, dy).

Proof. Choosing G = F|A, Y = X∞1A, Yn = Xn1A and (Xn) = (Yn) in Theorem 3.7 of
[20] yields

(1AXn, Yn)
stably
=⇒ δ1AX∞ ⊗K, on A,

so that for every B ∈ F and continuous and bounded function f : Rd ×Rd′ → R

lim
n→∞

E
[
1A∩Bf(Xn, Yn)

]
= E

[
1A∩B

∫
f(x, y) δX∞(dx)K(·, dy)

]
.

We will use a classical central limit theorem for martingales, see [19]. A consequence
of [19, Corollary 3.1] is the following theorem. In contrast to the original version the
statement allows multidimensional processes. However, this generalisation is easily ob-
tained by noticing that it suffices to prove the central limit theorem for linear functionals
of the process.

Theorem A.5. For every n ∈ N let (Z
(n)
i )i=1,...,kn be a sequence of Rd-valued martingale

differences for a filtration (F (n)
i )i=1,...,kn with F (n)

i ⊂ F (n+1)
i for all i = 1, . . . , kn. Suppose

that the following holds:

(i) ∀ε > 0 :

kn∑
i=1

E
[
1{|Z(n)

i | > ε} |Z(n)
i |

2
∣∣F (n)
i−1

]
→ 0, in probability, and

(ii)
kn∑
i=1

cov(Z
(n)
i |F

(n)
i−1)→ Γ, in probability.

Then
kn∑
i=1

Z
(n)
i

stably
=⇒ N (0,Γ).

We extend the theorem to restricted stable convergence.

Theorem A.6. For every n ∈ N, let (Z
(n)
i )i=1,...,kn be a sequence of Rd-valued martingale

differences for a fixed filtration (Fi)i∈N and let A ∈ F∞ =
∨
i∈N Fi. Suppose that

limn→∞ kn =∞ and the following holds:

(i) ∀ε > 0 :

kn∑
i=1

E
[
1{|Z(n)

i | > ε} |Z(n)
i |

2
∣∣Fi−1

]
→ 0, in probability, on A, and

(ii)
kn∑
i=1

cov(Z
(n)
i |Fi−1)→ Γ, in probability, on A.

Then
kn∑
i=1

Z
(n)
i

stably
=⇒ N (0,Γ), on A.

Remark A.7. In the theorem one can replace assumption (i) by the stronger assumption
that there exists q > 2 with

kn∑
i=1

E
[
|Z(n)
i |

q
∣∣F (n)
i−1

]
→ 0, in probability, on A.

Indeed, this follows since 1{|Z(n)
i | > ε} |Z(n)

i |2 ≤ ε−(q−2)|Z(n)
i |q.
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Proof of Theorem A.6. Applying a diagonalisation argument on property (i) we deduce
existence of two zero sequences (δn)n∈N and (εn)n∈N of positive reals with

lim
n→∞

P
({ kn∑

i=1

E[1{|Z(n)
i |>εn}

|Z(n)
i |

2|Fi−1] > δn

}
∩A

)
= 0.

We fix δ ∈ (0, 1) and set In = E[1A|Fn] for all n ∈ N and consider the stopping times

T (n) = inf
{
m = 0, . . . , kn − 1 : Im ≤ δ or

m+1∑
i=1

E[1{|Z(n)
i |>εn}

|Z(n)
i |

2|Fi−1] > δn

}
with the infimum of the empty set being∞. We will apply Theorem A.5 onto (Z̄

(n)
i )i=1,...,kn

given by
Z̄

(n)
i = 1{T (n)≥i} Z

(n)
i .

We verify assumptions (i) and (ii). First note that for every ε > 0 there exists n0 ∈ N such
that for all n ≥ n0, εn ≤ ε and for those n we get that

kn∑
i=1

E
[
1{|Z̄(n)

i | > ε} |Z̄(n)
i |

2
∣∣Fi−1

]
≤

kn∑
i=1

E
[
1{|Z̄(n)

i | > εn} |Z̄(n)
i |

2
∣∣Fi−1

]
=

kn∑
i=1

1{T (n)≥i}E
[
1{|Z(n)

i | > εn} |Z(n)
i |

2
∣∣Fi−1

]
≤ δn → 0.

Second, (In)n∈N is a martingale that converges to E[1A|F∞] = 1A, a.s., so that up to
nullsets A(δ) := {minn∈N In > δ} ⊂ A. Furthermore, P(A(δ)∆{T (n) =∞})→ 0 as n→∞.
Thus we have, with high probability, on A(δ),

kn∑
i=1

cov(Z̄
(n)
i |F

(n)
i−1) =

kn∑
i=1

1{T (n)≥i}cov(Z
(n)
i |Fi−1) =

kn∑
i=1

cov(Z
(n)
i |Fi−1)→ Γ.

Conversely, on (A(δ))c the stopping time T = inf{m ∈ N : Im ≤ δ} is finite and we get on
(A(δ))c

kn∑
i=1

‖cov(Z̄
(n)
i |Fi−1)‖ ≤

kn∑
i=1

1{T (n)≥i}E[|Z(n)
i |

2|Fi−1] ≤
kn∑
i=1

1{T (n)≥i}E
[
|Z(n)
i |

2
∣∣Fi−1

]
≤

kn∑
i=1

1{T (n)≥i}
(
E
[
1{|Z(n)

i | > εn}|Z(n)
i |

2
∣∣Fi−1

]
+ εn

)
≤
(
δn + Tεn)→ 0.

Thus, we showed that
kn∑
i=1

Z̄
(n)
i

stably
=⇒ N (0,1A(δ)Γ).

Recalling that on A(δ), with high probability,
∑kn
i=1 Z

(n)
i =

∑kn
i=1 Z̄

(n)
i we conclude that

kn∑
i=1

Z
(n)
i

stably
=⇒ N (0,Γ), on A(δ).

Finally, we note that (In) takes values in [0, 1] and once the process hits zero it stays
there, almost surely. Hence, one has A = {minn∈N In > 0} up to nullsets. This implies
that up to nullsets

A =
⋃
δ>0

A(δ)

Thus, an application of Lemma A.3 finishes the proof.
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B OP and oP

We will use the O- and o-notation in a probabilistic sense.

Definition B.1. Let A ∈ F , (Xn) be a sequence of Rd-valued random variables and (an)

be a sequence of strictly positive reals.

(1) If
lim
C→∞

lim sup
n→∞

P({|Xn| > Can} ∩A) = 0,

we say that (Xn) is of order O(an), in probability, on A, and write

Xn = OP (an), on A.

(2) If for every C > 0

lim sup
n→∞

P({|Xn| > Can} ∩A) = 0,

we say that (Xn) is of order o(an), in probability, on A, and write

Xn = oP (an), on A.

Remark B.2. Expectations together with Markov’s inequality are an efficient tool for
verifying that a sequence (Xn) of random variables is of order O(an). Indeed,

lim sup
n→∞

P({|Xn| > Can} ∩A) ≤ 1

C
lim sup
n→∞

E[1A|Xn|]
an

,

so that finiteness of the lim sup on the right implies that Xn = OP (an), on A.

Lemma B.3. Let (an) be a sequence of strictly positive reals, (Xn) be a sequence of
Rd-valued random variables and A,A1, A2, . . . ∈ F with P(A\

⋃
m∈NAm) = 0. If for every

m ∈ N
Xn = OP (an), on Am,

then
Xn = OP (an), on A.

Proof. Let ε > 0 and choose M ∈ N such that P(A \
⋃M
m=1Am) ≤ ε. Now,

P({Xn ≥ Can} ∩A) ≤
M∑
m=1

P({Xn ≥ Can} ∩Am) + P
(
A \

M⋃
m=1

Am

)
,

so that

lim sup
n→∞

P({Xn ≥ Can} ∩A) ≤
M∑
m=1

lim sup
n→∞

P({Xn ≥ Can} ∩Am) + ε.

Consequently,
lim
C→∞

lim sup
n→∞

P({Xn ≥ Can} ∩A) ≤ ε

and the statement follows since ε > 0 was arbitrary.

Lemma B.4. Let A ∈ F and (Xn), (Yn) be Rd-valued sequences of random variables.
Suppose that (Yn) converges stably to K on A and Xn = oP (1), on A. Then

Xn + Yn
stably
=⇒ K, on A.
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Proof. Let ε > 0. By the assumptions on (Xn), we have

lim sup
n→∞

P({|Xn| > ε} ∩A) = 0,

so that
Xn → 0, in probability, on A.

Thus, with Lemma A.4,

(Xn, Yn)
stably
=⇒ δ0 ⊗K, on A.

Define
g : Rd ×Rd → Rd; (x, y) 7→ x+ y.

Let B ∈ F and f : Rd → R continuous and bounded. Then,

E[1A∩Bf(Xn + Yn)] = E[1A∩B(f ◦ g)(Xn, Yn)]→ E

[
1A∩B

∫ ∫
f(x+ y) δ0(dx)K(·, dy)

]
= E

[
1A∩B

∫
f(y) K(·, dy)

]
.

C Nice representations in the sense of Def. 2.4, Fermi coordi-
nates

In this section we discuss the existence of nice representations.

Lemma C.1. Let dζ ∈ {1, . . . , d − 1} and M ⊂ Rd be a dζ -dimensional C3-submanifold.
Then every x ∈M admits a nice representation Φ : UΦ → U for a neighbourhood U of x
that is C2.

Proof. We use Fermi coordinates. Let U be an open neighbourhood of x and Γ : UΓ → U

a C3-diffeomorphism with

Γ(MΓ × {0}dθ ) = U ∩M, where MΓ := {ζ ∈ Rdζ : (ζ, 0) ∈ UΓ}

and dθ = d− dζ . We define a mapping

Φ̃ : MΓ ×Rdθ → Rd

as follows. For every ζ ∈ MΓ we apply the Gram-Schmidt orthonormalisation pro-
cedure to the column vectors of the invertible matrix DΓ(ζ, 0) that is the vectors
DΓ(ζ, 0)e1, . . . , DΓ(ζ, 0)ed with e1, . . . , ed denote the standard basis of Rd. That means
we iteratively set for k = 1, . . . , d

ēk(ζ) =
DΓ(ζ, 0)ek −

∑k−1
i=1 〈ēi(ζ), DΓ(ζ, 0)ek〉 ēi(ζ)

|DΓ(ζ, 0)ek −
∑k−1
i=1 〈ēi(ζ), DΓ(ζ, 0)ek〉 ēi(ζ)|

.

By induction over k it easily follows that the mapping ζ 7→ ēk(ζ) is C2 and we set

Φ̃ : MΓ ×Rdθ → Rd, (ζ, θ) 7→ Γ(ζ, 0) +

dθ∑
i=1

θiēdζ+i(ζ).

Note that Φ̃ is C2 and ēdζ+1(ζ), . . . , ēd(ζ) span the normal space NΓ(ζ,0)M . We differenti-

ate Φ̃ in (ζ, 0) with ζ ∈MΓ. One has for every k = 1, . . . , dζ and ` = 1, . . . , dθ,

∂

∂ζk
Φ̃(ζ, 0) =

∂

∂ζk
Γ(ζ, 0) and

∂

∂θ`
Φ̃(ζ, 0) = ēdζ+`(ζ).

EJP 28 (2023), paper 57.
Page 43/48

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP947
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


CLTs for SGD with averaging for stable manifolds

By construction, the first dζ columns of DΦ̃(ζ, 0) are linearly independent and span the
same linear space as the vectors ē1(ζ), . . . , ēdζ (ζ) so that all columns of DΦ̃(ζ, 0) are

linearly independent and DΦ̃(ζ, 0) is an invertible matrix. We set (ζ0, 0) = Γ−1(x) and
note that the mapping Φ̃ restricted to an appropriate ball Br0(ζ0, 0) ⊂ MΓ × Rdθ is a
C2-diffeomorphism onto its image.

Possibly,
(
Φ̃|Br0 (ζ0,0)

)−1
(M) is not a subset of Rdζ × {0}dθ . Since the manifold M has

no boundary we can choose r1 ∈ (0, r0) such that K := Φ̃
(
Br0(ζ0, 0)

)
∩M is compact.

Hence, there exists r2 ∈ (0, r1) such that for all x ∈ K and y ∈ NxM with |y| ≤ r2, x is
the unique closest element to x+ y in M , see [11, Theorem 3.2]. In particular, x+ y 6∈M
if y 6= 0. Consequently, for (ζ, θ) ∈ Br2(ζ0, 0) with θ 6= 0 we have

Φ̃(ζ, θ) 6∈M,

so that
(
Φ̃|Br2 (ζ0,0)

)−1
(M) ⊂ Rdζ × {0}dθ . Altogether, we thus proved that the restriction

of Φ̃|Br2 (ζ0,0) is a nice representation for M on Φ̃(Br2(ζ0, 0)) 3 x.

For a general introduction into Fermi coordinates of Riemannian submanifolds we
refer the reader to chapter 2 of [18].

D Locality of the Robbins-Monro scheme

In this section, we prove a locality result for the Robbins-Monro scheme X = (Xn)n∈N0

defined in (1.1).

Lemma D.1. Suppose that F : Rd → R is a C1-function with Lipschitz continuous
differential f that satisfies

lim
|x|→∞

F (x) = −∞.

Moreover, suppose that (Dn)n∈N is a sequence of martingale differences that satisfies
for a CD ≥ 0 and a bounded sequence of strictly positive reals (σRM

n )n∈N that, almost
surely,

(σRM
n√
γn

)−1
E[|Dn|2|Fn−1]1/2 ≤ CD, (D.1)

for all but finitely many n ∈ N. Moreover, assume that γn → 0 and
∑∞
n=1 γn(σRM

n )2 <∞.
Then

P
(

lim sup
n→∞

|Xn| <∞
)

= 1.

Proof. It suffices to show that P(lim infn→∞ F (Xn) > −∞) = 1. Let x, y ∈ Rd and note
that with the Lipschitz continuity of f we get

F (y) = F (x) +

∫ 1

0

〈f(x+ t(y − x)), y − x〉 dt

= F (x) + 〈f(x), y − x〉+

∫ 1

0

〈f(x+ t(y − x))− f(x), y − x〉 dt

≥ F (x) + 〈f(x), y − x〉 − 1

2
‖f‖Lip(Rd) |y − x|2.

Applying this to x = Xn−1 and y = Xn gives

F (Xn)− F (Xn−1) ≥ γn|f(Xn−1)|2 + γn〈f(Xn−1), Dn〉 − ‖f‖Lip(Rd)γ
2
n(|f(Xn−1)|2 + |Dn|2).
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Let 0 < δ < 1 and fix N ∈ N such that, for all n ≥ N , we have ‖f‖Lip(Rd)γn < δ. For
n ≥ N , we let

Ξn =

n∑
`=N+1

γ`
(
(1− ‖f‖Lip(Rd)γ`)|f(X`−1)|2 + 〈f(X`−1), D`〉

)
and

Ξ′n = −‖f‖Lip(Rd)

n∑
`=N+1

γ2
` |D`|2

and observe that

F (Xn)− F (XN ) ≥ Ξn + Ξ′n. (D.2)

First, suppose that inequality (D.1) is true for all n > N . We deduce an estimate for
the supremum of the process (Ξn)n>N . In terms of the martingale

(Mn)n>N =
(
−

n∑
`=N+1

γ`〈f(X`−1), D`〉
)
n>N

,

we have

〈M〉n =

n∑
`=N+1

γ2
` E[〈f(X`−1), D`〉2|F`−1] ≤

n∑
`=N+1

C2
Dγ`|f(X`−1)|2(σRM

` )2.

With σ̄RM = supn>N σ
RM
n <∞ we get

〈M〉n ≤ (CDσ̄
RM)2

n∑
`=N+1

γ`|f(X`−1)|2.

Consequently,

Ξn ≥ −
(
Mn −

1− δ
(CDσ̄RM)2

〈M〉n
)

= −a
(1

a
Mn − 〈

1

a
M〉n

)
,

for a := (CDσ̄
RM)2

1−δ . Using Lemma 3.6 in [8], we get that

P
(

inf
n>N

Ξn ≤ −T
)
≤ P

(
sup
n>N

1

a
Mn − 〈

1

a
M〉n ≥

T

a

)
≤ 4a2

T 2
+
∑
n∈N0

2n+3

(2n + T
a )2

T→∞−→ 0,

so that infn>N Ξn is almost surely finite. Moreover,

E
[

sup
n>N
−Ξ′n

]
= ‖f‖Lip(Rd)

∞∑
`=N+1

γ2
` E[|D`|2] ≤ ‖f‖Lip(Rd)C

2
D

∞∑
`=N+1

γ`(σ
RM
` )2 <∞,

so that also infn>N Ξn is finite, almost surely. Using (D.2), we thus get that lim inf F (Xn) >

−∞, almost surely, which achieves the proof under the additional assumption that (D.1)
is true for all n > N .
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For the proof of the general result, consider the dynamical system (1.1) with (Dn)n∈N
replaced by (D

(N)
n )n∈N, given by

D(N)
n =

{
Dn, if n ≤ N or E[|Dn|2|Fn−1] ≤ C2

D(σRM
n )2/γn,

0, else,

for all n ∈ N. Obviously, the respective N -dependent dynamical system X(N) =

(X
(N)
n )n∈N0

satisfies the stronger assumption and we can conclude that

lim sup
n→∞

|X(N)
n | <∞, almost surely.

The result follows since
lim
N→∞

P(X(N) 6≡ X) = 0

as consequence of assumption (D.1).
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[33] Herbert Robbins and Sutton Monro, A stochastic approximation method, Ann. Math. Statistics
22 (1951), 400–407. MR42668

[34] H. Robbins and D. Siegmund, A convergence theorem for non negative almost supermartin-
gales and some applications, Optimizing methods in statistics (Proc. Sympos., Ohio State
Univ., Columbus, Ohio, 1971), Academic Press, New York, 1971, pp. 233–257. MR0343355

[35] David Ruppert, Efficient estimators from a slowly convergent robbins-monro procedure,
School of Oper. Res. and Ind. Eng., Cornell Univ., Ithaca, NY, Tech. Rep 781 (1988).

[36] Jerome Sacks, Asymptotic distribution of stochastic approximation procedures, Ann. Math.
Statist. 29 (1958), 373–405. MR98427

[37] Nilesh Tripuraneni, Nicolas Flammarion, Francis Bach, and Michael I. Jordan, Averaging
stochastic gradient descent on Riemannian manifolds, Proceedings of the 31st Conference
on Learning Theory, Proceedings of Machine Learning Research, vol. 75, PMLR, 06–09 July
2018, pp. 650–687.

EJP 28 (2023), paper 57.
Page 47/48

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3588287
https://mathscinet.ams.org/mathscinet-getitem?mr=2024928
https://mathscinet.ams.org/mathscinet-getitem?mr=624435
https://mathscinet.ams.org/mathscinet-getitem?mr=3362567
https://mathscinet.ams.org/mathscinet-getitem?mr=4055054
https://mathscinet.ams.org/mathscinet-getitem?mr=1993642
https://mathscinet.ams.org/mathscinet-getitem?mr=4304862
https://mathscinet.ams.org/mathscinet-getitem?mr=1162311
https://mathscinet.ams.org/mathscinet-getitem?mr=0160856
https://mathscinet.ams.org/mathscinet-getitem?mr=0423714
https://mathscinet.ams.org/mathscinet-getitem?mr=1071220
https://mathscinet.ams.org/mathscinet-getitem?mr=1167814
https://mathscinet.ams.org/mathscinet-getitem?mr=170385
https://mathscinet.ams.org/mathscinet-getitem?mr=42668
https://mathscinet.ams.org/mathscinet-getitem?mr=0343355
https://mathscinet.ams.org/mathscinet-getitem?mr=98427
https://doi.org/10.1214/23-EJP947
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


CLTs for SGD with averaging for stable manifolds

[38] Rene Vidal, Joan Bruna, Raja Giryes, and Stefano Soatto, Mathematics of deep learning,
arXiv:1712.04741, 2017.

[39] J. Wolfowitz, On stochastic approximation methods, Ann. Math. Statist. 27 (1956), 1151–1156.
MR86437

Acknowledgments. The authors would like to thank an anonymous referee for his
valuable comments.

EJP 28 (2023), paper 57.
Page 48/48

https://www.imstat.org/ejp

https://arXiv.org/abs/1712.04741
https://mathscinet.ams.org/mathscinet-getitem?mr=86437
https://doi.org/10.1214/23-EJP947
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

	Introduction
	The central limit theorem
	Geometric preliminaries
	L2-error bounds
	The Ruppert-Polyak system for linear systems
	Technical preliminaries
	The proofs of the main results
	Proof of Theorem 2.9
	Proof of Theorem 2.6

	Stable convergence
	OP and oP
	Nice representations in the sense of Def. 2.4, Fermi coordinates
	Locality of the Robbins-Monro scheme
	References

