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Abstract

We look at random walks in Dirichlet environment. It was known that in dimension
d > 3, if the walk is sub-ballistic, the displacement of the walk is polynomial of order «
for some explicit x. We show that the walk, after renormalization, actually converges
to a k-stable completely asymmetric Lévy Process.
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1 Introduction and results

1.1 Introduction

Random walks in random environments (RWRE) have been studied for several
decades and are now rather well understood in the one dimensional case (see Solomon
[29], Kesten, Kozlov, Spitzer [18] and Sinai [27]). Important progress has been made
in higher dimension, mainly in 3 directions: under a ballisticity condition, for small
perturbation of the simple random walk [9, 34, 6, 23, 19] and in Dirichlet environment.

The most studied ballisticity conditions come from the conditions (7') and (7”) intro-
duced by Sznitman in [32, 33]. They have been shown to be equivalent in iid uniformly
elliptic environments in [17] and also to be equivalent to an effective polynomial con-
dition [3, 10]. By assuming any of these, in the ballistic regime, directional transience,
ballisticity, and a CLT have been proved. Quenched CLTs have also been proved in
various cases, either by assuming an annealed CLT, uniform ellipticity and a condition
introduced by Kalikow [31], or by assuming the existence of high enough moments for
the renewal times (see [30] for a definition of the renewal times) and uniform ellipticity
of the environment [22] and [4] in dimension d > 4.

All these results show limit theorems in the ballistic case, that is to say that the
walk has a positive speed. In dimension 2 and higher no complete limit theorems are
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known for the RWRE in the sub-ballistic case. However in dimension 1 we know that
a sub-ballistic regime exists, where the walk can behave like the inverse of a stable
subordinator [18, 13]. This sub-ballistic regime is caused by the existence of traps
where the walk spends most of its time. This trapping phenomenon appears in other
models closely related to the RWRE for instance the Bouchaud Trap Model (see [1]
for a precise definition and an overview of the results). The model of random walks in
random conductances also exhibits a similar trapping phenomenon. Indeed an annealed
limit theorem (the limit is the inverse of a stable subordinator) and an equivalent to
the CLT [16] have been proved for the biased random walk in random conductances.
Similar results have been obtained for the biased walk in the percolation cluster and in
Galton-Watson trees, but in both cases there is no convergence to a limit law [2, 15]. In
the special case of iid, elliptic (but not uniformaly elliptic) RWRE a trapping phenomenon
that leads to sub-ballistic behaviour has been identified in [8, 7] and [14] but no limit
theorem has been proved.

The random walk in Dirichlet environment (RWDE) is a model where the transition
probabilities are iid Dirichlet random variables (see [26] for an overview). It was first
introduced because of its link to the linearly directed-edge reinforced random walk
[21, 12]. It also has a property of invariance by time reversal that allows explicit
calculations (see [24]). In particular, it gives a simple criterion for existence of absolutely
continuous invariant distribution from the point of view of the particle, directional
transience and ballisticity in dimension d > 3 [35, 8, 36, 25]). In the non-ballistic case
the walk is directionally transient but the limit law was still unknown [8], it was only

known that for some explicit x € (0, 1], loi(g‘jfsl) —
n—oo

In this paper we prove the annealed limit law for the sub-ballistic regime (x < 1)
in dimension d > 3. In the case k = 1 we prove that #g(n)Yn (where Y is the random
walk) converges in law and we give its limit while for x < 1 we prove that the process
converges and give its limit. To the best of our knowledge, this is the first stable limit

theorem for non reversible RWRE in iid environment, in dimension d > 3.

1.2 Notations

As the article is quite long, it involves a large number of notations. We put them here
to help the reader.

e d, is the drift defined in 1.3.

* Epv is the expectation with respect to Py

* Epw), Ep be the expectation with respect to P,

* v (x) is the speed up function defined in (1.1).

. yg)w is the modification of 4™ (x) for graph different from Z< defined in 2.5.

* v&(z) is the acceleration function defined in 2.7.

» [, is the set of configuration of size i defined in 2.16.

o "= U1gign I; (2.16).

* k, ¥’ and k; are parameters describing the strength of traps defined in 1.4.

e L"(n) = min{i, 7 > n}.

. Ef is the time Y spends in the " trap in the direction j.

* (W")iefo, 400 is the process (X{™);c(o,+o0) from the point of view of the particle.
* w is the environment (the set of the transition probabilities).

* () is the set of all environments.

* @ is the partially-forgotten environment defined in 2.15.

« Qis the set of all equivalence classes for the trap-equivalence relation (2.14).

EJP 29 (2024), paper 51. https://www.imstat.org/ejp
Page 2/66


https://doi.org/10.1214/23-EJP945
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Limit theorem for RWDE

» Py is the expectation associated with the discrete time walk in environment w and
started at 0.

» P(®), P is the measure on {2 where the transition probabilities are iid Dirichlet
random variables of parameter « at each site.

. ]Péa) [] := Epw [Py ()] is the annealed law of the process starting at 0.

« Q@), Q is the invariant measure from the point of view of the particle.

* Qy"%(+) is the invariant measure from the point of view of the particle for
(@) te(0,+00)-

* S% is the k-stable Lévy process defined in 1.8.

* Nyyzy Noosy, Ny_se, Ny, are the number of crossings of the trap (see 2.16).

. Nij is the number of times the walk enters the ' trap in the direction j.

. si is the strength of the '™ trap in the direction j.

+ S% is the inverse of S*.

* (7y)ien are the renewal times defined in 1.1.

* (T7")ien- are the renewal times associated with (X;")¢c(0,400)-

e Tv, T is the set of traps (2.13)

. 7~"”, T is the set of vertices in traps (2.13).

* T3, Ty is the set of traps with direction in J (2.13).

. 7~'f, 7~T7 is the set of vertices in traps in direction in J (2.13).

* (X{")te[0,400) is the accelerated version of Y where the speed up is given by 7'

* (Y,)nen is the discrete time random walk in Dirichlet environment.

* (Y,)nen is the partially-forgotten walk associated with (Y},),cn defined in 2.15.
* ||z|| is the L;-norm of z.

1.3 Definitions and statement of the results

In all the paper we set d > 3. Let (ey, ..., eq) be the canonical basis of Z? and for any
j € [d+1,2d], set e; = —ej_q4. For any z € Z%, let ||z|| := Zle |z;| be the L;-norm of z.
For any z,y € Z* we will write z ~ y if |ly — z|| = 1. Let E = {(,y) € (Z%)*,x ~ y} be
the set of directed edges of Z? and let F = {{z,y}, (z,y) € (Z%)?,z ~ y} be the set of
non-directed edges. Let Q be the set of environments on Z¢:

2d
Q= {w = (w(2,))z~y € (0,1]F such that Vx € Zd,Zw(z,x +e)= 1}.

i=1

For each w € ©, let (Y;,),en be the Markov chain on Z? defined by Y, = 0 almost surely
and the following transition probabilities:

Yy € Z4,Vi € [1,2d], Py (Vi1 =y +eilYn =v) = w(y,y +e1).

Let Epy be the expectation with respect to Pg.

Given a family of positive weights (a1, ...,a2,), we consider the case where the
transition probabilities at each site are iid Dirichlet random variables of parameter
a:= (a1,...,q), that is with density:

2d
r (Z ai) <2d
=1 a;—1
€Z;

2d
[I(a;) M=t
1=1

) dxl ce dl‘gdfl
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on the simplex
2d
{(ml, oy @2q) € (0,124 2y = 1}.
i=1

Let P(® be the law obtained on € this way. Let Ep be the expectation with respect to
P(®) and let ]Pg’) [] := Epw [P§(.)] be the annealed law of the process starting at 0. Let
(Ti)l-G]N* be the renewal times in the direction e¢; (see [30]):

Definition 1.1. We define (7;);cn~, the renewal times in the direction ey, by:
1=inf{n e N,Vi<n,Y;-e1 <Y, -e;andVi>n,Y;-e1 >Y, e}
and for alli > 1:
Tiv1 =inf{n > 7,Vi<n,Y;-e1 <Y, -e;andVi >n,Y;-e; > Y, -e1}.

The renewal times are used to create independence thanks to the following theorem
(Theorem 1.4 of [30]).

Proposition 1.2. For all k € IN*, let G, be the o-field defined by:

gk = U(Tla cey Ty (Yn)OSnnga (w($7 '))z-el <Yrk'81)'
We have, forall k > 1:

PS (Yretn)n0 € - (@(Yr, + 2, ))aer 50 € -|Gr)
=P (Ya)ns0 € - (@(@,))ger0 € |71 = 0).

This means that the trajectories and the transition probabilities inside slabs between
two consecutive renewal times (after the first one) are i.i.d random variables.

Definition 1.3. We define the drift d, by:

2d
do = g ;6.
i=1

Ifd, # 0, we will assume, without loss of generality, that o; > a114.

Definition 1.4. We define the two parameters « and ' by:

2d
k=2 (Z al—> - rrllaxd(ozl- + @itq)

i=1
and
2d
A
= i —2 i + Qita) -
K 3(2@) i:rlfllf.i.)ch(a + itd)

For any direction j € [1,d] we also define the parameter «; by:

2d
Rj = 2 (Z ozi) — (ij + O[j+d)
i=1

In [25], it was proved that, for d > 3, when k > 1, there exists an invariant probability
measure Q@ for the environment from the point of view of the particle, absolutely
continuous with respect to P(®). From that it is possible to show that directional
transience and ballisticity are equivalent when s > 1. Furthermore, we know for which
parameter the walk is directionally transient.
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Theorem 1.5 (Corollary 1 of [36]). If d > 3 and d, # 0, then for P(®) almost every
environment, the walk is directionally transient with asymptotic direction d, that is to

say:
YTL d(l’

[Yall nooo |ldall”
However, when k < 1, such an invariant probability does not exist because of traps.
But, in [8], it was proved that, by accelerating the walk, we can get an invariant
probability for this accelerated walk, absolutely continuous with respect to P(®).
This leads to the following limit theorem in [8]:
Proposition 1.6. Ifxk < 1,d >3 and d, # 0. Letl € {ey,...,e2q} be such thatd, -1 > 0.
Then we have the following convergence in probability (for the annealed law):

log(Yy, - 1)
log(n) n—oo

P§ almost surely.

K.

We will now give a precise definition of the accelerated walk. We call directed path
a sequence of vertices o = (zy,...,z,) such that (z;,z;41) € F for all i. To simplify
. . . n—1 ey .
notations, we will write w, := [[,_, w(z;, z;+1). For any positive integer m, we define
the accelerating function v (z) by:

m‘,L, — 1
v () - S

(1.1)

where the sum is on all finite simple (each vertex is visited at most once) paths ¢ in
x + [-m,m]¢, starting from z, going to the border of x + [-m,m]¢ and stopped the
first time they reach this border. We will call X;" the continuous-time Markov chain
whose jump rate from z to y is 77 (z)w(z, y), with X{@" = 0. This means that Y,, = X/
and X" =3, Ykltm<t<tm fortm = >0, 77 Sk, where the &; are iid exponential
random variables of parameter 1. The walk X7 ' can be viewed as an accelerated version
of the walk Y,,.

Now, we need to introduce an other object: the walk seen from the point of view of
the particle. First, let (0,),cz« be the shift on the environment defined by: 6,w(y, 2) :=
w(xz +y,x + z). We call process seen from the point of view of the particle the process
defined by W = 0X;7Lw. Unlike the walk Y, under ]Pga), wT” is a Markov process on {2. Its
generator R is given by:

Z’Yw O € f(aeiw)v

for all bounded measurable functions f on 2.

Theorem 1.7 (Theorem 2.1 of [8]). In dimension d > 3, if m is large enough then the
process (T’L)te]R+ has a stationary distribution Q™. For any (3 > 1 there exists an m
such that $2= is in L (P(®)).

We will write Q;"“(+) for Q™ (Py(-)) To simplify the notations, we will drop the («)
from P, P{*) Q™ and Q"* when there is no ambiguity. We will also write X;, Q and
Qo instead of X", Q™ and Q" when there is no ambiguity on m.

We need a last definition to be able to state the limit theorems.

Definition 1.8. For any « € (0,1) let S” be the Lévy process where the increments are
completely asymmetric k-stable random variables. The increments have the following
characterizations:

YA€ R, Vs € RT,E (exp (iAS7)) = exp (—s|>\|f~”~ (1 —isgn(A) tan (%ﬁ)))
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and for any s € R*, 8% and s~ S} have the same law.
Since this process is non-decreasing and cadlag we can define the cadlag inverse S*
by:
Sr = inf{s, S* > t}.
The following two theorems, which are the main results of this paper, give a full
annealed limit theorem:

Theorem 1.9. Setd > 3 and « € (0,00)??. Let Y"(t) be defined by:
Y™ (t) = niHYLntJ .

If k <1 and d,, # 0 (ey is such that d, - e; > 0), there exist positive constants ci, co, c3
such that for the J; topology and for IPE)“):

_1 o
U N 5Ty ) —— 1S,
n—oo

for the M, topology and for ]P(()a):

(x T inf{t >0,Y(t) e > nx}) — S”
n—oo

and for the J; topology and for IP(()Q):

Y — 38%d,,.

n— oo

Remark 1.10. We will give a quick explanation on what the M; and J; topologies are,
for a precise definition see [28, 37]. They were both introduced as a generalization
of the infinite norm for cadlag functions. In the J; topology, a sequence of cadlag
functions f, converges to f if there exists a sequence of increasing homeomorphisms
An :[0,1] — [0,1] such that

sup [An(t) — t] —— 0,

t€[0,1] n—0oo
and

sup |fn(An(t)) = f(t)] —— 0.

t€[0,1] n—oo

It is essentially the same as the infinite norm except that the function are allowed to
“wiggle” time-wise. The M; topology is a topology on the graphs of the functions where
we add vertical segments every time there is a jump. The main difference between
the M; and J; topology is that there is almost no difference between one jump and
small consecutive jumps in the M; topology while the difference is significant in the
Ji topology. The reason why we only have a convergence in M; for the hitting times
n=x inf{t > 0,Y(¢) - e; > nzx} is because there are consecutive jumps (this does not
happen for the renewal times 7 as the increments are independent). Indeed, if there is
a large jump between inf{¢t > 0,Y(¢) - e; > n} and inf{t > 0,Y (¢) - e; > n + 1} it is likely
that there is a trap with high strength close-by which means that it is likely that there
also is a large jump between inf{¢t > 0,Y(t)-e; > n+ 1} and inf{t > 0,Y(¢) - &1 > n + 2}.
Theorem 1.11. Ifd > 3,d, # 0 (ey is such thatd, -e; > 0) and k = 1, there exist positive
constants cy, ca, cs such that we have the following convergences in probability (for the
annealed law):

1
nlog(n) L

C1,
-3 Y - > N

nlog(n) lnf{z’yvl €1 = TL} n— 00 €2,
log(n) V)

n n—00

C3da.
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Remark 1.12. We cannot replace the convergence in probability by an almost sure
convergence. This is because if we look at a sum of iid random variables Z; with a heavy
tail P(Z; > t) ~ ct~! then we do not have an almost sure convergence. In fact, there are
infinitely many 7 such that:

Z; > ilog(i) log(log(i)).

However we might expect, as is the case in dimension 1, to have a convergence of the

process:

= Yin) — vnnlog(n)
n

t

?

for some deterministic sequence (v, ),en as n goes to infinity.

Remark 1.13. As the result we obtain are similar as the ones that exist in dimension 1,
it seems that the same results should be true in dimension 2. The reason we do not treat
this case is that there is no proof for the existence of an invariant measure for the walk
from the point of view of the particle. It is actually possible that no such measure exists
in the symmetric case (do—o = 0). However it should exist in the transient case and then
the result could easily be extended to dimension 2.

Remark 1.14. The Dirichlet environment is mostly used for two reasons. First, the
existence of the invariant measure which is an essential part of the proof. Second, to get
information on the probability density of the strength of a trap knowing the partially-
forgotten walk 2.15. For this second part, weaker assumptions on the environment would
suffice. This means that the proof could theoretically be adapted for other environments
once the existence of an invariant measure is proved.

A tool that will be central in the proof is the study of traps. We now give a precise
definition of traps.
Definition 1.15. A trap is any undirected edge {x,y} such that w(z,y) + w(y,z) > 3.
The strength of a trap is the quantity 0

17w(w>y))}r(17w(y,m)) ’

Remark 1.16. The strength of a trap is of the same order as the time the walk spends
in the trap every time it enters it. The value % has been chosen because it ensures that
w(z,y),w(y,z) > % which in turn means that for every point z, there is at most one point
y such that (z,y) is a trap.

1.4 Sketch of the proof

The proofs for x < 1 and x = 1 are mostly the same and therefore we will explain
both at the same time. One of the key elements of the proof is the existence of an
invariant measure which is a consequence of the invariance by time-reversal property
of the random walk in Dirichlet environment. This invariant measure will allow us to
bound the expectation of various quantities (the number of vertices visited between two
renewal times for instance) which is necessary for our proof.

1.4.1 Only the renewal times matter

We first show that the number of points visited between two renewal times has a finite
expectation (Lemma 2.2). This means that the walk does not “wander far” between
two renewal times. So we only have to know the renewal times and the position of the
walk at the renewal times to prove both theorems (Lemma 2.3). By Proposition 1.2, the
random variables (7;41 — 7;) are iid which simplifies the study of the process i — 7;
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1.4.2 The time between renewal times only depends on the strength of the
traps

Then we use the stationary law of the accelerated walk to get two results: firstly, the
time spent outside of traps is negligible (Lemma 2.27); secondly, the number N of times
the walk enters a trap has a finite moment of order « + ¢ for some ¢ > 0if k < 1. If
k =1, then N has a finite expectation (Lemma 2.19). This means the time spent in a trap
mostly depends on its strength.

Now we want to show that the number of times the walk enters a trap and the time it
stays in the trap each time are approximately independent.

We get two different results in this direction:

1.4.3 The strengths of the traps are essentially independent

The first result (Lemma 2.17) is that in a way the time spent in traps are independent
random variables. These random variables have a tail in C't~" where the constant C
depends on where the walk enters and exits the trap and how many times it does. More
precisely, we first set an environment and a path in this environment. Then we forget all
the transition probabilities in the traps, this means that if {z, y} is a trap, then we only
remember the “renormalized” transition probabilities:

(o) ma ({202
1= w(z,9) ) sty 1=w(¥,2) ) oy ata
Then every time the path visits a trap we only remember where it enters the trap and

where it exits the trap, we forget the number of back and forths inside the trap. Then,
only knowing these information, the strengths of the traps are independent.

1.4.4 The number of times a trap is visited and its strength are essentially
independent

The second result (Lemma 2.20) allows us to bound the probability that both the number
of times the walk enters a trap and the strength of the trap are high. We use the fact that
for an edge (z,y) if we know all the transition probabilities outside of z, y and we know

the (%) and the ( %) then the number of times the walk enters the
’ zZ~T ’ 2y

trap is essentially independent of the strength of the trap (it depends mostly on }:57%
and hardly on the strength of the trap). This means that it is unlikely that the traps with

a high strength are visited many times.

1.4.5 Conclusion

Thanks to these results we get that if we set an integer A and we only look at traps that
are entered less than A times then we have a good approximation of the total time spent
in traps (Lemma 2.22). The higher A is, the better the approximation gets. Now if we
only look at the traps the walk enters less than A times, we get a finite sum of sums of
iid random variables by Lemma 2.17. This means that, after renormalization, the time
spent in traps entered less than A times converges to a stable distribution if xk < 1. It
converges to a constant if k = 1 (Lemma 2.23). Then the only thing left is to make A go
to infinity and we get the first two results of both theorems.

Finally to prove the last part of both theorems we just use basic inversion arguments.
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2 The proof

For the remainder of the article we assume that d,, # 0 and a1 > @344, S0 dy - €1 > 0.

2.1 Number of points visited between renewal times

In this section we show that the expectation of the number of points visited between
two renewal times is finite. This means that only knowing the values of the renewal
times will be enough to prove Theorems 1 and 2.

Lemma 2.1. For m such that Q™ exists, let (T]");cn~ be the renewal times for the walk

X™ i.eT{" := ] or to put it another way X7 = Y;,. There exists a constant C,,, such
that for alli € N*, B, (17}, — T7") = Cy, and IP(()Q) almost surely:
0

(3

1
T O

n n—oo
Proof. Let D be the random distance defined by D := (Y;, — Y7,) - e1. First we will show
that Ep, (D) < oo.
Let (7;)ien+ be the different renewal times along the direction e;. Now let (d;);en+ be

the sequence defined by:
Vie N*,d; =Y, -e.

Let ﬂT(i) be the number of renewal times before the walk travels a distance ¢ in the
direction e ie: )
Vi e N*, L7 (i) = inf{n, d, > i}.

The sequence of random variables (d;;1 — d;);en- is iid by Lemma 1.2. Therefore, if

the expectation of D = dy — d; is infinite then i—" — o0, Py almost surely. Now,
n— 00

for every : € IN*, we have dff(i) > ¢ and therefore @ < %(Z)) If Py almost surely
n 4 (0 we would have & — Py almost surely. Since LG < 1 we would get
dn n—o00 4 71— 00 i+l

that Ep, (@) —— 0. However, there is a constant C' > 0 such that every time the
1— 00
walk reaches a new height along e, it is a renewal time with probability C' (independent
L7 ()
7

of the walk up to that time) so Ep, ( ) > C. Therefore we get that the expectation of

the distance the walk travels in the direction ¢; between two renewal times is finite.

Now we can look at the accelerated walk X" . We would like the sequence (7}}, —

T™);en~ to be a sequence of iid random variables. Unfortunately, the definition of the
accelerated random walk uses vertices in a box of size m around the vertex on which the
walk currently is, so we need to wait at least 2m + 3 renewal times to be sure to be at a
distance at least 2m + 1 of all the vertices visited before time 7;7; — 1. So we only have

that for any j € IN, the sequence (T(*"Q’erB)iJerrl — T&Lm*?’)”j)iew* is a sequence of iid

random variables. Furthermore the sequence (77}, —T;");>m+2 is identically distributed.

We know that there exists a constant ¢ > 0 such that Py almost surely @ =
g — 00

c > 0. If the expectation of the time the accelerated walk spends between two re-

m

. P . T . .
newal times is infinite then = —— o0, [Py almost surely since the random variables

7

i—00
m m .. X;f‘mne] Tm
(T(Qerg)iJrl - TQ’”””)ie]N* are iid. Therefore we would have T T SO
Y-, e . . Y- e ) ) .
—i— —— oo which is absurd because: —t— = dT and % satisfies a law of large
71— 00

numbers. Therefore the expectation of time the accelerated walk spends between two
renewal times is finite and there exists a constant C' > 0 such that:

Vi >m+2, Bp, (T, — T") = C.
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And by the law of large numbers, Py almost surely:

1

7.Ti7n . O D

(3 71— 00
Lemma 2.2. The number of different points the walk visits between two renewal times
has a finite expectation (Note that the number of different points visited between two
renewal times is the same for the walk Y and the accelerated walks X™).

Proof. We choose m large enough such that d(%n isin L” for some v > 1. In the following
we will write T instead of 7/" to simplify the notations. Let 3 be such that % +5 =1 Let
Co be the constant such that Py almost surely: %TZ m Coo, it exists by Lemma 2.1. Let
(Ri)ien- be the sequence defined by: Vi € N*, R; = #{z,3j < 7;,Y; = z}. The random
variables (R;+1 — R;);>1 are iid by Proposition 1.2. Thus if the number of different points
the walk visits between two renewal times has an infinite expectation (for IPy) then

% —— o0, Py almost surely and therefore QQ;* almost surely. However we have for any
1—> 00

C>0:

Q) (R, > Cn) < QU (T > 2¢oon) + Q(R,, > Cn and T, < 2¢oon)
=o0(1)+ Q(*(R, > Cn and T, < 2coon)

<o(l)+Qy Z #{x,Iteli,i+1), Xy =2} >Cn

0<i<2¢coom
1
<o(l) + 5-Eqp > #{w 3t eliit 1), X =a}
0<i<2¢coon
2
< o(1) + “=Eqp (#{z,3t € 0,1), X, = }).

C

Now we just have to prove that Eq; (#{x,3t € [0,1), X; = x}) is finite. We use the fact
that % isin L7 and therefore i%? is also in L".

EQB'L (#{l’, Jt [O’ 1), Xt = LE}) = IE)]pU <#{.’E, dt € [07 1)7 Xt = ZC}(i'l?P'[’iz)

3 aQp\ "\
< Ep, (#{z,3t €[0,1), X, = x}ﬂ)[ (EIPO (dIP) ) .
0

So we just need to prove that Ep (#{z, 3t € [0,1), X; = «}”) is finite. This is an immediate
consequence of Lemma 4 of [8]. Therefore, for C' large enough, we get:

1
Q' (R, > Cn) <o(1) + 3
This contradicts R,,/n —— oo Qf* almost surely and thus we have the desired result. O
n—oo

Now, we show that the trajectory of the walk cannot deviate too much from a straight
line.

Lemma 2.3. Let L7 (n) = min{i,7; > n}. There exists D € R? such that P, almost surely:

Y,
" D.
LT(n) n—o00
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Limit theorem for RWDE

Proof. By Proposition 1.2, (Y, Y. )121 is a sequence of iid random variables (for IPy).

Ti+1 7

Let R, := #{z € 2%, 3j <, }Jr/] = z} be the number of different points visited before
time 7;. By Lemma 2.2, R; — R;_; has a finite expectation and since ||YTi+1 -Y.| <
R; 11 — R;, we get that ||Y7, .1 — Y| also has a finite expectation. So there exists D € R
such that Py almost surely:

i

- —— D.

n n—oo

Now we want to show that

Yo—Yr (17 (n
I e 0| 0, Py almost surely. We clearly have:

L7(n) n—oo

1Yo = Yo (L (ny | < Rprny — Rpr(n)—1

L7(n) - L7(n)
but since Ep, (R; — R;—1) is finite, % —— 0, Py almost surely, so:
1—00
Y, =Y. -
H (L7(n)) H 0, Py almost surely .
L™ (n) n— 00
So we get that Py almost surely: szi(n) — D. O
n—oo

2.2 Number of visits of traps

This section is devoted to refining some results of [8] to get an upper bound on the
number of visits of traps. First we must get some results on finite graphs and then we
will extend these results on Z?.

Definition 2.4. Let G = (V, E) be a finite, directed graph. A vertex 6 € V is a cemetery
vertex if

* no edge exits 0, ieVx € V,(§,2) ¢ E,
 for every vertex x € V there exists a directed path from z to 6.

In this section we will only consider graphs with no multiple edges, no elementary
loops (one edge starting and ending at the same point), and such that for every x,y €
V\{d}, (z,y) € E if and only if (y,z € E).

We will first extend the definition of 4/ (z) for those graphs. Let G = (V U {é}, F) be
a finite directed graph, (a(e))ecr be a family of positive real numbers, and P be the
corresponding Dirichlet distribution (independent at each site).

Definition 2.5. Forz € G and A C VU{d}, we define the following generalization of 7 :

where we sum on simple paths from x to the border of A (i.e {y € A,3z & A, {x,y} € V})
that stay in A.

Remark 2.6. We notice that, in Z¢, for any m € IN*:
d
Vo € 2%, 0 (@) = 9 L (@),

We will also use the following acceleration function.

Definition 2.7. For any graph G and any environment w on G we define the partial
acceleration function ¢ by:

7 (w) = max (1 e —w(y,w) |

When there is no ambiguity we will write 4*(x) instead of v (x)
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Remark 2.8. Let 2 be a vertex in Z. If it is in a trap then 4*(z) is equal to the strength
of the trap. Otherwise v*(z) < 2.

We have the following result, in the case of finite graphs:

Lemma 2.9 (Proposition A.2 of [8]). Let n € IN*. Let G = (V U {4}, E) be a finite directed
graph possessing at most n edges and such that every vertex is connected to § by a
directed path. We furthermore suppose that G has no multiple edges, no elementary
loop, and that if (x,y) € F and y # §, then (y,z) € E. Let (a(e)).cr be positive real
numbers. Then, for every vertex x € V, there exist real numbers C,r > 0 such that, for
smalle > 0,
1

P <’Yg>jé}(x) 2 5) < CeP(—Ine)"
where the value of (3 is explicit and given in [8] but to simplify the notations we will only
use the fact that it is bigger than or equal to ' in the case we will look at.
Lemma 2.10 (Lemma 9 of [35]). Let (p\")1<i<n,, ..., (p\"))1<i<n, be independent Dirich-
let random variables with respective parameters (agl))lgignl, ey (agr))lgign,,,. Let
my,...,m, be integers such that Vi < r,1 < m; < n;, and let ¥ = ", S pE”
and 3 = Z;Zl S al(.j). There exist positive constants C, C’ such that, for any positive
measurable function f : R x RXi™ — R,

) p P = e (5 (1) ) (r) (r)

ol el o PV OB (S0 e D))
E f Ev Z ) 9 Z 9 ) 2 ) ) E _CE f Zapl ) 7pm17 7p1 ) apmr 9
where, under the probability PP, (;59), e ,155,2, . ,;55”, e ,ﬁgﬁl) is sampled from a Dirich-
let distribution of parameter (0451), ceey afﬁL . ,agr), ceey asﬁ)) Y is bounded and satisfies

P(X < €) < C'cP for every e > 0, and those two random variables are independent.

The following lemma shows that the value of the acceleration function /7" (z) depends
mostly on the strength of the trap that contains x (if there is one). This means that the
number of visits to a vertex depends mostly on the strength of the trap containing this
vertex.

Lemma 2.11. Set o € (0,00)%¢. In Z4, for any 3 € [n, '”2”/>, for any m > 2:

B
(0
E]P(a) <,y$ ( )> < 0.
0 VZd (0)
Proof. Let m > 2 be an integer. We will use the results we have on finite graphs
Yo' (0)
7+ (0)
amount of edges and vertices around 0. This means that we can look at this quantity
on a finite graph and have the same law. The finite graph G™ = (V™, E™) we want
is obtained by contracting all the points x € Z¢ such that ||z|| > m in a single point §
(the cemetery vertex) and deleting all the edges going from this vertex to the rest of
the environment. For any environment w on Z? we have an equivalent environment
w™ on G™: if (z,y) € F and (z,y) € E™ then w(z,y) = ©(x,y) and for any = € V™\{d},
W(x,0) =32 eza |yj=m @ (T, y). Now we have:

B
for this lemma. First we notice that the value of ( ) only depends on a finite

m V™\{é
YIH0) = g o (0)

and

m

17:4(0) = 7Gm (0).
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So we just have to show that
V(S
]E IVGWL }jm} (O) < 00
P(a) — .
Vém (0)
For any point y ~ 0 and any environment w we define X7/ by:

ZZ =2- U.)(O,y) - w(y70)

For any point x € G™ such that x ~ 0, we define GI* = (V*, EI") by contracting the
vertices 0 and z into a single vertex 0 and deleting the edges (0,z) and (z,0). The edges
(0,y) and (y,0) stay the same for any y ~ 0 such that « # y. However, the edges (x,y)
and (y,«) become (0,y) and (y, 0) respectively, for any y ~ z such that 0 # y. We can
also define w}* by:

V(y,z) € E™,y ¢ {0,2}, wi'(y, 2) := w™(y, 2)

m m m wm(y, Z)
V(y,Z) S Y € {07I}5 (yvz) € E;r y Wy (yaz) = T
Yy
Let x ~ 0 be a vertex of G™. If we think of v%w as a sum on simple paths, we have:
P
1 o 1
—rmy 2 2 @08) gy
Gm,uﬂn GWL}wm,

Indeed, if we look at W as a sum on simple paths ¢ from 0 to § (o¢9 = 0), either the

Gm,wm

first vertex o visited by the path is such that (0,01) € E™ or (z,01) € E™. We define &
by: if (0,01) € E™ then 6 := o and we have:

Ww™(F) =3¢ Wi (o) > 5 W™ (0, 2)w (o),
and if (x,01) € E™ then &; := 0;_1 for ¢ > 2 and 6 := 0 and &, := x and we get:
Ww™(5) = 2" W™ (0, z)w (o).

For any environment w, let 2(w™) be the point that maximises (y — «w™(0,y)). We have
@(0,z(w™)) > 5 and therefore:

1 . 1
Ay < zdzw@ﬂ") V)
rYGm wm

I(“ﬂn)vwl(ujm)

So we get, for any € > 0:

V{s}
]P(a) ’YG"H::"’ ( ) 2 1 S IP(O‘) 2"(:{6 2 Z‘;E’;m) _ 61
Y&m (0) £ Vém (0) Yo MY

a:(wm) I(wm')

2de m 1
= P y = z(w™) and > v —
Z A& (0) y 7v \{5}

y W

y~0

2de 1
(@) w
S Z]P v&m (0) =R 7V’"\{é}

y~0 Gy

by definition of 7%, (0): ’

Vy ~ 0, YEm (0)25" > 1.
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Therefore:
v\{é}
Yem om’ (0) 1 1
P (( Tt ) =) < P [ 2de >
wm™m —_— —_ —_ V7n. 5
’me (0) € y~0 G;" 7\(517}1}
Now we can apply Lemma 2.10 which gives, for any y ~ 0:

~ 1

m m m m
Gyrwy Ta y Yy

P | 2de >

where under P, w," are independent Dirichlet random variables (on the graph G;" and
the parameters of the Dirichlet are the same as in Z%). Now, according to Lemma 2.9
there exist two constants C’, r such that:

1
VA{s}

m_om
Grwy

Ve small enough, P | 2de > < ' (—log(e)) .

This means that by changing the constant C’, we get:

~ 1 , mtn
VEZO,IP 2d€2w SC€2.

So there exists a constant D that does not depend on ¢ such that:

V\(5) ,
ple) M > 1) < pes
V& (0) 2

We have the result we want. O

Unfortunately this statement cannot be efficiently used with the invariant distribution
Q™ because we can visit multiple points between times 0 and 1 since the time is
continuous. So we need a version of the previous lemma that takes this continuity into
account.

Lemma 2.12. Set o € (0,00)%?. For every 3 < %"‘/ there exists an integer m such that:

B

1
' ()
]EQBn Z / ’ywd (x) 1Xtm:mdt < 0.
z€Zr \) z

Proof. Let p € (1,00) be a constant such that 8p? < %"/ and let v be such that % + % =1.

Now let m be an integer such that % isin L". This means that ‘3%75 is alsoin L7. We

will only work in Z? so we will write 4 instead of v4.,.

1 B
Ve (@)
Eqp | D / Wﬁ(x) Lxp—adt
T€Z 0
1 B
75 (@) dQg
=SB, | | [ e
oz (0 7 () dPy
1
1 pB\ P 1
V() dQy )"\
< E 1xm_,dt E .
<Y Ee, (/ e oo ( (G
zeZ4 0
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m pB\ P
This means we just need to show that erZd Ep, <(f01 Wvﬁ ((j)) 1Xtm:rdt) > is finite. Let

D7 be the random variable defined by:

d

D = max | X[".e;|.
‘ 1t€[0,1]
=

We have:

B =

1 (@) >”ﬁ ' )
Jtel0,1], XM=z

m(y B v
&J((x))) 1D;ﬂ2|z|oo>>

(
<7L”(:c)>p2ﬂ>> 2 e (s )

m P26\ \ 77
=2 (EP ((128) )) (Eeo (1pp> iz ))

TE€Z?

-

Q=

Q=

2
m

p
Now since the environment for P is iid, [Ep ((% (””))

B
352 ) does not depend on z and we

get:

1
1 pB\ P
m(x

2_ T, /Vz z)

r€Z 0

—
~

Lxpnpdt

—~

1

0 p°B\ \ 7%
< (lE]p ((:w((o))) )) gZ: (Er, (Lop > o))

And since there exists a constant C' such that for every i > 1 there are at most Cd-1
points « such that ||z||. = i, we get:

S (Bey (1)) 140300 (Bp, (1n,2))°

z€Z4 i>1

2=

which is finite by lemma 4 of [8]. And by Lemma 2.11 we get:

o ((£8)") <=

So we get the result we want. O

2.3 Independence of the traps

This section will be devoted to the precise study of traps. The notion of trap was
defined in the introduction in definition 1.15. In the previous section we have essentially
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shown that the total amount of time spent on a trap mostly depends on its strength.
Now, we need a way to create independence between the times spent in the different
traps. We will do it in two steps. First we will show that the strengths of the traps are
essentially independent and then we will show that the strength of a trap and the number
of times it is visited are essentially independent. However, we first need to introduce a
few objects to characterize this independence precisely.

Definition 2.13. Let 7* be the set of traps {x,y} € E for the environment w.
T is the set of vertices x € Z such that there exists y such that {z,y} € T“.
For any subset J of [1,d] we define T¥, the traps with direction in J by:

fZ{{x,y}e’ﬁ 3j€J7y=96+6j Oryzx—ej}.

For any subset J of [1,d], T¥ is the set of vertices x € Z such that there exists y such
that {z,y} € Ty.
In the following we will omit the w when there is no ambiguity.

Definition 2.14. We say that two environments wi and w» are trap-equivalent if:

— they have the same traps:
Twl — 7'(».)27

- at each vertex not in a trap, the transition probabilities are the same for both
environment:

Vr g 7—WI7 Vy ~ I, wl(x7y) = (A&(l’,?j),

- at each vertex x in a trap {x,y}, the transition probabilities conditioned on not
crossing the trap are the same:

wi(z,2) _ wa(z,y)
—wi(z,y) 1 —wa(z,y)

V(I,y) GEv {xay}GTwla VZNI,Z#y7 1

We will denote by Q the set of all equivalence classes for the trap-equivalence relation.

Definition 2.15. Set & € (). Let T be its set of traps and ¢ a path starting at 0 that only
stays a finite amount of time every time it enters a trap. We want to define a path, with
the same trajectory as o outside the traps, which does not keep information regarding
the time spent in the traps. We essentially want to erase all the back and forths inside
traps. To that extent we define the sequences of integer times (t;), (s;) by:

si =1inf{n > t;, (0, = 0y, or{on,04,} € T) and (6,41 # o1, and {o,41,04,} € T)},

si+1 ifos, =0y,
tiv1 = .
S; otherwise.

If oy, is in a trap then [t;, s;] is the interval of time spent in this trap before leaving it.
The partially forgotten path ¢ associated with o in the environment @ is defined by:

0 := O0¢;-

Similarly we can define the partially-forgotten walk (Y,,)nen associated with (Y;,)nen
Definition 2.16. For all i € IN*, let I; be the set defined by:

I; =[1,d] x {a,b,c,de N,a>1,a+b+c+d=1i}.
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And I" be defined by:

m=J r

1<i<n

Lete € E be an undirected edge. We define the sequences (") (the times when the walk
Y enters é) and (t") (the times when the walk Y exits é) by:

i —inf{n,Y, € &},
th, =inf{n > "V, € éand V,,_; ¢ &},

fout — tin ijti;+1 Ze
’ ti" 11 otherwise

Since the walk is almost surely transient by Theorem 1.5, we have that for+ large enough
ti = 19" = oo almost surely.

Now letY := o and y be such that {z,y} = é. Let j € [1,d] be such that either
x =y+ej orxz =1y —e; (jis the direction of the edge) and n be such that ¢} < co and
th 1 = oo. Now we can define Ny_,., Ny_sy, Ny, Ny, by:

Nysy = #{i <1,V = x and Yyou =z},
Noyy = #{i < n,?iin =z and }N/;th =y},
Ny o =#{i < n,?iin =y and f’t?m =z},
Nysy = #{i <n,Yi» =y and Yyeu = y}.

The configuration p of the edge ¢, for the walk Y, is the element of I,, defined by:

p{qg,y} = (]a Nyoz, Nr—>y7 Ny—)ma Ny—>y)~

Now we can say in what way the strengths of the traps are independent.

Lemma 2.17. For any environment w € 2, let & € Q be its equivalence class for

the trap-equivalent relation. Now let (Y;) be the partially forgotten walk. We will
write @ := ), _,.o,®; and for any vertex z and integer i we will use the notation

a(z,z+e€;) := «,;. Knowing @ and (Y;), the strengths of the various traps are independent.
Furthermore, let {x,y} be a trap and p = (j, Ng—a, No—sy, Ny—z, Ny—s,) its configuration.
To simplify notations we will write N, := Ny, + Ny_z, Ny = Nyyy + Ny, and
N := N, + N,,. Let (r, k) be defined by (1 —w(z,y),l —w(y,z)) = (1 + k)r, (1 — k)r). The

density of law of (r, k) (with respect to the Lebesgue measure) knowing @ and Y is:
Cprn]-fl(l + k)Nerafa(z,y)fl(l _ k)Nerafa(y’w)*lhp(r(l +k),r(1-— k))logrgil—lékéla

where C),, is a constant that only depends on p and o, and h,, is a function that only
depends on p and « and that satisfies the following bound:

Vr < %7 [log(h,(r(1+k),7(1 —k)))| < 5(N + 2a)r.

And for the law of the strength s of the trap, there exists a constant D,, that only depends
on the configuration of the trap such that for any A > 2:

5(N + 2« ~ 5(N + 2«
oo (-2 o ) < o (122,
Proof. In the following, we will write & := Z?il o; and if y = = 4 e; we will write

a(x,y) := a;. First we need to show that the strengths of the traps are approximately
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independent of the trajectory of the walk. We will take an environment w and let @ be
the set of all environments that are trap-equivalent to w. Now for any path ¢ starting at
0, let 5“ be the set of all paths that start at 0 and that have the same partially-forgotten
path as 0. We want to see how the law of the environment is changed knowing the
partially-forgotten path and the equivalence class of the environment. We get that the
density of the environment (we look at an environment of finite size, large enough to
contain the path we look at) (for P() knowing the equivalence class of the environment
is equal to:

C H (696)6704(05,?;)*1(1_é.x)a(z,y)*l(gy)afa(y,x)fl(l_Ey)a(y,a:)*l1€z+6y<%d8£d€y, 2.1)
{z,y}eT

where e, = 1—w(z,y) and ¢, = 1—w(y, ). Now, knowing the environment, the probability
of having the given partially-forgotten walk is the same in parts of the environment
where there is no trap. The only thing that depends on the specific environment is the
times when the walk crosses the traps. Let {x, y} be a trap, and for any z1, 20 € {z,y} let
p(z1, 22) be the probability to exit the path by 2, starting at z;, we get:

€z

T, r) = —————— D ) =
P, o) €z + €y — €€y P(y:y) €z +Ey — EzEy’
~ gy(1 —ea)

~ €a(l —gy)
x = s xXr) = .
p(z,y) PT——— Py, ) P ——

€y

So for any environment w, we get that the probability of a partially-forgotten path (for
P("), is equal to:

¢ JI #aa)Neplw,y)N=vply, )N ply, y) Voo
{z,y}eT

Ny
el gy (1= 20)) Vo (a1 = 2,) Vomeey

=C
NyyatNoosy+Nyo+Nyy
(ew}eT (ex + &y — €2Ey)
Neyz+N. N, +N,
o [ e (1= ea)Nev(l —gy) o 2.2)
o (Ew + Ey)Nmax‘FNmay“rNyﬂw‘FNyﬁy ExEy N:c—>w+N:n—>y+Ny—>w+Ny—>y ’ '
{eheT | (1-22)

We define hy, ., by:

(1 =) Vv (1 —gy) e

a(x,y)—1 a(y,x)—1
( N NSy AN, SN,y (L~ €x) 711 — gy )L,
1— ExEy )

h{w,y} (xy8y) =
Extey

Now we get that the probability density of having a given environment knowing the

equivalence class of the environment and the partially forgotten path is equal to the

product of (2.1) and (2.2) up to a multiplicative constant C' that depends on the partially-
forgotten path:

Nzﬁz“rNyﬂz+a*a(myy)*1€Nxﬁy+Nyay+a*a(yvm)*1
Y

€z
¢ H (20 + £y) Voot Namsy +Ny oz TNy hizyy (€ ey)le, 1, <4
{zy}eT

This means that for ]Péo‘), knowing the equivalence class of the environment and the
partially forgotten path, the transition probabilities for each trap are independent, so we
will look at each trap independently. Let’s fix a trap {z, y} and to simplify notations, we
will write N, = Ny_p + Ny, Ny = Nyyy + Ny, and N = N, + N,. We define r and k
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by r = 2% and k = —-* which gives ¢, = 7(1 + k) and ¢, = 7(1 — k) the law of the

z Y
transition probabilities becomes:

r (r(1 4 k))Neto—a(@)=1(p(1 — f))Ny+ra—aly.e)-1
5 (QT)Nx-&-Ny-i-Q

:Clrnjfl(l + k)Nerafa(m,y)*l(l _ k)Nera*O‘(y@)*lh{w,y} (r(l+k),r(1 - k))lr<%d7’dk.

C

By (r(1+ K),r(1 = k)1, ydrdk

Now we want to give bounds on Ay, ;. Since for all r < %

log(1 — )| < 2r, we get:

|log(hyz,yy (r(1+ k), 7(1 = k)))|
<|(N(z,y) + a(z,y) — 1)log(l — (1 + k))| + [(N(y,2) + a(y,z) — 1) log(L — (1 — k))|
v - "R
<(N(z,y) + oz, y)4r + (N(y, ) + ay, z))4r + Nr
<5(Ngy + Ny + az + oy)r.

Let D:= [ C'(1 4 k)Neta@—alew)-1(] _ )Ny+@-aly2)-1qk, For any A > 2, we have:

5(N + 2a)

1 O

DA™"i exp (—

) <Py (s > A\&),}}) < DA " exp (5(1\7—1—2a)> .

A

Now we want to show that there cannot be too many traps that are visited many
times.

2
constant C > 0 such that for every i € N\ {0,1}:

Lemma 2.18. Set o € (0,00)??. For any 3 € [n, "‘*"‘/> with 8 < 1 there exists a finite

Ep, | Y #{j€lrm—11,Y; € {z,y} and Yy € {z,9}}" | = C.
{z,y}eT

Proof. We want to show that
Ep, [ Y., #{j€lrmn—11Y; € {z,y} and ;11 ¢ {z,y}}”
{z,y}eT

can be bounded away from infinity by using the inequality from Lemma 2.12:

1 B
7o' ()
Eng Z / 'y“’(x) 1Xt:g;dt < 00,
z€Zr \ 2

which is true for any 5 € {n, ”g”), and for any integer m such that Qg exists.

To that end we need to introduce the intermediate quantity S}*:

", oy g

- Vo () / o (y)
S = / 1xm—_gdt | + Ixm_,dt | ,
Z Z v (z) X / 7 (y) Xr=y

i=0{z,y}eT \7m

i

where (7]") are the renewal times for the walk (X}"), with the convention that 7}™ := 0.
By definition of X™, the time the walk X™ spends in a vertex z is a sum of 7, iid
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exponential random variables of expectation 7%(@ where /, is the number of times the

walk Y visits the point z. Therefore the quantity

/ 2 () Lot
0

should be close to ¢,. Then, every time the walk Y enters the trap {z,y} it stays a time
of order 4*(x). This means that Vf“(”m) should be almost equal to the number of times the
trap is entered. Finally, we get that for every trap the quantities
Z #{j € [ri, 71 —11,Y; € {z,y} and Y; 1 & {z,y}}’
{zy}eT

and

7 b ’

75 (x) 75 (y)
2 /vw(x)lm_mdt i Zv“’(y) Hxp=dt

{z.y}eT \7m

should be of the same order. Then we just need to bound the second quantity with
Lemma 2.12 and a law of large numbers.

For any k € [0,2m + 3] the random variables (S(5,,, 34 k41 — S(3m3)i4)i>1 are iid
(the definition of +/(z) depends on a box of size m around z and traps span over 2
vertices that’s why we cannot consider the sequence (Sj7}; — S;");>1). This means that

there is a positive constant C that can be infinite such that Ep, (S;’}n 13— S5, +2) =Cy
and

1
-5 —— Cp Py a.s and therefore Q a.s.
n n—o00

. . . T, A
For any z € Z¢ there is at most one integer ¢ such that ( e 1‘; ((f))

1 inzxdt) is non-zero
and therefore:

T, p T g
sr= Y / 7€<x)1xgnzm a4+ / VL:(y)IX;”:ydt
{zy}eT \ 0 (@) 0 W)
Define 5”3’ by:
v 5 8
gm .= Z /’7%(:6) Lapadt |+ /Vg(y)lxg":ydt
pater \y 7@ 5w

By Lemma 2.1 there is a finite constant D™ such that %T{L” — D™ Py and Qg almost
n—oo

surely. And therefore (keep in mind that v — S;" is non-decreasing) for any ¢ € (0, 1), P
and Qg almost surely:

R e, I G,
hnrgloléf ﬁSDmn > hgglg(l}f ﬁSL(I—E)HJ =(1-¢)Cp and

1~ 1
li 7Smm > i —_gqm = (1 Co.
im sup —Spmy, 2 imsup =57 o)) (1+¢)Co

n— o0 n— oo
And therefore )
*ngn — Cy Qo a.s.
n n— o0

In turn this means that,

pin m 6 bin m 6
1 T
n x
{z.y}eT \ 0 7 0 T
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Since 8 < 1 we have:

1 P 8 pmn . 8
vz Y (y
EEQO Z / ~ () Lxp=edt | + / ,YU:J(y) Lxm=ydt
{=y}eT \ o 0
[D™n] itl m () B i+1 my) B
VY T Y \Y
S Y ba| Y[ E ) | [ E
"o eyer \ /(@) /)
D 1 1 B
m 1 m m
:%E //yw 37 ]_mexdt + (/ ’Yw y ]-X"L:ydt
n w x w t
{Ty}GT - ) ()

< o0 by Lemma 2.12.

So () is finite.

Now we want to get a bound on Y from a bound on X™. For any trap {z,y} € T let
N{.,) be the number of times the trap {z,y} is entered. Let 7“"" be the subset of 7
defined by:

T={x,y}eTY, Yy a1 <x-e1 <Y, -e1t+nand¥, e <y-eg <Y, -e; +n}.

We chose a partially-forgotten path ¢ and we look at the law of the total time the walk X
spends in a trap {z,y} € T* knowing Y;, and Y = o, where Y is the partially forgotten
walk. We now have two sources of randomness: the number of back and forths the walk
does every time it visits a trap and the time the accelerated walk X™ spends for every
step.

Knowing the partially-forgotten walk, Ny, .y is deterministic. Let t! (o) be the ;™

time the walk Y enters the trap {z,y} and tix‘y} be the j™ time the walk Y exits the

trap {z,y}. We define H{a: s by H{x 0 {WJ , the number of back and forths

in the trap {z,y} during the ;% visit to the trap. For any integer n and for any trap
{z,y} € T*™ we have that knowing the environment, Y;, and the partially forgotten

walk, ( H fl }) is a sequence of independent geometric random variables of
VI jeNfzy}eT

parameter 1 — (1 — w(z,y))(1 — w(y,z)). Finally, for every = € T, let ¢J be the number
of times z is visited between times tj{L v} and 1§{I e We define ¢ by &/ := ¢ — {L e
Knowing the partially forgotten walk, € is deterministic (it is equal to 0 iff the walk

enters and leaves the trap by y during the j* visit) and ¢/, € {0,1}. We have:

Nia,yy S2THE, )

oo
7 (@) Ky Yoo (2)
1xm—gdt = Ent ==
0/ o S 2 Sy

where the (£ )TEZd k,jen are independent exponential random variables of parameter
¥ (x), they correspond to the time the accelerated walk spends on each vertex. By
technical Lemma 3.4 (the proof of which is in the annex) we get that there exists a
constant Cy > 0 such that for any integer n and any trap {z,y} € 7™

B B

m _
(2) Flxpasdt | / 7' (Y) Lxpoydt | VY, |, @3)
(z) 7(y)

'HL

0
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Unfortunately, we cannot directly use this inequality to conclude because it does not
behave nicely with the renewal times. Indeed if you know that a trap spans over two
renewal blocks, it means that you cannot do any back and forth inside the trap and the
previous inequality becomes false. Instead we will have to first consider traps in 7«™.
First, by definition of the renewal times, no trap in 7™ can be visited before time 7; or

after time 7,42 since Y, - e1 > Y, - e1 +n + 1. Therefore:

o B ~ 8
3 ' () Lapodt | + / e (Y) Lxp_ydt
feayeren \J 17@) ) )
T o T g
< ¥ / ’VZZ“(%)W:Idlt N / %i”(y)lxznzydt
toers \ A 7@ ) 7 (Y)
Therefore we get:
o g oo 8
S / W@y at| o+ / WWy | | <6 <oo
n+1 teayeren \J (@) ) 1)

This in turns gives:

1 8 Co
Ep Yo Waw)' | <5 <o
n+1 0 (zayeren Cq

Now let 02 = E]Po <Z{1y}ET #{] € [Tini-&-l — 1]],)? S {I,y} and }/j+1 ¢ {:177y}}5) be the
quantity we want to bound. By the law of large numbers, we have that Py a.s and
therefore Qg a.s:

1O ,
EZ Z #{j € [, 701 —11,Y; € {w,y} and Y; 11 ¢ {z,y}}” o Cy
i=1 {z,y}eT

Now, as a consequence of Lemma 2.2 and the law of large numbers, there exists a finite
constant D > 0 such that Py a.s and therefore Qg a.s, %an -e; — D. Furthermore, a
v n—oo

trap spans over at most two renewal blocks so for any trap {x,y}:

Z#{j € 7, mig1 — 1]},Yj € {z,y} and Yii1 ¢ {m,y}}’B < Q(N{af,y})ﬂ'

i>1

As a consequence, Py a.s:

11 B &
hm lnf EmEIPO Z (N{a:,y}) Z 7
{w,y}eTw,Dn
Finally we get:
G plo
2 = 1
so (s is finite. -

The next lemma is just a variation of the previous one, with the difference that the
sum has a deterministic number of terms instead of a random one which makes it simpler
to use.
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Lemma 2.19. For any j € [1,d] let (xf,yf) be the i trap in the direction j the walk
encounters after 7o. Let N] be the number of times the walk enters this trap.
Ifk <1, for any 8 € |k, "‘g“ ) with < 1 there is a constant C' such that for any

Jje1,d]:
Ep, (Z(Ng’)ﬁ> < Cn.

i=1

If k = 1 there exists a positive concave function ¢ defined on [0, c0) such that ¢(t) goes
to infinity when t goes to infinity and such that if ®(t) = f;;o ¢(x)dx then there exists a
constant C such that for any n € IN:

Ep, (zn: @(N{')) < Cn.

Those results are also true if {xf , yf } is the i trap in the direction j the walk encounters
after 7, such thatz - ey,y] -e1 > Y;, - €.

Proof. Let p > 0 be the probability, for Py, that there is at least one trap in the direction
J between times 75 and 73 — 1. Let 7; be the set of traps in the direction j. Now let the
sequence (n;) be defined by:

no :1,
nit1 =min{k > n;, Hx,y} € T;,3In € [m, 741 — 1], Y € {z,y}}.

Now, if k < 1,16t Z] = 31, ror #{m € [7n,, Tui1 — 1], Yo € {2y} and Yoy & {2, y}}7.
The (Z7)i>1 are clearly identically distributed and we have:

; 1
Ep,(Z]) = EEJPU > #{me[r,7s— 1],V € {x,y} and Vi1 & {z,y}}’
{=,y}eT;

Solet C; = IE]pO(ZZ-j) which is finite by Lemma 2.18. We clearly have:

m 2
Sy =Sz
=1 =1

The sum has to go up to 2m because in the second sum some traps can appear twice if
they are in between two renewal slabs. Indeed, in this case they can be visited before
and after the renewal time (if they are in the direction e;). We now have:

Ep, <Z(N{)B> < 2C;m.
=1
Similarly, if {Z;,7;} is the it trap in the direction j the walk encounters after 7, such

that z;-e1,y; -e1 > Y, - e; and Wf the number of times the walk enters this trap then we

have:
m 2m—+1

Z(Nf)ﬁ < Z Z;.

i=1
If Kk =1, by Lemma 2.18,

Ep, | > #{meln,m—1],Ym e {x,y} and Vo1 ¢ {2,9}}7 | < oc.
{z.y}eT;
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Therefore, by forthcoming technical Lemma 3.1 there exists an increasing, positive,
concave function ¢ defined on [0, c0) such that ¢(¢) goes to infinity when ¢ goes to infinity
and such that, if ®(t) := f;zo ¢(x)dz then:

Ep, | © |2 Z #{m € [ra, 75 — 1], Yn € {w,y} and Yo 1 & {,y}}" | | < o0,
{z.y}€T;
where O(t) := faf:O ¢(x)dz. We have that x — @ is increasing and therefore, by writing

g(x) = %, for any non-negative sequence (a;)1<i<n:

Z P(ai) = Z aig(a;)

1<i<n 1<i<n
< E a;g § a;
1<i<n 1<j<n
= E a | g E Qi
1<i<n 1<i<n
= E a;
1<i<n

So we get:

IE]Po Z o (2#{m € [[7_277-3 - 1]]a Ym € {‘T7 y} and Ym+1 g {.Z', y}}B)
{z,y}eT;

<Ep, | ® |2 Z #{m € [ra, 73— 1], Y, € {z,y} and V5,11 & {x,y}}ﬁ < 0.
{z,y}€T;

Let zZi = Dewrer; @ (#{m € [Tn,, Tnit1 — 1], Y € {z,y} and Y, 11 & {z,y}}”). The
(Z])i>1 are clearly identically distributed and we have:

E]po (Zi):%E]PO (2 Z i (#{m € [[72,7—3 - 1H7Ym € {SC,Z/} and Ym+1 g {xvy}}ﬁ)> <o0.

{z,y}€T;

So let C; = Ep,(Z7), which is finite. We clearly have:

m 2m
Y oN) <>z
i=1 =1

Once again, the sum has to go up to 2m because in the second sum some traps can
appear twice if they are in between two renewal slabs. Indeed, in this case they can be
visited before and after the renewal time (if they are in the direction e;). So:

Ep, (Z @(Nj)) < 2C;m.
=1

Similarly, if {Z;,7;} is the i trap in the direction j the walk encounters after m, such
that z; -e1,y; -e1 > Y, - e; and NZ the number of times the walk enters this trap then we
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have:
m . 2m+1
Y o)< > 7z
i=1 i=1
and we get the result we want. O

The following lemma gives us some independence between the strength of a trap and
the number of times the walk enters this trap.

Lemma 2.20. Letj € [[1 d] be an integer that represents the direction of the traps we
will consider. Let {«7,y/} be the i™ trap in the direction j (ie ] —y! € {ej, —e;}) to be
visited after time 1 and such thatgc -e; > Y., e and yZ e1 > Y., -e1. Now let sj be
the strength of the trap. Let N] be the number of times the trap {x;, yz} is exited. Let

Kj = 22?21 a; — o — ajyq. Forany v € [0,1], there exists a constant C' that does not
depend on ¢ such that:

C :
< o Bro (V])7)-
We also have that for any positive concave function ¢ such that ¢(0) = 1 with ®(t) =
f;:o ¢(z)dz we get:

VA2, Bp, (N)1,5,)

B, (B(ND)).

Proof. First if H is a geometric random variable of parameter p then for any v € [0, 1]
we have the following three inequalities:

VA > 2, Ep, (‘I’(Nij)lsgsz)

—
E((1+H)") =p o (2.4)
Mﬂ+mU>PO+H> Lot (2.5)
- p)pr P’ '
1
MU+@USMH+EW=E- (2.6)
Inequalities (2.4) and (2.5) give us that there is a constant C,, such that E((1+ H)7) >
C',yﬁ, inequality (2.4) gives us the result for p > % and since (1 — p)%_l converges to
exp(—1) when p goes to 0, inequality (2.5) gives us the result for p < %
By Lemma 3.2 we get that there is a constant Cy such that:
11 1 1 1
¢(>§E<I)1—|—H §C¢<). (2.7)
5,0 (5) <E@QH) <o

Let t € IN be an integer. In the following we will call renewal hyperplane the set of
vertices {z,z-e; = Y;-e;}. We look at the n? time, after time ¢, that the walk encounters
a vertex that touches a trap {z,y} in the direction j that has never been visited before
and such that z - e;,y - e; > Y; - e;. We want to show that the strength of the trap is
basically independent from the number of times the walk leaves the trap and from the
random variable 1,,—;. Let =,y be the corresponding trap with = being the first vertex
visited.

Now we look at the trap {z,y}. Let i be such thaty = x + 61, we will write oy, := «y,
Q= Qg and @ := Z x—1 0. The probability density (for P(®)) for the transition proba-
bilities w(z,y) and w(y, r), knowing all the transition probabilities (w(z1,22))., czd\ {4}
the renormalized transition probabilities (lf&;)y) )ty (T “‘(j’(;l) )2+, and that {z,y} is a
trap is:

CUJ(LL’, y)am_l(l - W(LU, y))a—aw—lw(y’ m)ay_l(l - w(y7 x))a_ay_llw(m,y)+w(y z)>3

2
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Now we make the change of variables:
1—w(y,z)=r(1-k), 1 —w(z,y) =r(1+k),
which gives a probability density of:
2rCr (1= k)T T L+ )T T (L = (L + E) (1= r(1 = k)™, cadrdk.
Let h(r, k) be defined by:
hirk)=(1—r(1+k)* (1 —r(1—k)> "

For 0 <r < 1and -1 <k <1 we have:

1
log <2)‘ + oy, — 1]

Sofor0<r < 1and-1<k<1we have:

log(h(r, k)) < |az — 1]

log (;) ‘ < (0 + ay + 2)1og(2).

- (ateut2) < pp k) < 2% e t?,
Now the probability density is:
2Ch(r, k)r o~ (1 — k)P~ (1 + k)11, 1 drdk.

Now we look at a specific environment w and an edge {2/, ¢’} in that environment. To
simplify the notation we will write e,y = 1 —w(2’,y’) and ¢,y = 1 — w(y’,2’). When the
walk leaves the trap there are three possibilities:

- the walk goes to infinity before going back to the trap or the renewal hyperplane

- the walk goes to the renewal hyperplane before it goes back to the trap (this does
not necessarily mean that the walk will go back to the trap after going to the
renewal hyperplane)

- the walk goes back to the trap before it goes to the renewal hyperplane (this does
not necessarily mean that the walk will eventually go to the renewal hyperplane).

If the walk is in 2’ let 537 be the probability, knowing that the next step isn’t crossing
the trap, that the walk goes to infinity without going to the renewal hyperplane or the
trap. Similarly, let 3%, be the probability, knowing that the next step isn’t crossing the
trap, that the walk goes to the renewal hyperplane before it goes back to the trap (this
does not mean that the walk necessarily goes back to the trap). We will also define S,
by B, := B39 + B2,. Similarly we will define S/, 557, 57

Now, if the walk is in z/, the probability that when the walk leaves the trap it either
never comes back to the trap or goes to the renewal hyperplane before it goes back to
the trap is:

Eat 6y/(1 — Ez/) 5m/5z’ + sy/(l — 61/)ﬂy’
L+ = .
Exr + Ey — EgrEy Eq T Ey — EgrEy Eq T Ey — EgrEy

Similarly, if the walk is in ¢/, this probability is:

61'/(1 - Ey')ﬁl’ + Ey’ﬁy’
Ex +Ey — EpEy

Now we want to show that that both these quantities are almost equal to:
61/61’ + €y/5y/

EII + Ey/
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We will only show it for the first quantity, the proof is the same for the second one. We
recall that e,/,¢,, < 3, therefore:

1
0 <egey < 5(593/ +ey)
and )
0 S Ex/{-:ylﬂy/ S §(€xlﬁrl —|— Ey/ﬁy/),
So we get:

151’5:1:’ + Ey’ﬂy’ < Ez’ﬁm’ + E‘:y’(]- - Ez’)ﬁy/ < ZEx’ﬁz’ + ‘Ey’ﬂy’
2 ey tey T gy ey —EpEy - Eqr T Ey

Similarly, if the walk is in 2/, the probability that the walk goes to infinity knowing that
the walk either goes to infinity or the renewal hyperplane before coming to the trap is:
€x B + Ey/(l — Em/)ﬁ;? €/ + Eyar — ExEy B Ex B + 5y,(1 — gz,)ﬁ;?

Ex’ —|—5y/ _63')/51/' é‘x/ﬁx/ —|—6y/(1 —é‘x/)ﬂy/ 632//61‘/ +€y/(1 _53:/)63/ :
And if it is in ¢’ this probability is:
e (1 — ey ) By +ey By
EI’(]- — Ey/)ﬁx/ + €y15y/ .

€I/ﬁ:?+€y/ﬁ;?

o Bote, By We will

We want to show that both these probabilities are almost equal to
only show it for the first one:
eoBy +ey(L—e)By _ cwBF +eyBy
€x B + ey (L —ea)By ~ewBur + ey (1 —ex)By
1 ewBy +eyBy
T (1 —ez) ewBu ey By
ew B3 + ey B

Em’ﬁx’ +5y'6y’ ’

And we also get, the same way:

Ez’ﬁgf +5y’(]— - 51’)613? > lgm/ﬂ;? +5y’ﬁ;/o
81"61” + Ey/(l — 51’)61/ - 2 EI’BJE’ + Ey/ﬂyl ’

Now we get back to the trap {z,y}. Let N be the number of times the walk leaves the
trap {z,y} before going to the renewal hyperplane (so if the walk never goes to the
renewal hyperplane, N is just the number of times the walk leaves the trap {z,y}). We
get that knowing ¢,,¢, and N, the probability (for Py) that the walk never goes to the
renewal hyperplane is between %if g: K;Z? and 25255: iiy’g?

We also have that there exist two geometric random variables N~ and N+ respectively

of parameter 1 — %w and 1 — QW such that P§ almost surely:
x Y Ed

1+ N " <N<1+NT.

Therefore, by equations (2.4), (2.5), (2.6) and (2.7) there exist two positive constants C,
and C (that depend on v and ®) such that for f equal to either = — z” or ®:

Ex T € Ex t€
le (M) < EPg (f(N)) < sz (M) . (2.8)

Now let f be either x — x” or ®. We need to show that NV is almost independent from
1;,—¢. Let t,, be the first time the walk is in x or y and let B be the event that “m, can be
equal to t” ie there exists t' < t (¢ plays the role of 77) such that:
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-Vi<t X; e <Xyp-eq,
-Vie[tht—1], Xv-e1 < X;-e1 < X; - ey,
- Vi€ [t tay], Xi-e1 > Xi-eq,
-Vie [[O,t/—l]]U[[t/-i-l,t—lﬂ,(Hj < 1, Xj -e1 > X; - 61) or (3] S [[i+17t—1]]Xj'61 <
X;-er).
We have that if B isn’t true then 75 cannot be equal to ¢. If B is true then , =t iff the
walk never crosses the renewal hyperplane after time ¢,,. So, for any environment w:

15zB§o + 5yﬂ§o
2 B+ Eyﬁy
To simplify notations we will write
=y L+ k)BT 4+ (1-k)B°
(L+k)Be +(1—Fk)By

We have (in the following, the constant C' will depend on the line):

Mpg(jg) (2.9)

PY(B) <Py (o =tIN) <2
0( )— 0(2 | )— Em5$+5y/8y

E]Po (f(N)lam—ﬁ-eyg%lTQ:t)

51:650 +e BOO
<2Ep, (f(N)ch”“yq‘) by (2.9)
zPz yPy

Ext+ € Emﬁoo'i'gyﬁoo
<CE —r Y )1 —= =Y ) by (2.8).
>~ Po (f (sxﬁx +€y/8y) sz+€y§% 59:/836 +5y5y ) Y( )

Now we use the fact that the various  only depend on {z,y} being a trap, the trajectory
of the walk up to the time it encounters the n'® trap in the direction j after time ¢, the

transition probabilities (w(z1, 22))., cz4\ {2} @nd the renormalized transition probabilities

(1f£f(f)y) )2ty (ﬁf}’(’;)@ )2+ But the law of (w(z,y),w(z,y)) is independent of this so we

get:

Ep, (f(N)laereyg% ]-ngt)

_/ ) / <r(1+k)ﬁm —H‘(l—k)gy) 2Ch(r, k)r™~ (1—k>“y(1+k)%h(k)dkdr)

k
A 1
<CE ki—1q / ( ) 1— k)% (1 + k) h(k)dk
<y, | [t [ 5 (i a ) (P RRG)
=0 k=—1
2\ i / 1

=C(=) E nild / < > 1—k)*(1+k)*h(k)dk

(%) (/ S A o) A

=0 —_
i 1
< /1 ’ )2CH( s~k 1Tk dhar
=Ar; Po r(14+k)Be +r(1—k)By ’
r=0k=—1

C €zBS° JFEyﬂoo
<—FE N1 Y
— Ari Po (f( ) SoteySy €z6$+8yﬁy >

C
SA”J‘ ElPo (f(N)15m+ay<%1T2:t) :
Then, by summing on all ¢ we get the result. O
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2.4 The time the walk spends in traps

Now that we have some independence, we can start to look at the precise behaviour
of the time spent in the traps. First we want to show that the number of times the walk
enters a trap times the strength of said trap is a good approximation of the total time
spent in this trap.

Lemma 2.21. Letj € [1,d] be a direction. Now let {27,4}} be the i'" trap in the direction
j entered after time 1o and such that x -eq, y ey > Y, -e. Let sf be the strength of this
trap, NJ the number of times the walk enters this trap and 6] =#{n,Y, € {xf, yf}} the
time spent in the trap. We have for any environment w, for any A, B > 0, for any integer
m and for any C € R+ U {oo}:

S 5B
Py (Z €J1N1>mlsi<c > A and ZN 1Nﬂ>m31157<c < B) A

i=1 i=1

Proof. Let w be an environment, (Y;)iew be the partially forgotten walk on this environ-
ment. Let p] = w(z], yl) (yz, 1) Now the number of back and forths inside the trap
(z], yz) during its k™ visit is equal to H; J & where H risa geometrlc random variable of
parameter 1 — pi. Knowing the partially-forgotten walk and p/, the H, f ., are independent
and we get for any j:

n N] n
21N1>m sJ<CZ2H le :ZlNJ>m SJ<CZ2
i=1 k=1 =1

k=1 7pz

1
<22 1N7>m 57<CN 1 _pj .

)

to show that 1 —

Now we use the fact that w(z?,y!) > L > 28

=g =1= (1= (1 = w(al, g1 = (L= (], 7))
== wled ) + (= wlyf, ) — (1 = (el g1 - (e, 7))
> (1~ (el ) + (1~ wly,ad)) - 5 (1~ iyl )

(1 — w(fﬁ‘g’ yi)) + (1 — w(yij’ wf))

>

2
1
25? .
So we get:
N]

Z Lyismly<o Z?H V] < 4ZN Lyismi Lo

i=1 k=1 i=1 -
The actual value of EJ can be slightly larger than Z w1 2H; , because this only counts

the back and forths, so we miss the correct amount by 1 every time the walk crosses
the trap an even number of times and by 2 every time the walk crosses the trap an odd
number of times. So we get that the time ¢ the walk spends in the it trap is smaller

than 2Nij + Z;\Zl 2H‘177k. For any positive constants 4, B > 0, let E™(B) be the event
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n J1 . _ J .
Yo N; Iyismlsi<csi < B, we have:

Py (Z lyisplyco>Aand Y N1y olyis,,s! < B)

=1
n
=Epy (P‘(’)J <Z£?151<01Nf>m > A|Y> 1E”'(B)>
=1

<Epy = ) Lgn(B)
5Nz‘le?>mSgls?<C
SEPB’ =1 ) 1En(B) since Sz > 2
5B 5B
<Eps <A1En(3)) < R
O

Now we want to show that we can neglect the time spent in traps in directions j
such that x; # x and in traps that are visited a lot of times. This will allow us to have
traps that are rather similar so that the time spent in those traps are almost identically
distributed.

Lemma 2.22. Let j € [1,d] be an integer that represents the direction of the trap we
will consider. Let {x;,y;} be the i*" trap in the direction j visited by the walk after time
7o and such that x; -e; > Y, -e; and y; -e1 > Y, -e;. Let k; = 200 — oj — g > K.

If k < 1 there are two cases: If k; = x, for any € > 0 there exists an integer m. such
that for n large enough:

n

j 1

Py (ZZlemes > snw) <e.
i=1

If k; > K, for any € > 0, for n large enough:

Py (Zﬁf > sni> <e.
i=1

If k = 1 there are two cases: If k; = k, for any € > 0 there exists an integer m. such that
for n large enough:

Py (Z ElemeE >en log(n)> <e.
i=1

Ifk; > 1, for any € > 0, for n large enough:

Py (Z eg' > anlog(n)) <e.

i=1

Proof. For all i > 0 let ¢; be the time at which the walk Y enters its i trap Hzi,yi 1)
in the direction j after m» and such that x;-ep > Y, -eqtand y; - e > YTZ Seq. We will
write z; the vertex such that x; = Y;,. Let s/ be the strength of the trap {z],y’}. For any
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A, B>0:
Po(3i < n,s] > Aand N} > B) < P ((Z 1J>A> 2B">
=1
n .
Py <Z(N3)“1SJ>A > B“)
=1

| /\

e (G

< — B"f A“a <z; ) by Lemma 2.20
c
< B% A"i Cn by Lemma 2.19. (2.10)

We will first look at the case x < 1. 4 ,
Now, we want to show that we can neglect traps with a high N/ or a low s]. We get
that for any positive integer M, any real A > 2 and any § € [x, 1] and n > 0 such that

B—&—ngmin(“g“ ,1):

_B _ " 1 ;
<o) £ VB, (2<N5>ﬂ+n<sz>ﬂlsg<A)
=1

B
A n

_B _ i
<(an)”* M "Ep, / Z(Nf)6+”1(sz)ﬂ2tdt
¢=0 =1

<(an) MY [ By (NP1 )

8
n A

g(an)—%M—nZ 2Ep, ((Ng')5+”)+ / Ep, ((N5)B+ﬂ1

=1

)dt

By Lemma 2.20, there exists a constant ¢ such that Ep, ((NJ)[”"I 1) <

S5 >t/i

=

s; >t

t=28

Ep, ((Nf)5+")ct_%, for t > 27 so:

A=

(ZNf leJ<A Ni>M > (an)

AP
<(an) R MY | 2B, (NY)*47) + B, (V7)) / ot Bt (2.11)
=1 t=25
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AP
M "Z 2+¢ / t=Fdt | Ep, (N/)P*m)
=268
AP
gdn(an)’gM”’ 2+c/t_%dt by Lemma 2.19.

+=28

Now for k; = k if we take € (k,1] such that § < “*T’”" n=0and A= bnr we get:

1 8 Bc 1\B-n
0<ZNJ s71 si<bn 11N?2M2(an)””> son *(Q—Fﬂﬁ(bnﬂ) )

<§n1—§ (2+6cbﬂ—nnﬁm”) (2.12)
a K

Now, we get by Lemma 2.21 that for any positive constants A, B and any positive
integer m:

P (Z lyisg, 2 A)

i=1

Py (Z Elyisy, > Aand Y N/ly,,,s! < B) +Py (Z N/ 1yisms! 2 B) (2.13)

i=1 i=1 i=1
<—+]P0 (ZN Lyismst 2 B)

So for any € > 0, for any a > 0, by taking B = e2n* and A = en* in (2.13), we have for
any positive integer m:

Py <ZZZlNZZm Zgni> < be + Py (ZN 1Nj>msl > e2ps > .
i=1 =1

And we have for any b > 0:

P (3ot <t

(ZN Inizm® 2 sl <bn® Z‘Szni) +Po (Hi <n,N} >mands] > bn%).

i=1

x|

We have by (2.10):

(Hz <n, NJ > m and s] > bnw ) (72(;;% = (Triz)”

2k+1

And by (2.12), taking b = %=+ :

n
. 2 1 d _8 Be z2e41 8-
]P() (ZNlJ]‘NmeSZ]‘ J<€2ﬁ~+n1n% Z g n") SEQT <2n K4 mé‘ 67'“( R)>
=1

:i onl=% 4+ e g26+l )
K 6_53
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So for n large enough:

1 2d56
<E Nj].N;>m i 2541 1 >E27LN> < 3
nk

8-k

2k41 1
s-= > ¢~ » we have:

Py (ngljvg'zms ZSn*l‘v> < 5e 4 cde + 3 ﬁcﬁ .

i=1 -

which means that for n large enough and m. such that m.e

And we have the result we want.
If k; > k there exists § € (k, ;) such that § < 1 and < “£* we get by taking M =1
and A = oo in (2.11):

(oo}
n .
0 (ZNfsf > (an)i> <da~%n'"% (24 /t_%dt
i=1 t=2

—da~¥nl=% (2+ p 21K5j>
I{j —ﬂ

8 4 8
=Ca " =n'"* for some constant C.

And then Lemma 2.21 gives us the result we want.

Now we can look at the case k = 1.

Let ¢ be a positive concave function such that ¢(¢) goes to infinity when ¢ goes to
infinity. We define ® by ®(x) := [ ¢ (t)dt. Let f be defined by f(0) := ¢(0) > 0 and
Ve >0, f(x):= % As ¢ is concave and goes to infinity, it is increasing. As ¢ is positive
and increasing, it follows that f is increasing. We choose ¢ such that Ep,(®(N})) < oo
which is possible by Lemma 2.19. We get that for any positive integer M and any real

A>2:
<ZNZ 51 e NbMZanlog(m))

<anlog (ZNJSZ si<A N72M>

1

S anlog(n)F (M) o (Z N f(N])si 155<A>

1

Sm Ep, ((I)(Ni])lsgzt) dt

:lg\:u Z
Il
=

H'M:
I\

t

<— 2F ’
an log Z po (B(N)) +

i=1 ¢

Ep, (®(V/)1,5,) dt

b~

Now, by Lemma 2.20 we get:

<ZN s 1J<A NJ>M>an10g( ))

A
1 i ; ; o
Sm Z 2Ep, (®(N})) + Ep, ((I)(Ni )) / ct~Ridt

i=1 t=2

EJP 29 (2024), paper 51. https://www.imstat.org/ejp
Page 33/66


https://doi.org/10.1214/23-EJP945
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Limit theorem for RWDE

A

1 n
S———77 2 Ry Ep (P N]
_anlog(n)f(M); +Ct_/2t dt | Ep,(®(N))

d A

n
S—————~ |2 —Hj finiti £ o 514
“anlog(n)f(M) +Ct_/2t dt | by definition of ¢ ( )

If k; = 1, we get, by taking A = n? (for n > 2) in (2.14):

j d ¢
(ZN s i1 d<a N7>M>cmlog( )) Sm@—&-?clog( n)) < o)

And by taking A = n? and B = 1 in equation (2.10) we have for some constant c:
Py (aign,s{ 2n2) <

n

So for any € > 0 we get, by taking m. such that f(m.) >

0 (Zéleijst > 5n10g(n)> <5e + Py <ZNJ le]>M > e?nlog(n ))

i=1

% and using Lemma 2.21:

<b5e + © + Ce.
n

So there exists a constant C such that for any ¢ > 0 there exists m. such that:

Py (Z gilz{zmg >en log(n)> < Ce.
i=1

If k; > 1, we take M = 0 and A = oo in (2.14) we get for some constant C:

"o d T C
Nisl > anl <2 |9 teidt | = .
0 (2 = Og(")> = alog(n) f(0) “/ alog(n)
= t=2

And therefore by Lemma 2.21, for any € > 0

0 (Z o> snlog(n)> <be + Py <Z N/sl > anlog(n)>

i=1 i=1

< - .
<be + Zlog(n)

So we have the result we want O

Now we have all the tools to get a first limit theorem on the time spent in traps.
Lemma 2.23. Set a € (0,00)%? and let @ := 2?110%‘- Let J = {j € [1,d],2a — a; —
aj+qa = Kk} and T; be the set of vertices x such that there exists j € J such that either
(z,7+ej) € T or(xz,x—e;) € T. Let {x],y!} be the i trap in the direction j encountered
after time 7.

For k < 1, for any m there exists a constant C,,, such that:

K
now E E o 1N <mlaksr, 1 viefal ) S OmST in law for Po.
jeJ i>0

For xk = 1, for any m there exists a constant C,,, > 0 such that:

nlog J;] ; 0l i INI <m1Sk<r, 1, Yie{al y S S C, in probability for PPy.
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Proof. For every configuration p € J,,~, I, (,, is defined in 2.16) let C}, be the expecta-
tion of the number of traps of configuration p encountered between times 7 and 73 — 1
(it is also the expectation of the number of traps of configuration p encountered between
times 7; and 7,11 — 1 for any ¢ > 2). We clearly have:

Cp S ]EIPD Z 13756[7‘2,7’371],)’1»:x < 0.
z€Z4

Once we know that a trap is in a direction j € J and has a configuration p for some
partially forgotten random walk, the exact number of back and forths the walk does
in this trap is still random, because the exact number of back and forths knowing the
transition probabilities of the trap is random and because the transition probabilities of
the trap are still random, following the law (cf Lemma 2.17):

Dpr" Y1+ k)P (1 — k)Prh(r(1 + k), (1 — k)1,<1drdk,

where r(1+k) =1—w(x,y), r(1 — k) =1 —w(y,z) and the value of p,, p, are explicit but
irrelevant. Let IV be such that p € Iy (ie the walk exits the trap N times) we also have
that there exists a constant C, that only depends on « such that:

[log(h(r(1+k),7(1 —k)))| < CoNT.

The number of back and forths is the sum of N iid geometric random variables (Hy, ...,
Hy) of parameter 1 — g with ¢ = w(z,y)w(y,x) = 1 — 2r +r2(1 — k?). This gives us the
following bound:

N
P (ZHZ- > a|q> < NP (Hi > +q)

i=1

< N(1—q)g¥

< Nexp (log(l —2r+r%(1 - kQ))%)

< Nexp ((—27‘ + ’I”Q)%) .

2knlog(a) 1

Forr € [ =, 2} we have —2r + 2 < —r and

N exp ((—ZT + r2)%) < Nexp (—r%)

_ 2xN log(a) a)

<N
- exp( a N

= Na %"
Now let ¢~ be equal to twice the number of back and forths: /= := 2 Zfil H;. Now we
look at IP (6* >aandr < %Og(“)) we want to show that it is equivalent to Ca™" for

some constant C. First we want to have a good approximation of P (2 Zivzl H; > a|q) for

large q. Now let fIl, e H, lge iid exponential rgndom varialgles of parameter — log(q)
such that for every i, H; = | H;|. And we define {~ =25 | H,. Now it is easy to show
by induction on n that:

Py (> 20lg) = ~ (~alog(q))’
SGEITIEDS 1 exp(log(g)a).
=0

[
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Now we clearly have:
<00 <00 +2N

SO
Po (¢ > alq) <Py (I > alg)

and
Py (E_ > a|q) > Py (Z_ >a— 2N|q) .

We want to show that IP (ZL > a|q> and P (E* >a— 2N|q) are more or less equal. We
clearly have:
]P() (g_ 2 a — QN‘Q) S IP(] (g_ 2 CL|(])

and we also have:

-1

Py (Z’ > 2a — 2N|q> = Z (_alj,%(my <1 — ];[> exp(log(q)a) exp(—log(p)N)
7=0 '

N N-1 ,
N —alog(q))’

> ep(-toglaV) (1-5 ) Y CEE expion(a)a)
a = 4!

First we want to show that we can replace log(q) by —2r. We clearly have log(q) < —2r+72.
We also have log(q) > log(1 — 2r) and for r € [0, 7], there exists a constant C' that does

not depend on r such that log(1 — 2r) > —2r — Cr2. So we get:

2r —r? < —log(q) < 2r + Cr2.

So
exp(—2ar) exp(—Car?) < exp(alog(q)) < exp(—2ar) exp(ar?).
So we get:
V7, (—alf(q))ﬁ exp(log(q)a) < <23:)j exp(—2ar) (1 + C;) exp(ar?)
and 4
(zalog(q))’ (2ar)’

i exp(log(q)a) >

Now we will define g™ (a,7) and g~ (a,r) by:

n cr\’ 9
g (a,r)=(1+ - exp(ar®) exp (rCoN)

N

; N
g (a,r) = (1 - g) exp(—Car®) exp (—rCo N) exp((2r — r*) N) (1 - a) ,

where C'is the same constant as in the previous inequality and C,, is the same as in (2.4).
And for every r < 1,k € [—1,1] we have:

—al J 2ar)I
(aoj;g(q)) exp(log(@)a)h(r(1 —k),r(1+k)) < ( jT) exp(—2ar)g™ (a,r)
and , .
—al J 2ar)’
Mh(r(l —k),r(1+k)) exp(log(q)a) > ( a7'") exp(—2ar)g~ (a,r).
J: J-
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We clearly have that g (a,r) is increasing in r while g~ (a,r) is decreasing in r and
g™ (a,0) =1and g~ (a,0) = (1 - %)N
So, for any ¢ > 0, we have the following 2 inequalities:

Po({~ >2aand 1—q <)
<Py({~ >2aand1—q<c)
S]Po(l7722aandr§c) sincel—qg>2r—r2>r

c 1
_ / / Dyt 1L+ k)P (1 — k)P h(r(L+ k), (L — k) Po(F~ > 2alq)dkdr
r=0k=—1
< N-— 1 i
/ / Dyr" 1+ k)P (1 — k)Pv Z exp (—2ar)g™ (a,r)dkdr
r=0k=-1 J=
1 c =y 4
<gt(a,c) / (14 k)P=(1 — k)Pvdk / Dyret exp —2ar)dr,
k=—1 r=0 3=0

and
Po(f~ >2aand 1 —q<c)
>Po({~ >2a—2N and 1 —q < ¢)
>Po({~ >2a—2N and 2r < ¢) since 1 —q < 2r

= / / Dy Y1 + k)P (1 — k)Pvh(r(1 + k), 7(1 — k))Po (£~ > 2a — 2N|q)dkdr

r=0k=-1
Dpr YA 4 E)P=(1 — k)Pv —— exp(—2ar)g~ (a,r)dkdr
r=0k=—1 =
‘ pl N— 1 i
29 (a, 5) / (1+k)P=(1 — k)Pvdk | Dyr=* exp —2ar)dr.
k=-—1 r=0 3=0

If we take ¢ = a1 we clearly get that when a — oo, g (a, a=1) - 1and g™ (a, a=1) > 1.
Furthermore, for any constant ¢’

:(2a)”‘D;, for some constant D;/g that only depends on the configuration p.

Therefore we get:

Po(~ >2aand1—g<a 1)~ D, / (I+Kk)P=(1 — k)PvdEk | (2a)™"
k=—1
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So there exists a constant D, ., that only depends on « and p such that:
Po(f~ >2aand 1 —q<a %)~ Dpq(2a)"

And thus:
IP()(g_ > a) ~ Dp)aa_”’.

Now let ¢ be the total time spent in the trap. It is equal to £~ plus the number of times
the walk enters and exits the trap by the same vertex plus twice the number of times the
walk enters and exits the trap by different vertices. This means there exists a constant
0, that only depends on the configuration such that ¢/ = ¢~ 4 §,,. This, in turn, means that
we have also the asymptotic equality:

Po(¢ > a) ~ Dy qa™".

Now, let /¥ be the time spent in the i* trap with configuration p.
First, if & < 1, by Theorem 3.7.2 of [11] we get that for some constant c:

n
_1 .
nx Z I — ¢St in law for Py.
i=1
Now we use the fact that the number of traps of configuration p between two renewal
times has a finite expectation (), to show that we have the convergence we want. Let
M, , be the number of traps of configuration p the walk has entered before the n'h

renewal time. For any € > 0 and any p we have:

Po(My,,p € [(Cp —e)n, (Cp +€)n]) —— 1.

n—oo
Therefore for any configuration p:
(Cpte)n
-1 D 1 .
n Z l; — (2¢) = ¢Sy in law for Py.
i=(Cp—e)n

And for any m € IN:

(Cpte)n "

_% D % K 3
n Z Z E,L m (25) Z (Cp) Sn in law for IP().
pEI™ i=(Cp—e)n pelm

We write I™(J) all the configuration of I"™ that are in a direction j € J. Now, using the
fact that the Zg are non negative, for any n € IN and any € > 0 small enough, we have:

My, p Cpn
po(nt| ¥ N ao Y a)y
peI™(J) i=1 p i=1

<Po(Ip € I™(J), Nup € [(Cp — I, (Cp+e)n)) + P [ x> Y >y
pel™(J)i=(Cp—e)n

=o(1)+ P | 20) | Y ()] Sr=n
pel™(J)

Since it is true for all ¢, we get that

My, p Cpn
,% D i . “1s
n Z Z £ — Z Z ¢, — 0 in probability for Py.
pel™(J) =1 pel™(J) =1
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And since

1
K

Z Z ep N Z (Cp)K S§ in probability for Py,
n o0

pelm(J) i= pelm(J)

we get:

K

n Z Z — Z (cp)® ] Sy inlaw for Py

peIWL =1 pel’nl(J)

Now if k = 1, we first want to show that we can neglect the values larger than nlog(n).
Let p be a configuration, ¢ the total time spent in the i™ trap in the configuration p
encountered, (), the constant such that the number of traps encountered before time
Tn+1— 1 is equivalent to C,n, M,, , the number of traps in the conﬁguration p encountered
before the time 7,11 — 1 and ¢, the constant such that Po(¢¥ > n) ~ ¢,n~'. We get:

Po(Fi < M, 0, 68 > nlog(n)) <P¢(Fi < 2Cyn, ¢ > nlog(n)) + Po(M, , > 2C,n)

C
< —r .
_QCpnnlog(n) +o(1)

=o(1)
Now we can compute the expectation and variance of ¢ A nlog(n):
nlog(n)
Ep, (7 Anlog(n)) ~ / C?pdt
t=1
~cplog(n).

Now for the variance we get:

Varp, (¢7 A nlog(n)) <Ep,((¢¥ Anlog(n))?)
nlog(n)
~ / 2L dt
t
t=1
~2cpnlog(n).
So for n large enough:
Varp, (¢ Anlog(n)) < 4c,nlog(n).
First, for any constant ¢, for n big enough:

Py (
i=1

Zéf A nlog(n) — enc, log(n)

cn
<P, (
=1

Zﬁf Anlog(n) — enE (6§ Anlog(n))| >
<Cn4Var]p0 (2 Anlog(n))

- (enlog(n))?
16¢,nlog(n)
(enlog(n))?

16cc, o
~Togtmy — °)

>en log(n)>

[t

—enlog(n )) for n big enough, by (2.4)

[\)
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This means that we have the following results:

(Cp+e)n
IPO Z ﬁf A\ nlog(n) - (Cp + g)ncp IOg(n) Zen 1Og<n) n— 00 0
and
(Cp—e)n
» — E—
IPO Z E AN nlog ) (C + S)ncp lOg( ) en IOg( ) n—00 0

Then, by definition of C}, we get, for any € > 0:

Py (|M(n,p) — Cpn| > en) —— 0.

n— oo

Then, using the fact that )., /¥ A a is increasing in n for any a, we get:

M(n,p)

Po| D &> (Cp+e)(cy+e)nlog(n)
i=1

+
<Po(M(n,p) > (C, +€)n) + Pg Z @ > (Cp+)(cy +2)nlog(n)

=o(1).
Similarly, we have:

M(n,p)

Py Z 2 < (Cp —¢)(¢p —e)nlog(n)

(Cp—e)n
<Po(M(n,p) > (Cp, —e)n) + Py Z > (Cp —¢)(e, —e)nlog(n)

Therefore,

1 M(n,p)

— ¢ —— C\c, in probability for Py.
nlog(n) n—»o0

=1

Now we just have to sum on all configurations p € I'™ that are in a direction j € J to get
the result we want. O

2.5 Only the time spent in traps matter

Now to properly show the result we want, we have to show that some quantities and
some events are negligible, this is what this section is devoted to.

Lemma 2.24. Let j be in |1,d|. Let {x,,yl} be the i trap visited by the walk in the
direction j after time 7, s! its strength, ¢] the time spent in this trap and N} J the number
of times the walk enters the trap:

é _Z Ye€{ad,yl}

k>0

N =) Ly lorm} and Yo gled i)
k>0
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Letk; =2 Zl 1Q; —aj — g > k. Let M(n, j) be the number of traps in the direction j
encountered between times 1, and 7, — 1.
If k <1 and k; = k, for any € > 0 there exists ¢’ > 0 such that for n large enough:

M(n,j)
; 1
P E o1 >enx | <e.
0 K sggs/n% =€ S¢€
=1

Proof. Lety € ( ”*“/> be such that v < 1. Let 8 be a positive real. Let {f{,@f} be the

™ trap visited by the walk in the direction j after time 7 such that {33 -e1, 1/1 e1 >Y,, -e1.
Let s] be its strength E the time spent in this trap and N the number of times the trap
is visited.

By Lemma 2.2 the number of traps encountered between 2 renewal times has a
finite expectation and since the (M (2i + 1,5) — M(2i,j));en+ are iid and so are the
(M(2i+2,7) — M(2i +1,7))ien~, there exists a constant C; such that Py almost surely:

1 .

So for any € > 0, for n large enough:

Po(M(n,j) > 2C;m) < .
We have for n large enough:
M(n,j) )
Po Z gils?ﬁs/n% Z enx
i=1 '
M(n.j) 1, M(3,5) 1,
,J N N
SPO 67’ 1§{S8/’n% - §€nn +]PU Z gzlsigeln% Z ignn
i=1 =1
M(n,j)
—i 1 2 1 1
<Pq 2 4 15%6%% > Fen* + Py |71 > Fen”
M(n,j) 1 -
- 1 e
<Py 2 ¢, 1§;S€/n% FEn* + 1 for n large enough
2C;n 1
_j 1 e
<Py Z; 1§j<6/n% > isnm + 24 for n large enough .

Then by Lemma 2.21 we have:

2C;n ] 2C;n

- 1 .

2 : J 1

]PO gi 1§Z§6'n% Z 55’[1*‘»
i=1

N5 > &
Z 7’17J<5nn_En

»Mm

And finally we have:
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£ 1 J T o
- (40”) > By (W) )"0 )

—v 2Cjn

<i)ni) 2 By ((NZ)V(Eg)ngigﬁn%) =¢ (fMQ)ni) i: Ep, ((NZ)O (gln%)%n
=1 —

And by Lemma 2.19 there exists a constant ¢ that does not depend on § such that:
2\ —7 2Cn 2\ —7
& =1 ( ) £ Y=
(4()) ZEP 0(40> (e" .
So by taking # small enough we get the result we wanted. O

Lemma 2.25. Let J = {j € [1,d], k; > k}.
If k = 1 there exists a constant C such that Py almost surely:

1 Tn—1

- NG}
ZO YieTs n—oo
i

If k < 1 there exists a constant C > 0 and a constant -y € (k, 1] such that P, almost surely,
forn large enough:

Tn—1

,l
7 Z 1Yk€TI <C

Proof. For any j € J we define x; = 232, o, — oy — a1 > k. Let {xz‘,yl‘} be the ;"
trap in the direction j the walk enters after time 7 and such that 2 - e1,y] -1 > Y;, - €
Let Nij be the number of times the walk exits {mf , yf } and zg’ the time the walk spends in
this trap. Let M(i,j) be the number of traps in the direction j entered before time .
The (M (2i+2,5) — M(2i + 1,7));en- are iid and so are the (M (2i + 1,5) — M(2i,7))ien+,
they also all have the same law (the only issue is that since a trap span over two vertices,
there might be a slight overlap between traps of two different ‘renewal slabs’). Now,
since the number of different vertices the walk encounters between two renewal times
has a finite expectation, the (M (i+1,j) — M (i, j)) have a finite expectation and therefore
there exists a constant C; such that P, almost surely:

M(n,j) — Cin —— —o0.

n—00
Now let Y be the partially forgotten walk associated with Y. We get that knowing the
environment, the partially forgotten walk and the renewal posmon Y., the time spend in
the {z] ,yl} the k' time the walk enters this trap is equal to €’ kT 2H » Where &’ ipisl
if the walk enters the trap by the same vertex it leaves it and 2 0therw1se and H; J risa
geometric random variable that counts the number of back and forths. The parameter of
sz151_p Wlthp ( myz) <y1,7 2)

First, lets look at the case k = 1. Since the (Z;ijt;*l 1y eﬁ) are iid and so are
i ieIN*

the (Z;ii;;l IY'E%J)ielN*' we just have to prove that their expectation is not infinite to
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have the result we want. If their expectation were infinite, then we would have that P,
almost surely:

M(n,j5)
— E E W — 0.
n— oo
JEJ i=1

Therefore we would have P, almost surely:

1 Cin 4
=D DD Rt

jedi=1

But
Cin N7

Cin o
Eps %ZZ@\Y ZZZEW (e + 207, I7)

jeJ i=1 ]EJ i=1 k=1

Can j
435S (e
]EJl 1 k=1 p;

CnN

2!yyy
jeJ i=1 k=1 i
nCj

<C0= ZZNf s7,

jGJZ 1

where s{ is the strength of the trap {:c{ , yf }. Now we get:

nCj
Ep, *ZZ” < B, (€33 NI
jeJ i=1 jeJ i=1

1 Z ZJ ;

jedi=1 2,

nCj o
go%zjin@% N/ +/1J>t
=2

jEJ i=1 .

nC
1 J X oo
<C- J j .
<C- ZZ (2]E1PO(N1 )+ c/_ Ep, (N/1 Zt)dt)
jeJ i=1 t=2
Now by Lemma 2.20 we know that there exists a constant C' such that for any ¢ > 2:

Ep,(N/1,,,) < Ct " Ep, (N]).

So there exists a constant C’ (the value of this constant will change depending on the
line) such that:

Cjin nCj
SN <0 TS By ()

jeJi=1 jeJi=1
<o ZC’J- by Lemma 2.19
JjeJ
<C'.
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This means that we cannot have + >, S2%% N9 —— oo Py almost surely. Therefore
n—oo

the random variables (Z?:i;*l 1Y-ef,) have finite expectation and so have the
‘ ‘ S\

. 2ip2—1
random variables (ZJT;’;ZH

1y eﬁ) . So we have the result we want.
' i€~
If k < 1, we will basically use the same method. First there exists v € (k, 1] such that
v < 45 and for every j € J, v < k.

We have that:

Tn—1 n—1Tit+1—1
limsupn~7 Y 1y 7, = li > 3
imsupn~ ¥ vieT, imsupn~ 5 YeeF,-
k=0 =2 k=1,

And since:

. n Ti+l— v 1 n Ti+1— v
(S ) I (S )

1=2 k=7, jeJi=1 \ k=7,
we also have:
1
n Tit1—1 1 n Tit1—1 T\ 7
limsupn™~ E E ly.e7, < hmsupﬁ E E ly. 7, .
=2 k=1; =2 k=T1;

7'27,71

Now, since the random variables ((Z ko

5
= are iid and so are the random
viets iEN~

T2i41—1

variables ((Zk i

.
ly, e’n) )iEIN* we have that there exists a constant C, € [0, o]
such that Py almost surely:

1 n Ti—1 v
z(z) o

=2 k}=7’i

Now, by definition of the C; and since (a +b)" < a” +b” we have that if C, = oo then Py
almost surely:

Cjn
1 A\
Y (W) e
n n— 00
jed i=1
However we have (using the same techniques and notations as in the case xk = 1):

~

Cin Cin NIJ
Boe (=SS @V | =2 SO [ (Sl 2w, | 1V
jeJi=1 jeJi=1 k=1
v

ZZEW Ze +2H], |V

j€J1 1

5% ()

jeJ i=1

1 C2
<C-= N’
- n;e;;( 181)

Now by the same method as the one for x = 1, by using Lemma 2.20 and Lemma 2.19
we get:

Cin
%Z >y <c.

jEJ i=1
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This means that C,, < co and therefore:
Th—1
1 1
limsupn™~ Z ly. ¢, < (Cx)7 < 00 O
k=0
Lemma 2. 26 Let A” P2 (i) be the event that the walk visits at least two trap of strength

at least en= between times 7, and 7;4;, — 1 and that it enters these traps at most iy times.
We have that for any 41,19 > 1:

Py |J A%26) | ——o.

- n—oo
2<i<n

Proof. Let @ := Zfil a;. Let M (i) be the number of traps visited before time 7;. We
know by Lemma 2.2 that the number M (i + ¢1) — M (¢) of traps visited between times 7;
and 7;4+4, — 1 has a finite expectation (for Py) and by Proposition 1.2 the ((M(2i + 2) —
M(2i +1));>1 are iid and so are the (M(2i + 1) — M(27));>1. This means that there is a
positive constant C' such that Py almost surely:

Lvm) — e

n n—00

Now let M2 (i) be the number of traps visited at most i, times before time 7;. We know
that:
Po(M"(n+141) > 2Cn) —— 0.

n— oo

Now, for any n > 0 we have:
Po(Fi <n,M(i+1i1) — M) >nn)
<ZIP0 (i +141) — M(i) > nn)

i<n
+ > Po(M(i+i1) — M(i) > 1)
2<i<n
=o(1) 4+ (n — 1)Po (M (24 i1) — M(2) > nn)
=o0(1) since M (2 +1i1) — M(2) has a finite expectation.

Now let A; be the event “the i*" trap visited by the walk is of strength at least en~ and
that the walk enters this trap at most i; times”. We have:

Py (3 <2Cn,3j <nn,A; and A, ;)

2C
<P, (32' < s 3j1, 42 € [inn, inn + 2nn], j1 # j2 and A;, and Aj2>

5
< Z 0 (31, j2 € [inn, inn + 2nn], j1 # j» and Aj;, and A;,)
=0

nn inn+2nn

+
. Z Z Py (Ajl and AjQ) 1]'1#]'2'

iMn. - jo=1inn

Now let (i/n)nE]N be the partially forgotten walk, by Lemma 2.17 if s; is the strength of
the j™ trap visited and Nj; is the number of times the walk enters the 4™ trap, there
exists a constant D; that only depends on its configuration such that for any B > 2,

: N; +2a
Po (s, = BV, @) < D;B ™" exp (W) .
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Let D? be the maximum value of Djexp (M) we can get for configuration of traps
entered at most i, times. We get that for any j:

Po(s; > Band N; < is|Y,0) < D2B~",

We also know that the strengths of the traps are independent, knowing the partially
forgotten walk and the equivalence class of the environment for the trap-equivalent
relation. Therefore we have, for any n > 0:

2C .
“nAinnE2nniinnt2nn

Z Z Z Py (Ajl and Ajz) Lji e
1=0 gi1=tnn jo=inn

2C
T inn+2nn inn+-2nn

1 —2K
E E (D'2)? (enn)
Ji=inn ja=inn

20 ;
<27 (nn)*(D™)?*c~2"n 2 for 5 small enough
n

=4Cn(D™2)%e 2%,

Now, by taking a sequence (7, ),en- of positive reals such that 7, —— 0 and such that:
n—oo

Po(Fi <n,M(i+ i) — M(i) > nyn) —— 0,

- n—o00

we get:

Po [ | A%2(30) | <Po(M(n+iy) <2Cn) or (3i <n, M(i+iy) — M(i) > nan)

2<i<n
+ Py (i < 200,35 < nun, Aj +PoAiyj) .
Therefore:
Po | |J A% ——0. O
2<i<n

Lemma 2.27. If k = 1 there exists a constant C such that Py almost surely:
Tn—1

Z ly. g5 —— C.

n—roo

1

If k < 1, there exists a constant C' > 0 and a constant § < % such that Py almost surely,

for n large enough:
Tn—1

DY Iyimal, gy < C0F

r€eZa =0

Proof. Let m be such that Q™ is well defined. Let (¢/");cn be the times at which X™
changes position, with ¢y := 0. We have X% =Y; for all i € IN. Let (&;);en be a sequence
of random variables defined by &; = (77} ; - t7 )y (Y;). By definition of X and Y, (&)ien
is a sequence of iid exponential random variables of parameter 1, independent of the
walk and the environment.

We will first look at the case k = 1.

If Sy ly. 7 has a finite expectation for PPy, since the (Z»Tii“fl 1Y"€7~7)i€]N* are

1=T2 1=T24
iid and so are the (272”2_1 1y,€7~—) N then we have the result we want. On the
1€IN*

1=T2i 41
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other hand, if /2 _ 11, _- has an infinite expectation then, since the random variables
=71 Y T

Tﬂ—l

Tit1—1 5 -1 -
(Zi:n 1y. gT) are non negative, n=" ) " ~ Ly, o7 m oo Py almost surely.

By the law of large numbers, we get that P, almost surely:

Tn—1 ‘rnfl
FEW >k Y Elyyr> 5 Z Ly, o7
=0

For any point z, if z is not in a trap then, by definition of traps:

1 S 1
(x) T 20
This yields:
Tn—1 Tn—1 1
&l <2 &l
ZE% YigT = Zz% YigT e (Y)
And by writing T;" = ¢7' we have:
Tn—1 T
\ Yo (X7
; YL%T ) fyw(Xt )

We know by Lemma 2.1 that there exists a constant d,, such that Py almost surely:

" —dmn—> —00.

We get:
" dmn
m X m XTYL
I € N, ¥n > k, / WX g < / WX g,
v (X7) ; 7 (X)
Finally, if Py almost surely:
1 Tn
n ZO 1Yi€T n—00 o0
Then Py almost surely:
dmmn
1 mxm
. Y (X)) T n—oo

And therefore, since Q' is absolutely continuous with respect to P, we get the same

convergence Q' almost surely. So we would have, since w((X:)) is positive:

(X)) mee

Which is false by Lemma 2.12 so we get the result we want.
Now for the case x < 1.
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’ T — B
Let 3 € (/4:, ats ) be a real such that § < 1. If 3 .. ( st 1yi=x) 1,47 has an

i:Tz
o B
infinite expectation (for IPy), since the (Zm czd (ZE; 1 1Yi:w) 1%%) are iid, we

JjeN*
would have that Py almost surely:

Tn—1 B
n~t Z <Z 1yi_w) I —

ze€Zd \ i1=0

By Lemma 3.5 we get that there exists a constant C' > 0 such that P, almost surely:

Tn41—1 p Tnt1—1 A
Im e N,Vn>m, »_ ( > Siln_m> Lgr 2C ) ( > 1n—z> Lo

rEeZa =0 reZ i=0

We also have, by writing 7" = ¢7":

Tn*

Tnt1—1 B Tnt1—1 1 B
> ( > 5i1yi_$> g7 <47 > ( > 5i1yi_l'v“(sc)> L7

z€Z4 =0 TE€Z? =0
g A
Yo (XF)
<4” ) / Wlxt’":xdt
z€Z 0 v t

We know by Lemma 2.1 that there exists a constant d,, such that Py almost surely:
" —dy,n —— —o0.
n—oo

We get:

" A dmn B
Im e N,vn>m, Y /Mlxtm:xdt <y / Mlxtm:wdt
0

TEZ4

Finally, if IPy almost surely

then Py almost surely

1 e m(xm

L /W ) gt | —— o0
n (X7 n—00
€74 0

And therefore, since Qf' is absolutely continuous with respect to Py we get that Qg
almost surely:

dmn X B
1 m m
_ / MlX"L:zdt — v 0.
n X)) n—o0
rcZd 0
So we would have:
dmn ( ) B
1 ,ym X’Hl
i L0 2] empdt —— oo0.
n QO Z / ,-yw(X;n) Xt = n—oo o0
rcZd 0 ’
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And therefore:

dmn il m(Xm) ’
1 Yw t ]
w2 Bap | D / (g P dt ) ) S oo

=0 ez i

This would mean, since Q' is a stationary law that
1 B
Yo (X{") _
Bop | D / S Xm=edt | ) =00

r€Z 0

which is false by Lemma 2.12. Therefore there exists a constant C' > 0 such that Py
almost surely:

1 Tn—1 B
- Z (Z 1y1_$> Ligr —— C.

zeZd \ i=0
So Py almost surely for n large enough:

1 Tn—1 A 1 Tn—1 8
St 2% (L] e
ez i=0 z€Z4 =0
And therefore:
Tn—1
ST 3 lyisal,yr < (200)7. O
zezd 1=0

2.6 Proof of the theorems

Now we can finally prove both theorems. We will start by the proof of Theorem 1.9.

Proof of Theorem 1.9. The proof will be divided in three parts, one for each result. The
second part and the third one rely on the first part. However, the second part and the
third part are independent from one another.

First Part

First we will prove that there exists a constant ¢ such that for any t € R* and any

increasing sequence (z,,) such that z,, —— oo, we have the following convergence in
n—oo

law, for Pg:
1

x’!_L;TantJ m Ct%Sf.

The result is obvious for ¢t = 0. For ¢t > 0, lemmas 2.27 and 2.25 tell us that we only have
to consider the time spent in traps in directions j such that x; = x. Then Lemma 2.22
tells us that with probability larger than 1 — ¢ the time spent in such traps is not more
than the time spent in traps where the walk comes back at most m. times (for some
me) plus at most sxr%; . We also know by Lemma 2.23 that for any m. there exists a
constant c. such that the time spent in traps where the walk comes back at most m.
times renormalized by z,, G converges in law (for Py) to cEt% S% so we get the result
we want by having € go to 0 since ¢, is increasing and cannot go to infinity. Since the
(Tit+1—Ti)i>1 are iid (for Py) by proposition 1.2, we also get that for any sequence (n;);cn~

with n; > 1, (i_% (Trtit — Tn)) o converges in law (for Py) to clt%S{“.
(P

_1
Now we want to show that the family of process (t = Tn " Tt J) is tight. We will
nelN

only look at the convergence and tightness for the processes on an interval [0, A]. We
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use the characterisation of tightness of a sequence of cadlag functions (f,,)nen given in
Theorem 13.3 of [5]:

(7) for each positive ¢ there exists a ¢ and an ng such that:

Vn > ng, IP( sup |fn(t)| > c) <e,

t€[0,T)
(#i) for each ¢ > 0 and n > 0, there exist a §, 0 < § < T, and an integer ny such that:
Vn > ng, P(wy, (8) >n) <e
and
Vn > ng, P(vy,(0,0) >n) < eand P(vy, (T,8) >n) <€

where for any cadlag function f, wy and v; are defined by:

wy(6) = sup{min (| f(t) — f(t1)], [f(t2) = f(t)])ta <t <ta < Tyt —t; <0},
vp(t,0) = sup{|f(t1) — f(t2)| : t1,t2 € [0, T] N (¢t — d,t +0)}.

For a sequence of non-decreasing processes (W,,) defined on [0, T, this characterization
is implied by the following:

(i) for each positive ¢ there exists C such that
P(W,(T) > C) <e, forn>1,
(77) for each € > 0 there exists a § € (0,7), such that forn > 1
(it.a) Yz € [6,T — 6], P(W,(z+9) — Wy(x) > e and Wy (z) — Wy(z —0) >¢) <e
and
(13.b) P(W,(6) — W,(0) >¢) <e

and
(ti.c) P(W,(T) = Wp(T —96) >¢) <e.

_1
For the first property, since we know that the sequence (mn “Tlan A J) N converges in
ne

_1
law for Py, the family (mn " Tz, A J) is tight and therefore for any ¢ > 0 there exists
nelN
B. such that:
_1
Vn e, P, (xn " TlenA) € [O,BE]) >1—e¢

So:
Ve > 0,3B..Vn € N, P, (Vt €10, A], 2 " Tlg, 4 € [O,BE]) >1—c

Now we will prove the two side conditions (¢i.b and ii.c). For (ii.b), we first choose ¢ such
that Py (016 %Sf > 5) < % This proves the result for n large enough and then, since the
processes we consider are cadlag, we decrease ¢ up to the point where we have the
result for n small and we get the result we want.

For (7i.c), the proof will be essentially the same. Since the 1ncrements are 11d (except
for the first one of which we do not know the law) the law of z,, ~ TLI” Al — T " TL%( A—8)]
converges to ¢16%S,. So we get that for some ¢, for n large enough we have the result
we want. For small n we only use the fact that the processes are cadlag so we get the
result we want by decreasing J.

Now we can prove (ii.a). Let J = {j € [1,d], k; = x}. First we have, by lemmas 2.27
and 2.25, that for n large enough, the time spent in vertices that are not part of a trap in
a direction j € J before time 7, ) is smaller than %53:% with probability at least 1 — 55.
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Similarly by Lemma 2.23 there exists m. such that for n large enough the time spent
in traps in direction j € J such that the walk enters at least m. times the trap is lower
than %exé with probability at least 1 — +e. And finally, there exists 3. such that for n
large enough, by Lemma 2.24, with probability at least 1 — %5 the time spent in traps in

ES ES
direction j € J such that their strength is at most S.z,; is lower than %sxﬁ . Condition

(#i.c) is not verified if either of the previous three events are not verified which happens
with probability at most 1 — . However if the previous events are verified and there is
no ¢ such that there are at least two traps of strength at least ,Bsx,%i visited at most m.
times between times 7; and 7;49s,, — 1 then the main condition is true.

So now we just have to prove that for § small enough, with high probability there
is no ¢ such that there are at least two traps of strength at least ﬁgacf visited at most
m. times between times 7; and 7,425, — 1. By Lemma 2.26 we have that for any m € IN
the probability that there exists ¢ < x,, such that there are two traps of strength at least
BE:UT% between times 7; and 7,4, — 1 goes to 0 when n goes to infinity. So let B; be the

1
event: “there exists a trap of strength at least §.z;; visited at most m. times between
times 7; and 7,41 — 1”. We define the finite sequence (n;) by:

ni :Hlf{j > laBj}v
Ni+1 :mf{] Z n; + m,Bj}.

We also define 7; by 7; = sup{j,n; < x;}. First we want to prove that 72; cannot be too
large. We know that there exists a constant C' such that if M (n) is the number of different
traps in a direction j visited before time 7,, then for n large enough: Po(M(z,) > Cx,) <
¢ and by Lemma 2.20 we clearly have that (7, 1r/(z,)<c2,) < Cﬁ—f Therefore if we take

B> £ we get that for n large enough, Py (7, > B) < 2. Now we want to show that

epBr

for 6 > 0 small enough, Po(3¢ < B,n;41 — n; < 20x,) < ¢ which would yields the desired
result. For any ¢, we have, by Proposition 1.2:

Po(nip1 —ni < 20x,) < Po(ng < 20x,).
And therefore:
IP()(EIZ < ’fln, Nip1 — Ny < 2(51’71) < Po(ﬁn > B) + BIPO(n1 < 2(51’71).

We have that there is a constant C such that for n large enough, Po(M (20x,,) > 2Cox,) <
5. And then by Lemma 2.20 we have that the expectation of the number of traps of

strength at least Bmﬁ among the first 20x,, traps is lower than 2633”% and therefore
for 6 small enough, Py(3i < 71y, nip1 — n; < 20z,) < €. So we have that the sequence of
processes is tight.

Now we want to show that its limit is ¢;S*. Let m be an integer and (z;)o<;<n be
reals such that 0 = yo < y1 < -+ < Ym—1 < ym = 1. We have, since the (7,41 — 7;);>1 are
iid and independent from 7:

_1
(@0 " Tw,y Jogicm ——— (8" (i) o<i<m.-

So we have convergence in the J; topology for any increasing sequence z; that goes to
infinity.
Second Part

Let L be defined by:
L(t) :=inf{i,Y; - e; > t}.
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And let L,, be the renormalized L:
Ly (t) :== n~* L(nt)
Notice that:
Ly« (t) = inf{i,Y"(3) - e; > t}.
We have, by definition of 7 and L:

Vn e N*, L(Y;, -e1) = Tn.

We first want to show that the sequence L, is tight in the M; topology. We use the
characterisation given in Theorem 12.12.3 of [37]:

() for each positive ¢ there exists ¢ such that:
P ( sup | £(1)] > ) <e,
te[0,T)
(it) for each € > 0 and n > 0, there exists a 0, 0 < § < T, and an integer ny such that:
Vn > ng, P(wy,(6) >n) <e
and

Vn > ng, P(vy,(0,0) > n) <eand P(vy, (T,9) >n) <e.

Where w; and vy are defined by:

wy(0) = sup{aér[})fl] If(#) = (af(tr) + (1 —a)f(t2)), t1 <t <t2 <T,t2 —t1 <5},

’Uf(t, (5) = Sup{|f(t1) — f<t2)| 1t1,t0 € [07T} N (t —0,t+ (5)}
First we have:

Py ( sup |L,(t)| > c) =P (L(nT) > cn%)

t€[0,T]
1
SIPO (TnT > cn;) )

which is smaller than ¢ for all n, for ¢ large enough.
Next, since H,, is non-decreasing, we have:

Po(wg,(6) =0) = 1.
Then, we first use the fact that:
vr,, (0,0) < N R Tos
to get that for § small enough:
Vn > ng, Po(vr,(0,6) >n) <e.

The bound for vy, (T, 8) is similar but slightly trickier. For ¢ = (E(Y,, — Y, )-e1) ", we
know that Py almost surely:

Ly,

n Ten(T—26)

'61,YT 61) ’—°—)(T725,T+5)

cn(T+6) : n—00

Therefore, using the fact that L,, is increasing, with probability going to 1:

Lo(T) = Ly(T = §) <= (Ten(T+6) = Ten(T—25))-
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And we have the result we want for § small enough and n large enough. So we have
that the sequence (L,,),en- is tight. Now we just have to show that its limit is CS”* for
some constant C. Set ¢ = (E(Y;, — Y;,)-e1)” . We will show that L, (z) is almost equal
to 7, (cz) which will yield the result. Set ¢ > 0 and z € [0,00). We want to show that
Po(|Ln(x) = 7n(cx)| > €) —— 0. We will use the following inequality:

Po(Ln(x) = Tu(cx) 2 €) < inf Po(Ln(2) = Ta(ca +8)) + Po(Tn(ca +6) — Tulcz) 2 €).

We clearly have, for any 6 > 0

lim sup Po(Ly,(x) > 7 (cz + §)) = 0.

n—00

And for some constant C that does not depend on z or ¢

Po(mn(cz + 6) — Tn(cx) > ) —— Po(CS™(9) > ¢).

n—oo

Therefore
Po(Ln(z) — m(cz) > ) —— 0.

n—oo
Similarly we get:
Po(Lyp(z) — mp(cx) < —) —— 0.

n— oo
Therefore the limit of L” is t — CS"(ct) which is equal to CS* for some constant C.
Third Part

We will look at a sequence of processes ¢ — 7, (t) such that the law of 7, is the same
1
as that of ¢ — xy, * 7, ¢) and such that almost surely 7,, —— 7 in the J; topology with

n—oo
the law of 7 being that of §*. We want to show that the law of the inverse of 7,, converges
to that of the inverse of S”. This is a direct consequence of lemmas 3.6 and 3.7. Now if
we define L7 (t) by L7 (t) = min{n € N, r,, > ¢}, we have that in .J; topology:

R (xi t) —— S5(t)

Ty n—00

for any increasing sequence x, such that z,, —— oo. Therefore, for any increasing

n— o0
sequence x,, such that z,, —— oo:
n—roo
L) —— G
Tk " n—00 ’

n
Now by Lemma 2.3 there exists v € R? such that P, almost surely:

Y,

TLt)

t t— 00
This means that in the J; topology, we have the following convergence (in law):
Y,
(tHTL”“”> —— (t— tv).
Tn t—00
And therefore, in the J; topology,

1
<t > T " T, b T”"”) —— (18"t tv).
Ty t—o0
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Now we will look at (7,,, d,,) where for any n the law of (7, d,,) is the same as the law of

Y,
t Ty " Tpot), t — —2t and such that almost surely:

(Tn,dn) —— (18", t — tv) .

nde el

Let 7 be such that almost surely 7,, —— 7. Let A 4] be the distance associated with
n—oo

the infinite norm on [0, A].
If we look at d.1(,) where 7. 1(t) = inf{x,7,(z) >t} we get:

Ao a1 (dn (T 1 (1)), 7)) < A,y (dn (T (), 7 (0)0) + Apo,a) (T ()0, 71 (t)v)
= Ap,a (dn (T (1), T (1)0) + 0l Ao,y (T (8), T7H(1)) -
So for any B,e > 0:
Po (A, ) (dn (7, (1)),
<IPO( ( ) > B) + IPO
A

o( )> B)+0(1
=Py (7n(B) < A) + o(1)
=Po(7(B) < A) +o(1).

“H(tw) > ¢)
3t € [0, B, ldn(t) = vl = ) + Po (A0 (7 (0. 77 (1) = )

~ — A

We clearly have that when B goes to infinity, Py(7(B) < A) goes to 0 so we have that in
the J; topology:
dn (T (1) —— 71 (t)v.

n
n—oo

Since we have that in law (in the following we will write 7(x) instead of 7, for the
formulas to stay readable):

1 1

1 _ )
dn(T (1)) = T, YT(LIV,L(wilLT((M)%t))J) T YT(L?((zn)Et)J)

we get that in the J; topology for any increasing sequence z,, such that z,, —— oc:
n—oo

—K
xn

YT(LLT(ajnt)J) m) Cl_ngn(t)’l}.

Now we only have to show that Y, (|- (z,+))) and Y; are almost equal. For every i > 0 let
R; be the number of different points visited between times 7; and 7,41 — 1 and let Ry be
the number of different points visited before time 7; — 1 (0 if ; = 0). The (R;);en are
independent and the (R;);cn+ are iid with finite expectation by Lemma 2.2. Lete > 0
be a constant and let B > 0 be such that for x large enough, Po(z™"L"(zA) > B) < §
(taking B such that ]Po(cf”g”(A) > B) < £ works). We get that for 2 large enough:

Po(at S SL'A,LL'iHHYT(LLT(t)J) - Y't” Z E) §E + ]PO(HZ § B:L’H,Ri Z ESL'K)

+ IPQ(RO Z €£CN) + IPo(HZ S [[]., BSL'N]], Rz Z El‘n)

IN

0(1) + BIZ’H]P()(Rl Z €$H)

|
[CIRONOITRON CTRGN )
- -
Q
2
-
=

So for any € > 0 we have that for z large enough:

Po(Jt < 2xA, x|V (|Lr(ae))) — Yill 2 €) <e
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So we get that in the J; topology:
Since v and d,, are collinear, we get the result we want. O

Now we can move on to the proof of Theorem 1.11.

Proof of Theorem 1.11. Let J = {j € [1,d],x; = k}.
By Lemma 2.27 we get that there exists a constant C' such that P, almost surely:

1 &
w2 e o O
i=0

So we only have to look at the time spent in the traps. By Lemma 2.25 we get that for
any € > 0, for n large enough:

Tn+1— 1
Py Ly, = > <e.
(nlog Z VigTs = ) =°

=1

Therefore we only have to look at the time spent in traps in a direction j € J. For any
trap {z,y} let N, be the number of times the walk exits the trap {z,y}, we have N,, = N,.
Let € > 0 be a positive constant. By Lemma 2.22 there exists a m. such that:

T —1
1 nt1
]PO <’I’I,10g(’n) Z 1Yiei—J1Ny127n5 Z 8) S £.

i=1
And by Lemma 2.23 we get that there is a constant C,,_ such that:

1 Tn+1_1

nlog(n) ; Ly e, LRy, <m. — Cn. in probability.

So for n large enough:
1 Tn+1—1
0 ( ly.c7 € [Cm. —2¢,Cp. + 25]) >1-—2e.

This means that there exists a constant C, such that:

Tn+171

1
E ly cg —— C+ in probability.
2 o n— 00

nlog(n)

And therefore:

1 3 1
nlog(n) " no C in probability.

So we have proved the first part of the theorem.
Now, by Lemma 2.3 we have for some C > 0, Py almost surely:

Y, -

n n—00
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1

So for any ¢ > 0, by writing L(n) := min{i,Y; - e; > n} and C* =i

Po[L

<Po[L

(n) > CouCT (14 €)nlog(n)]
(n) > CxoCT (1 +€)nlog(n) and 7+, < CooCT (1 + €)nlog(n))
+ Po[tctn > CoCT (14 €)nlog(n))
_]PO[ (n
Po[L(n

IP()[

) > CooCT (14 e)nlog(n) and 7o+, < CooCT (1 4 €)nlog(n)] + o(1)
) 2 TC*n] + 0(1>
ce1 <n]+o(1)

Toc+n

=P YTC+7L.€1<C]- 1
=Fo | Torn <C -9 el

=o(1).

The same way we get, by taking C~ = ﬁ:

Bu(Lr) (12l
<Po(L(n) < CocC™(1 —e)nlog(n) and 7¢-,, > CoC~ (1 — €)nlog(n))
+ Po(tc-n < CocC™ (1 — €)nlog(n))
=Py(L(n) < CoC™ (1 — g)nlog(n) and 7¢-,, > CocC™ (1 —€)nlog(n)) + o(1)
<Po(L(n) < 1c-n) +o(1)

—IPO(Y ~ep >n)+o(1)

=P, (ch,n >C(1 +e)> +o(1)

=o(1).

n

n

So we get the second result. Now for the last result, we define L™ (n) = min{i,7; > n} so
TL7(n)—1 < N < Tpr(n). We get, for n big enough:

T —1 n
Fo (L (n) 2 O (1+ 2€)log(n)> Fo ( = (146) gty = n) ‘

And we have:

n
c.la log ( CM(1 =Cc 1+o0(1)).
(14 )t ton (214 )0 ) = CHU (1 + of1)
And therefore, using the result of part one:
Tox! (14e) gt -
B 0O (14 e) = (142,

So we get that:

AN

Y R p—

n— 00

And therefore:

Py (LT(n) > C M1+ 2¢) logrzn)) — 0

The proof of the lower bound is exactly the same:

T —1 n
Fo <L ()< Cc(1=¢) log(n)> Fo ( = (1-8) gty = n) ’

But we have:

—1
n o Ta-1 n —(1—¢).
Co (1_6) log(n) mM—00 ( )
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So

Py (LT(n) <OZM1-¢) log’zn)> —0.

And therefore:

log(n) _, 4
- L™ (n) — Co .
Now, by Lemma 2.3 LTL(Z) —— D, P( almost surely so we get:
71— 00
ey, L e-ip O
n " oo o0 ’

3 Annex

This section is devoted to proving some elementary results on random variables.

This first result is reminiscent of a famous result by Charles de La Vallée Poussin (see
for instance p. 19 of [20]) that states that a sequence of random variables (X,,)nen is
uniformly integrable iff there exists a convex monotone function ® with ®(0) = 0 such
that sup, ¢ E(®(X,,)) < +00. By taking X,, = X for all n we get a result similar to our
own.

Lemma 3.1. Let X be a non-negative random variable such that E(X) < co. There
exists an increasing, positive, concave function ¢ such that ¢(t) goes to infinity when ¢
goes to infinity and:
E(®(X)) < oo,
t

where ®(t) = [, _, ¢(x)dz.

Proof. First we show that there exists a non-decreasing, positive function f : Rt — R*
such that f(¢) goes to infinity when ¢ goes to infinity and:

E(Xf(X)) < cc.
To do that we first define the sequence (¢;) by:

to=0
tir =1+ inf {g; > 15, E(X1xss) < 2—<i+1>E(X)} .

Now we define f by:
f((E) =1 +Z]‘$Zti'

i>0

We clearly have that f is non-decreasing, positive (f(¢) > 2) and that f(¢) goes to infinity
when ¢ goes to infinity. As for the expectation we have:

E(X (X)) =E [ 3" X1xs, | +E(X)

:ZE(XlXZti) + E(X)
i>0

<Y 2E(X) + E(X)
i>0

<3E(X) < oo.

EJP 29 (2024), paper 51. https://www.imstat.org/ejp
Page 57/66


https://doi.org/10.1214/23-EJP945
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Limit theorem for RWDE

Now we want to find an increasing concave function ¢ lower than f such that ¢(t) goes
to infinity when ¢ goes to infinity. To that effect we will define the sequences (a;) and (b;)
by:

aon Z].,
1
by =—
0 tlv
Vi€ IN, a1 =a; + bi(tip1 —t),
1 9) — g
Vi € N, min(bi_H =b;, m
tiv1 —t;

and we define ¢ by:
Vi € N,V € [t;, tit1), o(x) = a; + bi(z — ;).

The function ¢ is continuous and its slope is decreasing so it is clearly concave.
We now have to prove that lim; ., ¢(t) = co. First we want to show that for every
i €N, a; <i+ 1. It is obvious for i € {0,1} and for ¢ > 0 we have:

(i+1)—ai

a; < a1+ o—
i —ti—1

(ti — ti—l) =i+ 1.

Now we want to show that there can be no 7 such that b; < 0. If there was, we could
define j by j = min{i, b; < 0}, we would have j > 1 and:

(J+1)—a; <o.
tj _tj—l

But since a;_; < j it is impossible so all the b; are positive and therefore ¢ is increasing.
Now we will prove that lim; ,,, a; = co. First we notice that if ;11 < b; then b;1; =
(;”17);“ so a;4+1 =t + 2. Therefore, either the b; are stationary and ¢ is larger than some
afﬁne function with positive slope which implies the result we want or the sequence b; is

not stationary and there are infinitely many ¢ such that a;1; = ¢ + 2 and therefore we
have the result we want.
We still have to show that ¢ < f. We know that ¢ is increasing and we have:

Vi € N,Va € [t i), (@) — ¢(a) =i+ 2~ ¢(x) 2 i +2 — §tisr) = i +2 — aip1 > 0.
So we have the desired result. O

Lemma 3.2. Let ¢ be a non-decreasing, positive concave function and ®(x ft 0 o(t)dt.
There exists a constant Cy such that if X is a geometric random Vanab]e W1th success
probability 1 — p

32 (5) 22,0 (5) sEOUT M 00 (1) <200 (7).

Proof. ® is convex so if X is a geometric random variable with success probability p:

E(®(1+ X)) > ®(E(1+ X))

*(;)
i4¢@u
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Now for the upper bound, we will first look at the case where p < %:

E(q)(l +X (/ ¢ 11+X>tdt)

S(HOP(X >t —1)dt

L—g E\g

IN

¢(t)(1 —p)'~ldt

t
o]

<2 / 6(t) exp(tlog(1 — p))dt

t=0
00

i | ¢ (Cogi ) 0o

t=0
é (-bg(f_p)> CXp(—t)dt) .

1 1
gl —p) (¢ <_10g(1 —p)> *

Now we use the fact that ¢ is concave, this gives us, for ¢t > 1:

i) (o)

Since ¢ is positive, we get:

*(wei=n) = (“mn=n)
So we get:

E(3(1+ X)) < ( ( >+t to (‘1%(11—]9)) exp(—t)dt)

it (¢ () (o))
i i)
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Since — < 1 and ¢ is increasing, we get:

P
log(1—p)

_1og(11—p)¢ <_log(11p)> = %qb (27) '

And therefore, if p < 1:
1 1
E(®(1 + X §4¢»<>.
(@( ) 22\ 5

Ifp > % we can couple X with a geometric random variable Y of parameter % such that
almost surely Y > X and since @ is increasing:

o3
E(@(1+ X)) <E(®(1+Y)) <8¢(2) < 8¢(2)% ¢<(1)) - 828;;(;5 (zi) = 16119925 (11?> '

We get the upper bound we wanted.
Now we just have to prove that for any z > 0, z¢(x) < ®(z) < z¢(z). For the upper
bound we have:

o) = [ o0 < [ o)t = o)
0 0

And for the lower bound we have:

(z) :]¢(t)dt:j¢ (}) dt > ]i¢<x) dt — %xc{)(x). 0

Lemma 3.3. Let X be a positive random variable, and let o = E(X) and X = X — a. If
Var(X) < a? then:
Var(X))

a?

Vy €[0,1], Var(X7) < 2a* (

Proof. For any z € [—1,00), let f, : [0,1] — R the function defined by
fo(y) =7 (1+2).
This function is convex and f,(1) =1+ z and f.(1) = (1 + z)log(1 + z) so:
Yy € 10,1], fo(y) > 142+ (y—1)(1+2)log(1+x) > 1+ax—(1—7)(1+2)z > 1+yz—(1—7)2>.

By Jensen inequality, we have:
E(X") <a”.

“\ 7
Since E(X7) = a"E ((1 + %) ) we also get:

E(X") > o (1 (- fy)w) .

a2

So if Var(X) < a?, then

CE(X)? < —a (1 —(1— y)VaZ(QX)Y < —a? <1 —9(1— y)var(X)) .

We also have:

E(X?) < E(X?)" = (a® + Var(X))" < a® (1 +

Finally we get:

Var(X Var(X Var(X
Var (X7) < a® <1 + “2 ) 1400 - w)arg)) — a2 ) ar(2 ) -
a a a
EJP 29 (2024), paper 51. https://www.imstat.org/ejp

Page 60/66


https://doi.org/10.1214/23-EJP945
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Limit theorem for RWDE

Lemma 3.4. Let p € (0,00) be a positive real, N > 1 an integer, h € (1,1) and g € (0, 00)
with 1 > q(1 — h) > 3. Let (¢;) be a sequence of integer in {0,1}. Let (H;),.,y be a
sequence of iid random variables following a geometric law of parameter 1 — h. Let
(€ij); jen be a sequence of iid random variables, independent of (H;) and following an

exponential law of parameter p. Now let Z be defined by:

N e;+H,

Z=) D, &y

=1 j=1

»Q\'B

There exists a universal constant C such that:
Vy € [0,1], Var(Z?) < CN*"~' < CN".
We also have that there are two constant cy,cs > 0 that do not depend on ~ such that:
N7 <E(Z7) < ¢aN7.

Proof. First we look at the expectation of Z, we get:

Now we will look at the variance but first we need a small result to simplify the notations,
for this result, M will be a non negative random variable and (X;);en a sequence of iid
real random variables, independent of M. We get:

(S0 -=((E2) ) - (+(5%)

=B (ME(X?) + M(M - 1)E(X1)?) - E(M)*E(X,)?
= E(M)Var(X,) + Var(M)E(X;)?.

2

Now we can compute the variance of Z. First we have:

ei+H;

N 5 N ei+H;
Var (Z) = ZVar Z &-,jg = %Zvar Z Eijl-
i=1 j=1 J=1

Then we have:

P P h N\ 1
qu ;E(&l + Hi)Var(é’M) = qu ; (Ei + ].—h) —

p2

1 N
= mzau —h)?+h(1—h),

N
Zar (e + H)?E(E1)? = QZl—hp

"B
| o
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So we get, by summing these two equalities:
1 N

Var (7)) = ——— i(1=h)%2+2h(1 —h).

o (2) = g 2 &L~ W+ 201 =)

We have assumed that 4 > + and 1 < ¢(1 — ) < 1 therefore we have:

1
TN <E(Z) <4N,
Var(Z) < 20N.

Therefore we have:
Var(Z) _ 399 L
(E(2)* ~ N
So by Lemma 3.3, for N > 320 we have:

Var(Z)
E(2)?

640
< AT NT
) v

Vy € [0,1], Var (Z7) < 2(Z)* (

And if N < 320 we have:
Yy € [0,1], Var (Z27) < E(Z*) < E(Z?) < (20N + 16N?).
So there exists a constant C such that if 1 < N < 320:

1
Var (Z7) < C—.
ar ( )_CN

So
Yy € [0,1], Var (Z7) < ON* L.

So we have that there exists a constant C such that if N > 1:
Yy €[0,1], Var (Z2?) < CN**"! < CN".
Now for the expectation, we first have the upper bound:
E(Z7) <E(Z)Y < (4N)?.

For the lower bound, we will use Holder inequality:

1 1=
EB(Z) =B (2752285 < B (2:5C0) T R (2551) T
This yields:
E(Z)*7 < E(Z2"E(Z%)
ie:

Y E<Z)2_’Y
P22 gy

Now we have E(Z?) = Var(Z) + E(Z)? since Var(Z) < 80E(Z) and E(Z) > % we have
Var(Z) < 320E(Z)? and therefore: F(Z?) < 321F(Z)? which yields:

B2 _ E@2) _ E@Z2)
(321E(Z)2)— ~ 3211—7 = 321 °

E(Z7) >
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Lemma 3.5. Let § € [0,1]. Let (V;);en+ be a sequence of random positive integers and
(A;)ien be a sequence of random finite subsets of IN with the following two properties:

Vi>0,A; C Aia,
11— 00

Let (Z;);en be independent exponential random variables of parameter 1 independent of

Then there exists a constant C' > 0 such that almost surely:
N; A
ImeNYn>m, Y (D Zi| = (N’
icA, \j=1 i€A,

Proof. Let C be such that 2C — 217 > 0 Let (n;)ien be the sequence defined by:
n; = min {i,# Z (Nl-)ﬁ > 21} .
i€A,
We have that if
N B
ImeN,Vj>m, Y (Zzz) >20 ) (N;)?
€A, \k=1 €A,

and M is such an m then for every n > nyy, if j is the integer that satisfies n; <n <mn;i1,

we have: .
Z (Nz)ﬁ §2.7+1
i€A,
<2 Z (N;)?
€A,
N A
<20 Z ( Zi>
i€An; \k=1
N; B
<20y ( Zl-> :
i€A, \k=1
By Lemma 3.3, for any + € IN*:
Var Zgi’j |(Ak), (Nk) < 2(Ni)26_1 < 2(Nl‘)ﬂ.
j=1
And by Holder:
E| (D €] 1(AR), (Vi)
j=1
_ —(1-8)
N 2-3 N 2
>E | Y& jl(Ar), (Nk) El Y &5 (A, (N))
j=1 j=1
=(Ni)* (N7 4 N;)~ (=0
> (N:)* =P (2N}) =0
=20"1(\V;)P.
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Now we get:

N B
S ( Zi> <20 Y (V)
i€EA, 1

jz0
N; p
Var( > <Z Zi> |(Ak)7(Nk)>

i€A, k=1

Jj=0

<(2C—2”3) 2. (Ni)ﬁ>

1€AR;

2
<2 E| Go—rr 5

€A,

2 .
- —J
S(20_21—,@)2 ZQ < 0.
j=0
So by Borel-Cantelli we get the result we want O

Lemma 3.6. Let f, g be two non-decreasing positive cadlag functions with f(0) = g(0) =
0. Let A, B > 0 be constants such that f(A) > B and g(A) > B. Lete, > 0 be such that:

Vie[0,A+e],g(t+¢e)>gt)+9

and 5
sup{|f(t) — g(t)l,t € [0, A +2¢]} < o
Then:
sup{|f~!(z) =g~ (®)],t € [0, B]} < 2.

Proof. Let t be in [0, B]. First we have:
—1 —1 0 —1 0
Flo7 W) +2e) 2 g(g7 () +2e) =5 2 glg () +e)+6—5 >t

Therefore f~!(t) < g~'(t) + ¢. Similarly we have:

Pl -2 Solo7 ) —<) + 2 <glo™ ) o+ 5 <t

Therefore f~1(t) > g~1(t) — . So we have the result we want. O

Lemma 3.7. Let ¢t — S"(t) be the jump process where §"(1) is a completely asymmetric,
positive stable law of parameter k. For any ¢ > 0 and any B > 0 there exist A > 0 and
6 > 0 such that:

P(S"(A) > B) > 1—c¢,
POt <A—¢e,S8%(t+e)—S"(t) <) <e.

Proof. There clearly exists an A that satisfies the first property. Now we need to find
a J that satisfies the second inequality for this A. We will look at a slightly different
property:

=

3i < %78"‘ (i2) -s*(6+n3) <&
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Since for every t < A — e there exists i < 24 such that: [i£, (i + 1)£] C [t, ¢ + €], we have
that for any § > 0:

" " . _2A . /.¢ w (- €
PEt<A—e8(t+e)—8 (t+£)§(5)§IP<EIz§E,S (zi)—S ((z+1)2)§(5>.

And there clearly exists § such that
2A € €
i< 2 85 (i2) — 87 ( (i <) <e.
IP(EIZ E,S (22> S ((2+1)2)5)5

So we get the result we want. O
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