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Abstract

Let n ≥ 1, K > 0, and let X = (X1, X2, . . . , Xn) be a random vector in Rn with
independent K–subgaussian components. We show that for every 1–Lipschitz convex
function f in Rn (the Lipschitzness with respect to the Euclidean metric), ∀t > 0,

max
(
P
{
f(X)−Med f(X) ≥ t

}
,P

{
f(X)−Med f(X) ≤ −t

})
≤ exp

(
− c t2

K2 log
(
2 + K2n

t2

)),

where c > 0 is a universal constant. The estimates are optimal in the sense that for
every n ≥ C̃ and t > 0 there exist a product probability distribution X in Rn with
K–subgaussian components, and a 1–Lipschitz convex function f , with

P
{∣∣f(X)−Med f(X)

∣∣ ≥ t
}
≥ c̃ exp

(
− C̃ t2

K2 log
(
2 + K2n

t2

)).

The obtained deviation estimates for subgaussian variables are in sharp contrast with
the case of variables with bounded ‖Xi‖ψp–quasi-norms for p ∈ (0, 2).
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1 Introduction

Concentration in product probability spaces is an active research direction with
numerous available results (see, in particular, monographs [21, 9]). Among classical
examples of such results are Bernstein-type inequalities [9, Chapter 2] for linear com-
binations of independent random variables, and the isoperimetric inequality in the
Gauss space which implies subgaussian dimension-free concentration [29, 8] (see also
[11, 3, 5, 4] as well as [25, Theorem V.1]).
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Dimension-dependent concentration for convex Lipschitz functions

Let (Ωi,Σi, µi), i ≥ 1, be probability spaces, and for a given n ≥ 1, let Fn be a subset of
real valued measurable functions f on the product space (

∏n
i=1 Ωi,

∏n
i=1 Σi, µ1×· · ·×µn).

A question is to estimate for every t > 0 the quantity

sup
f∈Fn

max
(
(µ1 × · · · × µn)

{
f −Med f ≥ t

}
, (µ1 × · · · × µn)

{
f −Med f ≤ −t

})
(1.1)

(we focus on deviation from the median; see, for example, [21, Propositions 1.7, 1.8] for
relations between deviations from the mean and the median).

First, let Fn be the class of 1-Lipschitz functions on Rn (here and further in this note,
the Lipschitzness is with respect to the standard Euclidean metric in Rn), and µ1, . . . , µn
be Borel probability measures on R. In particular, it is known that whenever measures
µi satisfy the Poincaré inequality with a non-trivial constant λ > 0, i.e

λVarµi h ≤ Eµi |h′|2, 1 ≤ i ≤ n, for every smooth function h : R→ R,

then the product measure µ1 × · · · × µn satisfies the Poincaré inequality on Rn with
the same constant, which in turn implies subexponential dimension-free upper bound
exp(−ct) for (1.1), where c > 0 depends only on the Poincaré constant [16] (see also, for
example, [33, Chapter 2]). Conversely, if µ = µ1 = µ2 = . . . is a probability measure on
R, and for some t > 0, (1.1) is uniformly (over n) upper bounded by a quantity strictly
less than 1/2 then necessarily µ satisfies a Poincaré inequality with a non-trivial constant
[13].

A connection between concentration and measure transport inequalities was first
highlighted in [22, 23]. In particular, it has been established in the literature (see
[27, Section 7], [12, Section 5], [6, Corollary 5.1]) that exponential dimension-free
concentration for µ×n, n ≥ 1, is equivalent to the inequality

inf
X∼µ, Y∼ν

E min
(
|X − Y |, |X − Y |2

)
≤ C

∫
R

dν

dµ
log
(dν
dµ

)
dµ

for every probability measure ν absolutely continuous w.r.t µ, where the infimum is taken
over all joint laws of (X,Y ) with X ∼ µ and Y ∼ ν.

A complete characterization of product measures which enjoy dimension-free sub-
gaussian concentration was obtained in [12] (see also earlier work [32]). It was shown in
[12] that given a measure µ on R, the quantity in (1.1) is upper bounded by C exp(−ct2)

for some C, c > 0 (independent of n) if and only if there is a constant D > 0 such that µ
satisfies the following measure transportation inequality (the T2-inequality): For every
probability measure ν absolutely continuous w.r.t µ,

inf
X∼µ, Y∼ν

E |X − Y |2 ≤ 2D

∫
R

dν

dµ
log
(dν
dµ

)
dµ

where the infimum is over all pairs of random variables X,Y on R with X ∼ µ and Y ∼ ν.
We refer to [12] for a more general statement.

We would like to mention the logarithmic Sobolev inequality as a well known suffi-
cient condition for subgaussian concentration [10], [21, Chapter 5], as well as inequal-
ities interpolating between log-Sobolev and Poincaré [20] as sufficient conditions for
dimension-free concentration estimates of the form exp(−ctp) for the quantities in (1.1).

Following works of Talagrand [30, 31], it has been shown in various settings that
by restricting the class of Lipschitz functions to convex (or concave) functions, the
worst-case concentration estimates can be significantly improved. As an illustration,
it is well known that for every n ≥ 1, there exists a (non-convex) 1-Lipschitz function
fn in Rn such that for the random vector X(n) uniformly distributed on vertices of the
cube {−1, 1}n, one has Var fn(X(n)) = θ(

√
n) (see, for example, [33, Problem 4.9]). On
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Dimension-dependent concentration for convex Lipschitz functions

the other hand, a classical result of Talagrand [30, 31] asserts that there is a universal
constant c > 0 such that, with Fn := {Convex 1-Lipschitz functions in Rn}, and with
µ1 = µ2 = · · · = µn being the uniform measure on {−1, 1}, the quantity in (1.1) is upper
bounded by exp(−c t2), for a universal constant c > 0. An extension of Talargand’s
argument shows that (1.1) can be upper bounded by exp(−c t2/d2) for the class of convex
1-Lipschitz functions whenever µ1, . . . , µn are measures with supports of maximum
diameter at most d > 0 [21, Chapter 4]:

sup
f convex 1-Lipschitz

max
(
(µ1 × · · · × µn)

{
f −Med f ≥ t

}
, (µ1 × · · · × µn)

{
f −Med f ≤ −t

})
≤ exp

(
− c t2/d2

)
, t > 0.

(1.2)

A complete characterization of probability measures µ on R such that (1.1) admits
dimension-free subgaussian concentration for convex 1-Lipschitz functions with µ =

µ1 = µ2 = . . . , was obtained in [14, 15] (see also [1] for an earlier result in this
direction). Both necessary and sufficient condition in that setting is µ((t + s,∞)) ≤
2 exp(−cs2)µ((t,∞)) and µ((−∞,−t − s)) ≤ 2 exp(−cs2)µ((−∞,−t)) for all s, t > 0 for
some constant c > 0, which can be interpreted as the condition that the distribution µ
has “no gaps”. The convex subgaussian concentration, in turn, is implied by the convex
log-Sobolev inequality (see [28]). For results dealing with dimension-free subexponential-
type concentration for convex Lipschitz functions, we refer to [7, 15, 2, 13].

Whereas necessary and sufficient conditions for dimension-free concentration are well
understood, those conditions are rather strong. For example, it is easy to construct an
unbounded subgaussian distribution which does not satisfy the condition for dimension-
free subgaussian concentration mentioned above.

The main purpose of this note is to give optimal dimension-dependent concentration
bound in the class of subgaussian product measures for convex 1-Lipschitz functions.
However, we would like to start with a discussion of ‖ · ‖ψp -bounded variables for
p ∈ (0, 2), to emphasize the difference in tail behavior. We recall the definition of the
‖ · ‖ψp -(quasi-)norm. Given a real valued random variable Y , we set

‖Y ‖ψp := inf
{
λ > 0 : E exp(|Y |p/λp) ≤ 2

}
, p > 0.

In particular, ‖Y ‖ψ2
is the subgaussian constant of Y , and ‖Y ‖ψ1

is the subexponential
constant. A random variable Y with a bounded ‖ · ‖ψp -norm satisfies, in view of Markov’s
inequality,

P{|Y | ≥ t} ≤ 2 exp(−tp/‖Y ‖pψp), t > 0.

Theorem 1.1. For every p ∈ (0, 2) there is a cp > 0 depending only on p with the
following property. Let K > 0, n ≥ 2, and let X = (X1, X2, . . . , Xn) be a vector of
independent random variables with ‖Xi‖ψp ≤ K, 1 ≤ i ≤ n. Then for every 1-Lipschitz
convex function f in Rn, we have

P
{
|f(X)−Med f(X)| ≥ t

}
≤ 2 exp

(
− cp tp/Kp

)
+ 2 exp

(
− cp t2/

(
K2(log n)2/p

))
, t > 0.

We were not able to locate the above theorem in the literature, and provide its
proof for completeness. Theorem 1.1 is obtained by a simple reduction to Talagrand’s
inequality for bounded variables. We note here that the two-level tail behavior for
functions of independent variables is a common phenomenon within high-dimensional
probability, starting with the classical Bernstein’s inequality. It can be informally justified
by saying that while deviation of individual variables from the above theorem are
controlled by exp(−Θ(tp)), linear combinations of variables of the form

∑n
i=1 aiXi (with

‖a‖∞ � ‖a‖2) exhibit subgaussian behavior in a certain range. Notice that, in the
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Dimension-dependent concentration for convex Lipschitz functions

above statement, 2 exp
(
− cp t2/

(
K2(log n)2/p

)
is the dominating term on the right hand

side when t
K = O

(
(log n)

2
p(2−p)

)
. Further, there is no concentration phenomenon when

t
K = O((log n)1/p). For t� K(log n)

2
p(2−p) , the tail is estimated by O

(
exp

(
− cp tp/Kp

))
.

It can be verified that the statement of Theorem 1.1 is optimal in the following sense
(we only consider the range p ∈ [1, 2) here).

Proposition 1.2. For every p ∈ [1, 2) there is a Cp > 0 depending only on p with the
following property. Let n ≥ Cp, t > 0, and K > 0. Then there exist a random vector
X = (X1, X2, . . . , Xn) of independent random variables with ‖Xi‖ψp ≤ K, 1 ≤ i ≤ n, and
a convex 1-Lipschitz function f such that

P
{
f(X)−Med f(X) ≥ t

}
≥ c̃max

(
exp

(
− C̃ t2/

(
K2(log n)2/p

)
, exp

(
− C̃ tp/Kp

))
and

P
{
f(X)−Med f(X) ≤ −t

}
≥ c̃max

(
exp

(
− C̃ t2/

(
K2(log n)2/p

)
, exp

(
− C̃ tp/Kp

))
.

Here, c̃, C̃ > 0 are universal constants.

Now, let X = (X1, . . . , Xn) be a vector of independent K-subgaussian random vari-
ables, that is, ‖Xi‖ψ2 ≤ K, 1 ≤ i ≤ n. It is elementary to see that ‖X‖∞ := maxi≤n |Xi| =
O(
√

log n) with probability, say, 1− n−10, where the implicit constant in O(·) depends on
K. By considering the vector of truncations

(
Xi 1{|Xi|≤C

√
logn}

)n
i=1

(for an appropriate
choice of C) and applying the Talagrand convex distance inequality, it is easy to deduce
that for every 1-Lipschitz convex function f in Rn,

Var f(X1, . . . , Xn) = O(log n),

where the implicit constant depends on K only. A more elaborate argument [19,
Lemma 1.8] gives, with the above notation, the following variable-dependent estimate:

P
{
|f(X)−Med f(X)| ≥ t

}
≤ 2 exp

(
− ct2∥∥ max

1≤i≤n
|Xi|

∥∥2

ψ2

)
, t > 0

(see also [24]). When bounding the right hand side as a function of n, K, and t only, we
get

P
{
|f(X)−Med f(X)| ≥ t

}
≤ 2 exp

(
− ct2

K2 log n

)
, t > 0,

which is not sharp for large t as our main result below shows.

Theorem 1.3. There is a universal constant c > 0 with the following property. Let K > 0,
n ≥ 2, and let X = (X1, X2, . . . , Xn) be a vector of independent K-subgaussian random
variables. Then for every 1-Lipschitz convex function f in Rn, we have, ∀t > 0,

max
(
P
{
f(X)−Med f(X) ≥ t

}
,P
{
f(X)−Med f(X) ≤ −t

})
≤ exp

(
− c t2

K2 log
(
2 + K2n

t2

)).
The estimate provided by the theorem is optimal in the following sense:

Proposition 1.4. Let K > 0, n ≥ C̃, and t > 0. Then there exist a vector X =

(X1, X2, . . . , Xn) of independent K-subgaussian random variables, and a convex 1-
Lipschitz function f such that

P
{
f(X)−Med f(X) ≥ t

}
≥ c̃ exp

(
− C̃ t2

K2 log
(
2 + K2n

t2

)),
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Dimension-dependent concentration for convex Lipschitz functions

and

P
{
f(X)−Med f(X) ≤ −t

}
≥ c̃ exp

(
− C̃ t2

K2 log
(
2 + K2n

t2

)).
Here, c̃, C̃ > 0 are universal constants.

The structure of the note is as follows. In Section 2, we provide a proof of Theorem 1.1.
Section 3 is devoted to proving Propositions 1.2 and 1.4. Finally, in Section 4 we consider
the main result of the note, Theorem 1.3.

2 Proof of Theorem 1.1

Fix p ∈ (0, 2), K > 0, a natural number n ≥ 2, and a 1-Lipschitz convex function f in
Rn. To prove the theorem, it is sufficient to verify a deviation inequality for the parameter
t ≥ CK(log n)1/p, where C > 0 is a large constant depending on p. Let X = (X1, . . . , Xn)

be a vector of independent variables with ‖Xi‖ψp ≤ K, 1 ≤ i ≤ n.
For each number k ≥ 1, denote

Y
(k)
i := Xi 1{|Xi|≤ 2k−1K(4 logn)1/p}.

Further, let m ≥ 1 be the largest integer such that

t

2m
K(4 log n)1/p ≥ 1, (2.1)

and define
uk := c̃ 2−(2−p)|m−k|/4, k ≥ 1, (2.2)

where the constant c̃ = c̃(p) > 0 is defined via the relation

c̃

∞∑
k=1

2−(2−p)|m−k|/4 =
1

2
.

We start by writing

P
{
|f(X)−Med f(X)| ≥ t

}
≤P
{
|f(Y

(1)
1 , . . . , Y (1)

n )−Med f(X)| ≥ t/2
}

+

∞∑
k=1

P
{
|f(Y

(k+1)
1 , . . . , Y (k+1)

n )− f(Y
(k)
1 , . . . , Y (k)

n )| ≥ uk t
}
.

To estimate the probability P
{
|f(Y

(1)
1 , . . . , Y

(1)
n ) −Med f(X)| ≥ t/2

}
, we note that the

diameter of the support of each Y
(1)
i is at most 2K(4 log n)1/p, and hence applying

Talagrand’s convex distance inequality for bounded variables (1.2), we get

P
{
|f(Y

(1)
1 , . . . , Y (1)

n )−Med f(Y
(1)
1 , . . . , Y (1)

n )| ≥ s
}
≤ 2 exp

(
− cs2

K2(4 log n)2/p

)
, s > 0,

for a universal constant c > 0. On the other hand, we observe that

min
(
P
{
f(Y

(1)
1 , . . . , Y (1)

n ) ≥ Med f(X)
}
,P
{
f(Y

(1)
1 , . . . , Y (1)

n ) ≤ Med f(X)
})

≥ 1

2
− n max

i≤n
P
{
|Xi| ≥ K(4 log n)1/p

}
≥ 1

2
− 2

n3
≥ 1

4
,

which, together with the last inequality, implies that∣∣Medf(Y
(1)
1 , . . . , Y (1)

n )−Med f(X)
∣∣ ≤ CK(4 log n)1/p.
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Dimension-dependent concentration for convex Lipschitz functions

Therefore,

P
{
|f(Y

(1)
1 , . . . , Y (1)

n )−Med f(X)| ≥ t/2
}
≤ 2 exp

(
− ct2

K2(4 log n)2/p

)
,

for some universal constant c > 0.
Further, for every k ≥ 1 we have

P
{
|f(Y

(k+1)
1 , . . . , Y (k+1)

n )− f(Y
(k)
1 , . . . , Y (k)

n )| ≥ uk t
}

≤ P
{∥∥(Y (k+1)

i − Y (k)
i

)n
i=1

∥∥
2
≥ uk t

}
≤ P

{ n∑
i=1

1{Y (k+1)
i −Y (k)

i 6=0} ≥ max
(

1,
u2
k t

2

22kK2(4 log n)2/p

)}
,

where 1{Y (k+1)
i −Y (k)

i 6=0}, 1 ≤ i ≤ n, are independent Bernoulli random variables with

P
{
Y

(k+1)
i − Y (k)

i 6= 0
}
≤P

{
|Xi|≥2k−1K(4 log n)1/p

}
≤ 2

exp(2kp−p4 log n)
≤ 1

n3
, 1≤ i≤n.

A standard estimate sds̃e
(
n
ds̃e
)
≤
(
ens
s̃

)s̃
valid for any s̃ ∈ [1, n] and s ∈ (0, (en)−1], then

implies

P
{
|f(Y

(k+1)
1 , . . . , Y (k+1)

n )− f(Y
(k)
1 , . . . , Y (k)

n )| ≥ uk t
}

≤
(

2en

exp(2kp−p · 4 log n) max(1,
u2
k t

2

22kK2(4 logn)2/p
)

)max
(

1,
u2k t

2

22kK2(4 logn)2/p

)

≤ exp

(
− c 2kp−p(log n) max

(
1,

u2
k t

2

22kK2(4 log n)2/p

))
for some universal constant c > 0, where the last inequality follows since 2en ≤ exp((2 +

log2(e)) log n).
For k ≤ m, we use the inequality

t2

22kK2(4 log n)2/p
≥ 22m−2k,

which follows from (2.1), to write

exp

(
− c 2kp−p(log n) max

(
1,

u2
k t

2

22kK2(4 log n)2/p

))
≤ exp

(
− c(log n) 2kp−p+2m−2ku2

k

)
= exp

(
− c(log n)2(m−1)p2(2−p)(m−k)u2

k

)
= exp

(
− cc̃22(m−1)p · (log n)2(2−p)(m−k)/2

)
,

where the last equality follows from (2.2). Using the definition of m and assuming the
constant C in the assumption for t is sufficiently large, we get∑

k≤m

P
{
|f(Y

(k+1)
1 , . . . , Y (k+1)

n )− f(Y
(k)
1 , . . . , Y (k)

n )| ≥ uk t
}

≤
∑
k≤m

exp
(
− c c̃2 2(m−1)p · (log n) 2(2−p)(m−k)/2

)
,

≤ exp
(
− c′′′ · (log n) 2mp

)
≤ exp

(
− ĉ tp

Kp

)
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Dimension-dependent concentration for convex Lipschitz functions

for some c′′′, ĉ > 0 depending only on p.
For k > m, we simply write

P
{
|f(Y

(k+1)
1 , . . . , Y (k+1)

n )− f(Y
(k)
1 , . . . , Y (k)

n )| ≥ uk t
}
≤ exp

(
− c 2(m−1)p · 2(k−m)p log n

)
,

and essentially repeating the above computations, get∑
k>m

P
{
|f(Y

(k+1)
1 , . . . , Y (k+1)

n )− f(Y
(k)
1 , . . . , Y (k)

n )| ≥ uk t
}
≤ exp

(
− c′′ tp

Kp

)
for some c′′ > 0 depending only on p.

The result follows.

3 Proof of Propositions 1.2 and 1.4

First, consider the following basic example. Let p ∈ [1, 2], K̃ > 0, and let µ be the
probability measure on R defined via the relation

µ([t,∞)) = µ((−∞,−t]) =
1

2
exp

(
− (t/K̃)p

)
, t ≥ 0.

It is easy to see that, with the random vector X in Rn distributed according to µ×n,
the components of X have ‖ · ‖ψp -norms bounded by O(K̃) (with the absolute implicit
constant). On the other hand, with the function f : Rn → R given by

f(x1, x2, . . . , xn) := x1, (x1, x2, . . . , xn) ∈ Rn,

we have

P{f(X) ≤ −t} = P{f(X) ≥ t} =
1

2
exp

(
− (t/K̃)p

)
, t > 0,

which gives the required estimates for t ≥ K̃(log n)
2

p(2−p) in the statement of Proposi-
tion 1.2, and for t ≥ K̃

√
n in Proposition 1.4.

The main statement of this section is the following proposition.

Proposition 3.1. There exists a universal constant C > 1 so that the following holds:
Let n ≥ C, p ∈ [1, 2], K > 0. Further, let 0 ≤ t ≤ K

C

√
n. Then there exists a random vector

X = (X1, . . . , Xn) with i.i.d components whose ‖ · ‖ψp -norm is bounded above by K such
that

P
{
‖X‖2 −Med ‖X‖2 ≥ t

}
≥ 1

C
exp

(
− C · t2

K2
(

log
(
2 + K2n

t2

))2/p), and

P
{
‖X‖2 −Med ‖X‖2 ≤ −t

}
≥ 1

C
exp

(
− C · t2

K2
(

log
(
2 + K2n

t2

))2/p).
Together with the above example, Proposition 3.1 implies Propositions 1.2 and 1.4.

The “test” distribution we use to prove Proposition 3.1 is the n-fold product of a 2-point
probability measure defined by µ({0}) = 1− θ and µ({K log(1/θ)1/p}) = θ where θ = θ(t)

is an appropriately chosen parameter.
The proof of the proposition relies on a precise lower bound for the tail probability of

a Binomial random variable. We need the following result:

Lemma 3.2. There exists universal constants cb ∈ (0, 1) and Cb > 1 so that the following

holds. Let n be a sufficiently large integer. For θ ∈
[

1
cb n

, cb

]
, let Y1, . . . , Yn be i.i.d

Bernoulli random variables with a parameter θ > 0. Then, for any 0 ≤ r ≤ n − θn, we
have

P
{ n∑
i=1

Yi ≥ θn+ r
}
≥ 1

Cb
exp

(
−Cb log

(
2 +

θn+ r

θn

)
r2

θn+ r

)
. (3.1)
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Dimension-dependent concentration for convex Lipschitz functions

Remark 3.3. The term r2

θn+r corresponds to the usual Bernstein-type tail estimate, and

log
(
2 + θn+r

θn

)
is the “extra” factor emerging when θn = o (r).

Although the above statement is based on completely standard calculations, we
provide its proof for completeness.

Proof of Lemma 3.2. We will assume that
√
θn (and θn) is greater than a sufficiently large

universal constant and at the same time θ is smaller than another small universal constant.
Those conditions on θ can be imposed by adjusting the constant cb in the statement of
the lemma. For every k ≤ n, let Pk := P {

∑n
i=1 Yi = k} and P≥k := P {

∑n
i=1 Yi ≥ k}.

We claim that in order to prove the lemma it is sufficient to establish the following
inequalities:

∀ 0≤r≤n−θn with θn+r∈N, P≥θn+r≥


1
C̄

exp
(
− C̄ log

(
2 + r

θn

)
r
)

if r ≥ 1
10θn,

1
C̃

exp
(
− C̃ r2

θn+r

)
if 0 ≤ r < 1

10θn,

(3.2)

for some universal constants C̃, C̄ > 1.
To verify the claim, fix any θ (satisfying assumptions from the beginning of the proof)

and any r with 0 < r ≤ n− θn. We have P≥θn+r = P≥dθn+re.
First, consider the case dθn + re − θn ≥ 1

10θn. Since θn is greater than a large
universal constant, we have dθn+ re ≤ θn+ 2r, whence, applying (3.2) with parameters
θ and dθn+ re − θn,

P≥dθn+re ≥
1

C̄
exp

(
− C̄ log

(
2 +

2r

θn

)
· 2r
)
≥ 1

C̄
exp

(
− 4C̄ log

(
2 +

r

θn

)
r
)
,

where the last inequality holds since log(2 + 2x) ≤ log
(
(2 + x)2

)
= 2 log(2 + x) for x ≥ 0.

Further, under the condition dθn+ re − θn ≥ θn
10 and assuming that θn is larger than a

big universal constant, we have 12r
θn+r ≥ 1. Therefore,

P≥dθn+re ≥
1

C̄
exp

(
− 4C̄ log

(
2 +

r

θn

)
r
)
≥ 1

C̄
exp

(
− 4 · 12C̄ log

(
2 +

θn+ r

θn

) r2

θn+ r

)
.

Next, consider the case 0 < r, dθn+ re − θn < θn
10 . Clearly, dθn+ re − θn ≤ r + 1, and

hence

P≥dθn+re ≥
1

C̃
exp

(
− C̃ (r + 1)2

θn+ r

)
≥ 1

C̃
exp

(
− C̃ r2

θn+ r
− C̃

)
,

where the last inequality holds since r ≤ θn
10 and θn is sufficiently large. As log

(
2+ r

θn

)
≥

log(2), we obtain

P≥dθn+re ≥
1

C̃
exp(−C̃) exp

(
− C̃

log(2)
log
(

2 +
r

θn

) r2

θn+ r

)
,

and derivation of (3.1) from (3.2) is complete.
From now on, we assume 0 ≤ r ≤ n− θn and θn+ r ∈ N. Obviously,

Pθn+r =

(
n

θn+ r

)
θθn+r (1− θ)n−θn−r . (3.3)

Case 1: θn
10 ≤ r ≤ n− θn.

By the standard estimate,
(

n
θn+r

)
≥
(

n
θn+r

)θn+r
, and so

Pθn+r ≥
(

θn

θn+ r

)θn+r

(1− θ)n−θn−r = exp

(
− log

(
θn+ r

θn

)
(θn+ r)

)
(1− θ)n−θn−r.
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Dimension-dependent concentration for convex Lipschitz functions

Since (1− θ) ≥ exp(−2θ) whenever θ > 0 is small enough, we get

(1− θ)n−θn−r ≥ (1− θ)n ≥ exp(−2θn),

and therefore

P≥θn+r ≥ Pθn+r ≥ exp

(
− log

(
θn+ r

θn

)
(θn+ r)− 2θn

)
≥ exp

(
− C log

(
θn+ r

θn

)
r

)
for a universal constant C > 1. This completes the proof of (3.2) in the regime r ≥ θn

10 .
Case 2: 0 ≤ r < θn

10 .
In view of Stirling’s formula,

Pθn+r ≥c
√

n

(θn+ r) (n− θn− r)

(
n

θn+ r

)θn+r (
n

n− θn− r

)n−θn−r
θθn+r(1− θ)n−θn−r

≥ c√
θn+ r

(
θn

θn+ r

)θn+r (
n− θn

n− θn− r

)n−θn−r
,

where c > 0 is a universal constant. Since log (1 + x) ≥ x− x2 for x > 0, we get(
n− θn

n− θn− r

)n−θn−r
=

(
1 +

r

n− θn− r

)n−θn−r
≥ exp

(
r − r2

n− nθ − r

)
.

Similarly, since log (1− x) ≥ −x− 2x2 for x ∈ [0, 1
2 ] and r

θn+r ∈ [0, 1
2 ] for 0 ≤ r ≤ 1

10θn,(
θn

θn+ r

)θn+r

=

(
1− r

θn+ r

)θn+r

≥ exp

(
−r − 2r2

θn+ r

)
.

Hence, together using that 1
n−θn−r ≤

1
n− 11

10 θn
≤ 1

11
10 θn

≤ 1
θn+r when 0 < θ < 1

3 , we get

Pθn+r ≥
c√

θn+ r
exp

(
− 3r2

θn+ r

)
. (3.4)

The bound P≥θn+r ≥ Pθn+r is insufficient to get (3.2) when r is small. We will bound
P≥θn+r by comparing it with the sum of a geometric sequence starting with Pθn+r.

For r′ > 0 with θn+ r′ ∈ N and n− θn− r′ > 0, by (3.3) we have

Pθn+r′+1

Pθn+r′
=
n− θn− r′

θn+ r′ + 1

θ

1− θ
=

1− r′

(1−θ)n

1 + 1+r′

θn

.

Since 1
1+x ≥ 1− x for all x ≥ 0,

Pθn+r′+1

Pθn+r′
≥
(

1− r′

(1− θ)n

)(
1− 1 + r′

θn

)
≥ 1− r′

(1− θ)n
− 1 + r′

θn
.

Next, with θ
1−θ ≤

cb
1−cb ≤

1
3 when cb > 0 is small enough,

Pθn+r′+1

Pθn+r′
≥ 1−

1 + 4
3r
′

θn
.

Notice that for 0 ≤ i ≤ max(dre, d
√
θne) := u, we have 1 − 1+ 4

3 (r+i)

θn ≥ 1 − 4u
θn where we

used that
√
θn is greater than a large absolute constant. Hence, for 1 ≤ i ≤ u,

Pθn+r+i ≥ Pθn+r

(
1− 4u

θn

)i
.
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Then,

P≥θn+r ≥
u∑
i=0

Pθn+r+i ≥ Pθn+r ·
( u∑
i=0

(
1− 4u

θn

)i)
=Pθn+r ·

1−
(
1− 4u

θn

)u+1

4u
θn

≥ Pθn+r ·
θn

8u

where the last inequality holds since
(
1 − 4u

θn

)u+1 ≤ exp
(
− 4u2

θn

)
≤ exp(−4) ≤ 1

2 since

u ≥
√
θn. Together with (3.4), we obtain

P≥θn+r ≥
θn

8u

c√
θn+ r

exp

(
− 3r2

θn+ r

)
.

With θn ≥ θn+r
2 (since r ≤ θn

10 ) and u ≤ 2 max(r,
√
θn) (if θn is large enough), θn8u

c√
θn+r

≥
c
32

√
θn+r

max(r,
√
θn)

. Finally, it is easy to check that

√
θn+ r

max(r,
√
θn)
≥ exp

(
− r2

θn+ r

)
.

Now we conclude that

P≥θn+r ≥
c

32
exp

(
− 4r2

θn+ r

)
,

and the proof of (3.2) is finished.

Lemma 3.4. There exist constants cb > 0 and C̃b > 1 so that the following holds. Let

n be a sufficiently large integer and let α > 0. For θ ∈
[

1
cbn

, cb

]
, let Y1, . . . , Yn be i.i.d

Bernoulli random variables with parameter θ. Set X = (X1, X2, . . . , Xn), with Xi = αYi,

i ≤ n. Then, for all t ∈
[
0, α
√
n

4

]
,

P
{
‖X‖2 ≥ Med‖X‖2 + t

}
≥ 1

C̃b
exp

(
− C̃b log

(
2 +

t2

θnα2

)
t2

α2

)
. (3.5)

Proof. Clearly,

‖X‖2 = α

√√√√ n∑
i=1

Yi.

Since the mapping y 7→ α
√
y is monotone increasing for y ≥ 0, the median estimate for

Binomial random variable

bθnc ≤ Med
( n∑
i=1

Yi

)
≤ dθne

(see [18]) implies

α
√
bθnc ≤ Med‖X‖2 ≤ α

√
dθne. (3.6)

Thus,

|Med‖X‖2 − α
√
θn| ≤ α

√
dθne − α

√
bθnc ≤ α,

where the last inequality holds when θn ≥ 1.
We claim that in order to verify the lemma, it is sufficient to establish the following

bound:

∀t ∈
[
0, α

√
n

2

]
, P

{
‖X‖2 ≥ α

√
θn+ t

}
≥ 1

C
exp

(
− C log

(
2 +

t2

θnα2

)
t2

α2

)
(3.7)
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for a universal constant C > 1. Indeed, suppose (3.7) holds. For t ∈ [0, α
√
n

4 ],

P
{
‖X‖2 ≥ Med‖X‖2 + t

}
≥P
{
‖X‖2 ≥ α

√
θn+ α+ t}

≥ 1

C
exp

(
− C log

(
2 +

1

θn

(
t

α
+ 1

)2)(
t

α
+ 1

)2)
,

where the last inequality follows from (3.7) since α+ t ∈
[
0, α

√
n

2

]
, under the assumption

n ≥ 16. Since ( tα + 1)2 ≤ 2( tα )2 + 2, we get

log

(
2+

1

θn

(
t

α
+1

)2)
≤ log

(
2+

2

θn
+

2

θn

(
t

α

)2)
≤ log

(
2·
(

2+
t2

θnα2

))
≤2 log

(
2+

t2

θnα2

)
,

where we used 1
θn ≤ 1 in the second inequality. Then, applying the bounds ( tα + 1)2 ≤

2( tα )2 + 2 and 1
θn ≤ 1 again, we obtain

log

(
2 +

1

θn

(
t

α
+ 1

)2)(
t

α
+ 1

)2

≤4 log

(
2 +

t2

θnα2

)((
t

α

)2

+ 1

)
≤4 log(3) + 8 log

(
2 +

t2

θnα2

)(
t

α

)2

,

where we applied the inequality log
(

2 + t2

θnα2

)
≤ max

(
log(3), log

(
2 + t2

θnα2

)(
t
α

)2)
.

Therefore,

P
{
‖X‖2 ≥ Med‖X‖2 + t

}
≥ 1

C
exp(−4 log(3)C) exp

(
− 8C log

(
2 +

t2

θnα2

)(
t

α

)2)
,

and (3.5) follows from (3.7) with Cb = max(C exp(4 log(3)C), 8C). The claim is estab-
lished.

Now we prove (3.7). First, since ‖X‖2 = α
√∑n

i=1 Yi,

P
{
‖X‖2 ≥ α

√
θn+ t

}
=P

{ n∑
i=1

Yi − θn ≥ 2
√
θn

t

α
+
t2

α2︸ ︷︷ ︸
r

}
.

For 0 ≤ t
α ≤
√
θn, we have 0 ≤ r ≤ 3θn. We apply Lemma 3.2 and use that log(2+ θn+r

θn ) ≤
log(6), to conclude

P
{
‖X‖2 ≥

√
αθn+ t

}
≥ 1

Cb
exp

(
− Cb log(6) · r

2

θn

)
≥ 1

Cb
exp

(
− Cb log(6) · 9 t

2

α2

)
≥ 1

Cb
exp

(
− Cb

9 log(6)

log(2)
log

(
2 +

t2

θnα2

)
t2

α2

)
.

For
√
θn ≤ t

α ≤
1
2

√
n, we have θn ≤ r ≤ 3t2

α2 ≤ 3
4n ≤ n − θn where the last inequality

holds when cb > 0 is chosen small enough. Applying Lemma 3.2 again, we obtain

P
{
‖X‖2 ≥ α

√
θn+ t

}
≥ 1

Cb
exp

(
− Cb log

(
2 +

6t2

θnα2

)
· 3t2

α2

)
.

We have log
(

2 + 6t2

θnα2

)
≤ 3 log

(
2 + t2

θnα2

)
, and hence

P
{
‖X‖2 ≥ α

√
θn+ t

}
≥ 1

Cb
exp

(
− 9Cb log

(
2 +

t2

θnα2

)
t2

α2

)
.

Now (3.7) follows by choosing C := max
( 9 log(6)

log(2) , 9
)
Cb.
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Proof of Proposition 3.1. Let X(θ) = (X1(θ), . . . , Xn(θ)) be the random vector defined
in Lemma 3.4 with parameters θ ∈ [ 1

cbn
, cb] and α := K(log(1/θ))1/p (the actual choice

of θ will be made later in the proof). Then, {Xi(θ)}ni=1 are i.i.d random variables with
the ‖ · ‖ψp -norm bounded above by K. We want to emphasize that the distribution of X
depends on the parameter θ, and that our future choice of θ will also depend on t.

Applying Lemma 3.4 with 0 ≤ t ≤ K
√
n

4 ≤ α
√
n

4 and any θ ∈ [ 1
cbn

, cb], we get

P
{
‖X(θ)‖2 ≥ Med‖X(θ)‖2 + t

}
≥ 1

C̃b
exp

(
− C̃b log

(
2 +

t2

K2θn(log(1/θ))2/p

)
t2

K2(log(1/θ))2/p

)
. (3.8)

Case 1: t ∈
[√

K2(logn)2/p

3cb
,
√

cbK2n
3

]
. In this case, we define

θ := θ(t) =

(
K2n

3t2

(
log
(K2n

3t2

))2/p
)−1

.

Since t 7→ θ(t) is a monotone increasing function for t ≤ K
√
n/3, our choice of θ satisfies

1

cbn
≤ (log n)2/p

cbn
(

log
(

cbn
(logn)2/p

))2/p

︸ ︷︷ ︸
when t=

√
K2(logn)2/p

3cb

≤ θ ≤ cb(
log
(

1
cb

))2/p

︸ ︷︷ ︸
when t=

√
cbK

2n

3

≤ cb,

which conforms to the conditions in Lemma 3.4, and therefore the estimate (3.8) is valid.
Our choice of θ implies log(1/θ) ≥ log

(
K2n
3t2

)
and thus

log

(
2+

3t2

K2θn(log(1/θ))2/p

)
3t2

K2(log (1/θ))2/p
= log

(
2+

(
log
(
K2n
3t2

))2/p
(log(1/θ))2/p

)
3t2

K2(log(1/θ))2/p

≤ 3 log(3) t2

K2
(

log
(
K2n
3t2

))2/p .
Further, the assumption that t ≤

√
cbK2n

3 and cb > 0 is sufficiently small implies that
K2n
t2 ≥ 9 and therefore

log
(K2n

3t2

)
≥ 1

2
log
(K2n

t2

)
=

1

4
log
((K2n

t2

)2)
≥ 1

4
log
(

2 +
K2n

t2

)
. (3.9)

We conclude that

P
{
‖X(θ(t))‖2≥Med‖X(θ(t))‖2 + t

}
≥ 1

C̃b
exp

(
− C̃b

3 log(3) t2

K2
(

log
(
K2n
3t2

))2/p)

≥ 1

C̃b
exp

(
−3 · 42/pC̃b log(3)

t2

K2
(

log
(
2+K2n

t2

))2/p).
Next, we will handle the lower tail estimate. We can assume that bθnc ≥ θn/3 since
θn ≥ 1

cb
and cb > 0 is sufficiently small. Then, by (3.6) we have

Med‖X(θ(t))‖2 ≥ K(log(1/θ))1/p
√
bθnc ≥ K(log(1/θ))1/p

√
θn/3

=

√(
log
(K2n

3t2

(
log
(K2n

3t2

))2/p))2/p
t2

(log(K2n/3t2))2/p
≥ t.
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As a consequence,

P
{
‖X(θ(t))‖2 ≤ Med‖X(θ(t))‖2 − t

}
≥ P {‖X(θ(t))‖2 = 0} = (1− θ)n ≥ exp

(
− 2θn

)
= exp

(
− 6t2

K2
(

log(K2n/3t2)
)2/p).

Finally, by (3.9),

P
{
‖X(θ(t))‖2 ≤ Med‖X(θ(t))‖2 − t

}
≥ exp

(
− 6 · 42/p t2

K2
(

log
(
2 + K2n

t2

))2/p).
We have shown that for

√
K2(logn)2/p

3cb
≤ t ≤

√
cbK2n

3 , the proposition holds with C =

max(48C̃b log(3), 6 · 16), since p ≥ 1.

Case 2: 0 ≤ t ≤
√

K2(logn)2/p

3cb
. Set t0 :=

√
K2(logn)2/p

3cb
, and let X̃ := X(θ(t0)). We

have, by the above,

P
{
‖X̃‖2 −Med ‖X̃‖2 ≥ t0

}
≥ 1

C
exp

(
− C · t20

K2
(

log
(
2 + K2n

t20

))2/p).
When n is greater than a sufficiently large constant,

t20

K2
(

log
(
2 + K2n

t20

))2/p =
(log n)2/p

3cb

(
log
(

2 + 3cbn
(logn)2/p

))2/p
≤ (log n)2/p

3cb
(

log(
√
n)
)2/p ≤ 2

3cb
,

where we used that p ≥ 1. We conclude that for t ∈ [0, t0],

P
{
‖X̃‖2 −Med ‖X̃‖2 ≥ t

}
≥ P

{
‖X̃‖2 −Med ‖X̃‖2 ≥ t0

}
≥ 1

C
exp

(
− 2C

3cb

)
.

The lower tail is treated the same way. By adjusting the constant C, it implies the
proposition for t ∈ [0, t0], and completes the proof.

4 Proof of Theorem 1.3

Our proof of Theorem 1.3 is based on a modification of the induction method of
Talagrand. In fact, the first part of the proof which deals with setting up a recursive
relation for a modified convex distance, essentially repeats, up to minor changes, the
standard account of the method (see, for example, [21, p. 72-79]).

We recall that Talagrand’s convex distance between a point x ∈ Rn and a set A ⊂ Rn
is given by

max
a: ‖a‖2=1

min
y∈A

n∑
i=1

ai 1{xi 6=yi}.

Since we work with measures with (possibly) unbounded supports, it is crucial for us to
track the “quantitative” distance between xi and yi, i ≤ n, and to consider the differences
|xi − yi| instead of the indicators 1{xi 6=yi}.

Definition 4.1. Given a point x ∈ Rn and a non-empty subset A of Rn, we define the
modified convex distance between x and A as

distc(x,A) := max
a: ‖a‖2=1

min
y∈A

n∑
i=1

ai |xi − yi|.
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Given a non-empty A ⊂ Rn and x ∈ Rn, we denote by U(x,A) the set of all vectors in
Rn+ of the form

U(x,A) :=

{(
|xi − yi|

)n
i=1

: y ∈ A
}
,

and let V (x,A) ⊂ Rn be the convex hull of U(x,A).

Lemma 4.2. We have

distc(x,A) = dist(0, V (x,A)), (4.1)

where the distance on the right hand side is the usual Euclidean distance in Rn. Fur-
thermore, when A is convex,

distc(x,A) = dist(x,A). (4.2)

Proof. The first assertion of the lemma can be derived following Talagrand’s treatment
for the original convex distance (see, in particular, [21, p. 72-73]).

We will provide the proof for the second assertion of the lemma for reader’s con-
venience. Let A be a non-empty convex set. Without loss of generality, A is closed,
and x /∈ A. By a compactness argument, there is a vector y ∈ x − A with ‖y‖2 =

dist(0, x−A) = dist(x,A). The extremal property of y implies that for all z ∈ x−A, we
have z · y ≥ y · y.

Now, for any z ∈ Rn, let z̃ be the vector obtained from z by replacing each component
of z by its absolute value. For each point z′ ∈ U(x,A), there exists z ∈ x − A such
that z′ = z̃. Since z̃ · ỹ ≥ z · y ≥ ‖y‖22, the set U(x,A) is contained in the half-space
{w ∈ Rn : w · ỹ ≥ ‖y‖22}, and the same is true for its convex hull V (x,A). Therefore,
dist(0, V (x,A)) ≥ ‖ỹ‖2 = ‖y‖2. On the other hand, since x − y ∈ A, we have ỹ ∈
U(x,A) ⊂ V (x,A), and therefore dist(0, V (x,A)) ≤ ‖ỹ‖2 = ‖y‖2. We conclude that
dist(0, V (x,A)) = ‖y‖2, and the result follows.

The main technical result in this section is the following proposition.

Proposition 4.3. Let K > 0, and let µ1, µ2, . . . , µn be K-subgaussian probability mea-
sures in R. Let X = (X1, X2, . . . , Xn) be distributed in Rn according to µ1×µ2× · · ·×µn,
and let A ⊂ Rn be a non-empty Borel subset. Then, for any δ ∈ (0, 1

2 ],

E exp

(
c̃ (distc(X,A))2

K2 log
(
2 + n

log(2+1/δ)

)) ≤ 4

P
{
X ∈ A

}
δ
,

where c̃ > 0 is a universal constant.

Before we consider the proof, let us show how to derive Theorem 1.3 from the above
proposition.

Proof of Theorem 1.3. First, note that it is sufficient to prove the statement for t ≥
C ′K

√
log n for a large constant C ′ > 1. For the upper tail, we let A := {x ∈ Rn : f(x) ≤

Med f(X)}. By Proposition 4.3, for any δ ∈ (0, 1
2 ],

E exp

(
c̃ (distc(X,A))2

K2 log
(
2 + n

log(2+1/δ)

)) ≤ 8

δ
.

Let At := {x ∈ Rn : distc(x,A) < t}. Observe that, since f is convex, so is the set A,
and therefore At = {x ∈ Rn : dist(x,A) < t}, in view of Lemma 4.2. Applying Markov’s
inequality, we get

P{f(X) ≥ Med f(X) + t} ≤ P{X /∈ At}

≤ 8

δ
exp

(
− c̃ t2

K2 log
(
2 + n

log(2+1/δ)

)).
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Dimension-dependent concentration for convex Lipschitz functions

We choose δ := exp
(
− c̃ t2/4

K2 log(2+ K2n
c̃ t2/4

)

)
(we can assume that δ ≤ 1/2 if C ′ is sufficiently

large). Observe that log(2 + 1
δ ) ≥ log(1/δ) = c̃ t2/4

K2 log(2+ K2n
c̃ t2/4

)
, and hence

log
(

2 +
n

log(2 + 1/δ)

)
≤ log

(
2 +

K2n

c̃ t2/4
log
(

2 +
K2n

c̃ t2/4

))
≤ 2 log

(
2 +

K2n

c̃ t2/4

)
.

Therefore,

P{f(X) ≥ Med f(X) + t} ≤8 exp

(
c̃ t2/4

K2 log(2 + K2n
c̃ t2/4 )

− c̃ t2

2K2 log
(
2 + K2n

c̃ t2/4

))
=8 exp

(
− ct2

K2 log(2 + K2n
ct2 )

)
,

where c := 1
4 c̃. By assuming C ′ > 1 to be sufficiently large and recalling that t ≥

C ′K
√

log n, we get

8 exp

(
− ct2

K2 log(2 + K2n
ct2 )

)
≤ exp

(
− ct2/2

K2 log(2 + K2n
t2 )

)
,

which completes treatment of the upper tail.
For the lower tail, we take A := {x ∈ Rn : f(x) ≤ Med f(X) − t} and define

At := {x ∈ Rn : distc(x,A) < t} = {x ∈ Rn : dist(x,A) < t} (with the last equality due to
convexity of A). Then {x ∈ Rn : f(x) ≥ Med f(X)} ⊂ Act and therefore P{X ∈ Act} ≥ 1

2 .
For δ ∈ (0, 1

2 ], we have, in view of Proposition 4.3 and Markov’s inequality,

1

2
≤ P{X ∈ Act} ≤

4

P{X ∈ A}δ
exp

(
− c̃ t2

log
(
2 + n

log(2+1/δ)

)
,

which implies

P{f(X) ≤ Med f(X)− t} = P{X ∈ A}

≤ 8

δ
exp

(
− c̃ t2

log
(
2 + n

log(2+1/δ)

)).
Now, the same choice of δ leads to the desired bound.

As we have mentioned above, the proof of Proposition 4.3 is based on the induction
on dimension. The next proposition sets up the argument.

Proposition 4.4. Let n ≥ 1, and let µ1, µ2, . . . , µn+1 be probability measures in R. Let
A ⊂ Rn+1 be a non-empty subset, and for each α ∈ R, denote

A(α) :=
{
v ∈ Rn : (v, α) ∈ A

}
.

Let X = (X1, X2, . . . , Xn+1) be distributed in Rn+1 according to µ1×µ2× · · · ×µn+1, and
X ′ be the vector of first n components of X. Then for every κ > 0,

E exp
(
κ · (distc(X,A))2

)
≤EXn+1

inf
ν

[
exp

(
κ ·
(∫
R

|Xn+1 − α| dν(α)

)2

+

∫
R

log
(
EX′ exp

(
κ · (distc(X ′, A(α)))2

))
dν(α)

)]
,

where the infimum is taken over all discrete probability measures ν in R with a finite
support.
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Proof. Take arbitrary element (x, s) ∈ Rn ×R = Rn+1. Observe that

U
(
(x, s), A

)
=

⋃
α∈R:A(α) 6=∅

(
U
(
x,A(α)

)
⊕ (|s− α|)

)
,

where the notation “⊕” should be understood as vector-wise concatenation producing
vectors in Rn+1. Therefore, every vector of the form∫

R

(
v(α)⊕ (|s− α|)

)
dν(α) =

(∫
R

v(α) dν(α),

∫
R

|s− α| dν(α)

)
∈ Rn+1,

where v(α) ∈ V (x,A(α)), α ∈ R, and ν is a discrete probability measure on R with a
finite support, belongs to the convex hull V ((x, s), A) of U((x, s), A).

Further, we have for every Borel probability measure ν on R and every choice of
v(α) ∈ V (x,A(α)):∥∥∥∥∫

R

v(α) dν(α)

∥∥∥∥2

2

=

n∑
i=1

(∫
R

(v(α))idν(α)

)2

≤
∫
R

‖v(α)‖22 dν(α),

by Jensen’s inequality. Hence,∥∥∥∥(∫
R

v(α) dν(α),

∫
R

|s− α| dν(α)

)∥∥∥∥2

2

≤
∫
R

‖v(α)‖22 dν(α) +

(∫
R

|s− α| dν(α)

)2

.

Recall from (4.1) that

distc((x, s), A) = dist(0, V ((x, s), A)) and distc(x,A(α)) = dist(0, V (x,A(α))).

Thus, taking v(α) ∈ V (x,A(α)) so that ‖v(α)‖2 = distc(x,A(α)) for all α, we obtain that

(
distc((x, s), A)

)2 ≤ inf
ν

(∫
R

(
distc(x,A(α))

)2
dν(α) +

(∫
R

|s− α| dν(α)

)2)
, (4.3)

where the infimum is taken over all discrete probability measures ν on R with a finite
support. Clearly,

E exp
(
κ · (distc(X,A))2

)
= EXn+1

EX′ exp
(
κ · (distc((X ′, Xn+1), A))2

)
.

Further, applying (4.3) we get

EX′ exp
(
κ · (distc((X ′, Xn+1), A))2

)
≤ EX′ inf

ν
exp

(
κ ·
∫
R

(
distc(X ′, A(α))

)2
dν(α) + κ ·

(∫
R

|Xn+1 − α| dν(α)

)2)

≤ inf
ν
EX′ exp

(
κ ·
∫
R

(
distc(X ′, A(α))

)2
dν(α) + κ ·

(∫
R

|Xn+1 − α| dν(α)

)2)

= inf
ν

[
exp

(
κ ·
(∫
R

|Xn+1 − α| dν(α)

)2)
EX′ exp

(
κ ·
∫
R

(
distc(X ′, A(α))

)2
dν(α)

)]
.

(4.4)

We write

EX′ exp

(
κ ·
∫
R

(
distc(X ′, A(α))

)2
dν(α)

)
= EX′

∏
α

exp

(
κ ·
(
distc(X ′, A(α))

)2)ν{α}
,
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where the product is taken over all α in the support of ν (which is a finite set in R), and
ν{α} is the probability mass of α. Since

∑
α ν{α} = 1, in view of Holder’s inequality, the

quantity in (4.4) is majorized by

inf
ν

[
exp

(
κ ·
(∫
R

|Xn+1 − α| dν(α)

)2) ∏
α∈R

(
EX′ exp

(
κ ·
(
distc(X ′, A(α))

)2))ν{α}]
,

and the result follows.

Remark 4.5. The class of measures ν in the above proposition is restricted to discrete
measures to avoid any discussion of measurability.

By considering two-point probability measures ν of the form λδXn+1
+ (1− λ)δy, from

the last proposition we get the following corollary.

Corollary 4.6. Let A, X, X ′ and κ be as in Proposition 4.4. Then

EX exp
(
κ · (distc(X,A))2

)
≤ EXn+1

inf
ν=λδXn+1

+(1−λ)δy, λ∈[0,1], y∈R

[
exp

(
κ ·
(∫
R

|Xn+1 − α| dν(α)

)2)

· exp

(∫
α∈R

log
(
EX′ exp

(
κ · (distc(X ′, A(α)))2

))
dν(α)

)]
= EXn+1 inf

λ∈[0,1], y∈R

[
exp

(
− λ log

1

EX′ exp
(
κ · (distc(X ′, A(Xn+1)))2

)
−(1−λ) log

1

EX′ exp
(
κ · (distc(X ′, A(y)))2

)+κ · (Xn+1−y)2 (1−λ)2

)]
.

Next, we record the following elementary fact.

Lemma 4.7. Let −∞ ≤ b ≤ a < +∞, and let c0 > 0, R > 0. Then

min
λ∈[0,1]

(
− λb− (1− λ)a+ c0R

2(1− λ)2
)

=

{
−a+ c0R

2, if (a− b) ≥ 2c0R
2

−b− (a−b)2
4c0R2 , if (a− b) ≤ 2c0R

2.
(4.5)

Proof. We have

min
λ∈[0,1]

(
− λb− (1− λ)a+ c0R

2(1− λ)2

)
=− a+ min

λ∈[0,1]

(
c0R

2(1− λ)2 + λ(a− b)
)

=− a+ c0R
2 min
λ∈[0,1]

(
1 +

(a− b
c0R2

− 2
)
λ+ λ2

)
.

The expression
(
1 +

(
a−b
c0R2 − 2

)
λ + λ2

)
, λ ∈ [0, 1], is minimized at λ = max(0, 1 − a−b

2c0R2 ).
And (4.5) follows since

1 +

(
a− b
c0R2

− 2

)(
1− a− b

2c0R2

)
+

(
1− a− b

2c0R2

)2

= 1−
(

1− a− b
2c0R2

)2

=
a− b
c0R2

− (a− b)2

4c20R
4
.

As an immediate consequence of Corollary 4.6 and Lemma 4.7, by considering
two-point measures we obtain the following proposition.

Proposition 4.8. Let n ≥ 1, and let µ1, µ2, . . . , µn+1 be probability measures in R. Let
A ⊂ Rn+1 be a non-empty subset, and for each α ∈ R, denote

A(α) :=
{
v ∈ Rn : (v, α) ∈ A

}
.
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Let X = (X1, X2, . . . , Xn+1) be distributed in Rn+1 according to µ1×µ2× · · · ×µn+1, and
X ′ be the vector of first n components of X. Then for every κ > 0,

E exp
(
κ · (distc(X,A))2

)
≤ E inf

y∈R
exp

(
H(Xn+1, y)

)
,

where
H (t, y) := min

λ∈[0,1]

(
− λh(t)− (1− λ)h(y) + κ(1− λ)2 (y − t)2 )

,

and h : R→ R is any function satisfying

h (x) ≤ log
1

E exp
(
κ · (distc(X ′, A(x)))2

) , x ∈ R.

Moreover, the function H (t, y) can be represented as

H (t, y) :=


−h(y) + κ (y − t)2

, if h (y)− h (t) ≥ 2κ (y − t)2
,

−h (t)− (h(y)−h(t))2

4κ(y−t)2 , if 0 < h (y)− h (t) ≤ 2κ (y − t)2
,

−h (t) , if h (y)− h (t) ≤ 0.

Remark 4.9. Repeating the optimization argument from [21, p. 74], we get for every
pair numbers t, y with h(y) ≥ h(t), and for every number Q ≥ 4κ (y − t)2:

H (t, y)

=− h(y) + min
λ∈[0,1]

(
4κ (y − t)2

(
(1− λ)2/4− λ h(t)− h(y)

4κ (y − t)2

))
=−h(y)+4κ (y−t)2

(
1

4
1{h(t)−h(y)

4κ (y−t)2
≤−1/2

}+(−h(t)− h(y)

4κ (y−t)2 −
(
h(t)−h(y)

4κ (y−t)2

)2)
1{h(t)−h(y)

4κ (y−t)2
>−1/2

})
≤− h(y) + 4κ (y − t)2

log

(
2− exp

(
h(t)− h(y)

4κ (y − t)2

))
≤− h(y) +Q log

(
2− exp

(
h(t)− h(y)

Q

))
,

where in the second line we applied Lemma 4.7 with a := 0, b := h(t)−h(y)

4κ (y−t)2 , and c0R2 := 1
4 ,

and where in the last line we used that the function s→ s log
(
2− exp

(h(t)−h(y)
s

))
, s > 0,

is non-decreasing.

The next lemma encapsulates the initial step of the induction:

Lemma 4.10. Let µ be a K-subgaussian probability measure on R, and X be distributed
according to µ. Then for any choice of the parameter L ≥

√
2K and any non-empty Borel

subset A ⊂ R,

E exp

(
(distc(X,A))2

L2

)
≤ 4

µ(A)
.

Proof. Since A is a subset of R, the convex distance distc(·, A) coincides with dist(·, A).
Without loss of generality, the set A is closed. Let x ∈ A be a point with distc(0, A) =

dist(0, A) = |x|.
Then

E exp

(
(distc(X,A))2

L2

)
≤ E exp

(
2X2 + 2x2

L2

)
≤ 2 exp

(
2x2

L2

)
.

It remains to note that

µ(A) ≤ P{|X| ≥ |x|} = P{exp(2X2/L2) ≥ exp(2x2/L2)} ≤ exp(−2x2/L2)E exp(2X2/L2).

The result follows.
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In the next lemma, we deal with “the main part” of the induction argument. The basic
idea is to split the argument into two cases, according to how much of the “total mass”
of a set A is located far from the origin.

Lemma 4.11. Let m ≥ 2, and let A be a non-empty Borel subset of Rm. For each x ∈ R,
let

A(x) :=
{
y ∈ Rm−1 : (y, x) ∈ A

}
.

Further, let µ1, µ2, . . . , µm be K-subgaussian measures on R, each supported on finitely
many points, let X = (X1, . . . , Xm) be distributed according to µ1×µ2× · · ·×µm, and let
X ′ be the vector of first m− 1 components of X. Assume that for some R ≥ 1, L ≥ 16K

and every x ∈ R,

E exp

(
(distc(X ′, A(x)))2

L2

)
≤ R

P{X ′ ∈ A(x)}
.

Then

E exp

(
(distc(X,A))2

L2

)
≤ R(1− exp(−L2/(64K2)))−2

P{X ∈ A}
.

Proof. Define parameters L̃ := L/4 and M := L/(8K). Our goal is to show that

E exp

(
(distc(X,A))2

L2

)
≤ R(1− exp(−M2))−2

P{X ∈ A}
.

We consider two cases. First, assume that

P{X ∈ A and Xm ∈ [−L̃, L̃]} ≥ (1− exp(−M2))P{X ∈ A}. (4.6)

In this case, we essentially repeat the standard “induction method” argument employed
in the proof of dimension-free subgaussian concentration on the cube. Let xb be a point
in [−L̃, L̃] such that P{X ′ ∈ A(xb)} ≥ P{X ′ ∈ A(x)} for all x ∈ [−L̃, L̃] (such a point
xb exists since, by our assumption, X ′ can take only finitely many values and hence
{P{X ′ ∈ A(x)}, x ∈ R} is a finite set). In view of Proposition 4.8,

E exp
(
(distc(X,A))2/L2

)
≤ E exp

(
H(Xm, xb)

)
,

where

H (t, xb) : = min
λ∈[0,1]

(
− λh(t)− (1− λ)h(xb) + (1− λ)2 (xb − t)2

/L2
)

=


−h(xb) + (xb − t)2

/L2, if h (xb)− h (t) ≥ 2 (xb − t)2
/L2,

−h (t)− L2(h(xb)−h(t))2

4(xb−t)2
, if 0 ≤ h (xb)− h (t) ≤ 2 (xb − t)2

/L2,

−h (t) , if h (xb)− h (t) ≤ 0,

and

h (u) := log

(
P{X ′ ∈ A(u)}

R

)
≤ log

1

E exp
(
(distc(X ′, A(u)))2/L2

) , u ∈ R. (4.7)

Using the definition of xb, the equation 16L̃2

L2 = 1, and Remark 4.9 with parameters Q := 1

and κ := 1/L2, we get

H(Xm, xb) ≤ −h(xb) + log
(
2− exp

(
h(Xm)− h(xb)

))
, whenever Xm ∈ [−L̃, L̃].

On the other hand, for all realizations of Xm /∈ [−L̃, L̃] we can crudely bound the function
as

H(Xm, xb) ≤ −h(xb) + (xb −Xm)
2
/L2.

EJP 28 (2023), paper 63.
Page 19/23

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP944
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Dimension-dependent concentration for convex Lipschitz functions

Combining the relations, we get

E exp
(
(distc(X,A))2/L2

)
≤ E

[
exp(−h(xb))

(
2− exp

(
h(Xm)− h(xb)

))
1{Xm∈[−L̃,L̃]}

+ exp
(
− h(xb) + (xb −Xm)

2
/L2

)
1{Xm /∈[−L̃,L̃]}

]
≤ R

P{X ′ ∈ A(xb)}
E

((
2−PX

′{X ′ ∈ A(Xm)}
P{X ′ ∈ A(xb)}

)
1{Xm∈[−L̃,L̃]}+exp

(
4X2

m/L
2
)
1{Xm /∈[−L̃,L̃]}

)
,

(4.8)

where the inequality follows from the definition of h and the bound

exp
(
(xb −Xm)2/L2

)
1{Xm /∈[−L̃,L̃]} ≤ exp

(
4X2

m/L
2
)
1{Xm /∈[−L̃,L̃]}.

Observe that

EXm

(
2− PX

′{X ′ ∈ A(Xm)}
P{X ′ ∈ A(xb)}

)
1{Xm∈[−L̃,L̃]}

=2P{|Xm| ≤ L̃} −
P{X ∈ A, and Xm ∈ [−L̃, L̃]}

P{X ′ ∈ A(xb)}
(4.9)

≤2− P{X ∈ A, and Xm ∈ [−L̃, L̃]}
P{X ′ ∈ A(xb)}

≤ P{X ′ ∈ A(xb)}
P{X ∈ A, and Xm ∈ [−L̃, L̃]}

, (4.10)

where the last inequality follows as 2− x ≤ 1
x for any x ∈ [0, 1], and since

P{X ∈ A, and Xm ∈ [−L̃, L̃]} = EXm
[
1{|Xm|≤L}PX′{X

′ ∈ A(Xm)}
]
≤ P{X ′ ∈ A(xb)}.

(4.11)

Next, we estimate the second summand inside the expectation in (4.8). We have

E
[

exp
(
4X2

m/L
2
)
1{|Xm|>L̃}

]
:= EZ4K2/L2

1{Z>exp((L̃/K)2)}

where
Z := exp(X2

m/K
2)

is a non-negative random variable satisfying EZ ≤ 2 since Xm is K-subgaussian. As
L ≥ 16K and by applying Holder’s and Markov’s inequalities, we get

EZ4K2/L2

1{Z>exp((L̃/K)2)} ≤ EZ
1/21{Z>exp((L̃/K)2)} ≤ (EZ)1/2

(
P{Z > exp((L̃/K)2)})1/2

≤ 21/2 ·
(
2 exp(−(L̃/K)2)

)1/2
= 2 exp(−2M2) ≤ exp(−M2),

(4.12)

where the last inequality holds since M ≥ 2.
Hence, combining (4.6), (4.8), (4.10), (4.11), and (4.12), we obtain

E exp
(
(distc(X,A))2/L2

)
≤ R

P{X ∈ A and Xm ∈ [−L̃, L̃]}
+

R exp(−M2)

P{X ′ ∈ A(xb)}

≤ R(1− exp(−M2))−1

P{X ∈ A}
+
R(1− exp(−M2))−1 exp(−M2)

P{X ∈ A}
,
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implying the result.
Now, consider the second case: P{X ∈ A and Xm /∈ [−L̃, L̃]} > exp(−M2)P{X ∈ A}.

Observe that since

P{X ∈ A and Xm /∈ [−L̃, L̃]} =

∫
R\[−L̃,L̃]

PX′{X ′ ∈ A(s)} dµm(s)

=EXm
(
PX′{X ′ ∈ A(Xm)}1{|Xm|>L̃}

)
,

there must exist a point xt ∈ R\ [−L̃, L̃] with PX′{X ′ ∈ A(xt)} ≥ 2P{X ∈ A} exp(2x2
t/L

2).
Indeed, if we assume the opposite then, by the above,

exp(−M2)P{X ∈ A} <P{X ∈ A and Xm /∈ [−L̃, L̃]}
≤2P{X ∈ A}EXm

(
exp(2X2

m/L
2)1{|Xm|>L̃}

)
=2P{X ∈ A}EZ2K2/L2

1{Z>exp((L̃/K)2)}

≤4P{X ∈ A} exp(−2M2) (by (4.12))

leading to contradiction.
Applying again Proposition 4.8, we can write

E exp
(
(distc(X,A))2/L2

)
≤ E exp

(
− h(xt) + (xt −Xm)

2
/L2

)
,

where h is given by (4.7). Hence,

E exp
(
(distc(X,A))2/L2

)
≤ R

P{X ′ ∈ A(xt)}
exp(2x2

t/L
2)E exp(2X2

m/L
2)

≤ R

2P{X ∈ A} exp(2x2
t/L

2)
exp(2x2

t/L
2) · E exp(X2

m/K
2),

and the result follows.

Proof of Proposition 4.3. Let δ ∈ (0, 1
2 ] which could be an n-dependent parameter. Let

us first assume that the probability measures µ1, . . . , µn are supported on finitely many
points. Define a positive parameter L via the relation

L2 = 512K2 log

(
2 +

n

log(2 + 1/δ)

)
.

Clearly, L ≥ 16K which satisfies the assumptions of both Lemmas 4.10 and 4.11. Hence,
applying Lemma 4.10 and then Lemma 4.11 inductively n− 1 times, we get

E exp
(
(distc(X,A))2/L2

)
≤ 4(1− exp(−L2/(64K2)))−2(n−1)

P{X ∈ A}
.

Note that

(1− exp(−L2/(64K2)))−2(n−1) =

(
1−

(
2 +

n

log(2 + 1/δ)

)−8)−2(n−1)

≤
(

1−
(

2 +
n

log(2 + 1/δ)

)−8)−2n

≤ exp

(
4n

(
2 +

n

log(2 + 1/δ)

)−8))
,

where we used that for any number 0 < τ < 1/2, (1− τ)−1 ≤ exp(2τ). Hence,

(1− exp(−L2/(64K2)))−2(n−1) ≤
(
2 + 1/δ

)4(2+ n
log(2+1/δ)

)−7

< (2 + 1/δ)
1
2 ≤ 1/δ,
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since 1/δ ≥ 2, and the statement follows.
Next, by an approximation argument we extend the proof to the setting when the

supports of µ1, . . . , µn may be infinite. Assume that A is open. For every ε > 0 there
exist finitely supported K–subgaussian measures µε,1, . . . , µε,n such that a vector Xε

distributed according to µε,1 × · · · × µε,n, satisfies P{X ∈ A} ≥ (1− ε)P{Xε ∈ A}, and

E exp

(
c̃ (distc(Xε, A))2

K2 log
(
2 + n

log(2+1/δ)

)) ≥ (1− ε)E exp

(
c̃ (distc(X,A))2

K2 log
(
2 + n

log(2+1/δ)

)).
Using the previously obtained result for finite measures and letting ε → 0, we derive
the required statement for all open subsets of Rn. Finally, approximating arbitrary
non-empty A with open sets B ⊃ A, we get the result.

Remark 4.12. As we already mentioned, our proof of the main result uses a modified
convex distance which is crucial in dealing with unbounded random variables. The
second main feature of our approach, compared to the original argument of Talagrand,
is that we estimate the product P{X ∈ A}E exp

(
(distc(X,A))2/L(δ)2

)
from above by the

quantity 1/δ depending on n and t rather than by a universal constant. The parameter δ
introduces the necessary additional flexibility.
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