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Abstract

Motivated by structural, reduced-form and hybrid models of the third party and
counterparty credit risk, we study a generalized backward stochastic differential
equations (BSDE) up to a random time horizon ϑ, which is not a stopping time with
respect to a reference filtration. In contrast to the existing literature in the area of
credit risk modeling, we do not impose specific assumptions on the random time ϑ

and we study the existence of solutions to BSDE and reflected BSDE with a random
time horizon through the method of reduction. For this purpose, we also examine
BSDE and reflected BSDE with a làdlàg driver where the driver is allowed to have a
finite number of jumps overlapping with jumps of the martingale part. Theoretical
results are illustrated by particular instances of a random time and explicit BSDEs in
either the Brownian or Brownian-Poisson filtration.
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1 Introduction

Our work is motivated by the arbitrage-free pricing of European and American style
contracts in models with the third party and counterparty credit risk and, more generally,
problems of mitigation of financial and insurance risks triggered by an extraneous event.
Since our goal is to provide a comprehensive mathematical framework for financial
models outlined in Section 3.2, we study BSDEs and reflected BSDEs (RBSDEs) up to a
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BSDE and RBSDE with random time horizon

finite random time horizon ϑ while making virtually no assumptions about a random time
ϑ, which is not an F-stopping time with respect to a reference filtration F. In contrast to
the existing literature (see, e.g., Ankirchner et al. [6], Kharroubi and Lim [36], Crépey
and Song [11, 12], Dumitrescu et al. [15, 16, 17], Grigorova et al. [27] and Kim et al.
[34]), we do not make any of simplifying assumptions frequently encountered in works
on the theory of progressive enlargement of filtration, such as: the immersion hypothesis,
Jacod’s equivalence hypothesis, the condition (C) of continuity of all F-martingales, or
the condition (A) of avoidance of all F-stopping times by ϑ. We only postulate that the
Azéma supermartingale of ϑ with respect to F (see Definition 2.2) is a strictly positive
process, although we also show that this assumption can be relaxed and thus our results
apply to a larger class of random times (see the class K in Section 3.3). For a more
detailed account of relation of our results to the existing financial literature (in particular,
to the concept of the invariance time, which was introduced by Crépey and Song [12, 13]),
the reader is referred to Section 4.3.

Stimulated by the paper by Choulli et al. [9] on the martingale representation theorem
in the progressive enlargement of a given filtration F with observations of a random time
ϑ, which is henceforth denoted as G, we study G-adapted BSDEs and G-adapted RBSDEs
with an Fϑ-measurable terminal value at a random horizon ϑ. The crucial difference
between G BSDEs and G RBSDEs introduced in Definitions 3.1 and 3.3, respectively, and
various classes of BSDEs previously studied in the existing literature is that the driver
is assumed to be a làglàd process and the integrand against the pure jump martingale
mG given by equation (2.2) is assumed to be F-optional, rather than G-predictable or,
equivalently, F-predictable.

Our main purpose is to apply the method of reduction to study the existence and
construction of a solution to G BSDE and G RBSDE given by equations (3.2) and (3.3),
respectively. It should be acknowledged that the idea of reduction of a BSDE in a given
filtration to a more tractable BSDE in a shrunken filtration has already been explored in
papers by Crépey and Song [11, 12] and Kharroubi and Lim [36] but the authors of these
papers worked under simplifying assumptions about their setup and have not examined
reflected BSDEs related to American style options with the counterparty credit risk.

The first main contribution of this work is that we demonstrate that the idea of
reduction can also be applied to the G RBSDE (3.3). To be more precise, we show
that the G RBSDE with Fϑ-measurable terminal value can be solved up to a random
horizon ϑ by first solving the corresponding reduced F RBSDE and then constructing
a solution to the original G RBSDE by combining a solution to the F RBSDE with an
appropriate adjustment to the terminal value at time ϑ. In particular, we analyze in
detail the required adjustment at ϑ when the driver of the G RBSDE is a discontinuous
làdlàg process. Furthermore, since the simplifying conditions (C) and (A) of continuity
of all F-martingales and avoidance of all F-stopping times by ϑ are not imposed, we
allow the reference filtration F to support discontinuous martingales and, in addition,
we also cover the situation where a random time ϑ may overlap F-stopping times (see
Aksamit et al. [3]).

As a consequence, unlike in previous works, the reduced F BSDE and F RBSDE
obtained in our setup have the property that the driver and the martingale part may
share common jumps. Hence a BSDE now carries an additional constraint (as, e.g., in
Peng and Xu [45] who dealt with constrained BSDEs in a different context), which is
directly related to the jump of the driver. We stress that the reduced F BSDE and F
RBSDE have a fairly general form that was not well studied in the existing literature.
Hence, as a second contribution, we show how to construct a solution to the reduced F
BSDE for which the driver and the martingales appearing in a BSDE may have a finite
number of common jumps.
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BSDE and RBSDE with random time horizon

Our approach relies on a detailed analysis of the appropriate intermediate BSDE with
a làglàd driver. To support our method, we also show that a solution to an intermediate
BSDE with a làglàd driver can be obtained by adapting the existing results from Essaky
et al. [20] and Ren and El Otmani [48] who studied a particular class of BSDEs with
a continuous driver. Notice that our arguments do not hinge on solving directly the G
BSDE (or the G RBSDE) through a fixed point theorem under appropriate assumptions
on the solution space, the generator and the driver. Instead, our aim is to show that one
can reduce the G BSDE to a more manageable F BSDE, which can be solved by making
use of the solution to an intermediate BSDEs with làglàd driver. Then we show that
the solution of the intermediate BSDE with làglàd driver can be obtained by a careful
analysis of jumps, as in Confortola et al. [10], Essaky et al. [20] and Klimsiak et al.
[35], and making use of a large variety of existing results on BSDEs and RBSDEs with a
continuous driver (see, for instance, [18, 20, 22, 23, 44, 48]) to deal with solutions on
stochastic intervals between successive jumps. For further applications of our results,
the reader is referred to the follow-up work by Li et al. [38].

The structure of the paper is as follows. We first introduce in Section 2 the setup and
notation and we recall some auxiliary results from the theory of progressive enlargement
of filtration (see, e.g., Aksamit and Jeanblanc [4] and Jeanblanc and Li [32]).

In Section 3, in view of recent works on RBSDEs with irregular barriers (see, e.g.,
Grigorova et al. [28, 29] and Klimsiak et al. [35]) and to demonstrate the generality of
our methodology, we introduce in Definition 3.1 the notion of the làglàd G BSDE (see
also Definition 3.3 for the làglàd G RBSDE). We show in Section 3.1 how the reward
process can be reduced and we elaborate in Section 3.2 on relationships between our
setup and techniques used in credit risk modeling. We then discuss in Sections 3.3
and 3.4 some possible extensions of the setup introduced in Assumption 3.1.

Section 4 is devoted to the issues of reduction of the G BSDE (3.2) and subsequently
also a method for construction of its solution. We first show in Proposition 4.9 that
the G BSDE can be effectively reduced to coupled equations in the filtration F. Next,
Proposition 4.12 makes it clear that a solution to the G BSDE (3.2) can be constructed
by first solving the constrained F BSDE (4.13)–(4.14). Finally, to examine the exis-
tence of a solution to the constrained F BSDE (4.13)–(4.14), we first prove that the
stronger constrained F BSDE (4.15)–(4.16) can be transformed into the constrained F
BSDE (4.17)–(4.18), which in turn is more tractable and whose solution can be used to
resolve the problem of well-posedness of the coupled equations (4.15)–(4.16). Concrete
situations where the constrained BSDE (4.15)–(4.16) possesses a unique solution are
studied in Section 4.4 for the Brownian filtration (see Proposition 4.13).

In Section 5, we are concerned with analogous issues for G RBSDEs and we first
show that the method of reduction can be used to reduce the G RBSDE to the F RBSDE.
As shown in Proposition 5.1, the main new feature in the reflected case is that the
G-predictable reflection can be uniquely reduced to the F-predictable reflection, which
is required to meet the appropriately modified Skorokhod conditions. We then show in
Proposition 5.3 that, in principle, a solution to the G RBSDE can be constructed from
a solution to the reduced F RBSDE. The existence of a solution to the G RBSDE in the
Brownian case is studied in Section 5.3 where Proposition 5.4 offers sufficient conditions
for the existence of a solution to the F RBSDE in the case of the Brownian filtration F.

In Section 6, we deviate from the setup studied in Sections 4 and 5 and, for given
a filtration F, we focus on the BSDE (6.1) and the RBSDE (6.12), which share the key
feature that the driver is làglàd and its jumps may overlap the jumps of the driving
martingale. Even when the driver is càdlàg, there is apparently a gap in the existing
literature on BSDEs when the driver may share jumps with the driving martingale and
thus we develop a jump-adapted method to solve BSDEs of such a general form.
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Our approach in Section 6 hinges on two steps. We first show, through a careful
analysis of right-hand jumps, that the problem of solving the BSDE (6.1) on the whole
interval J0, τK can be addressed by solving a recursive system of càdlàg BSDEs (6.2) and
then stitching together the solutions to that system. In the second step, we show in
Proposition 6.4 that a solution to a càdlàg BSDE can be obtained from a solution of an
intermediate làglàd BSDE (6.6), which in turn can be handled by solving a recursive sys-
tem of càdlàg BSDEs (6.8) with a continuous driver, which are given on intervals defined
by the right-hand jumps of a làglàd BSDE and, once again, appropriately aggregating
these solutions. We argue that a reduction to the case of a continuous driver is important
since it allow us to use existing results on the well-posedness of BSDEs with a continuous
driver. Concrete instances of our approach in a Brownian-Poisson filtration are presented
in Examples 6.6 and 6.7. We conclude the paper by showing that an analogous method
can be used to study the existence of a solution to the RBSDE (6.12) with a làglàd driver
using results for RBSDEs with a continuous driver. The main difference here is that we
need to analyze the adjustment to the reflection process at the right-hand jumps and
provide a rigorous check that the appropriate Skorokhod conditions are satisfied. The
main result, Proposition 6.8, is illustrated by an explicit example in a Poisson filtration
(Example 6.9). Finally, some auxiliary results are collected in the appendix.

2 Setup and notation

Regarding the background knowledge, for the general theory of stochastic processes,
we refer to He et al. [30] and the reader interested in stochastic calculus for optional
semimartingales is referred to Gal’čuk [25]. For more details on the theory of random
times and enlargement of filtration with applications to problems arising in financial
mathematics (such as credit risk modeling or insider trading), the interested reader may
consult the monograph by Aksamit and Jeanblanc [4] and the recent paper by Jeanblanc
and Li [32]. We start by introducing the notation and recalling some fundamental
concepts associated with modeling of a random time and the associated notion of the
progressive enlargement of a reference filtration. We assume that a strictly positive
and finite random time ϑ, which is defined on a probability space (Ω,G,P), as well as
some reference filtration F are given. Then the enlarged filtration G is defined as the
progressive enlargement of F by observations of ϑ (see, e.g., [4]) and thus a random
time ϑ, which is not necessarily an F-stopping time and belongs to the set of all finite G-
stopping times, denoted as T̂ . We emphasize that the filtrations F and G are henceforth
supposed to satisfy the usual conditions of P-completeness and right-continuity.

We will use the following notation for classes of processes adapted to the filtration F:

• O(F), P(F), P(F) and Pr(F) are the classes of all real-valued, F-optional, F-
predictable, F-strongly predictable and F-progressively measurable processes,
respectively;

• Od(F), Pd(F), Pd(F) and Prd(F) are the classes of all Rd-valued, F-optional, F-
predictable, F-strongly predictable and F-progressively measurable processes,
respectively;

• M(F) (respectively,Mloc(F)) is the class of all F-martingales (respectively, F-local
martingales);

• Mϑ(F) (respectively,Mϑ
loc(F)) is the class of all F-martingales (respectively, F-local

martingales), which are stopped at ϑ.

A stochastic process X with sample paths possessing right-hand limits is said to be
F-strongly predictable if it is F-predictable and the process X+ is F-optional (Definition
1.1 in [25]). An analogous notation is used for various classes of G-adapted processes.

EJP 28 (2023), paper 40.
Page 4/41

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP927
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


BSDE and RBSDE with random time horizon

For instance, P(G) denotes the class of all G-predictable processes,Mϑ
loc(G) is the class

of all G-local martingales, which are stopped at the random time ϑ, etc.
In order to simplify the notation, we denote by X • Y the usual Itô stochastic integral

of X with respect to a (càdlàg) semimartingale Y , that is, (X • Y )t :=
∫

K0,tKXs dYs, while

we also write (X ? Y )t :=
∫

J0,tJXs dYs so that the process X ? Y is left-continuous as the

integration is done over the interval J0, tJ. Due to the potential presence of a jump of Y
at time zero, we have that (X ?Y )t = (X • Y )t− +X0∆Y0 where, by the usual convention,
Y0− = 0 so that ∆Y0 = Y0.

Let us recall from Gal’čuk [25] the notation pertaining to a pathwise decomposition
of a làdlàg process. If C is an F-adapted, làdlàg process, then we write C = Cc+Cd+Cg

where the process Cc is continuous, the càdlàg process Cd equals Cdt :=
∑

0≤s≤t(Cs−Cs−)

and the càglàd process Cg is given by Cgt :=
∑

0≤s<t(Cs+ − Cs). This also means that

C = Cr + Cg where the càdlàg process Cr satisfies Cr = C − Cg = Cc + Cd. Notice
that if C is a càglàd process, then manifestly Cd = 0 and thus Cr = Cc is a continuous
process. Similarly, if C is a càdlàg process, then Cg = 0 and thus C = Cr. For the sake
of convenience, we denote by Cg+ the càdlàg version of the càglàd process Cg.

For a fixed random time ϑ, we define the indicator process A ∈ O(G) by A := 1Jϑ,∞J
so that At = 1{ϑ≤t} for all t ∈ R+ and we denote by Ap (respectively, Ao) the dual
F-predictable projection (respectively, the dual F-optional projection) of A. The BMO
F-martingales m and n associated with Ao and Ap, respectively, are defined as follows.

Definition 2.1. Let mt := E(Ao∞ | Ft) so that m∞ = Ao∞ and let nt := E(Ap∞ | Ft) so that
n∞ = Ap∞.

As in Azéma [7], we introduce the F-supermartingales G and G̃ associated with ϑ.

Definition 2.2. The càdlàg process G ∈ O(F) given by the equality Gt := P(ϑ > t | Ft) is
called the Azéma supermartingale of ϑ with respect to F. The làdlàg process G̃ ∈ O(F)

given by the equality G̃t := P(ϑ ≥ t | Ft) is called the Azéma optional supermartingale of
ϑ with respect to F.

Notice that G = o(1J0,ϑJ) = o(1−A) and G̃ = o(1J0,ϑK) = o(1−A−). For the reader’s

convenience, we recall some important properties of Azéma supermartingales G and G̃
(see, e.g., Aksamit and Jeanblanc [4]).

Lemma 2.3. (i) We have that G = n−Ap = m−Ao and G̃ = m−Ao− and thus

Gt = E(Ap∞ −A
p
t | Ft) = E(Ao∞ −Aot | Ft), G̃t = E(Ao∞ −Aot− | Ft).

(ii) The processes G and G̃ satisfy G̃− = G− and G̃+ = G+ = G.
(iii) The inequality G̃ ≥ G holds and the equalities G̃ − G = o(1JϑK) = ∆Ao and

G̃−G− = ∆m are valid.

The equality G = n−Ap gives the Doob-Meyer decomposition in the filtration F of
the bounded F-supermartingale G. From the classical theory of enlargement of filtration,
it is well known that the G-martingale nG from the Doob-Meyer decomposition in the
filtration G of the bounded G-submartingale A can be represented as follows

nG := A− 1K0,ϑKG
−1
− •Ap = A− 1K0,ϑK • Γ (2.1)

where the F-predictable hazard process of ϑ equals Γ := G−1
− • Ap (Definition 1.6 in

Jeanblanc and Li [32]). Furthermore, it was shown in Choulli et al. [9] (see Theorem 2.3
therein) that the following process mG is a G-martingale with the integrable variation

mG := A− 1K0,ϑKG̃
−1 •Ao = A− 1K0,ϑK • Γ̃ (2.2)

where the F-optional hazard process of ϑ is defined by Γ̃ := G̃−1 •Ao (Definition 2.8 in
Jeanblanc and Li [32]). The processes nG and mG are known to belong to the classM(G)
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but their properties are markedly different. In particular, nG is not necessarily a pure
default martingale (Definition 2.2 in Choulli et al. [9]) whereas mG has that property.

We will also make use of the following general result due to Aksamit et al. [2].

Proposition 2.4. Let the F-stopping time η̃ be given by η̃ := inf{t ∈ R+ | G̃t− > G̃t = 0}.
If M is an F-local martingale, then the process

Mϑ − 1J0,ϑKG̃
−1 • [M,m] + 1J0,ϑK •

(
∆Mη̃1Jη̃,∞J

)p
(2.3)

is a G-local martingale stopped at ϑ.

In particular, if G̃ is a strictly positive process, then we set, for any F-local martingale
M ,

M̃ := M − G̃−1 • [M,m] (2.4)

so that the process M̃ϑ is a G-local martingale stopped at ϑ. If, in addition, all F-
martingales are continuous (that is, if the condition (C) is satisfied – for instance, when F
is a Brownian filtration), then O(F) = P(F) and thus the equalities G̃ = G− and Ao = Ap

are valid so that also mG = nG. Then equality (2.4) becomes M̃ = M −G−1 • 〈M,n〉.
Lemma 2.5. If M is a uniformly integrable F-martingale, then the process

Mϑ−
t −

∫
K0,tK

G−1
s d[M,n]ϑ−s

is a G-local martingale.

Proof. Let H be a bounded G-predictable process and h its bounded F-predictable
reduction on J0, ϑK. By using the dual F-predictable projection of A, we obtain

E((H • 1J0,ϑJM)∞) = E((h •M)ϑ−) = E(((h •M)− •A
p)∞) = −E(((h •M)− •G)∞).

The integration by parts formula and Yœurp’s lemma yield

−E(((h •M)− •G)∞) = E((G− • (h •M))∞) + E([h •M,G]∞)

= E((h • [M,n])∞) = E((HG−11J0,ϑJ • [M,n])∞)

where we have used the fact that H = h on J0, ϑK and {ϑ > t} ⊂ {Gt > 0}.

3 Generalized BSDE and RBSDE with random time horizon

Our study of various generalized BSDEs and RBSDEs is conducted within the follow-
ing setup.

Assumption 3.1. We assume that we are given the following objects:
(i) a probability space (Ω,G,P) endowed with a filtration F;
(ii) a random time ϑ such that the Azéma supermartingale G (hence also G− and the

Azéma optional supermartingale G̃) is a strictly positive process;
(iii) the class of all finite G-stopping times T̂ where G denotes the progressive

enlargement of F with a random time ϑ;
(iv) the bounded processes X,R ∈ O(F), which are used to define the bounded

reward process X̂ ∈ O(G) through the following expression

X̂ := X1J0,ϑJ +Rϑ1Jϑ,∞J; (3.1)

(v) a real-valued G-martingale mG associated with ϑ and given by (2.2);
(vi) an Rd-valued, F-local martingale M , which is assumed to have the predictable

representation property (PRP) for the filtration F;
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(vii) an Rk-valued, G-adapted process D̂ = (D̂1, D̂2, . . . , D̂k) where D̂i is a linear
combination of a làdlàg G-strongly predictable process of finite variation and a làdlàg
F-optional process of finite variation;

(viii) a mapping F̂ = (F̂ r, F̂ g) where mappings F̂ r : Ω×R+ ×R×Rd ×R→ Rk and
F̂ g : Ω × R+ × R × Rd × R → Rk are such that, for any fixed (y, z, u) ∈ R × Rd × R,
the process (F̂ rt (y, z, u))t≥0 belongs to Pk(G) and the process (F̂ gt (y, z, u))t≥0 belongs to
Ok(G).

We are in a position to introduce a particular class of BSDEs with a random time
horizon. For the sake of brevity, they will be calledG BSDEs, as opposed to the associated
F BSDEs, which are introduced in Section 4.1.

Definition 3.1. For a fixed τ̂ ∈ T̂ , we say that a triplet (Ŷ , Ẑ, Û) is a solution on J0, τ̂ ∧ϑK
to the G BSDE

Ŷt = X̂τ̂∧ϑ −
∫

Kt,τ̂∧ϑK
F̂ rs (Ŷs, Ẑs, Ûs) dD̂

r
s −

∫
Jt,τ̂∧ϑJ

F̂ gs (Ŷs, Ẑs, Ûs) dD̂
g
s+

−
∫

Kt,τ̂∧ϑK
Ẑs dM̃

ϑ
s −

∫
Kt,τ̂∧ϑK

Ûs dm
G
s (3.2)

if Ŷ ∈ O(G) is a làglàd process, the processes Ẑ ∈ Pd(G) and Û ∈ O(F) are such that
the stochastic integrals in the right-hand side of (3.2) are well defined and equality (3.2)
is satisfied on the stochastic interval J0, τ̂ ∧ ϑK.

The process D̂ from Assumption 3.1 (vii) and the mapping F̂ = (F̂ r, F̂ g) from As-
sumption 3.1 (viii) are henceforth called the driver and the generator of the G BSDE,
respectively. The processes mG and M̃ϑ, given by equations (2.2) and (2.4), respectively,
are orthogonal G-local martingales stopped at ϑ and they are referred to as driving mar-
tingales. For explicit integrability conditions, which ensure that the stochastic integral
Û •mG is a G-local martingale, see Theorem 2.13 in Choulli et al. [9]. To the best of
our knowledge, the issue of well-posedness of the G BSDE (3.2) is not addressed in the
existing comprehensive literature on BSDEs and thus our aim is to contribute to the
theory of BSDEs by filling that gap.

In the next definition, we implicitly make the natural postulate of well-posedness
of the G BSDE (3.2) in a suitable space of stochastic processes, which can be left
unspecified at this stage.

Definition 3.2. The nonlinear evaluation Ê is the collection of mappings Ê = {Êσ̂,τ̂ | σ̂, τ̂ ∈
T̂ , σ̂ ≤ τ̂} where for every σ̂, τ̂ ∈ T̂ such that σ̂ ≤ τ̂ we have Êσ̂,τ̂ (X̂τ̂ ) := Ŷσ̂∧ϑ where the

triplet (Ŷ , Ẑ, Û) is a unique solution to the G BSDE (3.2) on the interval J0, τ̂ ∧ ϑK.
Next, under similar assumptions, we introduce the generalized G RBSDE with a

random time horizon ϑ.

Definition 3.3. A quadruplet (Ŷ , Ẑ, Û , L̂) is a solution on the interval J0, τ̂ ∧ ϑK to the G
RBSDE

Ŷt = X̂τ̂∧ϑ −
∫

Kt,τ̂∧ϑK
F̂ rs (Ŷs, Ẑs, Ûs) dD̂

r
s −

∫
Jt,τ̂∧ϑJ

F̂ gs (Ŷs, Ẑs, Ûs) dD̂
g
s+

−
∫

Kt,τ̂∧ϑK
Ẑs dM̃s −

∫
Kt,τ̂∧ϑK

Ûs dm
G
s − (L̂τ̂∧ϑ − L̂t) (3.3)

if Ŷ ∈ O(G) is a làglàd process such that Ŷ ≥ X̂, the processes Ẑ ∈ Pd(G) and Û ∈ O(F)

are such that the stochastic integrals in the right-hand side of (3.2) are well defined,
L̂ = L̂ϑ is a làglàd, increasing, and G-strongly predictable process with L̂0 = 0 and has
the decomposition L̂ = L̂r + L̂g where the processes L̂r and L̂g obey the Skorokhod
conditions (

1{Ŷ− 6=X̂−} • L̂
r
)ϑ
τ̂

=
(
1{Ŷ 6=X̂} ? L̂

g
+

)ϑ
τ̂

= 0
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and equality (3.3) is assumed to hold on J0, τ̂ ∧ ϑK.

As the arguments used in Subsections 3.1–3.4 can be applied to both the G BSDE
and G RBSDE, we shall focus on presenting our explanations for the G BSDE.

3.1 Reduction of the reward process

Let T denote the class of all finite F-stopping times and, for any fixed τ ∈ T , let the
stopped filtration Fτ be given by Fτ := (Fτ∧t)t≥0. We will now examine the structure of
the reward process X̂ specified by (3.1). We claim that, for any τ̂ ∈ T̂ , there exists τ ∈ T
such that X̂τ̂ = X̂τ∧ϑ = X̂τ . First, it is clear from (3.1) that the process X̂ is stopped at
ϑ so that X̂ = X̂ϑ, which immediately implies that X̂τ̂ = X̂τ̂∧ϑ. Hence, by using also the
well known property that for any τ̂ ∈ T̂ there exists τ ∈ T such that τ ∧ ϑ = τ̂ ∧ ϑ, we
obtain the following equalities

X̂τ̂ = X̂τ̂∧ϑ = Xτ̂∧ϑ1{τ̂∧ϑ<ϑ} +Rϑ1{τ̂∧ϑ≥ϑ} = Xτ∧ϑ1{τ∧ϑ<ϑ} +Rϑ1{τ∧ϑ≥ϑ}

= Xτ1{τ<ϑ} +Rϑ1{τ≥ϑ} = X̂τ∧ϑ = X̂τ

so that X̂τ̂ = X̂τ∧ϑ = X̂τ for some stopping time τ ∈ T , as was required to show.

Lemma 3.4. For any τ ∈ T , there exists X(τ) ∈ O(Fτ ) such that the equality X̂τ = Xϑ(τ)

holds.

Proof. It suffices to observe that

X̂τ = Rϑ1Jϑ,∞K(τ) +Xτ1K0,ϑJ(τ) = Rϑ1J0,τK(ϑ) +Xτ1Kτ,∞J(ϑ) = Xϑ(τ) (3.4)

where, for any fixed τ , the F-adapted process X(τ) is given by

X(τ) := R1J0,τK +Xτ1Kτ,∞J = Rτ + (Xτ −Rτ )1Kτ,∞J. (3.5)

Since the processes X and R are assumed to be F-optional, by Lemma 3.53 in He et al.
[30], the process X(τ) is Fτ -optional, although it is not a càdlàg process, in general.

Since X̂τ is Gτ -measurable and Xϑ(τ) is Gϑ-measurable, by part (3) of Theorem 3.4 in
He et al. [30], the random variable X̂τ = Xϑ(τ) is Gτ∧ϑ-measurable or, more precisely, it
is Fτϑ -measurable and Fτϑ ⊂ Gτ∧ϑ. In view of equalities (3.4), we will freely interchange
X̂τ̂ , X̂τ and Xϑ(τ).

Proposition 3.5. Given two G-stopping times σ̂, τ̂ such that σ̂ ≤ τ̂ , there exists σ ≤ τ

where σ, τ ∈ T are such that σ ∧ ϑ = σ̂ ∧ ϑ, τ ∧ ϑ = τ̂ ∧ ϑ and Êσ̂,τ̂ (X̂τ̂∧ϑ) = Êσ,τ (Xϑ(τ)).

Proof. First, we observe that there exists σ such that σ̂ ∧ ϑ = σ ∧ ϑ. Furthermore,
if the inequality σ ≤ τ fails to hold, then we can take σ′ = σ ∧ τ and observe that
σ′ ∧ ϑ = σ ∧ τ ∧ ϑ = σ̂ ∧ τ̂ ∧ ϑ = σ̂ ∧ ϑ. Using the fact that there exists σ ≤ τ such that
σ ∧ ϑ = σ̂ ∧ ϑ and τ ∧ ϑ = τ̂ ∧ ϑ, we obtain the following equalities

Êσ̂,τ̂ (X̂τ̂∧ϑ) = Xϑ(τ)−
∫

Kσ∧ϑ,τ∧ϑK
F̂ rs (Ŷs, Ẑs, Ûs) dD̂

r
s

−
∫

Jσ∧ϑ,τ∧ϑJ
F̂ gs (Ŷs, Ẑs, Ûs) dD̂

g
s+ −

∫
Kσ∧ϑ,τ∧ϑK

Ẑs dM̃
ϑ
s −

∫
Kσ∧ϑ,τ∧ϑK

Ûs dm
G
s

and thus we conclude that Êσ̂,τ̂ (X̂τ̂∧ϑ) = Êσ,τ (Xϑ(τ)).
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3.2 Applications to credit risk modeling

This work is largely motivated by the problem of mitigation of financial and insurance
risks triggered by an extraneous event. Applications in finance include the pricing of
callable American warrants [14, 50], optimal timing of short-selling decisions under recall
risk and the modeling of various valuation adjustments, that is, XVAs [51, 11, 12, 37].
For instance, using the terminology from the area of credit risk modeling, the process
X may be interpreted as the reward (the promised payoff) to the holder of the contract
if the decision to exercise the contract is made before the default time ϑ, while R may
represent the closeout payoff (the recovery value), which is received by the holder at
time ϑ if the contract was not exercised before ϑ. Furthermore, the process D̂ = (D̂r, D̂g)

represents the cash flows of the contract and the pair (Ẑ, Û) has the usual interpretation
as a hedging portfolio with respect to the default-free assets and a defaultable asset,
respectively.

The proposed extensions of previous results to the case of a discontinuous driver,
discontinuous hazard process and American style contracts are motivated by practical
concerns since our theoretical approach allows for more flexible and realistic models
of credit risk where, in principle, both the third party credit risk (e.g., [16, 27]) and
the risk of the counterparty’s default (e.g., [11, 12]) are comprehensively covered. By
introducing jumps in the driver D̂ we are able to model cash flows which are made on a
series of discrete dates but, of course, continuous cash flows are also covered by our
setup. For a concrete example, we refer to Nie and Rutkowski [40, 41] on the extended
Bergman model with collateralization where the continuous compounding assumption is
made on the collateral lending and borrowing account (see Assumption 2.4 in [40]). If
we assume instead that the collateral funding account Bc is compounded on discrete
dates T1 < T2 < · · · < Tn < T with the rate rc, then the process Bc in [40] obeys the
equation dBct = rctB

c
t dDt where D :=

∑n
i=1 1JTi,∞J.

Consequently, the BSDE from equation (2.9) in [40] becomes a BSDE with a dis-
continuous driver and a non-linear generator. For similar BSDEs derived in a model
with default, we refer for example to equation (16) in Lee and Zhou [37] or equation
(4.12) in Bichuch et al. [8]. For further arguments, the reader may also consult Wu [51]
where computations of CVA and FVA for derivatives with cash collateral were examined.
In particular, it was pointed out in Section 4 of [51], although not explicitly studied
there, that in the market practice the cash collateral for interest rate swaps is revised
at discrete dates, rather than continuously. Finally, it was also observed in [51] that for
application purposes, one needs to generalize their results to American or Bermudan
options.

The other important contribution of this work is that neither condition (C) nor
condition (A) are postulated. This means that, firstly, the default-free market modelled
using the filtration F is allowed to have jumps and, secondly, the default event may
occur at an F-stopping times with a positive probability. In particular, in the current
setup, the hazard process Γ̃ := G̃−1 • Ao is not necessarily continuous and the size
of its discontinuity can be interpreted as the conditional probability that the default
event occurs at the time of the jump given that is has not happened up to the moment
when jump occurs. These extensions of classical approaches enable one to combine the
reduced-form approach and the structural approach to credit risk by allowing to cover
both the case of default intensity and the possibility that default can happen concurrently
with a family of F-stopping times, which is endogenously specified by the underlying
default-free market.

To give a simple illustration of the above arguments, let us consider a market model
where the stock process is represented by a semimartingale S. We define σ1 := inf{t ∈
R+ |∆St < 0} and σ2 := inf{t ∈ R+ |St < c} for some c ∈ R+. Suppose that the default
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event may occur at time σ := σ1 ∧ σ2, that is, either at the first time when the stock
market experiences a negative shock or when it drops below a constant threshold c.
Then we construct the related hazard process Γ̃ by setting, for some constants λ > 0 and
p ∈ [0, 1],

Γ̃t = λt+ (1− p)1{σ≤t}

and, for simplicity, we set ϑ = inf{t ∈ R+ | 1 − Et(−Γ̃−) > ζ} where E denotes the
stochastic exponential and ζ is a random variable, which is uniformly distributed on [0, 1]

and independent of F∞. For the construction of a random time with a predetermined
hazard process and without the postulate that the hypothesis (H) holds, we refer to
Jeanblanc and Li [32]. The parameters λ ∈ R+ and p ∈ [0, 1] should be estimated using
the market data, which is feasible since their interpretation is fairly transparent and
thus they are amenable to standard statistical studies

λ dt =
P(ϑ ∈ dt | Ft)
P(ϑ ≥ t | Ft)

, 1− p =
P(ϑ = σ | Fσ)

P(ϑ ≥ σ | Fσ)
.

We observe that the above construction of default time ϑ hinges on a combination of the
reduced-form approach based on the intensity λ with the structural approach based on
the F-stopping time σ. In practical applications, one can postulate that the jumps of the
hazard process may occur at a predetermined sequence of fixed dates, for instance, the
dates of important announcements by a central bank or a regulatory body, which may
affect the financial market in an abrupt manner and hence generate negative or positive
jumps in share prices.

Finally, the combination of a discontinuous driver with a discontinuous hazard process
produces a new interesting feature in the reduced BSDE. Specifically, when the driver
process and the hazard process share common jumps or, using the language of finance,
when the default may happen at the moment when the discrete compounding of the
collateral funding account occurs, then there exist an additional adjustment term in Û
(see, e.g., (4.13)) related to the jump of the driver given by

(
F rs (Rs)− F rs (Ys)

)
∆Dr

s . This

term can be thought of as the adjustment to the hedging portfolio Û in order to obtain
the correct recovery value. This feature leads to an additional constraint in the reduced
BSDE (4.13)–(4.14) and the reduced RBSDE (5.3)–(5.4), which have not appeared in
previous works and hence results on these equations could be of independent interest.

3.3 Case of a general Azéma supermartingale

Let us make some comments on the possibility of relaxing Assumption 3.1(ii), that
is, allowing the Azéma supermartingale G of ϑ to hit zero. As an example, let us first
consider a random time of the form ϑ = ϑ′ ∧T1 where the Azéma supermartingale of ϑ′ is
a strictly positive process and T1 is an F-stopping time. Then the Azéma supermartingale
of ϑ jumps to zero at T1 and it is not hard to check that all results can be extended to that
case by replacing the terminal time τ by τ ′ = τ ∧T1 and ϑ by ϑ′. Since G is a nonnegative
supermartingale, we have that (see, e.g., Theorem 2.62 in He et al. [30])

η := inf{t ∈ R+ |Gt = 0} = inf{t ∈ R+ |Gt− = 0} = lim
n→∞

ηn

where ηn := inf{t ∈ R+ |Gt ≤ 1/n}. It is known that G = 0 on Jη,∞J and, from Lemma
2.14 of [4], we have that J0, ϑK ⊂ {G− > 0} and J0, ϑJ⊂ {G > 0} = J0, ηJ so that ϑ ≤ η.

In order to weaken Assumption 3.1(ii), we introduce the class of random times ϑ such
that the Azéma supermartingale G′ of ϑ′ := ϑ{ϑ<η} is strictly positive on the interval

J0, ηK. Specifically, we set (recall that G̃− = G−)

K := {ϑ | G̃η > 0} (3.6)
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and we will argue that Assumption 3.1(ii) can be replaced by the postulate that ϑ belongs
to K. It is clear that the class K is nonempty and contains not only all random times with
a strictly positive Azéma supermartingale, but also their minimum with any F-stopping
time. Observe that if a random time ϑ belongs to K then clearly

η̃ := inf{t ∈ R+ | G̃t− > G̃t = 0} = η{Gη−>G̃η=0} =∞

and thus the term 1J0,ϑK •
(
∆Mη̃1Jη̃,∞J

)p
in the G-semimartingale decomposition (2.3) of

an arbitrary F-local martingale M is in fact null.

Lemma 3.6. Let ϑ be a random time with the Azéma optional supermartingale G̃ and let
ϑ′ := ϑ{ϑ<η}. Then ϑ = ϑ′ ∧ η and the Azéma optional supermartingale G̃′ of ϑ′ is given

by G̃′ = G̃η + 1Kη,∞J •H where H = o(1{ϑ=η}). Furthermore, we have that (A′)o = (Ao)η

where A′ := 1Jϑ′,∞J.

Proof. We first observe that ϑ′ := ϑ{ϑ<η} = ϑ1{ϑ<η} +∞1{ϑ=η} where in the second
equality we have used the inequality ϑ ≤ η. Using also the equalities {ϑ < η} = {ϑ′ < η}
and {ϑ = η} = {ϑ′ ≥ η}, we obtain

ϑ = ϑ1{ϑ≤η} = ϑ1{ϑ<η} + ϑ1{ϑ=η} = ϑ′1{ϑ<η} + η1{ϑ=η} = ϑ′1{ϑ′<η} + η1{ϑ′≥η} = ϑ′ ∧ η.

Next, to compute the Azéma optional supermartingale of ϑ′, we observe that for all t > 0,

P(ϑ′ < t | Ft) = P(ϑ < t, ϑ < η | Ft) = P(ϑ < t | Ft)− P(ϑ < t, ϑ = η | Ft)

= 1− G̃t1{t≤η} − P(ϑ = η | Ft)1{η<t}

and hence G̃′ = G̃η + 1Kη,∞J •H where H = o(1{ϑ=η}).
The last assertion follows from the uniqueness of the Doob-Meyer-Mertens decompo-

sition of G̃′. It is worth noting that (G̃′)η = (G̃)η and (G′)η = G1J0,ηJ + G̃η1Jη,∞J.

It is important to observe that if ϑ ∈ K, then the supermartingale G′ and the optional
supermartingale G̃′ are strictly positive on J0, τ ′K where τ ′ := τ ∧ η. Furthermore, the
equalities X̂τ̂ = X̂τ̂∧ϑ = X̂τ̂∧ϑ′∧η = Xϑ′(τ

′) hold. We conclude that, on the one hand, all
our arguments used to address the case of a strictly positive Azéma supermartingale
are still valid when the pair (ϑ, τ) is replaced by (ϑ′, τ ′). For instance, the BSDE in
Proposition 3.5 would not change since ϑ ≤ η, whereas in Section 4.1 the terminal date
can be changed to τ ′ = τ ∧ η. On the other hand, however, if a random time ϑ is not in K,
then technical issues involving either an explosion of integrals or ill-defined terminal
condition at time η may arise.

3.4 Extended terminal condition

Let us make some comments on a possible extension of the terminal condition in the
G BSDE. Since the processes X and R are assumed to be F-optional, Lemma 3.4 implies
that X(τ) is an Fτ -optional process and Xϑ(τ) is Fτϑ -measurable. This implies that in
our formulation of the G BSDE (3.2) and the G RBSDE (3.3) the terminal condition is
measurable with respect to Fτϑ ⊂ Gτ∧ϑ. It is also worth noting that

σ(V τϑ |V ∈ O(F)) = Fτ∧ϑ ⊂ Fτϑ := σ(Vϑ |V ∈ O(Fτ )).

Since we do not consider all Gτ∧ϑ-measurable terminal conditions, the multiplicity in the
martingale representation property established in Theorem 2.22 of Choulli et al. [9] can
be taken to be equal to two, which in fact gives a partial motivation for Definition 3.1 of
a solution to the G BSDE.
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In general, the multiplicity in Theorem 2.22 of Choulli et al. [9] is equal to three
and thus it would be possible to consider, when a (bounded) terminal condition ζ is
Gτ∧ϑ-measurable, a more general G BSDE driven by M̃ϑ, mG and a pure jump martingale
yielding an additional ‘correction term’ at the terminal time τ ∧ ϑ. To be more specific,
in view of Proposition 3.5, one could study the extended G BSDE of the form

Ŷt = ζ −
∫

Kt,τ∧ϑK
F̂ rs (Ŷs, Ẑs, Ûs, Ĵs(τ)) dD̂r

s −
∫

Jt,τ∧ϑJ
F̂ gs (Ŷs, Ẑs, Ûs, Ĵs(τ)) dD̂g

s+

−
∫

Kt,τ∧ϑK
Ẑs dM̃

ϑ
s −

∫
Kt,τ∧ϑK

Ûs dm
G
s −

∫
Kt,τ∧ϑK

Ĵs(τ) dAs (3.7)

where Ẑ is F-predictable, Û is F-optional, Ĵ(τ) is Fτ -progressively measurable and
E(Ĵϑ(τ) | Fϑ) = 0. It is not difficult to check that the last condition implies that Ĵ(τ) •A

is a G-local martingale, provided that an appropriate integrability condition is satisfied
by Ĵ(τ).

A detailed study of the G BSDE given by equation (3.7) is beyond the scope of
this work since its practical applications are unclear. Let us only point out that if the
generator F̂ in (3.7) does not depend on Ĵ , then one can formally reduce (3.7) to (3.2)
and show that a solution to (3.7) can be obtained from a solution to (3.2). To this end,
we will need the following auxiliary result.

Lemma 3.7. Assume that ζ is bounded and Gτ∧ϑ-measurable. Then
(i) there exists a process X ′(τ) ∈ Pr(Fτ ) such that ζ = X ′ϑ(τ);
(ii) there exists a process X(τ) ∈ O(Fτ ) such that Xϑ(τ) = E(X ′ϑ(τ) | Fϑ).

Proof. To show the first assertion, we note that since ζ is Gτ∧ϑ-measurable, there exists
a process Ĥ ∈ O(G) such that ζ = Ĥτ∧ϑ and thus also, by Proposition 2.11 in Aksamit
and Jeanblanc [4], a process H ∈ O(F) such that Ĥ1J0,ϑJ = H1J0,ϑJ. Furthermore, since

Gτ∧ϑ ⊂ Gϑ = Fϑ+, there exists a process H ′ ∈ Pr(F) such that ζ = Ĥτ∧ϑ = H ′ϑ (see
Lemma B.1 in Aksamit et al. [1], which is obtained by modifying Proposition 5.3 (b) in
Jeulin [33]). We thus have the equalities

H ′ϑ1{τ<ϑ} = Ĥτ1{τ<ϑ} = Hτ1{τ<ϑ}

and we can define the Fτ -progressively measurable process

X ′(τ) := H ′1J0,τK +Hτ1Kτ,∞J, (3.8)

which satisfies X ′ϑ(τ) = ζ. For the second assertion, we note that since 1J0,τK and
Hτ1Kτ,∞J belong to O(F), we have

E(X ′ϑ(τ) | Fϑ) = E(H ′ϑ | Fϑ)1J0,τK(ϑ) +Hτ1Kτ,∞J(ϑ).

By Proposition 2.21 in Choulli et al. [9] there exists an F-optional process X such that
Xϑ = E(H ′ϑ | Fϑ). It now suffices to set X(τ) := X1J0,τK +Hτ1Kτ,∞J and observe that the
process X(τ) belongs to O(Fτ ).

By applying Lemma 3.7 to an integrable, Gτ∧ϑ-measurable random variable ζ, we
can rewrite ζ = X ′ϑ(τ) = X ′ϑ(τ) −Xϑ(τ) + Xϑ(τ). Therefore, in view of (3.8), we have
Ĵ(τ) := X ′(τ) − X(τ) = (H ′ − X)1J0,τK, which shows that Ĵ(τ) = Ĵ(τ)1J0,τK. Then the
BSDE (3.7) becomes

Ŷt = Xϑ(τ)−
∫

Kt,τ∧ϑK
F̂ rs (Ŷs, Ẑs, Ûs) dD̂

r
s −

∫
Jt,τ∧ϑJ

F̂ gs (Ŷs, Ẑs, Ûs) dD̂
g
s+

−
∫

Kt,τ∧ϑK
Ẑs dM̃

ϑ
s −

∫
Kt,τ∧ϑK

Ûs dm
G
s
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where we have used the equalities∫
Kt,τK

Ĵs(τ) dAs = Ĵϑ(τ)1{t<ϑ≤τ} = Ĵϑ(τ).

We conclude that if (Ŷ , Ẑ, Û) is a solution to the G BSDE (3.2), but with τ̂ replaced by
τ , then (Ŷ , Ẑ, Û , Ĵ(τ)) solves the BSDE (3.7) with a Gτ∧ϑ-measurable terminal condition.
Similar arguments can be applied to the case of the RBSDE (3.3). However, in the case
of generators depending on Ĵ(τ), the proper form of the adjustment to the terminal
condition would be more complicated and its computation would involve the generators
F̂ r and F̂ g.

4 Solution to a generalized BSDE

Our goal is to show that the BSDE (3.2) has a solution, which can be obtained in two
steps. In the reduction step, the filtration is shrunk from G to F and the BSDE (3.2) is
analyzed through an associated reduced BSDE in the filtration F. In the construction
step, we show that a solution to the reduced BSDE can be lifted from F to G in order
to obtain a solution to the BSDE (3.2). Notice that in Sections 4.1 and 4.2 the random
times ϑ and τ̂ are fixed throughout.

4.1 Reduction of a solution to G BSDE

We first establish some preliminary lemmas related to the concept of shrinkage
of filtration. In the main result of this section, Proposition 4.9, we give an explicit
representation for the F BSDE associated with the G BSDE (3.2). We work here under
Assumption 4.1, which will be relaxed in Section 4.2 where an explicit construction of a
solution to the G BSDE is proposed and analyzed.

Assumption 4.1. A solution (Ŷ , Ẑ, Û) to the BSDE (3.2) exists on the stochastic interval
J0, τ̂ ∧ ϑK or, equivalently, on the interval J0, τ ∧ ϑK where τ ∈ T is such that τ ∧ ϑ = τ̂ ∧ ϑ.

Our present goal is to analyze the consequences of Assumption 4.1. We start by
recalling that there exist a unique F-optional process Y and a unique F-predictable
process Z such that the equalities Ŷ 1J0,ϑJ = Y 1J0,ϑJ and Ẑ1J0,ϑK = Z1J0,ϑK are valid.
Moreover, Yτ = Xτ and the process Y and Z are given by

Y = o
(
1J0,ϑJŶ

)
G−1, Z = p

(
1J0,ϑKẐ

)
G−1
− . (4.1)

Similarly, in view of Assumption 3.1(vii) and Lemma 4.3 below, there exists an right
continuous F-adapted process Dr and a left-continuous F-adapted process Dg such that
D̂r1J0,ϑK = Dr1J0,ϑK and D̂g1J0,ϑK = Dg1J0,ϑK. Finally, it is clear that X̂1J0,ϑJ = X1J0,ϑJ.

We shall refer to τ , Y , Z, Dr, Dg and X as the F-reduction of τ̂ , Ŷ , Ẑ, D̂r, D̂g and X̂.
In the following, we slightly abuse the notation and we again denote by Y and Z the

stopped processes Y := Y τ and Z := Zτ . Recall that the component Û in a solution
to (3.2) is assumed to be an F-optional process and thus Û is equal to its F-reduction U
so that, trivially, Û = U and, once again, we will write U := Uτ .

To show more explicitly how the process Y is computed, we observe that

Ê·,τ̂ (X̂τ̂ )1J0,τK1J0,ϑJ = Ê·,τ̂ (X̂τ̂ )1J0,τ̂K1J0,ϑJ

and, in view of Proposition 3.5, there exists Y ∈ O(F) such that we have

Ê·,τ̂ (X̂τ̂ )1J0,τK1J0,ϑJ = Ê·,τ (Xϑ(τ))1J0,τK1J0,ϑJ = Y 1J0,τK1J0,ϑJ.
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Therefore, by applying the F-optional projection operator, we obtain

o
(
Ê·,τ̂ (X̂τ̂ )1J0,τ̂K1J0,ϑJ

)
1J0,τK = o

(
Ê·,τ (Xϑ(τ))1J0,τK1J0,ϑJ

)
1J0,τK = Y G1J0,τK.

A general representation of Y can then be obtained on J0, τK by noticing that for any
F-stopping time σ

YσGσ1{σ≤τ} = E
(
Êσ,τ (Xϑ(τ))1{σ≤τ}1{σ<ϑ} | Fσ

)
1{σ≤τ}.

Our next goal is provide a more explicit computation of the right-hand side in the above
equality (see Lemma 4.6).

Remark 4.1. Suppose that Assumption 3.1(ii) is relaxed and we postulate instead that
ϑ ∈ K where the class K is defined by (3.6). Then the modified terminal condition would
be X̂τ̂∧ϑ′∧η = X̂τ∧ϑ′∧η and the reduced terminal condition would become Xτ∧ηG

′
τ∧η.

Finally, the terminal condition for Y would be Xτ∧η instead of Xτ . Hence, it would be
enough to replace τ with τ ′ = τ ∧ η and study the F-BSDE on the interval J0, τ ′K, rather
than J0, τK.

The following result can be deduced from Proposition 2.11 in Aksamit and Jeanblanc
[4].

Lemma 4.2. For every (y, z, u) ∈ R×Rd ×R there exists an Rk-valued, F-predictable
process F r(y, z, u) such that F̂ rt (y, z, u)1{ϑ≥t} = F rt (y, z, u)1{ϑ≥t} for every t ≥ 0. For
every (y, z, u) ∈ R×Rd×R there exists an Rk-valued, F-optional process F g(y, z, u) such
that F̂ gt (y, z, u)1{ϑ>t} = F gt (y, z, u)1{ϑ>t} for every t ≥ 0.

To reduce the driver D̂ and later the reflection in theG RBSDE, we prove the following
result. Notice that a similar result was established in Jeanblanc et al. [31] in the case
where the partition of the space Ω× [0,∞[ was independent of time.

Lemma 4.3. Let D̂ = D̂r + D̂g be an G-adapted, làglàd, increasing process. Then
there exists an F-optional, càdlàg, increasing process Dr and an F-predictable, càglàd,
increasing process Dg such that Dr = D̂r on J0, ϑJ and Dg = D̂g on J0, ϑK. If D̂ is a
G-strongly predictable increasing process, then Dr can be chosen such that it is an
F-predictable, càdlàg, increasing process and Dr = D̂r on J0, ϑK.

Proof. Since D̂r belongs to the class O(G), there exists an F-optional process Dr such
that D̂r1J0,ϑJ = Dr1J0,ϑJ (see the first equality in (4.1)). Since the optional projection
of a càdlàg processes is again a càdlàg process, the process Dr is càdlàg on the set
{G > 0} = Ω× [0,∞[ where the last equality is clear since we have assumed that G is
strictly positive.

To show that the process Dr is increasing, we observe that, for every s ≤ t,

Dr
t1{ϑ>t} = D̂r

t1{ϑ>t} ≥ D̂r
s1{ϑ>t} = D̂r

s1{ϑ>s}1{ϑ>t} = Dr
s1{ϑ>t}.

Then, by taking the Ft conditional expectation of both sides, we deduce that the process
Dr is increasing on the set {G > 0} = Ω× [0,∞[.

Furthermore, since the process D̂g is càglàd and thus belongs to the class P(G),
there exists an F-predictable process Dg such that D̂g1J0,ϑK = Dg1J0,ϑK (see the second
equality in (4.1)). The rest of the proof is similar to the case of Dr except that we now
use the properties of the F-predictable projection, rather than the F-optional projection.

Finally, in the case where D̂ is F-strongly predictable, from the decomposition
D̂ = D̂r + D̂g and the fact that D̂ and D̂g belong to P(G), we deduce that D̂r belongs to
P(G). Thus there exists an F-predictable process Dr such that D̂r1J0,ϑK = Dr1J0,ϑK. This

implies that D̂r1J0,ϑJ = Dr1J0,ϑJ and, by taking the F-optional projection, we deduce
from similar arguments as before, that on the set {G > 0} the process Dr is increasing
and càdlàg.
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BSDE and RBSDE with random time horizon

Remark 4.4. Clearly if the process D̂ is F-adapted then the equality D̂r = Dr holds
everywhere and not only on J0, ϑJ. We remark here that an F-adapted driver D̂ can have
certain practical interpretations. For example, one can take D̂ to be the hazard process,
that is D̂ = Γ̃ = G̃−1 •Ao, and this can be interpreted as a way to introduce ambiguity in
the recovery and the default intensity (see, e.g., Fadina and Schmidt [21]).

The next result is an immediate consequence of Lemma 4.3 and equations (3.1)
and (3.2). To alleviate the notation, we will frequently write F̂ rs (·) = F̂ rs (·, Ẑs, Ûs),
F̂ rg (·) = F̂ gs (·, Ẑs, Ûs), F rs (·) = F rs (·, Zs, Us) and F gs (·) = F gs (·, Zs, Us).
Lemma 4.5. The following equalities are satisfied, for every t ∈ R+ on the event
{t ≤ τ} ∩ {t < ϑ},

E
(
1{ϑ>t}

∫
Kt,τ∧ϑK

F̂ rs (Ŷs) dD̂
r
s

∣∣Ft) = E
( ∫

Kt,τK
F rs (Ys) dD

r
s

∣∣Ft)
+ E

( ∫
Kt,τK

(
F rs (Rs)− F rs (Ys)

)
∆Dr

sdA
o
s

∣∣Ft) (4.2)

and, on the event {t < τ} ∩ {t < ϑ},

E
(
1{ϑ>t}

∫
Jt,τJ

1{ϑ>s}F̂
g
s (Ŷs) dD̂

g
s+

∣∣Ft) = E
( ∫

Jt,τJ
GsF

g
s (Ys) dD

g
s+

∣∣Ft).
Proof. Using Lemma 4.3, the equalities Ŷϑ1{ϑ≤τ} = Rϑ1{ϑ≤τ} and

P(ϑ = s | Fs) = G̃s −Gs = ∆Aos

and noticing that {ϑ ≥ s} ⊂ {ϑ > t} for s > t, we obtain

E
(
1{ϑ>t}

∫
Kt,τK

1{ϑ≥s}F̂
r
s (Ŷs) dD̂

r
s

∣∣Ft)
= E

( ∫
Kt,τK

1{ϑ>s}F
r
s (Ys) dD

r
s

∣∣Ft)+ E
( ∫

Kt,τK
1{ϑ=s}F

r
s (Rs) dD

r
s

∣∣Ft)
= E

( ∫
Kt,τK

GsF
r
s (Ys) dD

r
s

∣∣Ft)+ E
( ∫

Kt,τK
F rs (Rs)∆A

o
s dD

r
s

∣∣Ft)
= E

( ∫
Kt,τK

G̃sF
r
s (Ys) dD

r
s

∣∣Ft)+ E
( ∫

Kt,τK
(F rs (Ys)− F rs (Rs))∆D

r
s dA

o
s

∣∣Ft).
Similarly, again from Lemma 4.3, we have

E
(
1{ϑ>t}

∫
Jt,τJ

1{ϑ>s}F̂
g
s (Ŷs) dD̂

g
s+

∣∣Ft) = E
( ∫

Jt,τJ
GsF

g
s (Ys) dD

g
s+

∣∣Ft),
which gives the required result.

To simplify further computations we define, for every (y, z, u) ∈ R×Rd ×R and t ≥ 0,

F̈ rt (y, z, u) := F rt (y, z, u) +
(
F rt (Rt, z, u)− F rt (y, z, u)

)
G−1
t ∆Aot . (4.3)

By combining Lemmas 3.4 and 4.5 with equality (3.2), we obtain the following result.

Lemma 4.6. The process (Y, Z, U) satisfies on J0, τK

Yt = G−1
t E

(
XτGτ +

∫
Kt,τK

Rs dA
o
s −

∫
Kt,τK

G̃sF̈
r
s dD

r
s −

∫
Jt,τJ

GsF
g
s dD

g
s+

∣∣Ft)
where we denote F̈ rs = F̈ rs (Ys, Zs, Us) and F gs = F gs (Ys, Zs, Us).
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Proof. For any fixed F-stopping time τ , we denote by K(τ) the F-martingale given by

Kt(τ) := E
(
XτGτ + (R •Ao)τ − (G̃F̈ r •Dr)τ − (GF g ? Dg

+)τ | Ft
)
. (4.4)

Then the F-optional process Y has the following representation on J0, τK

Yt = G−1
t

(
Kt(τ)− (R •Ao)t + (G̃F̈ r •Dr)t + (GF g ? Dg

+)t
)

(4.5)

with Yτ = Xτ and thus the asserted equality holds.

For brevity, we set C := G̃F̈ r •Dr +GF g ? Dg
+ and we note that equality (4.5) can be

rewritten as follows
Y = G−1

(
K(τ)−R •Ao + C

)
. (4.6)

In addition, we define m̃ := m− G̃−1 • [m,m] and

K̃(τ) := K(τ)− G̃−1 • [K(τ),m].

To express the dynamics of the process Y in terms of m̃ and K̃(τ), we will use the
following immediate consequence of Lemma 7.3 from the appendix.

Lemma 4.7. If C = Cr + Cg is a làglàd process of finite variation and the process Y is
given by Y = G−1(K −R •Ao + C) for some F-martingale K, then

Y = Y0 + G̃−1 • Cr +G−1 ? Cg+ − (R− Y ) • Γ̃− Y−G−1
− • m̃+G−1

− • K̃

where K̃ := K − G̃−1 • [K,m].

By applying Lemma 4.7 to equality (4.6) and using Lemma 4.3, we obtain the following
corollary.

Corollary 4.8. The process D = Dr +Dg is a làglàd process of finite variation and

Y = Y0 + F̈ r •Dr + F g ? Dg − (R− Y ) • Γ̃− Y−G−1
− • m̃+G−1

− • K̃(τ).

Assumption 3.1(vi) yields the existence F-predictable processes ψY,Z and ν such that

K(τ) = ψY,Z •M, m = ν •M. (4.7)

The next proposition is an immediate consequence of Corollary 4.8 combined with (4.7).
As before, we write F rs (·) := F rs (·, Zs, Us) and F gs (·) := F gs (·, Zs, Us) and we give an explicit
representation for the F BSDE associated with the G BSDE (3.2).

It is worth noting that Proposition 4.9 extends several results from the existing
literature where the method of reduction was studied in a particular framework and
under additional assumptions, such as the immersion hypothesis or the simplifying
conditions (A) or (C).

Proposition 4.9. If the triplet (Ŷ , Ẑ, Û) is a solution to the G BSDE (3.2), then the
triplet (Y,Z, U) where U = Û satisfies on J0, τK

Yt = Xτ −
∫

Kt,τK
F rs (Ys) dD

r
s −

∫
Jt,τJ

F gs (Ys) dD
g
s+ −

∫
Kt,τK

zs dM̃s

+
∫

Kt,τK

[
Rs − Ys − (F rs (Rs)− F rs (Ys))∆D

r
s

]
dΓ̃s

where the process z is given by zt := G−1
t−
(
ψY,Zt − Yt−νt

)
.

In the above representation of the F BSDE associated with the G BSDE, we can
clearly identify the reduced generators F r and F g and the form of the adjustment, which
is integrated with respect to the hazard process Γ̃ = G̃−1 •Ao of a random time ϑ.
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4.2 Construction of a solution to G BSDE

In this section, we no longer postulate that a solution to the BSDE (3.2) exists, which
means that Assumption 4.1 is relaxed. Our goal is to show that a solution to the F
BSDE (4.13) can be expanded to obtain a solution to the BSDE (3.2) if equation (4.14)
has an F-optional solution U . We stress that equations (4.13) and (4.14) are coupled,
in the sense that they need to be solved jointly in order to construct a solution to the
BSDE (3.2). Obviously, the issues of existence and uniqueness of a solution (Y, Z, U)

to equations (4.13) and (4.14) need to be studied under additional assumptions on the
generator and all other inputs to the BSDE (3.2). In the next result, we denote by Û an
arbitrary prescribed F-optional process and we do not use Lemma 4.5.

Lemma 4.10. For a given process Û ∈ O(F), let (Y,Z) be an R×Rd-valued, F-adapted
solution to the BSDE on J0, τK

Yt = Xτ −
∫

Kt,τK
F rs (Ys, Zs, Ûs) dD

r
s −

∫
Jt,τJ

F gs (Ys, Zs, Ûs) dD
g
s+ −

∫
Kt,τK

Zs dM̃s

+
∫

Kt,τK

[
Rs − Ys −

(
F rs (Rs, Zs, Ûs)− F rs (Ys, Zs, Ûs)

)
∆Dr

s

]
dΓ̃s (4.8)

and let the G-adapted process Ŷ be given by

Ŷ := Y0 + 1K0,ϑJ • Y
r + 1K0,ϑJ ? Y

g + (Rϑ − Yϑ−)1Jϑ,∞J1{τ≥ϑ}. (4.9)

Then (Ŷ , Ẑ) := (Ŷ , Zϑ) is a G-adapted solution to the BSDE, on J0, τ ∧ ϑK,

Ŷt = Xτ∧ϑ −
∫

Kt,τ∧ϑK
F̂ rs (Ŷs, Ẑs, Ûs) dD

r
s

−
∫

Jt,τ∧ϑJ
F̂ gs (Ŷs, Ẑs, Ûs) dD

g
s+ −

∫
Kt,τ∧ϑK

Ẑs dM̃s (4.10)

−
∫

Kt,τ∧ϑK

[
Rs − Ys −

(
F rs (Rs, Ẑs, Ûs)− F rs (Ys, Ẑs, Ûs)

)
∆Dr

s

]
dmG

s .

Proof. Let us write Cr := F̈ r • Dr and Cg := F g ? Dg
+. From (4.8) and (4.9), we can

deduce that the following equalities hold

Ŷτ∧ϑ = Xτ1{τ<ϑ} +Rϑ1{τ≥ϑ}

and

Ŷ = Y0 + Z1K0,τK1K0,ϑJ • M̃
ϑ − (R− Y )1K0,τK1K0,ϑJ • Γ̃

+ 1K0,τK1K0,ϑJ • C
r + 1J0,τJ1J0,ϑJ ? C

g + (R− Y−)1K0,τK •A. (4.11)

Using again (4.8), we obtain

(Y − Y−)1K0,τK •A = Z1K0,τK1JϑK • M̃
ϑ − (R− Y )1K0,τK1JϑK • Γ̃ + 1K0,τK1JϑK • C

r.

Thus, by replacing (R− Y−) by (R− Y ) in the last term of (4.11) and using the equality
mG = A− 1K0,ϑK • Γ̃ (see (2.2)), we see that Ŷ is equal to

Y0 + Z1K0,τ∧ϑK • M̃ + (R− y)1K0,τ∧ϑK •m
G + 1K0,τ∧ϑK • C

r + 1J0,τ∧ϑJ ? C
g
+.

To establish (4.10), it now remains to show that

1K0,τ∧ϑK • C
r = F̂ r(Ŷ )1K0,τ∧ϑK •D

r −
(
F r(R)− F r(Y )

)
∆Dr1K0,τ∧ϑK •m

G (4.12)

where the variables Z and Û are suppressed.
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To this end, by using the fact that the equalities F r = F̂ r and Y = Ŷ hold on K0, ϑK
and Ŷ 1JϑK = R1JϑK, we deduce from (4.3) that

I1 := F̈ r(Y, Û)1K0,τK1K0,ϑJ •D
r = F̂ r(Ŷ )1K0,τ∧ϑK •D

r − F r(R)1K0,τK1JϑK •D
r

+ ∆Γ̃
(
F r(R)− F r(Y )

)
1K0,τK1K0,ϑJ •D

r

and

I2 := F̈ r(Y )1K0,τK1JϑK •D
r =

[
F r(Y ) + ∆Γ̃

(
F r(R)− F r(Y )

)]
1K0,τK1JϑK •D

r.

Consequently, since mG = A− 1K0,ϑK • Γ̃ is a process of finite variation stopped at ϑ and
1JϑK = ∆A, we obtain

1K0,τ∧ϑK • C
r = I1 + I2

= F̂ r(Ŷ )1K0,τ∧ϑK •D
r − 1K0,τK

(
F r(R)− F r(Y )

)(
∆A−∆Γ̃1K0,ϑK

)
•Dr

= F̂ r(Ŷ )1K0,τ∧ϑK •D
r − 1K0,τK

(
F r(R)− F r(Y )

)
∆Dr •

(
A−∆Γ̃1K0,ϑK

)
= F̂ r(Ŷ )1K0,τ∧ϑK •D

r −
(
F r(R)− F r(Y )

)
∆Dr 1K0,τ∧ϑK •m

G,

which shows that equality (4.12) is valid.

Remark 4.11. If R belongs to the class P(F), then one can modify the above proof by
noticing that Q := Ao −Ap is a finite variation F-martingale and

RG̃−1 • (Ap −Ao) = −R
(
G−1
− •Q+ G̃−1 •Q−G−1

− •Q
)

= −RG−1
− • Q̃,

which, when stopped at ϑ, is a G-martingale. Then, in view of the predictable represen-
tation property of M , this term will contribute to the G-martingale term M̃ in (4.8).

The following proposition is a consequence of Lemma 4.10. It shows that a solution
to the G BSDE can be constructed by first solving the constrained F BSDE (4.13)–(4.14).
Recall that we denote F rs (·) := F rs (·, Zs, Us), F gs (·) := F gs (·, Zs, Us), F̂ rs (·) := F̂ rs (·, Ẑs, Ûs)
and F̂ rg (·) := F̂ gs (·, Ẑs, Ûs).
Proposition 4.12. Assume that (Y, Z, U) is a solution to the constrained BSDE on J0, τK

Yt = Xτ −
∫

Kt,τK
F rs (Ys) dD

r
s −

∫
Jt,τJ

F gs (Ys) dD
g
s+ −

∫
Kt,τK

Zs dM̃s

+
∫

Kt,τK

[
Rs − Ys −

(
F rs (Rs)− F rs (Ys)

)
∆Dr

s

]
dΓ̃s (4.13)

where the F-optional process U satisfies the following equality, for all t ∈ R+,∫
K0,tK

Us dm
G
s =

∫
K0,tK

[
Rs − Ys −

(
F rs (Rs)− F rs (Ys)

)
∆Dr

s

]
dmG

s . (4.14)

Then the triplet (Ŷ , Ẑ, Û) := (Ŷ , Zϑ, U) where the process Ŷ is given by

Ŷ := Y0 + 1J0,ϑJ • Y
r + 1J0,ϑJ ? Y

g + (Rϑ − Yϑ−)1Jϑ,∞J1{τ≥ϑ}

is a solution to the BSDE (3.2) on J0, ϑ ∧ τK, that is,

Ŷt = X̂τ∧ϑ −
∫

Kt,τ∧ϑK
F̂ rs (Ŷs) dD

r
s −

∫
Jt,τ∧ϑJ

F̂ gs (Ŷs) dD
g
s+

−
∫

Kt,τ∧ϑK
Ẑs dM̃s −

∫
Kt,τ∧ϑK

Ûs dm
G
s .
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In the next step, we will examine the existence of a solution to the constrained
BSDE (4.13)–(4.14). Specifically, we seek a triplet (Y, Z, U) of processes that satisfy, for
all t ∈ [0, τ ],

Yt = Xτ −
∫

Kt,τK
F rs (Ys) dD

r
s −

∫
Jt,τJ

F gs (Ys) dD
g
s+ −

∫
Kt,τK

Zs dMs

+
∫

Kt,τK
ZsG

−1
s νs d[M,M ]s +

∫
Kt,τK

[
Rs − Ys −

(
F rs (Rs)− F rs (Ys)

)
∆Dr

s

]
dΓ̃s (4.15)

and, for all t ∈ R+ (notice that (4.16) is manifestly stronger than (4.14))

Ut = Rt − Yt −
(
F rt (Rt)− F rt (Yt)

)
∆Dr

t . (4.16)

To examine the existence of a solution to the coupled equations (4.15)–(4.16), we
introduce the transformed equations (4.17)–(4.18). Our goal is to remove the quadratic
variation term G−1 • [m,M ] = G−1ν • [M,M ] from (4.15) and place ν inside the generators
F r and F g, which are assumed to be bounded. In that way, we avoid the need to check the
appropriate growth conditions when applying the existing results on the well-posedness
of BSDEs.

We define the linear transformation Ȳ := GY , Z̄ := G−Z +G−1Ȳ ν and Ū := U . Then
we obtain the transformed generators

F̄ rs (y, z, u) := G̃sF
r
s (G−1

s y,G−1
s−(z −G−1

s yνs), u)

and

F̄ gs (y, z, u) := GsF
g
s (G−1

s y,G−1
s−(z −G−1

s yνs), u)

and we denote F̄ rs (·) := F̄ rs (·, Z̄s, Ūs) and F̄ gs (·) := F̄ gs (·, Z̄s, Ūs). Observe that if a solution
(Y,Z, U) ∈ O(F)×Pd(F)×O(F) to (4.15)–(4.16) exists, then (Ȳ , Z̄, Ū) ∈ O(F)×Pd(F)×
O(F) satisfies the following coupled equations, for all t ∈ [0, τ ],

Ȳt = GτXτ −
∫

Kt,τK
F̄ rs (Ȳs) dD

r
s −

∫
Jt,τJ

F̄ gs (Ȳs) dD
g
s+

−
∫

Kt,τK
Z̄s dMs +

∫
Kt,τK

[
G̃sRs −∆F̄ rs ∆Dr

s

]
dΓ̃s (4.17)

and, for all t ∈ R+

Ūt = Rt − ȲsG−1
t − G̃−1

t ∆F̄ rt ∆Dr
t (4.18)

where we denote ∆F̄ rs := F̄ rs (GsRs)− F̄ rs (Ȳs). In the reverse, a solution (Y, Z, U) to the
coupled equations (4.15)–(4.16) can be obtained from a solution (Ȳ , Z̄, Ū) to the coupled
equations (4.17)–(4.18) by setting Y := G−1Ȳ , Z := G−1

− (Z̄ −G−1Ȳ ν) and U := Ū .
Observe that BSDEs (4.15) and (4.17) have the làglàd driver D = (Dr, Dg), which

may share common jumps with the martingale M . To the best of our knowledge, there
is a gap in the literature on BSDEs of this form and thus we develop in Section 6.1 a
jump-adapted methodology to solve such BSDEs under specific assumptions.

4.3 Relation to the existing literature on BSDEs for credit risk

If a random time ϑ is an F-pseudo-stopping time (see Nikeghbali and Yor [42] and
Aksamit and Li [5]), then m = 1 and thus ν = 0 in (4.7) so that we can deal directly
with (4.15). Also, under condition (C), it is possible to eliminate the term G̃−1 • [m,M ]

through a change of measure when a random time ϑ is an invariance time with respect to
F. Recall that the notion of the invariance time was put forward and analyzed in Crépey
and Song [13] and its introduction was directly motivated by a study in Crépey and Song
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[12] of the reduced BSDE for the CVA (Credit Valuation Adjustment) associated with the
counterparty credit risk.

We now take the opportunity to elaborate on the differences between our results and
those of Crépey and Song [12]. Technically speaking, in [12] the authors work within
a predictable framework, meaning that the random time ϑ exhibits a G-predictable
compensator, which is assumed to be absolutely continuous with respect to the Lebesgue
measure. Notice that in the context of progressive enlargement, the G-predictable
compensator is given by the process G−1

− •Ap stopped at ϑ. In contrast, we work here
under an optional setup and make use of the G martingale mG, and thus the hazard
process is given by Γ̃ = G̃−1 •Ao, which is an F-optional process and a G-optional process
when stopped at ϑ. Consequently, results obtained in [12] hinge on the classical Doob-
Meyer decomposition G = n−Ap, rather than the optional decomposition of G = m−Ao
(see Definition 2.1).

This key difference manifest itself in two ways. Firstly, as already explained in
Section 3.2, we aim to construct models in which financial shocks or jumps in the value
of the stock are allowed and the default time ϑ may happen concurrently with these
shocks with a positive probability. Therefore, if the recovery process R is F-optional and
hence Rϑ is Gϑ-measurable (e.g., a fixed fraction of the pay-off of a standard call option
in a jump diffusion model), then in order to make use of the G-predictable compensator,
the methodology developed in [12] would require to compute the quantity E[Rϑ|Gϑ−] or
ξ̂ in the reduced BSDE (4.4) studied in [12], which may prove unfeasible. This should be
contrasted with our approach where it is not needed to compute these quantities and all
model inputs (X,R, Γ̃,m) can be explicitly chosen.

Secondly, the G BSDE (4.3) in [12] is stopped strictly before ϑ (specifically, at ϑ−,
see Lemma 2.5) rather than at ϑ and the reduced BSDE (4.4) in [12] was obtained under
condition (C.2) stating that there exists an equivalent probability measure Q on FT such
that any F-local martingales under Q stopped at ϑ− are G-local martingales under Q. As
a consequence, the change of a probability measure allows one to eliminate the term
G−1 • [n,M ], which is known to coincide with G̃−1 • [m,M ] under condition (C). To be
more specific, condition (C.2) implies that ϑ is an invariance time or, in other words,
there exists an equivalent probability measure Q such that ϑ is an F-pseudo-predictable-
stopping time (see Definition 2.1 and Proposition 2.2 in Jeanblanc and Li [32]). Recall
that m = 1 in the case of an F-pseudo-stopping time, whereas n = 1 if ϑ is assumed to be
an F-pseudo-predictable-stopping time. For this reason, the term G−1 • [n,M ] does not
appear in the reduced BSDE in [12], which is formulated under an equivalent probability
measure Q. For an example of an F-pseudo-predictable-stopping time, which is not an
F-pseudo-stopping time, we refer to Example 3.13 in [32].

Finally, we stress that the two approaches are indeed identical if condition (C) is
postulated. Therefore, in principle, one could attempt to either impose a condition
similar to condition (C.2) or mimic the approach developed in [13] by studying a new
class of random times for which we could stop at ϑ and the drift term G̃−1 • [m,M ] could
be removed through a change of a probability measure. Put another way, one could
introduce a family of random times for which there exists an equivalent probability
measure under which they become F-pseudo-stopping times. However, we believe that
the elimination of the term G̃−1 • [m,M ] is not the most important issue (as we show in
Example 6.7) since it is not hard to give non-trivial examples where the well-posedness
of the reduced BSDE can be obtained without annihilating that term. Therefore, we find
it reasonable either to assume that the generator is bounded and apply the previous
transformation method or to postulate that ϑ is an F-pseudo-stopping time under P.
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4.4 Solution to G BSDE in the Brownian case

To illustrate our approach from Sections 4.1 and 4.2, we first use results from Essaky
et al. [20] to show that in the case of the Brownian filtration, if F g = 0 and U does
not appear in the right-hand side of (4.16) or (4.18), then a unique solution (Ȳ , Z̄, Ū)

to (4.17)–(4.18) exists and thus a unique solution (Y, Z, U) to (4.15)–(4.16) exists as well.
Specifically, we now take M = W to be a d-dimensional Wiener process in its natural
filtration F and we consider below the constrained F BSDE (4.15)–(4.16) with F g = 0.
Our goal is to demonstrate that, under some natural assumptions, these equations have
a unique solution (Y,Z, U) ∈ O(F)× Pd(F)×O(F).

To simplify the notation, we write D and F instead of (Dr, 0) and (F r, 0), respectively,
and we consider the situation where D = (D1, D2) = (〈W 〉, Γ̃) and F = (F 1, F 2) =

(F 1(y, z, u), F 2(y)) for (y, z, u) ∈ R×Rd ×R. Then the BSDE (4.17) becomes

Ȳt = GτXτ −
∫

Kt,τK
F̄ 1
s (Ȳs) d〈W 〉s −

∫
Kt,τK

F̄ 2
s (Ȳs) dΓ̃s −

∫
Kt,τK

Z̄s dWs

+
∫

Kt,τK

[
G̃sRs −

(
F̄ 2
s (GsRs)− F̄ 2

s (Ȳs)
)
∆Γ̃s

]
dΓ̃s (4.19)

where F̄ 1
s (Ȳs) := F̄ 1

s (Ȳs, Z̄s, Ūs) and equation (4.18) has an explicit solution given by

Ū = (R− Ȳ G−1)− (F̄ 2(GR)− F̄ 2(Ȳ ))G̃−1∆Γ̃. (4.20)

We point out that, in the above, our choice of D2 was somewhat arbitrary and we decided
to set D2 = Γ̃ for simplicity of presentation.

Proposition 4.13. Assume that:
(i) for every t ∈ R+, the map F 1

t : R × Rd × R → R is bounded and Lipschitz
continuous;

(ii) for every t ∈ R+, the map F 2
t : R → R is bounded, Lipschitz continuous and

decreasing;
(iii) the dual F-optional projection Ao has a finite number of discontinuities.
Then the BSDE (4.19) has a solution (Ȳ , Z̄) and a solution (Y,Z) to (4.15) is obtained

by setting Y := G−1Ȳ and Z := G−1(Z̄ −G−1Ȳ ν).

Proof. To establish the existence of a solution (Ȳ , Z̄) to (4.19), we will apply Theorem
2.1 in Essaky et al. [20] to the data (P,R, ϑ, F ). We observe that the BSDE (4.19) is a
special case of equation (2.1) in [20], which has the following form

Ȳt = GτXτ +
∫

Kt,τK
f(s, Ȳs, Z̄s) ds+

∫
Kt,τK

g(s, Ȳs) dĀs

+
∑
t<s≤τ

h(s, Ȳs−, Ȳs)−
∫

Kt,τK
Z̄s dWs. (4.21)

Indeed, (4.19) can be recovered from (4.21) if we set Ā := Γ̃c where Γ̃c is the
continuous part of Γ̃ and define the mappings f, g and h as follows

f(s, Ȳs, Z̄s) := −F̄ 1
s (Ȳs, Z̄s, Ūs), g(s, Ȳs) := G̃sRs − F̄ 2

s (Ȳs),

h(s, Ȳs−, Ȳs) :=
(
G̃sRs − F 2

s (Ȳs)
)
∆Γ̃s −

(
F̄ 2
s (GsRs)− F̄ 2

s (Ȳs)
)
(∆Γ̃s)

2

where Ū is given by (4.20) and the mapping h is in fact independent of the variable Ȳ−.
To apply Theorem 2.1 from Essaky et al. [20], it suffices to check that Assumptions

(A.1)–(A.4) on page 2151 of [20] are satisfied. To check Assumption (A.1), we note that
the mapping F 1 is assumed to be continuous and, since it is also bounded, there exists
a constant C > 0 such that |F 1| ≤ C ≤ C(1 + |z|), which shows that the linear growth
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condition is satisfied. Next, from the fact that |∆Γ̃| ≤ 1, we deduce that |g| is bounded
and thus Assumption (A.2) holds as well. Finally, h is bounded and continuous and,
since the process Γ̃ is assumed to have a finite number of jumps, it is enough to check
condition (c) in Assumption (A.3).

To this purpose, we observe that 0 ≤ ∆Γ̃ ≤ 1 and thus the mapping

y 7→ y + h(s, y) = y −∆Γ̃sF̄
2
s (y)

(
1−∆Γ̃s

)
+ ∆Γ̃s

(
G̃sRs −∆Γ̃sF̄

2
s (GsRs)

)
is nondecreasing and continuous. Finally, the Mokobodski condition postulated in (A.4)
is trivially satisfied as we deal here with the BSDE with no reflecting boundaries. Thus,
by applying Theorem 2.1 in [20] with T replaced by τ ∈ T , we obtain the existence of a
maximal solution (Ȳ , Z̄) to (4.19).

Example 4.14. Let us consider a special case where ϑ is an F-pseudo-stopping time
(see Nikeghbali and Yor [42]) and thus the process ν in (4.7) vanishes. We can suppose
that the mapping z 7→ F 1

s (y, z, u) has a linear (quadratic) growth and thus, since in the
case of a Brownian filtration the equality G̃ = G− holds, we obtain

|F̄ 1
s (y, z)| = G̃s

∣∣F 1
s (G−1

s y,G−1
s−(z −G−1

s yνs), u)
∣∣ ≤ Gs−(1 +G−1

s−|z|) ≤ (1 + |z|),

which shows that the boundedness of F 1 postulated in Proposition 4.13 can be relaxed.

5 Solution to a generalized reflected BSDE

Our goal in this section is to study the properties of solutions to the G RBSDE with a
random time horizon ϑ.

5.1 Reduction of a solution to G RBSDE

As in Section 4.1, in order to show that (3.3) has a solution, we will first reduce
a solution to the G RBSDE (3.3) to a solution of an associated RBSDE in filtration F.
Subsequently, we show how a solution to the reduced F RBSDE, which can be shown
to exist under suitable assumptions, can be employed to construct a solution to the G
RBSDE (3.3). Again, we first work under the following temporary postulate, which will
be relaxed in Section 5.2.

Assumption 5.1. A solution (Ŷ , Ẑ, Û , L̂) to the G RBSDE (3.3) exists.

Following the approach developed for the non-reflected case, we decompose Ŷ into
the pre-default and post-default components

Ŷt1{ϑ>t} + Ŷt1{ϑ≤t} = Ŷt1{ϑ>t} + X̂ϑ∧τ1{ϑ≤t} = Yt1{ϑ>t} + X̂ϑ1{ϑ≤t}

= G−1
t E

(
Ŷt1{ϑ>t}

∣∣Ft)1{ϑ>t} +Rϑ1{ϑ≤t}.

To compute the component G−1
t E

(
Ŷt1{ϑ>t} | Ft

)
we proceed similarly to the non-reflected

case. The new feature here is the use of Lemma 4.3 in order to obtain a reduction of the
G-strongly predictable, increasing process L̂. Computations in this section are similar to
those in Section 4.1, except for the presence of the reflection process and thus in the
following we will focus on new elements. To proceed, similarly to (4.4), we set

Kt(τ) := E
(
XτGτ + (G̃F̈ r •D)τ + (GF g ? Dg

+)τ | Ft
)

+ E
(
(R+ L) •Ao)τ + LτGτ | Ft

)
(5.1)

where F̈ r is given by (4.3). From Assumption 3.1, we deduce the existence of F-
predictable processes ψY,Z,L and ν such that K(τ) = ψY,Z,L •M and m = ν •M .
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Proposition 5.1. The process Y = o(Ŷ 1J0,ϑJ)G
−1 satisfies the F RBSDE, on J0, τK,

Yt = Xτ −
∫

Kt,τK
F rs (Ys) dD

r
s −

∫
Jt,τJ

F gs (Ys) dD
g
s+ −

∫
Kt,τK

zs dM̃s

+
∫

Kt,τK

[
Rs − Ys − (F rs (Rs)− F rs (Ys))∆D

r
s

]
dΓ̃s − (Lτ − Lt)

where Y ≥ X, U = Û , the process Z is the F-reduction of the process Ẑ given by (4.1),
zt := G−1

t−
(
ψY,Z,Lt − Yt−νt

)
is an F-predictable process and L is an F-strongly predictable,

increasing process such that L = L̂ on J0, ϑK and the Skorokhod conditions are satisfied,
that is, (1{Y− 6=X−} • L

r)τ = (1{Y 6=X} ? L
g
+)τ = 0.

Proof. In view of Lemmas 3.4, 4.3 and 4.5 the generators F̂ r, F̂ g and the increasing
process L̂ can be reduced to the filtration F to obtain, on the event {τ ≥ t},

E(Ŷt1{ϑ>t} | Ft) = E
(
Pτ1{ϑ>τ} +Rϑ1{t<ϑ≤τ} + (G̃F̈ r •Dr)τ − (G̃F̈ r •Dr)t

+ (Gfg •Dg
+)τ − (Gfg •Dg

+)t + (Lτ − Lt)1{ϑ>τ} + (Lϑ − Lt)1{t<ϑ≤τ} | Ft
)

= E
(
XτGτ + (G̃F̈ r •Dr)τ − (G̃F̈ r •Dr)t + (Gfg •Dg

+)τ − (Gfg •Dg
+)t

+ ((R+ L) •Ao)τ − ((R+ L) •Ao)t + LτGτ − LtGt | Ft
)

where the mapping F̈ r is given in (4.3). Next, an application of the làglàd product rule
to LG and the equalities G̃ = G− + ∆m and L = L− + ∆Lr yield

LG = L− •m− L− •Ao +G− • L
r +G ? Lg+ + ∆G •∆Lr

= L− •m− L •Ao + G̃ • Lr +G • Lg+.

By combining these computations, we conclude that

Y G = K(τ)− G̃F̈ r •Dr −GF g ? Dg
+ −R •Ao + G̃ • Lr +G ? Lg+

where Y := G−1 o(Ŷ 1J0,ϑJ) and K(τ) is given by (5.1). The backward dynamics of Y can
now be computed from Corollary 4.8

Yt = Xτ −
∫

Kt,τK
F̈s(Ys) dD

r
s −

∫
Jt,τJ

F gs (Ys) dD
g
s+ −

∫
Kt,τK

zs dMs

+
∫

Kt,τK
(Rs − Ys) dΓ̃s +

∫
Kt,τK

G̃−1
s zs d[M,n]s − (Lτ − Lt)

and thus, after rearranging and using (4.3), we obtain the asserted BSDE.
It remains to check that the appropriate Skorokhod conditions are met by the process

L. Recall that the Skorokhod conditions satisfied by L̂r and L̂g are(
1{Ŷ− 6=X−} • L̂

r
)
τ∧ϑ =

(
1{Ŷ 6=X} ? L̂

g
+

)
τ∧ϑ = 0. (5.2)

By integrating the first equality in (5.2) with respect to G−1
− , we obtain(

G−1
− 1J0,ϑK1{Ŷ− 6=X−} • L̂

r
)
τ

= 0.

The equality Ŷ 1J0,ϑJ = Y 1J0,ϑJ implies that Ŷ−1J0,ϑK = Y−1J0,ϑK and (L̂r)ϑ = (Lr)ϑ.
Consequently, since X− = X−1J0,ϑK +Rϑ1Kϑ,∞K, we get(

G−1
− 1J0,ϑK1{Ŷ− 6=X−} • L̂

r
)
τ

=
(
G−1
− 1J0,ϑK1{Y− 6=X−} • L

r
)
τ

= 0.
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Then, by taking the expectation and using the property of the dual F-predictable projec-
tion, we obtain

E((G−1
− 1J0,ϑK1{Y− 6=X−} • L

r)τ ) = E((1{Y− 6=X−} • L
r)τ ),

which implies that Lr obeys the first Skorokhod condition, that is, (1{Y− 6=X−} • L
r)τ = 0.

Similarly, to check the second Skorokhod condition, we integrate the second equality
in (5.2) with respect to G−1 and use the equality L̂g+1J0,ϑJ = Lg+1J0,ϑJ to obtain

(G−11J0,ϑJ1{Ŷ 6=X} ? L̂
g
+)τ = (G−11J0,ϑJ1{Y 6=P} ? L

g
+)τ .

By taking the expectation and using the property of the dual F-optional projection, we
obtain the equality E((1{Y 6=X} ? L

g
+)τ ) = 0, which in turn implies that (1{Y 6=X} ? L

g
+)τ =

0.

5.2 Construction of a solution to G RBSDE

In this section, we relax the postulate that a solution (Ŷ , Ẑ, Û , L̂) exists. In the next
result, we again denote by Û an arbitrary prescribed F-adapted process and we do not
use Lemma 4.5.

Lemma 5.2. Let a process Û ∈ O(F) be given and let (Y,Z, L) be an R×Rd ×R-valued,
F-adapted solution to the F RBSDE, on J0, τK,

Yt = Xτ −
∫

Kt,τK
F rs (Ys, Zs, Ûs) dD

r
s −

∫
Jt,τJ

F gs (Ys, Zs, Ûs) dD
g
s+

+
∫

Kt,τK

[
Rs − Ys −

(
F rs (Rs, Zs, Ûs)− F rs (Ys, Zs, Ûs)

)
∆Dr

s

]
dΓ̃s

−
∫

Kt,τK
Zs dM̃s − (Lτ − Lt)

where Y ≥ X and L is an F-strongly predictable, increasing process such that the
Skorokhod conditions (1{Y− 6=X−} • L

r)τ = (1{Y 6=X} ? L
g
+)τ = 0 hold and L0 = 0. Then the

triplet (Ŷ , Ẑ, L̂) := (Ŷ , Zϑ, Lϑ) where Ŷ is given by

Ŷ := Y0 + 1K0,ϑJ • Y
r + 1K0,ϑJ ? Y

g
+ + (Rϑ − Yϑ−)1Jϑ,∞J1{τ≥ϑ}

is a solution to the G RBSDE, on J0, τ ∧ ϑK,

Ŷt = Xτ∧ϑ −
∫

Kt,τ∧ϑK
F̂ rs (Ŷs, Ẑs, Ûs) dD

r
s −

∫
Jt,τ∧ϑJ

F̂ gs (Ŷs, Ẑs, Ûs) dD
g
s+

−
∫

Kt,τ∧ϑK

[
Rs − Ys −

(
F rs (Rs, Ẑs, Ûs)− F rs (Ys, Ẑs, Ûs)

)
∆Ds

]
dmG

s

−
∫

Kt,τ∧ϑK
Ẑs dM̃s − (L̂τ∧ϑ − L̂t)

where Ŷ ≥ X and L̂ = Lϑ is a G-strongly predictable, increasing process such that the
Skorokhod conditions (1{Ŷ− 6=X̂−} • L̂

r)ϑ∧τ = (1{Ŷ 6=X̂} ? L̂
g
+)ϑ∧τ = 0 are valid and L̂0 = 0.

Proof. It suffices to set Cr := G̃−1F̈ r •Dr + Lr and Cg := F g ? Dg
+ + Lg in the proof of

Lemma 4.10. The required Skorokhod conditions are also met since(
1J0,ϑK1{Ŷ− 6=Xϑ−}

• Lr
)
τ

=
(
1J0,ϑK1{Y− 6=X−} • L

r
)
τ

= 0

and (
1J0,ϑJ1{Ŷ 6=Xϑ} ? L

g
+

)
τ

=
(
1J0,ϑJ1{Y 6=X} ? L

g
+

)
τ

= 0

where we have used the following equalities: Ŷ 1J0,ϑJ = Y 1J0,ϑJ, Ŷ−1J0,ϑK = Y−1J0,ϑK and
X− = X−1J0,ϑK +Rϑ1Kϑ,∞K.
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Proposition 5.3. Let (Y,Z, U, L) be a solution to the F RBSDE, on J0, τK,

Yt = Xτ −
∫

Kt,τK
F rs (Ys) dD

r
s −

∫
Jt,τJ

F gs (Ys) dD
g
s+ −

∫
Kt,τK

Zs dM̃s (5.3)

+
∫

Kt,τK

[
Rs − Ys −

(
F rs (Rs)− F rs (Ys)

)
∆Dr

s

]
dΓ̃s − (Lτ − Lt)

where Y ≥ X, L is an F-strongly predictable, increasing process with L0 = 0 and such
that the Skorokhod conditions (1{Y− 6=X−} • L

r)τ = (1{Y 6=X} ? L
g
+)τ = 0 are obeyed, and

the F-optional process U satisfies, for all t ∈ R+,∫
]0,t]

Us dm
G
s =

∫
]0,t]

[
Rs − Ys −

(
F rs (Rs)− F rs (Ys)

)
∆Dr

s

]
dmG

s . (5.4)

Then (Ŷ , Ẑ, Û , L̂) := (Ŷ , Zϑ, U, Lϑ) where the process Ŷ is given by

Ŷ := Y0 + 1J0,ϑJ • Y
r + 1J0,ϑJ ? Y

g
+ + (Rϑ − Yϑ−)1Jϑ,∞J1{τ≥ϑ}

is a solution to the G RBSDE (3.3) on J0, τ ∧ ϑK, that is,

Ŷt = Xτ∧ϑ −
∫

Kt,τ∧ϑK
F̂ rs (Ŷs) dD

r
s −

∫
Jt,τ∧ϑJ

F̂ gs (Ŷs) dD
g
s+ (5.5)

−
∫

Kt,τ∧ϑK
Ẑs dM̃s −

∫
Kt,τ∧ϑK

Ûs dm
G
s − (L̂ϑ∧τ − L̂t)

where Ŷ ≥ X and L̂ = Lϑ is a G-strongly predictable, increasing process such that the
Skorokhod conditions (1{Ŷ− 6=X̂−} • L̂

r)ϑ∧τ = (1{Ŷ 6=X̂} ? L̂
g
+)ϑ∧τ = 0 hold and L̂0 = 0.

Proof. The assertion of the proposition follows from Lemma 5.2 and similar arguments
as used in Section 4.2 (see, in particular, the proof of Lemma 4.10).

We now focus on the existence of a solution to the constrained F RBSDE (5.3)–(5.4)
from Proposition 5.3. As in Section 4.2, we define the linear transformation

Ȳ := GY, Z̄ := G−Z +G−1Ȳ ν, Ū := U, L̄r := G̃ • Lr, L̄g := G ? Lg

and the transformed generators F̄ r and F̄ g. It is easy to check that if a solution
(Y,Z, U, L) ∈ O(F)×Pd(F)×O(F)×P(F) to the coupled equations (5.3)–(5.4) exists, then
(Ȳ , Z̄, Ū , L̄) ∈ O(F)×Pd(F)×O(F)×P(F) satisfies the following coupled equations (5.6)–
(5.7)

Ȳt = GτXτ −
∫

Kt,τK
F̄ rs (Ȳs, Z̄s, Ūs) dD

r
s −

∫
Jt,τJ

F̄ gs (Ȳs, Z̄s, Ūs) dD
g
s+

−
∫

Kt,τK
Z̄s dMs +

∫
Kt,τK

[
G̃sRs −∆F rs ∆Dr

s

]
dΓ̃s − (L̄τ − L̄t) (5.6)

and ∫
K0,tK

Ūs dm
G
s =

∫
K0,tK

[
(Rs − ȲsG−1

s )− G̃−1
s ∆F rs ∆Dr

s

]
dmG

s (5.7)

where
∆F rs := F̄ rs (GsRs, Z̄s, Ūs)− F̄ rs (Ȳs, Z̄s, Ūs)

and L̄ = L̄r + L̄g satisfies

(1{Ȳ− 6=G−X−} • L̄
r)τ = (1{Ȳ 6=GX} ? L̄

g)τ = 0.

In the reverse, a solution (Y,Z, U, L) to equations (5.3)–(5.4) can be obtained from a
solution (Ȳ , Z̄, Ū) to equations (5.6)–(5.7) by setting Y := G−1Ȳ , Z := G−1

− (Z̄ −G−1Ȳ ν),

U := Ū , Lr := G̃−1 • L̄r and Lg := G−1 ? L̄g.
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5.3 Solution to G RBSDE in the Brownian case

We proceed here similarly to Section 4.4. Let M = W be a d-dimensional Wiener
process and F be its natural filtration. We consider the constrained F RBSDE (5.3)–(5.4)
with F g = 0 and a càdlàg lower barrier X. The goal is again to demonstrate that, in some
specific settings, the coupled equations (5.6)–(5.7) possess a unique solution (Y, Z, U, L).

As before, we write D and F instead of Dr and F r, respectively, and we consider
the case where D = (D1, D2) = (〈W 〉, Γ̃) and F = (F 1, F 2) = (F 1(y, z, u), F 2(y)) for all
(y, z, u) ∈ R×Rd ×R. Then the BSDE (5.3) becomes

Ȳt = GτXτ −
∫

Kt,τK
F̄ 1
s d〈W 〉s −

∫
Kt,τK

F̄ 2
s (Ȳs) dΓ̃s −

∫
Kt,τK

Z̄s dWs

+
∫

Kt,τK

[
G̃sRs −

(
F̄ 2
s (GsRs)− F̄ 2

s (Ȳs)
)
∆Γ̃s

]
dΓ̃s − (L̄τ − L̄t) (5.8)

where F̄ 1
s := F̄ 1

s (Ȳs, Z̄s, Ūs) and equation (5.4) has a solution Ū given by equality (4.20).
The following result gives sufficient conditions for existence of a solution to F RBS-

DEs (5.3) and (5.8) in the case of the Brownian filtration F.

Proposition 5.4. Assume that:
(i) for every t ≥ 0, the map F 1

t : R×Rd×R→ R is bounded and Lipschitz continuous;
(ii) for every t ≥ 0, the map F 2

t : R → R is bounded, Lipschitz continuous and
decreasing;

(iii) the dual F-optional projection Ao has a finite number of discontinuities;
(iv) the process X is càdlàg.
Then the RBSDE (5.8) has a solution (Ȳ , Z̄, L̄) and a solution (Y,Z, L) to (5.3) can be

obtained by setting Y := G−1Ȳ , Z := G−1(Z̄ −G−1Ȳ ν) and L := G̃−1 • L̄.

Proof. Similarly to the proof of Proposition 4.13, in order to obtain a solution (Ȳ , Z̄, L̄)

to the BSDE (4.19), we apply Theorem 2.1 in [20] to the data (X,R, ϑ, F ). We note
that (4.19) is a special case of equation (2.1) in [20] of the form

Ȳt = GτXτ +
∫

Kt,τK
f(s, Ȳs, Z̄s) ds+

∫
Kt,τK

g(s, Ȳs) dĀs −
∫

Kt,τK
Z̄s dWs

+
∑
t<s≤τ

h(s, Ȳs−, Ȳs)− (L̄τ − L̄t)

where (5.8) can be recovered if we set Ā := Γ̃c (the continuous part Γ̃) and

f(s, Ȳs, Z̄s) := −F̄ 1
s (Ȳs, Z̄s, Ūs), g(s, Ȳs) := G̃sRs − F̄ 2

s (Ȳs)

and
h(s, Ȳs−, Ȳs) :=

(
G̃sRs − F 2

s (Ȳs)
)
∆Γ̃s −

(
F̄ 2
s (GsRs)− F̄ 2

s (Ȳs)
)
(∆Γ̃s)

2

where Ū is given by (4.20). Notice that once again h does not depend on Ȳs−. As was
explained in the proof of Proposition 4.13, the assumptions in Theorem 2.1 of [20] are
satisfied and thus a solution (Ȳ , Z̄, L̄) exists. Finally, we observe that the F-predictable,
increasing process L := G̃−1 • L̄ clearly obeys the Skorokhod conditions since

(1{Y− 6=X−} • L)τ = (1{Ȳ− 6=G−X−}G̃
−1 • L̄)τ = 0

and thus the proof is completed.

In Section 6, we deviate from the previous sections and, for given a filtration F, we
focus on BSDE (6.1) and RBSDE (6.12) with the feature that the driver is làglàd and may
shares jumps with the driving martingale. Even when the driver is càdlàg, there is a
gap in the existing literature on BSDEs when the driver shares common jumps with the
driving martingale and thus we develop a jump-adapted method to solve BSDEs of this
general form.
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6 BSDE with a làglàd driver and discontinuous martingales

In the last section, we shall work in a general setting and study solutions to BSDEs
and RBSDEs where the driver is làglàd and may share common jumps with the driving
d-dimensional martingale M . To the best of our knowledge, such results are not yet
available in the literature. More specifically, given a filtration F, we first propose in
Section 6.1 a method of solving the F BSDE

vt = ξτ −
∫

Kt,τK
frs dD

r
s −

∫
Jt,τJ

fgs dD
g
s+ −

∫
Kt,τK

zs dMs (6.1)

where frs := frs (vs−, vs, zs) and fgs := fgs (vs, vs+). In particular, we observe that in the
case where either F g in (4.15) does not depend on U and Z or U in (4.16) can be
solved and does not depend on Z (see, for example, Section 4.4), then the BSDEs (4.15)
and (4.17) can be obtained as a special case of the above BSDE (6.1). In Section 6.2, we
extend this approach to the case of F RBSDEs.

6.1 BSDE with a làglàd driver and common jumps

We present below a jump-adapted method of transforming the làglàd BSDE given
by (6.1) to a system of more tractable càdlàg BSDEs, which in turn can be further
converted into a system of càdlàg BSDEs with a continuous driver. In some special
cases, a solution to the latter BSDE can be obtained by utilizing results from the existing
literature.
Step 1. From a làglàd to càdlàg driver. For simplicity, in the following we denote
D := Dr +Dg so that D is a làglàd process of finite variation. We suppose that the times
of right-hand jumps of D (that is, the moments when ∆+D > 0) are given by the family
(Ti)i=1,2,...,p of F-stopping times and we denote S0 := 0, Si := Ti ∧ τ and Sp+1 := τ . We
note that at each Si we have that v+ − v = fg(v, v+)∆Dg

+, which shows that when the
value of v+ is already known, then the value of v can be obtained as a solution to that
equation. This leads to the observation that a solution (v, z) to (6.1) can be constructed
by first solving iteratively, for every i = 0, 1, . . . , p, the following càdlàg BSDE on each
stochastic interval JSi, Si+1K

vit = ξi −
∫

Kt,Si+1K
frs (vis−, v

i
s, z

i
s) dD

r
s −

∫
Kt,Si+1K

zis dMs (6.2)

where an FSi+1
-measurable random variable ξi is given by the system of equations, for

every i = 0, 1, . . . , p− 1,

vi+1
Si+1
− ξi = fgSi+1

(
ξi, vi+1

Si+1

)
∆+DSi+1

with ξp = ξτ . Then a solution (v, z) to the làglàd BSDE (6.1) is obtained by setting

v :=

p∑
i=0

vi1KSi,Si+1K, z :=

p∑
i=0

zi1KSi,Si+1K.

Step 2. From a càdlàg to continuous driver. In view of (6.2), in the following we focus
on showing that the càdlàg BSDE can be solved, under certain assumptions about the
driver and filtration. We now consider the situation where the filtration F can support
discontinuous martingales (e.g., the Brownian-Poisson filtration) and the driver D is
possibly discontinuous. More specifically, we study the càdlàg BSDE of the form

yt = ξτ −
∫

Kt,τK
frs (ys−, ys, z) dD

r
s −

∫
Kt,τK

zs dMs (6.3)

where a solution (y, z) ∈ O(F)× Pd(F) is such that y is a càdlàg process.
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Remark 6.1. Our interest in the BSDE (6.3) is motivated by the need to understand the
well-posedness of the pre-default BSDE, which is obtained in a nonlinear reduced-form
model without postulating that either condition (C) or (A) holds. The discontinuity in Dr

stems from the discontinuity of the hazard process Γ̃ and, in some financial applications,
the introduction of the nonlinearity can be interpreted as a way to introduce ambiguity
in the recovery and the default intensity (see, e.g., Fadina and Schmidt [21]).

In the following, we suppose that ξτ is bounded and Fτ -measurable and we consider
a more general BSDE

yt = ξτ −
∫

Kt,τK
frs dD

c
s −

∑
t<s≤τ

h(s, ys−, ys)−
∫

Kt,τK
zs dMs (6.4)

where frs := frs (ys−, ys, zs) and Dc is the continuous part of the process Dr.
To recover the BSDE (6.3) from (6.4), it suffices to set h(s, ys−, ys) := frs (ys−, ys)∆D

r
s .

Consequently, we henceforth suppose that h = 0 outside the graph of a finite set of
F-predictable stopping times (Ti)i=1,2,...,p and we denote S0 := 0, Si := Ti ∧ τ and
Sp+1 := τ .

Remark 6.2. Note that a sufficient assumption for the jumps of Dr to be F-predictable
stopping times is to postulate that Dr is an F-predictable, increasing process. Further-
more, observe that the condition that (Ti)i=1,2,...p are F-predictable stopping times can
be relaxed if the mapping h does not depend on y−.

Remark 6.3. Suppose that p = 1 and denote S = S1. Let us assume that a solution
to (6.4) on KS, τK has already been found and our goal is to construct its extension to the
interval J0, τK. We observe that if (y, z) is a solution to (6.4), then

yt = y0 +
∫

K0,tK
frs (ys−, ys, zs) dD

c
s +

∑
0<s≤t

h(s, ys−, ys) +
∫

K0,tK
zs dMs

and hence the jump of the càdlàg process y at time S satisfies

∆yS := yS − yS− = h(S, yS−, yS) + zS ∆MS . (6.5)

By taking the conditional expectation of both sides of (6.5) with respect to FS−, we
obtain the following equation

yS− = E
(
yS − h(S, yS−, yS) | FS−

)
,

which, at least in principle, can be solved for yS− under appropriate additional assump-
tions. Subsequently, one could compute zS from equality (6.5). However, if one decides to
proceed in that way, then to solve the BSDE (6.4) on J0, SK one would need to solve (6.4)
on J0, SJ and thus to study the BSDE driven by the martingale M stopped at S−. Since
this would be quite cumbersome, we propose in Proposition 6.4 an alternative method
where this difficulty is circumvented.

To show the existence of a solution to the BSDE (6.4), we introduce an auxiliary
làglàd BSDE

vt = ξτ − h(τ, vτ−, ξτ )−
∫

Kt,τK
frs (vs−, vs, zs) dD

c
s −

∫
Kt,τK

zs dMs

−
∑
t≤s<τ

h(s, vs−, vs+) (6.6)

where a solution (v, z) ∈ O(F)× Pd(F) is such that v is a làglàd process.
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Proposition 6.4. Let v be a làglàd process such that (v, z) is a solution to the BSDE (6.6)
on J0, τK. Then (y, z) where y := v+1J0,τK + h(τ, vτ−, ξτ )1JτK is a solution to the càdlàg
BSDE (6.4) on J0, τK.

Proof. Suppose that (v, z) is a solution to (6.6). It is clear from (6.6) that the left-hand
and right-hand jumps of v are given by ∆v = z∆M and ∆+v = h(·, v−, v+), respectively.
By the optional sampling theorem, we have that E(vS | FS−) = vS− for any F-predictable
stopping time S. Therefore, if the random variable vS+ is known, then the FS-measurable
random variable vS is a solution to the equation

∆+vS := vS+ − vS = h
(
S,E[vS | FS−], vS+

)
. (6.7)

If we set y := v+ on J0, τJ, then y− = v− and thus

∆yS = yS − yS− = yS+ − yS− = vS+ − vS− = ∆+vS + ∆vS

= h(·, vS−, vS+) + zS ∆MS = h(·, yS−, yS) + zS ∆MS ,

which coincides with (6.5). In the next step, we take inspiration from the proof of
Theorem 3.1 in Essaky et al. [20] and rewrite (6.4) into

vt = ξτ − h(τ, vτ , ξτ )∆Dr
τ −

∫
Kt,τK

frs (vs−, vs, zs) dD
c
s −

∫
Kt,τK

zs dMs −
∑
t≤s<τ

∆+vs.

Recall that, by assumption about h, the right-hand jump times of v are given by the
family (Ti)i=1,2,...,p of F-stopping times and we denote S0 := 0, Si := Ti ∧ τ and Sp+1 := τ .
We observe that a solution (v, z) can be obtained by first solving iteratively the following
càdlàg BSDE on the stochastic interval JSi, Si+1K, for every i = 0, 1, . . . , p,

vit = ξi −
∫

Kt,Si+1K
frs (vis−, v

i
s, z

i
s) dD

c
s −

∫
Kt,Si+1K

zis dMs (6.8)

where ξi is an FSi+1
-measurable random variable determined by the recursive system of

equations, for every i = 0, 1, . . . , p (see (6.7))

vi+1
Si+1
− ξi = h

(
Si+1,E[ξi | FSi+1−], vi+1

Si+1

)
(6.9)

with the terminal condition vp+1
Sp+1

= ξ. In the last step, we aggregate the family of

solutions (vi, zi) for i = 0, 1, . . . , p by setting

v := v0
0 +

p∑
i=0

vi1KSi,Si+1K, z := z0
0 +

p∑
i=0

zi1KSi,Si+1K.

Then, by an application of the Itô formula, one can check that (v, z) is a solution to the
làglàd BSDE (6.6). Furthermore, since ∆yS = vS+ − vS− and the dynamics of y and
v, which are given by (6.4) and (6.6), respectively, are easily seen to coincide on each
stochastic interval KSi, Si+1J, we conclude that (y, z) := (v+, z) is a solution to the càdlàg
BSDE (6.4) once we made the appropriate adjustment to the last jump of size h at the
terminal time τ .

Remark 6.5. Note that if the recovery process R is F-predictable (so that one can
use Ap instead of Ao) and Dr is chosen to be have F-predictable jumps (for instance,
if Dr = (〈M〉, G̃−1 • Ap)), then the transformed BSDE (4.17) has the form (6.4) and h

vanishes outside the graph of a family of F-predictable stopping times. In that case,
assuming that ξi can be solved in (6.9), we would be able to consider jumps of a size h
depending on v−.
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Example 6.6. Let us show that if appropriate conditions are imposed on the inputs
(fr, Dr,M), then a unique solution (vi, zi) to (6.8) can be obtained on each interval
JSi, Si+1K for i = 0, 1, . . . , p and hence a solution (y, z) to (6.4) can be constructed as well.
In the following, we assume that the process 〈M〉 is continuous, the function h does not
depend on v− and

fr(v−, v, z) •D
c = f(v−, v, z) • 〈M〉+ g(v) •B

where B is an F-adapted, bounded, continuous, increasing process and f and g are
some real-valued mappings satisfying appropriate measurability conditions. We note
that, as h does not depend on v−, the assumption that the jump times of Dr (and hence
also (Si)i=1,...,p) are F-predictable stopping times can be relaxed. Furthermore, the
right-hand jumps of the process v are given by ∆+vt = h(t, vt+).

We thus need to analyze the following càdlàg BSDE with a continuous driver, on each
stochastic interval JSi, Si+1K for every i = 0, 1, . . . , p,

dvit = −ft(vit−, vit, zit) d〈M〉t − g(t, vit) dBt − zit dMt,

viSi+1
= vi+1

Si+1
− h
(
Si+1, v

i+1
Si+1

)
,

with the terminal condition vp+1
Sp+1

= ξτ .
Observe that in the case of a Brownian-Poisson filtration F, the existence and unique-

ness of a family of solutions (vi, zi) can be deduced from Theorem 53.1 in Pardoux [44]
under the postulate that f, g and h are bounded and Lipschitz continuous functions, the
process B is bounded, and M = (W, Ñ) where W is a Brownian motion and Ñ is an
independent compensated Poisson process.

Example 6.7. Let the filtration F be the Brownian-Poisson filtration. We consider below
an example given in Gapeev et al. [26] of a supermartingale J valued in (0, 1] which is
the solution to the SDE

dJt = −λJt dt+
b

σ
Jt(1− Jt) dWt, J0 = 1.

The process J takes a multiplicative form Jt = Qte
−λt where Q satisfy

Qt = 1 +
∫ t

0

b

σ
(1− Ju)Qu dWu.

For a fixed p ∈ (0, 1), we consider the supermartingales

G̃t = Jt1{t≤T1} + pJt1{T1<t} = Jt − (1− p)Jt1{T1<t}

and Gt = Jt − (1− p)Jt1{T1≤t} and we observe that, by an application of the Itô formula,
we have

G̃t = 1 +
∫ t

0

b

σ
G̃u(1− Ju) dWu −

∫ t

0
λG̃u du− (1− p)JT1

1{T1<t}.

We know from Jeanblanc and Li [32] that it is possible to construct a random time τ such
that the Azéma optional supermartingale and the Azéma supermartingale associated
with τ are given by G̃ and G, respectively. In the present example, the equality G̃ = G−
holds and the martingale m, the dual F-optional projection Ao and the hazard process
Γ̃ = (G̃−1 •Ao) associated with τ are given by the following expressions

mt = 1 +
∫ t

0

b

σ
G̃u(1− Ju) dWu,

Aot =
∫ t

0
λGu− du+ (1− p)JT1

1{T1≤t},
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and Γ̃t = λt+ (1− p)1{T1≤t} so that Γ̃ct = λt and Γ̃dt = (1− p)1{T1≤t}.
The stopping time T1 can be viewed as a shock to the underlying financial asset

and τ is the timing of a default event. The parameter p ∈ (0, 1) can be regarded as the
conditional probability that the default event occurs at T1 given that the default event has
not occurred before T1. In the following, we denote the compensated Poisson process by
Ñ and for the ease of presentation we set Dr = Γ̃/(1− p) and Dg = Γ̃d−/(1− p) = 1KT1,∞J.
Furthermore, we suppose the generators F r and F d does not depend on Y− and the
constrained BSDE (4.13)-(4.14) reduces to a single BSDE given by

Yt = XT −
∫

Kt,T K

F rs (Ys)

1− p
dΓ̃s −

∫
Jt,T J

F gs (Ys)

1− p
dΓ̃ds +

∫
Kt,T K

b

σ
(1− Js)Z1

s ds−
∫

Kt,T K
Z1
s dWs

−
∫

Kt,T K
Z2
s dÑs +

∫
Kt,T K

[
Rs − Ys − (F rs (Rs)− F rs (Ys))1JT1K(s)

]
dΓ̃s.

On the set {T1 ≤ T}, we observe that the driver of the above BSDE has only one jump
at time T1 and thus on the stochastic interval KT1, T K we need only to find the solution
(y, u) where u = (u1, u2) to the BSDE,

yt = XT −
∫ T

t

[λF rs (ys)

1− p
− b(1− Js)u1

s

σ
− λ(Rs − ys)

]
ds

−
∫ T

t
u1
s dWs −

∫ T

t
u2
s dÑs. (6.10)

At the jump time T1, the right jump of Y is given by ∆+YT1 = F gT1
(YT1) and the

quantity YT1 is obtained by solving the equation yT1 − F
g
T1

(YT1) = YT1 . Assuming that YT1

can be computed, we see that one is required to solve the càdlàg BSDE, on the stochastic
interval J0, T1K,

Yt = YT1 −
∫

Kt,T1K

F rs (Ys)

1− p
dΓ̃s +

∫
Kt,T1K

b

σ
(1−Gs)Z1

s ds−
∫

Kt,T1K
Z1
s dWs −

∫
Kt,T1K

Z2
s dÑs

+
∫

Kt,T1K

[
Rs − Ys − (F rs (Rs)− F rs (Ys))1JT1K(s)

]
dΓ̃s

where the martingale term and the driver may share a common jump at T1. Again, we
observe that the driver jumps at T1 only and the jump size given by

h(T1, YT1
) := F rT1

(YT1
)−

[
RT1
− YT1

− (F rT1
(RT1

)− F rT1
(YT1

))
]
(1− p).

Therefore, the adjusted terminal condition vT1 at T1 equals

vT1
:= YT1

− h(T1, YT1
) = RT1

− F rT1
(RT1

)− p
[
RT1
− YT1

− (F rT1
(RT1

)− F rT1
(YT1

)
]

and we see that we need to solve the following BSDE with a continuous driver, on the
stochastic interval J0, T1K,

vt = vT1
−

∫
Kt,T1K

[λF rs (vs)

1− p
+
b(1− Js) z1

s

σ
+ λ(Rs − vs)

]
ds

−
∫

Kt,T1K
z1
s dWs −

∫
Kt,T1K

z2
s dÑs. (6.11)

To this end, let YT1 be a solution to the equation yT1 − F
g
T1

(YT1) = YT1 . Then a solution
(Y,Z) where Z = (Z1, Z2) on the whole interval J0, T K can be obtained by setting

Y := v1J0,T1K + h(T1, YT1
)1JT1K + y1KT1,T K,

Zi := zi1J0,T1K + ui1KT1,T K.

Let us now consider the set {T1 > T}. Since there are no jumps before T , it suffices to
find (v, z) in (6.11) on the whole interval J0, T K with the terminal condition vT = XT .

To showcase the jump-adapted method outlined above, we provide an exhibit
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T

yT1 = YT1+

YT1

vT1
= YT1

− h(T1, YT1
)

XT

T1

vT1− = YT1−

F g
T1

(YT1
)

h(T1, YT1
)

solve for (y, u)solve for (v, z)

We point out that since (1−J) is bounded by one then, when considering (6.10) and (6.11),
we do not need to study the transformed BSDE given in (4.17)-(4.18). This is because,
given appropriate assumptions on F r, the linear growth conditions in z can be easily
verified here.

6.2 RBSDE with a làglàd driver and common jumps

Following the structure of Section 6.1, for a given filtration F, we focus on F RBSDEs
of the form

vt = ξτ −
∫

Kt,τK
frs (vs−, vs, zs) dD

r
s −

∫
Jt,τJ

fgs (vs, vs+) dDg
s+

−
∫

Kt,τK
zs dMs + lrτ − lrt + lgτ − l

g
t (6.12)

where lr and lg satisfy (1{v− 6=ξ−} • l
r)τ = (1{v 6=ξ} ? l

g)τ = 0. We observe that in the case
where F g in (5.3) does not depend on U and Z or that U in (5.4) can be solved and does
not depend on Z (for an example, see Section 5.3), then RBSDEs (5.3) and (5.6) can be
obtained as a special case of the above RBSDE (6.12). Similar to the non-reflected case,
we present below a jump-adapted method to reduce the làglàd RBSDE (6.12) to a system
of càdlàg RBSDEs, which can be further reduced to a system of càdlàg RBSDEs with
continuous drivers.
Step 1. From a làglàd to càdlàg driver. By examining the right-hand jumps of v, that is,
∆+v, and the Skorokhod condition satisfied by lg, we observe that ∆+v and ∆lg+ must
satisfy the conditions

v+ − v = fg(v+, v)∆Dg
+ + ∆lg+, (v − ξ)∆lg+ = 0,

which in turn implies that

∆lg+ =
(
ξ − (v+ − fg(v, v+)∆Dg

+)
)+
, v = ξ ∨

(
v+ − fg(v, v+)∆Dg

+

)
.

We thus see that at the jump times of lg+ and Dg
+ the quantity v can be computed by

solving the second equation (of course, assuming that a solution exists) and ∆lg+ can be
obtained by substitution. In particular, if fg does not depend on v, then it is clear that
we have

∆lg+ = (ξ − (v+ − fg(v+)∆Dg
+))+, v = ξ ∨ (v+ − fg(v+)∆Dg

+).
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These arguments lead to the observation that a solution (v, z, l) to (6.12) can be con-
structed by solving iteratively, for every i = 0, 1, . . . , p, the following càdlàg RBSDE on
JSi, Si+1K

vit = ξi −
∫

Kt,Si+1K
hrs(v

i
s−, v

i
s, z

i
s) dD

r
s −

∫
Kt,Si+1K

zis dMs + liSi+1
− lit (6.13)

where the càdlàg increasing process li obeys the Skorokhod condition (1{ξ−=vi−} • l
i) = 0

and (ξi,∆lgSi+1+) are FSi+1
-measurable random variables such that ∆lgSp+1+ = 0, ξp = ξτ

and for i = 0, 1, . . . , p− 1,

∆lgSi+1+ =
(
ξSi+1 − (vi+1

Si+1
− hgSi+1

(ξi, vi+1
Si+1

)∆Dg
Si+1+)

)+

,

ξi = ξSi+1 ∨
(
vi+1
Si+1
− hgSi+1

(ξi, vi+1
Si+1

)∆Dg
Si+1+

)
.

Then a global solution (v, z, l) where l = lr + lg is obtained by setting

v = v0 +

p∑
i=0

vi1KSi,Si+1K, z = z0 +

p∑
i=0

zi1KSi,Si+1K,

lr =

p∑
i=0

(li−1
Si

+ li)1KSi,Si+1K, lg =

p∑
i=1

∆lgSi+1KSi,∞J,

where l−1
0 = 0, v0 = v0

0 and z0 = z0
0 .

Step 2. From a càdlàg to continuous driver. In view of the càdlàg RBSDE (6.13), we
study the RBSDE of the form

yt = ξτ −
∫

Kt,τK
frs (ys−, ys, zs) dD

r
s −

∫
Kt,τK

zs dMs + lτ − lt (6.14)

where a solution (y, z, l) ∈ O(F)× Pd(F)× P(F) is such that y is a càdlàg process and l
is a càdlàg, increasing process such that (1{y− 6=ξ−} • l)τ = 0 and l0 = 0. In the following,
we consider a more general RBSDE of the form

yt = ξτ −
∫

Kt,τK
frs (ys−, ys, zs) dD

c
s −

∑
t<s≤τ

h(s, ys−, ys)−
∫

Kt,τK
zs dMs + lτ − lt (6.15)

where a solution (y, z, l) ∈ O(F)×Pd(F)×P(F) is such that y is a càdlàg and l is a càdlàg
increasing process such that (1{y− 6=ξ−} • l

r)τ = 0 and l0 = 0.
To recover equation (6.14) from (6.15), it suffices to set h(s, ys−, ys) := frs (ys−, ys)∆D

r
s .

In view of this observation, we further suppose that h = 0 outside the graph of a finite
family of F-predictable stopping times (Ti)i=1,2,...,p and we denote S0 = 0, Si = Ti ∧ τ
and Sp+1 = τ . To examine the existence of a solution to the RBSDE (6.15), we introduce
an auxiliary RBSDE

vt = ξτ − h(τ, vτ−, ξτ )−
∫

Kt,τK
frs (vs−, vs, zs) dD

c
s

−
∑
t≤s<τ

h(s, vs−, vs+)−
∫

Kt,τK
zs dMs + lτ − lt (6.16)

where a solution (v, z, l) is such that v is a làglàd, F-adapted process, the process z is
F-predictable and the process l obeys the Skorokhod condition (1{v− 6=ξ−} • l)τ = 0 and
l0 = 0.

Proposition 6.8. Let v be a làglàd process such that (v, z, l) is a solution to the RB-
SDE (6.16) on J0, τK. Then (y, z, l) where y := v+1J0,τK+h(τ, vτ−, ξτ )1JτK solves the càdlàg
RBSDE (6.15) on J0, τK.
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Proof. Suppose that (v, z, l) is a solution to (6.15). It is clear from (6.15) that the left-
hand and right-hand jumps of v are given by ∆v = z∆M + ∆l and ∆+v = h(·, v−, v+),
respectively. Note that l must satisfy the reflection condition (vS− − ξS−)∆lS = 0 and, by
the optional sampling theorem, we have that E[vS | FS−] = vS− + ∆lS for any F-stopping
time S. Then, by solving these two equations, we obtain

vS− = ξS− ∨ E[vS | FS−], ∆lS =
(
ξS− − E[vS | FS−]

)+
.

Therefore, if the random variable vS+ is known, then the FS-measurable random variable
vS is a solution to the equation

∆+vS := vS+ − vS = h
(
S, ξS− ∨ E[vS | FS−], vS+

)
.

Recall that, by assumption about h, the right-hand jump times of v are given by the
family (Ti)i=1,2,...,p of F-predictable stopping times and we denote S0 = 0, Si = Ti ∧ τ
and Sp+1 = τ . We observe that a solution (v, z, l) can be constructed by first solving by
iteration, for every i = 0, 1, . . . , p, the following càdlàg RBSDE on the stochastic interval
JSi, Si+1K

vit = ξi −
∫

Kt,Si+1K
frs (vis−, v

i
s, z

i
s) dD

c
s −

∫
Kt,Si+1K

zis dMs + liSi+1
− lit

where, for every i = 0, 1, . . . , p, we have 1{vi−6=ξ−}∩KSi,Si+1K • l
i = 0 and we denote by ξi

an FSi+1
-measurable random variable satisfying vp+1

Sp+1
= ξτ and

vi+1
Si+1
− ξi = h

(
Si+1, ξSi+1− ∨ E[ξi | FSi+1−], vi+1

Si+1

)
.

We aggregate the family of solutions (vi, zi) for i = 0, 1, . . . , p by setting l−1
0 = 0 and

v = v0
0 +

p∑
i=0

vi1KSi,Si+1K, z = z0
0 +

p∑
i=0

zi1KSi,Si+1K, l =

p∑
i=0

(li−1
Si

+ li)1KSi,Si+1K.

Using the Itô formula, one can check that (v, z, l) satisfies the làglàd RBSDE (6.15) and
l is increasing and satisfies (1{v− 6=ξ−} • l)τ = 0. Furthermore, since ∆yS = vS+ − vS−
and the dynamics of y and v (see (6.15) and (6.16), respectively) are easily seen to
coincide on KSi, Si+1J, we conclude that (y, z, l) := (v+, z, l) is a solution to the càdlàg
RBSDE (6.15) once we made the appropriate adjustment to the last jump of size h at the
terminal time τ , since v− = y− and (1{v− 6=ξ−} • l)τ = 0.

Example 6.9. Here we show that if appropriate conditions are imposed on the inputs
data (f,D,M), then a unique solution (vi, zi) to (6.8) can be obtained on each interval
JSi, Si+1K for i = 0, 1, . . . , p and thus a solution (y, z, l) to (6.4) can be constructed. In the
following, we assume that the process 〈M〉 is continuous, the function h does not depend
on v− and

fr(v−, v, z) •D
c = f(v−, v, z) • 〈M〉+ g(v) • C

where C is an F-adapted, continuous, increasing process. Furthermore, f and g are
some real-valued mappings that satisfies appropriate measurability conditions.

We note that since h does not depend on v−, the assumption that the jumps of D
occur at F-predictable stopping times can be relaxed and the right-hand jumps of v are
given by ∆+vt = h(t, vt+). Hence one is required to solve the following càdlàg RBSDE
with continuous drivers, on each stochastic interval JSi, Si+1K for i = 0, 1, . . . , p,

dvit = −ft(vit, zit) dt− gt(vit) dDc
t − zit dMt + dlit,

viSi+1
= vi+1

Si+1
− h
(
Si+1, v

i+1
Si+1

)
,
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where vp+1
Sp+1

= ξ and li ∈ P(F) is a càdlàg, increasing process with li0 = 0 and such that
the following equality holds

1{vi− 6=ξ−}∩KSi,Si+1K • l
i = 0.

In the case where F is a Poisson filtration or, more generally, is generated by the
Teugels martingales (see Nualart and Schoutens [43] or Schoutens and Teugels [49]),
the existence and uniqueness of a solution (vi, zi, li) can be obtained by an application of
Theorem 5 in Ren and El Otmani [48] under the postulate that f, g and h are bounded
and Lipschitz continuous functions, the process D is bounded, and M is the compensated
Poisson process.

7 Appendix

We assume that the process R is F-optional and we define the làglàd process Q by

Q := K −R •Ao + C = K −R •Ao + Cr + Cg

where K is an F-local martingale and C is a làdlàg process of finite variation. If Y is a
làdlàg process of finite variation or, more generally, an optional semimartingale (which,
by definition, is assumed to be a làdlàg process), then Y admits the decomposition
Y = Y r + Y g where Y gt :=

∑
s<t(Ys+ − Ys) and the càdlàg process Y r is given by

Y r := Y − Y g.
Lemma 7.1. Assume that G > 0. Then the process G−1 satisfies

G−1 = G0 −G−2
− • m̃+G−1 • Γ̃ (7.1)

where Γ̃ := G̃−1 •Ao and m̃ := m− G̃−1 • [m,m]. Moreover, for the càdlàg process

Qr := K −R •Ao + Cr

we have that

[Qr, G−1] = −G−1G−1
−
(
[K,m]− [K,Ao] + [Cr, G]

)
−R∆G−1 •Ao. (7.2)

Proof. For brevity, we write [G] := [G,G] and [m] = [m,m]. The Itô formula yields

G−1 = G−1
0 −G

−2
− •G+G−1G−2

− • [G] = G−1
0 −G

−2
− • J (7.3)

where J := G−G−1 • [G]. Since G = m−Ao and thus ∆G = ∆m−∆Ao, we obtain

[G] = [m]− [m,Ao] + [Ao, Ao] = [m]−∆m •Ao − (∆m−∆Ao) •Ao

= [m]−∆m •Ao −∆G •Ao

so that

J = G−G−1 • [G] = m−A
o −G−1 • [m] +G−1

(
∆m •Ao + ∆G •Ao

)
.

Using the equalities m̃ = m− G̃−1 • [m] and ∆m = G̃−G−, we get

J = m̃+ G̃−1 • [m]−Ao −G−1 • [m]−G−1
(
(G̃−G−) •Ao −∆G •Ao

)
.

Since G̃−G = ∆Ao, we also have that

(G̃−1 −G−1) • [m] = G−1G̃−1(G− G̃) • [m] = −G−1G̃−1∆Ao • [m]

= −G−1G̃−1(∆m)2 •Ao = −G−1G̃−1(G̃−G−)2 •Ao.
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Consequently,

J = m̃−Ao +G−1
(
G̃−G− + ∆G− G̃−1(G̃−G−)2

)
•Ao = m̃−G−1G2

− • Γ̃,

which, when combined with (7.3), shows that (7.1) is valid. To establish (7.2), we first
compute

[Qr, G−1] = −G−2
− • [Qr, G] +G−1G−2

− • [Qr, [G]]

= −G−2
− • [Qr, G] +G−1G−1

− ∆G • [Qr, G] = −G−1G−1
− • [Qr, G].

Finally, using the equalities ∆G = −GG−∆G−1 and G = m−Ao, we obtain

[Qr, G−1] = −G−1G−1
− • [Qr, G] = G−1G−1

− R • [Ao, G]−G−1G−1
− •

(
[K,G] + [Cr, G]

)
= −G−1G−1

− •
(
[K,G] + [Cr, G]

)
−R∆G−1 •Ao

= −G−1G−1
− • ([K,m]− [K,Ao] + [Cr, G])−R∆G−1 •Ao

and thus equality (7.2) is proven as well.

We maintain the assumption that G > 0 (and thus also G̃ > 0) and we consider the
process

Y := G−1Q = G−1(K −R •Ao + C). (7.4)

Our goal is to derive the dynamics of Y in terms of Γ̃, m̃ and

K̃ := K − G̃−1 • [K,m].

In the proof of Lemma 7.3, we will employ the optional integration by parts formula.
Recall that, by definition, any semimartingale is a càdlàg process but an optional
semimartingale is not necessarily a càdlàg process although, by definition, it is a làdlàg
process.

Let X = Xr +Xg and Y = Y r + Y g be làglàd optional semimartingales such as Y is
of finite variation. Then the optional integration by parts formula reads (see Theorem
8.2 in Gal’čuk [24])

XY = X0Y0 +X ◦ Y + Y ◦X + [X,Y ] (7.5)

where the optional stochastic integrals are given by

X ◦ Y = X− • Y
r +X ? Y g+,

Y ◦X = Y− •X
r + Y ? Xg

+,

where Xg
+ (respectively, Y g+) is the càdlàg version of the càglàd process Xg (respectively,

Y g) and the quadratic covariation [X,Y ] equals

[X,Y ]t =
∑

0<s≤t

∆Xs∆Ys +
∑

0≤s<t

∆+Xs∆
+Ys

where we denote ∆Xt = Xt −Xt− and ∆+Xt = Xt+ −Xt.
For the reader’s convenience, we formulate a variant of the optional integration by

parts formula (7.5), which holds when X = Xr is a (càdlàg) semimartingale and Y = Y g

is a càglàd process of finite variation.

Lemma 7.2. Let X = Xr be a semimartingale and let Y = Y g be a càglàd process of
finite variation. Then the process XY is làdlàg and satisfies, for every 0 ≤ s < t,

XtYt = XsYs +
∫

Ks,tK
Yu dXu +

∫
Js,tJ

Xu dY
g
u+ (7.6)

where Y g+ is the càdlàg version of Y g.
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We will use the shorthand notation for (7.6)

XY = X0Y0 + Y •X +X ? Y g+

but all equalities in the proof of Lemma 7.3 should be understood in the sense of (7.6),
meaning that all integrals with respect to a càdlàg (respectively, càglàd) process should
be evaluated on the interval Ks, tK (respectively, on the interval Js, tJ) for arbitrary
0 ≤ s < t.

Lemma 7.3. If the process Y is given by (7.4) where C is a làdlàg process of finite
variation with the decomposition C = Cr + Cg, then

Yt = Y0 −
∫

K0,tK
(Rs − Ys) dΓ̃s −

∫
K0,tK

Ys−G
−1
s− dm̃s +

∫
K0,tK

G−1
s− dK̃s (7.7)

+
∫

K0,tK
G̃−1
s dCrs +

∫
J0,tJ

G−1
s dCgs+.

Proof. We note that Q satisfies

Q = K −R •Ao + C = K −R •Ao + Cr + Cg = Qr + Cg

where

Qr = K −R •Ao + Cr = K̃ + G̃−1 • [K,m]−R •Ao + Cr.

The integration by parts formulas applied to Y = G−1Q = G−1Qr +G−1Cg gives

Y = G−1Qr +G−1Cg

= Y0 +Q− •G
−1 +G−1

− •Qr + [Qr, G−1] +G−1 ? Cg+ (7.8)

since G−1 and Qr are (càdlàg) semimartingales and thus the Itô integration by parts
formula applied to the product G−1Qr yields

G−1Qr = Qr− •G
−1 +G−1

− •Qr + [Qr, G−1]

whereas the optional integration by parts formula from Lemma 7.2 gives

G−1Cg = Cg •G−1 +G−1 ? Cg+.

From (7.2) and (7.8), we obtain

Y = Y0 − Q−
(
G−2
− • m̃−G−1 • Γ̃

)
+G−1

− •
(
K̃ + G̃−1 • [K,m]−R •Ao + Cr

)
−G−1

− G−1
(
[K,m]− [K,Ao] + [Cr, G]

)
−R∆G−1 •Ao +G−1 ? Cg+ (7.9)

= Y0 − Y−G−1
− • m̃+G−1

− • K̃ +K +H

where

K := G−1
− • Cr +G−1 ? Cg+ −G−1G−1

− • [Cr, G]

= G−1
− • Cr +G−1 ? Cg+ −G−1G−1

− ∆G •∆Cr = G−1 • Cr +G−1 ? Cg+

and

H := G−1G−1
− ∆K •Ao +G−1

−
(
G̃−1 −G−1

)
• [K,m]

−RG−1 •Ao + Y−G
−1G−G̃

−1 •Ao =

4∑
i=1

Hi.
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We first recall that ∆Ao = G̃−G and ∆m = G̃−G−. Therefore,

H1 +H2 = G−1G−1
− ∆K •Ao +G−1

−
(
G̃−1 −G−1

)
• [K,m]

= G−1G−1
−
(
∆K •Ao − G̃−1∆Ao • [K,m]

)
= G−1G−1

−
(
∆K •Ao − G̃−1∆K∆m •Ao

)
= G−1G−1

−
(
∆K − G̃−1(G̃−G−)∆K

)
•Ao = G−1G̃−1∆K •Ao.

Next, we deduce from (7.4) that

∆K = ∆(Y G) +R∆Ao −∆Cr = ∆(Y G) +R(G̃−G)−∆Cr

and thus

H = G−1G̃−1
(
∆(Y G) +R(G̃−G)−∆Cr

)
•Ao −RG−1 •Ao + Y−G

−1G−G̃
−1 •Ao

= G−1G̃−1
(
Y G+R(G̃−G)−∆Cr

)
•Ao −RG−1 •Ao

= G̃−1Y •Ao −G−1G̃−1∆Cr •Ao −RG̃−1 •Ao

= G̃−1Y •Ao −G−1G̃−1∆Ao • Cr −RG̃−1 •Ao

= (Y −R) • Γ̃ + (G̃−1 −G−1) • Cr.

To complete the derivation of (7.7), it suffices to substitute K and H into (7.9).

In the next lemma, which is a counterpart of Lemma 7.3, we study the dynamics of
the process Ỹ given by

Ỹ := G̃−1
(
M − (R ? Ao)

)
(7.10)

where the F-martingale M is defined as follows, for every t ∈ [0, T ],

Mt := EP
[
PT G̃T + (R ? Ao)T | Ft

]
.

Notice that the process Ỹ given by (7.10) is related to the payoff PT1{ϑ≥T} +Rϑ1{ϑ<T},
which is encountered in credit risk modeling (see, e.g., Li et al. [38]). We recall that

(R ? Ao)t =

∫
[0,t[

Rs dA
o
s

and thus R ? Ao is a left-continuous process.

Lemma 7.4. If G̃0 = G0 then the process Ỹ given by (7.10) satisfies

Ỹ = Ỹ0 +G−1
− • M̃ − Ỹ−G−1

− • m̃− (R− Ỹ+) ? Γ̃ (7.11)

where M̃ := M − G̃−1 • [M,m] and m̃ := m− G̃−1 • [m,m].

Proof. Note that

Ỹ = G̃−1(M −R ? Ao) = G̃−1H

where we denote H = M −R ? Ao. Since

G̃−1 = G0 −G−2
− • m̃+G−1 ? Γ̃

the integration by parts formula gives

Ỹ = G̃−1 (M −R ? Ao) = G̃−1H

= G̃−1
− •Hr + G̃−1 ? Hg +H− • (G̃r)−1 +H ? (G̃g)−1 + [Hr, (G̃r)−1] + [Hg, (G̃g)−1]

= G̃−1
− •Hr −R ? Γ̃g +H− • (G̃r)−1 +H+G

−1 ? Γ̃g + [Hr, (G̃r)−1]

= G̃−1
− •Hr +H− • (G̃r)−1 + [Hr, (G̃r)−1]−

(
R−H+G

−1
)
? Γ̃g

= G̃−1
− •M −R • Γ̃c −H− •G−2

− • m̃+H−G
−1 • Γ̃c + [Hr, (G̃r)−1]−

(
R−H+G

−1
)
? Γ̃g

= G̃−1
− •M −H−G−2

− • m̃+G−2
− • [M, m̃]−

(
R−H−(G−)−1

)
• Γ̃c −

(
R−H+G

−1
)
? Γ̃g.
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Using the equalities Ỹ = G̃−1H, M̃ = M − G̃−1 • [M,m] and

G̃−1
− •M = G̃−1

− • M̃ + G̃−1
− G̃−1 • [M,m]

G−2
− • [M, m̃] = G−2

− • [M,m]−G−2
− G̃−1∆m • [M,m] = −G̃G−1

− • [M,m]

combined with the property that Ỹ has at most countable number of jumps, we obtain

Ỹ = G−1
− • M̃ − Ỹ−G−1

− • m̃− (R− Ỹ−) • Γ̃c − (R− Ỹ+) ? Γ̃g

= G−1
− • M̃ − Ỹ−G−1

− • m̃− (R− Ỹ+) ? Γ̃

as was required to show.
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