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Local limit theorems for a directed random walk on
the backbone of a supercritical oriented percolation
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Abstract

We consider a directed random walk on the backbone of the supercritical oriented
percolation cluster in dimensions d+ 1 with d ≥ 3 being the spatial dimension. For
this random walk we prove an annealed local central limit theorem and a quenched
local limit theorem. The latter shows that the quenched transition probabilities of
the random walk converge to the annealed transition probabilities reweighted by a
function of the medium centred at the target site. This function is the density of the
unique measure which is invariant for the point of view of the particle, is absolutely
continuous with respect to the annealed measure and satisfies certain concentration
properties.
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1 Introduction

Random walks in a static or dynamic random environment arise in different models
from physical and biological sciences. The investigation of such random walks under
different conditions on the environment has been an active research area with a lot of
recent progress. In this paper, we analyse a directed random walk on the backbone of a
supercritical oriented percolation cluster on Zd ×Z. This random walk was introduced
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Local limit for random walk on oriented percolation

and studied in [4]. There it was shown that the random walk satisfies a law of large
numbers and a quenched central limit theorem for all spatial dimensions d ≥ 1. The main
purpose of this work is to extend these results and derive a quenched local limit theorem.
For this, we will have to restrict ourselves to spatial dimensions d ≥ 3. Analogous results
for a class of ballistic random walks in uniformly elliptic i.i.d. random environments were
recently obtained in [2]. This paper has been an inspiration and a guide for the present
study.

1.1 The model and background

Consider a discrete space-time field ω := {ω(x, n) : (x, n) ∈ Zd ×Z} of i.i.d. Bernoulli
random variables with parameter p ∈ [0, 1], defined on some (large enough) probability
space equipped with a probability measure P. We denote the set of possible values for ω
by Ω := {0, 1}Zd×Z, which we endow with the product topology.

As common in percolation theory, a space-time site (x, n) ∈ Zd ×Z is said to be open
if ω(x, n) = 1 and closed if ω(x, n) = 0. A directed open path (with respect to ω) from
(x,m) to (y, n) for m ≤ n is a space-time sequence (xm,m), . . . , (xn, n) such that xm = x,
xn = y, ‖xk − xk−1‖ ≤ 1 for k = m+ 1, . . . , n and ω(xk, k) = 1 for all k = m, . . . , n. Here,
and in the following ‖·‖ denotes the sup-norm on Rd. We will write (x,m)

ω−→ (y, n) if
such an open path exists and (x,m)

ω−→ ∞ if there exists at least one infinite directed
open path starting at (x,m), i.e. if for each n > m there is y ∈ Zd so that (x,m)

ω−→ (y, n).
It is well known that there is pc = pc(d) ∈ (0, 1) such that P

(
(0, 0)

ω−→ ∞
)
> 0 if and

only if p > pc; see e.g. Theorem 1 in [15]. We consider here only the case of a fixed
p ∈ (pc, 1]. We define by

C :=
{

(x, n) ∈ Zd ×Z : (x, n)
ω−→∞

}
(1.1)

the backbone of the space-time cluster of the oriented percolation, i.e. the set of all
space-time sites which are connected to “time +∞” by a directed open path. Note that
C depends on ω and that we have P(|C| = ∞) = 1 for p > pc. For future reference we

define the process ξ := (ξn)n∈Z on {0, 1}Zd by

ξn(x) = 1C
(
(x, n)

)
. (1.2)

The process ξ can be interpreted as the time reversal of the stationary discrete time
contact process. In particular, for any n ∈ Z the random field ξn(·) is distributed
according to the upper invariant measure of the discrete time contact process, which is
non-trivial in the case p > pc. For more details we refer the reader to Section 1 (around
equation (1.2)) in [4], see also [5].

Our goal is to study the directed random walk on the cluster C. This random walk
was studied in [4] in the case that the initial point of the random walk belongs to the
cluster. Here we want to compare the annealed and quenched laws for starting points
without checking whether they are on the cluster or not. Thus, we define the random
walk slightly differently: It behaves as a simple random walk (which jumps uniformly
to one of the sites in the unit ball around the present site) as long as it is not on the
cluster and once it hits the cluster it will behave as the random walk from [4]. For a site
(x, n) ∈ Zd ×Z we define its neighbourhood at time (n+ 1) by

U(x, n) := {(y, n+ 1) : ‖x− y‖ ≤ 1}. (1.3)

Given ω and therefore the random cluster C and (y,m) ∈ Zd × Z we consider random
walks (Xn)n≥m with initial position Xm = y and transition probabilities for n ≥ m given
by

P(Xn+1 = z |Xn = x, ω) =

{
|U(x, n) ∩ C|−1 if (x, n) ∈ C and (z, n+ 1) ∈ C,
|U(x, n)|−1 if (x, n) /∈ C,

(1.4)
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Local limit for random walk on oriented percolation

for (z, n+ 1) ∈ U(x, n), and otherwise P(Xn+1 = z |Xn = x, ω) = 0. We write Pω for the
conditional law of P given ω and Eω for the corresponding expectation. In particular, for
the transition probabilities we have

Pω(Xn+1 = z |Xn = x) = P(Xn+1 = z |Xn = x, ω). (1.5)

For the above random walk starting from position Xm = y ∈ Zd at time m ∈ Z we denote
by P (y,m)

ω its quenched law and by E(y,m)
ω the corresponding expectation. The annealed

(or averaged) law of that random walk is denoted by P(y,m) and its expectation by E(y,m).
Note that for any A ∈ σ(Xn : n = m,m+ 1, . . . ) we have

P(y,m)(A) =

∫
P (y,m)
ω (A) dP(dω). (1.6)

1.2 Main results: annealed and quenched local limit theorems

In Theorem 1.1 in [4] it is shown that the random walk (Xn) starting in 0 ∈ Zd at time
0 satisfies an annealed central limit theorem and the limiting law is a non-trivial centred
isotropic d-dimensional normal law. In particular its covariance matrix Σ is of the form
σ2Id for a positive constant σ2 and the d-dimensional identity matrix Id. Recall that in
[4] it is assumed that the space-time origin is contained in C so that the random walk
starts and stays on C. This is not a big constraint because the time a random walk needs
to hit the cluster C has exponentially decaying tails; see Lemma B.1 in the appendix.

The annealed CLT from [4] can be strengthened to an annealed local CLT. For a proof
of the following theorem we refer to Section 3.

Theorem 1.1 (Annealed local CLT). For d ≥ 1 and Σ as above we have

lim
n→∞

∑
x∈Zd

∣∣∣P(0,0)(Xn = x)− 1

(2πn)d/2
√

det Σ
exp
(
− 1

2n
xTΣ−1x

)∣∣∣ = 0. (1.7)

Theorem 3.1 in [4] extends the annealed CLT therein to a quenched version with the
same limiting law. Thus, the quenched and annealed laws after N steps are comparable
on the level of boxes of side length N1/2. This result was later refined in [21, Chapter 3],
where a comparison result between the quenched and annealed laws after N steps on
the level of boxes of side length Nθ/2 for θ ∈ (0, 1) was obtained. (We recall this result in
Theorem 8.1 below.)

The main goal of this paper is to strengthen this further and prove a quenched local
limit theorem which is an analogue of Theorem 1.1. In order to state the precise result,
we need to introduce some notation. First, for (y,m) ∈ Zd ×Z, we define the space-time
shift operator σ on Ω by

σ(y,m)ω(x, n) := ω(x+ y, n+m) (1.8)

and we write ξm(y;ω) for ξm(y) read off from a given realization ω as in (1.1) and (1.2).
We define the transition kernel for the environment seen from the particle (compare this
with (1.4)) by

Rf(ω) :=
∑
‖y‖≤1

g(y;ω)f(σ(y,1)ω) (1.9)

acting on bounded measurable functions f : Ω→ R, where

g(y;ω) := 1{ ∑
‖z‖≤1

ξ1(z;ω)>0, ω(0,0)=1}
ξ1(y;ω)∑

‖z‖≤1

ξ1(z;ω)
+ 1{ ∑

‖z‖≤1

ξ1(z;ω)=0 or ω(0,0)=0}
1

3d
. (1.10)
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Definition 1.2. A measure Q on Ω is called invariant with respect to the point of view
of the particle if for every bounded continuous function f : Ω→ R∫

Ω

Rf(ω) dQ(ω) =

∫
Ω

f(ω) dQ(ω). (1.11)

Theorem 1.3. Let d ≥ 3 and p ∈ (pc, 1]. Then there exists a unique measure Q on Ω

which is invariant with respect to the point of view of the particle satisfying Q� P and
the concentration property (2.9) below.

The main result of this paper is a quenched local limit theorem which is an analogue
of Theorem 1.11 in [2] in the case of our model.

Theorem 1.4 (Quenched local limit theorem). Let d ≥ 3 and p ∈ (pc, 1], let Q be the
measure from Theorem 1.3 and denote by ϕ = dQ/dP ∈ L1(P) the Radon–Nikodym
derivative of Q with respect to P. Then for P almost every ω we have

lim
n→∞

∑
x∈Zd

∣∣P (0,0)
ω (Xn = x)− P(0,0)(Xn = x)ϕ(σ(x,n)ω)

∣∣ = 0. (1.12)

Remark 1.5 (Theorem 1.4 for d = 1, 2). While this paper was under review, inspired
by work of Tal Peretz [20], we found a way to prove the crucial quenched annealed-
comparison result Theorem 8.1, which we quote from [21] for d ≥ 3, also for d = 1, 2.
Consequently, all intermediate results can be carried over to d = 1, 2 and this allows to
prove Theorem 1.4 for d = 1, 2 as well. The details will be presented in future work.

Remark 1.6 (Uniqueness of Q). By a general argument (see e.g. [2, Section 7.1]), when
it exists the function ϕ in (1.12) is P almost surely unique. Furthermore, it will follow
from the arguments in the proofs below (cf. also Remark 2.6) that if a measure Q′ on Ω is
invariant with respect to the point of view of the particle and satisfies Q′ � P and (1.12)
with ϕ′ = dQ′/dP then this measure Q′ satisfies the concentration property (2.9) as well
and thus in particular agrees with Q.

Related literature Random walks in static and dynamic random environments is a
very active research area. For a review of random walks in random environments and
basic concepts and objects we refer the reader to [22]; for a more recent review see
[12].

The random walk that we consider here can be seen as a random walk in a dynamic
random environment. Its relation to random walks in dynamic random environments
in the literature is discussed in some detail in [4, Remark 1.7]. The main differences
are that the random environment is not uniformly elliptic and is not i.i.d. In fact the
environment that we consider here has even infinite range dependencies, due to the
fact that the steps of the random walk are restricted to the backbone of the oriented
percolation cluster once it hits the cluster. The environment also does not satisfy mixing
conditions such as (conditional) cone-mixing in contrast to the model considered in [16].
In [7] a much weaker mixing assumption than cone-mixing is introduced (literally for a
continuous time model) and our model does satisfy their assumption. However, they only
prove a LLN for a nearest neighbour random walk in d = 1. A comprehensive overview
of the recent literature on random walks in dynamic random environments can be found
in the introduction of [7]. See also [6, Remark 1.1].

Results on quenched local limit theorems for random walks in random environments
are very recent. Our research is inspired by [2] where a quenched local limit theorem
was shown (in dimension d ≥ 4) for the case of an i.i.d. random environment and where
the random walk satisfies a ballisticity criterion and has uniformly elliptic transition
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probabilities. (Note that ballisticity in the “time” direction is trivial in our model. Uniform
ellipticity and the i.i.d. property are not satisfied.)

Other results on local limit theorems in random environments that we are aware of
are concerned with specific models. In [9] the quenched local CLT is proven for random
walks in a time-dependent balanced random environment. In [10] and [11] quenched
local limit theorems are obtained for random walks in random environments on a strip.
A different class of random walks in random media for which quenched local CLTs have
been obtained are the so called random conductance models. For a recent work in
this direction and an overview of the literature see [1] and references therein. In a
continuous set-up, [13] recently proved a local limit theorem for a diffusion in a Gaussian
random medium which is white in time.

Outlook and open questions While we do exhibit a measure Q which is invariant
with respect to the point of view of the particle and absolutely continuous with respect to
P, we can currently establish uniqueness only in the class of such measures satisfying the
additional property (2.9), see Remark 1.6. Furthermore, because of non-ellipticity, Q is
not equivalent to P, see the discussion in Remark 2.6 below. We leave open the questions
whether property (2.9) is necessary for uniqueness and whether Q is equivalent to P
when restricted to the set Ω̃ from (2.11) in Remark 2.6.

We restrict our analysis in this paper to the case d ≥ 3. This is essentially owed to the
fact that Theorem 8.1, which we quote from [21, Thm. 3.24], is presently only available
under this assumption. It was proved there using an environment exposure technique
from [8], which was also used by [2], and the proof exploited the fact that in dimension
at least 3, two independent random walks will almost surely meet only finitely often,
irrespective of the number N of steps they take.

As already mentioned in Remark 1.5, since the submission of this paper we were
inspired by [20] and realized that we are also able to prove Theorem 1.4 for d = 1, 2

since in the proof of Theorem 3.24 in [21] some estimates were more conservative than
needed and it turns out that we can extend this theorem to d = 1, 2.

We prove in Theorem 1.4 a quenched local limit theorem for a very specific model of a
non-elliptic random walk in a non-trivial dynamic random environment, and our proofs do
exploit specific properties of this environment, namely the oriented percolation cluster.
However, we think that this environment is prototypical for a large class of dynamic
environments which can be “mapped” to it by suitable coarse-graining procedures, see
[3], Section 3 and the concrete example in Section 4 there. It seems quite possible that
given substantial technical effort, our approach to Theorem 1.4 could be extended to the
class of environments from [3]. We leave this for future work.

Outline of the paper The proofs of the main results are long and quite technical. Let
us describe the main ideas of the proofs and explain how the paper is organised: In
Section 2 we first give several auxiliary results which we then use for the proofs of
Theorem 1.3 and of Theorem 1.4.

Annealed estimates: In Section 3 we prove several annealed derivative estimates which
build on, and extend somewhat, previous work by [21]. These estimates will be used for
the proof of the annealed local CLT, Theorem 1.1, also presented in Section 3. Starting
with Section 4 the paper is devoted to the proofs of the auxiliary results from Section 2.

Comparison of the quenched and annealed laws: Lemma 2.1, proven in Section 4,
provides a comparison between the quenched and annealed laws on the level of large
(but finite) boxes. In particular it shows that the total variation distance between
P(XN ∈ ·) and Pω(XN ∈ ·) on the level of boxes of side length M � 1 is small with very
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high probability as N →∞ in a suitably quantified way; see equation (2.1). The starting
point of the proof of Lemma 2.1 is [21, Theorem 3.24], recalled in Theorem 8.1 below,
which gives an analogous result for boxes whose size grows like Nθ/2 with 0 < θ < 1 as
N →∞, and therefore much slower than the diffusive scale N1/2. We augment this with
an iteration scheme that is guided by the proof of Theorem 5.1 in [2]. The main argument
towards the proof of Lemma 2.1 is formulated as Proposition 4.1 which provides the
crucial estimate for the iteration step. The proof of that proposition is long and relies
to a large extent on ideas from [2] and is postponed to Section 8. It requires a suitable
control of the density of “good” boxes on which an estimate as in equation (2.1) from
Lemma 2.1 holds locally uniformly, see Definition 8.2. This deviates from the set-up
in [2] because our environment is not i.i.d. and in fact here the boxes are in principle
correlated over arbitrary lengths, albeit weakly.

Measure for the point of view of the particle: The function ϕ = dQ/dP from (1.12) is the
density of a measure Q which is invariant with respect to the point of view of the particle
and absolutely continuous with respect to P. For the existence of such a measure Q
we consider the quenched laws QN of the environment seen from the particle after N
steps of the walk; see (2.4). The measure Q is constructed as a weak limit of the Cesàro
average of the measures QN along a subsequence; see (2.6) and (2.7). In Proposition 2.2
and Corollary 2.4 we show that averages of dQN/dP and dQ/dP over large boxes are
close to one with high probability depending on the size of the boxes. It will turn out that
the measure Q which we obtain as described above is unique, i.e. it does not depend on
the particular subsequence; see Remark 2.6.

Proposition 2.2 and Corollary 2.4 are proven in Section 5. To this end we construct a
coupling of QN and PN , the law of the environment viewed relative to the annealed walk
(note that PN = P for all N ). Lemma 2.1 allows for a coupling which puts both walks in
the same M -box with very high probability. We strengthen this to a coupling which puts
both walks at exactly the same spatial position with uniformly non-vanishing probability;
see the proof of Lemma 5.3.

Since we average over the environment in the definition of the annealed law of the
random walk in equation (1.6) it is clear that the annealed random walk does not see
any specific environment. In contrast to that the quenched random walk knows the
exact environment it walks in. So, to compare the annealed and quenched laws of
the random walk, the annealed walk needs to see the environment of the quenched
random walk. This is done through reweighting by ϕ. In particular, a consequence of
multiplying the annealed law with ϕ is that this product will be zero for all space-time
points (x, n) ∈ Zd ×Z in which the contact process ξ is 0 in the environment ω.

In Proposition 2.8 we show that the annealed law of the random walk at time n

reweighted with the function ϕ converges for almost all ω to a probability law on Zd. It
is proven in Section 6.

Hybrid measures: For the proof of Theorem 1.4, instead of comparing the quenched
and annealed laws directly, we use the triangle inequality, some “hybrid” measures
and space-time convolutions of quenched-annealed measures; see Definition 2.7. In
Proposition 2.9, proven in Section 7, we show that the total variation distance of some
of these measures converges to 0 as n, the number of steps of the random walk, goes
to infinity. An essential tool of the proof of Proposition 2.9 is Lemma 7.1 in which we
study the total variation distance of quenched laws of two random walks starting at
different positions. The idea is to use couplings with the annealed measures on the level
of large (growing) boxes combined with annealed derivative estimates in order to first
ensure that the two walks are in the same box with probability bounded away from 0.
Using connectivity properties of the oriented percolation clusters (see below) the above
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described procedure can be iterated to produce a literal coupling where the two walks
coincide with high probability after sufficiently many steps. Lemma 7.1 is proven in
Section 9.

Oriented percolation results: In the appendix, Section A, we show that two infinite
percolation clusters intersect with high probability within a finite time. This result was
pointed out in [15], who proved that two infinite clusters do intersect almost surely, but
without the quantification of the time of intersection. Finally, in Section B, we show that
the probability that a random walk started off the cluster does not hit the cluster within
time t decays exponentially with t.

2 Proofs of the main results

In this section we collect several important auxiliary results and present towards
the end of this section how to utilise them to prove Theorem 1.3 and Theorem 1.4. The
proofs of the auxiliary results are postponed to the subsequent sections.

Our starting point is a lemma which can be seen as an adaptation of Theorem 5.1
in [2] to our setting. Recall between (1.5) and (1.6) the definitions of the quenched
measure P (x,m)

ω and the annealed measure P(x,m) for the random walk (Xn)n=m,m+1,...

with Xm = x. For any positive real number L we denote by ΠL a partition of Zd into
boxes of side length bLc.
Lemma 2.1. Let d ≥ 3. For N,M ∈ N, c, C > 0 denote by K(N) := K(N,M, c, C) the set
of environments ω ∈ Ω such that for every x ∈ Zd satisfying ‖x‖ ≤ N∑

∆∈ΠM

∣∣P (x,0)
ω (XN ∈ ∆)− P(x,0)(XN ∈ ∆)

∣∣ ≤ C

M c
+

C

N c
. (2.1)

If c > 0 is small enough and C <∞ large enough, there are universal positive constants
c̃, C̃, for which we have

P
(
K(N)

)
≥ 1− C̃N−c̃ logN for all N. (2.2)

In words, Lemma 2.1 shows that the total variation distance between the annealed
measure P(x,0)(XN ∈ ·) and the quenched measure P (x,0)

ω (XN ∈ ·) on the level of boxes of
side length M � 1 is small with very high probability as N →∞. The proof of Lemma 2.1
is given in Section 4. It builds on a preliminary result by Steiber [21, Theorem 3.24]
which we recall in Theorem 8.1 below. The latter gives an analogous result to Lemma 2.1
for boxes of side length Nθ/2 with 0 < θ < 1 for large N . In particular, for N →∞ the
side length of these boxes grows much more slowly than the diffusive scale N1/2.

Lemma 2.1 allows to construct a coupling of the quenched walk under P (x,0)
ω and the

annealed walk under P(x,0) which puts both walks in the same M -box with very high
probability. We strengthen this coupling to a coupling which puts both walks at exactly
the same spatial position with uniformly non-vanishing probability; see Lemma 5.3 below.
This, in turn, is essential for the next statement which concerns the difference between
the annealed and quenched law of the environment viewed relative to the walk after
N steps, which we denote by PN and QN respectively. More precisely, for N ∈ N, we
define QN and PN by

PN (A) := E
[ ∑
x∈Zd

P(0,0)(XN = x)1{σ(x,N)ω∈A}

]
(2.3)

and

QN (A) := E
[ ∑
x∈Zd

P (0,0)
ω (XN = x)1{σ(x,N)ω∈A}

]
. (2.4)
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Note that, in fact we have PN = P for all N ; see (5.9).
The following proposition is proven in Section 5.

Proposition 2.2. For M ∈ N let ∆0(M) denote a d-dimensional cube of side length M
in Zd centred at the origin. There exists a universal constant c > 0 so that for every
ε > 0 there is M0 = M0(ε) ∈ N so that for M ≥M0 and all N ∈ N

P
(∣∣∣ 1

|∆0(M)|
∑

x∈∆0(M)

dQN
dP

(σ(x,0)ω)− 1
∣∣∣ > ε

)
≤M−c logM . (2.5)

Corollary 2.3. Let d ≥ 3 and p > pc. Then, for every k ∈ N, supN E[(dQNdP )k] <∞.

Proof. For M ∈ N large enough, Proposition 2.2 implies

P
(dQN
dP

(ω) >2(2M + 1)d
)

≤ P
( 1

(2M + 1)d

∑
x∈{−M,...,M}d

dQN
dP

(σ(x,n)ω) > 2
)
≤M−c logM ,

which in turn implies the assertion.

Let us consider the Cesàro sequence

Q̃n :=
1

n

n−1∑
N=0

QN , n = 1, 2, . . . . (2.6)

Since (Q̃n)n are measures on a compact space (recall that Ω carries the product topology),
the sequence is tight. In particular, there is a weakly converging subsequence, say
(Q̃nk)k, and we set

Q := lim
k→∞

Q̃nk . (2.7)

Using Corollary 2.3 and the Cauchy–Schwarz inequality for some finite positive constant
c̃ we have uniformly for all n

E
[( 1

n

n−1∑
N=0

dQN
dP

)2]
=

1

n2

n−1∑
N,N ′=0

E
[dQN
dP

dQN ′

dP

]
≤ c̃. (2.8)

Note that (2.8) implies Q� P; see the proof of Theorem 1.3. A standard argument shows
that Q is invariant with respect to the point of view of the particle; see Proposition 1.8 in
[17] for an abstract argument or the proof of Lemma 1 in [12] for the argument in the
case of random walks in random environments.

The proof of the following analogue of Proposition 2.2 for Q instead of Qn is given in
Section 5.

Corollary 2.4. Recall the notation of Proposition 2.2 and let Q be the measure obtained
as a limit in (2.7). There exists a universal constant c > 0 so that for every ε > 0 there is
M0 = M0(ε) ∈ N and for every M ≥M0 we have

P
(∣∣∣ 1

|∆0(M)|
∑

x∈∆0(M)

dQ

dP
(σ(x,0)ω)− 1

∣∣∣ > ε
)
≤M−c logM . (2.9)

Proof of Theorem 1.3. By construction and shift invariance of P we have QN � P for
every N and therefore Q̃n � P for every n. Furthermore, by (2.8) the family of Radon–
Nikodym derivatives (dQ̃n/dP)n=1,2,... is uniformly integrable. These facts together imply
that we also have Q � P for any Q obtained as in (2.7). The concentration property
is the assertion of Corollary 2.4. For the question of uniqueness of Q see Remark 2.6
below.
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Remark 2.5. Using shift-invariance of P, it is easy to see that for QN from (2.4) a
version of dQN/dP is given by

ϕN (ω) =
∑
x∈Zd

P (−N,x)
ω (X0 = 0) (2.10)

(we have P
(0,0)
σ(−x,−N)ω(XN = x) = P

(−N,−x)
ω (X0 = 0), recall the notation introduced be-

low (1.5)). This formula is the analogue of [8, Proposition 1.2] in our context. In
particular, ϕN is a local function of the space-time values of ξ which themselves can be
obtained as limits of local functions of ω. By (2.7) we obtain dQ/dP as a limit of dQ̃nk/dP.
Thus, by taking a subsequence of (nk)k, dQ/dP can be considered as an almost sure limit
of averages of functions of the form in (2.10).

Remark 2.6 (Uniqueness of invariantQ� P with concentration properties of the density).
A measure Q obtained as in (2.7) may in principle depend on a particular subsequence.
In the proof of Theorem 1.4 we will show that the density ϕ = dQ/dP of any measure Q
satisfying the concentration property (2.9) also satisfies (1.12). As shown in [2, Section
7.1], when it exists such a measure is P almost surely unique. In particular, in (2.7) we
have weak convergence towards the unique Q along any subsequence and therefore we
have weak convergence of the Cesàro sequence (Q̃n)n∈N from (2.6) towards Q. However,
we currently do not know whether the sequence (QN )N∈N from (2.4) converges itself.

Using Lemma B.1 and (2.10) from Remark 2.5 one can show that Q is concentrated
on

Ω̃ =
{
ω ∈ Ω : ω contains a doubly infinite directed open path through (0, 0)

}
(2.11)

and thus Q is not equivalent to P because 0 < P(Ω̃) < 1. We note also that Kozlov’s
classical argument concerning equivalence, see e.g. [12, Thm. 2.12], does not apply
because our walks are not elliptic. We do not know whether Q is equivalent to P( · |Ω̃).

To prove Theorem 1.4 we want to make use of the good control of the difference
between the quenched and annealed law on the level of boxes and various properties
of the prefactor ϕ that we have formulated above in Lemma 2.1 and Corollary 2.4. Fur-
thermore, instead of comparing P(0,0)(XN ∈ ·) and P (0,0)

ω (XN ∈ ·) directly, we compare
both of these two measures with auxiliary “hybrid” measures which are introduced in
the following definition, analogous to [2], Definition 7.2.

Definition 2.7. Let Q be the measure on Ω defined in (2.7), which by Theorem 1.3 and
its proof is invariant with respect to the point of view of the particle with Q � P. Let
ϕ = dQ/dP be the corresponding Radon–Nikodym derivative. For ω ∈ Ω and a given
partition Π of Zd into boxes of a fixed side length we define the following measures on
Zd+1:

νann×pre
ω (x, n) :=

1

Zω,n
P(0,0)(Xn = x)ϕ(σ(x,n)ω), (2.12)

νque
ω (x, n) := P (0,0)

ω (Xn = x), (2.13)

νbox−que×pre
ω (x, n) := P (0,0)

ω (Xn ∈ ∆x)
ϕ(σ(x,n)ω)∑

y∈∆x
ϕ(σ(y,n)ω)

. (2.14)

Here, Zω,n =
∑
x∈Zd P

(0,0)(Xn = x)ϕ(σ(x,n)ω) is the normalizing constant in (2.12) and
∆x in (2.14) is the unique d-dimensional box that contains x in the partition Π.

All of the measures introduced in the above definition are different measures of
the random walk after n steps: νann×pre

ω (·, n) is the annealed measure with a prefactor,
νque
ω (·, n) is the quenched measure and νbox−que×pre

ω (·, n) is a “hybrid” measure, where
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the box is chosen according to the quenched measure but then the point inside the
box is chosen according to the (annealed) normalised prefactor. Of course the measure
νbox−que×pre
ω (·, n) does depend on the particular partition Π but it will be clear from the

context which partition is used.
First we study the behaviour of the normalizing constant in (2.12); see Section 6 for

a proof of the following result.

Proposition 2.8. For P-almost all ω ∈ Ω the normalizing constant Zω,n satisfies

lim
n→∞

Zω,n = 1. (2.15)

Note that this proposition is an analogous result to Lemma 7.3 in [2].
The following proposition is the key result for the proof of Theorem 1.4. It states that

for large n the above introduced measures are close to each other in a suitable norm
and is an analogous result to Lemma 7.5 in [2]. To state this precisely, for ω ∈ Ω and
any two probability measures ν1

ω and ν2
ω on Zd ×Z (more precisely these are transition

kernels from Ω to Zd ×Z) let the L1 distance of ν1
ω and ν2

ω at time n ∈ Z be defined by∥∥ν1
ω − ν2

ω

∥∥
1,n

:=
∑
x∈Zd

|ν1
ω(x, n)− ν2

ω(x, n)|. (2.16)

Furthermore, for k ≤ n the space-time convolution of ν1
ω and ν2

ω is defined by

(ν1 ∗ ν2)ω,k(x, n) :=
∑
y∈Zd

ν1
ω(y, n− k)ν2

σ(y,n−k)ω
(x− y, k). (2.17)

We can interpret (2.17) as follows: A random walk takes n−k steps in the random medium
ω according to ν1

ω, then re-centers the medium at its current position in space-time and
takes the remaining k steps according to ν2

ω.

Proposition 2.9. Fix 0 < 2δ < ε < 1
4 , and for n ∈ N set k = dnεe and ` = dnδe. Let

Π = Π(`) be a partition of Zd into boxes of side length `. For P-almost every ω ∈ Ω the
measures from Definition 2.7 satisfy

lim
n→∞

∥∥νann×pre
ω − (νann×pre ∗ νque)ω,k

∥∥
1,n

= 0, (L1)

lim
n→∞

∥∥(νann×pre ∗ νque)ω,k − (νbox−que×pre ∗ νque)ω,k
∥∥

1,n
= 0, (L2)

lim
n→∞

∥∥(νbox−que×pre ∗ νque)ω,k − (νque ∗ νque)ω,k
∥∥

1,n
= 0. (L3)

The proof of the above proposition is given in Section 7. With the results stated in
the present section we can give a proof of the quenched local limit theorem.

Proof of Theorem 1.4. Using the triangle inequality we have∑
x∈Zd
|P (0,0)
ω (Xn = x)− P(0,0)(Xn = x)ϕ(σ(x,n)ω)|

≤
∑
x∈Zd

|P (0,0)
ω (Xn = x)− (νbox−que×pre ∗ νque)ω,k(x, n)| (2.18)

+
∑
x∈Zd

|(νbox−que×pre ∗ νque)ω,k(x, n)− (νann×pre ∗ νque)ω,k(x, n)| (2.19)

+
∑
x∈Zd

|(νann×pre ∗ νque)ω,k(x, n)− νann×pre
ω (x, n)| (2.20)

+
∑
x∈Zd

|νann×pre
ω (x, n)− P(0,0)(Xn = x)ϕ(σ(x,n)ω)|. (2.21)
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By Proposition 2.9 the terms in (2.18), (2.19) and (2.20) tend to 0 as n goes to infinity.
In order to compare (2.18) with (L3) literally note that we have P

(0,0)
ω (Xn = x) =

νque ∗ νque)ω,k(x, n) by construction. Finally, by definition of νann×pre
ω (x, n) the term

in (2.21) can be written as∣∣∣ 1

Zω,n
− 1
∣∣∣ ∑
x∈Zd

P(0,0)(Xn = x)ϕ(σ(x,n)ω) =
∣∣∣ 1

Zω,n
− 1
∣∣∣Zω,n. (2.22)

By Proposition 2.8 it follows that the expression in (2.22) converges to 0 as n tends to
infinity.

3 Annealed estimates and the proof of Theorem 1.1

In this section we collect estimates for the annealed walk that will be needed later in
the proofs, and present a proof of Theorem 1.1.

Lemma 3.1 (Annealed derivative estimates). Let D be a positive constant. For d ≥ 3,
j = 1, . . . , d, m ∈ Z, n ∈ N, x, y ∈ Zd, such that ‖x− y‖ ≤ D

√
n log3 n, denoting by ej the

j-th (canonical) unit vector we have

|P(y,m)(Xn+m = x)− P(y+ej ,m)(Xn+m = x)| ≤ Cn−(d+1)/2, (3.1)

|P(y,m)(Xn+m = x)− P(y,m+1)(Xn+m = x)| ≤ Cn−(d+1)/2, (3.2)

|P(y,m)(Xn+m = x)− P(y,m)(Xn+m = x+ ej)| ≤ Cn−(d+1)/2, (3.3)

|P(y,m)(Xn+m = x)− P(y,m)(Xn−1+m = x)| ≤ Cn−(d+1)/2, (3.4)

for some positive constant C = C(D).

Proof. The estimates (3.1) and (3.2) are from [21]; see Lemma 3.9 and its proof in
Appendix A.2 there. Note that Lemma 3.9 in [21] the choice of parameters essentially
leads to the assumption ‖x− y‖ ≤

√
n log3 n with y being in a box near the origin.

However, the proofs of this lemma show that we can choose an arbitrary constant, that
is independent of n and it sufficient to assume ‖x− y‖ ≤ D

√
n log3 n. Furthermore, by

translation invariance we obtain these upper bound for all starting positions (y,m). By
translation invariance we have

P(y+ej ,m)(Xn+m = x) = P(y,m)(Xn+m = x− ej)

and

P(y,m+1)(Xn+m = x) = P(y,m)(Xn−1+m = x).

Thus, the estimates (3.3) and (3.4) follow from (3.1) and (3.2).

We will also need the following generalization of the annealed derivative estimates in
the previous lemma.

Lemma 3.2. Let ε > 0. For n ∈ N large enough and every partition Π
(ε)
n of Zd into boxes

of side length bnεc, we have∑
∆∈Π

(ε)
n

∑
x∈∆

max
y∈∆

[
P(0,0)(Xn = y)− P(0,0)(Xn = x)

]
≤ Cn− 1

2 +3dε. (3.5)

Proof. We consider the following set of boxes around the origin of Zd

Π̃(ε)
n := {∆ ∈ Π(ε)

n : ∆ ∩ [−
√
n log3 n,

√
n log3 n]d 6= ∅}. (3.6)
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With this notation we can write the sum on the left hand side of (3.5) as∑
∆∈Π̃

(ε)
n

∑
x∈∆

max
y∈∆

[
P(0,0)(Xn = y)− P(0,0)(Xn = x)

]
(3.7)

+
∑

∆∈Π
(ε)
n \Π̃(ε)

n

∑
x∈∆

max
y∈∆

[
P(0,0)(Xn = y)− P(0,0)(Xn = x)

]
. (3.8)

So, it is enough to prove suitable upper bounds for these two sums. By Lemma 3.6 from
[21] we have ∑

∆∈Π
(ε)
n \Π̃(ε)

n

P(0,0)(Xn ∈ ∆) ≤ Cn−c logn (3.9)

for some positive constants C and c. Thus, the double sum (3.8) is bounded from above
by ∑

∆∈Π
(ε)
n \Π̃(ε)

n

∑
x∈∆

[
P(0,0)(Xn ∈ ∆)− P(0,0)(Xn = x)

]
=

∑
∆∈Π

(ε)
n \Π̃(ε)

n

(|∆| − 1)P(0,0)(Xn ∈ ∆) ≤ Cndεn−c logn ≤ C̃n−c̃ logn

for suitably chosen constants c̃ and C̃. Using annealed derivative estimates from
Lemma 3.1 the double sum (3.7) is bounded above by∑

∆∈Π̃
(ε)
n

∑
x∈∆

Cnεn−
d+1

2 ≤ C(nε +
√
n log3 n)dnεn−

d+1
2 ≤ Cn3dεn−1/2.

Combination of the last two displays completes the proof.

Proof of Theorem 1.1. Let ε, δ > 0 be small (they will later be tuned appropriately). Let
Π

(ε)
n be a partition of Zd in boxes of side length dε

√
n e. Let Cδ > 0 be a constant such

that P(0,0)(‖Xn‖ > Cδ
√
n) < δ; such a constant exists by the annealed central limit

theorem, see [4], Theorem 1. Furthermore denote by Π
(ε,δ)
n the subset of boxes in Π

(ε)
n

intersecting {x ∈ Zd : ‖x‖ ≤ Cδ
√
n}. Then∑

x∈Zd

∣∣∣P(0,0)(Xn = x)− 1

(2πn)d/2
√

det Σ
exp
(
− 1

2n
xTΣ−1x

)∣∣∣
=

∑
∆∈Π

(ε)
n \Π(ε,δ)

n

∑
x∈∆

∣∣∣P(0,0)(Xn = x)− 1

(2πn)d/2
√

det Σ
exp
(
− 1

2n
xTΣ−1x

)∣∣∣ (3.10)

+
∑

∆∈Π
(ε,δ)
n

∑
x∈∆

∣∣∣P(0,0)(Xn = x)− 1

(2πn)d/2
√

det Σ
exp
(
− 1

2n
xTΣ−1x

)∣∣∣. (3.11)

We will show that ε can be chosen so small that the above sum is bounded by 4δ for large
enough n. We first find an upper bound for (3.10). By definition of Π

(ε,δ)
n if ∆ ∈ Π

(ε)
n \Π(ε,δ)

n

then we have ‖x‖ > Cδ
√
n for all x ∈ ∆. Thus, (3.10) is bounded from above by∑

x∈Zd
‖x‖>Cδ

√
n

(
P(0,0)(Xn = x) +

1

(2πn)d/2
√

det Σ
exp
(
− 1

2n
xTΣ−1x

))

≤ δ + C exp
(
− c

2
C2
δ

)
.
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By choosing Cδ large enough we can ensure that (3.10) is bounded by 2δ.
Turning to (3.11) we first compare the two terms in | · | with the averages over

appropriate boxes. First, let x ∈ Zd be fixed and let ∆ ∈ Π
(ε)
n be the box containing x.

Using annealed derivative estimates from Lemma 3.1 we obtain

|P(0,0)(Xn = x)− 1

dε
√
n ed

P(0,0)(Xn ∈ ∆)|

=
1

dε
√
n ed

∣∣∣∑
y∈∆

P(0,0)(Xn = x)− P(0,0)(Xn = y)
∣∣∣

≤ 1

dε
√
n ed

∑
y∈∆

‖x− y‖n−(d+1)/2 ≤ dε
√
n e · n−(d+1)/2 ≤ ε

nd/2
.

Now consider ∆ ∈ Π
(ε,δ)
n . For every x ∈ ∆ we have∣∣∣exp

(
− 1

2n
xTΣ−1x

)
− 1

dε
√
n ed

∫
∆

exp
(
− 1

2n
yTΣ−1y

)
dy
∣∣∣

= exp
(
− 1

2n
xTΣ−1x

)∣∣∣1− 1

dε
√
n ed

∫
∆

exp
(
− 1

2n
(yTΣ−1y − xTΣ−1x)

)
dy
∣∣∣

≤ exp
(
− 1

2n
xTΣ−1x

) 1

dε
√
n ed

×
∫

∆

∣∣∣1− exp
(
− 1

2n
((y − x)TΣ−1(y − x) + 2xTΣ−1(y − x))

)∣∣∣ dy
≤ exp

(
− 1

2n
xTΣ−1x

) 1

dε
√
n ed

∫
∆

∣∣∣1− exp
( 1

2n
(Cε2n+ CCδεn)

)∣∣∣ dy
≤ exp

(
− 1

2n
xTΣ−1x

)
· Cε ≤ Cε,

where we have used ‖x− y‖ ≤ ε
√
n, ‖x‖ ≤ Cδ

√
n and for the fourth line the fact that

|1− exp(−x)| ≤ exp(|x|)− 1. Using first the triangle inequality and then combining the
last two estimates we see that each summand in (3.11) is bounded from above by∣∣P(0,0)(Xn = x)− 1

dε
√
n ed

P(0,0)(Xn ∈ ∆)
∣∣

+
1

(2πn)d/2
√

det Σ

∣∣∣ exp
(
− 1

2n
xTΣ−1x

)
− 1

dε
√
n ed

∫
∆

exp
(
− 1

2n
yTΣ−1y

)
dy
∣∣∣

+
1

dε
√
n ed

∣∣∣P(0,0)(Xn ∈ ∆)− 1

(2πn)d/2
√

det Σ

∫
∆

exp
(
− 1

2n
yTΣ−1y

)
dy
∣∣∣ (3.12)

≤ Cε

nd/2
+

Cε

(2πn)d/2
√

det Σ

+
1

dε
√
n ed

∣∣∣P(0,0)(Xn ∈ ∆)− 1

(2πn)d/2
√

det Σ

∫
∆

exp
(
− 1

2n
yTΣ−1y

)
dy
∣∣∣.

The number of vertices summed over all ∆ ∈ Π
(ε,δ)
n is bounded by ((Cδ + ε)

√
n)d ≤

C(Cδ
√
n)d. Thus, ∑

∆∈Π
(ε,δ)
n

∑
x∈∆

( Cε

nd/2
+

Cε

(2πn)d/2
√

det Σ

)
≤ C · Cdδ ε. (3.13)

Summing the last line in (3.12) with the double sum
∑

∆∈Π
(ε,δ)
n

∑
x∈∆ gives∑

∆∈Π
(ε,δ)
n

∣∣∣P(0,0)(Xn ∈ ∆)− 1

(2πn)d/2
√

det Σ

∫
∆

exp
(
− 1

2n
yTΣ−1y

)
dy
∣∣∣. (3.14)
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By applying the annealed CLT from [4] (and approximating the indicator 1∆ appropriately
by continuous and bounded functions) and noting that for fixed ε and δ the set Π

(ε,δ)
n is

finite implies that (3.14) goes to zero as n tends to infinity. In particular it is smaller
than δ for large enough n.

Combining the estimates above we obtain∑
x∈Zd

∣∣∣P(0,0)(Xn = x)− 1

(2πn)d/2
√

det Σ
exp
(
− 1

2n
xTΣ−1x

)∣∣∣ ≤ 2δ + C · Cdδ ε+ δ < 4δ

for large enough n and choosing ε > 0 so that C · Cdδ ε < δ. This concludes the proof.

4 Proof of Lemma 2.1

For the proof of of Lemma 2.1 we follow closely the proof of Theorem 5.1 in [2]
and adapt their arguments to our model. The general idea is to implement an iteration
scheme that carries the annealed-quenched comparison from Theorem 8.1 below along
a sequence of more and more slowly growing box scales.

Let us introduce some notation first. Let θ > 0 be a (small) constant to be determined
in the proof. For j ∈ N, we set nj := bN2−jc and r(N) := dlog2( θ logN

logM )e. Note that r(N)

is the smallest integer satisfying nθr(N) ≤M . Furthermore we set

N0 := N −
r(N)∑
j=1

nj and Nk :=

k∑
j=1

nj +N0 = Nk−1 + nk, for all 1 ≤ k ≤ r(N). (4.1)

Finally, for 0 ≤ k ≤ r(N), abusing the notation and suppressing the dependence on θ and
n we write for the rest of this section Πk := Πnθk

and define

λk(ω) :=
∑

∆∈Πk

∣∣P (0,0)
ω (XNk ∈ ∆)− P(0,0)(XNk ∈ ∆)

∣∣. (4.2)

Note in particular that λr(N) is twice the total variation distance between the quenched
and the annealed measures on boxes of side length ≤ M , which is the term we wish
to bound from above to show (2.1). If one wishes to be slightly more precise, then one
should replace Nr(N) by M , thus obtaining the total variation for boxes of side length M
exactly. This, however, does not influence the estimates to follow.

The proof of the following proposition is long and technical and will be given in
Section 8.

Proposition 4.1. There exists constants C, c, α > 0 and events G(N), N ∈ N, with
P(G(N)) ≥ 1− CN−c logN such that for all ω ∈ G(N) we have

λk ≤ λk−1 + Cn−αk , ∀ 1 ≤ k ≤ r(N). (4.3)

In particular, λr(N) ≤ λ1 + C
∑r(N)
k=1 n−αk for ω ∈ G(N).

Proof of Lemma 2.1. The assertion is a consequence of Proposition 4.1 (and Theo-
rem 8.1) and can be proven analogously to the argument in the last part of the proof of
Theorem 5.1 in [2], page 2920.

5 Concentration from coupling: Proofs of Proposition 2.2 and
Corollary 2.4

In this section we prove some analogues of the results of Section 6 in [2] and present
proofs of Proposition 2.2 and Corollary 2.4.
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Lemma 5.1. There exists a constant c > 0 and set of environments K(N, c) satisfying

P(K(N, c)) ≥ 1−N−c logN (5.1)

such that for every ω there exists a coupling Θω,N of P(0,0)(XN = ·) and P (0,0)
ω (XN = ·)

with the property

Θω,N (Λ) > c for every ω ∈ K(N, c), (5.2)

where Λ := {(x, x) : x ∈ Zd}.

Proof. For ε > 0 and M ∈ N denote by K(N) = K(N,M, ε) the set of environments
ω ∈ Ω satisfying ∑

∆∈ΠM

|P (0,0)
ω (XN ∈ ∆)− P(0,0)(XN ∈ ∆)| < ε, (5.3)

where ΠM is a partition of Zd into d-dimensional boxes of side length M . By Lemma 2.1,
for every ε ∈ (0, 1) there exists a M ∈ N such that P(K(N)) ≥ 1 − N−c logN . On the
event K(N), the inequality (5.3) tells us that twice the total variation distance between

P(0,0)(XN ∈ ·) and P
(0,0)
ω (XN ∈ ·) on ΠM is less than ε and therefore there exists a

coupling Θ̃ω,N,M of both measures on ΠM ×ΠM such that Θ̃ω,N,M (ΛΠM ) > 1− ε, where
ΛΠM = {(∆,∆) : ∆ ∈ ΠM}.

Using the coupling Θ̃ we construct a new coupling ofP(0,0)(XN = ·) and P (0,0)
ω (XN = ·)

on Zd × Zd which puts positive probability on the diagonal Λ = {(x, x) : x ∈ Zd}. We
define Θω,N on Zd ×Zd by

Θω,N (x, y) :=
∑

∆,∆′∈ΠM

Θ̃ω,N−M,M (∆,∆′)

· P(0,0)(XN = x|XN−M ∈ ∆) · P (0,0)
ω (XN = y|XN−M ∈ ∆′).

(5.4)

Since Θ̃ω,N−M,M is a coupling of P(0,0) and P
(0,0)
ω on ΠM × ΠM one can easily see

that by the formula of total probability Θω,N is indeed a coupling of P(0,0)(XN = ·) and

P
(0,0)
ω (XN = ·).

For x ∈ Zd, let ∆x be the unique cube which contains x in the partition ΠM . Since
the side length of each box in the partition ΠM is M it follows that the annealed random
walk can reach x from each point in the box ∆x in less than M steps.

Next we want to show that the coupling gives us a positive chance for the two walks
to end up at the same position. In [2] this is done by showing that Θω,N (x, x) is bounded
away from zero for all x ∈ Zd. This is not true in our model because we do not have
uniform ellipticity for the quenched measure. The idea here is to show that for “typical”
ω the measure Θω,N (x, x) is bounded away from zero for “many” x ∈ Zd. To this end for
given ω we define the set Πx

ω ⊂ ΠM as the set of boxes ∆ ∈ ΠM satisfying

P (0,0)
ω (XN = x|XN−M ∈ ∆) > 0. (5.5)

Note that if Πx
ω = ∅ for x and ω then we have Θω,N (x, x) = 0. Furthermore, by definition

of P (0,0)
ω (XN = x|XN−1 = y) we have

P (0,0)
ω (XN = x|XN−M ∈ ∆) ≥

(
1

3d

)M
(5.6)
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Local limit for random walk on oriented percolation

for all ∆ ∈ Πx
ω. Now using (5.4), (5.6) and uniform ellipticity of the annealed measure

we obtain

Θω,N (x, x) ≥
∑

∆∈Πxω

Θ̃ω,N−M,M (∆,∆)

· P(0,0)(XN = x|XN−M ∈ ∆) · P (0,0)
ω (XN = x|XN−M ∈ ∆)

≥
∑

∆∈Πxω

Θ̃ω,N−M,M (∆,∆)ηM
(

1

3d

)M
,

where η ∈ (0, 1) is the “uniform ellipticity bound” of the annealed random walk. Now it
suffices to show ∑

x∈Zd

∑
∆∈Πxω

Θ̃ω,N−M,M (∆,∆) ≥
∑

∆∈ΠM

Θ̃ω,N−M,M (∆,∆). (5.7)

This follows immediately if we can show that for all ∆ ∈ ΠM \ ∪x∈ZdΠx
ω we have

Θ̃ω,N−M,M (∆,∆) = 0.

For that consider a box ∆ ∈ ΠM \ ∪x∈ZdΠx
ω, i.e. there is no x ∈ Zd with ∆ ∈ Πx

ω for the

fixed ω. Thus, we have P (0,0)
ω (XN = x|XN−M ∈ ∆) = 0 for all x ∈ Zd. It follows that

P
(0,0)
ω (XN−M ∈ ∆) = 0, because there can be no infinitely long open path starting from

∆. We obtain

Θω,N (Λ) =
∑
x∈Zd

Θω,N (x, x) ≥
∑
x∈Zd

∑
∆∈Πxω

Θ̃ω,N−M,M (∆,∆)ηM
(

1

3d

)M

≥
∑

∆∈ΠM

Θ̃ω,N−M,M (∆,∆)ηM
(

1

3d

)M
≥ (1− ε)ηM

(
1

3d

)M (5.8)

for every ω ∈ K(N).

Recall the definitions of PN and QN from (2.3) respectively (2.4). Note that for every
N ∈ N the measure PN is in fact the measure P since for every measurable event A ∈ Ω

we have by translation invariance

PN (A) = E
[ ∑
x∈Zd

P(0,0)(XN = x)1{σ(x,N)ω∈A}

]
=
∑
x∈Zd

P(0,0)(XN = x)E[1{σ(x,N)ω∈A}]

=
∑
x∈Zd

P(0,0)(XN = x)P(σ(−x,−N)A) =
∑
x∈Zd

P(0,0)(XN = x)P(A) = P(A). (5.9)

Definition 5.2. Given two environments ω, ω′ ∈ Ω we define their distance by

dist(ω, ω′) = inf
{
‖(x, n)‖ : ω′ = σ(x,n)ω

}
,

where the infimum over an empty set is defined to be infinity.

We denote by ΨN the coupling of PN and QN from Lemma 5.1 extended to Ω × Ω,
that is,

ΨN (A) = E
[ ∑
x,y∈Zd

Θω,N (x, y)1{(σ(x,N)ω,σ(y,N)ω)∈A}

]
. (5.10)

The following result is an analogue to Lemma 6.6 in [2].
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Lemma 5.3. For M,N ∈ N let D(1)
M,N : Ω→ [0,∞] and D(2)

M,N : Ω→ [0,∞] be defined by

D
(i)
M,N (ωi) := EΨN [1{dist(ω1,ω2)>M}|Fωi ](ωi), i = 1, 2,

where Fω1 , Fω2 are the σ-algebras generated by the first, respectively, second coordinate
in Ω × Ω and ΨN is defined in (5.10). For M ∈ N, there exists an event FM with the
following properties:

(1) P(FM ) ≥ 1−M−c logM .

(2) For every ε > 0 one can choose M = M(ε) large enough

max
{
D

(1)
M,N (ω),

dQN
dP

(ω)D
(2)
M,N (ω)

}
≤ ε1FM (ω) + 1F C

M
(ω). (5.11)

Proof. Let

FM =
⋂

k>M/2

{
ω ∈ Ω : ∀x ∈ [−k, k]d ∩Zd,∑

∆∈ΠM

|P(x,0)(Xk ∈ ∆)− P (x,0)
ω (Xk ∈ ∆)| ≤ C2

M c1
+
C2

kc1

}
where ΠM is a partition of Zd into boxes of side length M and C2, c1 are the (renamed)
constants from Lemma 2.1. Thus, P(FM ) ≥ 1 −M−c logM . Fix ε > 0. Then, by the
definition of FM and the coupling Θ̃ω,k,M constructed in the proof of Lemma 5.1, for
every ω ∈ FM , every k > M/2 and every x ∈ [−k, k]d ∩Zd we have

Θ̃σ(x,k)ω,k,M (ΛΠM ) > 1− 2C2

M c1
> 1− ε (5.12)

for large enough M , where ΛΠM = {(∆,∆) : ∆ ∈ ΠM}. Note that for k ≤ M/2 the left
hand side of (5.12) is 1 and therefore (5.11) is trivially true for N ≤M/2.

Let us now verify the estimates (5.11) for D(1)
M,N and dQN

dP D
(2)
M,N and N > M/2. Note

that for P-almost every environment ω ∈ Ω we will show that

D
(1)
M,N (ω) =

∑
x,y∈Zd

Θσ−(x,N)ω,N (x, y)1{‖x−y‖>M} (5.13)

and for QN -almost every ω

D
(2)
M,N (ω) =

(
dQN
dP

(ω)

)−1 ∑
x,y∈Zd

Θσ−(y,N)ω,N (x, y)1{‖x−y‖>M}. (5.14)

Using (5.10) we have for every measurable event A ⊂ Ω

EΨN [1{(ω1,ω2)∈A×Ω}1{dist(ω1,ω2)>M}]

= ΨN (A× Ω ∩ {(ω1, ω2) : dist(ω1, ω2) > M})

= E
[ ∑
x,y∈Zd

Θω,N (x, y)1{(σ(x,N)ω,σ(y,N)ω)∈A×Ω}1{dist(σ(x,N)ω,σ(y,N)ω)>M}

]
=

∑
x,y∈Zd

E
[
Θω,N (x, y)1{σ(x,N)ω∈A}}1{‖x−y‖>M}

]
=

∑
x,y∈Zd

E
[
Θσ−(x,N)ω,N (x, y)1{ω∈A}}1{‖x−y‖>M}

]
,
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where the last equality follows by translation invariance of P. Since ΨN is a coupling of
PN = P and QN the last term equals

EΨN

[
1{(ω,ω′)∈A×Ω}

∑
x,y∈Zd

Θσ−(x,N)ω,N (x, y)1{‖x−y‖>M}
]
,

which implies (5.13).
For BN := {ω : dQN

dP (ω) 6= 0} we have QN (BC
N ) = ΨN (Ω × BC

N ) = 0, and we get
similarly

EΨN [1{Ω×A}1{dist(ω1,ω2)>M}]

= EΨN [1{Ω×A∩BN}1{dist(ω1,ω2)>M}]

= ΨN (Ω× (A ∩BN ) ∩ {(ω1, ω2) : dist(ω1, ω2) > M})

= E
[ ∑
x,y∈Zd

Θω,N (x, y)1{(σ(x,N)ω,σ(y,N)ω)∈Ω×A∩BN}1{dist(σ(x,N)ω,σ(y,N)ω)>M}

]
= E

[ ∑
x,y∈Zd

Θω,N (x, y)1{σ(y,N)ω∈A∩BN}1{‖x−y‖>M}
]

= E
[ ∑
x,y∈Zd

Θσ−(y,N)ω,N (x, y)1{ω∈A∩BN}1{‖x−y‖>M}
]

= EQN

[(dQN
dP

)−1

(ω)
∑

x,y∈Zd
Θσ−(y,N)ω,N (x, y)1{ω∈A∩BN}1{‖x−y‖>M}

]
= EΨN

[(dQN
dP

)−1

(ω2)
∑

x,y∈Zd
Θσ−(y,N)ω2,N (x, y)1{(ω1,ω2)∈Ω×(A∩BN )}1{‖x−y‖>M}

]
= EΨN

[(dQN
dP

)−1

(ω2)
∑

x,y∈Zd
Θσ−(y,N)ω2,N (x, y)1{(ω1,ω2)∈Ω×A}1{‖x−y‖>M}

]
,

which shows (5.14)
If Θσ−(x,N)ω,N (x, y) > 0 then necessarily x ∈ [−N,N ]d ∩ Zd because in N steps the

annealed walk can only reach points in this box. It follows that for large enough M ,
every ω ∈ FM and every N ≥M we have∑

x,y∈Zd
Θσ−(x,N)ω,N (x, y)1{‖x−y‖>M}

= 1−
∑

x,y∈Zd
Θσ−(x,N)ω,N (x, y)1{‖x−y‖≤M}

≤ 1− min
z∈[−N,N ]d∩Zd

∑
x,y∈Zd

Θσ−(z,N)ω,N (x, y)1{‖x−y‖≤M}

≤ 1− min
z∈[−N,N ]d∩Zd

∑
∆∈ΠM

∑
x,y∈∆

Θσ−(z,N)ω,N (x, y)

= 1− min
z∈[−N,N ]d∩Zd

∑
∆∈ΠM

Θ̃σ−(z,N)ω,N,M (∆,∆)

= 1− min
z∈[−N,N ]d∩Zd

Θ̃σ−(z,N)ω,N,M (ΛΠM ) < ε.

Thus,

D
(1)
M,N (ω) =

∑
x,y∈Zd

Θσ−(x,N)ω,N (x, y)1{‖x−y‖>M} ≤ ε1FM (ω) + 1F C
M

(ω).
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For ω ∈ FM ∩BN we have shown

dQN
dP

(ω)D
(2)
M,N (ω) =

∑
x,y∈Zd

Θσ−(y,N)ω,N1{‖x−y‖>M} ≤ ε

whereas for ω ∈ FM ∩BC
N

dQN
dP

(ω)D
(2)
M,N (ω) = 0

and thus

dQN
dP

(ω)D
(2)
M,N (ω) ≤ ε1FM (ω) + 1F C

M
(ω).

Proof of Proposition 2.2. We follow the ideas of the proof of Lemma 6.5 in [2]. To this
end, we consider the events

B−ε = {ω ∈ Ω :
1

|∆0|
∑
x∈∆0

dQN
dP

(σ(x,0)ω) < 1− ε}

B+
ε = {ω ∈ Ω :

1

|∆0|
∑
x∈∆0

dQN
dP

(σ(x,0)ω) > 1 + ε}.

First we consider B−ε . We decompose this event into two events, first of which has
probability M−c logM and the second is a P null set. We assume without loss of generality
that ∆0 is centred at the (spatial) origin, set Mε = ε

6d2M , define ∆−0 = {x ∈ Zd : ‖x‖ <
M −Mε} and

S−ε = {ω ∈ B−ε : σ(x,0)ω ∈ FMε
,∀x ∈ ∆0},

where FMε
is the event from Lemma 5.3. Due to property (1) of FMε

from Lemma 5.3

P(S−ε ) ≥ P(B−ε )− |∆0|P(FC
Mε

)

≥ P(B−ε )−Md(Mε)
−c logMε ≥ P(B−ε )−M−c̃ logM ,

where c̃ is a positive constant. Therefore it is enough to show that P(S−ε ) = 0.
We claim that there exists an event K− ⊂ S−ε such that

P(K−) ≥ P(S−ε ) · ((4d)d|∆0|)−1 (5.15)

and

if ω, ω′ ∈ K−, ω 6= ω′, then dist(ω, ω′) > 4M. (5.16)

For every (x, n) ∈ Zd ×Z let U(x,n) be an independent (of everything else defined so far)
random variable uniformly distributed on [0, 1], and define

K− :=
{
ω ∈ S−ε : ∀(x, 0) ∈ 4∆0 × {0} \ {(0, 0)} if σ(x,0)ω ∈ B−ε then U(x,0) < U(0,0)

}
.

This means informally, that from each family of environments whose distance is smaller
than 4M we choose one uniformly. This implies that property (5.16) for K− holds.
Property (5.15) holds because due to translation invariance of P we have

P(S−ε ) ≤ P
( ⋃
x∈4d∆0

σ(x,0)K
−
)
≤

∑
x∈4d∆0

P
(
σ(x,0)K

−) = (4d)d|∆0|P(K−).
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Now, let

G =
⋃
x∈∆0

σ(x,0)K
− and G− =

⋃
x∈∆−0

σ(x,0)K
−.

By property (5.16) of K− these are in both cases disjoint unions and therefore we have

P(G) =
∑
x∈∆0

P(σ(x,0)K
−) = |∆0|P(K−) and

P(G−) = |∆−0 |P(K−) = |∆0|
(
1− ε

6d2

)d
P(K−) >

(
1− ε

6

)
P(G).

(5.17)

Going back to the definition of the event B−ε and recalling that K− ⊂ S−ε ⊂ B−ε we
obtain

QN (G) =

∫
G

dQN
dP

(ω) dP(ω) =
∑
x∈∆0

∫
σ(x,0)K−

dQN
dP

(ω) dP(ω)

=

∫
K−

∑
x∈∆0

dQN
dP

(σ(x,0)ω) dP(ω)

≤
∫
K−

(1− ε)|∆0| dP(ω) = (1− ε)|∆0|P(K−) = (1− ε)P(G)

Combining this with (5.17), for small enough ε > 0 we obtain

QN (G) ≤ (1− ε)P(G) =
1− ε

1− ε/6

(
1− ε

6

)
P(G)

<
1− ε

1− ε/6
P(G−) <

(
1− ε

3

)
P(G−).

(5.18)

Let A− = {(ω, ω′) : ω ∈ G−, ω′ /∈ G}. Then by (5.17) and (5.18)

ΨN (A−) ≥ P(G−)−QN (G) ≥ P(G−)−
(

1− ε

3

)
P(G−)

≥ ε

3
P(G−) >

ε

3

(
1− ε

6

)
P(G) >

ε

4
P(G).

(5.19)

By construction of K−, for every (ω, ω′) ∈ A− we have dist(ω, ω′) > Mε and, therefore,∫
G

D
(1)
Mε,N

dP(ω) =

∫
G×Ω

D
(1)
Mε,N

dΨN (ω, ω′) ≥
∫
G−×Ω

D
(1)
Mε,N

dΨN (ω, ω′)

=

∫
Ω×Ω

EΨN [1{dist(ω,ω′)>Mε} |Fω](ω)1{G−×Ω}(ω, ω
′) dΨN (ω, ω′)

=

∫
Ω×Ω

EΨN [1{dist(ω,ω′)>Mε}1{G−×Ω}(ω, ω
′) |Fω](ω) dΨN (ω, ω′)

=

∫
Ω×Ω

1{dist(ω,ω′)>Mε}1{G−×Ω}(ω, ω
′) dΨN (ω, ω′) (5.20)

≥
∫

Ω×Ω

1{dist(ω,ω′)>Mε}1{A−}(ω, ω
′) dΨN (ω, ω′)

=

∫
Ω×Ω

1A−(ω, ω′) dΨN (ω, ω′)

= ΨN (A−) >
ε

4
P(G).

Since G ⊂ FMε by definition, using Lemma 5.3 with Mε and ε/5 instead of M and ε we
obtain∫

G

D
(1)
Mε,N

(ω) dP(ω) ≤
∫
G

ε

5
1FMε (ω) + 1F C

Mε
(ω) dP(ω) =

∫
G

ε

5
dP(ω) =

ε

5
P(G). (5.21)
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Combining (5.20) and (5.21) we conclude that P(G) = 0 and, therefore P(K−) = 0. By
property (5.15) of K− this implies that P(S−ε ) = 0 and finally P(B−ε ) ≤M−c logM .

Next we turn to the event B+
ε . As before we set Mε = ε

6d2M and assume that ∆0 is
centred at the origin. Define ∆+

0 := {x ∈ Zd : ‖x‖ < M +Mε} and let

S+
ε =

{
ω ∈ B+

ε : σ(x,0)ω ∈ FMε
,∀x ∈ ∆+

0

}
,

where FMε
is, as before, the event from Lemma 5.3. Due to property (1) of FMε

P(S+
ε ) ≥ P(B+

ε )− |∆+
0 |P(FC

Mε
) ≥ P(B+

ε )− (1 +
ε

6d2
)dMd(Mε)

−c logMε

≥ P(B+
ε )−M−c̃ logM

and again it is enough to show that P(S+
ε ) = 0. As for S−ε we claim that there exists an

event K+ ⊂ S+
ε such that

P(K+) ≥ P(S+
ε ) · ((4d)d|∆+

0 |)−1 (5.22)

and

if ω, ω′ ∈ K+ with ω 6= ω′, then dist(ω, ω′) > 4(M +Mε). (5.23)

We define K+ similar to K−, that is

K+ :=
{
ω ∈ S+

ε : ∀(x, 0) ∈ 4∆+
0 × {0} \ {(0, 0)} if σ(x,0)ω ∈ B+

ε then U(x,0) < U(0,0)

}
.

Let

H =
⋃
x∈∆0

σ(x,0)K
+ and H+ =

⋃
x∈∆+

0

σ(x,0)K
+.

Both are, by property (5.23) of K+ disjoint unions. Therefore we have for ε > 0 small
enough

P(H) = |∆0|P(K+) and

P(H+) = |∆+
0 |P(K+) =

(
1 +

ε

6d2

)d
|∆0|P(K+) <

(
1 +

ε

5

)
P(H).

(5.24)

From K+ ⊂ S+
ε ⊂ B+

ε we obtain

QN (H) =

∫
H

dQN
dP

(ω) dP(ω) =
∑
x∈∆0

∫
σ(x,0)K+

dQN
dP

(ω) dP(ω)

=

∫
K+

∑
x∈∆0

dQN
dP

(σ(x,0)ω) dP(ω)

>

∫
K+

|∆0|(1 + ε) dP(ω) = (1 + ε)|∆0|P(K+) = (1 + ε)P(H).

(5.25)

Combination of this with (5.24), for small enough ε > 0 then yields

QN (H) > (1 + ε)P(H) =
1 + ε

1 + ε/5

(
1 +

ε

5

)
P(H)

>
1 + ε

1 + ε/5
P(H+) >

(
1 +

ε

3

)
P(H+).

(5.26)
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Let A+ := {(ω, ω′) : ω /∈ H+, ω′ ∈ H}. Then by (5.26)

ΨN (A+) ≥ QN (H)− P(H+)

> QN (H)− 1

1 + ε/3
QN (H) =

ε/3

1 + ε/3
QN (H) ≥ ε

4
QN (H).

(5.27)

By the construction of K+, for every (ω, ω′) ∈ A+ we have dist(ω, ω′) > Mε and, therefore,∫
H

D
(2)
Mε,N

(ω) dQN (ω) =

∫
Ω×H

D
(2)
Mε,N

(ω′) dΨN (ω, ω′)

=

∫
Ω×Ω

D
(2)
Mε,N

(ω′)1{Ω×H}(ω, ω
′) dΨN (ω, ω′)

=

∫
Ω×Ω

EΨN [1{dist(ω,ω′)>Mε} |Fω′ ](ω
′)1{Ω×H}(ω, ω

′) dΨN (ω, ω′)

=

∫
Ω×Ω

EΨN [1{dist(ω,ω′)>Mε}1{Ω×H}(ω, ω
′) |Fω′ ](ω′) dΨN (ω, ω′)

=

∫
Ω×Ω

1{dist(ω,ω′)>Mε}1{Ω×H}(ω, ω
′) dΨN (ω, ω′)

≥
∫

Ω×Ω

1{dist(ω,ω′)>Mε}1A+(ω, ω′) dΨN (ω, ω′)

=

∫
Ω×Ω

1A+(ω, ω′) dΨN (ω, ω′)

= ΨN (A+) ≥ ε

4
QN (H). (5.28)

Since H ⊂ FMε
by definition, P(H) ≤ QN (H) by (5.25), and using Lemma 5.3 with Mε

and ε
5 instead of M and ε we obtain∫
H

D
(2)
Mε,N

dQN (ω) ≤
∫
H∩BN

(dQN
dP

)−1[ε
5

1FMε∩BN + 1(FMε∩BN )C

]
dQN (ω)

=

∫
H∩BN

(dQN
dP

)−1[ε
5

1FMε∩BN + 1(FMε∩BN )C

]
dQN (ω)

=

∫
H∩BN

[ε
5

1FMε∩BN + 1(FMε∩BN )C

]
dP(ω)

=

∫
H∩BN

ε

5
dP(ω)

=
ε

5
P(H ∩BN ) ≤ ε

5
P(H) ≤ ε

5
QN (H),

(5.29)

where we recall from Lemma 5.3 that BN = {ω : dQN
dP (ω) 6= 0} and note that BC

N is a
QN null set. Combining (5.28) and (5.29), we conclude that QN (H) = 0 and, therefore,
by (5.25) we have P(H) = 0. It follows that P(K+) = 0, which by property (5.22) of K+

implies that P(S+
ε ) = 0 and finally that (2.5) holds.

Proof of Corollary 2.4. To show that Proposition 2.2 holds for Q as well we define Ψ

as the weak limit of { 1
n

∑n−1
N=0 ΨN}∞n=1 along any converging sub-sequence {nk}k≥1

(tightness of ΨN follows similarly to the discussion below Corollary 2.3). Note that Ψ is
a coupling of P and Q on Ω× Ω. Furthermore let

D
(i)
M (ωi) := EΨ[1dist(ω1,ω2)>dM | Fωi ](ωi), i = 1, 2.
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Now we want to prove inequality (5.11) from Lemma 5.3 for D(1)
M and D

(2)
M . It is

enough to show that along some sub-sequence {n`}l≥1 of {nk}k≥1

D
(1)
M (ω) = lim

`→∞

1

n`

n`−1∑
N=0

D
(1)
M,N (ω) P-a.s. (5.30)

and

D
(2)
M (ω) =

(dQ
dP

(ω)
)−1

lim
`→∞

1

n`

n`−1∑
N=0

dQN
dP

(ω)D
(2)
M,N (ω) Q-a.s. (5.31)

In fact, if the above equalities hold, then for P-almost every ω we have

D
(1)
M (ω) = lim

`→∞

1

n`

n`−1∑
N=0

D
(1)
M,N (ω)

= lim
`→∞

1

n`

[M−1∑
N=0

D
(1)
M,N (ω) +

n`−1∑
N=M

D
(1)
M,N (ω)

]
≤ lim
`→∞

1

n`

[
M +

n`−1∑
N=M

D
(1)
M,N (ω)

]
≤ lim
`→∞

1

n`

[
M +

n`−1∑
N=M

(ε1FM (ω) + 1F C
M

(ω))
]

= ε1FM (ω) + 1F C
M

(ω).

In addition for D(2)
M we have for Q almost all ω

dQ

dP
(ω)D

(2)
M (ω) = lim

`→∞

1

n`

n`−1∑
N=0

dQN
dP

(ω)D
(2)
M,N (ω)

≤ lim
`→∞

1

n`

[M−1∑
N=0

dQN
dP

(ω) +

n`−1∑
N=M

dQN
dP

(ω)D
(2)
M,N (ω)

]
≤ lim
`→∞

1

n`

[M−1∑
N=0

dQN
dP

(ω) +

n`−1∑
N=M

(ε1FM (ω) + 1F C
M

(ω))
]

≤ ε1FM (ω) + 1F C
M

(ω).

Let us now prove (5.30) and (5.31). Starting with (5.30) let A ⊂ Ω be a measurable
event. We have

E[D
(1)
M (ω1)1A(ω1)]

= EΨ[1{dist(ω1,ω2)>dM}1A×Ω(ω1, ω2)]

= Ψ({(ω1, ω2) ∈ Ω× Ω : dist(ω1, ω2) > dM} ∩A× Ω)

= lim
`→∞

1

n`

n`−1∑
N=0

ΨN ({(ω1, ω2) ∈ Ω× Ω : dist(ω1, ω2) > dM} ∩A× Ω)

= lim
`→∞

1

n`

n`−1∑
N=0

EΨN [1{dist(ω1,ω2)>dM}1A×Ω(ω1, ω2)]

= lim
`→∞

1

n`

n`−1∑
N=0

E[D
(1)
M,N (ω1)1A(ω1)]
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= lim
`→∞

E
[ 1

n`

n`−1∑
N=0

D
(1)
M,N (ω1)1A(ω1)

]
where we used the definitions of Ψ and of D(1)

M,N as the conditional expectation. This

implies convergence of 1
n`

∑n`−1
N=0 D

(1)
M,N to D(1)

M in L1(P). Thus, by standard arguments

we can choose a subsequence that converges P-almost surely. For D(2)
M we obtain in a

similar way that Q-almost surely we have

EQ[D
(2)
M (ω)1A(ω2)]

= EΨ[1dist(ω1,ω2)>dM1Ω×A(ω1, ω2)]

= Ψ({dist(ω1, ω2) > dM} ∩ Ω×A)

= lim
`→∞

1

n`

n`−1∑
N=0

ΨN ({dist(ω1, ω2) > dM} ∩ Ω×A)

= lim
`→∞

1

n`

n`−1∑
N=0

EΨN [1dist(ω1,ω2)>dM1Ω×A(ω1, ω2)]

= lim
`→∞

1

n`

n`−1∑
N=0

EΨN [D
(2)
M,N (ω2)1Ω×A(ω1, ω2)]

= lim
`→∞

1

n`

n`−1∑
N=0

EQN [D
(2)
M,N (ω2)1A(ω2)]

= lim
`→∞

1

n`

n`−1∑
N=0

EQ

[(dQ
dP

(ω2)
)−1 · dQN

dP
(ω2) ·D(2)

M,N (ω2)1A(ω2)
]

= lim
`→∞

EQ

[(dQ
dP

(ω2)
)−1 · 1

n`

n`−1∑
N=0

dQN
dP

(ω2) ·D(2)
M,N (ω2)1A(ω2)

]
.

Thus, Lemma 5.3 holds for D(1)
M and D(2)

M instead of D(1)
M,N and D(2)

M,N respectively.
Since the only results we need for the proof of Proposition 2.2 are Lemma 2.1 and

Lemma 5.3, we can walk through the proof of Proposition 2.2 and repeat the same steps
for dQ

dP to show Corollary 2.4.

The following proposition is an analogue to Proposition 7.1 from [2]. Note that the
assertion is not model-specific as it expresses a general property of the density of a
measure which is invariant for the point of view of the particle in the setting of a random
walk in random environment. Recall that ϕ = dQ/dP is the Radon-Nikodym derivative of
Q with respect to P from Definition 2.7.

Proposition 5.4. For P-almost every ω, every n ∈ N0, every x ∈ Zd and all k ≤ n

ϕ(σ(x,n)ω) =
∑
y∈Zd

P (x+y,n−k)
ω (Xn = x)ϕ(σ(x+y,n−k)ω).

Proof. Let n ∈ N. First we consider the case k = 1. For every bounded measurable
function h : Ω→ R we have (recall the notation in (1.9) and (1.10))∫

Ω

h(ω)ϕ(σ(x,n)ω) dP(ω) =

∫
Ω

h(σ(−x,−n)ω)ϕ(ω) dP(ω)

=

∫
Ω

h(σ(−x,−n)ω) dQ(ω)
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=

∫
Ω

Rh(σ(−x,−n)ω) dQ(ω)

=

∫
Ω

(Rh(σ(−x,−n)ω))ϕ(ω) dP(ω)

=

∫
Ω

∑
‖y‖≤1

g(ω, y)h(σ(−x+y,1−n)ω)ϕ(ω) dP(ω)

=

∫
Ω

∑
‖y‖≤1

g(σ(x−y,n−1)ω, y)h(ω)ϕ(σ(x−y,n−1)ω) dP(ω).

Thus

ϕ(σ(x,n)ω) =
∑
‖y‖≤1

g(σ(x−y,n−1)ω)ϕ(σ(x−y,n−1)ω)

=
∑
‖y‖≤1

P (0,0)
σ(x−y,n−1)ω

(X1 = y)ϕ(σ(x−y,n−1)ω)

=
∑
‖y‖≤1

P (x−y,n−1)
ω (X1 = x)ϕ(σ(x−y,n−1)ω)

=
∑
y∈Zd

P (x+y,n−1)
ω (X1 = x)ϕ(σ(x+y,n−1)ω).

By applying the operator R a second time we see that∫
Ω

h(ω)ϕ(σ(x,n)ω) dP

=

∫
Ω

h(ω)
∑
‖y1‖≤1

P (x+y1,n−1)
ω (X1 = x)ϕ(σ(x+y1,n−1)ω) dP(ω)

=

∫
Ω

h(σ(−x−y1,−n+1)ω)
∑
‖y1‖≤1

P (x+y1,n−1)
σ(−x−y1,−n+1)ω

(X1 = x)ϕ(ω) dP(ω)

=

∫
Ω

[(
R(h(σ(−x−y1,−n+1)ω)

∑
‖y1‖≤1

P (x+y1,n−1)
σ(−x−y1,−n+1)ω

(X1 = x))
)]
ϕ(ω) dP(ω)

=

∫
Ω

∑
‖y2‖≤1

g(ω, y2)h(σ(−x−y1+y2,−n+2)ω)

∑
‖y1‖≤1

P (x+y1,n−1)
σ(−x−y1+y2,−n+2)ω

(X1 = x)ϕ(ω) dP(ω)

=

∫
Ω

∑
‖y2‖≤1

g(σ(x+y1−y2,n−2)ω, y2)h(ω)

∑
‖y1‖≤1

P (x+y1,n−1)
ω (X1 = x)ϕ(σ(x+y1−y2,n−2)ω) dP(ω)

=

∫
Ω

∑
‖y2‖≤1

P (x+y1+y2,n−2)
ω (X1 = x+ y1)

∑
‖y1‖≤1

P (x+y1,n−1)
ω (X1 = x)h(ω)ϕ(σ(x+y1+y2,n−2)ω) dP(ω).
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Thus,

ϕ(σ(x,n)ω)

=
∑
‖y1‖≤1

∑
‖y2‖≤1

P (x+y1+y2,n−2)
ω (X1 = x+ y1)P (x+y1,n−1)

ω (X1 = x)ϕ(σ(x+y1+y2,n−2)ω)

=
∑
y∈Zd

P x+y,n−2
ω (X2 = x)ϕ(σ(x+y,n−2)ω).

Inductively we obtain

ϕ(σ(x,n)ω) =
∑
y∈Zd

P (x+y,n−k)
ω (Xk = x)ϕ(σ(x+y,n−k)ω)

for all k ≤ n.

6 Proof of Proposition 2.8

Let Π be a partition of Zd into boxes of side length bnδc with 0 < δ < 1
6d . Since

P(0,0)(Xn = x) = 0 for ‖x‖ > n only boxes in Πn := {∆ ∈ Π : ∆ ∩ [−n, n]d 6= ∅} have to be
considered. We have

|Zω,n − 1| =
∣∣∣∑
x∈Zd

P(0,0)(Xn = x)[ϕ(σ(x,n)ω)− 1]
∣∣∣

=
∣∣∣ ∑
∆∈Πn

∑
x∈∆

P(0,0)(Xn = x)[ϕ(σ(x,n)ω)− 1]
∣∣∣. (6.1)

By the annealed CLT from [4] for any ε > 0 there exists a constant Cε > 0 such that

P(0,0)(‖Xn‖ ≥ Cε
√
n) < ε

We want to use this fact below and separate the sum in the last line of (6.1) into boxes
in Π̂n = {∆ ∈ Πn : ∆ ∩ {x ∈ Zd : ‖x‖ ≤ Cε

√
n} 6= ∅} and in Πn \ Π̂n. Using the triangle

inequality we obtain

|Zω,n−1|

≤
∣∣∣ ∑
∆∈Πn\Π̂n

∑
x∈∆

P(0,0)(Xn = x)[ϕ(σ(x,n)ω)− 1]
∣∣∣ (6.2)

+
∣∣∣ ∑
∆∈Π̂n

∑
x∈∆

( 1

|∆|
∑
y∈∆

[P(0,0)(Xn = y)− P(0,0)(Xn = x)]
)

[ϕ(σ(x,n)ω)− 1]
∣∣∣ (6.3)

+
∣∣∣ ∑
∆∈Π̂n

∑
x∈∆

1

|∆|
∑
y∈∆

P(0,0)(Xn = y)[ϕ(σ(x,n)ω)− 1]
∣∣∣. (6.4)

We start with an upper bound of (6.2). By Corollary 2.4 there exists a constant C, such
that, due to translation invariance of P, with P probability of a least 1 − Cn−c logn for
every ∆ ∈ Πn we have

∑
y∈∆[ϕ(σ(y,n)ω)+1] ≤ C|∆|. Under this event we can bound (6.2)

from above by∑
∆∈Πn\Π̂n

∑
x∈∆

P(0,0)(Xn = x)[ϕ(σ(x,n)ω) + 1] ≤ C
∑

∆∈Πn\Π̂n

max
x∈∆

P(0,0)(Xn = x)|∆|.

Using Lemma 3.2 with δ > 0 replacing ε there we see that (6.2) is bounded from above
by

C
∑

∆∈Πn\Π̂n

∑
y∈∆

[
max
x∈∆

P(0,0)(Xn = x)− P(0,0)(Xn = y)
]

+ C
∑

∆∈Πn\Π̂n

∑
y∈∆

P(0,0)(Xn = y)
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≤ Cε+ C
∑

∆∈Πn

∑
y∈∆

[
max
x∈∆

P(0,0)(Xn = x)− P(0,0)(Xn = y)
]

≤ Cε+ Cn−
1
2 +3dδ.

Since δ < 1
6d it follows by the Borel–Cantelli lemma that

lim sup
n→∞

∣∣∣ ∑
∆∈Πn\Π̂n

∑
x∈∆

P(0,0)(Xn = x)[ϕ(σ(x,n)ω)− 1]
∣∣∣ ≤ Cε, P-a.s. (6.5)

Next we turn to (6.3). First note that by the annealed derivative estimates from
Lemma 3.1 we have for x, y ∈ ∆, ∆ ∈ Π̂n

|P(0,0)(Xn = x)− P(0,0)(Xn = y)| ≤ C ‖x− y‖n−
d+1

2 ≤ Cn−
d+1

2 +δ. (6.6)

By triangle inequality, (6.6) and again, as above, using Corollary 2.4 for the bound∑
y∈∆[ϕ(σ(y,n)ω) + 1] ≤ C|∆| the expression (6.3) is bounded from above by∑

∆∈Π̂n

∑
x∈∆

1

|∆|
∑
y∈∆

|P(0,0)(Xn = y)− P(0,0)(Xn = x)||ϕ(σ(x,n)ω)− 1|

≤ Cn−
d+1

2 +δ
∑

∆∈Π̂n

∑
x∈∆

1

|∆|
∑
y∈∆

[
ϕ(σ(x,n)ω) + 1

]
≤ Cn−

d+1
2 +δ

∑
∆∈Π̂n

∑
y∈∆

C

≤ C̃(Cε
√
n)dn−

d+1
2 +δ ≤ Ĉεn−

1
2 +δ.

with probability at least 1− Cn−c logn. Thus, as n→∞, by the Borel–Cantelli lemma the
expression (6.3) tends to 0 P-almost surely.

Finally we consider (6.4). By triangle inequality and P(0,0)(Xn = y) ≤ Cn−d/2 for all
y we have∣∣∣ ∑

∆∈Π̂n

∑
x∈∆

1

|∆|
∑
y∈∆

P(0,0)(Xn = y)[ϕ(σ(x,n)ω)− 1]
∣∣∣

≤
∑

∆∈Π̂n

1

|∆|
∑
y∈∆

P(0,0)(Xn = y)
∣∣∣∑
x∈∆

[ϕ(σ(x,n)ω)− 1]
∣∣∣

≤ Cn−d/2
∑

∆∈Π̂n

∣∣∣∑
x∈∆

[ϕ(σ(x,n)ω)− 1]
∣∣∣

≤ Cn−d(1/2−δ)
∑

∆∈Π̂n

1

|∆|

∣∣∣∑
x∈∆

[ϕ(σ(x,n)ω)− 1]
∣∣∣.

Using Corollary 2.4 we obtain

P
(
Cn−d(1/2−δ)

∑
∆∈Π̂n

1

|∆|

∣∣∣∑
x∈∆

[ϕ(σ(x,n)ω)− 1]
∣∣∣ > ε

)
≤ P

(
∃∆ ∈ Π̂n :

1

|∆|

∣∣∣∑
x∈∆

[ϕ(σ(x,n)ω)− 1]
∣∣∣ > ε

CCdε

)
≤ CCdεnd(1/2−δ)P

( 1

|∆0|

∣∣∣ ∑
x∈∆0

[ϕ(σ(x,n)ω)− 1]
∣∣∣ > ε

CCdε

)
≤ CCdεnd(1/2−δ)n−cδ

2 logn ≤ C̃n−c̃ logn,
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where ∆0 ∈ Π̂n is an arbitrarily fixed box. Thus, for ε > 0 as n→∞ the lim sup of (6.4)
is bounded from above by ε P-almost surely. Combining all three bounds of (6.2)–(6.4),
we see that there is a constant Ĉ so that for all ε > 0

lim sup
n→∞

|Zω,n − 1| ≤ Ĉε, P-almost surely,

which concludes the proof.

7 Proof of Proposition 2.9

The following result is an essential tool to prove Proposition 2.9 and will be proven in
Section 9.

Lemma 7.1. Let 0 < θ < 1/2 and b > 0. Define the set

D(n) :=
⋂

x,y∈Zd :

‖x‖,‖y‖≤nb,
‖x−y‖≤nθ

{∥∥∥P (x,0)
ω (Xn ∈ ·)− P (y,0)

ω (Xn ∈ ·)
∥∥∥

TV
≤ e−c

logn
log logn

}
. (7.1)

Then there are constants C, c > 0 so that P(D(n)) ≥ 1− Cn−c logn.

Note that the restriction ‖x‖ , ‖y‖ ≤ nb in the definition of D(n) in (7.1) is necessary
because with probability 1 we have an environment where there exist (somewhere far
out in space) two neighbouring points x, y ∈ Zd so that the sites (x, 0) and (y, 0) are
both connected to infinity but the respective clusters do not intersect for the first n time
steps.

Remark 7.2. The above lemma is the analogue of Lemma 7.7 from [2] in our setting.
Note that the bound stated in Lemma 7.7 from [2] is too optimistic to hold in general.
However, its assertion can be weakened and one obtains a bound which is still strong
enough to prove Lemma 7.5 in [2] by going a similar route as in the proof of Lemma 7.1
here.

Proof of Proposition 2.9, (L1). For this part we make use of the fact that, due to the
annealed derivative estimates from Lemma 3.1 for |x − y| ≤ k, |P(0,0)(Xn = x) −
P(0,0)(Xn−k = y)| ≤ Ck/(n − k)(d+1)/2 ≈ n−(d+1)/2+ε, since k = dnεe � n. Further-
more we use the fact that by definition as a density of the invariant measure of the
environment with respect to the point of view of the particle, the prefactor can be
“transported” along the quenched transition probabilities; see Proposition 5.4. Finally
we use the concentration property of Corollary 2.4; see equation (2.9).

We have to show

lim
n→∞

∑
x∈Zd

∣∣∣ 1

Zω,n
P(0,0)(Xn = x)ϕ(σ(x,n)ω)

− 1

Zω,n−k

∑
y∈Zd

P(0,0)(Xn−k = y)ϕ(σ(y,n−k)ω)P (0,0)
σ(y,n−k)ω

(Xk = x− y)
∣∣∣ = 0.

(7.2)

Note that the by the triangle inequality the sum on the left hand side is bounded from
above by∑

x∈Zd

∣∣∣ 1

Zω,n
− 1

Zω,n−k

∣∣∣P(0,0)(Xn = x)ϕ(σ(x,n)ω)

+
1

Zω,n−k

∑
x∈Zd

∣∣∣P(0,0)(Xn = x)ϕ(σ(x,n)ω)
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−
∑
y∈Zd

P(0,0)(Xn−k = y)ϕ(σ(y,n−k)ω)P (0,0)
σ(y,n−k)ω

(Xk = x− y)
∣∣∣.

By definition of Zω,n, recall from Definition 2.7, the first sum in the above display equals
to ∣∣∣ 1

Zω,n
− 1

Zω,n−k

∣∣∣Zω,n,
which by Proposition 2.8 almost surely goes to 0 as n and n− k both tend to∞. Thus,
taking also into account the trivial deterministic bound on the speed of the random walk,
for (7.2) it suffices to show

lim
n→∞

∑
x∈Zd∩[−n,n]d

∣∣∣P(0,0)(Xn = x)ϕ(σ(x,n)ω)

−
∑

y∈Zd∩[−n,n]d

P(0,0)(Xn−k = y)ϕ(σ(y,n−k)ω)P (0,0)
σ(y,n−k)ω

(Xk = x− y)
∣∣∣ = 0.

(7.3)

Denoting by Bn = {x ∈ Zd : ‖x‖ ≤
√
n log3 n} and using the triangle inequality an upper

bound of the sum in (7.3) is given by∑
x∈Bn

∣∣∣ ∑
y∈Zd∩[−n,n]d

[
P(0,0)(Xn = x)− P(0,0)(Xn−k = y)

]
× ϕ(σ(y,n−k)ω)P (0,0)

σ(y,n−k)ω
(Xk = x− y)

∣∣∣ (7.4)

+
∑
x∈Bn

P(0,0)(Xn = x)

×
∣∣∣ϕ(σ(x,n)ω)−

∑
y∈Zd∩[−n,n]d

ϕ(σ(y,n−k)ω)P (0,0)
σ(y,n−k)ω

(Xk = x− y)
∣∣∣ (7.5)

+
∑

x∈Zd∩[−n,n]d\Bn

∣∣∣P(0,0)(Xn = x)ϕ(σ(x,n)ω)

−
∑

y∈Zd∩[−n,n]d

P(0,0)(Xn−k = y)ϕ(σ(y,n−k)ω)P (0,0)
σ(y,n−k)ω

(Xk = x− y)
∣∣∣. (7.6)

By the annealed derivative estimates (see Lemma 3.1) the term in (7.4) is bounded from
above by ∑

x∈Bn

∣∣∣ ∑
y∈Zd
‖x−y‖≤k

[
P(0,0)(Xn = x)− P(0,0)(Xn−k = y)

]

× ϕ(σ(y,n−k)ω)P (0,0)
σ(y,n−k)ω

(Xk = x− y)
∣∣∣

≤ 2Ck

(n− k)(d+1)/2

∑
x∈Bn

∑
y∈Zd
‖x−y‖≤k

ϕ(σ(y,n−k)ω)P (0,0)
σ(y,n−k)ω

(Xk = x− y)

≤ 2Ck(
√
n log3 n+ k)d

(n− k)(d+1)/2

1

(
√
n log3 n+ k)d

∑
y∈Zd

dist(y,Bn)≤k

ϕ(σ(y,n−k)ω).

Now using Corollary 2.4 and the fact that k = dnεe < n1/4 for P-almost every ω the last
term tends to zero as n tend to infinity.
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Next we deal with (7.5). Recall that by Proposition 5.4 we have

ϕ(σ(x,n)ω) =
∑

y∈Zd∩[−n,n]d

ϕ(σ(x,n−k)ω)P (y,n−k)
ω (Xk = x)

for every x ∈ Zd such that x+ [−k, k]d ∩Zd ⊂ [−n, n]d ∩Zd. This holds for every x ∈ Bn
and therefore the expression (7.5) equals 0.

Finally, for (7.6), using Lemma 3.6 from [21], we have P(0,0)(Xn /∈ Bn) ≤ Cn−c logn.

Recall that k = dnεe and note that if P (y,n−k)
ω (Xk = x) > 0 then ‖x− y‖ ≤ k. Thus, for

x ∈ [−n, n]d ∩Zd \Bn and large enough n

‖y‖ ≥ ‖x‖ − ‖x− y‖ ≥
√
n log3 n− k ≥ 1

2

√
n log3 n.

This implies, again due to Lemma 3.6 from [21] that P(0,0)(Xn−k = y) ≤ Cn−c logn.
Therefore, the expression (7.6) is bounded from above by∑

x∈Zd∩[−n,n]d\Bn

P(0,0)(Xn = x)ϕ(σ(x,n)ω)

+
∑

x∈Zd∩[−n,n]d\Bn

∑
y∈Zd∩[−n,n]d

P(0,0)(Xn−k = y)ϕ(σ(y,n−k)ω)P (y,n−k)
ω (Xk = x)

≤ Cn−c logn
∑

x∈Zd∩[−n,n]d\Bn

ϕ(σ(x,n)ω)

+ Cn−c logn
∑

x∈Zd∩[−n,n]d\Bn

∑
y∈Zd∩[−n,n]d

ϕ(σ(y,n−k)ω)P (y,n−k)
ω (Xk = x)

≤ Cn−c logn
∑

x∈Zd∩[−n,n]d

ϕ(σ(x,n)ω) + Cn−c logn
∑

y∈Zd∩[−n,n]d

ϕ(σ(y,n−k)ω).

By Corollary 2.4 we have

P
( ∑
x∈Zd∩[−n,n]d

ϕ(σ(x,n)ω) ≤ (2n+ 1)d
)
> 1− n−c logn,

as well as

P
( ∑
y∈Zd∩[−n,n]d

ϕ(σ(y,n−k)ω) ≤ (2n+ 1)d
)
> 1− Cn−c logn.

Thus, the probability of the event that (7.6) is bounded above by 4Cn−c lognnd converges
to 1 super-algebraically fast. Hence the expression (7.6) converges to 0 P-almost surely.

Proof of Proposition 2.9, (L2). First note that, it is enough to show that∥∥νann×pre
ω − νbox−que×pre

ω

∥∥
1,n−k

n→∞−−−−→ 0,

since the last k steps are according to the quenched law for both hybrid measures.
Then, as the measure νbox−que×pre suggests, we make use of the comparison between
the quenched and the annealed laws on the level of boxes we derived from Lemma 2.1.
We also use the concentration properties of ϕ from Corollary 2.4.

Let k ∈ {0, . . . , n} be fixed. Note that we have∥∥(νann×pre ∗ νque)ω,k − (νbox−que×pre ∗ νque)ω,k
∥∥

1,n
≤
∥∥νann×pre
ω − νbox−que×pre

ω

∥∥
1,n−k
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=
∑
x∈Zd

ϕ(σ(x,n−k)ω)
∣∣∣P(0,0)(Xn−k = x)

Zω,n−k
− P

(0,0)
ω (Xn−k ∈ ∆x)∑
y∈∆x

ϕ(σ(y,n−k)ω)

∣∣∣,
where Zω,n−k is the normalizing constant from Definition 2.7. By using Proposition 2.8 it
is enough to show that P-almost surely

lim
n→∞

∑
x∈Zd

ϕ(σ(x,n−k)ω)
∣∣∣P(0,0)(Xn−k = x)− P

(0,0)
ω (Xn−k ∈ ∆x)∑
y∈∆x

ϕ(σ(y,n−k)ω)

∣∣∣ = 0. (7.7)

Let An = {x ∈ Zd : ‖x‖ ≤ C(ε′)
√
n}, with C(ε′) chosen so that P(0,0)(‖Xn−k‖ >

C(ε′)
2

√
n− k) < ε′ for n large enough. Note that ε′ can be chosen independently of

ε and δ from Proposition 2.9. Using the triangle inequality the sum in (7.7) is bounded by

∑
x∈Zd∩[−n,n]d\An

ϕ(σ(x,n−k)ω)
∣∣∣P(0,0)(Xn−k = x)− P

(0,0)
ω (Xn−k ∈ ∆x)∑
y∈∆x

ϕ(σ(y,n−k)ω)

∣∣∣ (7.8)

+
∑
x∈An

ϕ(σ(x,n−k)ω)
∣∣∣P(0,0)(Xn−k = x)− P

(0,0)(Xn−k ∈ ∆x)

|∆x|

∣∣∣ (7.9)

+
∑
x∈An

ϕ(σ(x,n−k)ω)
∣∣∣P(0,0)(Xn−k ∈ ∆x)

|∆x|
− P(0,0)(Xn−k ∈ ∆x)∑

y∈∆x
ϕ(σ(y,n−k)ω)

∣∣∣ (7.10)

+
∑
x∈An

ϕ(σ(x,n−k)ω)
∣∣∣ P(0,0)(Xn−k ∈ ∆x)∑

y∈∆x
ϕ(σ(y,n−k)ω)

− P
(0,0)
ω (Xn−k ∈ ∆x)∑
y∈∆x

ϕ(σ(y,n−k)ω)

∣∣∣. (7.11)

Now we deal with the four terms separately. Expression (7.8) is bounded from above
by ∑

x∈Zd∩[−n,n]d\An

P(0,0)(Xn−k = x)ϕ(σ(x,n−k)ω) + P (0,0)
ω (‖Xn−k‖ > C(ε′)

√
n).

We obtain lim supn→∞
∑
x∈Zd∩[−n,n]d\An P

(0,0)(Xn−k = x)ϕ(σ(x,n−k)ω) ≤ Cε′ by the same
arguments used to bound (6.2) in the proof of Proposition 2.8. For the second term we
can argue as in the proof of Claim 2.15 from [2], to obtain that for a set of environments,
with P probability > 1−

√
ε′, for large enough n

P (0,0)
ω (‖Xn−k‖ > C(ε′)

√
n) ≤ P (0,0)

ω

(
‖Xn‖ >

C(ε′)

2

√
n
)
≤
√
ε′.

Since ε′ > 0 was arbitrary, this proves that (7.8) goes to zero as n goes to infinity.
Next we turn to (7.9). The annealed derivative estimates (recall Lemma 3.1) yield

that it is bounded from above by∑
x∈An

ϕ(σ(x,n−k)ω)
1

|∆x|
∑
y∈∆x

|P(0,0)(Xn−k = x)− P(0,0)(Xn−k = y)|

≤ C
∑
x∈An

ϕ(σ(x,n−k)ω)
1

|∆x|
∑
y∈∆x

1

(n− k)(d+1)/2
‖x− y‖

≤ Cdnδ 1

(n− k)(d+1)/2

∑
x∈An

ϕ(σ(x,n−k)ω)

=
Cnδ+d/2

(n− k)(d+1)/2

( 1

nd/2

∑
x∈An

ϕ(σ(x,n−k)ω)
)

n→∞−−−−→ 0, P-a.s.,
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where for the limit we use Corollary 2.4, the fact that k = dnεe and δ < ε < 1
4 .

Next we deal with (7.10). Writing Π̂n = {∆ ∈ Π : ∆ ∩ An 6= ∅}, using annealed
derivative estimates and Corollary 2.4 we see that (7.10) is bound by∑
x∈An

ϕ(σ(x,n−k)ω)
1

|∆x|
P(0,0)(Xn−k ∈ ∆x)

∣∣∣1− 1
1
|∆x|

∑
y∈∆x

ϕ(σ(y,n−k)ω)

∣∣∣
≤ C

(n− k)d/2

∑
x∈An

ϕ(σ(x,n−k)ω)
∣∣∣1− 1

1
|∆x|

∑
y∈∆x

ϕ(σ(y,n−k)ω)

∣∣∣
≤ C

(n− k
n

)−d/2 1

nd/2

∑
∆∈Π̂n

∑
x∈∆

ϕ(σ(x,n−k)ω)
∣∣∣1− 1

1
|∆x|

∑
y∈∆x

ϕ(σ(y,n−k)ω)

∣∣∣
= C

(
1− k

n

)−d/2 1

nd/2

∑
∆∈Π̂n

∑
x∈∆

ϕ(σ(x,n−k)ω)|∆x|∑
y∈∆x

ϕ(σ(y,n−k)ω)

∣∣∣ 1

|∆x|
∑
y∈∆x

ϕ(σ(y,n−k)ω)− 1
∣∣∣

= C
(

1− k

n

)−d/2 1

n(d/2)(1−2δ)

∑
∆∈Π̂n

∣∣∣ 1

|∆|
∑
x∈∆

ϕ(σ(x,n−k)ω)− 1
∣∣∣.

Using the same argument that was used for (6.4), we get that by the Borel–Cantelli
lemma the last term goes to zero P-a.s.

Finally, we estimate (7.11). It is bounded from above by

∑
x∈An

ϕ(σ(x,n−k)ω)∑
y∈∆x

ϕ(σ(y,n−k)ω)
|P(0,0)(Xn−k ∈ ∆x)− P (0,0)

ω (Xn−k ∈ ∆x)|

=
∑

∆∈Π̂n

|P(0,0)(Xn−k ∈ ∆)− P (0,0)
ω (Xn−k ∈ ∆)|.

For the last term we can use Theorem 8.1 which implies that it is bounded by Cn−
1
3 δ for

P-almost every ω and large enough n. Therefore P almost surely it converges to zero as
n tends to infinity.

Proof of Proposition 2.9, (L3). Note that the first measure chooses, at time n− k, a box
according to the quenched law and a point in that box weighted by the prefactor, whereas
the second measure chooses a box and a point in that box according to the quenched
law at time n− k. These points are then the starting points for the quenched random
walks for the remaining k steps. We use the fact that, given enough time (much more
than the square of the starting distance), the total variation distance for two quenched
random walks starting from any pair of sites in a box with side length dn`e is, given
enough time, i.e. much more than the square of the side length of the box, is small with
high probability, see Lemma 7.1.

The proof follows along the same lines as in [2]. We will highlight the point in the
proof where we deviate. We have∥∥(νbox−que×pre ∗ νque)ω,k − (νque ∗ νque)ω,k

∥∥
1,n

=
∑
x∈Zd

∣∣(νbox−que×pre ∗ νque)ω,k(x, n)− (νque ∗ νque)ω,k(x, n)
∣∣

=
∑
x∈Zd

∣∣∣∑
y∈Zd

P (0,0)
ω (Xn−k ∈ ∆y)

ϕ(σ(y,n−k)ω)∑
z∈∆y

ϕ(σ(z,n−k)ω)
P (0,0)
σ(y,n−k)ω

(Xk = x− y)

−
∑
y∈Zd

P (0,0)
ω (Xn−k = y)P (0,0)

σ(y,n−k)ω
(Xk = x− y)

∣∣∣
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=
∑
x∈Zd

∣∣∣∑
∆∈Π

∑
y∈∆

P (y,n−k)
ω (Xk = x)P (0,0)

ω (Xn−k ∈ ∆)

·
( ϕ(σ(y,n−k)ω)∑

z∈∆ ϕ(σ(z,n−k)ω)
− P (0,0)

ω (Xn−k = y |Xn−k ∈ ∆)
)∣∣∣

≤
∑
x∈Zd

∑
∆∈Π

∣∣∣∑
y∈∆

P (y,n−k)
ω (Xk = x)P (0,0)

ω (Xn−k ∈ ∆)

·
( ϕ(σ(y,n−k)ω)∑

z∈∆ ϕ(σ(z,n−k)ω)
− P (0,0)

ω (Xn−k = y |Xn−k ∈ ∆)
)∣∣∣. (7.12)

Since for every ∆ ∈ Π and x ∈ Zd we have

∑
y∈∆

1

|∆|
∑
v∈∆

P (v,n−k)
ω (Xk = x)

[ ϕ(σ(y,n−k)ω)∑
z∈∆ ϕ(σ(z,n−k)ω)

− P (0,0)
ω (Xn−k = y |Xn−k ∈ ∆)

]
= 0

it follows that (7.12) equals

∑
x∈Zd

∑
∆∈Π

P (0,0)
ω (Xn−k ∈ ∆)

∣∣∣∑
y∈∆

[
P (y,n−k)
ω (Xk = x)−

( 1

|∆|
∑
w∈∆

P (w,n−k)
ω (Xk = x)

)]
·
( ϕ(σ(y,n−k)ω)∑

z∈∆ ϕ(σ(z,n−k)ω)
− P (0,0)

ω (Xn−k = y |Xn−k ∈ ∆)
)∣∣∣

=
∑
x∈Zd

∑
∆∈Π

P (0,0)
ω (Xn−k ∈ ∆)

∣∣∣ 1

|∆|
∑
y∈∆

∑
w∈∆

[
P (y,n−k)
ω (Xk = x)− P (w,n−k)

ω (Xk = x)
]

·
( ϕ(σ(y,n−k)ω)∑

z∈∆ ϕ(σ(z,n−k)ω)
− P (0,0)

ω (Xn−k = y |Xn−k ∈ ∆)
)∣∣∣

≤
∑
∆∈Π

∑
x∈Zd

P (0,0)
ω (Xn−k ∈ ∆)

∑
y∈∆

1

|∆|
∑
w∈∆

∣∣∣P (y,n−k)
ω (Xk = x)− P (w,n−k)

ω (Xk = x)
∣∣∣

·
∣∣∣ ϕ(σ(y,n−k)ω)∑

z∈∆ ϕ(σ(z,n−k)ω)
− P (0,0)

ω (Xn−k = y |Xn−k ∈ ∆)
∣∣∣ (7.13)

Until this point the steps are basically the same as in [2]. Here we deviate from their
proof. Note that P (0,0)

ω (Xn−k ∈ ∆) = 0 if ∆∩[−n+k, n−k]d = ∅. For ∆∩[−n+k, n−k]d 6= ∅
we have y, w ∈ ∆ implies that ‖y‖ , ‖w‖ ≤ n = k1/ε and ‖y − w‖ ≤ nδ = kδ/ε.

Using Lemma 7.1 we see that (7.13) is bounded from above by

∑
∆∈Π

P (0,0)
ω (Xn−k ∈ ∆)

∑
y∈∆

∣∣∣ ϕ(σ(y,n−k)ω)∑
z∈∆ ϕ(σ(z,n−k)ω)

− P (0,0)
ω (Xn−k = y |Xn−k ∈ ∆)

∣∣∣
· 1

|∆|
∑
w∈∆

∑
x∈Zd

∣∣∣P (y,n−k)
ω (Xk = x)− P (w,n−k)

ω (Xk = x)
∣∣∣

≤ e−c
log k

log log k

∑
∆∈Π

P (0,0)
ω (Xn−k ∈ ∆)

·
∑
y∈∆

∣∣∣ ϕ(σ(y,n−k)ω)∑
z∈∆ ϕ(σ(z,n−k)ω)

− P (0,0)
ω (Xn−k = y |Xn−k ∈ ∆)

∣∣∣
≤ 2e−c

log k
log log k

∑
∆∈Π

P (0,0)
ω (Xn−k ∈ ∆) = 2e−c

log k
log log k ≤ Ce−c̃

logn
log logn

since k = dnεe. The right hand side goes to 0 for n→∞.
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8 Proof of Proposition 4.1

The starting point is a result from [21]. Define

P(N) :=
([
− 1

24

√
N log3N,

1

24

√
N log3N

]d
×
[
0,

1

3
N
])
∩ (Zd ×Z). (8.1)

For θ ∈ (0, 1) and (x,m) ∈ P(N) let G′((x,m), N) denote the event that for every box
∆ ⊂ Zd of side length Nθ/2 we have∣∣P (x,m)

ω (Xm+N ∈ ∆)− P(x,m)(Xm+N ∈ ∆)
∣∣ ≤ CN−d(1−θ)/2− 1

6 θ. (8.2)

Furthermore set

G′(N) :=
⋂

(x,m)∈P(N)

(
G′((x,m), N

)
∪ {ξm(x) = 0}). (8.3)

Theorem 8.1 (Theorem 3.24 in [21]). Let d ≥ 3. There exist positive constants c and C,
such that for all (x,m) ∈ P(N) we have

P(x,m)
(
G′((x,m), N)

)
≥ 1− CN−c logN (8.4)

and

P
(
G′(N)

)
≥ 1− CN−c logN . (8.5)

The following notion of good sites and good boxes will be needed in the proof of
Proposition 4.1. On such boxes the annealed and quenched laws are “close” to each other.
Recall the process ξ = (ξn)n∈Z from (1.2) and the definition of nk from the beginning of
Section 4. Recall also that Πk is a partition of Zd into the boxes of side length bnθkc.
Definition 8.2. For a given realisation ω ∈ Ω, we say that (x,m) ∈ Zd ×Z is (k − 1, θ, ε)-
good if either ξm(x;ω) = 0 or ξm(x;ω) = 1 and the following two conditions are satisfied

sup
∆′∈Πk

∣∣P (x,m)
ω (Xm+nk ∈ ∆′)− P(x,m)(Xm+nk ∈ ∆′)

∣∣ ≤ nθd− d2−εk , (8.6)

P (x,m)
ω

(
max
s≤nk

‖Xm+s − x‖ >
√
nk log3 nk

)
≤ Cn−c lognk

k . (8.7)

Otherwise the site is said to be (k − 1, θ, ε)-bad. We say that for ∆ ∈ Πk−1 and m ∈ Z the
box ∆× {m} is (k − 1, θ, ε)-good if each (x,m) ∈ ∆× {m} is (k − 1, θ, ε)-good. Otherwise
we say that ∆× {m} is (k − 1, θ, ε)-bad.

The following lemma is a direct consequence of Theorem 8.1.

Lemma 8.3. For all ∆ ∈ Πk−1 there are positive constants C and c so that

P (∆ is (k − 1, θ, ε)-good) ≥ 1− Cn−c lognk
k . (8.8)

The assertion of Proposition 4.1 is the analogue of the inequality (5.1) in [2]. The
strategy of the proof there is as follows. First, using the triangle inequality and the
Markov property an upper bound of λk is obtained which is given by a sum of four
terms (5.2) – (5.5) in [2]. Second, for each of these four terms an upper bound is shown.
Three of these upper bounds, the ones for (5.2), (5.4) and (5.5), are not difficult and
can be proven in the same way as in [2]. We will omit their proofs here and refer to
Appendix C. For (5.3), [2] use a notion of “good” boxes and the fact that for their model
they are independent at a large but finite distance. The definition of those good boxes
translates to our Definition 8.2, where it is clear that the dependence on ξ prevents
us from directly using any argument hinging on independence at a finite distance. We
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circumvent this problem by defining a new type of boxes for which we are able to
work with independence, see the ideas below Proposition 8.4. Using those boxes as an
approximation for the good boxes we prove a lower bound on the probability of hitting a
good box in Proposition 8.4.

Proof of Proposition 4.1. To prove Proposition 4.1 we need to show inequality (4.3) which
we recall here

λk ≤ λk−1 + Cn−αk , ∀ 1 ≤ k ≤ r(N).

for some positive constants α and C on the event G(N) from (8.20).
Fix ω ∈ G(N). Recall the definition

λk =
∑

∆∈Πk

∣∣P (0,0)
ω (XNk ∈ ∆)− P(0,0)(XNk ∈ ∆)

∣∣
from equation (4.2). Note that, by the triangle inequality, we obtain

λk ≤ (8.9) + (8.10) + (8.11) + (8.12),

where∑
∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P (u,Nk−1)
ω (XNk ∈ ∆)

×
[
P (0,0)
ω (XNk−1

= u)− P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)
]∣∣∣, (8.9)

∑
∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)

× [P (u,Nk−1)
ω (XNk ∈ ∆)− P(u,Nk−1)(XNk ∈ ∆)]

∣∣∣, (8.10)

∑
∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P(u,Nk−1)(XNk ∈ ∆)

× [P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)− P(0,0)(XNk−1
= u)], (8.11)

∑
∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P(0,0)(XNk−1
= u)P(u,Nk−1)(XNk ∈ ∆)

− P(0,0)(XNk ∈ ∆, XNk−1
∈ ∆′)

∣∣∣. (8.12)

The following estimates and their proofs are analogous to the estimates of the terms in
(5.2), (5.4) and (5.5) in [2]

(8.9) ≤ λk, (8.11) ≤ C (log nk)3d

n
1/2−2θ
k

+ Cn−c lognk
k , (8.12) ≤ Cn−ck .

We provide the proofs adapted to our notation and setting in the Appendix C.
Using these estimates combined with the estimate (8.10) ≤ C ′′n

−ε/4
k−1 proven below,

for each of the summands respectively we obtain

λk ≤ λk−1 + C ′′n
−ε/4
k−1 + C

(log nk)3d

n
1/2−2θ
k

+ Cn−c lognk
k + Cn−ck ≤ λk−1 + C̃n−αk

for appropriate choices of α > 0 and C̃ > 0. The fact that P(GN ) ≥ 1 − CN−c logN is
proved in Proposition 8.4 below.
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Proof of the analogue of an upper bound of (5.3) in [2]. First, by the triangle inequal-
ity, (8.10) is bounded from above by∑

∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)

∑
∆∈Πk

∣∣P (u,Nk−1)
ω (XNk ∈ ∆)− P(u,Nk−1)(XNk ∈ ∆)

∣∣. (8.13)

Next we define Π1
k−1 as the set of boxes ∆′ ∈ Πk−1 with the property

∆′ ∩ {x ∈ Zd : ‖x‖ ≤
√
Nk−1 log3Nk−1} 6= ∅.

By Lemma 3.6 in [21] it follows∑
∆′ /∈Π1

k−1

P(0,0)(XNk−1
∈ ∆′) ≤ CN−c logNk−1

k−1 (8.14)

and consequently (8.10) is bounded from above by

CN
−c logNk−1

k−1 +
∑

∆′∈Π1
k−1

∑
u∈∆′

P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)

∑
∆∈Πk

∣∣P (u,Nk−1)
ω (XNk ∈ ∆)− P(u,Nk−1)(XNk ∈ ∆)

∣∣. (8.15)

Recall Definition 8.2. We will write “good” for (k−1, θ, ε)-good to simplify the notation.

By Lemma 8.3 we have P
(
∆ is good

)
≥ 1− Cn−c lognk

k . For u ∈ Zd define by Π
(1,u)
k the

set of boxes ∆ ∈ Πk satisfying (note that E(u,0)[Xnk ] = u)

∆ ∩
{
x ∈ Zd :

∥∥x− u∥∥ ≤ √nk log3 nk
}
6= ∅. (8.16)

If a box ∆′ ∈ Π1
k−1 is good, then for u ∈ ∆′∑

∆∈Πk

|P (u,Nk−1)
ω (XNk ∈ ∆)− P(u,Nk−1)(XNk ∈ ∆)|

=
∑

∆∈Π
(1,u)
k

|P (u,Nk−1)
ω (XNk ∈ ∆)− P(u,Nk−1)(XNk ∈ ∆)|

+
∑

∆∈Πk\Π(1,u)
k

|P (u,Nk−1)
ω (XNk ∈ ∆)− P(u,Nk−1)(XNk ∈ ∆)|

≤
∑

∆∈Π
(1,u)
k

|P (u,Nk−1)
ω (XNk ∈ ∆)− P(u,Nk−1)(XNk ∈ ∆)|+ Cn−c lognk

k

≤ |Π(1,u)
k |Cnθd−

d
2−ε

k + Cn−c lognk
k

≤ Cn
d
2−θd+θd− d2−ε
k (log nk)3d + Cn−c lognk

k

≤ C(n−εk (log nk)3d + n−c lognk
k ) ≤ Cn−ε/2k ,

(8.17)

where we used in the first inequality that by Lemma 3.6 from [21]

P(0,0)
(
‖Xn‖ >

√
n log3 n

)
≤ Cn−c logn

and that |Π(1,u)
k | ≤ Cnd/2−θdk (log nk)3d.
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It follows that (8.10) is bounded from above by

CN
−c logNk−1

k−1 +
∑

∆′∈Π1
k−1

is good

∑
u∈∆′

P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)Cn
−ε/2
k

+
∑

∆′∈Π1
k−1

is bad

∑
u∈∆′

P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)

×
∑

∆∈Πk

|P (u,Nk−1)
ω (XNk ∈ ∆)− P(u,Nk−1)(XNk ∈ ∆)|

≤ CN−c logNk−1

k−1 + Cn
−ε/2
k + C

∑
∆′∈Π1

k−1

is bad

P(0,0)(XNk−1
∈ ∆′). (8.18)

Now we want to find an estimate for the probability of hitting a bad box. For some β > 0,
to be chosen later, we consider the following event

GN,nk−1
:=
{ ∑

∆∈Πk−1

1{∆ is good}P
(0,0)

(
XNk−1

∈ ∆
)
≥ 1− C ′n−βk

}
(8.19)

and define

GN :=

r(N)⋂
k=1

GN,nk . (8.20)

We want to mimic the proof in [2] and for that we need to define a new type of boxes
to approximate the density of bad boxes. The problem with following the proof in [2]
arises from the fact that our environment is, due to the dependence on infinitely long
open paths, not i.i.d. To overcome that problem the idea is to exchange the environment
ξ with a process that only has finite range dependencies. We will use this idea to show in
Proposition 8.4 below that

P(GN ) ≥ 1− CN−c log(N). (8.21)

Note that nk−1 = n2
k. Thus, on GN the expression (8.10) is bounded from above by

CN
−c logNk−1

k−1 + Cn
−ε/2
k + C

∑
∆′∈Π1

k−1

is bad

P(0,0)(XNk−1
∈ ∆′)

≤ CN−c logNk−1

k−1 + Cn
−ε/2
k + C ′n−βk−1 ≤ C

′′n
−ε/4
k−1 .

(8.22)

As can be seen in the proof of Proposition 8.4 we can choose β ≥ ε/4 to obtain the last
inequality in (8.22).

Proposition 8.4. For the events GN from (8.20) there exists N0 ∈ N such that, for all
N ≥ N0 we have that

P(GN ) ≥ 1− CN−c logN . (8.23)

Let β > 0 and put f(nk) = log2 nk. First we need another notion of good sites. Given
a realization ω we define for all (x, `) ∈ Zd ×Z the set Cm(x, `) as the set of sites at time
`+m ∈ Z which can be reached from (x, `) via an open path w.r.t. ω. We start by defining
for k = 1, 2, . . . a field ξ̃k := (ξ̃kt (x))t∈Zd as follows

(i) ξ̃kt (x) = ξt(x) for all (x, t) ∈ Zd × {nk + f(nk), nk + f(nk) + 1, . . . }
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(ii) For all (x, t) ∈ Zd × {. . . , nk + f(nk) − 2, nk + f(nk) − 1} we set ξ̃kt (x) = 1 if
Cnk+f(nk)−t(x, t) 6= ∅. Otherwise we set ξ̃kt (x) = 0.

Note that ξ ≤ ξ̃k since for (x, t) with t < nk + f(nk) we set ξ̃t(x) = 1 if (x, t) has an open
path of length at least nk + f(nk) − t instead of requiring an infinite open path. For
ξt(x) 6= ξ̃kt (x) we necessarily must have t < nk + f(nk) and there must exist an open path
started at (x, t) whose length is at least nk + f(nk)− t but the contact process started at
(x, t) has to eventually die out, i.e. there is no infinite open path starting in (x, t).

The following lemma gives us an upper bound on that probability. The result is well
known in the oriented percolation and contact process world. For a proof see for instance
Lemma A.1. in [4].

Lemma 8.5. For p > pc there exist C, c > 0 such that for all (x, t) ∈ Zd ×Z

P
(

(x, t)→ω Zd × {t+ n} and (x, t) 9ω Zd × {∞}
)
≤ Ce−cn, n ∈ N.

As a direct consequence we get the following corollary.

Corollary 8.6. For x ∈ Zd define

Dnk(x) :=
(
x+ [−nθk−1 − nk, nθk−1 + nk]d × [0, nk]

)
∩ (Zd ×Z).

For p > pc there exist constants C, c > 0 such that

P
(
ξ̃kt (y) = ξt(y) for all (y, t) ∈ Dnk(x)

)
≥ 1− Ce−c log2 nk . (8.24)

Proof. Note that θ > 0 is a small constant and can be chosen such that we have nθk−1 =

n2θ
k ≤ nk and thus |Dnk(x)| ≤ 2dnd+1

k . By definition of ξ̃k ξ̃kt (y) 6= ξt(y) implies that there
is at least one open but finite path whose length is larger that f(nk). Using Lemma 8.5
the assertion (8.24) follows by the choice of f(nk) = log2 nk. (Here one can see that
other choices of f(nk) are possible as well.)

Let (X̃) be a random walk in the environment ξ̃k with transition probabilities given
by

Pω,ξ̃k(X̃n+1 = y | X̃n = x) =

{
|U(x, n) ∩ C̃k|−1 if (x, n) ∈ C̃k and (y, n+ 1) ∈ C̃k,
|U(x, n)|−1 if (x, n) /∈ C̃k

(8.25)

for (y, n+ 1) ∈ U(x, n) and 0 otherwise and where C̃k := {(x, n) ∈ Zd ×Z : ξ̃kn(x) = 1}.
Given a realisation ω, we say that (x,m) is (k − 1, θ, ε, ξ̃k)-good if it satisfies the

conditions from Definition 8.2 with ξ replaced by ξ̃k and X replaced by X̃ in the quenched
probabilities.

Lemma 8.7. For all (x, t) ∈ Zd ×Z we have that

P((x, t) is (k − 1, θ, ε, ξ̃k)-good) ≥ 1− Cn−c lognk
k . (8.26)

Proof. Due to Lemma 8.3 it suffices to show that with probability at least 1− Cn−c lognk
k

we have ξ̃kt (y) = ξt(y) for all (y, t) ∈ Dnk(x). This is exactly the assertion of Corollary 8.6.
On that event (x, t) is (k − 1, θ, ε)-good if and only if (x, t) is (k − 1, θ, ε, ξ̃k)-good.

Proof of Proposition 8.4. Recall the definition of GN,nk−1
from (8.19). To estimate the

probability of hitting a bad box we can now mimic the proof in [2] since we get a lower
bound by estimating the probability for the (k − 1, θ, ε, ξ̃k)-good boxes. By construction
those boxes are independent of each other at distance > 5nk. Define

Π
(0)
k−1 =

{
∆′ ∈ Π1

k−1 : dist(∆′, 0) ≤
⌊√

Nk−1

⌋}
(8.27)
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and for r ≥ 1 let

Π
(r)
k−1 =

{
∆′ ∈ Π1

k−1 :
⌊
2r−1

√
Nk−1

⌋
< dist(∆′, 0) ≤

⌊
2r
√
Nk−1

⌋}
. (8.28)

Note that (Π
(r)
k−1)r≥0 is a partition of Π1

k−1 into disjoint subsets according to the distance
of the boxes from the origin which allows us to estimate the hitting probabilities of the
bad boxes. Using the annealed local CLT (Theorem 1.1), we have∑

∆′∈Π1
k−1

is bad

P̄(0,0)(XNk−1
∈ ∆′)

≤
dlog2(logNk−1)3e∑

r=0

|Π(r)
k−1 ∩ {(k − 1, θ, ε, ξ̃k)-bad boxes}|Cndθk−1N

−d/2
k−1 e−cr

2

holds for some constants C, c > 0 and P̄ is the measure for the changed environments ξ̃k.
In order to estimate the number of bad boxes in each Π

(r)
k−1 we define the event

G̃N = G̃N (C) by

G̃N :=

r(N)⋂
k=1

dlog2(logNk−1)3e⋂
r=0

{
|Π(r)
k−1 ∩ {(k − 1, θ, ε, ξ̃k)-bad boxes}| ≤ C|Π(r)

k−1|n
−β
k−1

}
,

where β > 0 is a constant to be tuned later. Let p̃k−1 be the probability for a box
∆′ ∈ Πk−1 to be (k − 1, θ, ε, ξ̃k)-bad. Note that p̃k ∈ O(n−c lognk

k ) and on the event G̃N

∑
∆′∈Π1

k−1

is bad

P̄(0,0)(XNk−1
∈ ∆′) ≤

dlog2(logNk−1)3e∑
r=0

C|Π(r)
k−1|n

−β
k−1n

dθ
k−1N

−d/2
k−1 e−cr

2

≤
dlog2(logNk−1)3e∑

r=0

C2dr(
√
Nk−1/n

θ
k−1)dndθk−1N

−d/2
k−1 e−cr

2

n−βk−1 ≤ Cn
−β
k−1.

Now it suffices to show that P(G̃N (C)) ≥ 1 − CN−c log(N) for some constant C > 0. To
do so, fix k ≥ 1 and note that boxes ∆′ ∈ Πk−1 at distance 5nk are, by construction
of ξ̃k, good or bad independently of each other. To see this note that 2(nθk−1 + nk +

f(nk)) < 5nk and recall that ξ̃kt (y) = 1 if there exists an open path connecting (y, t) to

Zd×{nk+f(nk)} and ξ̃kt (y) = 0 otherwise. Let (Πr,j
k−1)j be a partition of Π

(r)
k−1 into at most

(5nk)d subsets of boxes so that the distance between each pair of boxes in Πr,j
k−1 is bigger

than 5nk, for every j, and the number of boxes in Πr,j
k−1 is between |Π(r)

k−1|/(2(5nk)d) and

2|Π(r)
k−1|/(5nk)d.

If the number of (k − 1, θ, ε, ξ̃k)-bad boxes in Π
(r)
k−1 is bigger than C|Π(r)

k−1|n
−β
k−1, then

there exists at least one j so that the number of bad boxes in Πr,j
k−1 is larger than

C|Πr,j
k−1|n

−β
k−1. Since the boxes in Πr,j

k−1 are good or bad independently of each other, their
number is bounded and they are bad with probability p̃k−1, it follows by Hoeffding’s
inequality that

P̄
(
|Π(r)
k−1∩{(k − 1, θ, ε, ξ̃k)-bad boxes}| > C|Π(r)

k−1|n
−β
k−1

)
≤ (5nk)dP̄

(
|Πr,1
k−1 ∩ {(k − 1, θ, ε, ξ̃k)-bad boxes}| ≥ dC|Π(r)

k−1|n
−β
k−1/(5nk)de

)
≤ (5nk)d exp

(
−(Cn−βk−1 − 2p̃k−1)2|Π(r)

k−1|/(5nk)3d
)
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≤ C̃(5nk)d exp
(
−Cn−2β

k−1 |Π
(r)
k−1|/(5nk)3d

)
≤ C̃(5nk)d exp

(
−C2rdN

−2β

2k−1 + d
2−

dθ

2k−1−
3d

2k
)

= C̃(5nk)d exp
(
−C2rdN

d
2−( 4β+2dθ+3d

2k
)), (8.29)

where the right hand side decays stretched exponentially in N for k ≥ 4 if β is small
enough, e.g. β = 1 (which is still sufficient for the proof of (8.10)). For 1 ≤ k ≤ 3 notice
that

P̄
(
|Π(r)
k−1∩{(k − 1, θ, ε, ξ̃k)-bad boxes}| > C|Π(r)

k−1|n
−β
k−1

)
≤ P̄

(
{(k − 1, θ, ε, ξ̃k)-bad boxes} 6= ∅

)
≤ |Π(r)

k−1|p̃k−1

≤ (
√
N log3(N))dp̃k−1 ≤ (

√
N log3(N))dN−c log(N) ≤ CN−c log(N).

(8.30)

Using the estimates above together with the definition of G̃N shows that

P̄(G̃C
N )

= P̄

(r(N)⋃
k=1

dlog2(logNk−1)3e⋃
r=0

{
|Π(r)
k−1 ∩ {(k − 1, θ, ε, ξ̃k)-bad boxes}| > C|Π(r)

k−1|n
−β
k−1

})

≤
r(N)∑
k=1

dlog2(logNk−1)3e∑
r=0

P̄
(
|Π(r)
k−1 ∩ {(k − 1, θ, ε, ξ̃k)-bad boxes}| > C|Π(r)

k−1|n
−β
k−1

)
≤ r(N)dlog2(logNk−1)3eCN−c log(N) ≤ C log log(N) · log(N)5/6N−c log(N)

≤ N−c̃ log(N).

Next we show that the number of (k − 1, θ, ε)-bad boxes in ξ is on the same order as
the number of (k − 1, θ, ε, ξ̃k)-bad boxes in ξ̃k with high probability. First we define, in
a slight abuse of notation, the sets

Dnk(∆) := {(x, t) ∈ Zd ×Z : dist(x,∆) ≤ nk, t ∈ [0, nk]},

Ak,∆ := {ω ∈ Ω : ξt(x) = ξ̃kt (x) for all (x, t) ∈ Dnk(∆)}

for all ∆ ∈ Π
(r)
k−1. Note that Dnk(∆) is the same box as Dnk(x) if x is the center of ∆.

Using the above defined partitions (Πr,j
k−1)j we see that for every choice of ∆,∆′ ∈ Πr,j

k−1

the events Ak,∆ and Ak,∆′ are independent, since dist(∆,∆′) > 5nk. Since ξ ≤ ξ̃k the
number of (k−1, θ, ε)-good boxes in ξ is less or equal to the number of (k−1, θ, ε, ξ̃k)-bad
boxes in ξ̃k.

To shorten the notation we say for a box ∆ ∈ Π
(r)
k−1 that it is good in ξ if it is (k−1, θ, ε)-

good and good in ξ̃k if it is (k − 1, θ, ε, ξ̃k)-good. A box can only be bad in ξ and good in
ξ̃k for ω ∈ AC

k,∆. Using Corollary 8.6 we get P(AC
k,∆) ≤ Cn−c lognk

k , and thus, again by
Hoeffding’s inequality,

P
(
|Π(r)
k−1 ∩ {bad in ξ}| − |Π(r)

k−1 ∩ {bad in ξ̃k}| ≥ C|Π(r)
k−1|n

−β
k−1

)
≤ P

(
∃j s.t. |Πr,j

k−1 ∩ {bad in ξ}| − |Πr,j
k−1 ∩ {bad in ξ̃k}| ≥ C|Π(r)

k−1|n
−β
k−1

1

(5nk)d

)
≤ (5nk)dP

(
|Πr,j
k−1 ∩ {bad in ξ}| − |Πr,j

k−1 ∩ {bad in ξ̃k}| ≥ C|Π(r)
k−1|n

−β
k−1

1

(5nk)d

)
≤ (5nk)dP

( ∑
∆∈Πr,jk−1

1AC
k,∆
≥ C|Π(r)

k−1|n
−β
k−1

1

(5nk)d

)
≤ C̃(5nk)d exp

(
− C2rdN

d
2−( 4β+2dθ+d

2k
)
)
.
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Again the right hand side decays stretched exponentially in N for k ≥ 4 for β > 0

small enough. For k ≤ 3 we can repeat the ideas of (8.30). The reason we can
prove an upper bound in the same way as in (8.29) and (8.30) is that the probabil-
ity for a box to be bad in ξ̃k is of the same order as P(AC

k,∆), namely n−c lognk
k . De-

fine

AN :=

r(N)⋂
k=1

dlog2(logNk−1)3e⋂
r=0

{
|Π(r)
k−1 ∩ {bad in ξ}| − |Π(r)

k−1 ∩ {bad in ξ̃k}| ≥ C|Π(r)
k−1|n

−β
k−1

}
then by the same arguments as above we also get

P(AC
N ) ≤ N−c logN .

Since G̃N ∩AN ⊂ GN the claim follows.

9 Mixing properties of the quenched law: proof of Lemma 7.1

Definition 9.1. Let ΠM be a partition of Zd into boxes of side lengths M , let C > 0 and
let ω be a realisation of the environment. We call a box ∆ ∈ ΠM social with respect to ω
at time N ∈ N, if for any pair of points x, y ∈ ∆ there exists z ∈ Zd such that

P (x,N)
ω (XN+dCMe = z) > 0, and P (y,N)

ω (XN+dCMe = z) > 0.

Note that if P (x,N)
ω (XN+dCMe = z) > 0, then by construction P (x,N)

ω (XN+dCMe = z) ≥
(3−d)CM .

The next result shows that the density of social boxes is suitably high.

Lemma 9.2. For every ε > 0 there exists M0 ∈ N and constants c, C > 0 such that for
all M ≥M0 there exists a set of environments SM satisfying∑

∆∈ΠM
∆ is not social

P(x,0)(Xn ∈ ∆) < ε for all ω ∈ SM

and P(SM ) ≥ 1− Ce−c logn. (Recall that the property of ∆ being social depends on ω.)

Corollary 9.3. For every ε > 0 there exists M0 ∈ N so that for all M > M0 there are
environments S̄M such that ∑

∆∈ΠM
∆ is not social

P (x,0)
ω (Xn ∈ ∆) < 2ε

for all ω ∈ S̄M and P(S̄M ) ≥ 1− Cn−c logn.

Proof. Combine Lemma 9.2 and Lemma 2.1.

Proof of Lemma 9.2. The proof idea is similar to the one we have used to prove the high
density of good boxes; see the proof of Proposition 8.4. We set

pM := P(∆ is not social).

As a direct consequence of Lemma A.1 for every ∆ ∈ ΠM we have that pM ≤ Ce−cM for
some positive constants C, c. We define

SM :=

log2 log3 n⋂
r=0

{
|Π(r)
M ∩ {not social boxes}| < C|Π(r)

M |pM
}
, (9.1)
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where

Π
(0)
M = {∆ ∈ ΠM : dist(∆, 0) ≤

√
n},

Π
(r)
M = {∆ ∈ ΠM : 2r−1

√
n < dist(∆, 0) ≤ 2r

√
n} for r ≥ 1.

By Lemma 3.6 from [21] we have P(0,0)(‖Xn‖ ≥
√
n log3 n) ≤ Cn−c logn and so for ω ∈ SM

(note that being social depends on ω)

∑
∆∈ΠM

∆ is not social

P(0,0)(Xn ∈ ∆) ≤ Cn−c logn +

log2 log3 n∑
r=0

∑
∆∈Π

(r)
M

∆ is not social

P(0,0)(Xn ∈ ∆)

≤
log2 log3 n∑

r=0

C|Π(r)
M |pM

1

nd/2
exp

(
− 1

2n
(2r−1

√
n)2

)

≤ C
log2 log3 n∑

r=0

(
2r
√
n

M

)d
1

nd/2
exp(−cr2)pM

≤ CpM
log2 log3 n∑

r=0

1

Md
exp(−cr2 + rd log 2)

≤ C ′pM

where we used the annealed local CLT in the second inequality. It remains to show that
P(0,0)(SM ) ≥ 1− Ce−c logn. We have

P(0,0)(ScM ) = P(0,0)
(
∃r ≤ log2 log3 n : |Π(r)

M ∩ {not social boxes}| > C|Π(r)
M |pM

)
≤

log2 log3 n∑
r=0

P(0,0)
(
|Π(r)
M ∩ {not social boxes}| > C|Π(r)

M |pM
)
.

Next, let (Πr,j
M )j∈J be a further partition of Π

(r)
M so that for each j ∈ J the distance

between any pair of distinct boxes in Πr,j
M is bigger than 3CM and

|Π(r)
M |

2(3CM)d
≤ |Πr,j

M | ≤
2|Π(r)

M |
(3CM)d

.

Note that the index set J = J(M, r) is finite (in fact we have |J | ≤ 2(3CM)d) and
that by construction the boxes in Πr,j

M are social or not social independently of each

other. If |Πr
M ∩ {not social boxes}| > C|Π(r)

M |pM then there exists a j such that |Πr,j
M ∩

{not social boxes}| > C|Π(r)
M |pM/(3CM)d. Using Hoeffding’s inequality for r ≥ 1 we

obtain

P(0,0)
(
|Π(r)
M ∩ {not social boxes}| > C|Π(r)

M |pM
)

≤
∑
j∈J

P(0,0)
(
|Πr,j
M ∩ {not social boxes}| >

C|Π(r)
M |pM

(3CM)d

)

=
∑
j∈J

P(0,0)
(
|Πr,j
M ∩ {not social boxes}| − |Πr,j

M |pM >
( C|Π(r)

M |
(3CM)d

− |Πr,j
M |
)
pM

)

≤
∑
j∈J

exp
(
−2p2

M

(
C
|Π(r)
M |

(3CM)d
− |Πr,j

M |
)2)
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≤
∑
j∈J

exp
(
−2p2

M (C − 2)
|Π(r)
M |2

(3CM)2d

)
≤ 2(3CM)d exp

(
−Cp2

M

(2r−1
√
n)2d

(3CM)2d

)
.

Similarly for r = 0 we have

P(0,0)
(
|Π(0)
M ∩ {not social boxes}| > C|Π(0)

M |pM
)
≤ 2(3CM)d exp

(
−Cp2

M

√
n

2d

(3CM)2d

)
.

Using the above estimates we obtain

P(0,0)(ScM )

≤ 2(3CM)d exp
(
−Cp2

M

√
n

2d

(3CM)2d

)
+

log2 log3 n∑
r=1

2(3CM)d exp
(
−Cp2

M

(2r−1
√
n)2d

(3CM)2d

)
≤ log2 log3(n) · exp

(
−Cp2

M

√
n

2d

(3CM)2d

)
≤ Cn−c logn.

Proof of Lemma 7.1. The proof relies on a construction of a suitable coupling of
P

(x,0)
ω (Xn ∈ ·) and P (y,0)

ω (Xn ∈ ·). First we show that there is a coupling on the level of
boxes with side length M , where M is a constant. Let ΠM be a partition of Zd in boxes
of side length M and fix x and y. Set

Fnθ :=
⋂
k≥nθ

{
ω : ∀z ∈ [−k, k]d ∩Zd,∑

∆∈ΠM

|P(z,0)(Xk ∈ ∆)− P (z,0)
ω (Xk ∈ ∆)| ≤ C1

kc2
+

C1

M c2

}
,

and

F (x, y) :=
⋂

(x̃,m)∈Zd×N0

‖x̃−x‖≤n
m≤n

σ(x̃,m)Fnθ ∩
⋂

(ỹ,m)∈Zd×N0

‖ỹ−y‖≤n
m≤n

σ(ỹ,m)Fnθ

By Lemma 2.1 we have P(Fnθ ) ≥ 1− n−c logn and thus P(F (x, y)) ≥ 1−Cn−c logn. In the
following we assume that the indices of the random walks are integers, otherwise we
take the integer part. Now choosing M and n large enough for ‖x− y‖ ≤ nθ on the event
F (x, y) we obtain∑

∆∈ΠM

|P (x,0)
ω (Xn2θ log8d nθ ∈ ∆)− P (y,0)

ω (Xn2θ log8d nθ ∈ ∆)|

≤
∑

∆∈ΠM

|P (x,0)
ω (Xn2θ log8d nθ ∈ ∆)− P(x,0)(Xn2θ log8d nθ ∈ ∆)|

+
∑

∆∈ΠM

|P (y,0)
ω (Xn2θ log8d nθ ∈ ∆)− P(y,0)(Xn2θ log8d nθ ∈ ∆)|

+
∑

∆∈ΠM

|P(x,0)(Xn2θ log8d nθ ∈ ∆)− P(y,0)(Xn2θ log8d nθ ∈ ∆)|

≤ 1

8
+

1

8
+
∑

∆∈ΠM

|P(x,0)(Xn2θ log8d nθ ∈ ∆)− P(y,0)(Xn2θ log8d nθ ∈ ∆)|

EJP 28 (2023), paper 37.
Page 43/54

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP924
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Local limit for random walk on oriented percolation

≤ 1

4
+ Cn−c logn

+
∑

∆∈Πx,yM (n2θ log8d nθ)

|P(x,0)(Xn2θ log8d nθ ∈ ∆)− P(y,0)(Xn2θ log8d nθ ∈ ∆)|

≤ 1

4
+ Cn−c logn + |Πx,y

M (n2θ log8d nθ)|dnθC(n2θ log8d nθ)−
d+1

2

≤ 1

4
+ Cn−c logn + 2

(
nθ log4d(nθ) log3(n2θ log8d nθ)

)d
dnθC(n2θ log8d nθ)−

d+1
2

=
1

4
+ Cn−c logn + C

(
log(n2θ log8d nθ)

)3d

log−4d(nθ)

<
1

2
,

for n large enough, where

Πx,y
M (m) :=

{
∆ ∈ ΠM : ∆ ∩ {z ∈ Zd : min(‖x− z‖ , ‖y − z‖) ≤

√
m log3m} 6= ∅

}
and we used Lemma 3.6 from [21] and the annealed derivative estimates; see Lemma 3.1.
The number of steps we chose might seem a bit strange at first. The choice becomes more
clear by looking at the last inequality above. There we see that, with the methods we
use, we need a bit more steps than the square of the current distance. One can calculate
that any additional factor logm(nθ) with m > 6d is enough to get the estimate. So there

exists a coupling Ξx,y
ω,n2θ log8d nθ

of P (x,0)
ω (Xn2θ log8d nθ ∈ ·) and P

(y,0)
ω (Xn2θ log8d nθ ∈ ·) on

ΠM ×ΠM such that for ω ∈ F (x, y)

Ξx,y
ω,n2θ log8d nθ

(
{(∆,∆) : ∆ ∈ ΠM}

)
>

1

2
.

Recall S̄M from Corollary 9.3. We have for

ω ∈ H(x, y) := F (x, y) ∩
⋂

(x̃,m)Zd×N0

‖x̃−x‖≤n
m≤n

σ(x̃,m)S̄M ∩
⋂

(ỹ,m)Zd×N0

‖ỹ−y‖≤n
m≤n

σ(ỹ,m)S̄M

that ∑
∆∈ΠM

∆ is social

Ξx,y
ω,n2θ log8d nθ

(∆,∆) >
1

2
− ε(M) >

1

4
.

By Corollary 9.3 we obtain P(H(x, y)) ≥ 1− Cn−c logn. Thus, by the definition of social

boxes (Definition 9.1), we can construct a coupling Ξ̃x,y
ω,nθ

of P (x,0)
ω (Xn2θ log8d nθ+CM ∈ ·)

and P
(y,0)
ω (Xn2θ log8d nθ+CM ∈ ·) satisfying Ξ̃x,y

ω,nθ
({(z, z) : z ∈ Zd}) > 1

4 ( 1
3d

)2CM . If this
coupling is successful, we let the random walks go along the same path until time n. In
case it isn’t, we try to couple from their current position. Note that ω ∈ H(x, y) ensures
that we can repeat the coupling attempt at the new positions.

For the rest of the proof let nk := nθ logk(4d+3) n, k ∈ N0 and sk := n2
k log8d nk + CM .

The nk will represent the distance between the walkers at the start of an attempt at
coupling and sk will be the number of steps necessary for the attempt. Furthermore let
Sk :=

∑k
i=0 si.

By Lemma 3.6 from [21], we know that with probability of at least 1− Cn−c logn the
distance between the random walks will only be(

n2θ log8d nθ
)1/2

log3
(
n2θ log8d nθ

)
≤ nθ log4d(nθ) log3(n) ≤ nθ log4d+3 n = n1,

as long as 8d ≤ (1 − 2θ) logn
log lognθ

. This condition is not a restriction, since we will let
n→∞.
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Let us now iterate the coupling procedure. If the coupling in step k − 1 is not
successful, i.e. if the walks are not at the same point, we try to couple again starting
from the current positions. This leads to an iterative coupling Ξ̂ of the following form:
Ξ̂x,yω,0 = Ξ̃x,yω,n0

= Ξ̃x,y
ω,nθ

and for k ≥ 1

Ξ̂x,yω,k(z1, z2) =
∑

a,b∈Zd
Ξ̂x,yω,k−1(a, b)

·
[
1{a=b}1{z1=z2}P

(a,Sk−1)
ω (XSk = z1) + 1{0<‖a−b‖≤nk}Ξ̃

a,b
ω,nk

(z1, z2)

+ 1{‖a−b‖>nk}P
(a,Sk−1)
ω (XSk = z1)P (b,Sk−1)

ω (XSk = z2)
]
,

where Ξ̃a,bω,nk is a coupling of P
(a,Sk−1)
ω (XSk ∈ ·) and P

(b,Sk−1)
ω (XSk ∈ ·). The idea is that

the random walks will stay together once they are at the same site. We try to couple
them via Ξ̃a,bω,nk if their distance is not too large and we let them evolve independently
otherwise.

Since at distance nk for the next coupling we walk sk steps and with high probability
have at most a distance of s1/2

k log3 sk, the above coupling will work as long as k ≤
(1−2θ) logn

(8d+6) log logn −
8d

8d+6 holds, which we show below. We obtain

s
1/2
k log3 sk =

(
n2
k log8d nk + CM

)1/2

log3
(
n2
k log8d nk + CM

)
.

Now for k ≤ (1−2θ) logn
(4d+3) log logn and n large enough

n2
k log8d nk + CM ≤ n2

k log8d n

and

log4d nk = log4d
(
nθ logk(4d+3)(n)

)
≤ log4d n.

Thus, we have

s
1/2
k log3 sk ≤ nk log4d(n) log3

(
n2
k log8d n

)
.

Furthermore, if k ≤ (1−2θ) logn
(8d+6) log logn −

8d
8d+6 then

2 log nk + 8d log log n = 2 log
(
nθ logk(4d+3) n

)
+ 8d log log n

= 2θ log n+ k(8d+ 6) log log n+ 8d log log n ≤ log n

It follows that

s
1/2
k log3 sk ≤ 2nk log4d n log3 n = 2nθ log(k+1)(4d+3)(n) = nk+1.

So after we try the k-th coupling we are, with high probability, at distance nk+1. The
probability for each try to be successful is bounded from below by 1

4 ( 1
3d

)2CM and we

have (1−2θ) logn
(8d+6) log logn − 1 attempts. So the time we need for those attempts is

(1−2θ) logn
(8d+6) log logn

−1∑
k=0

sk =

(1−2θ) logn
(8d+6) log logn

−1∑
k=0

n2
k log8d nk + CM

≤

(1−2θ) logn
(8d+6) log logn

−1∑
k=0

n2θ logk(8d+6)(n) log8d(n) + CM

=
(1− 2θ) log n

(8d+ 6) log log n
CM + n2θ log8d(n)

(1−2θ) logn
(8d+6) log logn

−1∑
k=0

(
log(8d+6)(n)

)k
.

(9.2)
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Note that

(log n)
(1−2θ) logn

(8d+6) log logn
(8d+6) = exp

(
(1− 2θ) log n

)
= n1−2θ

and therefore the right hand side of (9.2) is bounded from above by

(1− 2θ) log n

(8d+ 6) log log n
CM + n2θ log8d(n)

n1−2θ − 1

log(8d+6)(n)− 1

≤ (1− 2θ) log n

(8d+ 6) log log n
CM +

n

log5(n)

= n

(
(1− 2θ) log n

n(8d+ 6) log log n
CM +

1

log5 n

)
< n,

for n large enough. And the probability for the above coupling to fail is smaller than

(1− p∗)
(1−2θ) logn

(8d+6) log logn
−1 ≤ e−c

logn
log logn

where p∗ = 1
4 ( 1

3d
)2CM and c > 0 is a constant. So for a fixed pair of points x, y with

‖x− y‖ ≤ nθ we have∥∥∥P (x,0)
ω (Xn ∈ ·)− P (y,0)

ω (Xn ∈ ·)
∥∥∥

TV
≤ e−c

logn
log logn

with probability at least 1− n−c logn. Thus we get for every b > 0

P(D(n)) = P
( ⋂

x,y∈Zd :

‖x‖,‖y‖≤nb,
‖x−y‖≤nθ

{∥∥∥P (x,0)
ω (Xn ∈ ·)− P (y,0)

ω (Xn ∈ ·)
∥∥∥

TV
≤ e−c

logn
log logn

})

≥ 1−
∑

x,y∈Zd :

‖x‖,‖y‖≤nb,
‖x−y‖≤nθ

P
({∥∥∥P (x,0)

ω (Xn ∈ ·)− P (y,0)
ω (Xn ∈ ·)

∥∥∥
TV

> e−c
logn

log logn

})

≥ 1− nd(b+θ)n−c logn ≥ 1− Cn−c
′ logn.

Note that b > 0 can be chosen arbitrarily large, but the constants C and c′ will have to
adjusted accordingly.

A Intersection of clusters of points connected to infinity

The following lemma is a quantification of Theorem 2 from [15] which was pointed
out there without a proof. We give a proof using a key result from [14].

Lemma A.1. Let d ≥ 2, p > pc. Then there are positive constants M and C and c such
that for all x, y ∈ Zd with ‖x− y‖ ≤M

P
(
B(x, y;M,C)|(x, 0)→∞, (y, 0)→∞

)
≥ 1− exp(−cM), (A.1)

where B(x, y;M,C) is the set of all ω ∈ Ω for which there is z ∈ Zd satisfying

(x, 0)
ω−→ (z, CM), (y, 0)

ω−→ (z, CM) and (z, CM)
ω−→∞.

Proof. For A ⊂ Zd we put ηAt (x) = 1{(y,0)→(x,t) for some y∈A} (this is the discrete time
contact process starting from all sites in A infected at time 0). Write

B(x, t) :=
{
∃ z : ‖x− z‖ ≤ c1t and η{x}t (z) 6= ηZ

d

t (z)
}
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for the “bad” event that coupling in a ball around x has not occurred at time t. We obtain
from [14, Thm. 1, Formula (3)] that

P
(
B(x, t) ∩ {(x, 0)→∞}

)
≤ Ce−ct (A.2)

for certain constants c1, C, c ∈ (0,∞) (which depend on d and on p > pc). Literally, the
result in [14] is proved for the continuous time version of the contact process, but we
believe that the same holds in discrete time.

Now consider x, y ∈ Zd with ‖x− y‖ ≤M . Pick C2 so large that

J := {z : ‖z − x‖ ≤ C2M and ‖z − y‖ ≤ C2M}

satisfies #J ≥Md. Applying (A.2) with t = C2M for x and for y gives

P
((
B(x,C2M) ∪B(y, C2M)

)
∩ {(x, 0)→∞, (y, 0)→∞}

)
≤ P

(
B(x,C2M) ∩ {(x, 0)→∞}

)
+ P

(
B(y, C2M) ∩ {(y, 0)→∞}

)
≤ 2Ce−cCM2

hence

P
(
η
{x}
C2M

(z) = ηZ
d

C2M (z) = η
{y}
C2M

(z)∀z ∈ J
∣∣∣ (x, 0)→∞, (y, 0)→∞

)
≥ 1− C ′e−cC2M .

Furthermore

P
(
∃ z ∈ J : ηZ

d

C2M (z) = 1 and (z, C2M)→∞
∣∣∣ (x, 0)→∞, (y, 0)→∞

)
≥ P

(
∃ z ∈ J : ηZ

d

C2M (z) = 1 and (z, C2M)→∞
)
≥ 1− Ce−cM

d

where we used the FKG inequality in the first inequality. For the second inequality we use
the fact that extinction starting from A is exponentially unlikely in #A (see Theorem 2.30
(b) in [18]) and the fact that ηZ

d

C2M
dominates the upper invariant measure which itself

dominates a product measure on {0, 1}Zd with some density ρ > 0 (see Corollary 4.1 in
[19]).

Combining, we find that for

A(x, y, C2,M) := {∃ z ∈ Zd : (x, 0)→ (z, C2M), (y, 0)→ (z, C2M), (z, C2M)→∞}

we have

P
(
A(x, y, C2,M)

∣∣ (x, 0)→∞, (y, 0)→∞
)
≥ 1− C ′e−cC2M − Ce−cM

d

.

B Quenched random walk finds the cluster fast

Since we allow the quenched random walk to start outside the cluster we need some
kind of control on the time it needs to hit the cluster. The following lemma will yield
exactly that.

Lemma B.1. Let d ≥ 1 and define the set An = An(C ′, c′) := {ω ∈ Ω : P
(0,0)
ω (ξi(Xi) =

0, i = 1, . . . , n) ≤ C ′e−c′n}. There exist constants C, c > 0, so that for every p > pc(d) and
small enough C ′ and c′ we have

P(AC
n) ≤ Ce−cn for all n = 1, 2, . . . .

Proof. Note that by our definition of the quenched law, see equation (1.4), the quenched
random walk performs a simple random walk until it hits the cluster C. Thus, on the
event that the random walk doesn’t hit the cluster, we can switch the random walk with
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a simple random walk (Yn)n that is independent of the environment. Using Lemma 2.11
from [3] it follows

P(0,0)
(
ξ0(X0) = · · · = ξn(Xn) = 0

)
=

∑
x1,...,xn

P(0,0)
(
(X1, . . . , Xn) = (x1, . . . , xn), ξ0(0) = · · · = ξn(xn) = 0

)
=

∑
x1,...,xn

P(0,0)
(
(Y1, . . . , Yn) = (x1, . . . , xn), ξ0(0) = · · · = ξn(xn) = 0

)
=

∑
x1,...,xn

P(0,0)
(
(Y1, . . . , Yn) = (x1, . . . , xn)

)
P
(
ξ0(0) = · · · = ξn(xn) = 0

)
≤ C̃e−c̃n,

where C̃ and c̃ are certain constants depending only on p and d.
Using the definition of the annealed law we get

P(0,0)
(
ξ0(X0) = · · · = ξn(Xn) = 0

)
=

∫
An

P (0,0)
ω (ξi(Xi) = 0, i = 1, . . . , n) dP(ω)

+

∫
AC
n

P (0,0)
ω (ξi(Xi) = 0, i = 1, . . . , n) dP(ω)

≥
∫
AC
n

P (0,0)
ω (ξi(Xi) = 0, i = 1, . . . , n) dP(ω)

> P(AC
n)C ′e−c

′n

and since ∫
AC
n

P (0,0)
ω (ξi(Xi) = 0, i = 1 . . . , n) dP(ω) ≤ C̃e−c̃n

we obtain that P(AC
n) ≤ Ce−cn with c = c̃− c′ > 0 by choosing c′ < c̃.

C Remaining upper bounds for the proof of Proposition 4.1

In this section we prove the three remaining upper bounds for the proof of Proposi-
tion 4.1.

Proof of the upper bound of (8.9). Consider∑
∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P (u,Nk−1)
ω (XNk ∈ ∆)

×
[
P (0,0)
ω (XNk−1

= u)− P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)
]∣∣∣. (C.1)

To get an upper bound for (C.1) the arguments in [2] do not require any specific properties
of the model and apply to our model as well. The steps are as follows: by the triangle
inequality followed by elementary computations (C.1) is bounded from above by∑

∆∈Πk

∑
∆′∈Πk−1

∑
u∈∆′

P (u,Nk−1)
ω (XNk ∈ ∆)

×
∣∣P (0,0)
ω (XNk−1

= u)− P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)
∣∣

=
∑

∆′∈Πk−1

∑
u∈∆′

|P (0,0)
ω (XNk−1

= u)− P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)|

EJP 28 (2023), paper 37.
Page 48/54

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP924
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Local limit for random walk on oriented percolation

=
∑

∆′∈Πk−1

∑
u∈∆′

P (0,0)
ω (XNk−1

= u|XNk−1
∈ ∆′)|P (0,0)

ω (XNk−1
∈ ∆′)− P(0,0)(XNk−1

∈ ∆′)|

=
∑

∆′∈Πk−1

|P (0,0)
ω (XNk−1

∈ ∆′)− P(0,0)(XNk−1
∈ ∆′)| = λk−1.

Proof of the upper bound of (8.11). Consider∑
∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P(u,Nk−1)(XNk ∈ ∆)

× [P(0,0)(XNk−1
∈ ∆′)P (0,0)

ω (XNk−1
= u|XNk−1

∈ ∆′)− P(0,0)(XNk−1
= u)].

(C.2)

For any two probability measures µ and µ̃ on Zd we have∑
u∈∆′

f(u)µ(u)−
∑
u∈∆′

f(u)µ̃(u) ≤ max
u∈∆′

f(u)− min
u∈∆′

f(u).

Thus, the expression (C.2) can be bounded from above by∑
∆∈Πk

∑
∆′∈Πk−1

P(0,0)(XNk−1
∈ ∆′)

∣∣max
u∈∆′

P(u,Nk−1)(XNk ∈ ∆)− min
u∈∆′

P(u,Nk−1)(XNk ∈ ∆)
∣∣

≤
∑

∆′∈Πk−1

P(0,0)(XNk−1
∈ ∆′)

×
∑

∆∈Π
(1,u)
k

∣∣max
u∈∆′

P(u,Nk−1)(XNk ∈ ∆)− min
u∈∆′

P(u,Nk−1)(XNk ∈ ∆)
∣∣+ Cn−c lognk

k ,

(C.3)

where for Π
(1,u)
k is the set defined in (8.16).

Using P(u,Nk−1)(XNk ∈ ∆) =
∑
v∈∆P

(u,Nk−1)(XNk = v) we have

max
u∈∆′

P(u,Nk−1)(XNk ∈ ∆)− min
u∈∆′

P(u,Nk−1)(XNk ∈ ∆)

≤
∑
v∈∆

max
u∈∆′

P(u,Nk−1)(XNk = v)− min
u∈∆′

P(u,Nk−1)(XNk = v)

≤
∑
v∈∆

diam(∆′)
C

n
(d+1)/2
k

≤ (nθk)dnθk−1

C

n
(d+1)/2
k

,

where the second to last inequality follows by the annealed derivative estimates from
Lemma 3.1. Altogether the expression (C.2) is bounded from above by∑

∆′∈Πk−1

P(0,0)(XNk−1
∈ ∆′)

∑
∆∈Π

(1,u)
k

(nθk)dnθk−1

C

n
(d+1)/2
k

+ Cn−c lognk
k

≤ C
( ∑

∆′∈Πk−1

P(0,0)(XNk−1
∈ ∆′)

(√nk(log nk)3

nθk

)d (nθk)dnθk−1

n
(d+1)/2
k

+ n−c lognk
k

)
≤ C

(
(log nk)3dn

θ
k−1

n
1/2
k

+ n−c lognk
k

)
≤ C

( (log nk)3d

n
1/2−2θ
k

+ n−c lognk
k

)
.

Proof of the upper bound of (8.12). Consider∑
∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P(0,0)(XNk−1
= u)P(u,Nk−1)(XNk ∈ ∆)

− P(0,0)(XNk ∈ ∆, XNk−1
∈ ∆′)

∣∣∣. (C.4)
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Recall the regeneration times introduced in [4]. There they are defined for a random walk
on the backbone of the oriented percolation cluster, whereas we allow the random walk
to start outside the cluster. As noted in [4, Remark 2.3], the local construction, which
they use to obtain the regeneration times, can be extended to starting points outside
the cluster. Let Bm,m̃ be the event that the first regeneration time greater than m will
happen before m+ m̃β , for some small constant β > 0 to be tuned appropriately later. By
Lemma 2.5 from [4] the distribution of the regeneration increments has exponential tail
bounds, and thus P(Bm,m̃) ≤ Ce−cm̃

β

. First, note that by the theorem of total probability
and the triangle inequality (C.4) is bounded from above by∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Πk

|P(u,Nk−1)(XNk ∈ ∆)− P(0,0)(XNk ∈ ∆|XNk−1
= u)|

≤
∑

∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

×
∑

∆∈Πk

(∣∣P(u,Nk−1)(XNk ∈ ∆)− P(0,0)(XNk ∈ ∆, BNk−1,nk |XNk−1
= u)

∣∣
+ P(0,0)(XNk ∈ ∆, BC

Nk−1,nk
|XNk−1

= u)
)

(C.5)

First note that∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Πk

P(0,0)(XNk ∈ ∆, BC
Nk−1,nk

|XNk−1
= u)

= P(BC
Nk−1,nk

) ≤ Ce−cn
β
k .

The remaining part of the right hand side of (C.5) is bounded from above by∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Πk

(
P(u,Nk−1)(XNk ∈ ∆, BC

0,nk
)

+
∣∣P(u,Nk−1)(XNk ∈ ∆, B0,nk)− P(0,0)(XNk ∈ ∆, BNk−1,nk |XNk−1

= u)
∣∣).

Using the same arguments as above we obtain∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Πk

P(u,Nk−1)(XNk ∈ ∆, BC
0,nk

) = P(BC
Nk−1,nk

) ≤ Ce−cn
β
k

and thus it remains to find a suitable upper bound for∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Πk

∣∣P(u,Nk−1)(XNk ∈ ∆, B0,nk)− P(0,0)(XNk ∈ ∆, BNk−1,nk |XNk−1
= u)

∣∣
Let τ̃Nk−1

denote the first regeneration time greater than Nk−1. By splitting the
probabilities above into the sum over the possible times at which the regeneration
can occur and the possible sites at which the random walk can be at the time of the
regeneration we see that the term in the above display equals to∑

∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

·
∑

∆∈Πk

∣∣∣ ∑
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(v,t)(XNk ∈ ∆)P(u,Nk−1)(τ̃Nk−1
= t,Xτ̃Nk−1

= v)

−
∑

t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(v,t)(XNk ∈ ∆)P(0,0)(τ̃Nk−1
= t,Xτ̃Nk−1

= v|XNk−1
= u)

∣∣∣.
(C.6)
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The modulus in the last two lines of the above display is bounded from above by∣∣∣ max
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(v,t)(XNk ∈ ∆)
∑

t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(u,Nk−1)(τ̃Nk−1
= t,Xτ̃Nk−1

= v)

− min
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(v,t)(XNk ∈ ∆)

·
∑

t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(0,0)(τ̃Nk−1
= t,Xτ̃Nk−1

= v|XNk−1
= u)

∣∣∣
≤
∣∣∣ max
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(v,t)(XNk ∈ ∆)− min
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(v,t)(XNk ∈ ∆)
∣∣∣

+ max
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(v,t)(XNk ∈ ∆)P(u,Nk−1)(τ̃Nk−1
> Nk−1 + nβk)

+ min
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(v,t)(XNk ∈ ∆)P(0,0)(τ̃Nk−1
> Nk−1 + nβk |XNk−1

= u)

Plugging that into the sums in (C.6) we obtain that an upper bound of (C.4) is given by∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Πk

∣∣∣ max
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(v,t)(XNk ∈ ∆)− min
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(v,t)(XNk ∈ ∆)
∣∣∣

+
∑

∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Πk

max
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(v,t)(XNk ∈ ∆)P(u,Nk−1)(τ̃Nk−1
> Nk−1 + nβk)

+
∑

∆′∈Πk−1

∑
u∈∆′

∑
∆∈Πk

min
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(v,t)(XNk ∈ ∆)

P(0,0)(τ̃Nk−1
> Nk−1 + nβk , XNk−1

= u)

+ Ce−cn
β
k .

Recall the definition of Π
(1,u)
k from (8.16).

Now define Π1,u,β
k as the set boxes ∆ ∈ Πk for which

∆ ∩
( ⋃
v : ‖v−u‖≤nβk

{x ∈ Zd : ‖x− v‖ ≤
√
nk log3 nk}

)
6= ∅. (C.7)

Using Lemma 3.6 from [21] we obtain∑
∆/∈Π1,u,β

k

P(v,0)(XNk−t ∈ ∆) ≤ P(v,0)
(
|XNk−t − v| >

√
Nk − t log3Nk − t

)
≤ Cn−c lognk

k
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for all v ∈ Zd with ‖v − u‖ ≤ nβk and all t ∈ [Nk−1, Nk−1 + nβk ]. Using this it follows∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Πk

max
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:|u−v|≤nβk

P(v,t)(XNk ∈ ∆)P(u,Nk−1)(τ̃Nk−1
> Nk−1 + nβk)

≤ |Π1,u,β
k |P(0,0)(τ̃Nk−1

> Nk−1 + nβk) + Cn−c lognk
k

≤ nβdk n
d/2(1−2θ)
k (log nk)3dCe−cn

β
k + Cn−c lognk

k ≤ Cn−c lognk
k ,

where we have used the fact that, by the definition of Π
(1,u)
k in (8.16), |Π1,u,β

k | ≤ nβdk |Π
(1,u)
k |.

Similarly ∑
∆′∈Πk−1

∑
u∈∆′

∑
∆∈Πk

min
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:|u−v|≤nβk

P(v,t)(XNk ∈ ∆)

P(0,0)(τ̃Nk−1
> Nk−1 + nβk , XNk−1

= u)

≤ |Π1,u,β
k |P(0,0)(τ̃Nk−1

> Nk−1 + nβk) + Cn−c lognk
k

≤ nβdk n
d/2(1−2θ)
k (log nk)3dCe−cn

β
k + Cn−c lognk

k ≤ Cn−c lognk
k .

(C.8)

Altogether it follows that (C.4) is bounded from above by∑
∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

×
∑

∆∈Π1,u,β
k

∣∣∣ max
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(v,t)(XNk ∈ ∆)− min
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(v,t)(XNk ∈ ∆)
∣∣∣

+ Cn−c lognk
k + Ce−cn

β
k

Using the annealed derivative estimates from Lemma 3.1 we obtain∣∣∣ max
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(v,t)(XNk ∈ ∆)− min
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk

P(v,t)(XNk ∈ ∆)
∣∣∣

≤ |∆|
∣∣∣ max
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk
x∈∆

P(v,t)(XNk = x)− min
t∈[Nk−1,Nk−1+nβk ]

v∈Zd:‖u−v‖≤nβk
y∈∆

P(v,t)(XNk = y)
∣∣∣

≤ |∆|C(nβk + nθk)n
− d+1

2

k

≤ ndθk C(nβk + nθk)n
− d+1

2

k .

Now if we choose β = θ and θ small enough, we get that the above expression is smaller

than Cn
− 2d+1

4

k . Putting everything together we get the upper bound

Ce−cn
θ
k + Cn−c lognk

k +
∑

∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
= u)

∑
∆∈Π1,u,β

k

n
− d2−

1
4

k

≤ Ce−cn
θ
k + Cn−c lognk

k +
∑

∆′∈Πk−1

∑
u∈∆′

P(0,0)(XNk−1
∈ u)|Π1,u,β

k |n−
d
2−

1
4

k

≤ Ce−cn
θ
k + Cn−c lognk

k +
∑

∆′∈Πk−1

P(0,0)(XNk−1
∈ ∆′)Cnβdk n

d(1−θ)
k (log nk)3dn

− d2−
1
4

k
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≤ Ce−cn
θ
k + Cn−c lognk

k + Cn
d/2
k (log nk)3dn

− d2−
1
4

k

= Ce−cn
θ
k + Cn−c lognk

k + C(log nk)3dn
−1/4
k ,

where we used the fact that |Π1,u,β
k | ≤ nβdk |Π

(1,u)
k | ≤ Cnβdk n

d(1−θ)
k log3d nk and that we

choose β = θ. Thus, recalling equation (C.4), we obtain∑
∆∈Πk

∑
∆′∈Πk−1

∣∣∣ ∑
u∈∆′

P(0,0)(XNk−1
= u)P(u,Nk−1)(XNk ∈ ∆)

− P(0,0)(XNk ∈ ∆, XNk−1
∈ ∆′)

∣∣∣ ≤ Cn−ck (C.9)

for some constants C, c > 0.
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