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Abstract

We introduce a model of Poisson random waves in S2 and we study Quantitative
Central Limit Theorems when both the rate of the Poisson process and the energy
(i.e., frequency) of the waves (eigenfunctions) diverge to infinity. We consider finite-
dimensional distributions, harmonic coefficients and convergence in law in functional
spaces, and we investigate carefully the interplay between the rate of divergence of
eigenvalues and Poisson governing measures.
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1 Introduction

1.1 Motivations

The analysis of Gaussian eigenfunctions on different manifolds has recently become
a very attractive area of research – it started in the mathematics literature mainly
about a decade ago ([34, 44]) and it has then covered a number of different questions
and circumstances, including the Euclidean case (Berry’s Random Wave Model, see
[3, 4, 16, 36, 43]), Random Spherical Harmonics (eigenfunctions on the sphere, see
[11, 13, 12, 14, 30, 41]), Arithmetic Random Waves (eigenfunctions on the torus, see
[9, 10, 22, 26, 29, 38]) and other manifolds (see [15, 17, 39]). The leading motivation
for such a strong interest comes mainly from the physical sciences, and in particular
from an ansatz by Michael Berry in a 1977 paper [3], where he claimed that Gaussian
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Spherical Poisson waves

random waves could be taken as a universal model to approximate the behaviour even
of deterministic eigenfunctions in the high-energy limit (i.e., for diverging eigenvalues)
under “generic” boundary conditions.

A common argument to justify the universality of Gaussian behaviour for eigenfunc-
tions in the physics literature is the random phase model (see [45] and the references
therein), which we can describe as follows. Working on R2, assume we observe the
superposition of N waves at a given frequency k, that is

Tk;N (x) =
1√
N

N∑
j=1

exp(ik 〈θj , x〉+ φj), (1.1)

for x ∈ R2, k ∈ R+, where {θj}j=1,...,N are random directions on the unit circle and
{φj}j=1,...,N are random phases. By a standard Central Limit Theorem it is then immedi-
ate to show that Tk;N (x) converges, as N →∞, in distribution to a zero mean Gaussian

field T̃k(·) with covariance function given by

E
[
T̃k(x1)T̃k(x2)

]
= J0(k ‖x1 − x2‖2),

where J0 (·) is the Bessel function of order 0, given by

J0(u) =

∞∑
m=0

(−1)m
u2m

22m(m!)2
.

For a fixed value of the wavelength parameter, hence, the validity of a Central Limit
Theorem result follows from very standard arguments.

It should be noticed, however, that the literature on random eigenfunctions has
actually been developed under the implicit framework of a double asymptotic setting.
Indeed, on the one hand, a diverging number of random phases is taken to ensure that
the behaviour of random eigenfunctions is Gaussian; on the other hand, Gaussianity is
taken for granted when investigating the asymptotic behaviour of random eigenfunctions
in the high-frequency/high energy sense (i.e., for diverging eigenvalues). Some natural
questions are hence the following – given that Gaussianity has been established for a
fixed eigenvalue k, can we justify the use of this assumption in the limit as k →∞? Can
we allow at the same time the eigenvalues to grow together with the number of random
phases, and still have a Central Limit Theorem? Do we need some conditions that
relate of the divergence for the eigenvalue k to the rate of divergence of the number of
random phases N? How many “random phases” do we need, in the language of Berry’s
celebrated model, in order for the Gaussian approximation to hold at high frequencies?

In this paper we try to address these questions in the case of random eigenfuctions
defined on the two-dimensional sphere S2; the choice of the sphere is motivated by
the fact that it represents the most interesting case from the point of view of physical
applications and it is known to exhibit the same covariance structure as the Euclidean
case, in the scaling limit (due to so-called Hilb’s asymptotics, see [40, Equation 8.21.7],
and [44]). The extension of these results to the planar case does not seem to pose any
conceptual difficulties; it would be more interesting to explore this setting in the case of
Arithmetic Random Waves, which is known to exhibit some differences with respect to
Euclidean and Spherical circumstances. We leave this extension for further research.

1.2 The model

Our starting point is to reformulate Equation (1.1) as a superposition of deterministic
eigenfunctions of the Laplace-Beltrami operator on the torus T2, centred on random
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Spherical Poisson waves

locations. More precisely, let us consider

Tk,N (x) =
1√
N

N∑
j=1

exp(i〈k,x− yj〉)

for x = (x1, x2) ∈ T2, where k = (k1, k2) ∈ Z is such that k = ‖k‖2; here, the random
locations yj = (yj;1, yj;2), j = 1, . . . , N are taken independent and uniformly distributed
on T2, so that as in Equation (1.1) for a fixed x the argument of the complex exponential
ψj := 〈k,x− yj〉 can be taken uniformly distributed in [0, 2π).

To achieve an analogous construction in the spherical case, we need to recall first
that the Laplacian operator in S2 is defined by

∆S2 :=
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
;

in the spherical case, a deterministic eigenfunction of the spherical Laplacian centred
on y ∈ S2 can be constructed by

e`;y(·) : S2 → R, e`;y(·) :=

√
2`+ 1

4π
P`(〈·, y〉),

where we have introduced the family of Legendre polynomials

P`(t) :=
1

2``!

d`

dt`
(t2 − 1)`, ` = 0, 1, 2, . . . ; t ∈ [0, 1].

The choice of normalization ensures that P`(1) ≡ 1 for all ` and moreover

‖e`;y‖L2(S2) =

∫
S2

2`+ 1

4π
P 2
` (〈x, y〉)dy = P`(〈x, x〉) = 1, (1.2)

in view of the duplication formula, see for instance, [28, Section 13.1.2]; also, we have
that {e`;y(·)} satisfies the Helmholtz equation

∆S2e`;y(x) + λ`e`;y(x) = 0, ` = 0, 1, 2, . . . ,

where −λ` = −`(` + 1) is the sequence of eigenvalues of the spherical Laplacian, see
again [28, 44].

We convey the idea of random phases on the sphere by introducing a superposition
of waves centred on Poisson distributed random points on S2. Here is a more formal
setting.

Definition 1.1. The Poisson spherical random wave model (with rate νt) is defined by

T`;t(x) :=
1
√
νt

∫
S2

√
2`+ 1

4π
P`(〈x, ξ〉)dNt(ξ),

where {Nt(·)} is a Poisson process on the sphere with governing intensity measure

E [Nt(A)] = νt × σ(A) for all A ∈ B
(
S2
)
,

where σ is the Lebesgue measure on S2 defined by∫
S2
f(x)σ(dx) =

∫ 2π

0

∫ π

0

f(sinϑ cosϕ, sinϑ sinϕ, cosϑ) sinϑdϑdϕ (1.3)

in the spherical coordinates x = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) for every bounded functions
on S2 (note that σ(S2) = 4π).

EJP 29 (2024), paper 8.
Page 3/27

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1071
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Spherical Poisson waves

Our model implies that for all measurable sets A ⊂ S2 and t ≥ 0, Nt(A) is a Poisson
random variable with expected value equal to νt × σ(A), and for A1 ∩ A2 = ∅, Nt(A1)

and Nt(A2) are independent.
We recall here a rigorous definition of Poisson random measures.

Definition 1.2 (Poisson random measure). Let (Θ,A, ρ) be a σ-finite measure space,
such that ρ has no atoms. A Poisson random measure on Θ with intensity measure ρ is
a collection of random variables {N(A) : A ∈ A}, taking values in the space Z+ ∪ {∞},
characterized by the following two properties:

1. for every A ∈ A, N(A) has Poisson distribution with intensity ρ(A);

2. for A1, . . . , An ∈ A pairwise disjoint, N(A1), . . . , N(An) are independent.

In this paper, we work with Θ = R+ × S2, while A is the class of Borel subsets of Θ,
labeled by B(Θ). We denote by N a Poisson random measure on Θ, whose homogeneous
intensity is given by the product measure ρ = λ× σ. The first term, which can be read
as the time component, is some measure on R+ and σ is the Lebesgue measure on S2

defined in (1.3). We assume that λ({0}) = 0 and that the mapping λ→ λ([0, t]) is strictly
increasing and diverging to infinity as t → ∞. We denote νt := λ([0, t]), t ≥ 0, that is
t→ νt is the distribution function of λ.

For a fixed t > 0, the mapping A→ Nt(A) := N([0, t]×A) defines a Poisson random
measure on S2, with non-atomic intensity ρt(dx) = νt · σ(dx).

Remark 1.3. Fix some t > 0 and let {ξi = i ≥ 1} be a sequence of i.i.d. random variables
(independent from Nt(S

2)) with values in S2 and common probability distribution equal
to σ

4π . Then, the random measure A→ Nt(A) = N([0, t]×A) has the same distribution as

A→
Nt(S

2)∑
i=1

δξi(A),

where δx denotes the Dirac measure at the point x (see [25, Proposition 3.8]).

To simplify the discussion, we will assume here that λ(ds) = ν · Leb(ds), where Leb is
the Lebesgue measure on R+ and ν > 0 is a constant. We denote νt = λ([0, t]) = νt.

Note that the Gaussian eigenfunctions of the spherical Laplacian (considered for
example in [29, 31, 32], and many others) can be written as

T`(x) :=

∫
S2

√
2`+ 1

4π
P`(〈x, y〉)dZ(y), (1.4)

where dZ is a Gaussian random measure with control measure given by σ, that is, for
all A ∈ B(S2), Z(A) is standard Gaussian and for A1 ∩ A2 = ∅, Z(A1) and Z(A2) are
independent and for any A,B ∈ B(S2), E[Z(A)Z(B)] = σ(A ∩ B). Note that this is the
same construction as in Definition 1.1, which is based however on a different random
measure.

We can also write the Poisson spherical wave as

T`;t(x) =
1
√
νt

Nt(S2)∑
k=1

√
2`+ 1

4π
P`(〈x, ξk〉),

so that we can view spherical Poisson random waves as occurring from the sum of a
(random) number of deterministic waves, centred at points (indexed by k) which are
uniformly distributed on the sphere.

It is now convenient to introduce the standard basis for the (2` + 1)-dimensional
space of eigenfunctions corresponding to the eigenvalue λ`; the elements of the basis
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are sometimes called fully normalized spherical harmonics, and are defined as the
normalized eigenfunctions {Y`m}m=−`,...,` which satisfy the further condition (in spherical
coordinates)

Y`m : S2 → R,
∂2

∂ϕ2
Y`m(θ, ϕ) = −m2Y`m(θ, ϕ).

The elements of the real fully normalized spherical harmonics basis can be written
explicitly as the normalized product of the so-called Legendre associated function
Pm` : [−1, 1] 7→ R of degree ` and order m, which depends only on θ and is defined by

Pm` (t) := (1− t2)m/2
dm

dtm
P`(t), t ∈ [0, 1]

(see [28, Equation 13.7]), and a trigonometric function depending only on φ, that is,

Y`m (θ, φ) =


√

2`+1
2π

(`−m)!
(`+m)!P

m
` (cos θ) cos (mφ) for m ∈ {1, . . . , `}√

2`+1
4π P` (cos θ) for m = 0√

2`+1
2π

(`+m)!
(`−m)!P

−m
` (cos θ) sin (−mφ) for m ∈ {−`, . . . ,−1}

,

see, for example, [28, Remark 3.37].
It should be noted, however, that none of the results below depend on the specific

choice of our basis; they would hold unaltered for any orthonormal system. The most
important properties of the fully normalized spherical harmonics are the addition and
duplication formula (see respectively [28, Eq. (3.42) and Sec. 13.1.2]), which are given
respectively by

∑̀
m=−`

Y`m(x)Y`m(y) =
2`+ 1

4π
P`(〈x, y〉), (1.5)∫

S2

2`+ 1

4π
P`(〈x, z〉)

2`+ 1

4π
P`(〈z, y〉)dz =

2`+ 1

4π
P`(〈x, y〉), (1.6)

for all x, y ∈ S2. Using the addition formula yields

T`;t(x) =
1
√
νt

√
4π

2`+ 1

Nt(S
2)∑

k=1

∑̀
m=−`

Y`m(x)Y`m(ξk) =
∑̀
m=−`

â`,m(t)Y`m(x),

where the random spherical harmonic coefficients {â`,m(t)}m=−`,...,` are defined by

â`,m(t) :=

√
4π

(2`+ 1)νt

Nt(S2)∑
k=1

Y`m(ξk),

where {ξk} are the points charged by the Poisson process. Note that

E[â`,m(t)â`′,m′(t)] = δm
′

m δ`
′

`

4π

(2`+ 1)

and
E[T`;t(x)T`;t(y)] = P`(〈x, y〉).

It is also easy to verify that the Parseval’s identity holds, i.e.

‖T`;t‖2L2(S2) =

∫
S2
T 2
`;t(x)dx =

∑̀
m=−`

|â`,m(t)|2.
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1.3 Overview of the main results

In this work, we consider the convergence in law of the Poisson random spherical
eigenfunctions to a Gaussian limit when both the rate of the Poisson process and
the eigenvalue sequence λ` diverge to infinity; see for instance [21, 23, 24] and the
references therein for some recent results on quantitative convergence bounds in a
Poisson framework. We focus on three different cases:

a) We study the convergence of the finite-dimensional distributions for a fixed array
of d-points (x1, x2, . . . , xd) ∈ S2, with special emphasis on the univariate marginal distri-
bution for d = 1; here we prove that a quantitative Central Limit Theorem holds insofar
we have that d2

√
log ` = o(

√
νt). In particular, for the special case d = 1 asymptotic

Gaussianity holds for eigenvalues that increase polynomially fast with respect to the rate
of occurrence of Poisson events.

b) We also study the convergence in law for the vector of spherical harmonic coef-
ficients {â`,·}m=−`,...,`; again a multivariate Central Limit Theorem would be straight-
forward, but here we provide a quantitative version when ` (and hence the dimension

of the vector itself) grows with νt. The bound we obtain here is of order
√

` log `
νt

, thus

entailing that multivariate asymptotic Gaussianity holds provided
√
` log ` = o(

√
νt). Out

of this bound, it is also possible to derive an alternative rate of convergence for finite-
dimensional distributions of order d, which turns out to be d`

√
log `/νt, see Remark 2.13.

For fixed d, this is clearly worse than the bound we discussed in the previous point, but
it can actually be better if one envisages d as growing with ` at a suitably fast rate.

c) We then consider functional convergence results, where we view the eigenfunctions
{T`;t} as random elements T`;t : Ω → L2(S2), i.e. as measurable applications with the
topology induced on L2(S2) by the standard metric

d2(f, g) := ‖f − g‖2L2(S2) =

∫
S2
|f(x)− g(x)|2dx.

Exploiting some very recent and important results by [6] (see also [5]), we are able here
to show that a quantitative Central Limit Theorem holds under the simple condition that
νt →∞. This is apparently surprising, because in this functional case it turns out that
asymptotic Gaussianity will hold no matter how fast the sequence of eigenvalues diverge
to infinity, on the contrary of what we have stated for the (apparently simpler) cases
under b) and c). A careful inspection of the results reveals that the apparent paradox is
due to the topological structure induced by the ‖.‖L2(S2), which is much coarser than the
one given for instance, by the sup norm. In particular, weak convergence with respect
to ‖.‖L2(S2) does not entail convergence of the finite-dimensional distributions, not even
univariate ones.

d) Finally, we establish a quantitative Central Limit Theorem for T`,t in functional
spaces which induce finer topologies; we focus in particular on Sobolev spaces (see
Theorem 2.15). Here, we are able to obtain the rate

√
π
(

1 +
√
`(`+ 1)

)2α

2
√
νt

+
2π
(

1 +
√
`(`+ 1)

)3α

√
νt

,

which is much worse than in both the L2 case and for marginal distributions. However,
functional convergence in Sobolev spaces with sufficient regularity is, of course, a
much stronger result; in particular, among others, it does imply convergence of the
finite-dimensional distributions at fixed locations on the sphere, as detailed below in
Section 2.3.2, Corollary 2.16.

Remark 1.4. It is well-known (see [2, Corollary 1]) that convergence in L2(·) does indeed
entail pointwise convergence in the case of Reproducing Kernel Hilbert Spaces (RKHS).
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Because the space of spherical eigenfunctions is indeed a RKHS, again the point in c)
may sound counterintuitive. There is a subtle point here, as ` increases, we are actually
dealing with a sequence of RKHS; whereas it is indeed possible to bound the pointwise
norm with the L2 distance up to a constant, the “constant” does vary with `, and indeed
it diverges to infinity as we shall discuss below; so no contradiction arises.

1.4 Some remarks on the nature of asymptotics

At this stage, it is important to add some remarks on the nature of our asymptotic
results. We note first that both the multipole index ` and the Poisson rate diverge jointly
to infinity in our framework ; for fixed multipoles `, convergence to Gaussianity remains
true but becomes rather trivial and uninnteresting. As a consequence of this double
asymptotics framework, the covariance functions of the processes that we study do not
converge to the covariance of a well-defined, measurable function on the sphere.

Indeed it is easy to see that for any choice of fixed points on the sphere the covariance
of our process converges to zero as `→∞. This implies that the limiting process (if it
existed) would not be mean square continuous; but such a process cannot be well-defined
(i.e., measurable) as proved in [27].

However, this apparent difficulty allows us to exploit the full power of quantitative
central limit results. Indeed, this class of theorems does not require, by any means,
that the sequences converge to a well defined limiting distribution. One can have two
sequences of random variables Xn, Yn and show that dW (Xn, Yn)→ 0 as n→∞, meaning
that we can approximate the distribution of Xn arbitrarily well with the distribution of
Yn, for n large enough, independently from the fact that Xn converges or not to a limit
distribution. For instance, Yn could be a sequence of Gaussian variables with oscillating
mean and variance µYn and σ2

Yn
, and still one could use the Gaussian quantiles to

approximate the distribution ofXn asN(µYn , σ
2
Yn

). Very much the same can be said below,
where the covariance operators do not converge to meaningful limits. For ideas that are
in a broad sense related, one could also think about the large p, large n framework in
random matrix theory (see for instance [7, 8] where it is shown that under appropriate
conditions, the laws of large Wishart random matrices become indistinguishable from
the laws of the Gaussian orthogonal ensemble).

For completeness, we add that it may be possible to get some form of nondegenerate
limiting behaviour for random waves: in particular, if neglecting the spherical structure
and focussing only on shrinking domains around a single fixed point x ∈ S2, then it could
be possible to show that the scaling limit of the waves T` when projected on the tangent
plane converges locally to random eigenfunctions on R2 (Berry’s random waves). The
price to pay for this approach would however be high: the result would no longer deal
with convergence on the sphere, which is what we are studying in this work. Moreover,
this approach would not allow to answer the question that we addressed here and that
we consider interesting for physical applications: given a random spherical harmonic T`
with ` suitably large, what is the order of magnitude of the governing Poisson rate that
is required for the Gaussian approximation to be adequate? This is exactly the issue that
we address in the sequel, under a variety of different circumstances.

2 Main results

Before we proceed with the statement of our results, we need to recall briefly the
probability metrics that we are going to exploit, which are defined by

(a) Kolmogorov metric: for any two random variables X,Y : Ω→ R

dKol(X,Y ) = sup
x∈R
|E
[
1(−∞,x](X)

]
− E

[
1(−∞,x](Y )

]
| = sup

x∈R
|FX(x)− FY (x)|,
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F (·) denoting as usual the distribution function.

(b) Wasserstein metric: for any two random vectors X,Y : Ω→ Rd

dW (X,Y ) = sup
h∈Lip(1)

|E [h(X)]− E [h(Y )] |,

h ∈ Lip(1)⇔ h : Rd→R : M1(h) ≤ 1.

where M1(h) is defined by

M1(h) := sup
x,y∈Rd,
x 6=y

|h(x)− h(y)|
‖x− y‖Rd

. (2.1)

(c) d3 metric: for any two random vectors X,Y : Ω→ Rd such that E‖X‖2
Rd

, E‖Y ‖2
Rd

<

∞,

d3(X,Y ) = sup
h∈I
|E [h(X)]− E [h(Y )] |

where I indicates the collection of all functions h ∈ C3(Rd) such that ‖h′′‖∞ ≤ 1 and
‖h′′′‖∞ ≤ 1, C3(Rd) denoting the space of three times continuously differentiable
functions.

(d) Functional d3 metric: for a general function space K we have that C3
b (K) is the

class of real-valued functions on K that have bounded Fréchet derivatives up to
order three. This space is equipped with the norm

‖h‖C3
b (K) = sup

j=1,2,3
sup
x∈K
‖Djh(x)‖K⊗j .

Then, given a Hilbert space K and any two random elements X,Y : Ω→ K

d3(X,Y ) = sup
h∈C3

b (K)

|E [h(X)]− E [h(Y )] |.

Remark 2.1. Clearly, (c) can be viewed as a special case of (d) for K = Rd. We refer
to [35, Appendix C] for more discussion and examples on probability metrics and their
mutual relationships.

We divide our results below in three subsections, referring respectively to finite-
dimensional distributions, harmonic coefficients and functional convergence.

2.1 Convergence of the finite dimensional distributions

We start from a simple univariate case; this is of course implied by the d-dimensional
result that we give below, but we prefer to treat it on its own for clarity of exposition
and to optimize the value of the relevant constants.

Theorem 2.2 (One-dimensional case). Let the notation above prevail and Z ∼ N (0, 1).
For all x ∈ S2 we have that, as `→∞,

dW (T`;t(x), Z) ≤

(√
3

2π2
+

√
2√

3π3

)√
log `

νt
+ o`→∞

(√
log `

νt

)
.

Proof. Note first that, because T`;t (x) = 1√
νt

∫
S2

√
2`+1
4π P` (〈x, ξ〉) dNt(ξ) we are in the

domain of validity of Fourth Moment Theorems for integral functionals of Poisson
processes, see for instance [37] and many subsequent papers. In particular, we shall
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exploit [19, Theorem 1.7], which we recall in Section A.1 below, see Theorem A.2. To
apply this result, we need to compute the fourth moment of T`;t, which is given by

E[T 4
`;t(x)] =

∑̀
m1,...,m4=−`

E[â`,m1
(t) â`,m2

(t)â`,m3
(t) â`,m4

(t)]Y`m1
(x)Y`m2

(x)Y`m3
(x)Y`m4

(x);

substituting the value of â`,m we have that

E[T 4
`;t(x)] =

(
4π

νt(2`+ 1)

)2 ∑̀
m1,...,m4=−`

E

 Nt(S
2)∑

k1,...,k4=1

Y`m1(ξk1)Y`m2(ξk2)Y`m3(ξk3)Y`m4(ξk4)


× Y`m1

(x)Y`m2
(x)Y`m3

(x)Y`m4
(x).

Exploiting the addition formula (1.5), we get

E[T 4
`;t(x)] =

(
2`+ 1

4πνt

)2

E

 Nt(S
2)∑

k1,...,k4=1

P`(〈ξk1 , x〉)P`(〈ξk2 , x〉)P`(〈ξk3 , x〉)P`(〈ξk4 , x〉)


=

(
2`+ 1

4πνt

)2 (
4πνtE

[
P`(〈ξk1 , x〉)4

]
+ 3(4πνt)

2E
[
P`(〈ξk1 , x〉)2

]2)
.

In [32, Lemma 2.3], it has been shown that∫ 1

0

P 4
` (t) dt ∼ 3

2π2

log `

`2
,

where for any two positive sequences {a`, b`}`=1,2,... we write

a` ∼ b` ⇔ lim
`→∞

a`
b`

= 1.

Thus we get

E
[
P`(〈ξk1 , x〉)4

]
=

1

4π

∫
S2
P`(〈z, x〉)4dz =

∫ 1

0

P 4
` (t)dt ∼ 3

2π2

log `

`2
, as `→∞.

Moreover, since ∫ 1

0

P`(t)
2 dt =

1

2`+ 1
,

we also have that

E[P`(〈ξk1 , x〉)2] =
1

4π

∫
S2
P`(〈z, x〉)2dz =

∫ 1

0

P`(t)
2 dt =

1

2`+ 1
.

It follows that

E[T 4
`;t(x)] = 3 +

3

2π3

log `

νt
+ o

(
log `

νt

)
. (2.2)

Applying Theorem A.2 concludes the proof.

Remark 2.3. Theorem A.3 can also be applied to obtain a Quantitative Central Limit
Theorem in the Kolmogorov distance instead of the Wasserstein one. Indeed, by com-
bining the second part of Theorem A.2 with the estimate of the fourth moment of T`;t

EJP 29 (2024), paper 8.
Page 9/27

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1071
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Spherical Poisson waves

obtained in (2.2), we get that, for any fixed x ∈ S2,

dKol(T`;t(x), Z) ≤

[
11 +

√
3 +

3

2π3

log `

νt
+ o

(
log `

νt

)

+ 4

√
3 +

3

2π3

log `

νt
+ o

(
log `

νt

)]√
3

2π3

log `

νt
+ o

(
log `

νt

)

= O

(√
log `

νt

)
,

where Z ∼ N (0, 1).

Remark 2.4 (A Comparison with Needlet/Wavelet Coefficients). We note here that the
constraint on the rate of convergence of the eigenvalues with respect to the rate in the
Poisson governing intensity measure is very weak; Theorem 2.2 shows that asymptotic
Gaussianity will continue to hold even if we allow λ` to grow as any polynomial function
of the rate νt. This is in sharp contrast with what is observed in related circumstances
for the behaviour of spherical wavelet/needlet coefficients (see, for example, [20]). To
compare those results with the ones presented here, we recall that needlet coefficients
corresponding to ξ ∈ S2 in the notation of this can be considered as equivalent to (after
normalization)

βj(ξ) :=

2j+1∑
`=2j−1

b

(
`

2j

)
T`;t(ξ)

=
1
√
νt

∫
S2
ψj(〈x, ξ〉)dNt(ξ),

ψj(〈x, ξ〉) :=

2j+1∑
`=2j−1

b

(
`

2j

)
2`+ 1

4π
P`(〈x, ξ〉),

where
{
b( `2j )

}
`=2j−1,...,2j+1 is a sequence of suitably constructed weights (see [1, 33]),

normalized here so that the coefficients have unit variance. It can be shown that (see
[20])

d3(βj(ξ), Z) = O

√22j

νt

 = O

√`2j
νt

 , `j := 2j ,

so that asymptotic Gaussianity follows only for multipoles which grow sub-linearly with
respect to

√
νt. Heuristically, the kernel {ψj(〈ξ, .〉)} is characterized by a very fast decay,

as opposed to Legendre polynomials (see [33, 1]); its support can be considered to shrink
as `−2

j , and hence the “effective” Poisson rate behaves as `−2
j × νt. This is very different

from what we observe in this paper for Poisson random waves, because as we mentioned
above the support of Legendre polynomials does not shrink in any similar way as ` grows,
which makes asymptotic Gaussianity much simpler to achieve.

In order to focus on the more general finite dimensional distributions case, we need
first to introduce some additional notation. Let us fix d points x1, x2, . . . , xd on S2 and
introduce the random vector

Fd = (T`;t(x1), T`;t(x2), . . . , T`;t(xd)); (2.3)

the elements of the covariance matrix of Fd, which we denote by Γd := Γ
(`)
d (Fd), are

easily seen to be given by

Γd;ij := E[T`;t(xi)T`;t(xj)] = P`(〈xi, xj〉), i, j = 1, . . . , d.
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Note that the elements on the diagonal Γd;ii, i = 1, . . . , d, are exactly equal to 1 (cf.
Eq. (1.2)).

Before we state our next result, some words on notation. Similarly to what was done
for the definition of Wasserstein distance, where the supremum was taken with respect
to Lipschitz functions with constant no larger than one, we might have defined the d3(·, ·)
distance with respect to a more definite class of functions, such that the two factors
M2(g),M3(g) are smaller than one (say). These constants are explicitly given by

Mk(g) := sup
x 6=y

‖Dk−1g(x)−Dk−1g(y)‖op
‖x− y‖Rd

, k ∈ N, g ∈ Ck−1
(
Rd
)
,

where Dk−1g(x) is the (k−1)–th derivative of g at any point x ∈ Rd (see also Section A.1).
We also recall that for a vector x = (x1, . . . , xd)

T ∈ Rd, we denote by ‖x‖2 its Euclidean
norm and for a matrix A ∈ Rd×d, we denote by ‖A‖op the operator norm induced by the
Euclidean norm, i.e.,

‖A‖op := sup{‖Ax‖2 : ‖x‖2 = 1}.

We prefer however the current formulation which is more general and flexible,
although slightly more cumbersome. We write Zd for a Gaussian vector of dimension d
with zero mean and covariance matrix equal to Γd.

Theorem 2.5. We have that

d3(Fd, Zd) ≤ sup
g∈C3

B3(g; d)

√
3

2π3
d

√
log `

νt
+ o

(
d2

√
log `

νt

)

where

B3(g; d) :=

√
2d

4
M2(g) +

2d

9
M3(g).

Proof. First of all we note that all the components of Fd belong to the same first-order
Poisson Wiener chaos and then we can apply Theorem A.3 (see below). Moreover, from
Theorem 2.2 we have that

E[T 4
`;t] = 3 +

3

2π3

log `

νt
+ o

(
log `

νt

)
.

Hence we obtain

|E[g(Fd)− E[g(Zd)]| ≤ B3(g; d)

d∑
i=1

(cum4(Fd;i))
1/2

∼ B3(g; d)

√
3

2π3

d∑
i=1

(
log `

νt

)1/2

where Fd;i is the i-th component of the vector Fd and

B3(g; d) =

√
2d

4
M2(g) +

2
√
dTr(Γd)

9
M3(g).

We recall that for a zero mean random variable F , the fourth-cumulant cum4(F ) is given
by

cum4(F ) = E[F 4]− 3(E[F 2])2,

see for instance [35] for more discussions and details. Noting that Tr(Γd) = d, the
theorem is proved.
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Remark 2.6. Note that we have established the bound

d3(Fd, Zd) = O`→∞

(
d2

√
log `

νt

)
;

the fact that the dependence on the dimension d can be made explicit allows in principle
also to consider asymptotic regimes cases where d may itself vary with ` and νt.

Remark 2.7. We point out that because the proof is based on multidimensional results
in Theorem A.3 (which was proved in [19]), in Theorem 2.5 we obtain upper bounds on
the d3 distance rather than the (stronger) Wasserstein distance that was considered for
the one-dimensional case in Theorem 2.2. Of course, this weaker norm is still sufficient
to imply convergence in distribution.

2.2 Convergence of spherical harmonic coefficients

Let us consider the vector

V`;t := (â`,−` (t) , . . . , â`,`(t)) = {â`,m(t)}m=−`,...,`,

where

â`,m (t) =

√
4π

(2`+ 1)νt

Nt(S2)∑
k=1

Y`,m(ξk).

Observe that each entry of V`;t is built by evaluating a different element of the fully
normalized spherical harmonic basis {Y`m} over the same set of random points {ξk}. As a
consequence, the random coefficients are neither independent nor identically distributed,
although they are still uncorrelated. Indeed we have that, for all m,m′ = −`, . . . , `

E [â`,m (t)] =

∫
S2
Y`m(z)dz = 0

and

E [â`,m (t) â`,m′ (t)] =
4π

(2`+ 1)

∫
S2
Y`m(z)Y`m′(z)dz

= δm
′

m

4π

(2`+ 1)
. (2.4)

Theorem 2.8. Let Z2`+1 be a Gaussian vector of dimension 2`+ 1 with zero mean and
diagonal variance/covariance matrix equal to 4π

2`+1I2`+1. Then we have that

d3(V`;t, Z2`+1) ≤ sup
g∈C3

B3(g; `)

√
64

1.539 log `

νt
+O

(
1

νt

)
,

where

B3(g; `) :=

√
2(2`+ 1)

4
M2(g) +

2

9

√
(2`+ 1)4πM3(g).

It should be noted that the resulting bound is of order
√

` log `
νt

. Before proving the

theorem we need some lemmas.

Lemma 2.9. We have that

E
[
â4
`,m(t)

]
=

(
4π

2`+ 1

)2
4π

νt
E
[
|Y`m(ξ1)|4

]
+ 3

(
4π

2`+ 1

)2

.
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Remark 2.10. From (A.9) (see also [31], p. 23) we have:

E
[
Y`m(ξ1)4

]
=

(2`+ 1)2

4π

4

4π

∑
L

(
CL,0`,0;`,0

)2 (
CL,0`,−m;`,m

)2

2L+ 1

 ,
where {C`3,m3

`1,m1;`2,m2
} are the Clebsch-Gordan coefficients, defined in Appendix A.2 (see

[42, Chapter 8] and [28, p. 77 cap. 3.5]). The factor 4 arises because (A.9) applies to
complex spherical harmonics while here we deal with the real ones.

Note that as `→∞ we have (see [31, p. 16])

∑
L

(
CL,0`,0;`,0

)4

2L+ 1
=

∫ 1

0

P`(t)
4 dt ∼ 3

2π2

log `

`2
, (2.5)

Corollary 2.11. We have that

cum4(â`,m (t)) =
16π

νt

∑
L

(
CL,0`,0;`,0

)2 (
CL,0`,−m;`,m

)2

2L+ 1


and as `→∞

cum4(â`,0 (t)) =
16π

νt

[∑
L

{CL,0`,0;`,0}4

2L+ 1

]

∼ 24
1

π

log `

`2νt
.

The first result of Corollary 2.11 follows by exploiting Remark 2.10 together with
Lemma 2.9 and recalling the definition of the fourth cumulant of a zero mean random
variable. The second result is due to (2.5).

We also need the following lemma.

Lemma 2.12. We have that

16π

(2`+ 1)νt
≤
∑̀
m=−`

cum4(â`,m(t)) ≤ 32
1.539 log `

`νt
+O

(
1

`νt

)
. (2.6)

Proof of Lemma 2.12. From Corollary 2.11 we get

∑̀
m=−`

cum4(â`,m(t)) =
∑̀
m=−`

16π

νt

∑
L

(
CL,0`,0;`,0

)2 (
CL,0`,−m;`,m

)2

2L+ 1


=

16π

νt

∑
L

(
CL;0
`,0;`,0

)2

2L+ 1

∑̀
m=−`

(
CL,0`,−m;`,m

)2

.

In view of the unitary property (A.5) recalled in Appendix A.2 (see for example eq. (3.62)
[28]), we have ∑̀

m=−`

(
CL,0`,−m;`,m

)2

= 1

and then we obtain

∑̀
m=−`

cum4(â`,m(t)) =
16π

νt

∑
L

(
CL,0`,0;`,0

)2

2L+ 1
. (2.7)
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The relation (A.3) between the Clebsch-Gordan coefficients and the 3j Wigner coefficients
(defined in Appendix A.2), leads to(

CL,0`,0;`,0

)2

2L+ 1
=

(
` ` L

0 0 0

)2

.

From Lemma A.1 in [32] we have that(
` ` L

0 0 0

)2

=
2

π
γ`L

1

L(2`− L)1/2(2`+ L)1/2
; (2.8)

where {γ`L}`=1,2,... is a deterministic sequence such that 0.596 ≤ γ`L ≤ 1.539 uniformly
in ` and L. Then

2∑̀
L=0

(
CL,0`,0;`,0

)2

2L+ 1
=
(
C0,0
`,0;`,0

)2

+

2`−1∑
L=1

(
CL,0`,0;`,0

)2

2L+ 1
+

(
C2`,0
`,0;`,0

)2

4`+ 1
.

In view of (A.7), the first term of this sum is(
C0,0
`,0;`,0

)2

=
1

2`+ 1
,

and from (A.8) we have that
(
C2`,0
`,0;`,0

)2

≤ 1
(4`+1) so that the last term of the sum above

satisfies (
C2`,0
`,0;`,0

)2

4`+ 1
≤ 1

(4`+ 1)2
.

In view of (2.8), we also get

2`−1∑
L=1

(
CL,0`,0;`,0

)2

2L+ 1
=

2

π

2`−1∑
L=1

γ`L
L(2`− L)1/2(2`+ L)1/2

.

Now we note that

2`−1∑
L=1

1

L(2`− L)1/2(2`+ L)1/2
≤ 1

(2`+ 1)1/2

2`−1∑
L=1

1

L(2`− L)1/2

=
1

(2`+ 1)1/2

∑̀
L=1

1

L(2`− L)1/2
+

1

(2`+ 1)1/2

2`−1∑
L=`+1

1

L(2`− L)1/2
. (2.9)

The first sum can be bounded as follows:

1

(2`+ 1)1/2

∑̀
L=1

1

L(2`− L)1/2
≤ 1

(2`+ 1)1/2(`)1/2

∑̀
L=1

1

L
≤ log `

`
.

For the second sum in (2.9) we have that

1

(2`+ 1)1/2

2`−1∑
L=`+1

1

L(2`− L)1/2
≤ 1

(2`+ 1)1/2(`+ 1)

2`−1∑
L=`+1

1

(2`− L)1/2

and changing variable L′ = 2`− L we get

1

(2`+ 1)1/2(`+ 1)

`−1∑
L′=1

1

(L′1/2)
≤ 1

(2`+ 1)1/2(`+ 1)
(`)1/2 ≤ 1

`
.
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Finally we have

2∑̀
L=0

(
CL,0`,0;`,0

)2

2L+ 1
≤ 2

π

(
1.539 log `

`
+

1.539

`
+

π

2(4`+ 1)2
+

π

2(2`+ 1)

)
and exploiting this bound in (2.7) we conclude that

∑̀
m=−`

cum4(â`,m(t)) ≤ 32
1.539 log `

`νt
+O

(
1

`2νt

)
.

On the other hand it can be easily seen that

∑̀
m=−`

cum4(â`,m(t)) =
16π

νt

∑
L

(
CL,0`,0;`,0

)2

2L+ 1
≥ 16π

νt

(
C0,0
`,0;`,0

)2

=
16π

νt

1

2`+ 1
=

16π

(2`+ 1)νt
,

where we used (A.7) in the second-last equality, and that leads to the thesis of the
lemma.

Proof of Theorem 2.8. We exploit the multidimensional Fourth Moment Theorem in [19],
in particular Theorem A.3 in Section A, to get

|E[g(V`;t)]− E[g(Z2`+1)]| ≤ B3(g; `)
∑̀
m=−`

√
cum4(â`,m (t)). (2.10)

Applying the following Cauchy-Schwarz inequality

d∑
i=1

√
ai ≤ d

1
2

(
d∑
i=1

ai

) 1
2

, (2.11)

it follows that

|E[g(V`;t)]− E[g(Z2`+1)]| ≤ B3(g; `)
√

2`+ 1

√√√√ ∑̀
m=−`

cum4(â`,m(t)). (2.12)

In view of the definition of B3(g; d) in (A.1) and using (2.4) we find

B3(g; `) = A2(g; `) +
2
√

(2`+ 1)4π

9
M3(g),

with

A2(g; `) =

√
2(2`+ 1)

4
M2(g).

Exploiting the upper bound of (2.6) in Lemma 2.12, the thesis of the theorem follows.

Remark 2.13. Since the covariance matrix of the vector V`;t is positive definite, we can
also apply the second part of Theorem A.3 in Section A.1 to get a quantitative Central
Limit Theorem in terms of the metric d2, defined as follows. For any two random vectors
X,Y : Ω→ Rd such that E[‖X‖2

Rd
],E[‖Y ‖2

Rd
] <∞, we have that

d2(X,Y ) = sup
h∈I
|E[h(X)]− E[h(Y )]|
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where I indicates the collection of all functions h ∈ C2(Rd) such that ‖h‖Lip ≤ 1 and
M2(h) ≤ 1.

Similarly to the proof of Theorem 2.8, we find

d2(V`;t, Z2`+1) ≤ sup
g∈C2

B2(g; `)

√
64

1.539 log `

νt
+O

(
1

`νt

)
where

B2(g; `) = A1(g) +

√
2π

6

√
2`+ 1M2(g) and A1(g) =

√
2`+ 1

4π

1√
π
M1(g).

A natural question concerns the relationship between the results of this section
and the quantitative bounds for the convergence of the finite-dimensional distribu-
tions provided in the previous pages. To this aim, we recall the definition of Fd =

(T`;t(x1), . . . , T`;t(xd)) and we simply note that

Fd =

Y`,−`(x1) Y`,−`+1(x1) . . . Y`,`(x1)
...

...
...

...
Y`,−`(xd) Y`,−`+1(xd) . . . Y`,`(xd)


â`,−`(t)...
â`,`(t)


=: Ψ`;d(a`,·),

where Ψ`;d : R2`+1 → Rd is a linear function and hence obviously continuous (and

bounded). Indeed, because |Y`,m| ≤
√

2`+1
2π uniformly over the sphere, for all functions

h : Rd → R we can write

h(T`;t(x1), . . . , T`;t(xd)) = h ◦Ψ`;d(a`,·) =: h̃(a`,·).

Hence we have that

sup
h∈C3

|E [h(T`;t(x1), . . . , T`;t(xd))]− E [h(Z1, . . . , Zd)] |

= sup
h∈C3

|E [(h ◦Ψ`;d)(a`,·)]− E [(h ◦Ψ`;d)(Z1, . . . , Z2`+1)] |

≤ sup
h∈C3

B3(h ◦Ψ`;d)

√
64

1.539 log `

νt
+O

(
1

`νt

)
where

B3(h ◦Ψ`;d) =

√
2(2`+ 1)

4
M2(h ◦Ψ`;d) +

2

9

√
(2`+ 1)4πM3(h ◦Ψ`;d)

≤
√

2(2`+ 1)

4

√
2`+ 1

2π
dM2(h) +

2

9

√
(2`+ 1)4π

√
2`+ 1

2π
dM3(h)

= d
2`+ 1

4
√
π
M2(h) +

2
√

2d

9
(2`+ 1)M3(h).

Here we have used the simple fact that

sup
h:Rd→R

Mk(h ◦Ψ`;d) ≤ d
√

2`+ 1

2π
sup
h
Mk(h), k ∈ N.
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Summing up, we have here a bound of order d`
√

log `√
νt

, to be compared with the bound of

order d2
√

log `
νt

which was obtained in Theorem 2.5. Overall, we can claim that

sup
h∈C3, |h|C3<1

|E [h(T`;t(x1), . . . , T`;t(xd))]− E [h(Z1, . . . , Zd)] |

= O

(
d× (` ∧ d)×

√
log `

νt

)
.

2.3 Functional convergence

In the previous subsections we presented a number of quantitative convergence re-
sults for sequences of random vectors, such as vectors of spherical harmonic coefficients
or points evaluations over a subset of d points. It is natural to ask whether we can
also obtain results for the sequence of eigenfunctions {T`,t(.)} considered as random
elements in functional spaces; the answer is affirmative, thanks to some very recent
results in this direction in [6]. We shall consider in particular L2(S2) and the Sobolev
space Wα,2(S2), α > 0, to distinguish the probability metric in the two cases, we shall
write d3,L2(S2) and d3,Wα,2(S2), respectively. Let us recall also that for a general function
space K we have that C3

b (K) is the class of real-valued functions on K that have bounded
Fréchet derivatives up to order three. This space is equipped with the norm

‖h‖C3
b (K) = sup

j=1,2,3
sup
x∈K
‖Djh(x)‖K⊗j .

2.3.1 Quantitative central limit theorems in L2(S2)

We start by considering the space of L2(S2). Our main result is the following.

Theorem 2.14. Let Z be a centred Gaussian process with the same covariance operator
as T`;t. We have that

d3,L2(S2)(T`;t, Z) ≤
(

1

4
+
√
π

)√
4π

νt

Proof. In view of Theorem A.4 (see [6], Theorem 3 and Corollary 1), we need to compute
the quantity

E[‖T`;t‖4L2(S2)]− (E[‖T`;t‖2L2(S2)])
2 − 2 ‖S`;t‖2HS(L2(S2)) ,

where S`;t is the covariance operator of T`;t and ‖ · ‖HS denotes the Hilbert-Schmidt
norm (see the end of Appendix A.1). First, we have that

E[‖T`;t‖2L2(S2)]

= E

[∫
S2
|T`;t(x)|2 dx

]
=

∫
S2

∑̀
m1=−`

∑̀
m2=−`

E[â`,m1
(t) â`,m2

(t)]Y`m1
(x)Y`m2

(x) dx

=

∫
S2

4π

2`+ 1

∑̀
m=−`

Y`m(x)Y`m(x) dx

=
4π

2`+ 1

∑̀
m=−`

∫
S2
Y`m(x)Y`m(x)dx = 4π.
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It follows that (E[‖T`;t‖2L2(S2)])
2 = (4π)2. Now we compute E[‖T`;t‖4L2(S2)], which gives

E[‖T`;t‖4L2(S2)] = E
[
‖T`;t‖2L2(S2)‖T`;t‖

2
L2(S2)

]
= E

[ ∑̀
m1=−`

|â`,m1
(t)|2

∑̀
m2=−`

|â`,m2
(t)|2

]

=

(
4π

(2`+ 1)νt

)2

E

[ ∑̀
m1=−`

∑
k1k2

Y`m1(ξk1)Y`m1(ξk2)
∑̀

m2=−`

∑
k3k4

Y`m2(ξk3)Y`m2(ξk4)

]
.

Applying the addition formula we get

E[‖T`;t‖4L2(S2)] =

(
1

νt

)2

E

Nt(S2)∑
k1=1

Nt(S
2)∑

k2=1

P`(〈ξk1 , ξk2〉)
Nt(S

2)∑
k3=1

Nt(S
2)∑

k4=1

P`(〈ξk3 , ξk4〉)


=

(
1

νt

)2

E

Nt(S2)∑
k1=1

P`(〈ξk1 , ξk1〉)2


+

(
1

νt

)2

E

 ∑
k1=k2 6=k3=k4

P`(〈ξk1 , ξk2〉)P`(〈ξk3 , ξk4〉)


+

(
1

νt

)2

E

 ∑
k1=k3 6=k2=k4

P`(〈ξk1 , ξk2〉)P`(〈ξk3 , ξk4〉)


+

(
1

νt

)2

E

 ∑
k1=k4 6=k3=k2

P`(〈ξk1 , ξk2〉)P`(〈ξk3 , ξk4〉)


and since P`(0) = 1 for all ` we obtain

E[‖T`;t‖4L2(S2)] =

(
1

νt

)2

E

Nt(S2)∑
k1=1

1

+

(
1

νt

)2

E

 ∑
k1=k2 6=k3=k4

1


+ 2

(
1

νt

)2

E

 ∑
k1=k3 6=k2=k4

P`(〈ξk1 , ξk2〉)2


=

4π

νt
+ (4π)2

(
1

νt

)2

ν2
t +

(
1

νt

)2

2ν2
t

∫
(S2)2

P`(〈ξk1 , ξk2〉)2 dξk1 dξk2

=
4π

νt
+ (4π)2 + 2

(4π)2

2`+ 1
.

The covariance operator S`;t is such that

‖S`;t‖2HS(L2(S2)) =
∑̀
m=−`

∑̀
m′=−`

E[a`,m(t)a`,m′(t)]
2 =

∑̀
m=−`

∑̀
m′=−`

(
δm
′

m

4π

2`+ 1

)2

=
(4π)2

2`+ 1
,

and then we finally obtain

E[‖T`;t‖4L2(S2)]− (E[‖T`;t‖2L2(S2)])
2 − 2 ‖S`;t‖HS(L2(S2))

=
4π

νt
+ (4π)2 + 2

(4π)2

2`+ 1
− (4π)2 − 2

(4π)2

2`+ 1
=

4π

νt
.

Exploiting Theorem A.4 (see also [6]) we get the thesis of the theorem.
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As mentioned above, it may come at first sight as a surprise that the rate of con-
vergence in this functional setting (i.e., 1/

√
νt) does not depend on the index ` and it

is indeed faster than in the finite-dimensional case. The apparent paradox is solved
noting that the topology here is too coarse to imply convergence of the finite-dimensional
distributions. In the next subsection, we investigate convergence in functional spaces
with a finer topological structure.

2.3.2 Quantitative central limit theorems in Wα,2(S2)

Now we consider the random eigenfunctions taking values in Sobolev spaces Wα,2(S2),
α > 0, on the sphere, i.e., the spaces of functions f ∈ L(S2), f =

∑
`,m a`,mY`,m, with

finite norm

‖f‖2Wα,2(S2) =
∑
`≥0

∑̀
m=−`

(
1 +

√
`(`+ 1)

)2α

|a`,m|2 .

Our main result here is the following.

Theorem 2.15. Let Z be a centred Gaussian process with the same covariance operator
as T`;t. We have that

d3,Wα,2
(T`;t, Z) ≤

√
π
(

1 +
√
`(`+ 1)

)2α

2
√
νt

+
2π
(

1 +
√
`(`+ 1)

)3α

√
νt

.

Proof. First note that

E
[
‖T`;t‖4Wα,2(S2)

]
=
(

1 +
√
`(`+ 1)

)4α

E
[
‖T`;t‖4L2(S2)

]
and

E
[
‖T`;t‖2Wα,2(S2)

]
=
(

1 +
√
`(`+ 1)

)2α

E
[
‖T`;t‖2L2(S2)

]
. (2.13)

Indeed, we have that

E
[
‖T`;t‖4Wα,2(S2)

]
= E

[
‖T`;t‖2Wα,2(S2) ‖T`;t‖

2
Wα,2(S2)

]
= E

[ ∑̀
m=−`

∑̀
m′=−`

(
1 +

√
`(`+ 1)

)4α

|â`,m|2 |â`,m′ |2
]

=
(

1 +
√
`(`+ 1)

)4α

E

[ ∑̀
m=−`

∑̀
m′=−`

|â`,m|2 |â`,m′ |2
]

=
(

1 +
√
`(`+ 1)

)4α

E
[
‖T`;t‖4L2(S2)

]
,

where in the last equation we used Parseval’s identity. Similarly (2.13) holds. In view of
the computations of the previous section and this remark, we conclude that

E
[
‖T`;t‖4Wα,2(S2)

]
=
(

1 +
√
`(`+ 1)

)4α
(

4π

νt
+ (4π)2 + 2(4π)

4π

2`+ 1

)
and

E
[
‖T`;t‖2Wα,2(S2)

]
= 4π

(
1 +

√
`(`+ 1)

)2α

.
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Furthermore, letting {ei : i ≥ 1} be an orthonormal basis of Wα,2(S2), we can compute
‖S`;t‖2HS(Wα,2) as

‖S`;t‖2HS(Wα,2) =
∑
i≥1

∥∥∥E(〈T`;t, ei〉Wα,2(S2) T`;t

)∥∥∥2

Wα,2(S2)

=
∑
i≥1

∥∥∥∥∥ ∑̀
m=−`

E
(
â`,m(t)2

)
〈Y`m, ei〉Wα,2(S2) Y`m

∥∥∥∥∥
2

Wα,2(S2)

=
∑̀
m=−`

(
1 +

√
`(`+ 1)

)2α
(

4π

2`+ 1

)2∑
i≥1

〈Y`m, ei〉2Wα,2(S2)

=
∑̀
m=−`

(
1 +

√
`(`+ 1)

)4α
(

4π

2`+ 1

)2

=
(

1 +
√
`(`+ 1)

)4α (4π)2

2`+ 1
.

We now have all the necessary elements to apply Theorem A.4 as in the previous
subsection, from which the result follows after elementary algebraic manipulations.

As a final result we want to show that, for α > 3
2 , a quantitative Central Limit

Theorem in Sobolev space does indeed imply the quantitative Central Limit Theorem for
the marginal distribution at every given location on the sphere. We start by noting that

‖f‖L∞(S2) = sup
x
|
∑
`

∑
m

a`m(f)Y`m(x)|

≤
∑
`

∑
m

|a`m(f)| sup
x
|Y`m(x)|

≤
∑
`

∑
m

|a`m(f)|
√

2`+ 1

2π
,

whence

‖f‖2L∞(S2) ≤
1

2π

{∑
`

∑
m

|a`m(f)|
√

2`+ 1

}2

.

Multiplying and dividing by (1 +
√
`(`+ 1))α

√
2`+ 1 and then applying the Cauchy-

Schwarz inequality twice, we get

‖f‖2L∞(S2) ≤
1

2π

∑
`

(2`+ 1)
∑
m

|a`m(f)|2
(1 +

√
`(`+ 1))2α

(2`+ 1)

∑
`

(2`+ 1)2

(1 +
√
`(`+ 1))2α

=
1

2π
‖f‖2Wα,2(S2)

∑
`

(2`+ 1)2

(1 +
√
`(`+ 1))2α

≤ 2

π
‖f‖2Wα,2(S2)ζ(2α− 2),

where as usual

ζ(2α− 2) =

∞∑
`=1

1

`2α−2
<∞

as α > 3
2 . Hence, we have that

‖f‖2L∞(S2) <
2

π
ζ(2α− 2)× ‖f‖2Wα,2(S2) .
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Because of this inequality, the topology induced by the norm ‖.‖Wα,2(S2) is finer than the
topology generated by ‖.‖L∞(S2); hence a function continuous with respect to the latter
is certainly continuous with respect to the former as well. Therefore

sup
h continuous w.r.t. ‖.‖L∞(S2)

|Eh(X)− Eh(Y )| ≤ sup
h continuous w.r.t. ‖·‖Wα,2(S2)

|Eh(X)− Eh(Y )|.

Now, given X` a random element taking values in the Sobolev space Wα,2(S2) and Z` a
Gaussian process taking values in the same Sobolev space and with the same covariance
operator as X`, we show that d3,Wα,2(X`, Z`)→ 0 implies

Eg(X`(x))→ Eg(Z`(x)) for all g ∈ C3
b (R),

for fixed x ∈ S2, which in turn implies X`(x)→d N(0, 1) because d3 metrizes convergence
in distribution, in particular on R. Actually we are able to prove the following, slightly
stronger result.

Proposition 2.16. For α > 3
2 , we have that

d3(X`(x), Z`(x)) = sup
g∈C3

b (R)

|Eg(X`(x))− Eg(Z`(x))| ≤ C(α)d3,Wα,2
(X`, Z`),

where the term C(α) does not depend on `.

Proof. We can write

Eg(X`(x)) = E(g ◦ πx(X`(.))) where g ◦ πx ∈ Cb,

where the evaluation map πx : πx(X`) = X`(x) is continuous with respect to the Sobolev
norm (because it is continuous with respect to the sup norm).

Note that the Gateaux derivatives of the evaluation functionals are given by

|πx(X` + tH)− πx(X`)|
t

= H(x) = πx(H), ∀ H ∈Wα,2,

so that the Fréchet derivative ((Dπx)(X`))H = H(x), that is ((Dπx)(X`)) = πx. Note also
that the (dual) norm of πx is bounded, indeed by its definition we have that

‖πx(.)‖W∗α,2 := sup
h:‖h‖Wα,2=1

|πx(h)| = sup
h

|h(x)|
‖h‖Wα,2(S2)

≤ sup
h

‖h‖L∞(S2)

‖h‖Wα,2(S2)

≤ 2

π
ζ(2α− 2).

Similar results are obtained if we take the second or third order Fréchet derivatives,
with the same bound. Therefore we have that

d3(X`(x), Z`(x)) = sup
g∈C3

b (R)

|Eg(X`(x))− Eg(Z`(x))| ≤ C(α)d3,Wα,2(X`, Z`),

which proves the claim with C(α) := 2
π ζ(2α− 2).

Remark 2.17. As usual with Sobolev spaces, the coefficient α in Wα,2 characterizes
regularity; in particular, α > 3

2 implies that the elements in this space are not only
continuous, but also differentiable, in the L2 sense.
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A Appendix

In this Appendix, we collect for convenience a number of background results on
Fourth Moment Theorems in a Poisson environment and on integrals of spherical har-
monics. We start introducing some notation and definitions.

A.1 Wiener chaos in a Poisson environment

We now present, in a form properly adapted to our goals, some upper bounds related
to random variables living in the first Wiener chaos of a Poisson random measure. The
first two bounds have been proved in [19] and provide a Fourth Moment Theorem on
the Poisson space for the univariate and the multivariate case respectively. The third
bound appears in [6] and concerns a quantitative and functional Central Limit Theorem
for convergence to a Gaussian process.

We start by recalling some basic concepts on Poisson random measures and Wiener
chaos.

Let us consider (Θ,A, ρ) a Probability space as given in Definition 1.2 and N a Poisson
random measure on Θ with intensity measure ρ; let N̂ be defined by N̂ := N − ρ.

For the sake of brevity, we will make use of the shorthand notation Lp (ρ) to denote
the space Lp (Θ,A, ρ), p ≥ 1.

Definition A.1 (First Wiener chaos). For every deterministic function h ∈ L2 (ρ), the
Wiener–Itô integral of h with respect to N̂ is given by

I1 (h) =

∫
Θ

h (z) N̂ (dz) .

The Hilbert space composed of the random variables of the form I1 (h), where h ∈
L2 (ρ), and labeled by W1, is called the first Wiener chaos associated with the Poisson
measure N .

Theorem A.2 (Quantitative Fourth Moment Theorem (unidimensional case), [19, Theorem
2.1 and Corollary 1.3] and [18, Theorem 1.3]). For ` ∈ N, let F ∈W1, while Z ∼ N (0, 1)

denote a standard normal random variable. Moreover, assume that V ar(F ) = 1 and
E[F 4] <∞. Then it holds that:

dW (F,Z) ≤ c1
√
E[F 4]− 3,

where

c1 :=
1√
2π

+
2

3
.

Moreover, it holds that

dKol(F,Z) ≤
(

11 + (E[F 4])1/2 + (E[F 4])1/4
)√

E[F 4]− 3.

Before stating the next result, we need some additional notation. For any ` ∈ N,
fixed an integer d ≥ 2, we consider the centred random vector F = (F1, . . . , Fd)

T where
Fj ∈W1, for 1 ≤ j ≤ d. For j = 1, . . . , d. We denote by Γd the covariance matrix of F , i.e.
Γd;ij = E[FiFj ] for i, j = 1, . . . , d.

For a k-multilinear form ψ : (Rd)k → R, k ∈ N, we define the operator norm

‖ψ‖op := sup{|ψ(u1, . . . , uk)| : uj ∈ Rd, ‖uj‖2 = 1, j = 1, . . . , k}.

Furthermore, for g ∈ Ck−1(Rd), note thatDk−1g(x), the (k−1)–derivative of g at the point
x, can be read as a multilinear form. In this setting, we can define the generalization of
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the minimum Lipschitz constant for any derivative of order k − 1 of g(·) as follows: for
fixed k ≥ 1 take

Mk(g) := sup
x 6=y

‖Dk−1g(x)−Dk−1g(y)‖op
‖x− y‖Rd

,

see again [19].

Theorem A.3 (Quantitative Fourth Moment Theorem (multidimensional case), [19, Theo-
rem 1.7, Corollary 1.8 and Remark 4.3]). Under the above notation, let Zd be a centred
Gaussian random vector of dimension d with covariance matrix Γd. Then, for every
g ∈ C3(Rd), we have that

|E[g(F )]− E[g(Zd)]| ≤ B3(g; d)

d∑
i=1

√
E[F 4

i ]− 3E[F 2
i ]2

where

B3(g; d) = A2(g; d) +
2
√
dTr(Γd)

9
M3(g), A2(g; d) =

√
2d

4
M2(g). (A.1)

If in addition Γd is positive definite, then for every g ∈ C2(Rd), it holds that

|E[g(F )]− E[g(Z)]| ≤ B2(g; d)

d∑
i=1

√
E[F 4

i ]− 3E[F 2
i ]2

with

B2(g; d) = A1(g; d) +

√
2π‖Γ−

1
2

d ‖op Tr(Γd)

6
M2(g), A1(g; d) =

‖Γ−
1
2

d ‖op√
π

M1(g).

Let K be a separable Hilbert space and X a K-valued random variable in L2(ρ). We

recall that if X ∈ L2(ρ), with E
[
||X||2K

]
<∞, the covariance operator S : K → K of X

is defined by

Su = E[〈X,u〉KX].

S is a positive, self-adjoint trace-class operator that verifies the identity

TrS = E[‖X‖2K ].

We consider the Banach space of all trace-class operators on K, equipped with norm
Tr |A|, where |A| =

√
A∗A and A∗ denotes the adjoint of A. The subspace of Hilbert-

Schmidt operators on K is denoted by HS(K), associated to the norm ‖A‖HS(K) =√
Tr(AA∗), A ∈ HS(K).

Now, assume that X is a K-valued random variable which belongs to the first Wiener
chaos with finite fourth moment, i.e. E[‖X‖4K ] <∞, and with covariance operator S. We
denote by Z a Gaussian process taking values in the same separable Hilbert space as X
and having the same covariance operator S. The following result holds.

Theorem A.4 (Functional Quantitative Fourth Moment Theorem, [6, Theorem 3 and
Corollary 1]). Under the above notation and assumptions, it holds that

d3(X,Z) ≤
(

1

4
+

1

2

√
E[‖X‖2K ]

)√
E[‖X‖4K ]− E[‖X‖2K ]2 − 2‖S‖2HS(K).
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A.2 Wigner’s and Clebsch-Gordan coefficients

In this section we review briefly some background facts and notation about Wigner’s
3j and Clebsch-Gordan coefficients; see [42] and [28] for a much more detailed discussion,
in particular concerning the relationships with the quantum theory of angular momentum
and group representation properties of SO(3).

We start recalling the following analytic expression for the Wigner’s 3j coefficients
(valid for m1 +m2 +m3 = 0, see [42], eq. (8.2.1.5))(

`1 `2 `3
m1 m2 m3

)
:= (−1)`1+m1

√
2`3 + 1

[
(`1 + `2 − `3)!(`1 − `2 + `3)!(`1 − `2 + `3)!

(`1 + `2 + `3 + 1)!

]1/2

×
[

(`3 +m3)!(`3 −m3)!

(`1 +m1)!(`1 −m1)!(`2 +m2)!(`2 −m2)!

]1/2

×
∑
z

(−1)z(`2 + `3 +m1 − z)!(`1 −m1 + z)!

z!(`2 + `3 − `1 − z)!(`3 +m3 − z)!(`1 − `2 −m3 + z)!
,

where the summation runs over all z′s such that the factorials are non-negative, and
`1, `2, `3, m1, m2, m3 ∈ Z. This expression becomes simpler when m1 = m2 = m3 = 0,
where we have (

`1 `2 `3
0 0 0

)
=

0, for `1 + `2 + `3 odd

(−1)
`1+`2−`3

2 [(`1+`2+`3)/2]!
[(`1+`2−`3)/2]![(`1−`2+`3)/2]![(−`1+`2+`3)/2]!

{ (`1+`2−`3)!(`1−`2+`3)!(−`1+`2+`3)!
(`1+`2+`3+1)!

}1/2
,

for `1 + `2 + `3 even.

(A.2)

On the other hand the so-called Clebsch-Gordan coefficients, denoted by {C`3,m3

`1,m1;`2,m2
},

are defined by the identities (see [42], Chapter 8)(
`1 `2 `3
m1 m2 m3

)
= (−1)`3+m3

1√
2`3 + 1

C`3,m3

`1,−m1;`2,−m2
(A.3)

C`3,m3

`1,m1;`2,m2
= (−1)`1−`2+m3

√
2`3 + 1

(
`1 `2 `3
m1 m2 −m3

)
. (A.4)

Note that the Clebsch-Gordan coefficients vanish unless the so-called triangular condi-
tions

|`1 − `2| ≤ `3 ≤ `1 + `2, and the equation m1 +m2 = m3

are satisfied (see [42], Chapter 8).
The following orthonormality properties hold and are exploited in this paper:

`1∑
m1=−`1

`2∑
m2=−`2

C`3,m3

`1,m1;`2,m2
C
`′3,m

′
3

`1,m1;`2,m2
= δ

`′3
`3
δ
m′3
m3 , (A.5)

`1+`2∑
`3=|`1−`2|

`3∑
m3=−`3

C`3m3

`1,m1;`2,m2
C`3,m3

`1,m′1;`2,m′2
= δ

m′1
m1 δ

m′2
m2 . (A.6)

For some special values of the arguments, namely if `3 = 0 or `2 = 0, one has more
explicit forms of these coefficients:

C0,0
`1,m1;`2,m2

= (−1)`1−m1
δ`2`1 δ

−m2
m1√

2`1 + 1
. (A.7)
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From Remark 8.9 in [28] we also have the inequality(
CL,0`,0;`,0

)2

≤ 1

(2L+ 1)
. (A.8)

Now we recall the general formula ([42], eqs. 5.6.2.12-13, or [28] eqs 3.64 and 6.46) for
the evaluation of multiple integrals of spherical harmonics, the so-called Gaunt integrals,
given by∫

S2
Y`1m1(x) · · ·Y`nmn(x) dx

=

√
4π

2`n + 1

`1+`2∑
L1=|`1−`2|

L1+`3∑
L2=|L1−`3|

· · ·
Ln−4+`n−2∑

Ln−3=|Ln−4−`n−2|

L1∑
M1=−L1

L2∑
M2=−L2

· · ·
Ln−3∑

Mn−3=−Ln−3

×
[
CL1,M1

`1,m1;`2,m2
CL2,M2

L1,M1;`3,m3
· · ·C`n,−mnLn−3,Mn−3;`n−1,mn−1

×

√∏n−1
i=1 (2`i + 1)

(4π)n−1
{CL1,0

`1,0;`2,0
CL2,0
L1,0;`3,0

· · ·C`n,0Ln−3,0;`n−1,0
}
]
.

The most important case dealt with in this paper is given by∫
S2
Y`m1

(x)Y`m2
(x)Y`m3

(x)Y`m4
(x) dx

=
2`+ 1

4π

2∑̀
L=0

L∑
M=−L

CL,0`,0;`,0C
`,0
L,0;`,0C

L,M
`,m1;`,m2

C`,−m4

L,M ;`m3

=
(2`+ 1)2

4π

2∑̀
L=0

L∑
M=−L

(−1)L−M{CL,0`,0;`,0}
2
CL,M`,m1;`,m2

CL,−M`,m3;`,m4

2L+ 1
. (A.9)

Finally, similarly, as shown in [32, Eq. (30)], the following identity hold∫ 1

0

Pl(t)
4 dt =

1

2`+ 1

2∑̀
L=0

{CL,0l,0;l,0C
L,0
L,0;l,0}

2

=

2∑̀
L=0

(2L+ 1)

(
l l L

0 0 0

)4

,

see [42, Eq. (8.9.4.20)].
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