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From Berry–Esseen to super-exponential
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Abstract

For any integer m < n, where m can depend on n, we study the rate of convergence
of 1√

m
TrUm to its limiting Gaussian as n→∞ for orthogonal, unitary and symplectic

Haar distributed random matrices U of size n. In the unitary case, we prove that
the total variation distance is less than Γ(bn/mc+ 2)−1m−bn/mcbn/mc1/4

√
logn times

a constant. This result interpolates between the super-exponential bound obtained
for fixed m and the 1/n bound coming from the Berry–Esseen theorem applicable
when m ≥ n by a result of Rains. We obtain analogous results for the orthogonal and
symplectic groups. In these cases, our total variation upper bound takes the form
Γ(2bn/mc+ 1)−1/2m−bn/mc+1(logn)1/4 times a constant and the result holds provided
n > 2m. For m = 1, we obtain complementary lower bounds and precise asymptotics
for the L2-distances as n→∞, which show how sharp our results are.
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1 Introduction and results

1.1 Background and problem

We consider random matrices from the orthogonal O(n), unitary U(n) and symplectic
Sp(2n) groups, distributed according to normalized Haar measure. This is the unique

translation invariant probability measure on the group, i.e. UM
d
= MU

d
= U for any

fixed M in the same group as U. In case of U(n), this is also known as the circular
unitary ensemble or CUE. We refer to Meckes’ monograph [22] for an introduction to
random matrix theory for the classical compact groups.

Our objects of interest are traces of powers of these matrices. It is well-known that
these random variables are asymptotically Gaussian as a consequence of the celebrated
strong Szegő limit theorem and the Heine–Szegő identity (1.6). The joint moments of
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From Berry–Esseen to super-exponential

these traces were first studied in [6] using representation theory, by analogy with random
(uniform) permutations matrices,1 and they are exactly equal to those of Gaussians, up to
a surprisingly large order. This conveys that traces of fixed powers of random matrices
from the compact classical groups converge extremely fast to their limiting Gaussians.
To back this claim up, it is established that for a fixed m ∈ N, the number of m-cycles
of a uniform permutation converges superexponentially fast to their limiting Poisson
distribution, [1].

The rate of convergence for traces of powers of Haar distributed random matrices was
first investigated by Stein in [25] who obtained a super-polynomial rate of convergence
for a single trace of any fixed power of an orthogonal matrix. Then, in [18], the second
author proved that for any fixed (normalized) real-valued polynomial P , there exist
C, δ > 0 depending on P so that for a random matrix U ∈ U(n),

dTV

(
TrP (U),γR

)
≤ Cn−δn (1.1)

where dTV denotes the total variation distance and γR is a standard real-valued Gaussian.
In the same article it was shown that for a random matrix O ∈ O(n) or O ∈ Sp(2n),

dTV

(
TrP (O),γR

)
≤ Ce−δn.

The result for unitary matrices was then revisited and generalized to the multivariate
case, i.e. considering jointly the traces of the first m powers simultaneously, in [19].
The highest power m was allowed to depend on the size n of the matrix up to m�

√
n

while still having a fast rate of convergence. The multivariate super-exponential rate
for orthogonal and symplectic matrices was obtained in [8], where m was allowed
to increase with n up to m ≤ n1/4. Other results in the multivariate setting (with
polynomial rate of convergence) which are based on Stein’s method have been obtained
in [11, 12, 7, 26]. An analogous result has also been recently obtained in [16] for
(uniform) random matrices from the unitary group over finite fields, in which case the
rate of convergence is O(e−δn

2

).
Remarkably, the situation for very large powers is entirely different. Rains showed

in [23] that for a random matrix U ∈ U(n), the eigenvalues of Un are statistically
independent. Then, by the classical Berry–Esseen theorem, this implies that there exists
a constant C > 0 so that for m ≥ n,

dTV

(
TrUm
√
n
,γC

)
≤ C

n (1.2)

where γC is a standard complex-valued Gaussian. The rate O(n−1) follows by symmetry
and it is sharp. Analogous results hold for the other groups as well. The rationale behind
this observation is that while the eigenvalues of U are rigid and evenly distributed on
the unit circle [21], taking growing powers enforces an expansion which in effect cancels
out the eigenvalue repulsion. This phenomenon, as well as a precise description of the
eigenvalues of Um, is described by the results of Rains, Theorem 4.1 below. In particular,
the variance of the random variable TrUm is exactly min(m,n) for m ∈ N. Finally, let
us also mention that a multivariate central limit theorem valid for linear combinations
of arbitrary powers was obtained in [9] as a generalization of the strong Szegő limit
theorem.

The questions that we address in this paper are twofold

• What is the exact dependency in n of the rate of convergence for TrU?

• How do the rates of convergence for TrUm
√
m

for m with m ≤ n interpolate between
the super-exponential regime (1.1) and the Berry–Esseen regime (1.2)?

1Traces of powers of a permutation matrix are determined by the cycle structure of the corresponding
permutation.
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From Berry–Esseen to super-exponential

1.2 Results for the unitary group

Let us first address theses questions precisely for a (Haar-distributed) random matrix
U ∈ U(n). We want to give bounds which hold even if n is not large with explicit not too
large constants. For TrU we will also give a lower bound, which is close to the upper
bound, on the L1-distance to a complex Gaussian. Furthermore in L2-distance we give
the precise asymptotics as a function of n as n→∞. Let X,Y be two random variables
taking values in Rd with p.d.f. pX and pY. Recall that the total variation distance between
X and Y is defined as

dTV(X,Y) = sup
A

(∫
A

pX −
∫
A

pY

)
where the sup is taken over all Borel sets A ⊂ Rd. One can verify that

dTV(X,Y) =
1

2
‖pX − pY‖L1 .

Let γC denote a standard complex-valued Gaussian, with probability density function
(p.d.f.) φC : z ∈ C 7→ e−|z|

2

/π.

Theorem 1.1. Let pn be the p.d.f. of the complex-valued random variable TrU. For any
n ≥ 66,

6 · 10−4

Γ(n+ 2)
√
n+ 1

≤
∥∥pn − φC∥∥L1 ≤ 17

n1/4
√

log n

Γ(n+ 2)
. (1.3)

The proof of Theorem 1.1 is given in Section 2. It follows from similar estimates for
‖pn − γC‖Lp for p = 2,∞ which are obtained using Fourier analysis and the connection
between the characteristic function of TrU and certain Fredholm determinants. This
connection is reviewed in Section 1.4. In the course of the proof, we use Wolfram
Mathematica for numerical evaluations of several constants involved. Controlling the
constants is the main reason behind the condition n ≥ 66 and other similar conditions
below. We also comment that for n = 66, the bound from Theorem 1.1 already implies
that

dTV(TrU,γC) ≤ 4 · 10−93

which is far below Machine Epsilon (of order of 10−33 for quad(ruple) precision decimal).
Our analysis also provides the asymptotics of the L2-distance between pn and the

p.d.f. of a complex Gaussian.

Theorem 1.2. As n→∞, ∥∥pn − φC∥∥2

L2 ∼
2e4
√
π

Γ(n+ 2)2
√
n
.

Using the result of Rains [23], we can also precisely estimate the total variation
distance between the random variable TrUm

√
m

and a complex Gaussian for any power

m ∈ N ∩ [2, n].

Theorem 1.3. Let n,m ∈ N and pn,m be the p.d.f. of the complex-valued random variable
TrUm
√
m

. Assume that m ≥ 2 and that n ≥ max{700,m}, then with N = bn/mc,

∥∥pn,m − φC∥∥L1 ≤ 12
(N + 1)1/4

√
log n

Γ(N + 2)mN
.

The proof of Theorem 1.3 is given in Section 4 and it relies on results used to
prove Theorem 1.1 and Theorem 4.1. We emphasize that these estimates interpolate
between the super-exponential rate of convergence when the degree m is fixed, and the
polynomial rate of convergence (1.2) when the ratio N = bn/mc ∈ N is fixed up to a√

log n factor.
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1.3 Results for the orthogonal and symplectic groups

We obtain similar results for a Haar-distributed random matrix O from the orthogonal
O(d) and symplectic Sp(d) groups. Here we need to differentiate between d, the total
number of eigenvalues and n, the number of non-trivial eigenvalues, i.e. the eigenvalues
in the open upper half-plane. Complex eigenvalues come in conjugate pairs, and in the
orthogonal case, depending on the sign of the determinant and the parity of d, there
might be deterministic eigenvalues at ±1.

Let φR : x ∈ R 7→ e−x
2/2/
√

2π be the p.d.f. of a standard real-valued Gaussian random
variable. Let also qn be the p.d.f. of the real-valued random variable TrO−E[TrO], with
n being the number of non-trivial eigenvalues. The upper and lower bounds on the total
variation distance are given by

Theorem 1.4. For any n ≥ 124,

1/120√
Γ(2n+ 1)(2n)1/4

≤
∥∥qn − φR∥∥L1 ≤ 3

(log 2n)1/4√
Γ(2n+ 1)

.

Again, we can give the precise asymptotic L2-distance as n→∞.

Theorem 1.5. As n→∞, ∥∥qn − φR∥∥2

L2 ∼
e2/(2π)

Γ(d+ 1)
√
d

where d is the total number of eigenvalues (d = 2n, 2n+ 1, or 2n+ 2 depending on its
parity and on the sign of the determinant, see the beginning of Section 3).

For traces of higher powers we have the following result which has somewhat stronger
(technical) conditions compared to the unitary case. We are not able to go all the way up
to m = n.

Theorem 1.6. Let n,m ∈ N and qn,m be the p.d.f. of the real-valued random variable
1√
m

(TrOm − E[TrOm]) (with n the number of non-trivial eigenvalues). Set N = bn/mc.
If N and m satisfy one of the following conditions:

N ≥ 10 and m ≥ 46, N ≥ 6 and m ≥ 424, N ≥ 3 and m ≥ 1010, or m ≥ 2 and N ≥ 66,

then ∥∥qn,m − φR∥∥L1 ≤ 14
(log n)1/4√

Γ(2N + 1)mN−1
.

This last bound also holds for any N > 2, for m sufficiently large, if the constant 14 is
replaced by another explicit constant, see Proposition 4.3 and the following computations,
up to (4.13). The stronger requirements on N and m are ultimately a consequence of
the fact that the Fredholm determinants arising from the characteristic function of TrO

are not bounded by one, unlike in the unitary case.

1.4 Notation and ideas of the proof

In this section, we explain the main ideas underlying the proofs of Theorem 1.1. For
simplicity, we focus on the case of the unitary group, the adaptation to the orthogonal and
symplectic groups are presented in Section 3. The method originates from our previous
works [18, 19, 8], but the fact that we are considering just the trace of a random unitary
matrix means that we can do a considerably more precise asymptotic analysis and keep
a very good control of the constants.

First, using Gaussian concentration bounds for TrUm where U ∈ U(n) is Haar-
distributed, one can reduce the proof of Theorem 1.1 and 1.3 to controlling

∥∥pn,m−φC∥∥L2 ;
cf. Section 2.1.
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We define the characteristic function of the complex values random variable TrUm
√
m

by

Fn,m(ζ) = En
[
e
iTr Re(ζUm√

m
)]

=

∫
C

eiRe(ζz)pn,m(z)d2z
(1.4)

for ζ ∈ C, where d2z denotes the Lebesgue measure on C. Hence, Fn,m(ζ) is the Fourier
transform of the p.d.f. pn,m evaluated at (Re ζ,− Im ζ) and by Plancherel’s Theorem,∥∥Fn,m − φ̂C∥∥2

L2 = 4π2
∥∥pn,m − φC∥∥2

L2 . (1.5)

where φ̂C denotes the Fourier transform of the (standard) complex Gaussian p.d.f.,

φ̂C(ζ) =

∫
eiRe(ζz)φC(z)d2z = e−|ζ|

2/4, ζ ∈ C.

Consequently, the problem is to approximate the characteristic function Fn,m. We
now focus on the case m = 1, letting pn = pn,1 and Fn = Fn,1. This is not a loss of

generality since by Theorem 4.1, one can express Fn,m(ζ) =
∏

0≤i<m FNi

(
ζ√
m

)
where

Ni ∈ {bn/mc, bn/mc+ 1}.

Let us denote by {eiθj}nj=1 the eigenvalues of U. We will use the Heine–Szegő identity:
for any integrable function ω on the unit circle,

En

[ ∏
1≤j≤n

ω(eiθj )

]
= det(Tn(ω)) (1.6)

where Tn(ω) = (ω̂j−k)nj,k=1 is a Toeplitz matrix.2 This allows to write the Laplace

transform of a general linear statistics Tr f(U) =
∑n
j=1 f(eiθj ) as a Toeplitz determinant;

for ζ ∈ C,

En
[
eiRe(ζ Tr f(U))

]
= det(Tn(ω)), ω = eiRe(ζf). (1.7)

In particular if f(z) = z and ζ = reiφ, then ω(eiθ) = eir cos(θ+φ) and we have for k ∈ Z,

ω̂k =

∫
T

e−ikθω(eiθ)
dθ

2π
= eikφ

∫
T

e−ikθ+ir cos θ dθ

2π

= eik(φ+π/2)Jk(r)

where (Jk)k∈Z are Bessel functions (of the first kind), cf. DLMF formulae, [10], (10.9.2)
and (10.2.2).

Hence, by (1.7) and Hadamard’s inequality for determinants, we obtain an a priori
bound ∣∣Fn(ζ)

∣∣2 =
∣∣det(Tn(ω))

∣∣2 ≤ n∏
j=1

n∑
i=1

∣∣ŵj−i∣∣2 =

n∏
j=1

n∑
i=1

∣∣Jj−i(|ζ|)∣∣2. (1.8)

This bound will be useful to control the tail of the characteristic function Fn; cf. Proposi-
tion 2.4.

To obtain the exact asymptotics of Fn(ζ) if ζ is not too large, we use another and
perhaps not as well known exact formula, known as the Borodin–Okounkov formula
(sometimes also known as Geronimo-Case formula). This formula first appeared in [13],
and then in [4, 3, 5] with different proofs.

2The Fourier coefficient of ω are defined by ω̂k =
∫
T
e−ikθω(eiθ) dθ

2π
for k ∈ Z where T = R/[2π].
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Theorem 1.7. Assume that f ∈ L∞(T) is complex-valued and satisfies
∑
k∈Z|k||f̂k|2 <∞

and f̂0 = 0. Let ω = ef and
A =

∑
k≥1

kf̂kf̂−k. (1.9)

Then, there exists a trace-class operator K (depending on ω) on l2(N) such that for any
n ∈ N,

En

[ ∏
1≤j≤n

ω(eiθj )

]
= eA det(I−KQn)

where the right-hand side is a Fredholm determinant and Qn denotes the orthogonal
projection with kernel span(e1, . . . , en) on l2(N).

Moreover, the operator K admits an explicit representation in terms of Hankel
operators [3]. For ω ∈ H1/2(T→ C), define

H+(ω) = (ω̂i+j−1)i,j≥1 and H−(ω) = (ω̂−i−j+1)i,j≥1.

The condition ‖ω‖H1/2 =
√∑

k∈Z|k||ω̂k|2 <∞ guarantees that these (infinite) matrices

define Hilbert–Schmidt operators on l2(N). In particular, if
∑
k∈Z|k||f̂k|2 < ∞ as in

Theorem 1.7, then we can write the operator

K = H+(ω+)H−(ω−), ω±(eiθ) = e
∑
k>0

(
±f̂−ke−ikθ∓f̂keikθ

)
. (1.10)

The condition f ∈ H1/2 also guarantees that ω± ∈ H1/2, so that H±(ω±) are Hilbert–
Schmidt and K is a trace-class operator. That being said, we will only apply Theorem 1.7
in the case ω(z) = eiRe(ζz). Then,

ω±(eiθ) = ei
(
±ζe−iθ∓ζeiθ

)
/2 = e± Im(ζeiθ) and A = −|ζ|2/4.

This implies that for ζ = reiφ ∈ C and k ∈ N,

(ω̂±)±k =

∫
T

e∓ikθe± Im(ζeiθ) dθ

2π
= e±ikφ

∫
T

e∓ikθ±r sin θ dθ

2π

= e±ik(φ±π/2)Ik(r),

where (Ik)k∈N are modified Bessel functions (of the first kind), cf. DLMF formulae
(10.32.3) and (10.25.2).

Let K be the operator coming from Theorem 1.7 associated with the symbol ω(z) =

eiRe(ζz) for ζ = reiφ. Let us also introduce the (infinite) matrices J(r) =
(
Ii+j−1(r)

)
i,j≥1

where Ik(r) are Bessel functions evaluated at r > 0 and

∆±(φ) = diag(e±i(k−1/2)(φ±π/2))k≥1

for φ ∈ [0, 2π) so that we can write

H±(ω±) = ∆±(φ)J(r)∆±(φ).

Hence, according to (1.10), we have

∆−1
+ (φ)K∆+(φ) = J(r)LJ(r)L, L = ∆−(φ)∆+(φ) = ∆+(φ)∆−(φ).

In particular, the matrix L = diag(eikπ)k≥1 is indeed independent of the argument φ of
the parameter ζ ∈ C. By Theorem 1.7, this implies that for n ∈ N, ζ ∈ C with |ζ| = r,

Fn(ζ) = e−|ζ|
2/4 det(I−KQn)

= e−r
2/4 det(I−QnK(r)Qn); K(r) = J(r)LJ(r)L,

(1.11)
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where the matrices J(r) =
(
Ii+j−1(r)

)
i,j≥1

. Note that (1.11) follows from the cyclicity of

Fredholm determinants and the fact that the projection Qn commutes with ∆±(φ).

Formulae (1.8) and (1.11) are the starting point of our analysis. They provide explicit
formulae for the characteristic function of the random variable TrU in terms of (modified)
Bessel functions which have well-known properties and asymptotics; cf. DLMF Section 10.
These functions can be defined as series: for any ν ≥ 0 and z ∈ C,

Iν(z) =

+∞∑
j=0

(z/2)2j+ν

j!Γ(j + ν + 1)
. (1.12)

Then, for k ∈ Z, I−k(z) = Ik(z) and

Jk(z) = e−ikπ/2Ik(iz);

see DLMF formulae (10.27.1) and (10.27.6).
Our general strategy is the following, by (1.11) and going to polar coordinates,∥∥Fn − φ̂C∥∥2

L2 = 2π

∫ ∞
0

(
det(I−K(r)Qn)− 1

)2
d(e−r

2/2). (1.13)

We show in Section 2.3 that if r < 2cn for a small enough c > 0, the trace-norm

‖QnK(r)Qn‖J1 � 1,

so the Fredholm determinant on the right-hand side of (1.13) is close to 1. Moreover, in
this regime, we can approximate

det(I−K(r)Qn) ' exp
(
−Tr(K(r)Qn)

)
.

By definitions,

Tr(K(r)Qn) = Tr
(
QnJ(r)LJ(r)LQn

)
=

∑
i>n,j≥1

(−1)i+jI2
i+j−1(r). (1.14)

Then, we show that Tr(K(r)Qn) ' (−1)n+1I2
n(r) for r < 2cn, so that(

det(I−K(r)Qn)− 1
)2 ' I4

n+1(r)

and by (1.13) ∥∥Fn − φ̂C∥∥2

L2 ' 2π

∫ 2cn

0

I4
n+1(r)d(e−r

2/2).

The asymptotics of this integral are performed in Section 2.4 and this leads to the proof
of Theorem 1.2.

In the complementary regime, we show that if n is large enough∫
|ζ|≥2cn

|Fn(ζ)|2d2ζ ≤ exp(−δn2) (1.15)

for a small δ > 0. In order to obtain (1.15), we use the simple inequality (1.8) in the
regime |ζ| � eδn which we combine with a Gaussian tail bound of the form |Fn(ζ)|2 �
exp(−δn2) valid for all |ζ| ≥ 2cn; cf. Proposition 2.3. The proof of this proposition relies
on the change of variable technique, or loop equation, originally introduced in [17], see
also [21]. We review the method in Section 2.7. When applied to the linear statistic TrU,
the key new ingredient is that the error terms involve again modified Bessel functions
and can be explicitly controlled.

EJP 29 (2024), paper 11.
Page 7/48

https://www.imstat.org/ejp

https://dlmf.nist.gov/10
https://dlmf.nist.gov/10.27
https://dlmf.nist.gov/10.27
https://doi.org/10.1214/23-EJP1068
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


From Berry–Esseen to super-exponential

2 Unitary group: proof of Theorems 1.1 and 1.2

The main steps of the proof of Theorem 1.1 are to obtain asymptotics for the char-
acteristic function Fn(ζ) of the random variable TrU in different regimes of ζ ∈ C. By
formula (1.11), this characteristic function is a Fredholm determinant and we argue
that if the parameter |ζ| ≤ 2cn for a given constant c > 0 where n is the dimension of
U, this determinant almost equals 1 and the error is controlled by Tr(KQn). Then, we
obtain precise estimates for the decay of this trace, cf. Section 2.3. The regime |ζ| ≥ 2cn

is controlled by different methods; cf. Section 2.2. This leads to the following sharp
bounds.

Theorem 2.1. Let pn be the density function of the random variable TrU and c be the
(unique) solution of the equation ce1+c2 = 1. Then for any n ≥ 13,

1

Γ(n+ 2)2
√
n+ 1

≤ 4π2‖pn − φC‖2L2 ≤
28
√
π

(1− c4)4

e4+7/n

√
n+ 1

1

Γ(n+ 2)2
+ 8n2e−

n(n−2)
9 . (2.1)

The Gaussian term becomes negligible if n ≥ 62,

‖pn − φC‖2L2 ≤
80√
n

1

Γ(n+ 2)2
(2.2)

and for n ≥ 66,

‖pn − φC‖L∞ ≤
43

Γ(n+ 2)
. (2.3)

We first deduce the total variation bound from Theorem 1.1, and then present the
proof of Theorem 2.1 in the next sections. A variation of the argument provides the exact
asymptotics of the L2-norm between the density function pn of the random variable TrU

and the Gaussian density. Namely, we prove Theorem 1.2 in Section 2.4.

2.1 Total variation upper–bound; proof of Theorem 1.1

We need the following concentration inequality from [19].

Lemma 2.2. For any L > 0 and any m ∈ N,

Pn
[
(Re TrUm, Im TrUm) /∈ [−L2 ,

L
2 ]2
]
< 4e−L

2/(4m).

Recall that pn,m denotes the p.d.f. of the complex-valued random variable TrUm
√
m

. Then,
by Cauchy–Schwarz inequality and the triangle inequality, for any m ∈ N,∥∥pn,m − φC∥∥L1 ≤ L

∥∥pn,m − φC∥∥L2 + Pn[TrUm
√
m

/∈ [−L2 ,
L
2 ]2] + P[γC /∈ [−L2 ,

L
2 ]2].

A change of variables to polar coordinates gives

P[γC /∈ [−L2 ,
L
2 ]2] ≤ 2

∫ ∞
L/2

re−r
2

dr = 2e−L
2/4. (2.4)

This is to be compared with Lemma 2.2,

Pn[TrUm
√
m

/∈ [−L2 ,
L
2 ]2] ≤ 4e−L

2/4

so that for any n,m ∈ N and L > 0,

‖pn,m − φC‖L1 ≤ L
∥∥pn,m − φC∥∥L2 + 6e−L

2/4. (2.5)

Using the upper-bounds (2.2) and (2.5) with m = 1, replacing L by 2L, this implies that
for any n ≥ 62,

‖pn − φC‖L1 ≤ 2

(
8.95L

n1/4Γ(n+ 2)
+ 3e−L

2

)
,

EJP 29 (2024), paper 11.
Page 8/48

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1068
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


From Berry–Esseen to super-exponential

which we minimize by choosing L =
√

log Γ(n+ 2). Since log Γ(n+ 2) ≤ n log n for n ≥ 3,
we conclude that

‖pn − φC‖L1 ≤ 2

(
8.95 +

3

n1/4
√

log n

)
n1/4
√

log n

Γ(n+ 2)
.

This completes the proof of the upper-bound (1.3).

For the lower-bound, observe that by Hölder’s inequality and (2.3), we have for
n ≥ 66,

‖pn − φC‖2L2 ≤ ‖pn − φC‖L∞‖pn − φC‖L1 ≤ 43

Γ(n+ 2)
‖pn − φC‖L1 .

Hence, using the lower-bound (2.1) from Theorem 2.1, we conclude that for n ≥ 66,

‖pn − φC‖L1 ≥ 6 · 10−4

Γ(n+ 2)
√
n+ 1

.

2.2 Proof of the upper-bounds in Theorem 2.1

By Plancherel’s Theorem, it suffices to control ‖Fn − φ̂C‖2L2 where Fn is the Fourier
transform of the p.d.f. pn (i.e. the characteristic function of the random variable TrU).
Then, we divide this integral in three parts depending on the argument;

|ζ| ≤ 2cn, 2cn ≤ |ζ| ≤ Λ, |ζ| ≥ Λ,

where c > 0 is the (unique) solution of the equation ce1+c2 = 1 and Λ ≥ 7n/4. In the first
regime, we show that by estimating the Fredholm determinant on the right-hand side
of (1.11), we obtain the estimate∫

|ζ|≤2cn

∣∣Fn(ζ)− e−|ζ|
2/4
∣∣2d2ζ ≤ 28

√
π

(1− c4)4

e4+7/n

√
n+ 1

1

Γ(n+ 2)2
; (2.6)

cf. Sections 2.3 and 2.5. In Section 2.7, we obtain a more general estimate for the tail of
the characteristic function Fn which is useful in the second regime.

Proposition 2.3. For any n ∈ N and ζ ∈ C,

|Fn(ζ)| ≤
√

2 exp

(
− n2

4(2.05 + n2/|ζ|2)

)
.

Observe that we immediately deduce from Proposition 2.3 that for any n ∈ N and
|ζ| ≥ 2cn,

|Fn(ζ)| ≤
√

2e−n
2/18, since

1

18
≤ 1

4(2.05 + c−2/4)
(2.7)

For the last regime, with Λ = eO(n), we use the following complementary bound
which is proved in Section 2.8.

Proposition 2.4. For any n ∈ N and |ζ| ≥ 7n/4,

∣∣Fn(ζ)
∣∣2 ≤ ( n

|ζ|

)n
. (2.8)

The proof of Theorem 2.1 follows easily from combining these estimates. First if we
integrate the estimate (2.8), we obtain for any n ≥ 3 and Λ ≥ 7n/4,∫

|ζ|≥Λ

∣∣Fn(ζ)
∣∣2d2ζ ≤ 2πnn

∫ +∞

Λ

dr

rn−1
=

2π

n− 2

nn

Λn−2
. (2.9)
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From Berry–Esseen to super-exponential

Then, we want to minimize over all Λ ≥ 7n/4, the function

Λ 7→ 1

n− 2

nn

Λn−2
+ Λ2e−n

2/9.

There is a unique critical point Λ∗ = 2−1/nnen/9 and it is larger than 7n/4 for n ≥ 8. The
minimum is given by

2−2/n n3

n− 2
e−n(n−2)/9,

which by (2.7) and (2.9) implies that for n ≥ 8,∫
|ζ|≥2cn

∣∣Fn(ζ)
∣∣2d2ζ ≤ 2πn3

n− 2
exp (−n(n− 2)/9) .

Also, for the Gaussian we have the estimate∫
|ζ|≥2cn

e−|ζ|
2/2d2ζ = π

∫ +∞

4c2n2

e−u/2du = 2πe−2c2n2

.

By combining these bounds, we obtain for n ≥ 10∫
|ζ|≥2cn

∣∣Fn(ζ)− e−|ζ|
2/4
∣∣2d2ζ ≤ 2πn2

(
1

100 + 5
4

)
exp (−n(n− 2)/9) (2.10)

Finally, combining the estimates (2.6) and (2.10), using (1.5) with m = 1, this com-
pletes the proof of the upper-bound (2.1).

The upper-bound (2.3) follows from an analogous argument using that for n ≥ 2∫
|ζ|<2cn

∣∣Fn(ζ)− e−|ζ|
2/4
∣∣d2ζ ≤ 5.2 e2+5/n

(1− c4)2

2π

Γ(n+ 2)
. (2.11)

If we integrate the estimates (2.7)–(2.8), we obtain for n ≥ 5 and any Λ ≥ 7n/4,∫
|ζ|≥2cn

∣∣Fn(ζ)
∣∣d2ζ ≤ 2πΛ2e−n

2/18,∫
|ζ|≥Λ

∣∣Fn(ζ)
∣∣d2ζ ≤ 2π

n/2− 2

nn/2

Λn/2−2
.

In this case, we want to minimize over all Λ ≥ 7n/4, the function

Λ 7→ 1

n/2− 2

nn/2

Λn/2−2
+ Λ2e−c0n

2

.

There is a unique critical point Λ∗ = 2−
2
nne2c0n and it is larger than 7n/4 for n ≥ 8 with

c0 = 1/18. The minimum is given by

2−
4
n

n3

n− 4
e−c0n(n−4).

This argument shows that for n ≥ 12,∫
2cn≤|ζ|

∣∣Fn(ζ)
∣∣d2ζ ≤ 3πn2e−

n(n−4)
18 .

In turn, for n ≥ 12,∫
|ζ|≥2cn

∣∣Fn(ζ)− e−|ζ|
2/4
∣∣d2ζ ≤ 4πn2 exp

(
−n(n− 4)

18

)
.
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This shows that for n ≥ 66, ∥∥Fn − φ̂C∥∥L1 ≤
43 · 2π

Γ(n+ 2)

By Fourier’s inversion formula, this implies that for n ≥ 66,

‖pn − φC‖L∞ ≤
43

Γ(n+ 2)

This proves the estimate (2.3).

2.3 Trace-norm and Fredholm determinant estimates

The trace-class norm and the Hilbert–Schmidt norm of a compact operator K are
defined by

‖K‖J1 :=
∑
j≥1

sj(K), ‖K‖J2 :=
(∑
j≥1

sj(K)2
)1/2

(2.12)

where {sj(K)}j≥1 are the singular values. If A and B are Hilbert–Schmidt (i.e. ‖A‖J2 <
∞ and ‖B‖J2 <∞), then AB is trace-class and satisfies

‖AB‖J1 ≤ ‖A‖J2‖B‖J2 , (2.13)

see e.g. Lemma 2.2. in [14]. We will also use that if K is given by an infinite matrix with
elements (Kij)i,j≥1, then

‖K‖J2 =
( ∑
i,j≥1

|Kij |2
)1/2

. (2.14)

For a short proof, let {ej}j≥1 be the standard orthonormal basis of l2(N). Then∑
j≥1

sj(K)2 =
∑
j≥1

〈K∗Kej , ej〉 =
∑
j≥1

‖Kej‖2 =
∑
j≥1

∑
k≥1

|〈Kej , ek〉|2.

Let us recall that according to (1.11): for any n ∈ N and ζ ∈ C,

Fn(ζ) = e−|ζ|
2/4 det(I−K(r)Qn), K(ζ) = J(r)LJ(r)L

where L = diag(eikπ)k≥1, J(r) =
(
Ii+j−1(r)

)
i,j≥1

and r = |ζ|. Hence, this Fredholm
determinant depends only on the properties of modified Bessel functions (1.12). In
particular, we will make use of the following bounds in the sequel,

Γ(k + 1)(k + 1)j ≤ Γ(j + k + 1) ≤ Γ(k + 1)(k + j)j , j, k ∈ N (2.15)

Then, it holds for all z ∈ C with |z| = r,

|Ik(z)| ≤ Ik(r) ≤ (r/2)k

Γ(k + 1)

∞∑
j=0

(r/2)2j

Γ(j + 1)(k + 1)j
=
|z/2|k

Γ(k + 1)
e|z|

2/4(k+1), k ∈ N. (2.16)

On the other hand, by keeping only the first term of the sum (1.12), we have

Ik(r) ≥ (r/2)k

Γ(k + 1)
, k ∈ N. (2.17)

Finally, we will also use make repeated use of Stirling’s approximation for the Gamma
function. Equation (5.6.1) in DLMF gives

√
2πνν+1/2e−ν < Γ(ν + 1) <

√
2πeνν+1/2e−ν , ν ≥ 1. (2.18)
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Lemma 2.5. Let c be the (unique) solution of the equation ce1+c2 = 1 and let C−1
0 =

2π(1− c2)2. Numerically, we have C0 ≤ .17 and c ' 0.33. If r < 2c(n+ 1), then for n ∈ N,

‖QnK(r)Qn‖J1 <
C0

n+ 1
.

Proof. By (2.13), observe that

‖QnK(r)Qn‖J1 ≤ ‖QnJ(r)‖J2‖LJ(r)LQn‖J2 .

Then, as L = L∗ is unitary, ‖QnJ‖J2 = ‖LJLQn‖J2 by (2.14) and

‖QnJ(r)‖2J2 =
∑
j≥0

∑
k≥0

|Ij+k+n+1(r)|2

Hence, using the upper-bound (2.16), we obtain

‖QnJ(r)‖2J2 ≤
∑
j≥0

∑
k≥0

er
2/2(j+k+n+2) (r/2)2k+2j+2n+2

Γ(j + k + n+ 2)2

Inserting the lower-bound (2.15) gives

‖QnJ(r)‖2J2 ≤ e
r2/(2n+4) (r/2)2n+2

Γ(n+ 2)2

∑
j≥0

∑
k≥0

(r/2)2k+2j

(n+ 2)2k+2j

≤ er
2/(2n+4)

(1− r2/4(n+ 1)2)2

(r/2)2n+2

Γ(n+ 2)2

≤ 1

2π(n+ 1)(1− r2/4(n+ 1)2)2

(
re1+r2/(2n+2)2

2n+ 2

)2n+2

where we used (2.18) to obtain the last bound. Hence, if r ≤ 2c(n + 1), since the
right-hand side is increasing as a function of r, this implies that for any n ∈ N,

‖QnK(ζ)Qn‖J1 ≤
1

2π(n+ 1)(1− c2)2
=

C0

n+ 1
.

Lemma 2.6. For any n ≥ 1 and |ζ| <
√

2(n+ 1),

(
1− |ζ|2

2(n+ 1)2

) |ζ/2|2n+2

Γ(n+ 2)2
≤ |TrQnK(|ζ|)Qn| ≤ 2

exp
( |ζ|2

2(n+1)

)(
1− ( |ζ/2|n+1 )4

)2 |ζ/2|2n+2

Γ(n+ 2)2
.

Proof. Set r = |ζ|. By formula (1.14),

Tr(K(r)Qn) =
∑
j,k≥0

(−1)j+k+n+1I2
j+k+n+1(r)

=
∑
`∈N

(−1)`+n`I2
`+n(r)

= (−1)n+1
∑
`≥0

(
(2`+ 1)I2

2`+n+1(r)− (2`+ 2)I2
2`+n+2(r)

)
(2.19)

The modified Bessel function has the following integral representation (see (10.32.2) in
DLMF):

Iν(x) =
(x/2)ν√

πΓ(ν + 1/2)

∫ 1

−1

(1− t2)ν−1/2extdt, Re ν > −1

2
(2.20)
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whence, for r > 0 and k ∈ N0,

Ik+2(r) <
r

2k + 3
Ik+1(r). (2.21)

Therefore, if r <
√

2(n + 1), all terms of the sum on the right-hand side of (2.19) are
positive and we obtain the lower-bound,

|TrQnK(r)Qn| >
(

1− r2

2(n+ 1)2

)∑
l≥0

(2l + 1)I2
2l+n+1(r) (2.22)

By keeping only the first term (l = 0) and using (2.17), we conclude that

|TrQnK(r)Qn| >
(

1− r2

2(n+ 1)2

) (r/2)2n+2

Γ(n+ 2)2
.

For the upper bound, we simply use that

|TrQnK(r)Qn| ≤
∑
l≥0

(2l + 1)I2
2l+n+1(r).

Next we insert the estimate (2.16) followed by (2.15):

|TrQnK(r)Qn| ≤ exp
( r2

2(n+ 1)

)∑
l≥0

(2l + 1)
( (r/2)2l+n+1

Γ(2l + n+ 2)

)2

≤ exp
( r2

2(n+ 1)

) (r/2)2n+2

Γ(n+ 2)2

∑
l≥0

(2l + 1)
( r

2(n+ 1)

)4l

≤ 2
exp

(
r2

2(n+1)

)(
1− ( r

2(n+1) )4
)2 (r/2)2n+2

Γ(n+ 2)2

which is the desired upper bound.

By adapting the previous argument, we can also obtain the asymptotics of this trace.

Lemma 2.7. For any n ∈ N, it holds uniformly for all r ≤ εn, as ε→ 0,

Tr
(
K(r)Qn

)
= I2

n+1(r)
(
(−1)n+1 +O(ε2)

)
Proof. Using the estimate (2.21) iteratively, for any ` ∈ N,

I2
`+1+n(r) ≤

(
r

2n+ 3

)2`

I2
n+1(r)

so that according to (2.19), summing the geometric sum, we obtain if r ≤ εn and
0 < ε < 1,

TrQnK(r)Qn = I2
n+1(r)

(
(−1)n+1 +O(ε2)

)
.

We now show that higher-order traces are negligible.

Lemma 2.8. Let c be as in Lemma 2.5. For any n ≥ 1, if |ζ| ≤ 2c(n+ 1), then

∑
j≥2

1

j
|Tr(QnK(|ζ|)Qn)j | ≤ (1 + c2)(n+ 1)

(n+ 1− c2)(1− 2c2)
|TrQnK(|ζ|)Qn|2.
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Proof. First, recall the following properties of modified Bessel functions; For any r > 0,
ν 7→ Iν(r) is positive and non-decreasing on R+ and

∑
k≥0

Iν+k(r) ≤ Iν(r)

1− r2/4ν

These statements follow directly from the representation (1.12). SinceK(r)=J(r)LJ(r)L,

Tr(QnKQn)j =
∑

k1,...,k2j≥0

(JL)k1+n,k2+1(JL)k2+1,k3+n · · · (JL)k2j−1+n,k2j+1(JL)k2j+1,k1+n

By taking absolute value, using the definition of L and the Hankel matrix J, cf. (1.11),
we can bound |Tr(QnK(r)Qn)j | by∑

k1,...,k2j≥0

Ik1+k2+n+1(r)Ik2+k3+n+1(r) . . . Ik2j−1+k2j+n+1(r)Ik2j+k1+n+1(r)

≤
∑

k1,...,k2j≥0

Ik1+k2+n+1(r)Ik2+n+1(r) . . . Ik2j−1+k2j+n+1(r)Ik2j+n+1(r)

≤ 1

(1− r2/4(n+ 1))j

∑
k2,k4,...,k2j≥0

I2
k2+n+1(r) · · · I2

k2j+n+1(r)

=

(
1

1− r2/4(n+ 1)

∑
k≥0

I2
k+n+1(r)

)j

≤
(

1 + r2/4(n+ 1)2

1− r2/4(n+ 1)

∑
k≥0

I2
2k+n+1(r)

)j
where we used (2.21) to obtain the last bound. Hence, using the lower-bound (2.22) to
control the sum, we conclude that for any j ∈ N and r <

√
2(n+ 1),

|Tr(QnK(r)Qn)j | ≤
(

(1 + r2/4(n+ 1)2)|TrQnKigQn|
(1− r2/4(n+ 1))(1− r2/2(n+ 1)2)

)j
Observe that

∑
j≥2

xj

j ≤ x
2 for x ≤ 1/2, so that using the estimate from Lemma 2.5,

it holds for r < 2c(n+ 1)

(1 + r2/4(n+ 1)2)|TrQnK(r)Qn|
(1− r2/4(n+ 1))(1− r2/2(n+ 1))

≤ (1 + c2)C0

(n+ 1− c2)(1− 2c2)
≤ .16

by a numerical evaluation. Hence,

∑
j≥2

1

j
|Tr(QnKigQn)j | ≤

(
(1 + r2/4(n+ 1)2)|TrQnKigQn|

(1− r2/4(n+ 1))(1− r2/2(n+ 1)2)

)2

≤ (1 + c2)(n+ 1)

(n+ 1− c2)(1− 2c2)
|TrQnKigQn|2

as claimed.

Corollary 2.9. Let c be as in Lemma 2.5. For any n ≥ 1, if r < 2c(n+ 1), then∣∣∣1− det(1−K(r)Qn)

Tr(QnK(r)Qn)
− 1
∣∣∣ ≤ 1

(n+ 1)(1− c4)2
.
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Proof. By Plemelj’s formula (Equation (5.12) in [24]), provided that ‖QnKQn‖J1 < 1,

det(1−KQn) = exp Tr log(1−QnKQn) = exp
(
−
∑
j≥1

Tr(QnKQn)j

j

)
We now use the bound valid for z ∈ C,

|e−z − 1 + z| ≤ |z|
2e|z|

2

and apply it to z =
∑
j≥1

Tr(QnKQn)j

j . By Lemma 2.5 and 2.8, we verify numerically that
for any n ∈ N and |ζ| < 2c(n+ 1),∣∣z − Tr(QnKQn)

∣∣ ≤ 3

2
|Tr(QnKQn)|2 and |Tr(QnKQn)| ≤ ‖QnKQn‖J1 < .105

so that
|z| ≤ 1.15|Tr(QnKQn)|.

Hence, using the previous bound, we obtain∣∣∣∣e−z − 1 + Tr(QnKQn)

Tr(QnKQn)

∣∣∣∣ ≤ 3

2
|Tr(QnKQn)|+ |z|2e|z|

2|Tr(QnKQn)|
≤ 3|Tr(QnKQn)|.

Consequently, by Lemma 2.6 we obtain if |ζ| < 2c(n+ 1),

∣∣∣1− det(1−KQn)

Tr(QnKQn)
− 1
∣∣∣ ≤ 6

exp
( |ζ|2

2(n+1)

)(
1− ( |ζ|

2(n+1) )4
)2 (|ζ|/2)2n+2

Γ(n+ 2)2

≤ (e1+c2c)2n+2

(n+ 1)(1− c4)2
.

By the definition of c > 0, this proves the claim.

2.4 Exact asymptotics: proof of Theorem 1.2

As a consequence of Lemma 2.7 and Corollary 2.9, it holds uniformly in the regime
r ≤ εn,

1− det(1−K(r)Qn) = Tr
(
QnK(r)Qn

)(
1 + o(1)

n→∞

)
= I2

n+1(r)
(
(−1)n+1 +O(ε2)

)
(2.23)

where ε ≤ c is small. This implies that∫
|ζ|≤εn

∣∣1− det(1−K(|ζ|)Qn)
∣∣2e−|ζ|2/2d2ζ =

(
1 +O(ε2)

) ∫
|ζ|≤εn

I4
n+1(|ζ|)e−|ζ|

2/2d2ζ.

Moreover, using the estimates from Proposition 2.3 and Proposition 2.4, we immedi-
ately verify that there exists δ > 0 depending only on ε so that as n→∞,∫

|ζ|≥εn

∣∣Fn(ζ)
∣∣2d2ζ = O(e−δn

2

).

By (1.11), this implies that for any small ε > 0, there exists δ > 0 so that∥∥Fn − φ̂C∥∥2

L2 =
(
1 +O(ε2)

) ∫
|ζ|≤εn

I4
n+1(|ζ|)e−|ζ|

2/2d2ζ +O(e−δn
2

). (2.24)
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Now, using the bound (2.16) and a change of variable, for n ≥ 2,∫
|ζ|≥εn

I4
n+1(|ζ|)e−|ζ|

2/2d2ζ ≤
∫
|ζ|≥εn

|ζ/2|4(n+1)

Γ(n+ 2)4
e−|ζ|

2(1− 2
n+1 )/2d2ζ

=
2−2n−1π

Γ(n+ 2)4

(
1− 2

n+ 1

)−2(n+1) ∫
u≥Λn

u2(n+1)e−udu

where Λn = ( 1
2 −

1
n+1 )(εn)2. By Markov’s inequality, this implies that∫

|ζ|≥εn
I4
n+1(|ζ|)e−|ζ|

2/2d2ζ ≤ 2−2n−1πe4

Γ(n+ 2)4Λn

∫ ∞
0

u2n+3e−udu =
2−2n−1πe4Γ(2n+ 4)

Γ(n+ 2)4Λn
.

Hence, using the inequalities (2.18), there exists a constant C > 0 so that∫
|ζ|≥εn

I4
n+1(|ζ|)e−|ζ|

2/2d2ζ ≤ C (2n+ 3)/Λn√
n+ 1Γ(n+ 2)2

.

In particular, we have as n→∞∫
|ζ|≥εn

I4
n+1(|ζ|)e−|ζ|

2/2d2ζ =
oε(1)√

n+ 1Γ(n+ 2)2
.

If we combine this estimate with (2.24), we have shown that for any small ε > 0,∥∥Fn − φ̂C∥∥2

L2 =
(
1 +O(ε2)

) ∫
C

I4
n+1(|ζ|)e−|ζ|

2/2d2ζ +
oε(1)√

n+ 1Γ(n+ 2)2
. (2.25)

To complete the proof of Proposition 1.2, it remains to obtain the asymptotics of the
integral on the right-hand side of (2.25) which are provided by the next Proposition with
ν = n+ 1.

Proposition 2.10.

lim
ν→∞

π
√
νΓ(ν + 1)2

∫ ∞
0

I4
ν (r)e−r

2/2dr2 = 2e4
√
π.

Proof. By formula (1.12) and a change of variable,∫ ∞
0

I4
ν (r)e−r

2/2dr2 = 4ν

∫ ∞
0

I4
ν (2
√
νu)e−2νudu

=
4ν2ν+1

Γ(ν + 1)4

∫ ∞
0

( ∞∑
j=0

ujΓ(ν + 1)νj

j!Γ(j + ν + 1)

)4

u2νe−2νudu

Observe that Γ(ν+1)νj

Γ(j+ν+1) ≤ 1 for all j ∈ N0 so that∫ ∞
0

I4
ν (r)e−r

2/2dr2 ≤ 4ν2ν+1

Γ(ν + 1)4

∫ ∞
0

e4u−2νφ(u)du

where φ(u) = u− log(u). This function has a unique (non-degenerate) minimum at u = 1

so that by Laplace’s method, as ν →∞,∫ ∞
0

e4u−2νφ(u)du ∼ e4−2ν
√
π/ν.

It follows that

lim sup
ν→∞

√
νΓ(ν + 1)4

ν2ν+1e4−2ν

∫ ∞
0

I4
ν (r)e−r

2/2dr2 ≤ 4
√
π (2.26)
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From Berry–Esseen to super-exponential

On the other-hand, for any κ ∈ N∫ ∞
0

I4
ν (r)e−r

2/2dr2 ≥ 4ν2ν+1

Γ(ν + 1)4

∫ ∞
0

(∑
j≤κ

ujΓ(ν + 1)νj

j!Γ(j + ν + 1)

)4

u2νe−2νudu

Observe that by monotonicity, for j ≤ κ,

Γ(ν + 1)νj

Γ(j + ν + 1)
≥ Γ(ν + 1)νκ

Γ(κ+ ν + 1)

so that∫ ∞
0

I4
ν (r)e−r

2/2dr2 ≥ 4ν2ν+1

Γ(ν + 1)4

(
Γ(ν + 1)νκ

Γ(κ+ ν + 1)

)4 ∫ ∞
0

(∑
j≤κ

uj

j!

)4

e−2νφ(u)du

Hence for any fixed κ ∈ N,

lim inf
ν→∞

√
νΓ(ν + 1)4

ν2ν+1e4−2ν

∫ ∞
0

I4
ν (r)e−r

2/2dr2 ≥ 4
√
π

(∑
j≤κ

1

j!

)4

e−4. (2.27)

Combining (2.26) and (2.27), letting κ→∞, this proves that

lim
ν→∞

√
νΓ(ν + 1)4

ν2ν+1e4−2ν

∫ ∞
0

I4
ν (r)e−r

2/2dr2 = 4
√
π

To complete, it remains to use that as ν →∞

Γ(ν + 1)2

ν2ν+1e−2ν
∼ 2π

2.5 Proof of the estimates (2.6) and (2.11)

It follows immediately from Corollary 2.9 that for n ≥ 1 and |ζ| < 2c(n+ 1)

|det[1−K(|ζ|)Qn]− 1| ≤ 1.3|Tr(QnK(|ζ|)Qn)|.

Then, using formula (1.11), we obtain∫
|ζ|<2cn

∣∣Fn(ζ)− e−|ζ|
2/4
∣∣2d2ζ =

∫
|ζ|<2cn

e−|ζ|
2/2
(
1− det[I−K(|ζ])Qn]

)2
d2ζ

≤ 1.75

∫
r<2cn

|Tr(QnK(r)Qn)|2e−r
2/2d2ζ.

Hence, Lemma 2.6 gives∫
|ζ|<2cn

∣∣Fn(ζ)− e−|ζ|
2/4
∣∣2d2ζ ≤ 7

(1− c4)4

2−4n−4

Γ(n+ 2)4

∫
C

e−|ζ|
2( 1

2−
1

n+1 )|ζ|4n+4d2ζ.

A change of variables to polar coordinates gives for n ≥ 2,∫
|ζ|<2cn

∣∣Fn(ζ)− e−|ζ|
2/4
∣∣2d2ζ ≤ 7π

(1− c4)4

2−4n−3

Γ(n+ 2)4

∫ +∞

0

e−u( 1
2−

1
n+1 )u2n+2du

=
7π

(1− c4)4

2−2n

Γ(n+ 2)4

(
1− 2

n+1

)−2n−3
Γ(2n+ 3).

First we have using convexity, for n ≥ 3,(
1− 2

n+1

)−2n−3
= e−(2n+3) log(1− 2

n+1 ) ≤ e4+ 7
n .
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From Berry–Esseen to super-exponential

Second, using the duplication formula for the Γ function and Gautschi’s inequality ((5.5.5)
and (5.6.4) in DLMF), we have for n ∈ N

Γ(2n+ 3) =
22n+2

√
π

Γ(n+ 3/2)Γ(n+ 2)

≤ 22n+2√
π(n+ 1)

Γ(n+ 2)2 (2.28)

Thus, we obtain for n ≥ 3,∫
|ζ|<2cn

∣∣Fn(ζ)− e−|ζ|
2/4
∣∣2d2ζ ≤ 28

√
π

(1− c4)4

e4+7/n

√
n+ 1

1

Γ(n+ 2)2
.

This completes the proof of the estimate (2.6).
A similar argument shows that for n ≥ 2,∫
|ζ|<2cn

∣∣Fn(ζ)− e−|ζ|
2/4
∣∣d2ζ ≤ 1.3

∫
|ζ|<2cn

|Tr(QnK(|ζ|)Qn)|e−|ζ|
2/4d2ζ

≤ 1.3π · 23

(1− c4)2

(
1− 2

n+1

)−n−2 1

Γ(n+ 2)2

∫ ∞
0

e−uun+1du

≤ 5.2 e2+5/n

(1− c4)2

2π

Γ(n+ 2)
.

This proves (2.11).

2.6 Proof of the lower-bounds in Theorem 2.1

It follows immediately from Corollary 2.9 that for n ≥ 11 and r < 2c(n+ 1)

|det(1 +K(r)Qn)− 1| ≥ .9|Tr(QnK(r)Qn)|.

Then, using Equation (1.11), we obtain

‖pn − φC‖2L2 ≥
∫

|ζ|<2c(n+1)

∣∣Fn(ζ)− e−|ζ|
2/4
∣∣2d2ζ =

∫
|ζ|<2c(n+1)

e−|ζ|
2/2
(
1− det[I−K(|ζ|)Qn]

)2
d2ζ

≥ .81

∫
r<2c(n+1)

|Tr(Qn(r)Qn)|2e−r
2/2d2ζ.

Using the lower-bound from Lemma 2.6, this yields

‖pn − φC‖2L2 ≥
.81(1− 2c2)2

Γ(n+ 2)4

∫
|ζ|<2c(n+1)

e−|ζ|
2/2(|ζ|/2)4n+4d2ζ.

A change of variables u = |ζ|2/4(n+ 1) gives for n ≥ 11,

‖pn − φC‖2L2 ≥
3.7π(1− 2c2)2

Γ(n+ 2)4
(n+ 1)2n+3

∫ c2(n+1)

0

e−(2n+2)(u−log u)du.

The phase u ∈ R+ 7→ u− log u has a unique critical point at u = 1. For n ≥ 13, we verify
that c2(n+ 1) > 1.5 and u− log u− 1 ≤ (u− 1)2 for u ∈ [.5, 1.5] by convexity so that∫ c2(n+1)

0

e−(2n+2)(u−log u)du ≥ e−(2n+2)

∫ 1.5

.5

e−(2n+2)(u−1)2du

=

√
2e−(2n+2)

√
n+ 1

∫ √(n+1)/2

0

e−u
2

du

≥ 1.25e−(2n+2)

√
n+ 1

.
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This numerical estimate shows that

‖pn − φC‖2L2 ≥ 2.83π
(n+ 1)2n+3e−(2n+2)

Γ(n+ 2)4
√
n+ 1

Using the upper-bound (2.18), we conclude that for n ≥ 13,

‖pn − φC‖2L2 ≥
2.83

2e
1
90

1

Γ(n+ 2)2
≥ 1

Γ(n+ 2)2
√
n+ 1

.

This completes the proof of the lower-bound (2.1).

2.7 Proof of Proposition 2.3

The proof is based on the following bound which first appeared in [18]. The version
we use is a special case of Lemma 2.9 in [19]. Let us denote by {eiθj}nj=1 the eigenvalues
of the random matrix U ∈ U(n).

Lemma 2.11. Let ν > 0 and set g : T→ R, g(θ) = Re(ζeiθ). Let h : T→ R be its Hilbert
transform, i.e. h(θ) = − Im(ζeiθ). For any ζ ∈ C,

|Fn(ζ)| ≤ En
[

exp

(
ν2

2n2

n∑
j,k=1

H(θj , θk)−
n∑
j=1

Im g
(
θj + i

ν

n
h(θj)

))]
,

where

H(θ, x) =

(
h(θ)− h(x)

2 sin( θ−x2 )

)2

.

The proof of Lemma 2.11 relies on the fact that Fn(ζ) = En
[
ei

∑n
j=1 g(θj)

]
, the explicit

formula for the joint density of the eigenvalues of U (known as Weyl’s integration formula
[22]) and a change of variables θj ← θj + i νnh(θj). In particular, the quadratic term H

comes from the Jacobian of this change of variables and it turns out that the optimal
choice for h is the Hilbert transform of g.

Lemma 2.12. Suppose that f ∈ L∞(T) is real-valued with ‖f‖2
H1/2 = 2A(f) <∞ where

A is as in (1.9). Then, for any n ∈ N,

En[eTr f(U)] ≤ exp(nf̂0 +A(f)).

Proof. This follows directly from the Borodin–Okounkov formula (Theorem 1.7). Without

loss of generality, we can assume that f̂0 = 0. Then, if f is real-valued, we have f̂−k = f̂k
and, according to (1.10), ω+ = ω− so that H+(ω+) = H−(ω−)∗. Hence, the operator K is
positive semi-definite and the Fredholm determinant det(I−KQn) ≤ 1.

Before going into the proof of Proposition 2.3, we also need the following two lemmas.

Lemma 2.13. Let Ψ(θ) = sin(θ) sinh(δ sin θ) for θ ∈ T and a fixed δ > 0. We have

Ψ(θ) = I1(δ) + 2

+∞∑
k=1

I ′2k(δ) cos(2kθ) (2.29)

where Iν are Bessel functions – see formula (1.12). In particular, the Fourier series (2.29)
converges uniformly.

Proof. It follows from DLMF formula (10.32.3) that for k ∈ Z∫
T

cosh(δ sin θ) cos(kθ)
dθ

2π
=

1 + (−1)k

2
Ik(δ).
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Since for any δ ∈ R, θ ∈ T 7→ cosh(δ sin θ) is even, it follows that

cosh(δ sin θ) = I0(δ) + 2
∑
k∈N

I2k(δ) cos(2kθ).

Note that for δ > 0, the series converges uniformly since θ ∈ T 7→ cosh(δ sin θ) is smooth,
and the same holds for all its derivatives with respect to δ. Hence, if we differentiate
term by term, we obtain

Ψ(θ) = ∂δ
(

cosh(δ sin θ)
)

= I ′0(δ) + 2
∑
k∈N

I ′2k(δ) cos(2kθ).

The claim now follows from that I ′0 = I1 by DLMF formula (10.29.3).

Lemma 2.14. Let Ψ be as in Lemma 2.13 for a fixed δ > 0 and A as in Theorem 1.7. We
have for any r > 0 and x ∈ R,

A
(
x cos(·)− rΨ

)
≤ x2 + 2r2δ2%(δ)

4
,

where %(δ) = eδ
2/6 I0(δ)+J0(δ)

2 .

Proof. First of all, according to Lemma 2.13, since Ψ̂1 = 0, we check that

A
(
x cos(·)− rΨ

)
=
x2

4
+ r2A(Ψ).

So we only need to estimate the semi–norm

A(Ψ) =

+∞∑
k=1

k|Ψ̂k|2 = 8

+∞∑
k=1

k|I ′2k(δ)|2

Using the formula (1.12) followed by (2.15), we see that for any integer k ≥ 1 and δ > 0,

I ′2k(δ) =
2

δ

+∞∑
j=0

(k + j)
(δ/2)2(k+j)

j!(j + 2k)!
≤ 2

δ(2k)!

+∞∑
j=0

(δ/2)2(k+j)

j!(2k + 1)j
≤ 2(δ/2)2k

δ(2k)!
eδ

2/12.

Therefore, we obtain for any δ > 0,

A(Ψ) ≤ 32

δ2
eδ

2/6
+∞∑
k=1

k(δ/2)4k

(2k)!2
≤ δ2

2
eδ

2/6
+∞∑
k=0

(δ/2)4k

(2k)!2
,

where we used that k+1
(2k+2)2 ≤

1
4 for any k ≥ 0. Since I0(δ)+J0(δ)

2 =
∑+∞
k=0

(δ/2)4k

(2k)!2 , by (1.12),
this completes the proof.

We are now ready to give the proof of Proposition 2.3.

Proof. By Lemma 2.11, we have for any ζ ∈ C,

|Fn(ζ)| ≤ En
[

exp

(
ν2

2n2

n∑
i,j=1

H(θi, θj)−
n∑
j=1

ψ(θj)

)]
(2.30)

where

ψ(θ) = Im g
(
θ + i

ν

n
h(θ)

)
and H(θ, x) =

(
h(θ)− h(x)

2 sin( θ−x2 )

)2

. (2.31)
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Using that eiθ−eix
2 = iei(θ+x)/2 sin( θ−x2 ), we obtain

H(θ, x) =

(
Im
(
ζ(eiθ − eix)

)
2 sin( θ−x2 )

)2

=
(

Re(ζei(θ+x)/2)
)2

=
1

2

(
Re
(
ζ2ei(θ+x)

)
+ |ζ|2

)
.

Hence, this implies that

n∑
i,j=1

H(θi, θj) =
n2|ζ|2

2
+

1

2
Re
(
ζ TrU

)2
(2.32)

If we write ζ = |ζ|eiϕ, let us observe that for any δ ∈ R,

exp
(
δ2 Re(eiϕ TrU)2

)
= | exp

(
δ2(eiϕ TrU)2

)
| ≤

∫
R

e−x
2+2δxRe(eiϕ TrU) dx√

π
.

This shows that with δ = ν
n |ζ|,

exp

(
ν2

2n2

n∑
i,j=1

H(θi, θj)

)
≤ eν

2|ζ|2/4
∫
R

e−x
2+δxRe(eiϕ TrU) dx√

π
.

By (2.30), this implies that

|Fn(ζ)| ≤ eν
2|ζ|2/4

∫
R

e−x
2

En

[
exp

(∑n
j=1δx cos(θj + ϕ)− ψ(θj)

)] dx√
π
. (2.33)

Now, observe that since g(z) = 1
2 (ζeiz + ζe−iz) for all z ∈ C and h(θ) = −|ζ| sin(θ + ϕ)

for all θ ∈ T, we deduce from (2.31) that

ψ(θ) =
1

2
Im
(
ζeiθ+δ sin(θ+ϕ) + ζe−iθ−δ sin(θ+ϕ)

)
= |ζ|Ψ(θ + ϕ).

(2.34)

where δ = ν
n |ζ| and Ψ(θ) = 1

2 Im
(
eiθ+δ sin θ + e−iθ−δ sin θ

)
as in Lemma 2.13. Then, we

deduce from (2.33), (2.34) and the invariance by rotation of the CUE law that for any
δ > 0,

|Fn(ζ)| ≤ eν
2|ζ|2/4

∫
R

e−x
2

En

[
exp

(∑n
j=1δx cos(θj)− |ζ|Ψ(θj)

)] dx√
π
. (2.35)

Moreover, by combining Lemma 2.12 and Lemma 2.14, we have

En

[
exp

(∑n
j=12δx cos(θj)− |ζ|Ψ(θj)

)]
≤ exp

(
− n|ζ|Ψ̂0 +A

(
δx cos(·)− |ζ|Ψ

))
≤ exp

(
− n|ζ|I1(δ) + δ2x2/4 + |ζ|2δ2%(δ)/2

)
.

where we used that Ψ̂0 = I1(δ). Then, we deduce from (2.35) that if δ < 2

|Fn(ζ)| ≤ e−n|ζ|I1(δ)+ν2|ζ|2/4+|ζ|2δ2%(δ)/2
∫
R

e−x
2(1−δ2/4) dx√

π

=
e−n|ζ|I1(δ)+δ2(n2+2|ζ|2%(δ))/4√

1− δ2/4
, (2.36)
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where we replace the parameter ν in the last step using the condition ν|ζ| = nδ. We
would like to minimize the right-hand side of (2.36) over all δ > 0. Let us observe that
from formula (1.12), the function 2I1(δ)/δ ≥ 1 for all δ > 0. Moreover, the function
δ 7→ 2%(δ) is smooth, increasing, and bounded from above by 2.05 for 0 < δ ≤ 1

2
√

2
(by a

numerical evaluation). Therefore, by (2.36), we obtain for any 0 < δ ≤ 1
2
√

2
,

|Fn(ζ)| ≤ eδ
2(n2+2.05|ζ|2)/4−n|ζ|δ/2√

1− δ2/4
. (2.37)

So it suffices to minimize over all δ ∈ [0, 1
2
√

2
], the polynomial

δ2(n2 + 2.05|ζ|2)/2− n|ζ|δ.

The minimum is attained for δ∗ = n|ζ|
n2+2.05|ζ|2 (observe that δ∗ <

1
2
√

2
for all ζ ∈ C and

n ∈ N) and it is given by −n2|ζ|2
2(n2+2.05|ζ|2) . Therefore, we conclude from (2.37) that for any

|ζ| > 0 and n ∈ N,

|Fn(ζ)| ≤
√

2 exp

(
− n2

4(2.05 + n2/|ζ|2)

)
.

2.8 Proof of Proposition 2.4

The proof relies on the Toeplitz determinant representation (1.7) of the characteristic
function Fn and Hadamard’s inequality. Recall that g(θ) = r sin(θ + ϕ) if we write
ζ = rei(ϕ−π/2). Then, for any k ∈ Z,

(êig)k =

∫
T

eir sin(θ+ϕ)−ikθ dθ

2π

= eikϕ
∫ π

0

cos(r sin(θ)− kθ)dθ

π
.

According to DLMF formula (10.9.2), this implies that (êig)k = eikϕJk(r) for any k ∈ Z. It
is well–known that for any fixed k ∈ Z, we have the asymptotic expansion as r → +∞,

|Jk(r)|2 =
1 + (−1)k sin(2r) + o(1)

πr
,

see e.g. DLMF formula (10.7.8). In [20], Theorem 2, Krasikov obtained the following
(sharp) bound. Let µ = (k + 1/2)(k + 3/2). If r >

√
µ+ (µ/2)2/3 and k > −1/2, then

|Jk(r)|2 ≤ 4(r2 − (k + 1/2)(k + 5/2))

π(2(r2 − µ)3/2 − µ)
.

Note that the function µ 7→ (2(r2 − µ)3/2 − µ) is decreasing for r >
√
µ+ (µ/2)2/3 and

µ ≥ (k + 1)2. It follows that for all r ≥ n+ (n/2)2/3 and all integer k ∈ (−n, n),

|Jk(r)|2 ≤ 4(r2 − (k + 1)2)

π(2(r2 − (k + 1)2)3/2 − (k + 1)2)
.

This shows that

|Jk(r)|2 ≤ 2

πr

(√
1− ε− ε

2r(1− ε)

)−1

; ε = (k+1
r )2 < 1.

The function ε 7→
(√

1− ε− ε
2r(1−ε)

)−1

is increasing on [0, 1) before it explodes to +∞.

Hence, this bound is monotone in ε > 0 and r > 0. This implies that for any n ≥ 2, for all
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r ≥ 7n/4 and all integer k ∈ (−n, n),

|Jk(r)|2 ≤ 2

πr

(√
1− ε− ε

7(1− ε)

)−1

; ε = (2/3)2. (2.38)

(2.38) yields the numerical estimate; |Jk(r)|2 ≤ 1/r for all r ≥ 7n/4 and all integer
k ∈ (−n, n). By (1.7) and Hadamard’s inequality, we have

∣∣Fn(ζ)
∣∣2 =

∣∣det(Tn(eig))
∣∣2 ≤ n∏

j=1

n∑
i=1

∣∣(êig)j−i∣∣2 =

n∏
j=1

n∑
i=1

∣∣Jj−i(|ζ|)∣∣2.
Using the uniform bound (2.38), this implies that for any n ≥ 2 and for all r ≥ 7n/4,

∣∣Fn(ζ)
∣∣2 ≤ ∣∣∣∣nζ

∣∣∣∣n .
In the previous argument, we assumed that n ≥ 2. However, in case n = 1, there is an
explicit formula p̂1(ζ) = J0(|ζ|) so that for all ζ ∈ C,

|p̂1(ζ)|2 ≤ 2

π|ζ|
.

This completes the proof.

3 Orthogonal and symplectic groups: proof of Theorems 1.4 and
1.5

In this section we consider Haar distributed orthogonal and symplectic matrices
which we denote by O. Observe that unlike unitary matrices, these are different from
the circular ensembles. Another important difference is that in some cases there are
deterministic eigenvalues at ±1 and that all random eigenvalues occur in conjugate
pairs. Therefore we can make the change of variable xj = cos θj in the joint eigenvalue
density, given by Weyl’s integration formula (see [22]), to obtain

ρabn (x) =
1

Zabn

∏
1≤j≤n

(1− xj)a(1 + xj)
b

∏
1≤j<k≤n

(xj − xk)2, x ∈ [−1, 1]n (3.1)

where (a, b) = (1/2, 1/2) for Sp(2n) and O(2n + 2)−, (a, b) = (−1/2,−1/2) for O(2n)+,
(a, b) = (−1/2, 1/2) for O(2n + 1)−, and (a, b) = (1/2,−1/2) for O(2n + 1)+ (for sake of
brevity we will often replace the indices a and b with their respective sign). Note that
n gives the number of non-trivial eigenvalues and 2n the number of random eigenval-
ues. We will denote by d the total number of eigenvalues, i.e. the dimension of the
matrix, which is either 2n, 2n+ 1 or 2n+ 2. We also write F abn (ξ) = Eabn [eiξTrO] for the
characteristic function of TrO, the sum of all random eigenvalues.

The cosine of the random eigenangles form a determinantal point process. Therefore,
by using Andréief’s identity, it is possible to write F abn as the determinant of a matrix,
more precisely a Toeplitz + Hankel matrix. We can then use an analogue of the Borodin–
Okounkov formula for these types of determinants, namely the results of [2], to express
F abn as the characteristic function of a normal random variable multiplied by a certain
Fredholm determinant, similar to (1.11). The details of these computations can be found
in [8], here we merely state the results.
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Lemma 3.1. For any complex function ψ on [−1, 1],

E−+
n

[ n∏
j=1

ψ(xj)

]
= det(φ̂j−k + φ̂j+k+1)0≤j,k≤n−1

E+−
n

[ n∏
j=1

ψ(xj)

]
= det(φ̂j−k − φ̂j+k+1)0≤j,k≤n−1

E++
n

[ n∏
j=1

ψ(xj)

]
= det(φ̂j−k − φ̂j+k+2)0≤j,k≤n−1

E−−n

[ n∏
j=1

ψ(xj)

]
= det(φ̂j−k + φ̂j+k)0≤j,k≤n−1

where φ̂n is the n:th Fourier coefficient of ψ ◦ cos.

The next proposition, obtained in [2], is from now on going to be referred to as the
Basor–Ehrhardt formula. We consider functions in the Besov class B1

1 , i.e. functions ω
on the unit circle which satisfy

‖ω‖B1
1

:=

∫ π

−π

1

y2

∫ π

−π
|ω(eix+iy) + ω(eix−iy)− 2ω(eix)|dxdy <∞. (3.2)

If ω ∈ B1
1 we let ω+ denote its projection on B1

1+, the subspace of B1
1 for which ωk = 0

for k < 0, and we write ω̃(eiθ) := ω(e−iθ).

Proposition 3.2. [2] Denote by Qn the projection operator acting on l2(N) that sets the
first n coefficients to zero, and let H(c) be the Hankel operator with symbol c ∈ L∞(T),
i.e. the bounded linear operator on l2(N) with matrix representationH(c) = (cj+k+1)∞j,k=0,
where ck is the kth Fourier coefficient of c. Assume that b+ ∈ B1

1+ and set a+ = exp(b+),

a = a+ã+ = exp(b+ + b̃+). Then,

det(âj−k + âj+k+1)0≤j,k≤n−1 =

exp
(
n[log a]0 +

∞∑
n=0

[log a]2n+1 +
1

2

∞∑
n=1

n[log a]2n

)
det(1 +QnH(a−1

+ (eiθ)ã+(eiθ))Qn)

det(âj−k − âj+k+1)0≤j,k≤n−1 =

exp
(
n[log a]0 −

∞∑
n=0

[log a]2n+1 +
1

2

∞∑
n=1

n[log a]2n

)
det(1−QnH(a−1

+ (eiθ)ã+(eiθ))Qn)

det(âj−k − âj+k+2)0≤j,k≤n−1 =

exp
(
n[log a]0 −

∞∑
n=1

[log a]2n +
1

2

∞∑
n=1

n[log a]2n

)
det(1−QnH(e−iθa−1

+ (eiθ)ã+(eiθ))Qn)

det(âj−k + âj+k)0≤j,k≤n−1 =

exp
(
n[log a]0 +

∞∑
n=1

[log a]2n +
1

2

∞∑
n=1

n[log a]2n

)
det(1 +QnH(eiθa−1

+ (eiθ)ã+(eiθ))Qn)

Here [log a]k stands for the kth Fourier coefficient of log a. The Fredholm determinants
are well-defined because each Hankel operator is trace-class.

Combining the above two results gives a new expression for certain averages over
the orthogonal and symplectic group, more amenable for asymptotic analysis thanks
to the Fredholm determinant. In particular, we obtain the following expression for the
characteristic function F abn (compare with (1.11)):
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Proposition 3.3. Let F abn (ξ) = Eabn [eiξTrO], where the expectation is with respect to
(3.1). Then,

F abn (ξ) = ei(b−a)ξ−ξ2/2 det(I +QnK
ab
iξ Qn), ξ ∈ C

where, for any z ∈ C,

K−+
z = (Jj+k+1(−2z))j,k≥0, K+−

z = (−Jj+k+1(−2z))j,k≥0,

K++
z = (−Jj+k+2(−2z))j,k≥0, K−−z = (Jj+k(−2z))j,k≥0

and (Jk)k∈N are Bessel functions of the first kind.

The Fredholm determinant in the above theorem converges to one as n tends to infin-
ity (see the discussion following Corollary 1.6. in [8]), so by the continuity theorem, TrO

(disregarding deterministic eigenvalues) converges to a real normal random variable
with mean −1, 1 or 0 and variance 1 (adding the deterministic eigenvalues gives a mean
equal to zero in all cases).

Just as for the unitary group, we obtain our bound on the L2-norm from Parseval’s
identity and careful estimates of the characteristic function F abn of TrO. The bound on
the total variation then follows from the Cauchy–Schwarz inequality combined with a
concentration inequality for TrO. We still use three different techniques to study F abn (ξ),
one for each regime of ξ. In the small regime, we use Proposition 3.3 and estimate how
far the Fredholm determinants are from one (the lower bound will give the lower bound
on the total variation). In the intermediate regime, we make a change of variable similar
to the one for the unitary case, but then the Borodin–Okounkov formula is replaced with
the Basor–Ehrhardt formula. In particular, this implies that we do not have any lemma
equivalent to Lemma 2.12, i.e. F abn is not bounded by its limit, which gives a larger
bound compared to the unitary case. Finally, Hadamard’s inequality gives the bound on
F abn in the large regime.

3.1 Proof of the upper bound in Theorem 1.4

The upper bound on the total variation follows from that on the L2 norm which is
given in the next theorem.

Theorem 3.4. Let pabn be the probability density of TrO− E[TrO], with a, b specifying
the sign of the determinant and the parity of the size of the matrix (see (3.1)). Then,

‖F abn − φ̂R‖L2 ≤ β2(n)

(2n)1/4
√

Γ(2n+ 1)
+ 2

n√
n− 1

e−β
ab
3 (n)(n2−n) +

e5/8

2
√
n
e−2n2/e5/2

for all n ≥ 2, where β2(n) and βab3 (n) are bounded, and given explicitly in (3.7) and (3.12).
Consequently, for n ≥ 122,

‖F abn − φ̂R‖L2 ≤
β2(n) + 2

n

(2n)1/4
√

Γ(2n+ 1)
.

The next four subsections are dedicated to the proof. We also need a concentration
inequality for the trace.

Lemma 3.5. If 0 ≤ L < 4e−3/2(1 + n−2.5e−n/2)n, then

P
[
|TrO− E[TrO]| ≥ L

2

]
≤ 2 exp

(
− L2

8(1 + n−2.5e−n/2)

)
.

The proof is given in the next subsection. Now, let γR denote a real standard Gaussian,
and let pabn be the density of TrO− E[TrO], where a, b specify the parity of the size of
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the matrix and the sign of the determinant. By the Cauchy–Schwarz inequality, for any
L > 0,

‖pabn − φR‖L1(R) ≤
√
L‖pabn − φR‖L2 + P

[
|TrO− E[TrO]| ≥ L

2

]
+ P[|γR| > L

2 ]

where

P[|γR| > L
2 ] = 2

∫ ∞
L/2

e−
x2

2
dx√
2π

= 2

∫ ∞
0

e−
(x+L/2)2

2
dx√
2π

< 2e−
L2

8

∫ ∞
0

e−
xL
2

dx√
2π

=
4e−

L2

8

√
2πL
(3.3)

and, if L < 4e−3/2(1 + n−2.5e−n/2)n,

P
[
|TrO− E[TrO]| ≥ L

2

]
≤ 2 exp

(
− L2

8(1 + n−2.5e−n/2)

)
by Lemma 3.5. Thus,

‖pabn − φR‖L1(R) ≤
√
L‖pabn − φR‖L2 + 2

(
1 +

√
2√
πL

)
exp

(
− L2

8(1 + n−2.5e−n/2)

)
.

We now insert our previous bound on the L2-norm: if n ≥ 122,

‖pabn − φR‖L1(R) ≤
√
L√
2π

β2(n) + 2
n

(2n)1/4
√

Γ(2n+ 1)
+ 2
(

1 +

√
2√
πL

)
exp

(
− L2

8(1 + n−2.5e−n/2)

)
.

It remains to optimize over L; we choose

L = 2
√

2
√

(1 + n−2.5e−n/2)(log(Γ(2n+ 1))/2 + (log n)/4))

which satisfies the assumption for large enough n ≥ 37. Use that log Γ(2n+ 1) ≤ 2n log n

for n ≥ 2, this yields

‖pabn −φR‖L1(R)≤
[ 1√

π

(
1+

1

n2.5en/2

)1/4(
1+

1

4n

)1/4(
β2(n)+

2

n

)
+

3

(n log n)1/4

] (log n)1/4√
Γ(2n+ 1)

.

A numerical evaluation of the expression in brackets finishes the proof of Theorem 1.4.

3.2 Trace-norm and Fredholm determinant estimates

Recall that the trace-class norm of a compact operatorK is given by ‖K‖J1 :=
∑
j≥1 sj

where {sj}j≥1 are its singular values. If K is given by the infinite matrix with entries
Kjk, then

‖K‖J1 ≤
∑
j≥1

(∑
k≥1

|Kjk|2
)1/2

. (3.4)

This can be seen from the polar decomposition of K: K = U |K|, where U is a partial
isometry and |K| = (K∗K)1/2, so if {ej}j≥1 is the standard orthonormal basis of l2(N),
then

‖K‖J1 =
∑
j≥1

〈|K|ej , ej〉 =
∑
j≥1

〈Kej , Uej〉.

Cauchy–Schwarz inequality and the fact that ‖U‖op = 1 give

‖K‖J1 ≤
∑
j≥1

‖Kej‖‖Uej‖ ≤
∑
j≥1

‖Kej‖ =
∑
j≥1

〈Kej ,Kej〉1/2 =
∑
j≥1

(∑
k≥1

|〈Kej , ek〉|2
)1/2

.
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Lemma 3.6. For any pair (a, b) = (±1/2,±1/2), if |z| < 2e−5/4n, then

‖QnKab
z Qn‖J1 < 1.

Proof. Consider the case (a, b) = (−1/2,−1/2), i.e. QnK−−z Qn = (Jj+k(−2z))j,k≥n ac-
cording to Proposition 3.3. By (3.4) and (2.16),

‖QnK−−z Qn‖J1 ≤
∑
j≥0

(∑
k≥0

|Jj+k+2n(−2z)|2
)1/2

≤
∑
j≥0

(∑
k≥0

e2|z|2/(j+k+2n+1) |z|2k+2j+4n

Γ(j + k + 2n+ 1)2

)1/2

.

Inserting the inequality Γ(j + k + 2n+ 1) ≥ Γ(2n+ 1)(2n+ 1)j+k, j, k ≥ 0, gives

‖QnK−−z Qn‖J1 ≤ e|z|
2/(2n+1) |z|2n

Γ(2n+ 1)

∑
j≥0

|z|j

(2n+ 1)j

(∑
k≥0

|z|2k

(2n+ 1)2k

)1/2

< e|z|
2/(2n+1) |z|2n

Γ(2n+ 1)

(
1− |z|

2n+ 1

)−1(
1− |z|2

(2n+ 1)2

)−1/2

.

So if |z| < 2e−5/4n < 2e−1n,

‖QnK−−z Qn‖J1 ≤
en/2√

1− e−2(1− e−1)

|z|2n

Γ(2n+ 1)
.

Thus, by Stirling’s approximation (2.18),

‖QnK−−z Qn‖J1 ≤
1

2
√

1− e−2(1− e−1)
√
πn

(e5/4|z|
2n

)2n

< 1 (3.5)

for all n ≥ 1 and |z| < 2e−5/4n. The other cases are similar.

Lemma 3.7. Define

β1(x) =
e|z|

2/(x+1)

1− |z|2/(x+ 1)2

|z|x

Γ(x+ 1)
, x ∈ N.

For any |z| < 2e−5/4n and n ∈ N,∑
j≥1

1

j
|Tr(QnK

ab
z Qn)j | ≤ − log(1− β1(d))

where d is the total number of eigenvalues.

Proof. The proof is essentially the same for all four cases so we consider only a = b =

−1/2. We have that

|Tr(QnK
−−
z Qn)j | =

∣∣∣∣ ∑
k1,...,kj≥n

Jk1+k2(−2z) . . . Jkj−1+kj (−2z)Jkj+k1(−2z)

∣∣∣∣
≤

∑
k1,...,kj≥n

|Jk1+k2(−2z) . . . Jkj−1+kj (−2z)Jkj+k1(−2z)|

≤
(e|z|2/(2n+1)|z|2n

Γ(2n+ 1)

)j ∑
k1,··· ,kj≥0

j∏
l=1

(
|z|

2n+ 1

)2kl

=
( e|z|

2/(2n+1)

1− |z|2/(2n+ 1)2

|z|2n

Γ(2n+ 1)

)j
(3.6)
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where we used (2.16). Thus,∑
j≥1

1

j
|Tr(QnK

−−
z Qn)j | ≤

∑
j≥1

1

j
βj1(2n) = − log(1− β1(2n))

By (3.1), a = b = −1/2 corresponds to the case O(2n)+ which has 2n eigenvalues in
total.

We obtain the following bound on the truncated L2 norm of the difference between
the characteristic function of TrO− E[TrO] and that of a real Gaussian.

Proposition 3.8. Define

β2(x) =

√
1− e−5/2e1+ 1

x

(1− e−5/2 − 1/(2
√
πx))3/2

, x ∈ R. (3.7)

Then, for any n ∈ N,(∫
|ξ|< 2n

e5/4

|F abn (ξ)− e−ξ
2/2|2dξ

)1/2

≤ β2(d/2)

d1/4
√

Γ(d+ 1)

with d the total number of eigenvalues.

Proof. Plemelj’s formula,

det(1 +QnK
ab
iξ Qn) = exp

(∑
j≥1

(−1)j+1

j
Tr(QnK

ab
iξ Qn)j

)
holds for |ξ| < 2e−5/4n by Lemma 3.6. Set δ =

∑
j≥1

(−1)j+1

j Tr(QnK
ab
iξ Qn)j . Then

|det(1 +QnK
ab
iξ Qn)− 1| = |eδ − 1| < |δ|e|δ|,

where

|δ| <
∑
j≥1

1

j
|Tr(QnK

ab
iξ Qn)j | < − log(1− β1(d))

by Lemma 3.7. Moreover, for 0 < x < 1, − log(1− x) < x/
√

1− x. Thus,

|det(1 +QnK
ab
iξ Qn)− 1| < (1− β1(d))−3/2β1(d).

Stirling’s inequality (2.18) and the assumption that |ξ| < 2e−5/4n ≤ e−5/4d give

β1(d) =
eξ

2/(d+1)

1− ξ2/(d+ 1)2

ξd

Γ(d+ 1)
<

ed/4

1− e−5/2

1√
2πd

(eξ
d

)d
<

1

(1− e−5/2)
√

2πd
.

We obtain

|det(1 +QnK
ab
iξ Qn)− 1| < 1

(1− 1/((1− e−5/2)
√

2πd))3/2

eξ
2/(d+1)

1− e−5/2

ξd

Γ(d+ 1)

=

√
1− e−5/2

(1− e−5/2 − 1/(
√

2πd))3/2
eξ

2/(d+1) ξd

Γ(d+ 1)
(3.8)

Combined with Proposition (3.3) this gives(∫
|ξ|<2n/e5/4

|F abn (ξ)− e−ξ
2/2|2dξ

)1/2

≤
√

1− e−5/2

(1− e−5/2 − 1/(
√

2πd))3/2

1

Γ(d+ 1)

(∫
R

e−ξ
2(1− 2

d+1 )|ξ|2ddξ
)1/2

.
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We make the change of variable r = ξ2(1− 2
d+1 ),∫

R

e−ξ
2(1− 2

d+1 )|ξ|2ddξ =
(

1− 2

d+ 1

)−d− 1
2

Γ(d+ 1/2) (3.9)

where

Γ(d+ 1/2) <
Γ(d+ 1)√

d

by Gautschi’s inequality ((5.6.4) in DLMF). Finally, observe that(
1− 2

d+ 1

)−d− 1
2

= e−(d+1/2) log(1−2/(d+1)) ≤ e(d+1/2)(2/(d+1)+4/(d+1)2) ≤ e2+4/d

if d ≥ 2.

From the previous lemmas, we can also deduce the concentration result of TrO−
E[TrO] that we gave in the previous subsection.

Proof of Lemma 3.5. Consider the case O ∈ O(2n)+, i.e. a = b = −1/2. Then E[TrO] = 0

and for any λ > 0,

P
[
|TrO| ≥ L

2

]
≤ e−λL2 (E−−n [eλTrO] + E−−n [e−λTrO])

by Markov’s inequality. By Proposition 3.3, for any λ ∈ R,

E−−n [eλTrO] = F abn (−iλ) = eλ
2/2 det(1 +QnK

−−
λ Qn).

We bound the Fredholm determinant using Plemelj’s formula: by Lemma 3.6, if |λ| <
2n/e5/4, then

det(1 +QnK
−−
λ Qn) = exp

(∑
j≥1

(−1)j+1

j
Tr(QnK

−−
λ Qn)j

)
so

|det(1 +QnK
−−
λ Qn)| ≤ exp

(∑
j≥1

1

j
|Tr(QnK

−−
λ Qn)j |

)
≤
(

1− eλ
2/(2n+1)

1− λ2/(4n2)

λ2n

Γ(2n+ 1)

)−1

by Lemma 3.7. We use the bound (1 − x)−1 < exp(x/
√

1− x), valid for 0 < x < 1.
Stirling’s inequality (2.18) and assuming that |λ| < 2e−3/2n < n gives

eλ
2/(2n+1)

1− λ2/(4n2)

λ2n

Γ(2n+ 1)
<

en/2

1− e−3

1

2
√
πn

( eλ
2n

)2n

<
1

2(1− e−3)
√
πnen

but also

eλ
2/(2n+1)

1− λ2/(4n2)

λ2n

Γ(2n+ 1)
<

en/2

1− e−3

λ2

2n(2n− 1)

1

2
√
π(n− 1)

( eλ

2n− 2

)2n−2

<
eλ2

4(1− e−3)n(2n− 1)
√
π(n− 1)en

<
eλ2

4(1− e−3)
√
πn2.5en/2
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for any n ≥ 2. To simplify the constants, we have for any n ≥ 1,(
1− 1

2(1− e−3)
√
πnen

)−1/2 e√
π(1− e−3)

< 2.

Thus,

|det(1 +QnK
−−
λ Qn)| ≤ exp

( λ2

2n2.5en/2

)
(3.10)

if n ≥ 2 and

P

[
|TrO| > L

2

]
≤ 2 exp

(
− λL

2
+
λ2

2

(
1 +

1

n2.5en/2

))
for any |λ| < 2e−3/2n. The upper bound attains its minimum when λ = L/(2+2n−2.5e−n/2),
and becomes the desired bound, provided L satisfies the given condition. The other
groups are treated similarly.

3.3 Intermediate regime

To get an estimate of F abn in the intermediate range of ξ we will make a change of
variable in the integral expression of F abn , similar to the one in Proposition 2.3 for the
unitary case. The aim is to prove

Proposition 3.9. Let Λ ≥ 2n/e5/4. For n ≥ 2,∫
2n/e5/4≤|ξ|≤Λ

|F abn (ξ)|2dξ ≤ 2Λe−2βab3 (n)n2

(3.11)

where

β−−3 (n) =
(1− 1

2n −
8
√

2

π
√

3(n−1)n
)2

2e5/2 + 1 + 8
√

2√
3(n−1)

, β++
3 (n) =

(1 + 1
2n −

8
√

2
π
√

3nn
)2

2(1 + 1
n )e5/2 + 1 + 8

√
2√

3n

, (3.12)

β+−
3 (n) = β−+

3 (n) =
(1− 8

√
2

π
√

3(n−1/2)n
)2

2(1 + 1
2n )e5/2 + 1 + 8

√
2√

3(n−1/2)

.

Proof. The integral expression of F abn is given by

F abn (ξ) =
1

Zabn

∫
[−1,1]n

∏
1≤j≤n

(1− tj)a(1 + tj)
b

∏
1≤j<k≤n

(tj − tk)2
∏

1≤j≤n

e2iξtjdtj .

The integrand has an analytic continuation in C \ (−∞,−1] ∪ [1,∞), so we can deform
the contour by mapping the interval (−1, 1) to its image under γ : t 7→ t+ iνh(t)/n, where
h(t) = 1− t2, and ν is a positive parameter that we will fix later. We then make a change
of variables to recover the original contour:

F abn (ξ) =
1

Zabn

∫
[−1,1]n

∏
1≤j≤n

(
1− tj − i

ν

n
(1− t2j )

)a(
1 + tj + i

ν

n
(1− t2j )

)b

×
∏

1≤j<k≤n

(
tj − tk + i

ν

n
(t2j − t2k)

)2 ∏
1≤j≤n

e2iξ(tj+iν(1−t2j )/n)

(
1− 2i

ν

n
tj

)
dt

=
1

Zabn

∫
[−1,1]n

∏
1≤j≤n

(
1− i ν

n
(1 + tj)

)a(
1 + i

ν

n
(1− tj)

)b

×
∏

1≤j<k≤n

(
1− i ν

n
(tj + tk)

)2 ∏
1≤j≤n

e2iξ(tj+iν(1−t2j )/n)

(
1− 2i

ν

n
tj

)
ρabn (t)dt
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From Berry–Esseen to super-exponential

The absolute value of the first product in the last integral is less than one if a = b = −1/2.
For the three other cases we use the inequality |1 + ix| ≤ ex2/2, valid for real x, and the
fact that |1± tj | ≤ 2. This gives∣∣∣∣(1− i ν

n
(1 + tj)

)a(
1 + i

ν

n
(1− tj)

)b∣∣∣∣ ≤ exp
(ν2

n2
(1{a > 0}+ 1{b > 0})

)
.

Similarly, ∣∣∣∣1− i νn (tj + tk)

∣∣∣∣ ≤ exp
(

2
ν2

n2

)
,

∣∣∣∣1− 2i
ν

n
tj

∣∣∣∣ ≤ exp
(

2
ν2

n2

)
.

We now have

|F abn (ξ)| ≤ exp
(
ν2(2 +

1

n
(1{a > 0}+ 1{b > 0}))

)
Eabn

[ ∏
1≤j≤n

e−2 νξn (1−t2j )
]
. (3.13)

By Lemma 3.1, the last factor can be expressed as the determinant of a Toeplitz + Hankel
matrix to which we can apply the Basor–Ehrhardt formula, Proposition 3.2. The symbol
in the matrix is a(θ) = exp(−2νξ sin2(θ)/n) so a−1

+ ã+(θ) = exp(−iνξ sin(2θ)/n). For the
case a = b = 1/2 we obtain

E++
n

[ ∏
1≤j≤n

e−2 νξn (1−t2j )
]

= exp
(
− νξ − νξ

2n
+
ν2ξ2

4n2

)
det(1−QnH(t−1a−1

+ ã+)Qn). (3.14)

To estimate this Fredholm determinant we use the inequality

|det(1 +K)| ≤ e‖K‖J1

valid for any trace-class operator K (Theorem VII.3.3 in [14]), combined with (3.4). We
therefore need bounds on every element of the Hankel matrix in (3.14), i.e on the Fourier
coefficients of a−1

+ ã+. We use

|(̂eig)k| ≤
1

k2
(‖g′‖2L2(T) + ‖g′′‖L1(T))

which holds for any real valued function g ∈ C2(T) and follows from two partial integra-

tions on (̂eig)k, and obtain

| ̂(a−1
+ ã+)

k
| ≤ 1

k2

(8νξ

πn
+

2ν2ξ2

n2

)
so

det(1−QnH(t−1a−1
+ ã+)Qn) ≤ exp

(∑
j≥n

√∑
k≥n

| ̂(a−1
+ ã+)

j+k+2
|2
)

≤ exp
((8νξ

πn
+

2ν2ξ2

n2

)∫ ∞
n

(∫ ∞
n

dx

(x+ y)4

)1/2

dy
)

= exp
(√ 2

3n

(8νξ

πn
+

2ν2ξ2

n2

))
.

Combining all estimates obtained so far gives

|F++
n (ξ)| ≤ exp

(
− νξ

(
1 +

1

2n
− 8

√
2

π
√

3nn

)
+ ν2

(
2 +

2

n
+

ξ2

4n2
+

2
√

2ξ2

√
3nn2

))
.
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It remains to choose the parameter ν to minimize the upper bound. The exponential
above is of the form exp(−αν+δν2), which attains its minimum exp(−α2/4δ) for ν = α/2δ,
which is positive for large enough n (recall that ν ≥ 0). Explicitly,

|F++
n (ξ)| ≤ exp

(− 1
4 (1 + 1

2n −
8
√

2
π
√

3nn
)2ξ2

2 + 2
n + ξ2

4n2 + 2
√

2ξ2√
3nn2

)
, n ≥ 2 (3.15)

so if |ξ| ≥ 2n/e5/4 (i.e. outside of the first regime),

|F++
n (ξ)| ≤ exp(−β++

3 (n)n2), n ≥ 2. (3.16)

where

β++
3 (n) =

(1 + 1
2n −

8
√

2
π
√

3nn
)2

2(1 + 1
n )e5/2 + 1 + 8

√
2√

3n

. (3.17)

This proves the proposition for (a, b) = (1/2, 1/2). The proof for the three other cases is
essentially identical.

3.4 Large regime

We use the same method as in the unitary case.

Proposition 3.10. For any pair (a, b) = (± 1
2 ,±

1
2 ) we have∫

|ξ|≥Λ

∣∣F abn (ξ)
∣∣2dξ ≤ 2

n− 1

(2n)n

Λn−1
(3.18)

if n ≥ 5 and Λ ≥ (n+ 1)/
√

2, or if n ≥ 2 and Λ ≥ 7
8n.

Proof. Consider for example the case a = b = −1/2. By Lemma 3.1 and Hadamard’s
inequality,

∣∣F−−n (ξ)
∣∣2 ≤ n∏

j=1

n∑
i=1

∣∣(ê2iξ cos)j−i + (ê2iξ cos)j+i
∣∣2 =

n∏
j=1

n∑
i=1

|Ij−i(2iξ) + Ij+i(2iξ)|2,

so by (2.38), if n ≥ 5 and |2ξ| ≥
√

2(n+ 1), or if n ≥ 2 and |2ξ| ≥ 7
4n,

∣∣F−−n (ξ)
∣∣2 ≤ n∏

j=1

n∑
i=1

4

|2iξ|
=
(2n

|ξ|

)n
. (3.19)

Thus, for any Λ ≥ (n+ 1)/
√

2,∫
|ξ|≥Λ

∣∣F−−n (ξ)
∣∣2dξ ≤ 2(2n)n

∫ +∞

Λ

dr

rn
=

2

n− 1

(2n)n

Λn−1
.

3.5 Proof of Theorem 3.4

We prove Theorem 3.4 by combining Proposition 3.8, 3.9 and 3.10. First we want to
choose the parameter Λ appearing in Proposition 3.9 and 3.10 so that it minimizes the
sum of the upper bounds obtained in these propositions, i.e. we want to minimize

φ(Λ) = 2Λe−2βab3 (n)n2

+
2

n− 1

(2n)n

Λn−1
.
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The unique critical point is Λ0 = 2ne2βab3 (n)n, which satisfies the assumption of Proposi-
tion 3.10 if n ≥ 2, and gives

φ(Λ) ≤ 4
n2

n− 1
e−2βab3 (n)(n2−n) (3.20)

for n ≥ 1. Next, ∫
|ξ|≥2n/e5/4

e−ξ
2

dξ =
√
πerfc

( 2n

e5/4

)
<
e5/4

4n
e−4n2/e5/2 (3.21)

by (7.8.2) in DLMF. Equations (3.20) and (3.21) combined with Proposition 3.8 give

‖F abn − φ̂R‖2 ≤
β2(n)

(2n)1/4
√

Γ(2n+ 1)
+ 2

n√
n− 1

e−β
ab
3 (n)(n2−n) +

e5/8

2
√
n
e−2n2/e5/2 .

Parseval’s identity finishes the proof of the first bound.
To simplify the bound we use Stirling’s approximation (2.18) which gives√

Γ(2n+ 1)e−β
ab
3 (n)(n2−n) ≤ (2πe)1/4 exp(−βab3 (n)(n2 − n) + (n+ 1/4) log(2n)− n)

Since
e−2n2/e5/2 < e−β

ab
3 (n)(n2−n),

we obtain

‖F−−n − φ̂R‖2 ≤
β2(n) + 2

n

(2n)1/4
√

Γ(2n+ 1)

for all n ≥ 121. We proceed similarly for the other cases.

3.6 Proof of the lower bound in Theorem 1.4

Lemma 3.11. Let d be the total number of eigenvalues. Then

|TrQnK
ab
iξ Qn|≥

(
1− |ξ|

2

d2

) |ξ|d

Γ(d+ 1)

Moreover, if a = b then TrQnK
ab
iξ Qn is real, otherwise it is purely imaginary.

Proof. By Proposition 3.3,

TrQnK
−−
iξ Qn =

∑
j≥n

(−1)jI2j(2ξ) = (−1)n
∑
j≥0

(I4j+2n(2ξ)− I4j+2n+2(2ξ))

The modified Bessel function has the following integral representation DLMF (10.32.2)

Iν(x) =
(x/2)ν√

πΓ(ν + 1/2)

∫ 1

−1

(1− t2)ν−1/2extdt, Re ν > −1

2
(3.22)

whence,

I4j+2n+2(2ξ) <
ξ2

4n2
I4j+2n(2ξ)

for all j ≥ 0 and

|TrQnK
−−
iξ Qn| ≥

(
1− ξ2

4n2

)∑
j≥0

I4j+2n(2ξ) ≥
(

1− ξ2

4n2

)
I2n(2ξ)

The bound (2.17) on Bessel functions gives

|TrQnK
−−
iξ Qn| ≥

(
1− ξ2

4n2

) ξ2n

Γ(2n+ 1)
,

which finishes the proof for the first case. The other cases are treated similarly.
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Lemma 3.12. For any |ξ| ≤ e−2d, whith d the total number of eigenvalues,∑
j≥2

1

j
|Tr(QnK

ab
iξ Qn)j | ≤ 1√

d/2ed/2
|ξ|d

Γ(d+ 1)
.

Proof. From the proof of Lemma 3.7,

|Tr(QnK
−−
iξ Qn)j | ≤ β1(2n)j

so ∑
j≥2

1

j
|Tr(QnK

−−
iξ Qn)j | ≤

∑
j≥1

1

j

(
β1(2n)

)j+1
= − log(1− β1(2n))β1(2n).

We use the bound − log(1−x) < x/
√

1− x. Stirling’s inequality (2.18) and the assumption
that |ξ| < 2e−2n < n give

β1(2n) =
eξ

2/(2n+1)

1− ξ2/(4n2)

ξ2n

Γ(2n+ 1)
<

en/2

1− e−4

1

2
√
πn

( eξ
2n

)2n

<
1

2(1− e−4)
√
πne3n

(3.23)

but also( eξ
2/(2n+1)

1− ξ2/(4n2)

)2 ξ2n

Γ(2n+ 1)
<

en

(1− e−4)2

1

2
√
πn

( eξ
2n

)2n

<
1

2(1− e−4)2
√
πnen

. (3.24)

Thus∑
j≥2

1

j
|Tr(QnK

−−
iξ Qn)j | ≤

(
1− 1

2(1− e−4)
√
πne3n

)−1/2 1

2(1− e−4)2
√
πnen

ξ2n

Γ(2n+ 1)

which, after some simplification, gives the inequality in the case a = b = −1/2.

Proposition 3.13. If |ξ| ≤ e−2d,

|det(1 +QnK
ab
iξ Qn)− 1| ≥ γ(d/2)

|ξ|d

Γ(d+ 1)

where
γ(x) = (1− e−x)(1− e−4 − e−xx−1/2), x ∈ R+.

Proof. We use Plemelj’s formula, i.e.

det(1 +Kab
iξ Qn) = exp

(∑
j≥1

(−1)j+1

j
Tr(QnK

ab
iξ Qn)j

)
if ‖Kab

iξ Qn‖J1 < 1. By Lemma 3.6, this holds for |ξ| < 2e−5/4n. We also use |x|(1− |x|) ≤
|ex − 1|. Thus, if δ =

∑
j≥1

(−1)j+1

j Tr(QnK
ab
iξ Qn)j , then

|det(1+Kab
iξ Qn)−1| ≥ ||det(1+Kab

iξ Qn)|−1| = |eRe δ−1| ≥ |Re δ|(1−|Re δ|) ≥ |Re δ|−|δ|2.

Now, if a = b = −1/2, then Lemma 3.7 gives

|δ|2 ≤
(∑
j≥1

1

j
|Tr(QnK

ab
iξ Qn)j |

)2

≤ log2(1− β1(2n))

≤
(

2
√
π(1− e−4)(1− e−4 − 1/(2

√
πne3n))

)−1 1√
nen

ξ2n

Γ(2n+ 1)

≤ 1√
nen

ξ2n

Γ(2n+ 1)
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where we used (3.23), (3.24), and the fact that − log(1 − x) < x/
√

1− x for 0 < x < 1.
Next,

|Re δ| =
∣∣∣∣TrQnK

−−
iξ Qn + Re

∑
j≥2

(−1)j+1

j
Tr(QnK

−−
iξ Qn)j

∣∣∣∣
≥ |TrQnK

−−
iξ Qn| −

∑
j≥2

1

j
|Tr(QnK

−−
iξ Qn)j |

so combining Lemma 3.11 with Lemma 3.12 gives

|Re δ| ≥
(

1− |ξ|
2

4n2
− 1√

nen

) ξ2n

Γ(2n+ 1)
≥
(

1− e−4 − 1√
nen

) ξ2n

Γ(2n+ 1)

if |ξ| ≤ 2e−2n. This gives the desired lower bound, since 1− e−4 − 2e−nn−1/2 ≥ γ(n), for
all n ∈ N.

The proof for the case a = b = 1/2 is identical, except that n is replaced by n+ 1. For
the last two cases, observe that

|det(1 +Kab
iξ Qn)− 1| =

((
eRe δ cos(Im δ)− 1

)2

+ e2 Re δ sin2(Im δ)
)1/2

=
(

(eRe δ − 1)2 + 2eRe δ(1− cos(Im δ))
)1/2

≥
(

2eRe δ(1− cos(Im δ))
)1/2

≥ eRe δ/2
√

1− |Im δ|2|Im δ|

To obtain a lower bound on Re δ we simply write

Re δ = Re
(∑
j≥1

(−1)j+1

j
Tr(QnK

ab
iξ Qn)j

)
≥ −

∑
j≥1

1

j
|Tr(QnK

ab
iξ Qn)j | ≥ log(1− β1(2n+ 1))

if a = −b, by Lemma 3.7. Thus,

eRe δ/2 ≥
√

1− β1(2n+ 1) ≥
(

1− 1

2(e− e−3)
√
π(n+ 1/2)e3n

)1/2

≥ (1− e−n−1/2)1/2

by Stirling’s approximation (2.18) and the assumption that |ξ| ≤ 2e−2n. We can use the
same lower bound for

√
1− |Im δ|2: by Lemma 3.7,

| Im δ| ≤
∑
j≥1

1

j
|Tr(QnK

ab
iξ Qn)j | ≤ − log

(
1− β1(2n+ 1)

)
<
√
β1(2n+ 1).

Finally,

|Im δ| =
∣∣∣∣TrKab

iξ Qn+Im
∑
j≥2

(−1)j+1

j
Tr(QnK

ab
iξ Qn)j

∣∣∣∣ ≥ |TrKab
iξ Qn|−

∑
j≥2

1

j
|Tr(QnK

ab
iξ Qn)j |

so by Lemma 3.11 and Lemma 3.12,

|Im δ| ≥
(

1− |ξ|
2

4n2
− 1√

n+ 1/2en+1/2

) ξ2n+1

Γ(2n+ 2)
≥
(

1− e−4− 1√
n+ 1/2en+1/2

) ξ2n+1

Γ(2n+ 2)

which proves the statement.
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Proposition 3.14. Let n ≥ 31. Then

‖F abn − φ̂R‖2L2 ≥
2γ(d/2)2

√
3πe

1√
dΓ(d+ 1)

where d is the total number of eigenvalues.

Proof. By Proposition 3.3,

‖F−−n − φ̂R‖2L2 =

∫
R

e−ξ
2

|det(1 +QnK
−−
iξ Qn)− 1|2dξ

≥
∫
|ξ|<2n/e2

e−ξ
2

|det(1 +QnK
−−
iξ Qn)− 1|2dξ,

so Proposition 3.13 gives

‖F−−n − φ̂R‖2L2 ≥
γ(n)2

Γ(2n+ 1)2

∫
|ξ|<2n/e2

e−ξ
2

ξ4ndξ. (3.25)

We estimate the integral using Laplace’s method. First we make the change of variable
x = ξ/

√
n: ∫

|ξ|<2n/e2
e−ξ

2

ξ4ndξ = 2n2n+1/2

∫ 2
√
n/e2

0

enf(x)dx (3.26)

where f(x) = −x2 + 4 log x has a unique critical point at
√

2. Thus, for |x−
√

2| ≤ δ, δ > 0,

|f(x)− f(
√

2)| ≤ sup
x∈[
√

2−δ,
√

2+δ]

|f ′′(x)|δ2

2
=

(
1 +

2

(
√

2− δ)2

)
δ2

which is less than 3δ2 if δ ≤
√

2− 1. We obtain, for 2e−2
√
n ≥
√

2 + δ,∫ 2
√
n/e2

0

enf(x)dx ≥
∫ √2+δ

√
2−δ

enf(x)dx ≥ 2δen(f(
√

2)−3δ2) = 2δ

(
2

e

)2n

e−3nδ2

which is maximized at δ = (6n)−1/2. We insert this value in the above expression which
in turn is inserted in (3.26) and (3.25), giving

‖F−−n − φ̂R‖2L2 ≥
2
√

2√
3e

γ(n)2

Γ(2n+ 1)2

(2n

e

)2n

,

if n ≥ 31. Stirling’s approximation (2.18) gives

‖F−−n − φ̂R‖2L2 ≥
√

2√
3πe

γ(n)2

√
nΓ(2n+ 1)

. (3.27)

The proof for the other cases is identical except that we replace 2n with 2n + 1 or
2n+ 2.

Now, observe that

‖F−−n − φ̂R‖2L2 = 2π‖p−−n − φR‖2L2

≤ 2π‖p−−n − φR‖L∞(R)‖p−−n − φR‖L1(R).

Fourier’s inversion theorem gives

‖p−−n − φR‖L∞(R) ≤
1

2π
‖F−−n − φ̂R‖L1(R)
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so to obtain the lower bound on ‖p−−n −φR‖L1(R) it remains to estimate the L1(R) distance
between the characteristic functions. By (3.8) we have, for any n ∈ N,∫
|ξ|<2ne−5/4

|F−−n (ξ)− e−ξ
2/2|dξ ≤

√
1− e−5/2

(1− e−5/2 − 1
2
√
πn

)3/2

1

Γ(2n+ 1)

∫
R

e−
ξ2

2 (1− 2
2n+1 )|ξ|2ndξ

where ∫
R

e−
ξ2

2 (1− 2
2n+1 )|ξ|2ndξ =

(1

2
− 1

2n+ 1

)−n− 1
2

Γ(n+ 1/2)

and

Γ(n+ 1/2) <
π1/4

n1/42n

√
Γ(2n+ 1)

by combining the duplication formula for the Gamma function with Gautschi’s inequality
DLMF ((5.5.5) and (5.6.4)). Thus,∫

|ξ|<2ne−5/4

|F−−n (ξ)− e−ξ
2/2|dξ ≤

√
2e1+1/n

(n/π)1/4

β2(n)√
Γ(2n+ 1)

. (3.28)

By integrating the estimates (3.16) and (3.19), we obtain for n ≥ 5 and any Λ ≥ (n +

1)/
√

2, ∫
2e−5/4n≤|ξ|≤Λ

∣∣F−−n (ξ)
∣∣dξ ≤ 2Λe−β

−−
3 (n)n2

,∫
|ξ|≥Λ

∣∣F−−n (ξ)
∣∣dξ ≤ 2

n/2− 1

(2n)n/2

Λn/2−1
.

Choosing Λ = 4n2(n− 2)−1 exp(−β−−3 n2(1− 2/n)), the unique critical point, gives∫
2e−5/4n≤|ξ|

∣∣F−−n (ξ)
∣∣dξ ≤ 4n2

n− 2
e−β

−−
3 (n)n2(1−2/n)

and since ∫
2e−5/4n≤|ξ|

e−ξ
2/2dξ ≤ e5/4

√
2n
e−2e−5/2n2

<
n2

n− 2
e−β

−−
3 (n)n2(1−2/n)

we obtain

‖F−−n − φ̂R‖L1(R) ≤
√

2e1+1/n

(n/π)1/4

β2(n)√
Γ(2n+ 1)

+
5n2

n− 2
e−β

−−
3 (n)n2(1−2/n)

for any n ≥ 5. If n ≥ 123,

‖F−−n − φ̂R‖L1(R) ≤
23/4π1/4e1+1/nβ2(n) + 1

n

(2n)1/4
√

Γ(2n+ 1)

which combined with Proposition 3.14 gives

‖p−−n − φR‖L1(R) ≥
√

2√
3πe

γ(n)2

23/4π1/4e1+1/nβ2(n) + 1
n

1

(2n)1/4
√

Γ(2n+ 1)
.

A numerical evaluation of the front factor gives the lower bound in Theorem 1.4 in
the case a = b = −1/2, i.e. matrices with an even number of rows and with positive
determinant. The other cases are treated similarly.
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3.7 Exact asymptotics: proof of Theorem 1.5

We consider the case a = b = −1/2. In the proof of Proposition 3.8 we showed that

|det(1 +QnK
−−
iξ Qn)− 1| < |δ|e|δ| <

(
1− eξ

2/(2n+1)

1− ξ2/(4n2)

ξ2n

Γ(2n+ 1)

)−1

|δ|

where δ =
∑
j≥1

(−1)j+1

j Tr(QnK
ab
ig Qn)j , so if |ξ| < 2n/e2,

|det(1 +QnK
−−
iξ Qn)− 1| < (1− e−n)−1

(
|TrQnK

−−
iξ Qn|+

∑
j≥2

1

j
|Tr(QnK

−−
iξ Qn)j |

)
.

On the other hand, by the proof of Proposition 3.13,

|det(1 +QnK
−−
iξ Qn)− 1| ≥ |Re δ| − |δ|2 > |TrQnK

−−
iξ Qn| −

∑
j≥2

1

j
|Tr(QnK

−−
iξ Qn)j | − |δ|2.

By Lemma 3.7 and Lemma 3.12, as n→∞,

|δ|2 = o(1)
ξ2n

Γ(2n+ 1)
,
∑
j≥2

1

j
|Tr(QnK

−−
iξ Qn)j | = o(1)

ξ2n

Γ(2n+ 1)

uniformly in |ξ| < 2n/e2. But by combining (3.6) with Lemma 3.11,

ξ2n

Γ(2n+ 1)
= O(1) Tr(QnK

−−
iξ Qn)

as n→∞. Thus

|det(1 +QnK
−−
iξ Qn)− 1| = (1 + o(1))|TrQnK

−−
iξ Qn|

as n→∞, uniformly in |ξ| < 2n/e2. Furthermore,

|TrQnK
−−
iξ Qn − (−1)nI2n(2ξ)| =

∣∣∣∣∑
j≥0

(−1)j+n+1I2j+2n+2(2ξ)

∣∣∣∣
≤
∑
j≥0

I2j+2n+2(2ξ)

≤ ξ2

4n2

I2n(2ξ)

1− ξ2/(4n2)

by using (2.21) repeatedly. Thus TrQnK
−−
iξ Qn = ((−1)n + O(ε2))I2n(2ξ) if ξ = εn,

ε < 2e−2. Finally, by Propositions 3.9 and 3.10,∫
|ξ|>εn

|F−−n (ξ)|2dξ ≤ O(e−δn
2

)

for some δ > 0, which leads us to

‖F−−n − φ̂R‖22 = (1 +O(ε2))

∫
|ξ|<εn

I2n(2ξ)2e−ξ
2

dξ +O(e−δn
2

).

We can estimate the integral without having to restrict it to |ξ| < εn: by (2.16),∫
|ξ|≥εn

I2
2n(2ξ)e−ξ

2

dξ ≤ 1

Γ(2n+ 1)2

∫
|ξ|≥εn

ξ4ne−ξ
2(1− 2

2n+1 )dξ,
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so by Markov’s inequality, followed by the change of variables r = ξ2(1− 2
2n+1 ),∫

|ξ|≥εn
I2
2n(2ξ)e−ξ

2

dξ ≤ 1

εnΓ(2n+ 1)2

∫
R

|ξ|4n+1e−ξ
2(1− 2

2n+1 )dξ

≤ 1

εnΓ(2n+ 1)

(
1− 2

2n+ 1

)−2n−1

This implies that

‖F−−n − φ̂R‖22 = (1 +O(ε2))

∫
R

I2n(2ξ)2e−ξ
2

dξ +
Oε(n

−1)

Γ(2n+ 1)
.

Combining this last equality with the following lemma proves Theorem 1.5.

Lemma 3.15.

lim
ν→∞

√
νΓ(ν + 1)

∫
R

I2
ν (2ξ)e−ξ

2

dξ = e2.

Proof. ∫
R

I2
ν (2ξ)e−ξ

2

dξ =
√
ν

∫ ∞
0

I2
ν (2
√
νr)

e−νr√
r

dr

=
νν+1/2

Γ(ν + 1)2

∫ ∞
0

(∑
j≥0

(νr)jΓ(v + 1)

j!Γ(j + ν + 1)

)2

rν−1/2e−νrdr

≤ νν+1/2

Γ(ν + 1)2

∫ ∞
0

e2rrν−1/2e−νrdr

since νjΓ(v+1)
Γ(j+ν+1) ≤ 1 for all j ≥ 0. A direct application of Laplace’s method shows that as

ν →∞, ∫ ∞
0

e2rrν−1/2e−νrdr ∼
√

2π√
ν
e2−ν

so

lim sup
ν→∞

eνΓ(ν + 1)2

νν

∫
R

I2
ν (2ξ)e−ξ

2

dξ ≤
√

2πe2.

For the lower bound, we write∫
R

I2
ν (2ξ)e−ξ

2

dξ ≥ νν+1/2

Γ(ν + 1)2

∫ ∞
0

(∑
j≤κ

(νr)jΓ(v + 1)

j!Γ(j + ν + 1)

)2

rν−1/2e−νrdr

where κ ∈ N and proceed as in section 2.4. We obtain

lim
ν→∞

eνΓ(ν + 1)2

νν

∫
R

I2
ν (2ξ)e−ξ

2

dξ =
√

2πe2

which is equivalent to the statement of the lemma.

4 TrUm and TrOm: proof of Theorems 1.3 and 1.6

The last section is devoted to traces of higher powers of the matrices. We use the
results of Rains who showed in [23] that the eigenvalues of Um and Om have the same
distribution as those of m independent matrices of smaller size. This implies that the
characteristic function of TrUm and TrOm factorizes into a product of m characteristic
functions of TrU and TrO, where the size of U and O is equal or close to N = bn/mc.
We can therefore use our estimates on Fn and F abn from the first two sections to obtain
estimates on the characteristic function of TrUm and TrOm, and proceed with the proof
as before.
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Theorem 4.1 (Rains, [23]). Fix integers n ≥ 1, m ≥ 1 and denote by ∼ equality of
eigenvalue distributions. We have that

U(n)m ∼
⊕

0≤i<m

U
(⌈n− i

m

⌉)
. (4.1)

If m is odd,

O±(2n)m ∼ O±
(

2
⌈ n
m

⌉) ⊕
1≤i≤(m−1)/2

O+
(⌈n− i

m

⌉
+
⌈n+ i

m

⌉)
⊕O−

(⌈n− i
m

⌉
+
⌈n+ i

m

⌉)
(4.2)

O±(2n+ 1)m ∼
⊕

0≤i<(m−1)/2

O+
(⌈n− i

m

⌉
+
⌈n+ 1 + i

m

⌉)
⊕O−

(⌈n− i
m

⌉
+
⌈n+ 1 + i

m

⌉)
(4.3)

⊕O±
(

2
⌈n− (m− 1)/2

m

⌉
+ 1
)

and if m is even,

O±(2n)m ∼ O±
(

2
⌈ n
m

⌉) ⊕
1≤i≤m/2

O+
(⌈n− i

m

⌉
+
⌈n+ i

m

⌉)
⊕O−

(⌈n− i
m

⌉
+
⌈n+ i

m

⌉)
(4.4)

⊕O∓
(

2
⌈n−m/2

m

⌉
+ 1
)

O±(2n+ 1)m ∼
⊕

0≤i<m/2

O+
(⌈n− i

m

⌉
+
⌈n+ 1 + i

m

⌉)
⊕O−

(⌈n− i
m

⌉
+
⌈n+ 1 + i

m

⌉)
.

(4.5)

4.1 Unitary group: proof of Theorem 1.3

Combining the results from Section 2 with Theorem 4.1 allows us to obtain a rate of
convergence for TrUm, for all m ∈ N ∩ [2, n] where U ∈ U(n) is Haar-distributed. Recall
that pn,m denotes the p.d.f. of the complex-valued random variable TrUm

√
m

.

Proposition 4.2. Let n,m ∈ N and N = bn/mc+ 1. Then,

∥∥pn,m − φ̂C∥∥2

L2 ≤
1

2π

(
0.04/

√
N

Γ(N + 1)2m2(N−1)
+ 2 exp

(
− 0.8N2m1−1/N

)
+
(
2 + 1

n

)
mN2 exp(−0.02(n− 2)N)

)
.

Before going into the proof, we would like to simplify this bound by assuming that the
dimension n of the random matrix U is sufficiently large. First observe that by (2.18),

1/
√
N

Γ(N + 1)2m2N
≥ n−2N

2πeN3/2

and for all N ≥ 2 and n ≥ 700,

N7/2 exp(−0.02(n− 2)N) ≤ 10.5 exp(−0.019nN) ≤ 8.9n−2N . (4.6)

In this regime, for m ≥ 2,

(
2 + 1

n

)
mN2 exp(−0.02(n− 2)N) ≤ 9

m2n−2N

N3/2
≤ 18πe/

√
N

Γ(N + 1)2m2(N−1)
.
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Similarly for N ≥ 2

exp
(
− 0.8N2m1−1/N

)
≤ exp

(
− 0.8N3/2

√
n
)
,

and for n ≥ 700

N3/2 exp
(
− 0.8N3/2

√
n
)
≤ 2 exp

(
− 1.2N

√
n
)
≤ 2e−18 n−2N .

Hence, in this regime, for m ≥ 2,

2 exp
(
− 0.8N2m1−1/N

)
≤ 2e−18 n

−2N

N3/2
≤ e−17π/

√
N

Γ(N + 1)2m2(N−1)
. (4.7)

If we combine the estimate from Proposition 4.2 with the numerical bounds (4.6)–
(4.7), we obtain for m ≥ 2 and n ≥ 700,

∥∥pn,m − φ̂C∥∥2

L2 ≤
77/π

√
bn/mc+ 1

Γ(bn/mc+ 2)2m2bn/mc . (4.8)

To complete the proof of Theorem 1.3, note that by (2.5) and using the upper-
bound (4.8), we obtain for any n ≥ 700,

‖pn,m − φC‖L1 ≤ 2

(
5L

(N + 1)1/4Γ(N + 2)mN
+ 3e−L

2

)
,

with N = bn/mc. To minimize the right-hand side, we choose L=
√

log
(
Γ(N + 2)mN

)
.

Hence, since L2 ≤ (N + 1) log(n), we conclude that for n ≥ 700,

‖pn − φC‖L1 ≤ 2

(
5 +

3

(N + 1)1/4
√

log n

)
(N + 1)1/4

√
log n

Γ(N + 2)mN

≤ 12
(N + 1)1/4

√
log n

Γ(N + 2)mN
.

This completes the proof.

Proof of Proposition 4.2. Let Ni = dn−im e and observe that N − 1 ≤ Ni ≤ N for i ∈
{0, . . . ,m− 1}, with N = bn/mc+ 1. By Theorem 4.1, for ζ ∈ C,

Fn,m(ζ) =
∏

0≤i<m

FNi

( ζ√
m

)
.

Then, by (1.11), DN (z) = FN (z)e|z|
2/4 is a Fredholm determinant and we obtain for ζ ∈ C,

Fn,m(ζ) = e−|ζ|
2/4

∏
0≤i<m

DNi

( ζ√
m

)
. (4.9)

By Plemelj’s formula (cf. the proof of Corollary 2.9), if |z| ≤ 2cN ,∣∣∣ ∏
0≤i<m

DNi(z)− 1
∣∣∣ ≤ exp

( ∑
0≤i<m

∑
j∈N

|Tr(K(z)QNi)
j |

j

)
− 1

≤ exp
( ∑

0≤i<m

|Tr(K(z)QNi)|
(
1 + 3

2 |Tr(K(z)QNi)|
))
− 1

Moreover, as in the proof of Lemma 2.5, we can bound

|Tr(K(z)QNi)| ≤ ‖QNiK(z)QNi‖J1 ≤ ‖QNiH±(w±)‖2J2 ≤ ‖QN−1H±(w±)‖2J2

EJP 29 (2024), paper 11.
Page 41/48

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1068
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


From Berry–Esseen to super-exponential

since Ni ≥ N − 1. Then, using the bound (2.19), we obtain for |z| ≤ 2cN ,∣∣∣∣ ∏
0≤i<m

DNi(z)− 1

∣∣∣∣ ≤ exp
( C1m

Γ(N + 1)2
(|z|/2)2N

)
− 1.

where C1 = e2c
2

(1−c2)2 (1 + 3C0

4 ). In particular, by convexity of exp, we obtain the following
bounds; for n,m ∈ N,∣∣∣ ∏

0≤i<m

DNi

(
ζ√
m

)
− 1
∣∣∣ ≤ (eC2 − 1

) |ζ/2|2N

Γ(N + 1)2mN−1
if |ζ| ≤ 2cNm

1−1/N
2 (4.10)

(here we used that Γ(N + 1)
1
N ≥ e−1N by (2.18) for N ≥ 2 and c2e2c2+2 = 1 so that

C2 = c2e2

(1−c2)2 (1 + 3C0

4 )) and similarly,∣∣∣ ∏
0≤i<m

DNi

(
ζ√
m

)∣∣∣ ≤ exp
(C1(ce)2(N−1)

2πN3 |ζ/2|2
)

if |ζ| ≤ 2cN
√
m. (4.11)

Then we split ∥∥Fn,m − φ̂C∥∥2

L2 ≤ I1 + I2 + I3 + I4

where

I1 =

∫
|ζ|≤2ΛN,m

∣∣Fn,m(ζ)− e−
|ζ|2
4

∣∣2d2ζ ; ΛN,m = cNm
1−1/N

2 ,

I2 =

∫
ΛN,m≤|ζ/2|≤cN

√
m

∣∣Fn,m(ζ)|2d2ζ +

∫
|ζ|≥2ΛN,m

e−
|ζ|2
2 d2ζ,

I3 =

∫
Λ≥| ζ

N
√
m
|≥2c

∣∣Fn,m(ζ)|2d2ζ and I4 =

∫
|ζ|≥ΛN

√
m

∣∣Fn,m(ζ)|2d2ζ,

with Λ > 2c.

First, using the bound (4.10), we have

I1 =

∫
|ζ|≤ΛN,m

∣∣∣ ∏
0≤i<m

DNi

(
ζ√
m

)
− 1
∣∣∣2e− |ζ|22 d2ζ

≤
(
eC2 − 1

)2
Γ(N + 1)4

4π

m2(N−1)

∫ ∞
0

u2Ne−2udu

= 2π
(
eC2 − 1

)2 Γ(2N + 1)2−2N

Γ(N + 1)4m2N

≤
2
√
π
(
eC2 − 1

)2
√
NΓ(N + 1)2m2(N−1)

where we used the inequality (2.28) at the last step and we verify numerically that
(eC2−1)2√

π
≤ 0.04.

Second, using the bound (4.11), we obtain

I2 =

∫
|ζ|≥2ΛN,m

(∣∣∣ ∏
0≤i<m

FNi
(
ζ√
m

)∣∣∣21{|ζ/2| ≤ cN
√
m
}

+ 1

)
e−
|ζ|2
2 d2ζ

≤ 2

∫
|ζ|≥2ΛN,m

exp
(
− |ζ/2|2

(
2− C1(ce)2(N−1)

N3

))
d2ζ

≤ 8π

∫
u≥Λ2

N,m

e−C3udu =
8π

C3
exp

(
− C3N

2m1−1/N
)
, C3(N) = 2− C1(ce)2(N−1)

2πN3
.
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Note that C3(N) ≤ C3(2) =
1+

3C0
4

(1−c2)2 ≤ 1.2.
Third, By (2.37), the constant in the bound of Proposition 2.3 can directly be improved;

for n ∈ N with n ≥ (N − 1) and z ∈ C,

|Fn(z)| ≤ 1.016 exp

(
− (N − 1)2

4(2.05 + (N − 1)2/|z|2)

)
.

This implies that for any N ≥ 2, n ≥ N − 1 and |z| ≥ 2cN ,

|Fn(z)| ≤ 1.016e−0.014N2

Hence, ∏
0≤i<m

∣∣FNi(z)∣∣2 ≤ (1.016)2me−0.028mN2

.

The point is that for n,m ∈ N and |ζ| ≥ 2cN ,∣∣Fn,m(ζ)|2 ≤ exp(−C4mN
2)

where C4 = 0.028− 2 log(1.016)
N2 ≥ .02. This bound implies that for any Λ ≥ 2c,

I3 =

∫
Λ≥| ζ

N
√
m
|≥2c

∣∣Fn,m(ζ)|2d2ζ ≤ πmN2Λ2 exp(−C4mN
2).

Finally, since Ni ∈ {N − 1, N} and
∑
i<mNi = n, by Proposition 2.4, it holds for any

|ζ| ≥ 7N/4, ∏
0≤i<m

∣∣FNi(ζ)
∣∣2 ≤ ∣∣∣∣Nζ

∣∣∣∣n
Hence, for any Λ ≥ 7/4,

I4 =

∫
|ζ|≥ΛN

√
m

∣∣Fn,m(ζ)
∣∣2d2ζ ≤ 2πmN2

∫
u≥Λ

du

un−1
=

2πmN2

nΛn
.

In order to optimize the contribution from I3 and I4, we must minimize the function

Λ 7→ 1
2Λ2 exp(−C4nN) + 1

nΛ−n

over all Λ ≥ 2. The (unique) minimizer is given by Λ = max{2, eC4N} depending on N ≥ 2.
Accordingly, we obtain

I3 + I4 ≤ π
(
1 + 1

2n

)
mN2 exp(−C4(n− 2)N), N ≥ 35

I3 + I4 ≤ 4π
(
1 + 1

2n

)
mN2 exp(−C4nN), N ≤ 34.

Putting the contributions from Ij for j ∈ {1, 2, 3, 4} yields the claimed bound.

4.2 Orthogonal and symplectic groups: proof of Theorem 1.6

We let pabnm denote the density function of 1√
m

(TrOm − E[TrOm]) and F abnm be the
characteristic function.

Proposition 4.3. Set N = bn/mc. If N ≥ 2, then

‖F abnm − φ̂R‖L2 ≤ δ1(m,N)

mN−1(2N)1/4
√

Γ(2N + 1)

+ 4m1/4
√
N + 1

( Nm

Nm− 1

)1/2

exp
(
− β(m,N)m1− 2

N

(
1− 1

Nm

)
N2
)
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where

δ1(m,N) =
e

2
m (1+ 1

N )+ 1√
N

√
1− e−5/2

(1− e−5/2 − 1/(2
√
πN))3/2

, β(m,N) =
(1− 1

2N −
8
√

2

π
√

3(N−1/2)N
)2

2e5/2 + (1 + 8
√

2√
3(N−1)

)m−
1
N

.

As a consequence, if N and m satisfy one of the following conditions:

N ≥ 10 and m ≥ 46, N ≥ 6 and m ≥ 424, N ≥ 3 and m ≥ 1010, m ≥ 2 and N ≥ 66,

then

‖F abnm − φ̂R‖L2 ≤
δ1(m,N) + 1

mN

mN−1(2N)1/4
√

Γ(2N + 1)
. (4.12)

Remark 4.4. We need stronger conditions onN andm here compared to the unitary case
because of the larger bound we obtained for the intermediate regime (compare (2.7)
with (3.16)). This in turn follows from the fact that the Fredholm determinants in
Section 3 are not bounded by one, unlike those in Section 2.

To prove Theorem 1.6 we also need a concentration inequality for TrOm, but this
follows easily from the proof of that of TrO and Rains’ theorem. Indeed, in the case of
a = b = −1/2 and N = n/m ∈ N, we have, by (4.2),

E−−n [e
λ√
m

TrOm

] = F++
N

(−iλ√
m

)(
F+−
N

(−iλ√
m

)
F−+
N

(−iλ√
m

))m−1
2

where λ > 0, so Proposition 3.3 gives

E−−n [e
λ√
m

TrOm

] = eλ
2/2 det(I +QNK

−−
λ/
√
m
QN )

× (det(I +QNK
−+
λ/
√
m
QN ) det(I +QNK

+−
λ/
√
m
QN ))

m−1
2

and (3.10) gives

E−−n [e
λ√
m

TrOm

] ≤ exp
(λ2

2

(
1 +

1

N2.5eN/2

))
if N ≥ 2 and |λ| ≤ 2e−3/2

√
mN . Thus, by Markov’s inequality,

P−−n
[
| 1√
m

TrOm| ≥ L
2 ] ≤ 2 exp

(
− λL

2
+
λ2

2

(
1 +

1

N2.5eN/2

))
≤ 2 exp

(
− L2

8(1 +N−2.5e−N/2)

)
by choosing λ = L/(2(1 +N−2.5e−N/2)). This last bound can be shown to hold for any a
and b. We can therefore insert it in

‖pabnm − φR‖L1(R) ≤
√
L‖pabnm − φR‖L2 + Pabn

[
|TrOm − E[TrOm]| ≥ L

2

]
+ P[|γR| > L

2 ]

which, as usual, follows from Cauchy–Schwarz inequality. We also use (3.3) and our
previous bound on the L2-distance (4.12) to obtain

‖pabnm − φR‖L1(R) ≤
√
L√
2π

δ1(m,N) + 1/(mN)

mN−1(2N)1/4
√

Γ(2N + 1)

+
(

2 +
4√
2πL

)
exp

(
− L2

8(1 +N−2.5e−N/2)

)
.
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Setting L = 2
√

2(1 +N−2.5e−N/2)1/2(log(Γ(2N + 1))/2 + (N − 1) logm)1/2 gives

‖pabnm − φR‖L1(R) ≤ δ2(m,N)
(log n)1/4

mN−1
√

Γ(2N + 1)
(4.13)

where

δ2(m,N) = (2/π)1/4(1 +N−2.5e−N/2)1/4
(

2 +
1

4N
+

log(2
√
πe)

2N log(mN)

)1/4(
δ1(m,N) +

1

mN

)
+

5

2(logN)1/4

for integer N . Since the bound is decreasing in N , we can simply replace N with bNc
in the case of non-integer N . A numerical approximation of δ2(2, 3) gives the bound of
Theorem 1.6.

Proof of Proposition 4.3. Let F abnm be the characteristic function of 1√
m

(TrOm−E[TrOm]),

F abnm(ξ) = Eabn [e
i ξ√
m

(TrOm+a−b)
] if m is odd and F abnm(ξ) = Eabn [e

i ξ√
m

(TrOm+a+b)
] if m is

even. Consider (a, b) = (1/2, 1/2), m odd; the remaining orthogonal/symplectic cases are
treated in a similar way. If n/m is an integer then (4.2) gives

F++
nm (ξ) = F++

N

( ξ√
m

)(
F+−
N

( ξ√
m

)
F−+
N

( ξ√
m

))m−1
2

(4.14)

so by Proposition 3.3,

F++
nm (ξ) = e−ξ

2/2 det
(

1 + (−i)j+kIj+k+2

( 2ξ√
m

))
N≤j,k

×
(

det(1− (−i)j+k+1Ij+k+1

( 2ξ√
m

))
N≤j,k

det
(

1 + (−i)j+k+1Ij+k+1

( 2ξ√
m

))
N≤j,k

)m−1
2

(4.15)

where In is the modified Bessel function of the first kind. We estimate ‖F abnm − φ̂R‖L2

in the usual way by dividing the real line into three parts: |ξ| < 2Ne−5/4m(1−N−1)/2,
2Ne−5/4m(1−N−1)/2 < |ξ| < Λ and Λ < |ξ|, where Λ ≥ 2Ne−5/4m1/2−1/(2N) can be chosen
arbitrarily. First, observe that if {xi}mi=1 is a sequence of complex numbers satisfying
max1≤i≤m |xi| ≤ θ, θ ≥ 1, then∣∣∣∣1− m∏

i=1

xi

∣∣∣∣ ≤ θm−1
m∑
i=1

|1− xi|. (4.16)

We apply this inequality to the determinants in (4.15). By (3.8), for any N ∈ N,

|1− det(1 +QNK
ab
iξ/
√
mQN )| ≤

√
1− e−5/2

(1− e−5/2 − 1/(2
√
πN))3/2

eξ
2/(m(2N+1))

mN

|ξ|2N

Γ(2N + 1)

if |ξ| < 2
√
mN/e5/4. Next, to bound the determinants themselves, we use that for any

trace-class kernel K, det(1−K) ≤ e‖K‖J1 (Theorem VII.3.3 in [14]). By (3.5),

‖QNKab
iξ/
√
mQN‖J1 ≤

e2

2
√
e2 − 1(e− 1)

√
πN

( e5/4|ξ|
2
√
mN

)2N

<
1√
Nm

, |ξ| < 2m
1
2 (1− 1

N )N

e5/4
.

The above upper bounds are decreasing in N . Therefore, if n/m is not an integer we can
simply replace it by N = bn/mc in the above expressions. Thus, by (4.15) and (4.16),

|F++
nm (ξ)− e−ξ

2/2| ≤ e−ξ
2/2me

m−1√
Nm

√
1− e−5/2

(1− e−5/2 − 1/(2
√
πN))3/2

eξ
2/(m(2N+1))

mN

|ξ|2N

Γ(2N + 1)
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provided

|ξ| < 2m
1
2 (1− 1

N )N

e5/4
.

We obtain(∫
|ξ|< 2Nm1/2−1/(2N)

e5/4

|F++
nm (ξ)− e−

ξ2

2 |2dξ
)1/2

≤ e
1√
N

√
1− e−5/2

(1− e−5/2 − 1/(2
√
πN))3/2

m1−N

(2N)!

(∫ ∞
−∞

e−(1− 1
mN )ξ2 |ξ|4Ndξ

)1/2

≤ δ1(m,N)

mN−1(2N)1/4
√

Γ(2N + 1)
. (4.17)

by (3.9) and the following two estimates. Next, we use our previous results for the
intermediate range of ξ. By (3.15),

|F++
N

(
ξ√
m

)
| ≤ exp

(− 1
4m (1 + 1

2N −
8
√

2
π
√

3NN
)2ξ2

2 + 2
N + ξ2

4mN2 + 2
√

2ξ2√
3NmN2

)
, N ≥ 2.

So if |ξ| > 2Nm
1
2
(1−N−1)

e5/4
,

∣∣∣∣F++
N

(
ξ√
m

)∣∣∣∣ ≤ exp
( −(1 + 1

2N −
8
√

2
π
√

3NN
)2N2

2e5/2(1 + 1
N )m

1
N + 1 + 8

√
2√

3N

)
, N ≥ 2.

The bound is decreasing in N , so combined with (4.14), it gives∫
2Nm1/2−1/(2N)

e5/4
<|ξ|<Λ

|F++
nm (ξ)|2dξ ≤ 2Λ exp

(
− 2β(m,N)m1− 2

NN2
)

(4.18)

for N ≥ 5, Λ ≥ 2Ne−5/4m1/2−1/(2N).
For the last regime, we use (4.14) together with∣∣∣∣F abN ( ξ√

m

)∣∣∣∣2 ≤ (2
√
mN

|ξ|

)N
valid for integerN ≥ 2 and |ξ| ≥ 7

8

√
mN , which follows from Proposition (3.10). The right-

hand side is non-increasing in N for |ξ| ≥ 2
√
mN . Thus, if Λ ≥ max{ 7

8

√
m(N+1), 2

√
mN},∫

Λ<|ξ|
|F++
nm (ξ)|2dξ ≤ 2(2

√
mN)Nm

(Nm− 1)ΛNm−1
. (4.19)

The sum of the upper bounds in (4.18) and (4.19) is minimized at

Λ = 2
√
mN exp(2β(m,N)N/m

2
N )

but (4.19) only holds for Λ ≥ max{ 7
8

√
m(N + 1), 2

√
mN}, so we set

Λ = 2
√
m(N + 1) exp(2β(m,N)N/m

2
N ).

This gives∫
Λ<|ξ|

|F++
nm (ξ)|2dξ ≤ 4

√
m(N + 1)

Nm

Nm− 1
exp

(
− 2β(m,N)m1− 2

NN2
(

1− 1

Nm

))
.

(4.20)
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Finally, note that∫
2Nm1/2−1/(2N)

e5/4
≤|ξ|

e−ξ
2

dξ =
√
πerfc

(2Nm
1
2 (1− 1

N )

e5/4

)
≤ e5/4

√
2πNm

1
2−

1
2N

exp
(
− 2N2m1− 1

N

e5/2

)
.

(4.21)

Equations (4.17), (4.20) and (4.21) give the final bound.
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