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Abstract

We propose a simpler approach to identifying the limit of free energy in a vector
spin glass model by adding a self-overlap correction to the Hamiltonian. This avoids
constraining the self-overlap and allows us to identify the limit with the classical Parisi
formula, similar to the proof for scalar models with Ising spins. For the upper bound,
the correction cancels self-overlap terms in Guerra’s interpolation. For the lower
bound, we add an extra perturbation term to make the self-overlap concentrate, a
technique already used in [18, 20] to ensure the Ghirlanda–Guerra identities. We then
remove the correction using a Hamilton–Jacobi equation technique, which yields a
formula similar to that in [28]. Additionally, we sketch a direct proof of the main result
in [21].
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1 Introduction

In [27, 28], the limit of the free energy of mean-field vector spin glasses has been
identified. One key insight is to consider the free energy with constrained self-overlap.
Drawing inspiration from the Hamilton–Jacobi equation approach to spin glasses [19,
21, 18, 20], we present a simpler alternative approach. Specifically, we introduce a
self-overlap correction to the Hamiltonian to simplify the analysis.

First, we employ the same argument used in [24] for the scalar model with Ising
spins, along with Panchenko’s synchronization technique, to identify the limit of the
corrected free energy with the classical form of the Parisi formula (see Theorem 1.1).
Then, we remove the correction using a simple Hamilton–Jacobi equation technique (see
Theorem 1.2). Our approach also simplifies the analysis in the scalar model with soft
spins [22] as a special case.
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Self-overlap correction simplifies the Parisi formula

Setting and main results

Fix D ∈ N and let P1 be a probability measure on RD. We assume that P1 is supported
on the unit ball {v ∈ RD : |v| ≤ 1}. For each N ∈ N, we define PN = (P1)⊗N and denote
the RD×N -valued spin configuration sampled from PN by σ = (σi,j)i∈{1,...,D}, j∈{1,...,N}.

Throughout, we denote by aᵀ the transpose of a matrix or vector a. For two matrices
or vectors a and b with the same size, we write a · b =

∑
i,j ai,jbi,j = tr(abᵀ) as the

Frobenius inner product between them, which naturally induces a norm |a| =
√
a · a. We

denote by SD ⊂ RD×D the set of symmetric matrices and SD+ ⊂ SD the set of symmetric
positive semi-definite matrices. For a, b ∈ RD×D, we write a � b and b � a if a · c ≥ b · c
for all c ∈ SD+ .

Fix a differentiable and locally Lipschitz function ξ : RD×D → R satisfying ξ ≥ 0

on SD+ , ξ(0) = 0, and ξ(a) = ξ(aᵀ). Using the Frobenius inner product on RD×D, we
can define the gradient ∇ξ : RD×D → RD×D of ξ. We make the following additional
assumption on ξ:

a, b ∈ SD+ and a � b =⇒ ξ(a) ≥ ξ(b) and ∇ξ(a) � ∇ξ(b). (1.1)

We assume that, for each N , there exists a real-valued centered Gaussian process
(HN (σ))σ∈RD×N with covariance

EHN (σ)HN (σ′) = Nξ

(
σσ′ ᵀ

N

)
.

Examples of ξ and HN (σ) satisfying the above requirements are presented in [20,
Section 6]. In particular, the mixed p-spin model with vector spins considered in [28] is
covered.

The limit of the free energy

1

N
E log

∫
exp (HN (σ)) dPN (σ) (1.2)

as N →∞ has been identified with a variational formula known as the Parisi formula in
many settings. We focus on the modified free energy with self-overlap correction:

FN =
1

N
E log

∫
exp

(
HN (σ)− 1

2
Nξ

(
σσᵀ

N

))
dPN (σ).

The additional term 1
2Nξ

(
σσᵀ

N

)
is one half of the variance of HN (σ). We view this as a

correction of the self-overlap 1
N σσ

ᵀ from the Hamiltonian. In Guerra’s replica symmetry
breaking interpolation, this correction term leads to the cancellation of terms involving
the self-overlap. This correction term already appeared in Mourrat’s work [19, 18, 20].

We describe the Parisi functional. For convenience, we use continuous versions of
the Ruelle probability cascade (RPC) [31]. Let R be the RPC with overlap distributed
uniformly on [0, 1] (see [24, Theorem 2.17]). More precisely, R is a random probability
measure on the unit sphere of a separable Hilbert space with inner product denoted by ∧
such that α1 ∧ α2 distributes uniformly on [0, 1] under ER⊗2 and

(
αl ∧ αl′

)
l,l′∈N

satisfies

the Ghirlanda–Guerra identities where
(
αl
)
l∈N are i.i.d. samples from R⊗∞.

Let Π be the collection of left-continuous function π : [0, 1]→ SD+ that is increasing
in sense that π(s) � π(s′) if s ≥ s′. For each π ∈ Π, let (wπ(α))α∈suppR be a centered
RD-valued Gaussian process with covariance

Ewπ(α) (wπ(α′))
ᵀ

= π(α ∧ α′), (1.3)
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conditioned on R. We refer to [8, Section 4 and Remark 4.9] for the construction and
measurability of this process. Notice that ξ(a) = ξ(aᵀ) implies that ∇ξ(a) ∈ SD at a ∈ SD

and (1.1) (together with (2.1)) implies that ∇ξ(a) ∈ SD+ at a ∈ SD+ . Hence, ∇ξ ◦ π ∈ Π for
every π ∈ Π. We also define θ : RD×D → R by

θ(a) = a · ∇ξ(a)− ξ(a). (1.4)

Then, we define P : Π× SD → R by

P(π, x) = E log

∫∫
exp

(
w∇ξ◦π(α) · σ − 1

2
∇ξ ◦ π(1) · σσᵀ + x · σσᵀ

)
dP1(σ)dR(α)

+
1

2

∫ 1

0

θ(π(s))ds. (1.5)

Notice the correction 1
2∇ξ ◦π(1) ·σσᵀ, which is exactly half of the variance of w∇ξ◦π(α) ·σ.

We set P(π) = P(π, 0) which has the form of the classical Parisi functional.

Theorem 1.1 (Parisi formula). If ξ is convex, then limN→∞ FN = infπ∈Π P(π).

We can remove the correction in FN and obtain the limit of (1.2) following the
procedure in [21, Section 5]. Let ξ∗ be the convex conjugate of ξ on SD+ defined by

ξ∗(y) = sup
x∈SD

+

{x · y − ξ(x)}. (1.6)

Theorem 1.2 (Removing correction). If ξ is convex, then

lim
N→∞

1

N
E log

∫
exp (HN (σ)) dPN (σ) = sup

y∈SD
+

inf
π∈Π

{
P(π, y)− 1

2
ξ∗(2y)

}
= sup
z∈SD

+

inf
y∈SD

+ , π∈Π

{
P(π, y)− y · z +

1

2
ξ(z)

}
. (1.7)

The same argument for Theorem 1.1 can be used to treat models enriched by an
external field given by a RPC. We describe the enriched model and sketch the proof of
the corresponding result, Theorem 6.1, in Section 6.

The convexity of ξ is used in the proof of the upper bound via Guerra’s interpolation.
To weaken this assumption to convexity over SD+ , one needs Talagrand’s positivity
principle, which is not available in general vector spin models. Alternatively, an upper
bound can be obtained through the Hamilton–Jacobi equation approach [18, 20, 9, 10].
Based on this, statements in Theorems 1.1 and 1.2 are proved in [8, Corollary 8.3 and
Proposition 8.4] under the weaker assumption that ξ is convex over SD+ .

Remark 1.3. It will be evident from the proof of the lower bound in Section 4 that there
exists a minimizer π of infπ∈Π P(π) that satisfies π(1) ∈ K = conv {ττᵀ : τ ∈ suppP1}.
Hence, we can replace infπ∈Π in both Theorems 1.1 and 1.2 by infπ∈Π: π(1)∈K.

Related works

The classical Parisi formula for the limit of the free energy in the Sherrington–
Kirkpatrick (SK) model (D = 1, P1 uniform on {±1}, and ξ quadratic) was proposed by
Parisi in [29, 30] and later proven by Talagrand in [33] building on the upper bound
by Guerra in [16]. Panchenko later extended the formula to SK models with soft spins
[22], scalar mixed p-spin models [25, 24] with Ising spins, multi-species models [26], and
mixed p-spin models with vector spins [27, 28]. Recently, [5] simplified the Parisi formula
for balanced Potts spin glass. After Mourrat’s interpretation of the Parisi formula as
the Hopf–Lax formula for a Hamilton–Jacobi equation [19], the formula was extended
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for enriched models [21]. For spherical spins, the Parisi formula was proven for the SK
model [32], the mixed p-spin model [12], and the multi-species model [4]. Since we have
assumed that PN is a product measure, the most relevant works are [22, 27, 28, 21].

Let us explain the effect of the self-overlap correction. In Guerra’s interpolation
for the upper bound, there are terms involving the self-overlap, which have the wrong
sign. If the self-overlap is constant (as in the Ising case), these terms cancel each other.
Otherwise, to tackle this issue, [27, 28] considered free energy with the self-overlap
constrained in a small ball, and controlled the original free energy by these with varying
constraints. In Section 2, we demonstrate that by correcting FN , the self-overlap terms
in the interpolation computation are eliminated (as shown in (2.4)). Consequently, we
can establish the upper bound in the same way as for the Ising case.

In the cavity computation in [27, 28] for the lower bound, the constraint of the
self-overlap disrupts the product structure of PN but enables the derivation of Ghirlanda–
Guerra identities in the limit. Here, avoiding the constraint, we preserve the product
measure structure in the cavity computation and proceed in the same way as for the
Ising case (Section 4). The only issue is that the usual perturbation term added to
the Hamiltonian does not ensure the Ghirlanda–Guerra identities since it only controls
non-self-overlaps. To resolve this, we include additional perturbation (the second sum
in (3.2)) that forces the self-overlap to concentrate. This technique has been previously
utilized in [18, 20].

Since the overlap is matrix-valued, in the proof of the lower bound, we also need the
synchronization technique developed by Panchenko based on the ultrametricity of the
overlap proved in [23].

To recover the limit of the original free energy given by (1.2), we add an external
field parameterized by (t, x) ∈ [0,∞) × SD into FN , which is denoted by FN (t, x) (see
equation (5.1)). The external field takes the form of tNξ(σσ

ᵀ

N ) + x · σσᵀ. In Section 5,
we will show that FN (t, x) asymptotically satisfies a simple Hamilton–Jacobi equation
∂tf − ξ(∇f) = 0. It is worth noting that FN ( 1

2 , 0) corresponds to the original free energy,
and the limit of FN (0, x) is given by Theorem 1.1, with PN tilted by ex·σσ

ᵀ
. Therefore, we

can interpolate along the equation to deduce Theorem 1.2 from Theorem 1.1.
It should be noted that the Hamilton–Jacobi equation mentioned here is a finite-

dimensional one, rather than the infinite-dimensional one in [19, 18, 20, 9] associated
with the enriched model discussed in Section 6. The former is similar to the one related
to the Curie-Weiss model described in [17]. This idea for removing the correction first
appeared in [21, Section 5].

In Section 6, we consider the enriched model that was previously investigated in
[21]. In that work, the limit of the free energy was determined by first establishing the
Parisi formula similar to the ones in [27, 28] without correction. The formula was then
transformed into the predicted form in [19]. Here, we will sketch a direct proof using
the argument outlined above.

Our simpler approach is not limited to product measures for PN , making it useful in
more general cases. However, our assumption on PN simplifies the computation and
enables a clearer presentation of the argument.

Comments on variational formulae

The formula presented in Theorem 1.1 has the classical form of the Parisi formula for
Ising spins, as seen in [24, Section 3.1]. However, the functional P(π) differs from the
classical Parisi formula by a constant, which is a consequence of σσᵀ = N in the Ising
case.

In Theorem 1.2, the two representations are obtained by solving the Hamilton–Jacobi
equation mentioned earlier. The first representation is derived using the Hopf–Lax
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formula, which is possible due to the convexity of ξ. The second representation comes
from the Hopf formula, taking advantage of the convexity of y 7→ infπ∈Π P(π, y). One
can verify the equivalence between the two using the convexity of the two functions and
the Fenchel–Moreau theorem.

The first representation in Theorem 1.2 is a generalization of [21, Corollary 1.3] to
D ≥ 1. The second representation is very close to the formula obtained by Panchenko in
[28]. The functional P in [28, (31)] can be rewritten as

P(y, z, π) = P

(
π, y +

1

2
∇ξ(z)

)
−
(
y +

1

2
∇ξ(z)

)
· z +

1

2
ξ(z)

subject to restriction π(1) = z (here y, z correspond to λ,D in [28]). We set Π(z) = {π ∈
Π : π(1) = z} and let D be the convex hull of {σσᵀ : σ ∈ suppP1}. Notice that D ⊂ SD+ .
By [28, Theorem 1], the left-hand side of (1.7) is equal to

sup
z∈D

inf
y∈SD, π∈Π(z)

P(y, z, π) = sup
z∈D

inf
y∈SD, π∈Π(z)

{
P(π, y)− y · z +

1

2
ξ(z)

}
,

which is similar to our second representation in (1.7). The equivalence of the two
formulae will be directly verified in [7] where more information on the self-overlap is
needed.

Organization of the paper

We establish Theorem 1.1 by dividing the proof into three parts: the upper bound
(Section 2), the perturbation term (Section 3), and the lower bound (Section 4). Theo-
rem 1.2, which removes the correction term, is proved in Section 5. We also provide a
brief overview of the enriched model and sketch the proof of the corresponding result in
Section 6.

2 Upper bound via Guerra’s interpolation

We prove the upper bound in Theorem 1.1 using Guerra’s interpolation in [16], where
the convexity of ξ is needed. We often need the following basic fact: if a ∈ SD, then

a · b ≥ 0, ∀b ∈ SD+ ⇐⇒ a ∈ SD+ . (2.1)

For l, l′ ∈ N, we write Rl,l
′

= 1
N σ

l(σl
′
)ᵀ and Ql,l

′
= αl ∧ αl′ . By our setting and assump-

tions, Rl,l
′

is RD×D-valued satisfying |Rl,l′ | ≤ 1, and Ql,l
′ ∈ [0, 1] is real-valued.

Proposition 2.1. If ξ is convex, then lim supN→∞ FN ≤ infπ∈Π P(π).

Proof. Recall the definition of θ in (1.4). Notice that (1.1) and (2.1) imply that b · ∇ξ(b) ≤
b · ∇ξ(a) for all a, b ∈ SD+ satisfying a � b. Using this and the convexity of ξ, we have that

θ(a)− θ(b) ≥ ξ(b)− ξ(a)− (b− a) · ∇ξ(a) ≥ 0

for all a, b ∈ SD+ satisfying a � b. Also, due to ξ(0) = 0, we have θ(0) = 0. Hence, fixing
any π ∈ Π, we have that θ ◦ π : [0, 1] → [0,∞) is increasing. Let (y(α))α∈suppR be a
centered real-valued Gaussian process with covariance Ey(α)y(α′) = θ(π(α ∧ α′)). For
i ∈ N, let (w∇ξ◦πi (α))α∈suppR be i.i.d. copies of (w∇ξ◦π(α))α∈suppR conditioned on R. For
σ ∈ RD×N , we write σ = (σi)

N
i=1 ∈ (RD)N as a tuple of its column vectors. For r ∈ [0, 1],
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we define the interpolating Hamiltonian

Hr
N (σ, α) =

√
rHN (σ)− r

2
Nξ

(
σσᵀ

N

)
+
√

1− r
N∑
i=1

w∇ξ◦πi (α) · σi −
1− r

2
∇ξ ◦ π(1) · σσᵀ

+
√
rNy(α)− rN

2
θ(π(1)),

(2.2)

and the associated interpolating free energy

ϕ(r) =
1

N
E log

∫∫
exp (Hr

N (σ, α)) dPN (σ)dR(α). (2.3)

Denoting the Gibbs measure with Hamiltonian Hr
N (σ, α) by 〈·〉r, we can compute using

the Gaussian integration by parts (see [24, Section 1.2]) that

d

dr
ϕ(r) = −1

2
E
〈
ξ
(
R1,2

)
−∇ξ

(
π
(
Q1,2

))
·R1,2 + θ

(
π
(
Q1,2

))〉
r
. (2.4)

The self-overlap corrections have canceled all terms involving R1,1 and Q1,1, which is the
key to the proof. The convexity of ξ ensures ξ(a)−∇ξ(b) ·a−θ(b) ≥ 0 for any a, b ∈ RD×D.
Therefore, we have d

drϕ(r) ≤ 0 and thus ϕ(1) ≤ ϕ(0).
Let us rewrite the right-hand side of (1.5) as P0(π) + P1(π). We have ϕ(0) = P0(π)

ϕ(1) = FN +
1

N
E log

∫
exp

(√
Ny(α)− N

2
θ(π(1))

)
dR(α).

We want to show that the second term coincides with P1(π). Assume that π =∑k
l=1 ql1[sl−1,sl) + qk1{1} for some k ∈ N, 0 = s0 < s1 < · · · < sk = 1 and 0 = q0 � q1 �

· · · � qk. Using the standard computation of the RPC in the proof of [24, Lemma 3.1], we
have

1

N
E log

∫
exp

(√
Ny(α)

)
dR(α) =

1

2

k−1∑
l=0

sl (θ(ql+1)− θ(ql))

= −1

2

(
k∑
l=1

(sl − sl−1)θ(ql)− skθ(qk) + s0θ(q0)

)
= −1

2

∫ 1

0

θ(π(s))ds+
1

2
θ(π(1)). (2.5)

Hence, we have ϕ(1) = FN −P1(π). The case where π is continuous can be treated by
the standard approximation. In conclusion, ϕ(1) ≤ ϕ(0) implies that FN ≤P(π). Since
π is arbitrary, we can obtain the desired upper bound.

3 Perturbation and the Ghirlanda–Guerra identities

We directly work with the Hamiltonian appearing in the cavity computation in Sec-
tion 4. For each N , let (H̃N (σ))σ∈RD×N be a centered real-valued Gaussian process with
covariance

EH̃N (σ)H̃N (σ′) = (N + 1)ξ

(
σσ′ ᵀ

N + 1

)
. (3.1)

We describe the perturbation term that will ensure the Ghirlanda–Guerra identities on
average in the limit. Let (an)n∈N be an enumeration of {q ∈ SD+ : |q| ≤ 1} ∩QD×D. For
each N ∈ N and h ∈ N3, let (Hh

N (σ))σ∈RD×N be an independent Gaussian process with

EHh
N (σ)Hh

N (σ′) = N

(
ah1
·
(
σσ′ ᵀ

N

)�h2
)h3
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where � is the Schur product of matrices (i.e. (a � b)ij = (aijbij)). The construction
of Hh

N (σ) is described at the beginning of [28, Section 5] and omitted here. Note that
Hh
N (σ) has the same order of H̃N (σ). For each h, fix a constant ch > 0 satisfying

c2h sup
b∈RD×D, |b|≤1

(
ah1 · b�h2

)h3 ≤ 2−2|h|,

where |h| = h1 + h2 + h3. Let {ei}D(D+1)/2
i=1 be an orthonormal basis of SD and gi(σ) =

ei · σσᵀ for i ∈ {1, . . . , D(D + 1)/2}. For perturbation parameter

x =
(

(xh)h∈N3 , (xi)
D(D+1)/2
i=1

)
∈ [0, 3]N

3

× [0, 3]
D(D+1)

2 ,

we set

Hpert,x
N (σ) =

∑
h∈N3

xhchH
h
N (σ) +

D(D+1)/2∑
i=1

xigi(σ). (3.2)

The second sum will ensure the concentration of the self-overlap, allowing us to get the
Ghirlanda–Guerra identities.

For l, l′ ∈ N, recall Rl,l
′

below (2.1); write Rl,l
′

h = (ah1 · (Rl,l
′
)�h2)h3 for each h, and

R≤n =
(
Rl,l

′
)
l,l′≤n

for each n ∈ N. Let Ex be the expectation under which x is an i.i.d.

sequence of uniform random variables over [1, 2]. Let 〈·〉x be the Gibbs measure of σ
with Hamiltonian

H̃x
N (σ) = H̃N (σ)− 1

2
(N + 1)ξ

(
σσᵀ

N + 1

)
+N−

1
16Hpert,x

N (σ). (3.3)

In the following, E only integrates the Gaussian randomness in H̃N (σ) and Hpert,x
N (σ).

Proposition 3.1. The following holds:

1. limN→∞ExE
〈∣∣R1,1 − E

〈
R1,1

〉
x

∣∣〉
x

= 0;

2. limN→∞Ex∆x(f, n, h) = 0 for every integer n ≥ 2, every h ∈ N3, and every bounded
measurable function f of R≤n where

∆x(f, n, h)

=

∣∣∣∣∣E〈f(R≤n)R1,n+1
h

〉
x
− 1

n
E
〈
f(R≤n)

〉
x
E
〈
R1,2
h

〉
x
− 1

n

n∑
l=2

E
〈
f(R≤n)R1,l

h

〉
x

∣∣∣∣∣ .
(3.4)

The technique of adding gi(σ) to enforce the self-overlap to concentrate already
appeared in [18, 20].

We first prove the concentration of self-overlap and then the second part. In the first
part, i, j are always indices in {1, . . . , D(D + 1)/2}.
Lemma 3.2. There is a constant C > 0 such that, for every i,∫ 2

1

E 〈|gi(σ)− E 〈gi(σ)〉|〉x dxi ≤ CN
25
32

uniformly in (xh)h∈N3 and (xj)j 6=i.

Proof. Recall H̃x
N (σ) in (3.3). Fixing any (xh)h∈N3 and (xj)j 6=i, we set

ϕ(xi) = log

∫
exp

(
H̃x
N (σ)

)
dPN (σ)
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and φ(xi) = Eϕ(xi). Then, we compute the derivatives:

ϕ′(xi) = N−
1
16 〈gi(σ)〉x , ϕ′′(xi) = N−

1
8

〈
gi(σ)2 − 〈gi(σ)〉2x

〉
x
,

φ′(xi) = N−
1
16E 〈gi(σ)〉x , φ′′(xi) = N−

1
8E
〈
gi(σ)2 − 〈gi(σ)〉2x

〉
x
.

Due to our assumption on the support of PN , we have |gi(σ)| ≤ N and thus

|φ′(xi)| ≤ N
15
16 , ∀xi ∈ [0, 3]. (3.5)

Integrating φ′′(xi) over xi ∈ [1, 2] yields∫ 2

1

E
〈
gi(σ)2 − 〈gi(σ)〉2x

〉
x

dxi = N
1
8 (φ′(2)− φ′(1)) ≤ 2N

17
16 .

By the standard concentration argument ([18, (4.15)]), we have

sup
x
E|ϕ(xi)− Eϕ(xi)| ≤ CN

1
2 ,

for some constant C. Writing

δ = |ϕ(xi + yi)− φ(xi + yi)|+ |ϕ(xi − yi)− φ(xi − yi)|+ |ϕ(xi)− φ(xi)|,

we thus have
∫ 2

1
δdxi ≤ 3CN

1
2 for all yi ∈ [0, 1]. It is clear from our computation that ϕ

and φ are convex. By basic properties of convex functions stated in [24, Lemma 3.2],

|ϕ′(xi)− φ′(xi)| ≤ φ′(xi + yi)− φ′(xi − yi) +
δ

yi
.

Using (3.5) and the mean value theorem, we get∫ 2

1

(φ′(xi + yi)− φ′(xi − yi)) dxi

= φ(2 + yi)− φ(2− yi)− φ(1 + yi) + φ(1− yi) ≤ 4N
15
16 yi.

Therefore, ∫ 2

1

E |ϕ′(xi)− φ′(xi)|dxi ≤ 4N
15
16 yi +

3CN
1
2

yi
.

Inserting the formulae of ϕ′ and φ′ and setting yi = N−
7
32 , we get the desired result.

Proof of (1). The above lemma implies that, uniformly in (xh)h∈N3 and (xj)j 6=i,∫ 2

1

E

〈∣∣∣∣ei · σσᵀ

N
− E

〈
ei ·

σσᵀ

N

〉
x

∣∣∣∣〉
x

dxi ≤ CN−
7
32

for every i. Since {ei} is an orthonormal basis, we can deduce Proposition 3.1 (1).

Proof of (2). We can proceed in the standard way as in [24, Theorem 3.3] (with h, N
7
16 ,

N
1
2 , N−

1
2xhchH

h
N (σ) substituted for p, s, νN (s), 2−pxpgp(σ) therein) to get that for every

h, there is a constant Ch such that∫ 2

1

E
〈∣∣Hh

N − E
〈
Hh
N

〉
x

∣∣〉
x

dxh ≤ ChN
3
4 .
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Let f = f(R≤n) be bounded and measurable. Without loss of generality, we assume
‖f‖∞ ≤ 1. Then,∣∣E 〈fHh

N

〉
x
− E 〈f〉xE

〈
Hh
N

〉
x

∣∣ ≤ E 〈∣∣Hh
N − E

〈
Hh
N

〉
x

∣∣〉
x
.

The Gaussian integration by parts gives

E
〈
fHh

N

〉
x
− E 〈f〉xE

〈
Hh
N

〉
x

= N
15
16xhch

(
E

〈
f

(
n∑
l=1

R1,l
h − nR

1,n+1
h

)〉
x

+ E 〈f〉xE
〈
R1,2
h −R

1,1
h

〉
x

)
.

The above three displays yield

Ex

∣∣∣∣∣nE〈fR1,n+1
h

〉
x
− E 〈f〉xE

〈
R1,2

〉
x
−

n∑
l=2

E
〈
fR1,l

h

〉
x

∣∣∣∣∣
≤ ExE

〈∣∣∣R1,1
h − E

〈
R1,1
h

〉
x

∣∣∣〉
x

+ ChN
− 3

16 .

Since |R1,1| ≤ 1 holds due to our assumption, there is a constant C ′h such that |R1,1
h −

R2,2
h | ≤ C ′h|R1,1 −R2,2| and thus

E
〈∣∣∣R1,1

h − E
〈
R1,1
h

〉
x

∣∣∣〉
x
≤ E

〈∣∣∣R1,1
h −R

2,2
h

∣∣∣〉
x
≤ C ′hE

〈∣∣R1,1 −R2,2
∣∣〉
x

≤ 2C ′hE
〈∣∣R1,1 − E

〈
R1,1

〉
x

∣∣〉
x
.

By Proposition 3.1 (1), the last term averaged by Ex vanishes as N →∞. Inserting this
into the previous display, we get Proposition 3.1 (2), which completes the proof.

4 Lower bound via the Aizenman–Sims–Starr scheme

We show the lower bound in Theorem 1.1 using the Aizenman–Sims–Starr scheme
from [1]. This part does not need the convexity of ξ.

Proposition 4.1. It holds that lim infN→∞ FN ≥ infπ∈Π P(π).

Theorem 1.1 follows from this and Proposition 2.1.
Recall the perturbation defined in (3.2). For each perturbation parameter x and each

N , we define

F xN =
1

N
E log

∫
exp

(
HN (σ)− 1

2
Nξ

(
σσᵀ

N

)
+N−

1
16Hpert,x

N (σ)

)
dPN (σ)

as the perturbation of FN . Then, we describe the Gibbs measure that will appear in the
cavity computation. Recall the process H̃N (σ) in (3.1) and the Gibbs measure 〈·〉x with

Hamiltonian H̃x
N (σ) in (3.3). We also need two more independent Gaussian processes.

Let (Z(σ))σ∈RD×N and (Y (σ))σ∈RD×N be centered RD-valued and real-valued Gaussian

processes with covariances EZ(σ)Z(σ′)ᵀ = ∇ξ
(
σσ′ ᵀ

N

)
and EY (σ)Y (σ′) = θ

(
σσ′ ᵀ

N

)
. The

cavity computation evaluates the difference (N + 1)F xN+1 −NF xN . We write the spins in
F xN+1 as (σ, τ) ∈ RD×N ×RD. Defining

AN (x) = E log

〈∫
exp

(
Z(σ) · τ − 1

2
∇ξ
(
σσᵀ

N

)
· ττᵀ

)
dP1(τ)

〉
x

− E log

〈
exp

(
Y (σ)− 1

2
θ

(
σσᵀ

N

))〉
x

(4.1)

and using the standard computation described in the proof of [24, Theorem 3.6], we can
obtain the Aizenman–Sims–Starr representation stated below.
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Lemma 4.2. Uniformly in x, (N + 1)F xN+1 −NF xN = AN (x) + o(1) as N →∞.

We also need a result on approximating the Parisi-type functional using finitely many
entries from the overlap array. The following is a straightforward adaption of [24,
Theorem 1.3].

Lemma 4.3. We consider the following setting:

• Let Γ be a probability measure on a separable Hilbert space H and let R : H×H →
RD×D be a measurable function satisfying |R| ≤ 1;

• Assume that there are centered RD-valued and real-valued Gaussian processes
(Z(ρ))ρ∈supp Γ and (Y (ρ))ρ∈supp Γ with covariances EZ(ρ)Z(ρ′)ᵀ = ∇ξ (R(ρ, ρ′)) and
EY (ρ)Y (ρ′) = θ (R(ρ, ρ′)).

• Write 〈·〉Γ = Γ⊗∞ and define

P(Γ, R) = E log

〈∫
exp

(
Z(ρ) · τ − 1

2
∇ξ(R(ρ, ρ)) · ττᵀ

)
dP1(τ)

〉
Γ

− E log

〈
exp

(
Y (ρ)− 1

2
θ(R(ρ, ρ))

)〉
Γ

where E integrates the Gaussian randomness in Z(ρ) and Y (ρ).

Then, for every ε > 0, there is a bounded continuous function Fε :
(
RD×D

)n×n → R for
some n ∈ N such that∣∣∣∣P(Γ, R)−

〈
Fε
((

R
(
ρl, ρl

′
))

1≤l,l′≤n

)〉
Γ

∣∣∣∣ ≤ ε
uniformly for all (Γ, R) as described, where

(
ρl
)
l∈N is i.i.d. sequence under 〈·〉Γ.

The pair (Γ, R) defines an abstract overlap structure that is relevant here.

Remark 4.4. We show that familiar objects are of the form P(Γ, R):

• AN (x) = EP(Γx, RN ) for Γx being the distribution of 1√
N
σ under 〈·〉x and RN :

(σ, σ′) 7→ σσ′ ᵀ

N , where E integrates the Gaussian randomness in 〈·〉x;

• P(π) = EP(R, R) for R the aforementioned RPC with overlap distributed uniformly
on [0, 1] and R : (α, α′) 7→ π(α ∧ α′), where E integrates the randomness in R.

It is straightforward to check the validity of the first identity. To see the second, one can
use the computation in (2.5) with N = 1 to identify the second term in EP(R, R) with
the second term in P(π).

For a sequence of random arrays (An)n∈N where An =
(
Al,l

′

n

)
l,l′∈N

, we say that An

converges weakly to some random array A =
(
Al,l

′
)
l,l′∈N

and write

An ⇀ A as n→∞

if, for every k ∈ N, A≤kn converges in distribution to A≤k as n→∞.
For any real-valued random variable X, its quantile function is the left-continuous

increasing function ζ : [0, 1]→ R such that

Eg(X) =

∫ 1

0

g(ζ(s))ds

for every bounded measurable function g. The quantile function can be obtained by
taking the left-continuous inverse of the probability distribution function, and vice versa.
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Proof of Proposition 4.1. Due to the presence of N−
1
16 , we can verify limN→∞ supx |FN −

F xN | = 0. Therefore, it suffices to bound lim infN→∞ExF
x
N from below. Since

lim inf
N→∞

rN ≥ lim inf
N→∞

(N + 1)rN+1 −NrN

holds for a sequence of real numbers (rN )N∈N, we can use Lemma 4.2 to see that

lim inf
N→∞

ExF
x
N ≥ lim inf

N→∞
ExAN (x).

We want to choose a sequence of perturbation parameters. Let ((fj , nj , hj))j∈N be an
enumeration of{

(f, n, h) : n ∈ N; h ∈ N3; f is an monomial of
(
Rl,l

′

i,j

)
1≤i,j≤D; 1≤l,l′≤n

}
and we set

∆N (x) = E
〈∣∣R1,1 − E

〈
R1,1

〉
x

∣∣〉
x

+

∞∑
j=1

2−j∆x(fj , nj , hj)

where ∆x(f, n, h) is defined in (3.4). By Proposition 3.1, we have that limN→∞Ex∆N (x) =

0. Using the same argument in the proof of [24, Lemma 3.3], we can find a sequence(
xN
)
N∈N such that

lim
N→∞

∆N

(
xN
)

= 0, (4.2)

lim inf
N→∞

ExAN (x) ≥ lim inf
N→∞

AN
(
xN
)
.

Hence, it suffices to evaluate lim infN→∞AN
(
xN
)
.

Choose an increasing sequence of integers
(
N

(0)
k

)
k∈N

such that

lim inf
N→∞

AN
(
xN
)

= lim
k→∞

A
N

(0)
k

(
xN

(0)
k

)
. (4.3)

Let us make the dependence of R on N explicit by writing RN = R for spins in RD×N .

Since R1,1
N ∈ SD+ and |R1,1

N | ≤ 1, we can extract a subsequence
(
N

(1)
k

)
k∈N

from
(
N

(0)
k

)
k∈N

along which E
〈
R1,1
N

〉
xN

converges to some q ∈ SD+ . Since each Rl,l
′

N is bounded, we can

extract from
(
N

(1)
k

)
k∈N

a further subsequence
(
N

(2)
k

)
k∈N

along which

R
N

(2)
k

⇀ R∞ as k →∞ (4.4)

for some random array R∞. The distribution of R
N

(2)
k

is induced by E 〈·〉
xN

(2)
k

and the

distribution of R∞ is induced by E 〈·〉R to be explained below. Due to the concentration

of the self-overlap implied by (4.2) and the choice of
(
N

(1)
k

)
k∈N

, we have that

Rl,l∞ = q, ∀l ∈ N. (4.5)

As a result of (4.2), R∞ satisfies the Ghirlanda–Guerra identities. By the synchronization
result [28, Theorem 4], there is a Lipschitz function Ψ : [0,∞)→ SD+ satisfying Ψ(s) �
Ψ(s′) for all s ≥ s′ such that

Rl,l
′

∞ = Ψ
(

tr
(
Rl,l

′

∞

))
a.s. ∀l, l′ ∈ N. (4.6)

EJP 28 (2023), paper 170.
Page 11/20

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1062
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Self-overlap correction simplifies the Parisi formula

Denote the quantile function of tr
(
R1,2
∞
)

by ζ. Since the Ghirlanda–Guerra identities

hold for
(

tr
(
Rl,l

′

∞

))
l,l′∈N

, the Dovbysh–Sudakov representation ([24, Theorem 1.7])

together with the characterization of RPCs by the overlap distribution ([24, Theo-

rems 2.13 and 2.17]) implies that
(

tr
(
Rl,l

′

∞

))
l 6=l′

has the law of a RPC with overlap

distribution given by the quantile function ζ. Therefore, we can represent
(

tr
(
Rl,l

′

∞

))
l 6=l′

by tr
(
Rl,l

′

∞

)
= ζ

(
αl ∧ αl′

)
for all l 6= l′, where

(
αl
)
l∈N is sampled from R⊗∞.

Then, we want to obtain a representation of the entire array R∞. First, we look for
an upper bound for ζ. Note that (4.6) implies R1,2

∞ ∈ SD+ . Since the Cauchy–Schwarz

inequality implies that v ·R1,2
N v ≤ 1

2v ·
(
R1,1
N +R2,2

N

)
v for every v ∈ RD, we can deduce

from (4.5) that R1,2
∞ � q and thus tr

(
R1,2
∞
)
≤ tr(q) a.s. Setting r = tr(q), we get

ζ(s) ≤ r, ∀s ∈ [0, 1]. (4.7)

Then, (4.6) together with (4.5) also implies

Ψ(r) = q. (4.8)

Hence, we can represent R∞ in the following way

Rl,l
′

∞ = Ψ
(
ζ
(
αl ∧ αl

′
)

+ 1l=l′
(
r − ζ

(
αl ∧ αl

′
)))

, ∀l, l′ ∈ N. (4.9)

So, the distribution of the random array R∞ is induced by E 〈·〉R where 〈·〉R = R⊗∞ and
E integrates the randomness in R.

Due to the possibility that r > ζ(1), in general, R∞ is not a pure RPC. Hence,
we introduce an approximation of R∞ by RPCs. Choose a sequence (ζm)m∈N of left-
continuous increasing step functions from [0, 1] to [0, r] that converges to ζ as m→∞ in
L1([0, 1]). For each m, allowed by (4.7), we can modify ζm to ensure that ζm(s) = r for s
in a small neighborhood of 1.

For each m, define Qm =
(
Ql,l

′

m

)
l,l′∈N

by

Ql,l
′

m = Ψ
(
ζm

(
αl ∧ αl

′
))

, ∀l, l′ ∈ N,

where
(
αl
)
l∈N is again sampled from R⊗∞. By the convergence of ζm and the continuity

of RPCs in the overlap distribution ([24, Theorem 2.17]), we can deduce that
(
Ql,l

′

m

)
l 6=l′

converges weakly to
(
Rl,l

′

∞

)
l 6=l′

under E 〈·〉R. Due to ζm(1) = r and (4.8), we have

Ql,lm = q = Rl,l∞. Therefore, we conclude that, under E 〈·〉R,

Qm ⇀ R∞ as m→∞. (4.10)

Fix any ε > 0. Let Fε be given in Lemma 4.3 and recall Remark 4.4. Notice that
Ψ ◦ ζm ∈ Π and the distribution of Qm is characterized by R and (α, α′) 7→ Ψ(ζm(α ∧ α′)),
which satisfies the condition of Lemma 4.3. For any r, r′ ∈ R, we write r ≈ε r′ if
|r − r′| ≤ ε. Using these, (4.4), and (4.10), we can find sufficiently large k and m such
that

A
N

(2)
k

(
xN

(2)
k

)
≈ε E

〈
Fε
(
R≤n
N

(2)
k

)〉
xN

(2)
k

≈ε E
〈
Fε
(
R≤n∞

)〉
R

≈ε E
〈
Fε
(
Q≤nm

)〉
R
≈ε P(Ψ ◦ ζm).
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Using (4.3) and the fact that
(
N

(2)
k

)
k∈N

is a subsequence of
(
N

(0)
k

)
k∈N

, we obtain from

the above display that

lim inf
N→∞

AN
(
xN
)
≥ inf
π∈Π

P(π)− 4ε.

The desired lower bound follows by sending ε→ 0.

5 Removing the correction term

We remove the correction and prove Theorem 1.2 by using the Hamilton–Jacobi
technique in [21, Section 5] which was set in the case D = 1. For D ≥ 1, we consider the
equation on the cone of positive definite matrices and thus need results from [10].

Recall that we have endowed SD with the Frobenius inner product, which induces
the natural topology on SD. For N ∈ N and (t, x) ∈ [0,∞)× SD, we define

FN (t, x) = EF̂N (t, x), (5.1)

F̂N (t, x) =
1

N
log

∫
exp

(
HN (σ)− N

2
ξ

(
σσᵀ

N

)
+ tNξ

(
σσᵀ

N

)
+ x · σσᵀ

)
dPN (σ).

Since the computations in this section only involve the self-overlap, we set R = 1
N σσ

ᵀ.
We denote the derivatives in t and h by ∂t and ∇ respectively. Here, ∇ is defined with
respect to the Frobenius inner product on SD. Recall that we have chosen an orthogonal
basis {ei}D(D+1)/2

i=1 of SD, and we define the Laplace operator ∆ =
∑D(D+1)/2
i=1 (ei · ∇)2.

We often write FN = FN (t, x) for simplicity.

Lemma 5.1. Assume that ξ is convex on SD+ . The following holds:

• for each N , FN is Lipschitz, convex, and increasing in the sense that FN (t, x) ≤
FN (t′, x′) if t ≤ t′ and x � x′;

• the Lipschitzness is uniform in N , namely, supN∈N ‖FN‖Lip <∞;

• there is a constant C > 0 such that, everywhere on (0,∞)× SD and for every N ,

0 ≤ ∂tFN − ξ (∇FN ) ≤ C
(
N−1∆FN

) 1
2 + CE

∣∣∣∇F̂N −∇FN ∣∣∣ . (5.2)

The convexity of ξ is only needed for the lower bound in (5.2). Notice that ξ is only
required to be convex on SD+ instead of the entire space RD×D.

Proof. For (t, x) ∈ (0,∞)× SD, we can compute that

∂tFN = E 〈ξ(R)〉 , ∇F̂N = 〈R〉 , ∇FN = E 〈R〉 (5.3)

and, for any (s, y) ∈ R× SD,

d2

dε2
F̂N (t+ εs, x+ εy)

∣∣∣
ε=0

= N
〈

(sξ(R) + y ·R)
2 − 〈sξ(R) + y ·R〉2

〉
≥ 0. (5.4)

Since |R| ≤ 1 a.s. and ξ is locally Lipschitz, we have that FN is Lipschitz in both variables
with supN ‖FN‖Lip < ∞. Since ξ ≥ 0 on SD+ and R ∈ SD+ , we get that (∂t,∇)FN ∈
[0,∞) × SD+ , which implies that FN is increasing. Recognizing that the second-order
derivative is a variance, we deduce the convexity of FN . Setting s = 0 and y = ei for
each i in (5.4) and summing up, we obtain

∆FN = NE
〈
|R|2 − | 〈R〉 |2

〉
= NE

〈
|R− 〈R〉 |2

〉
,

which together with (5.3) and the local Lipschitzness of ξ implies the upper bound in (5.2).
The lower bound in (5.2) follows from (5.3), the convexity of ξ on SD+ , the observation
R ∈ SD+ , and Jensen’s inequality.
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From (5.2), FN is expected to be a viscous approximation of the solution f to the
equation

∂tf − ξ(∇f) = 0 on (0,∞)× SD. (5.5)

We make sense of the solution to (5.5) in the viscosity sense. Let O,U ⊂ SD satisfy O ⊂ U .
A function f : [0,∞)× U → R is a viscosity subsolution (respectively, supersolution) of

∂tf − ξ(∇f) = 0 on (0,∞)×O

if whenever there is a smooth φ : (0,∞)×O → R such that f−φ achieves a local maximum
(respectively, minimum) at some (t, x) ∈ (0,∞) × O, we have (∂tφ − ξ(∇φ))(t, x) ≤ 0

(respectively, ≥ 0). If f is both a viscosity subsolution and supersolution, we call f a
viscosity solution.

Since SD is isometric to RD(D+1)/2 via the orthogonal basis {ei}, all classical theory
of viscosity solutions are available for (5.5). For instance, due to the assumption that ξ is
locally Lipschitz, [13, Theorem 1 in Section 10.2] ensures the uniqueness of the solution
to (5.5) given an initial condition.

Recall P(π, x) defined in (1.5) and P(π) = P(π, 0). We denote by ψ the pointwise
limit of FN (0, ·) (if it exists). Applying Theorem 1.1 with dP1 replaced by the normalized
ex·σσ

ᵀ
dP1(σ), we can get

ξ is convex on RD×D =⇒ ψ(x) = lim
N→∞

FN (0, x) = inf
π∈Π

P(π, x), ∀x ∈ SD. (5.6)

By the Lipschitzness of FN uniform in N as stated in Lemma 5.1, if FN converges
pointwise on a dense set, we can upgrade this to the convergence in the local uniform
topology, namely, uniform convergence on every compact subset of [0,∞)× SD. Hence,
this is the notion of convergence we consider.

Proposition 5.2. Assume that ξ is convex on SD+ . As N → ∞, FN converges in the
local uniform topology to the unique viscosity solution f of (5.5) with initial condition
f(0, ·) = ψ given in (5.6).

Proof. Since FN is Lipschitz uniformly in N , the Arzelà–Ascoli theorem implies that any
subsequence of (FN )N∈N has a further subsequence that converges in the local uniform
topology to some f . It suffices to show that the subsequential limit f is the viscosity
solution. For lighter notation, we assume that the entire sequence FN converges to f .

We divide the proof into two parts, verifying that f is a subsolution in the first part
and a supersolution in the second part. It is easy to see that replacing “local extremum”
by “strict local extremum” in the definition of viscosity solutions yields an equivalent
definition.

Part 1. Let (t, x) ∈ (0,∞) × SD and smooth φ satisfy that f − φ has a strict local
maximum at (t, x). The goal is to show that

(∂tφ− ξ(∇φ))(t, x) ≤ 0. (5.7)

By the local uniform convergence, there exists (tN , xN ) ∈ (0,∞)× SD such that FN − φ
has a local maximum at (tN , xN ), and limN→∞(tN , xN ) = (t, x). Notice that

(∂t,∇)(FN − φ)(tN , xN ) = 0. (5.8)

Throughout this proof, we denote by C <∞ a constant that may vary from one occur-
rence to the next and is allowed to depend on (t, x) and φ.

We want to show that, for every y ∈ SD with |y| ≤ C−1,

0 ≤ FN (tN , xN + y)−FN (tN , xN )− y · ∇FN (tN , xN ) ≤ C|y|2. (5.9)
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The convexity of FN gives the first inequality. To derive the other, we start by using
Taylor’s expansion:

FN (tN , xN + y)−FN (tN , xN )

= y · ∇FN (tN , xN ) +

∫ 1

0

(1− s)y · ∇ (y · ∇FN ) (tN , xN + sy) ds. (5.10)

The same holds with FN replaced by φ. By the local maximality of FN − φ at (tN , xN ),

FN (tN , xN + y)−FN (tN , xN ) ≤ φ(tN , xN + y)− φ(tN , xN )

holds for every |y| ≤ C−1. The above two displays along with (5.8) imply∫ 1

0

(1− s)y · ∇ (y · ∇FN ) (tN , xN + sy) ds ≤
∫ 1

0

(1− s)y · ∇ (y · ∇φ) (tN , xN + sy) ds.

Since the function φ is smooth, the right side of this inequality is bounded by C|y|2.
Using (5.10) once more, we obtain (5.9).

Next, setting B =
{

(t′, x′) ∈ [0,∞)× SD : |t′ − t| ≤ C−1, |x′ − x| ≤ C−1
}

and δN =

E
[
supB

∣∣∣F̂N −FN ∣∣∣], we show

E
[∣∣∣∇F̂N −∇FN ∣∣∣ (tN , xN )

]
≤ Cδ

1
2

N . (5.11)

Using the convexity of F̂N in (5.4), we have

F̂N (tN , xN + y) ≥ F̂N (tN , xN ) + y · ∇F̂N (tN , xN ).

Combining this with (5.9), we obtain that, for every |y| ≤ C−1,

y ·
(
∇F̂N −∇FN

)
(tN , xN ) ≤ 2 sup

B

∣∣∣F̂N −FN ∣∣∣+ C|y|2.

For some deterministic λ ∈ [0, C−1] to be determined, we fix the random matrix

y = λ

(
∇F̂N −∇FN

)
(tN , xN )∣∣∣∇F̂N −∇FN ∣∣∣ (tN , xN )

,

to get

λ
∣∣∣∇F̂N −∇FN ∣∣∣ (tN , xN ) ≤ 2 sup

B

∣∣∣F̂N −FN ∣∣∣+ Cλ2.

By the standard concentration result (e.g. [24, Theorem 1.2]) and an ε-net to cover B,
we can see limN→∞ δN = 0. Taking the expectation in the above display and choosing

λ = δ
1
2

N , we obtain (5.11).
Since (5.9) implies that |∆FN (tN , xN )| ≤ C, using (5.2), (5.8), and (5.11), we arrive

at

(∂tφ− ξ(∇φ)) (tN , xN ) ≤ CN− 1
2 + Cδ

1
2

N .

Sending N →∞ and using the convergence of (tN , xN ) to (t, x), we get (5.7).
Part 2. Let (t, x) ∈ (0,∞) × SD and smooth φ satisfy that f − φ has a strict local

minimum at (t, x). Since FN converges locally uniformly to f , there is a sequence
((tN , xN ))N∈N such that limN→∞(tN , xN ) = (t, x) and FN − φ has a local minimum at
(tN , xN ). In particular, (5.8) still holds. Using these and the lower bound in (5.2), after
sending N →∞, we obtain

(∂tφ− ξ (∇φ)) (t, x) ≥ 0,

which verifies that f is a supersolution and completes the proof.
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Next, we want to restrict the equation (5.5) to a smaller set so that the variational
formula for the solution optimizes over the smaller set. We denote by SD++ the set of
positive definite matrices, which is the interior of the closed set SD+ . We consider

∂tf − ξ(∇f) = 0 on (0,∞)× SD++. (5.12)

We state the well-posedness of this equation and variational representations below.
Notice that we do not impose any boundary condition on ∂SD+ . This is possible by only
considering increasing solutions.

Proposition 5.3. For every Lipschitz ψ : SD+ → R that is increasing in the sense that
ψ(x) ≤ ψ(x′) if x � x′, there is a viscosity solution f : [0,∞)×SD+ → R to (5.12) satisfying
f(0, ·) = ψ, which is unique in the class of increasing and Lipschitz functions. Moreover,

• if ξ is convex on SD+ , then f admits the Hopf–Lax representation:

f(t, x) = sup
y∈SD

+

{
ψ(x+ y)− tξ∗

(y
t

)}
, ∀(t, x) ∈ [0,∞)× SD+ ; (5.13)

• if ψ is convex, then f admits the Hopf representation:

f(t, x) = sup
z∈SD

+

inf
y∈SD

+

{z · (x− y) + ψ(y) + tξ(z)}, ∀(t, x) ∈ [0,∞)× SD+ .

In (5.13), ξ∗ is the convex conjugate described in (1.6).

Proof. This is an extraction of results listed in [10, Theorem 1.2]. Relevant function
classes therein are defined in the beginning two paragraphs of [10, Section 1.1.3].
By (1.1), ξ is increasing on SD+ , hence satisfying the condition on the nonlinearity of

the equation (condition HbC∈ Γ↗locLip there; H and C there correspond to ξ and SD+ here).

The existence and uniqueness is in [10, Theorem 1.2 (2)] (C̊ corresponds to SD++ here;
uniqueness actually holds in a slightly larger class M∩LLip). The Lipschitzness of f is in
(2a) and the monotonicity follows from (2b) and the main statement of (2) (f ∈M which
is the class of functions increasing in x for each fixed t).

Finally, since SD+ is a closed convex cone that satisfies the Fenchel–Moreau property
described in [10, Definition 6.1] which was proved in [11, Proposition B.1], the two
representations of the solution are available due to [10, Theorem 1.2 (2d)].

Proof of Theorem 1.2. Let f be given by Proposition 5.2. By Lemma 5.1, f is also
Lipschitz, convex, and increasing and so is ψ = f(0, ·) given in (5.6). Since f is the
viscosity solution of (5.5), it follows from the definition that f is a viscosity solution
of (5.12). The uniqueness of f follows from Proposition 5.3. Notice that FN ( 1

2 , 0) =
1
NE log

∫
expHN (σ)dPN (σ). Hence, due to the convexity of ξ and ψ, the limit of the

original free energy is given by the Hopf–Lax and Hopf representations evaluated at
(t, x) = ( 1

2 , 0).

6 Enriched models

Recently, Mourrat initiated a PDE approach to spin glasses [17, 19, 21, 18, 20]
(similar considerations also appeared in physics literature [15, 14, 3, 2]). Free energy
enriched by a RPC as the additional field is recast as the solution to a Hamilton–Jacobi
equation. In this section, we prove the Hopf–Lax representation of the limit free energy
for vector spins, Theorem 6.1, which extends the results in [19, 21].

We start by describing the enriched model. Recall that we write σ = (σ1, . . . , σN ) ∈
RD×N where σi ∈ RD is the i-th column vector of σ. For each i ∈ N, let (wπi (α))α∈suppR
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be an independent copy of (wπ(α))α∈suppR (see (1.3)) conditioned on R. For (t, µ) ∈
[0,∞)×Π, we consider

Ht,µ(σ, α) =
√
tHN (σ)− t

2
Nξ

(
σσᵀ

N

)
+

N∑
i=1

wµi (α) · σi −
1

2
µ(1) · σσᵀ,

FN (t, µ) =
1

N
E log

∫∫
exp

(
Ht,µ(σ, α)

)
dPN (σ)dR(α).

To describe the limit, we set

ψ(µ) = E log

∫∫
exp

(
wµ · τ − 1

2
µ(1) · ττᵀ

)
dP1(τ)dR(α)

which is equal to FN (0, µ) for every N . Recall ξ∗ defined in (1.6).

Theorem 6.1. If ξ is convex, then for every (t, µ) ∈ [0,∞)×Π,

lim
N→∞

FN (t, µ) = inf
π∈Π

{
ψ(µ+ t∇ξ ◦ π) +

t

2

∫ 1

0

ξ∗ (∇ξ(π(s))) ds

}
.

We explain the relationship between the functional inside the infimum and P(π)

in (1.5). Recall the definition of θ in (1.4). The convexity of ξ implies ξ∗(∇ξ(·)) =

θ. Therefore, we have P(π) = ψ(∇ξ ◦ π) + 1
2

∫ 1

0
ξ∗ (∇ξ(π(s))) ds as expected, since

FN (1, 0) = FN .
When D = 1, in the mixed p-spin case, ∇ξ maps S1

+ = [0,∞) back to itself. Hence,
writing ν = t∇ξ ◦ π, we can rewrite the formula in the above theorem as

inf
ν∈Π

{
ψ(µ+ ν) +

t

2

∫ 1

0

ξ∗(ν(s))ds

}
which recovers [21, Theorem 1.1] (actually, the above optimizes over a smaller set). The
proof in [21] is based on verifying the Parisi formula for the enriched free energy without
self-overlap correction ([21, Section 4]) and then transforming the Parisi formula into the
Hopf–Lax formula. Using our arguments, we can offer a direct proof. To avoid repetition,
we only sketch key steps.

Sketch of the proof of Theorem 6.1. We sketch key steps for the upper bound, the per-
turbation, and the lower bound. The details for the latter two can be seen in [8, Corollary
6.11] (also see [6] for the case D = 1).

Upper bound. For r ∈ [0, 1], we set

Hr
N (σ, α) = Hrt,µ

N (σ, α) +
√

1− r
N∑
i=1

wt∇ξ◦πi (α) · σi −
1− r

2
t∇ξ ◦ π(1) · σσᵀ

+
√
rNty(α)− rN

2
tθ(π(1))

similar to (2.2) with (y(α))α defined above (2.2). Then, we define ϕ as in (2.3) but for
Hr
N (σ, α) in the above. Then, we can compute the derivative of ϕ to get a result similar

to (2.4). We can then follow the computation below (2.4) to verify the upper bound.
Perturbation. In addition to σ, we need to add terms in the perturbation for α. Again,

let (an)n∈N enumerate {q ∈ SD+ : |q| ≤ 1} ∩ QD×D. Additionally, let (λn)n∈N enumerate
[0, 1] ∩ Q. For N ∈ N and h ∈ N4, let (Hh

N (σ, α))σ∈RD×N , α∈suppR be an independent
centered Gaussian process with variance

EHh
N (σ, α)Hh

N (σ′, α′) = N

(
ah1
·
(
σσ′ ᵀ

N

)�h2

+ λh3
α ∧ α′

)h4

.
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Recall gi(σ) for i ∈ {1, . . . , D(D + 1)/2} introduced above (3.2). For x = ((xh), (xi)) ∈
[0, 3]N

4 × [0, 3]
D(D+1)

2 , we set

Hpert,x
N (σ, α) =

∑
h∈N4

xhchH
h
N (σ, α) +

D(D+1)/2∑
i=1

xigi(σ)

where ch is a positive constant chosen sufficiently small so that the variance of chHh
N (σ)

is bounded by 2−2|h| for |h| = h1 + h2 + h3 + h4.

For l, l′ ∈ N, we set Rl,l
′

σ = σl(σl′ )ᵀ

N and Rl,l
′

α = αl ∧ αl′ . The entire overlap Rl,l
′

=

(Rl,l
′

σ , Rl,l
′

α ) is nowRD×D×R-valued. Set Rl,l
′

h = (ah1
·(Rl,l′σ )�h2 +λh3

Rl,l
′

α )h4 for each h and
R≤n = (Rl,l

′
)l,l′≤n for each n. Then, the concentration of Rl,l and the Ghirlanda–Guerra

identities still hold asymptotically as stated in Proposition 3.1.
Lower bound. Let F xN (t, µ) be the free energy associated with Ht,µ

N + N−
1
16Hpert,x

N .
For (Z(σ))σ and (Y (σ))σ defined above (4.1), we have that, up to an O(N−1) error and
uniformly in x, (N + 1)F xN+1(t, µ)−NF xN (t, µ) is equal to

AN (x)

= E log

〈∫
exp

((√
tZ(σ) + wµ(α)

)
· τ − 1

2

(
t∇ξ

(
σσᵀ

N

)
+ µ(1)

)
· ττᵀ

)
dP1(τ)

〉
x

− E log

〈
exp

(√
tY (σ)− 1

2
tθ

(
σσᵀ

N

))〉
x

.

Compared with the previous cavity computation (4.1), the additional term is wµ(α) · τ −
1
2µ(1) · σσᵀ and rescaling in t.

Passing to a subsequence, we can assume that
(
Rl,l

′
)
l,l′∈N

converges weakly to

some
(
Rl,l

′

∞

)
l,l′∈N

which satisfies the Ghirlanda–Guerra identities. We write Rl,l
′

∞ =(
Rl,l

′

∞,σ, R
l,l′

∞,α

)
where σ, α are purely symbolic. Let ζ be the quantile function of tr

(
R1,2
∞,σ
)
+

R1,2
∞,α. By synchronization, there is (Ψσ,Ψα) : [0,∞)→ SD+ × [0, 1] such that Rl,l

′

∞ has the
law of (Ψσ(ζ(s)),Ψα(ζ(s))) for s uniformly distributed over [0, 1]. By the invariance of the
RPC ([24, Theorem 4.4] and also [8, Proposition 4.8]), since α1 · α2 has uniform law over
[0, 1], we have that Ψα(ζ(s)) = s. Therefore, we can represent R∞ as follows (comparing
this with (4.9)): for every l, l′ ∈ N,

Rl,l
′

∞,σ = Ψσ

(
ζ
(
αl ∧ αl

′
)

+ 1l=l′
(
r − ζ

(
αl ∧ αl

′
)))

, Rl,l
′

∞,α = αl ∧ αl
′
,

where r ∈ R satisfies r ≥ ζ and (αl)l∈N is sampled from R⊗∞. We can approximate R∞
by

Ql,l
′

m =
(
πm

(
αl ∧ αl

′
)
, αl ∧ αl

′
)

for some sequence (πm)m∈N in Π. Then, we can carry out the same procedure after (4.10)
to see that the lim inf of AN is approximately bounded from below by

E log

〈∫
exp

((√
tZ(α) + wµ(α)

)
· τ − 1

2
(t∇ξ ◦ πm (1) + µ(1)) · ττᵀ

)
dP1(τ)

〉
x

− E log

〈
exp

(√
tY (α)− 1

2
tθ ◦ πm(1)

)〉
x

as m→∞, where (Z(α))α and (Y (α))α are centered Gaussian processes with variances
EZ(α)Z(α′)ᵀ = ∇ξ◦πm(α∧α′) and EY (α)Y (α′) = θ◦πm(α∧α′). Note that

√
tZ(α)+wµ(α)

has the same law of wµ+t∇ξ◦πm . This gives the matching lower bound.
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