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Abstract

We introduce the Ungarian Markov chain UL associated to a finite lattice L. The
states of this Markov chain are the elements of L. When the chain is in a state
x ∈ L, it transitions to the meet of {x} ∪ T , where T is a random subset of the set of
elements covered by x. We focus on estimating E(L), the expected number of steps
of UL needed to get from the top element of L to the bottom element of L. Using
direct combinatorial arguments, we provide asymptotic estimates when L is the weak
order on the symmetric group Sn and when L is the n-th Tamari lattice. When L is
distributive, the Markov chain UL is equivalent to an instance of the well-studied
random process known as last-passage percolation with geometric weights. One of
our main results states that if L is a trim lattice, then E(L) ≤ E(spine(L)), where
spine(L) is a specific distributive sublattice of L called the spine of L. Combining this
lattice-theoretic theorem with known results about last-passage percolation yields
a powerful method for proving upper bounds for E(L) when L is trim. We apply
this method to obtain uniform asymptotic upper bounds for the expected number of
steps in the Ungarian Markov chains of Cambrian lattices of classical types and the
Ungarian Markov chains of ν-Tamari lattices.
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1 Introduction

1.1 Ungar moves

Given a set X of n ≥ 4 points in the plane that do not all lie on a single line, one
can consider the lines that pass through two or more of the points in X . In 1970, Scott
[51] asked for the minimum possible number of distinct slopes determined by such a
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Figure 1: We ran the Ungarian Markov chain US400
with p = 1/2 starting with the

decreasing permutation. Here, we show the plots of the permutations that the Markov
chain reached at times 0, 200, 400, 600, 800, 1000, 1200, 1400 (read from left to right, with
the top row before the bottom).

collection of lines. He observed that the answer is at most n if n is even (take X to be
the set of vertices of a regular n-gon) and is at most n− 1 if n is odd (take X to be the
set consisting of the vertices and the center of a regular (n− 1)-gon). In 1979, Burton
and Purdy [18] proved that the answer is at least bn/2c. Then, in 1982, Ungar [58]
resolved the problem by showing that Scott’s original upper bound is in fact the truth.
His method, which followed a strategy proposed by Goodman and Pollack [34], involved
projecting the points in X onto a generic line. The ordering of the projected points
along the line can be interpreted as an element of Sn, the set of permutations of the
set [n] = {1, . . . , n}. As one slowly rotates the line, the projected points will sometimes
swap positions in the ordering (see Figure 2). Thus, Ungar actually worked in a purely
combinatorial setting in which he analyzed certain moves that can be performed on
permutations.

Define an Ungar move to be an operation that reverses some disjoint collection of
consecutive decreasing subsequences in a permutation. For example, we can perform
an Ungar move on the permutation 763198542 by reversing the consecutive decreasing
subsequences 63 and 542 to obtain the permutation 736198245. One can always perform
a trivial Ungar move, which does nothing. At the other extreme, a maximal Ungar move
reverses the maximal consecutive decreasing subsequences (also called descending
runs) of the permutation. Applying a maximal Ungar move to 763198542 yields the
permutation 136724589. Let Pop : Sn → Sn be the operator that applies a maximal Ungar
move. This operator is called the pop-stack sorting map because it coincides with the
map that passes a permutation through a data structure called a pop-stack in a right-
greedy manner. This map has already been studied in combinatorics and theoretical
computer science [4, 5, 8, 24, 25, 39, 42]. If one starts with a permutation in Sn and
repeatedly applies the pop-stack sorting map, then one will eventually reach the identity
permutation 12 · · ·n, which is fixed by Pop. Ungar proved that the maximum number of
iterations of Pop needed to send a permutation in Sn to the identity is n − 1. He also
proved the following theorem, which we record for later use (see [1, Chapter 12] for
further exposition on this result).
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Figure 2: Five points in the plane are numbered 1, 2, 3, 4, 5. After projecting the points
onto a line, we can read the ordering of the projections along the line to obtain a
permutation. As the line rotates, the associated permutation changes via an Ungar move.

Theorem 1.1 ([58]). Let n ≥ 4 be an integer. Suppose one starts with the decreasing
permutation n(n− 1) · · · 1 and applies nontrivial Ungar moves until reaching the identity
permutation 12 · · ·n. If the first Ungar move is not maximal, then the total number of
Ungar moves used is at least n if n is even and is at least n− 1 if n is odd.

Remark 1.2. The hypothesis that the first Ungar move is not maximal in Theorem 1.1
corresponds to the condition in the original geometric problem that the points in X are
not collinear.

All posets in this article are assumed to be finite. A lattice is a poset L such that
any two elements x, y ∈ L have a greatest lower bound—which is called their meet
and denoted by x ∧ y—and a least upper bound—which is called their join and denoted
by x ∨ y. The meet and join operations are commutative and associative, so we can
write

∧
X and

∨
X for the meet and join, respectively, of any nonempty set X ⊆ L. Let

covP (y) = {x ∈ P : xl y} denote the set of elements of a poset P that are covered by an
element y ∈ P .

We can describe Ungar moves in a purely poset-theoretic manner if we consider the
(right) weak order on Sn; this is a particular lattice that has been studied extensively in
algebraic combinatorics. Applying an Ungar move to a permutation x ∈ Sn is equivalent
to taking the meet

∧
({x}∪T ) in the weak order for some set T of elements covered by x.

This allows us to vastly generalize the definition of Ungar moves to the setting of lattices
as follows.

Definition 1.3. Let L be a lattice. An Ungar move is an operation that sends an element
x ∈ L to

∧
({x} ∪ T ) for some set T ⊆ covL(x). We say this Ungar move is trivial if T = ∅,

and we say it is maximal if T = covL(x).

Let L be a lattice. In [29, 30], the first author defined the pop-stack sorting operator
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PopL : L→ L to be the map that acts on an element of L by applying a maximal Ungar
move; that is,

PopL(x) =
∧

({x} ∪ covL(x)).

The articles [23, 29, 30, 33, 36, 50] study the dynamical properties and the image of
PopL for various choices of interesting lattices L.

1.2 Random Ungar moves

The goal of this article is to investigate what happens when one applies Ungar moves
randomly. Let us fix a probability p ∈ (0, 1]. Given an element x of a lattice L, we choose
a random subset T ⊆ covL(x) by adding each element of covL(x) to T with probability p;
we assume the choices for different elements are independent. We then apply the Ungar
move that sends x to

∧
({x} ∪ T ); let us call this a random Ungar move (the probability p

is implicit in this definition). This produces a Markov chain on L, a more symbol-heavy
definition of which is as follows.

Definition 1.4. Let L be a lattice, and fix a probability p ∈ (0, 1]. The Ungarian Markov
chain of L is the Markov chain UL with state space L such that for all x, y ∈ L, we have
the transition probability

P(x→ y) =
∑

T⊆covL(x)∧
({x}∪T )=y

p|T |(1− p)|covL(x)|−|T |.

If we were to allow p to be 0, then UL would simply fix each element of L; we assume
p > 0 to avoid this boring scenario. If p = 1, then UL is deterministic and agrees with
the operator PopL.

Remark 1.5. One could define a more general version of an Ungarian Markov chain by
assigning a probability pe to each edge e in the Hasse diagram of L. However, for the
sake of simplicity, we will only consider the case in which there is a single probability p.

The lattice L has a unique minimal element 0̂ and a unique maximal element 1̂. The
Markov chain UL is absorbing, and its unique absorbing state is 0̂. We will be primarily
interested in estimating the expected number of steps required to reach the absorbing
state 0̂ when we start at 1̂ in UL. We denote this expected number of steps by E(L). Note
that E(L) implicitly depends on the fixed probability p.

Remark 1.6. The first author and Williams [33] recently introduced semidistrim lattices,
which form a broad class of finite lattices that generalize distributive, semidistributive,
and trim lattices. They showed how to define a natural invertible rowmotion operator on
any semidistrim lattice, and they found that rowmotion is closely related to pop-stack
sorting. In some sense, pop-stack sorting can be viewed as the “non-invertible cousin”
of rowmotion. In a recent article [31], Nestoridi and the current authors introduced
rowmotion Markov chains by inserting randomness into the definition of rowmotion. One
can think of the Ungarian Markov chain of L as the “absorbing cousin” of the rowmotion
Markov chain of L.

1.3 Symmetric groups under the weak order

We view the symmetric group Sn as a lattice under the weak order. A descent of a
permutation x ∈ Sn is an index i ∈ [n− 1] such that x(i) > x(i+ 1); let Des(x) be the set
of descents of x. To apply a random Ungar move to a permutation x, we choose a subset
of Des(x) by including each descent with probability p, and we reverse the consecutive
decreasing subsequences of x corresponding to those descents. For example, the set of
descents of 731496852 is {1, 2, 5, 7, 8}; if we choose the subset {1, 7, 8} (this happens with
probability p3(1− p)2), then we obtain the new permutation 371496258.
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Remark 1.7. Applying a random Ungar move to a permutation x is equivalent to sending
x through a pop-stack (see [6, 52] for the definition) using the following two rules:

• the entries in the pop-stack must always be increasing from top to bottom;

• at each point in time when we have a choice whether to pop the entries out of the
stack, we do so with probability 1− p.

There is also an algebraic way to interpret an Ungar move if we think of Sn as the Cox-
eter group generated by {s1, . . . , sn−1}, where si is the transposition (i i+1). A parabolic
subgroup of Sn is a subgroup generated by a subset of {s1, . . . , sn−1}. Suppose we apply
an Ungar move to a permutation x by choosing a subset T ⊆ Des(x) and reversing
the corresponding decreasing subsequences. The result is the permutation xw0(T ),
where w0(T ) is the maximal element (in the weak order) of the parabolic subgroup of
Sn generated by {si : i ∈ T}. The element w0(T ) is an involution. Thus, if we start at a
permutation x and run the Markov chain USn until reaching the identity permutation
12 · · ·n (which is the absorbing state), we will generate a random factorization x1 · · ·xm,
where each factor xk is of the form w0(T ) for some T ⊆ [n − 1]. This factorization is
length-additive in the sense that the Coxeter length (i.e., the number of inversions) of x
is equal to the sum of the Coxeter lengths of the factors x1, . . . , xm.

The plot of a permutation x ∈ Sn is the graph showing the points (i, x(i)) for all i ∈ [n].
Figure 1 shows the plots of eight of the permutations that we obtained while running
US400

with p = 1/2 starting with the decreasing permutation. It would be extremely
interesting to determine the shapes of these permutations in a manner similar to what
was done in [2, 3, 27, 28] for permutations obtained via random sorting networks.

It follows easily from Ungar’s Theorem 1.1 that if we fix the probability p ∈ (0, 1),
then E(Sn), the expected number of steps in the Ungarian Markov chain USn needed to
go from the decreasing permutation to the identity permutation, is at least n− 1 + o(1);
see Lemma 3.1 below. Noting that Sn is a graded lattice of total rank

(
n
2

)
, one can

easily show that E(Sn) grows at most quadratically in n. The following theorem greatly
improves upon this naive upper bound.

Theorem 1.8. For p ∈ (0, 1) fixed, we have

n− 1 + o(1) ≤ E(Sn) ≤ 8

p
n log n+O(n)

as n→∞.

1.4 Distributive lattices

An order ideal of a poset P is a set Y ⊆ P such that if x, y ∈ P satisfy x ≤ y and
y ∈ Y , then x ∈ Y . When ordered by inclusion, the order ideals of P form a distributive
lattice that we denote by J(P ). Birkhoff’s Fundamental Theorem of Finite Distributive
Lattices [12] states that every (finite) distributive lattice is isomorphic to the lattice of
order ideals of some (finite) poset.

Let P be a poset, and consider an order ideal I ∈ J(P ). The set covJ(P )(I) consists of
the order ideals of P that can be obtained by removing a single maximal element from I.
Therefore, applying a random Ungar move to I is equivalent to removing a random
subset of the set of maximal elements of I, where each maximal element is removed with
probability p. Associate to each x ∈ P a geometric random variable Gx with parameter
p (i.e., with expected value 1/p), and assume that the random variables associated to
different elements of P are all independent. If we start the Markov chain UJ(P ) at the

top element 1̂ = P , then we can think of Gx as the number of steps throughout the
process during which the state (i.e., order ideal) has x as a maximal element. Thus, the
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number of steps needed to go from the top element 1̂ = P to the bottom element 0̂ = ∅ is
max

C∈MC(P )

∑
x∈C Gx, where MC(P ) is the set of maximal chains of P . Consequently,

E(J(P )) = E

(
max

C∈MC(P )

∑
x∈C

Gx

)
. (1.1)

The above reformulation of the Markov chain UJ(P ) in terms of geometric random
variables is a well-studied random process known as last-passage percolation with
geometric weights. Therefore, while we originally viewed Ungarian Markov chains
as randomized versions of pop-stack sorting, one could equally well package them as
generalizations of last-passage percolation with geometric weights.

Last-passage percolation has been investigated thoroughly when P is the poset
associated to a Young diagram, where it has also been called the multicorner growth
process [48, Chapters 4 & 5] and is very closely related to the totally asymmetric
simple exclusion process (TASEP) [49]. In this setting, very precise results are known
concerning the number of steps needed to reach the absorbing state 0̂ and even what
the order ideals (i.e., Young diagrams) typically “look like” throughout the process. We
refer the reader to [48, Chapters 4 & 5] for more details; here, we simply state a result
that we will employ later. Let Rk×` denote the k × ` rectangle poset, which is simply the
product of a chain of length k and a chain of length `. The following result is originally
due to Cohn–Elkies–Propp [26] and Jockusch–Propp–Shor [38] (using different language);
it appears as [48, Theorem 2.4].

Theorem 1.9 ([26, 38]). Let (kn)n≥1 and (`n)n≥1 be sequences of positive integers such
that the limit (k, `) = lim

n→∞
1
n (kn, `n) exists. As n→∞, we have

E(J(Rkn×`n)) =
1

p

(
k + `+ 2

√
(1− p)k `

)
n+ o(n).

The next theorem follows from (1.1) and a Chernoff bound; we provide the details in
Section 4.

Theorem 1.10. Let (Pn)n≥1 be a sequence of posets. Suppose there exist constants Γ

and µ such that |MC(Pn)| ≤ Γ(1+o(1))n and such that the maximum size of a chain in Pn
is at most µn. As n→∞, we have

E(J(Pn)) ≤ 1

p

(
µ+ log Γ +

√
2µ log Γ + (log Γ)2

)
n+ o(n).

We note that for rectangle posets, the upper bound in Theorem 1.10 is weaker than
the bound one would obtain from Theorem 1.9.

1.5 Trim lattices

Thomas [56] introduced trim lattices as generalizations of distributive lattices that
need not be graded. There are several notable examples of trim lattices such as Cambrian
lattices and ν-Tamari lattices; see [57, Section 7] for a more extensive list. (Note,
however, that the weak order on Sn is not trim when n ≥ 3.) In [57], Thomas and
Williams investigated fascinating dynamical properties of trim lattices and also related
their results to quiver representation theory. They defined the spine of a trim lattice L
to be the set spine(L) of elements that lie on at least one maximum-length chain of L,
and they showed that spine(L) is a distributive sublattice of L. The following is one of
our main results.

Theorem 1.11. If L is a trim lattice, then

E(L) ≤ E(spine(L)).
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In fact, we have the following more general result, which we will obtain as a corollary
of Theorem 1.11, (1.1), and known properties of trim lattices. Note that quotients and
intervals of trim lattices are trim.

Corollary 1.12. If L is a trim lattice and L′ is a quotient or an interval of L, then

E(L′) ≤ E(spine(L)).

The proof of Theorem 1.11 is lattice-theoretic and relies on several known properties
of trim lattices. Because spine(L) is distributive, we can interpret its Ungarian Markov
chain as last-passage percolation and use the results discussed in Section 1.4 to obtain
immediate upper bounds for E(spine(L)). Thus, Theorem 1.11 and Corollary 1.12 combine
lattice theory and probability theory to yield a powerful method for bounding E(L) for
any trim lattice L. We illustrate this method with some applications for some special
classes of trim lattices, whose definitions we postpone.

Associated to a Coxeter element c of a finite Coxeter group W is an important lattice
Cambc, called the c-Cambrian lattice, which Reading introduced in [43, 45]. Cambrian
lattices have now been studied thoroughly because of their rich combinatorial and lattice-
theoretic properties and their connections to representation theory, cluster algebras, and
polyhedral geometry [7, 21, 37, 46, 47, 54, 57]. Because we are primarily interested in
asymptotic results, it makes little sense for us to deal with Coxeter groups of exceptional
types. Thus, we will focus on the classical types A, B, and D.

Theorem 1.13. For each n ≥ 1, choose a Coxeter element c(n) of the Coxeter group An.
As n→∞, we have

E (Cambc(n)) ≤
1

p

(
2 + 2

√
1− p

)
n+ o(n).

The Coxeter graph of the Coxeter group Bn is a path with vertices s0, . . . , sn−1 and
edges of the form {si, si+1} for 0 ≤ i ≤ n − 2. A Coxeter element of Bn is uniquely
determined by orienting the edges of this graph; let r(c) denote the number of edges
{si, si+1} that are oriented from si to si+1 in the orientation corresponding to a Coxeter
element c.

Theorem 1.14. For each n ≥ 2, choose a Coxeter element c(n) of the Coxeter group Bn,
and assume that the limit r = lim

n→∞
1
nr(c

(n)) exists. As n→∞, we have

E (Cambc(n)) ≤
1

p

(
3 + 2

√
(1− p)(2− r)(1 + r)

)
n+ o(n).

The Coxeter graph of the Coxeter group Dn has vertices s0, . . . , sn−1, edges of the
form {si, si+1} for 1 ≤ i ≤ n−2, and an additional edge {s0, s2}. A Coxeter element of Dn

is uniquely determined by orienting the edges of this graph. Let r(c) denote the number
of edges {si, si+1} that are oriented from si to si+1 in the orientation corresponding to a
Coxeter element c (note that r(c) does not depend on the orientation of {s0, s2}), and let
u(c) denote the number of edges in a maximum-length directed path in this orientation.

Theorem 1.15. For each n ≥ 4, choose a Coxeter element c(n) of the Coxeter group Dn,
and assume that the limits r = lim

n→∞
1
nr(c

(n)) and u = lim
n→∞

1
nu(c(n)) exist. As n→∞, we

have

E (Cambc(n)) ≤
1

p

(
6 + 4

√
(1− p)(2− r)(1 + r)

)
n+ o(n)

and

E(Cambc(n)) ≤
1

p

(
2 + u+ log

(
5 · 2u

)
+

√
2(2 + u) log (5 · 2u) + (log (5 · 2u))

2

)
n+ o(n).
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Remark 1.16. Let us consider numerical approximations of the upper bounds in Theo-
rems 1.13 to 1.15 when p = 1/2. The bound in Theorem 1.13 is (6.82843 + o(1))n. The
bound in Theorem 1.14 ranges from (10 + o(1))n to (10.24264 + o(1))n as r ranges from
0 to 1. The first bound in Theorem 1.15 ranges from (20 + o(1))n to (20.48528 + o(1))n

as r ranges from 0 to 1, while the second bound ranges from (13.22822 + o(1))n to
(19.34986 + o(1))n as u ranges from 0 to 1. (So the second bound in Theorem 1.15 is
always better than the first when p = 1/2, but the first bound ends up being better when
p is closer to 1.)

Remark 1.17. If we maximize the bounds in Theorems 1.13 to 1.15 over all values of r
and u, we obtain the upper bounds

1

p

(
2 + 2

√
1− p

)
n+ o(n),

1

p

(
3 + 3

√
1− p

)
n+ o(n),

and
1

p
min

{
6 + 6

√
1− p, 3 + log(10) +

√
6 log(10) + (log(10))2

}
n+ o(n),

respectively, which are linear in n and apply uniformly to all Cambrian lattices of the
prescribed types. It is not clear how one could obtain such linear bounds (with any
leading coefficients whatsoever) without the use of Theorem 1.11.

For the sake of completeness, we will also prove the following very easy result about
Cambrian lattices of dihedral groups.

Theorem 1.18. Let c be a Coxeter element of I2(m), the dihedral group of order 2m.
Then

E(Cambc) =
1 +m(1− p)

2p− p2
.

Cambrian lattices are generalizations of Tamari lattices, which are significant objects
in algebraic combinatorics that have been studied since the work of Tamari in 1962
[55]. Bergeron and Préville-Ratelle [11] introduced different generalizations of Tamari
lattices called m-Tamari lattices in their study of trivariate diagonal harmonics. These
lattices have now received a great deal of further attention [15, 16, 22, 32, 35]. Going
further, Préville-Ratelle and Viennot [41] generalized m-Tamari lattices by defining the
ν-Tamari lattice Tam(ν), where ν is an arbitrary lattice path consisting of unit north and
east steps; this more general class of lattices has been connected to diagonal coinvariant
spaces [41], polyhedral geometry [10, 9, 19], and combinatorial dynamics [30, 32].

We will provide a simple explicit description of the spine of Tam(ν) (see Proposi-
tion 7.1), which appears to be new. Note, however, that spines of m-Tamari lattices were
studied in [35] (see also [40]). Combining this description with Theorem 1.9, we will
deduce the following upper bound for E(Tam(ν)).

Theorem 1.19. For each ` ≥ 1, choose a lattice path ν(`) of length ` consisting of north
and east steps. Let n` be the number of north steps in ν(`), and assume that the limit
n = lim

`→∞
1
`n` exists. As `→∞, we have

E(Tam(ν(`))) ≤ 1

p

(
1 + 2

√
(1− p)n(1− n)

)
`+ o(`).

1.6 Tamari lattices

The original Tamari lattice Tamn is a Cambrian lattice of type An−1 and is also Tam(ν)

when ν = (NE)n. By specializing either Theorem 1.13 or Theorem 1.19, we find that
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E(Tam(ν)) ≤ 1
p (2 + 2

√
1− p)n + o(n). Because Tamari lattices are so fundamental, we

will analyze them on their own and derive a better upper bound.
In [17], Bruss and O’Cinneide studied the asymptotic behavior of ρp(n), which is

defined to be the probability that the maximum of n independent geometric random
variables, each with expected value 1/p, is attained uniquely. Somewhat surprisingly,
they found that lim

n→∞
ρp(n) does not exist if p < 1 and that lim

n→∞
(ρp(n)−Υp(n)) = 0, where

Υp(x) =

px
∑
k∈Z

(1− p)ke−(1−p)
kx if p < 1;

0 if p = 1.

Note that Υp((1− p)x) = Υp(x) for all x > 0. Therefore, the quantity

ρp = max
0<x<1

Υp(x)

is equal to lim sup
n→∞

ρp(n). When p = 1/2, we have ρ1/2 ≈ 0.72136.

Theorem 1.20. We have

E(Tamn) ≤ 2

p

(√
ρp(1 + ρp)− ρp

)
n+ o(n)

as n→∞.

Remark 1.21. Because √
ρp(1 + ρp)− ρp <

√
1 + ρp − ρp ≤ 1,

the upper bound for E(Tamn) provided by either Theorem 1.13 or Theorem 1.19 is weaker
than the upper bound in Theorem 1.20. When we set p = 1/2, the former upper bound is
(4 + 2

√
2 + o(1))n ≈ (6.82843 + o(1))n, while the latter is approximately (1.57186 + o(1))n.

1.7 Outline

In Section 2, we recall some basic definitions concerning posets and lattices, and
we prove a lemma that bounds the tails of a sum of i.i.d. geometric random variables.
Section 3 is devoted to proving Theorem 1.8, which bounds E(Sn). In Section 4, we
consider E(L) when L is distributive; we state some corollaries that follow from inter-
preting UL as last-passage percolation, and we prove Theorem 1.10. Section 5 recalls
necessary background about trim lattices and proves Theorem 1.11. In Section 6, we
recall background about Cambrian lattices, describe the spines of Cambrian lattices, and
combine Theorem 1.11 with Theorems 1.9 and 1.10 to prove Theorems 1.13 to 1.15; we
also quickly prove Theorem 1.18. In Section 7, we discuss background about ν-Tamari
lattices, derive a simple description of the spines of ν-Tamari lattices, and use this
description to deduce Theorem 1.19 from Theorems 1.9 and 1.11. Section 3 provides a
direct combinatorial proof of Theorem 1.20, which bounds E(Tamn) from above. Finally,
Section 9 lists several enticing suggestions for further research.

2 Preliminaries

We assume basic familiarity with the theory of posets (partially ordered sets), as
discussed in [53, Chapter 3]. As mentioned in the introduction, all posets considered in
this article are assumed to be finite. Here, we recall some notions that we will need.

Let P be a poset. A subposet of P is a poset P ′ ⊆ P such that if x, y ∈ P ′ satisfy x ≤ y
in P ′, then x ≤ y in P . The dual of P is the poset P ∗ with the same underlying set as P
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such that x ≤ y in P if and only if y ≤ x in P ∗. Given x, y ∈ P with x ≤ y, the interval
from x to y is the set [x, y] = {z ∈ P : x ≤ z ≤ y}. If x < y and [x, y] = {x, y}, then we say
y covers x and write xl y. We write covP (y) = {x ∈ P : xl y} for the set of elements of
P that are covered by y. A chain of P is a totally-ordered subset of P ; we say a chain
is maximal if it is not properly contained in another chain. Let MC(P ) denote the set
of maximal chains of P . The length of a chain C of P is |C| − 1. The length of P is the
maximum of the lengths of the chains of P . We say P is graded if all of its maximal
chains have the same length.

As discussed in Section 1, a lattice is a poset L such that any two elements x, y ∈ L
have a meet x∧ y and a join x∨ y. Write

∧
X and

∨
X for the meet and join, respectively,

of a nonempty set X ⊆ L. The lattice L has a unique minimal element 0̂ and a unique
maximal element 1̂; we use the convention that

∧
∅ = 1̂ and

∨
∅ = 0̂. A sublattice of L

is a lattice L′ ⊆ L whose meet and join operations agree with those of L. We implicitly
view intervals of L as sublattices of L.

Given lattices L and L′, a map ϕ : L → L′ is a lattice homomorphism if ϕ(x ∧ y) =

ϕ(x) ∧ ϕ(y) and ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y) for all x, y ∈ L. We say L′ is a quotient of L if
there exists a surjective lattice homomorphism from L to L′.

Throughout this article, we omit floor and ceiling symbols when they do not affect
the relevant asymptotics.

We will frequently need the following lemma, which allows us to bound the upper
tails of a sum of i.i.d. geometric random variables.

Lemma 2.1. Let G1, . . . , Gk be independent geometric random variables with parameter
p. For each real number γ ≥ 1, we have

P

(
k∑
i=1

Gi > γk/p

)
≤ e−

γk
2 (1−γ−1)

2

.

Proof. Extend G1, . . . , Gk to an infinite sequence G1, G2, . . . of independent geometric
random variables with parameter p. Let

Ym =

{
1 if m =

∑j
i=1Gi for some j ≥ 1;

0 otherwise.

Then Y1, Y2, . . . is a sequence of independent Bernoulli random variables, each with
expected value p. Thus,

∑
1≤m≤γk/p Ym is a binomial random variable with parameters

bγk/pc and p. Let µ = γk and δ = 1 − γ−1 so that k = (1 − δ)µ. A standard Chernoff
bound tells us that

P

(
k∑
i=1

Gi > γk/p

)
= P

 ∑
1≤m≤γk/p

Ym < k

 ≤ e−µδ2/2 = e−
γk
2 (1−γ−1)

2

.

3 Symmetric groups under the weak order

Let si denote the transposition (i i+ 1) in the symmetric group Sn. The weak order
on Sn is the partial order in which there is a cover relation wlw′ whenever i is a descent
of w′ and w′ = wsi (more precisely, this is the right weak order). It is well known that
the weak order on Sn is a lattice; we will simply write Sn for this lattice.

In this section, we analyze the Ungarian Markov chains USn . We will prove Theo-
rem 1.8, which provides asymptotic estimates for the expected value E(Sn). We assume
throughout this section that our fixed probability p is strictly between 0 and 1.

To begin, let us derive the lower bound in Theorem 1.8 from Ungar’s Theorem 1.1.

Lemma 3.1. We have n− 1 + o(1) ≤ E(Sn).
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Proof. Let us run USn starting at the top element 1̂ = n(n − 1) · · · 1. This element 1̂

covers n− 1 elements of Sn, so USn has the transition probability P(1̂→ 1̂) = (1− p)n−1.
The only Ungar move that we can apply to 1̂ to obtain 0̂ is the maximal Ungar move, and
this has transition probability P(1̂→ 0̂) = pn−1. If the first random Ungar move that we
apply is not trivial or maximal, then it follows immediately from Theorem 1.1 that the
total number of steps we will need to reach 0̂ is at least n− 1. Therefore,

E(Sn) ≥ (1− p)n−1(1 + E(Sn)) + pn−1 · 1 +
∑

∅6=T([n−1]

p|T |(1− p)n−1−|T |(n− 1)

= (1− p)n−1(1 + E(Sn)) + pn−1 + (1− (1− p)n−1 − pn−1)(n− 1)

= 1 + (1− p)n−1E(Sn) + (1− (1− p)n−1 − pn−1)(n− 2)

It follows that

E(Sn) ≥ 1 + (1− (1− p)n−1 − pn−1)(n− 2)

1− (1− p)n−1
= n− 2 +

1− pn−1(n− 2)

1− (1− p)n−1
= n− 1 + o(1).

We now proceed to prove the upper bound in Theorem 1.8.
Given a permutation w ∈ Sn, we write DB(w) for the set {w(i + 1) : i ∈ Des(w)} of

descent bottoms of w. For integers β ∈ [n− 1] and j ≥ 0, let X(β)
j be a Bernoulli random

variable with expected value p; assume that all of these random variables for different
choices of β and j are independent. We can simulate the Markov chain USn using these
random variables as follows. Starting with the decreasing permutation σ0 = n(n−1) · · · 1,
we are going to create a sequence σ0, σ1, . . . of permutations. Suppose we have already
generated the permutations σ0, . . . , σt. We will define σt+1 to be the permutation obtained
by choosing a random subset Tt of Des(σt) and then applying the corresponding random
Ungar move to σt. In Coxeter-theoretic terminology, this means that σt+1 = σtw0(Tt),
where w0(Tt) is the maximal element of the parabolic subgroup of Sn generated by
{si : i ∈ Tt}. For each β ∈ DB(σt), let jt(β) = |{` ∈ {0, . . . , t − 1} : β ∈ DB(σ`)}|. The
random variables from above now enter the picture: we define

Tt =
{
i ∈ Des(σt) : X

(σt(i+1))
jt(σt(i+1)) = 1

}
.

Note that for permutations w,w′ ∈ Sn, the conditional probability P(σt+1 = w′ | σt = w)

is equal to the transition probability P(w → w′) in USn .
This construction is designed so that if β appears immediately to the right of some

entry α > β in σt, then β will move to the left of α when we transition to σt+1 if and

only if X(β)
jt(β)

= 1. Our definition of jt(β) is such that X(β)
0 , . . . , X

(β)
jt(β)−1 are precisely

the random variables from the sequence (X
(β)
j )j≥0 that were already used when we

generated the permutations σ0, . . . , σt (so X(β)
jt(β)

is the next available random variable
from this sequence).

Let N be the unique integer such that σN−1 6= σN = 12 · · ·n. Then σt = 12 · · ·n for

all t ≥ N . For β ∈ [n− 1], let η(β)0 < · · · < η
(β)
q(β) be the indices t such that β ∈ DB(σt). If

β < β′ and β appears to the left of β′ in a permutation σt, then β must also appear to the
left of β′ in all of the permutations σt+1, σt+2, . . . . This implies that

q(β)∑
j=0

X
(β)
j ≤ n− β. (3.1)

Observe that N − 1 = max
1≤β≤n−1

η
(β)
q(β).
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Lemma 3.2. Assume that

b−1∑
j=a

X
(β)
j ≥ p(b− a)−

√
8p log n ·

√
b− a

for all 1 ≤ β ≤ n− 1 and 0 ≤ a < b ≤ q(β) + 1. Then N ≤ 8
pn log n+O(n).

Proof. To ease notation, let χ(n) =
√

8p log n. Let rβ(s) = n− σ−1s (β) be the number of
entries that appear to the right of β in σs. We will prove by induction on β that

rβ(s) ≥ min{n− β, ps− χ(n)
√
βs− (p+ 1)(β − 1)} (3.2)

for all 1 ≤ β ≤ n and 0 ≤ s ≤ N .
We first consider the base case when β = 1. Note that η(1)j = j for every 0 ≤ j ≤ q(1).

Suppose r1(s) < n− 1. Then s ≤ q(1), so

r1(s) ≥
s−1∑
j=0

X
(1)
j ≥ ps− χ(n)

√
s,

where we obtained the last inequality by setting a = 0 and b = s in the hypothesis of the
lemma. This proves the base case.

We may now assume β ≥ 2 and proceed by induction on β. Suppose by way of
contradiction that there exists 0 ≤ s ≤ N such that

rβ(s) < n− β and rβ(s) < ps− χ(n)
√
βs− (p+ 1)(β − 1).

Then it follows from our induction hypothesis that rβ(s) ≤ min{r1(s), . . . , rβ−1(s)}−2. Let
s∗ be the largest integer such that s∗ ≤ s− 1 and rβ(s∗) = min{r1(s∗), . . . , rβ−1(s∗)} − 1

(so β appears immediately to the right of the rightmost entry from the list 1, . . . , β − 1

in σs∗); it is straightforward to see from the original definition of an Ungar move (for
Sn) that such an integer s∗ must exist. Because the entry immediately to the left of β in
σs∗ is smaller than β, we must have rβ(s∗ + 1) = rβ(s∗) = min{r1(s∗), . . . , rβ−1(s∗)} − 1.
It follows from our choice of s∗ that β is a descent bottom of each of the permutations
σs∗+1, . . . , σs−1. Consequently, there exists k such that the numbers η(β)k , . . . , η

(β)
k+s−s∗−2

are the same as the numbers s∗ + 1, . . . , s− 1, respectively. Applying the hypothesis of
the lemma with a = k and b = k + s− s∗ − 1, we find that

rβ(s) ≥ rβ(s∗ + 1) +

k+s−s∗−2∑
j=k

X
(β)
j

= min{r1(s∗), . . . , rβ−1(s∗)} − 1 +

k+s−s∗−2∑
j=k

X
(β)
j

≥ min{r1(s∗), . . . , rβ−1(s∗)} − 1 + p(s− s∗ − 1)− χ(n)
√
s− s∗ − 1. (3.3)

Our induction hypothesis tells us that

min{r1(s∗), . . . , rβ−1(s∗)} ≥ min{n− β + 1, ps∗ − χ(n)
√

(β − 1)s∗ − (p+ 1)(β − 2)}.

If min{r1(s∗), . . . , rβ−1(s∗)} = n − β + 1, then rβ(s∗) = n − β, contradicting the fact
that rβ(s) ≤ min{r1(s), . . . , rβ−1(s)} − 2 (if β appears in position β in σs∗ , then it cannot
appear further to the right in σs). This shows that min{r1(s∗), . . . , rβ−1(s∗)} < n− β + 1,
so min{r1(s∗), . . . , rβ−1(s∗)} ≥ ps∗−χ(n)

√
(β − 1)s∗− (p+ 1)(β−2). Combining this with

(3.3) yields

rβ(s) ≥ ps∗ − χ(n)
√

(β − 1)s∗ − (p+ 1)(β − 2)− 1 + p(s− s∗ − 1)− χ(n)
√
s− s∗ − 1
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= ps− χ(n)
[√

(β − 1)s∗ +
√
s− s∗ − 1

]
− (p+ 1)(β − 1)

≥ ps− χ(n)
√
βs− (p+ 1)(β − 1),

where the inequality
√

(β − 1)s∗+
√
s− s∗ − 1 ≤

√
βs used to deduce the last line follows

from basic calculus. This contradicts our original choice of s, so our inductive proof of
(3.2) is complete.

For every 0 ≤ s ≤ N − 1, there exists β ∈ [n] such that rβ(s) < n− β. Therefore, if k
is an integer such that

pk − χ(n)
√
βk − (p+ 1)(β − 1) ≥ n− β (3.4)

for all 1 ≤ β ≤ n, then (3.2) tells us that N ≤ k. If k satisfies the inequality (3.4) when
β = n, then it also satisfies (3.4) for all β ∈ [n]. Thus, to get an upper bound for N , we
simply need to find an integer k such that pk − χ(n)

√
n
√
k − (p + 1)(n − 1) ≥ 0. The

left-hand side of this inequality is quadratic in
√
k, so we can use the quadratic formula

(and the definition of χ(n)) to find that we just need k to satisfy

√
k ≥ 1

2p

[√
8pn log n+

√
8pn log n+ 4p(p+ 1)(n− 1)

]
.

Now,
√

8pn log n+ 4p(p+ 1)(n− 1) =
√

8pn log n+O
(√

n/ log n
)

, so

N ≤
(

1

2p

(
2
√

8pn log n+O
(√

n/ log n
)))2

=
8

p
n log n+O(n).

Lemma 3.3. We have

P

(
max

1≤β≤n−1
q(β) > 2n/p

)
< ne−n/4.

Proof. We know by (3.1) that
∑q(β)
j=0 X

(β)
j < n. This implies that q(β) is bounded above

by a sum of n independent geometric random variables, each with expected value 1/p.
Setting k = n and γ = 2 in Lemma 2.1, we find that

P(q(β) > 2n/p) ≤ e−n/4.

The desired result now follows from taking a union bound over all 1 ≤ β ≤ n− 1.

We can now finish the proof of the main result of this section.

Proof of Theorem 1.8. The lower bound in Theorem 1.8 is Lemma 3.1, so we just need
to prove the upper bound.

Consider simulating USn by creating the sequence of permutations (i.e., states)
σ0, . . . , σN (where σ0 = n(n − 1) · · · 1 and σN = 12 · · ·n 6= σN−1) as above. Preserve the
notation from earlier. Every maximal chain in the weak order on Sn has

(
n
2

)
+ 1 < n2/2

elements. At each step during the Markov chain before we reach the bottom state
12 · · ·n, the probability of moving to a strictly lower state is at least p. Therefore,

N ≤
∑(n2)
`=1G`, where G1, . . . , G(n2)

are independent geometric random variables with

parameter p. Appealing to Lemma 2.1, we find that

∞∑
m=dn2/pe+1

mP(N = m) ≤
∞∑

m=dn2/pe

(m+ 1)P(N > m)

≤
∞∑

m=dn2/pe

(m+ 1)P

(n2)∑
`=1

G` > m


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≤
∞∑

m=dn2/pe

(m+ 1) exp

(
−pm

2

(
1− 1

pm

(
n

2

))2
)

≤
∞∑

m=dn2/pe

(m+ 1) exp (−pm/8)

= O
(
n2e−n

2/8
)
. (3.5)

Let A be the event that max
1≤β≤n−1

q(β) ≤ 2n/p, and let A′ be the event that

b−1∑
j=a

X
(β)
j ≥ p(b− a)−

√
8p log n ·

√
b− a

for all 1 ≤ β ≤ n − 1 and 0 ≤ a < b ≤ q(β) + 1. For any particular 1 ≤ β ≤ n − 1 and
0 ≤ a < b ≤ q(β) + 1, we can use a Chernoff bound to see that

P

b−1∑
j=a

X
(β)
j < p(b− a)−

√
8p log n ·

√
b− a

 ≤ n−4.
Therefore,

P(A \A′) ≤
∑

1≤β≤n−1

∑
0≤a<b≤2n/p+1

n−4 = O(n−1).

Combined with Lemma 3.3, this shows that P(¬(A ∩ A′)) = O(n−1). According to
Lemma 3.2, we have N ≤ 8

pn log n+O(n) if A ∩A′ occurs. Consequently,

dn2/pe∑
m=1

mP(N = m) =

dn2/pe∑
m=1

mP(A ∩A′ ∩ (N = m)) +

dn2/pe∑
m=1

mP(¬(A ∩A′) ∩ (N = m))

≤ E(N | (A ∩A′)) +
⌈
n2/p

⌉
P(¬(A ∩A′))

≤ 8

p
n log n+O(n).

Combining this with (3.5) shows that E(Sn) =
∑∞
m=1mP(N = m) = 8

pn log n+ O(n), as
desired.

4 Distributive lattices

Because Ungarian Markov chains on distributive lattices can be reformulated in terms
of last-passage percolation with geometric weights—a well-studied topic in probability—
we do not have too many new things to say about them. This short section is devoted to
expounding upon some of the discussion from Section 1.4.

We first mention two immediate corollaries of the equation (1.1) that are not obvious
from the original definition of Ungarian Markov chains.

Corollary 4.1. If P ′ is a subposet of a poset P , then E(J(P ′)) ≤ E(J(P )).

Proof. This follows from (1.1) because every maximal chain of P ′ is contained in a
maximal chain of P .

Corollary 4.2. Let L be a distributive lattice, and let L∗ be the dual of L. We have
E(L∗) = E(L).
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Proof. There is a poset P such that L ∼= J(P ) and L∗ ∼= J(P ∗). The result follows from
(1.1) because every maximal chain of P is equal (as a set) to a maximal chain of P ∗ and
vice versa.

Remark 4.3. The hypothesis that L is distributive in Corollary 4.2 is crucial. For example,
suppose L is the c-Cambrian lattice of type A3, where c = s1s3s2 (see Section 6.2 for
definitions). Then L is both trim and semidistributive, but it is not distributive. We have
E(L) 6= E(L∗) when the probability p is generic.

We now prove Theorem 1.10.

Proof of Theorem 1.10. As in Section 1.4, consider a collection (Gx)x∈Pn of independent
geometric random variables with parameter p. Let

δ =
1

p

(
µ+ log Γ +

√
2µ log Γ + (log Γ)2

)
.

Fix ε > 0, and let η = (δ+ε)p
µ . One can check that this choice of η guarantees

ηµn

2

(
1− η−1

)2
> log Γ,

so
Γ(1+o(1))ne−

ηµn
2 (1−η−1)

2

= o(1).

Suppose C is a maximal chain of Pn of size k. For each integer m ≥ ηµn/p, we can use
Lemma 2.1 and the fact that k ≤ µn to compute

P

(∑
x∈C

Gx > m

)
≤ e−

pm
2 (1− k

pm )
2

≤ e−
pm
2 (1− µn

pm )
2

≤ e−
pm
2 (1−η−1)

2

.

Consequently,

∑
m≥ηµn/p

P

(∑
x∈C

Gx > m

)
≤

∑
m≥ηµn/p

e−
pm
2 (1−η−1)

2

= O
(
e−

p(ηµn/p)
2 (1−η−1)

2)
= O

(
e−

ηµn
2 (1−η−1)

2)
.

By a union bound, this implies that

∑
m≥ηµn/p

P

(
max

C∈MC(Pn)

∑
x∈C

Gx > m

)
= O

(
|MC(Pn)| e−

ηµn
2 (1−η−1)

2)
= O

(
Γ(1+o(1))ne−

ηµn
2 (1−η−1)

2)
= o(1).

Finally, using (1.1), we find that

E(J(Pn)) = E

(
max

C∈MC(Pn)

∑
x∈C

Gx

)

=
∑
m≥0

P

(
max

C∈MC(Pn)

∑
x∈C

Gx > m

)

=
∑

0≤m<ηµn/p

P

(
max

C∈MC(Pn)

∑
x∈C

Gx > m

)
+

∑
m≥ηµn/p

P

(
max

C∈MC(Pn)

∑
x∈C

Gx > m

)

EJP 28 (2023), paper 163.
Page 15/39

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1056
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Ungarian Markov chains

≤ ηµn

p
+ 1 + o(1).

Since ηµn
p = (δ + ε)n and ε was arbitrary, this proves that E(J(Pn)) ≤ δn + o(n), as

desired.

5 Trim lattices

5.1 Basics of trim lattices

Let L be a lattice. An element j ∈ L is called join-irreducible if it covers exactly one
element of L; in this case, we write j∗ for the unique element of L covered by j. Dually,
an element m ∈ L is called meet-irreducible if it is covered by exactly one element of
L; in this case, we write m∗ for the unique element of L that covers m. Let JL andML

be the set of join-irreducible elements of L and the set of meet-irreducible elements of
L, respectively. For each x ∈ L, we have x =

∨
{j ∈ JL : j ≤ x} =

∧
{m ∈ ML : m ≥ x}.

This implies that the length of L is at most |JL| and also at most |ML|; we say L is
extremal if its length is equal to both |JL| and |ML|.

An element x of a lattice L is called left modular if for all y, z ∈ L with y ≤ z, we have

(y ∨ x) ∧ z = y ∨ (x ∧ z).

We say L is left modular if it has a maximal chain whose elements are all left modular.
A lattice is trim if it is both extremal and left modular. Let us recall some facts about

trim lattices from [33, 56, 57].
Suppose L is trim. For each join-irreducible element j ∈ JL, there is a unique

meet-irreducible element κL(j) ∈ML such that

j ∧ κL(j) = j∗ and j ∨ κL(j) = (κL(j))∗. (5.1)

The resulting map κL : JL →ML is a bijection. The Galois graph of L is the loopless
directed graph G(L) with vertex set JL such that for all distinct j, j′ ∈ JL, there is an
arrow j → j′ in G(L) if and only if j 6≤ κL(j′). This graph is acyclic (i.e., it has no directed
cycles), so we can define a partial order � on JL by declaring that j � j′ if there exists a
directed path in G(L) from j′ to j. We call the resulting poset P(L) = (JL,�) the Galois
poset of L.

Proposition 5.1 ([56, Theorem 1], [57, Proposition 3.13], [33, Theorem 6.2 & Corol-
lary 7.10]). Let L be a trim lattice. If u, v ∈ L are such that u ≤ v, then the interval [u, v]

of L is also a trim lattice. Moreover, G([u, v]) is isomorphic to the subgraph of G(L)

induced by {j ∈ JL : j ≤ v, κL(j) ≥ u}.

5.2 Spines

Not all trim lattices are graded; in fact, a trim lattice is graded if and only if it is
distributive [56, Theorem 2]. The spine of a trim lattice L, denoted spine(L), is the set of
elements that belong to a maximum-length chain of L. According to [57, Proposition 2.6],
the spine of L is a distributive sublattice of L, and

spine(L) ∼= J(P(L)). (5.2)

In this subsection, we will prove Theorem 1.11, which states that E(L) ≤ E(spine(L)).
First, we need the following lemma.

Lemma 5.2. Let L be a trim lattice, and let x ∈ spine(L). The interval [0̂, x] of L is a trim
lattice whose spine is spine(L) ∩ [0̂, x].
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Proof. We know by Proposition 5.1 that [0̂, x] is trim. Suppose y ∈ spine(L) ∩ [0̂, x]. Then
y ≤ x in spine(L), so there exists a maximal chain C of spine(L) that contains x and y.
Since spine(L) is distributive (hence, graded), C is a maximum-length chain of L. It
follows that C ∩ [0̂, x] is a maximum-length chain of [0̂, x], so y ∈ spine([0̂, x]).

We have shown that spine(L)∩ [0̂, x] ⊆ spine([0̂, x]). To prove the reverse containment,
suppose z ∈ spine([0̂, x]). Let C′ be a maximum-length chain of [0̂, x] that contains z,
and let C′′ be a maximum-length chain of L that contains x. Then C′ ∪ (C′′ \ [0̂, x]) is a
maximum-length chain of L that contains z, so z ∈ spine(L). Since z is certainly in [0̂, x],
this proves that spine([0̂, x]) ⊆ spine(L) ∩ [0̂, x].

Proof of Theorem 1.11. Let L be a trim lattice. We will prove the inequality E(L) ≤
E(spine(L)) by induction on |L|. This is trivial if |L| = 1, so we may assume |L| ≥ 2.

To ease notation, let K = spine(L) and Q = covL(1̂). It is immediate from the
definition of the spine that covK(1̂) = Q ∩K. For x ∈ L and x′ ∈ K, we consider

∆L(x) = {y ∈ L : y ≤ x} and ∆K(x′) = {y ∈ K : y ≤ x′},

which are sublattices of L and K, respectively. It is immediate from the definition of the
Ungarian Markov chain UL that

E(L)
(

1− (1− p)|Q|
)
− 1 =

∑
∅6=T⊆Q

p|T |(1− p)|Q|−|T | E(∆L(
∧
T )) = A1 +A2, (5.3)

where

A1 =
∑

T ′⊆Q\K

p|T
′|(1− p)|Q\K|−|T

′|
∑

∅6=T ′′⊆Q∩K

p|T
′′|(1− p)|Q∩K|−|T

′′| E(∆L(
∧

(T ′ ∪ T ′′)))

and
A2 =

∑
∅6=T ′⊆Q\K

p|T
′|(1− p)|Q\K|−|T

′|(1− p)|Q∩K| E(∆L(
∧
T ′)).

We will prove that
E(∆L(

∧
(T ′ ∪ T ′′))) ≤ E(∆K(

∧
T ′′)) (5.4)

for all T ′ ⊆ Q\K and T ′′ ⊆ Q∩K such that T ′∪T ′′ 6= ∅. Because ∆K(
∧
∅) = ∆K(1̂) = K,

this will imply that

A1 ≤
∑

T ′⊆Q\K

p|T
′|(1− p)|Q\K|−|T

′|
∑

∅6=T ′′⊆Q∩K

p|T
′′|(1− p)|Q∩K|−|T

′′| E(∆K(
∧
T ′′))

=
∑

∅6=T ′′⊆Q∩K

p|T
′′|(1− p)|Q∩K|−|T

′′| E(∆K(
∧
T ′′))

=
∑

T ′′⊆Q∩K

p|T
′′|(1− p)|Q∩K|−|T

′′| E(∆K(
∧
T ′′))− (1− p)|Q∩K| E(K)

= E(K)− 1− (1− p)|Q∩K|E(K)

and

A2 ≤
∑

∅6=T ′⊆Q\K

p|T
′|(1− p)|Q\K|−|T

′|(1− p)|Q∩K|E(K)

=
∑

T ′⊆Q\K

p|T
′|(1− p)|Q\K|−|T

′|(1− p)|Q∩K|E (K)− (1− p)|Q\K|(1− p)|Q∩K|E(K)

= (1− p)|Q∩K|E(K)− (1− p)|Q|E(K),
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so it will follow from (5.3) that

E(L)
(

1− (1− p)|Q|
)
− 1 ≤ E(K)

(
1− (1− p)|Q|

)
− 1,

which is equivalent to our desired inequality.
Fix T ′ ⊆ Q \K and T ′′ ⊆ Q ∩K with T ′ ∪ T ′′ 6= ∅. Let L′ = ∆L (

∧
(T ′ ∪ T ′′)). Because

L′ is an interval in the trim lattice L, Proposition 5.1 tells us that L′ is also trim. Let
K ′ = spine(L′). The assumption that T ′ ∪ T ′′ is nonempty guarantees that |L′| < |L|, so
we know by induction that E(L′) ≤ E(K ′). Hence, in order to prove (5.4), it suffices to
show that E(K ′) ≤ E(∆K(

∧
T ′′)).

Because T ′′ ⊆ K and K is a sublattice of L, we have
∧
T ′′ ∈ K. According to

Lemma 5.2, ∆K(
∧
T ′′) is the spine of ∆L(

∧
T ′′). Therefore, we know by (5.2) that

K ′ ∼= J(P(L′)) and ∆K(
∧
T ′′) ∼= J(P(∆L(

∧
T ′′))).

Now, L′ is an interval of ∆L(
∧
T ′′), so Proposition 5.1 tells us that G(L′) is isomorphic

to an induced subgraph of G(∆L(
∧
T ′′)). This implies that P(L′) is a subposet of

P(∆L(
∧
T ′′)), so the desired inequality E(K ′) ≤ E(∆K(

∧
T ′′)) follows from Corollary 4.1.

Proof of Corollary 1.12. Let L be a trim lattice, and suppose L′ is an interval or a quotient
of L. Then L′ is a trim lattice whose Galois graph G(L′) is isomorphic to an induced
subgraph of G(L); this follows from Proposition 5.1 if L′ is an interval of L, and it
follows from [57, Lemma 3.10 & Remark 3.11] if L′ is a quotient of L. This implies
that P(L′) is a subposet of P(L), so we can use (5.2) and Corollary 4.1 to see that
E(spine(L′)) ≤ E(spine(L)). On the other hand, we can apply Theorem 1.11 to L′ to
obtain the inequality E(L′) ≤ E(spine(L′)).

6 Cambrian lattices

In this section, we review relevant notions related to Reading’s Cambrian lattices,
and we analyze the spines of Cambrian lattices in order to prove Theorems 1.13 to 1.15.
We also give a simple proof of Theorem 1.18.

6.1 Background

Let W be a finite Coxeter group, and let S be the set of simple reflections of W ;
this means that W has a presentation of the form 〈S : (ss′)m(s,s′) = e〉, where e is the
identity element of W , m(s, s) = 1 for all s ∈ S, and m(s, s′) = m(s′, s) ∈ {2, 3, . . .} ∪ {∞}
for all distinct s, s′ ∈ S. Note that each simple reflection is an involution. The Coxeter
graph of W is the graph with vertex set S in which two simple reflections s and s′ are
connected by an edge whenever m(s, s′) ≥ 3; this edge is labeled with the number m(s, s′)

if m(s, s′) ≥ 4. We will assume that W is irreducible, which means that its Coxeter graph
is connected (equivalently, W cannot be expressed as a direct product of smaller Coxeter
groups).

When we refer to a word over S, we mean a (possibly infinite) word whose letters
are in S, where we view any two of the letters of the word as distinct from one another
(even if they are copies of the same simple reflection). We can apply a commutation
move to a word over S by swapping two consecutive letters s and s′ if m(s, s′) = 2 (we
do not allow such a commutation move if m(s, s′) = 1). The commutation class of a word
Q over S is the set of words that can be obtained from Q via a sequence of commutation
moves. Finite words in the same commutation class represent the same element of W .
Following Viennot [59], we define a certain poset Heap(Q) called the heap of Q. The
elements of this poset are the letters in Q (which are seen as distinct from one another).
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The order relation is defined so that if s and s′ are two letters (which could represent
the same simple reflection), then s < s′ if and only if s appears to the left of s′ in every
word in the commutation class of Q. The Hasse diagram of Heap(Q), which we will also
denote by Heap(Q), is called the combinatorial AR quiver of Q [54, Chapter 9] and is
typically drawn sideways so that each cover relation sl s′ is depicted with s to the left
of s′; see subsequent subsections for several such situations.

A reduced word for an element w ∈ W is a word over S that represents w and has
minimum length among all such words. The (right) weak order on W is the partial order
on W defined by declaring u ≤ v if there is a reduced word for v that contains a reduced
word for u as a prefix. We have assumed that W is finite, so a seminal result due to
Björner [14] states that the weak order on W is a lattice; the maximal element of this
lattice is called the long element of W and is typically denoted w0.

Let si1 , . . . , sin be an ordering of the simple reflections of W . Let c be the word
si1 · · · sin . The element c of W represented by c is called a Coxeter element of W . Two
words c and c′ represent the same Coxeter element if and only if Heap(c) = Heap(c′). Let
us orient each edge {s, s′} in the Coxeter graph from s to s′ if s appears to the left of s′

in c (equivalently, s ≤ s′ in Heap(c)), and let us orient it from s′ to s if s appears to the
right of s′ in c (equivalently, s ≥ s′ in Heap(c)). This orientation depends only on c. In
fact, this establishes a one-to-one correspondence between Coxeter elements of W and
acyclic orientations of the Coxeter graph of W .

Let c∞ = c〈1〉c〈2〉 · · · , where each word c〈i〉 is a copy of c. Following Reading [44],
we define the c-sorting word of an element w ∈W , denoted sortc(w), to be the reduced
word for w that is lexicographically first as a subword of c∞. We can write sortc(w) =

w〈1〉w〈2〉 · · · , where w〈i〉 is the subword of sortc(w) that came from c〈i〉 when we found
sortc(w) as a lexicographically minimum subword of c∞. Let supp(w〈i〉) be the set
of simple reflections appearing in w〈i〉. We say w is c-sortable if we have the chain of
containments supp(w〈1〉) ⊇ supp(w〈2〉) ⊇ supp(w〈3〉) ⊇ · · · . Whether or not w is c-sortable
depends only on the Coxeter element c and not on the word c [44].

The set of c-sortable elements of W forms a sublattice (and a quotient lattice) Cambc
of the weak order on W called the c-Cambrian lattice. Moreover, Cambc is trim [56, 37].
Thomas and Williams [57] provided a description of the Galois graph G(Cambc), from
which one can deduce that the Galois poset of the c-Cambrian lattice is isomorphic to
the heap of the c-sorting word of the long element of W :

P(Cambc) ∼= Heap(sortc(w0)). (6.1)

All Coxeter elements of W are conjugate to each other, so they all have the same
group-theoretic order h, which is called the Coxeter number of W . Let ch be the word
obtained by concatenating c with itself h times. The long element w0 is an involution in
W , so it gives rise to an involution ψ : S → S defined by ψ(s) = w0sw0. We can extend ψ
to a map defined on words over S by letting ψ(si1 · · · sik) = ψ(si1) · · ·ψ(sik) (and similarly
for infinite words). It follows from [54, Lemma 2.6.5] that

sortc(w0)ψ(sortc(w0)) = ch. (6.2)

6.2 Cambrian lattices of type A

The purpose of this subsection is to prove Theorem 1.13, which provides an asymptotic
upper bound for E(L) when L is a (large) Cambrian lattice of type A.

The Coxeter group An is the symmetric group Sn+1; its simple reflections are
s1, . . . , sn, where si is the transposition (i i+ 1). The Coxeter graph of An is a path with
edges {si, si+1} for i ∈ [n− 1], and each of these edges is unlabeled (i.e., m(si, si+1) = 3).
The Coxeter number of An is n+ 1.
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Fix a reduced word c of a Coxeter element c of An. The isomorphisms (5.2) and
(6.1) tell us that the spine of Cambc is isomorphic to J(Heap(sortc(w0))), so we wish to
describe the combinatorial AR quiver of sortc(w0). We refer the reader to Example 6.1
and Figures 3 and 4 for concrete illustrations the following discussion.

Begin by drawing Heap(cn+1) by drawing n+ 1 copies of Heap(c) in a row and adding
in edges as appropriate so that the result has the shape of a chain-link fence. We can
coordinatize this drawing in the xy-plane so that the leftmost point has x-coordinate
0, each edge extends 1 unit horizontally and 1 unit vertically, and all of the vertices
that are copies of si lie on the line y = i. Draw a path that has the same shape as an
upside-down version of Heap(c), and use this path to cut some of the edges in Heap(cn+1)

so that exactly half of the n(n + 1) vertices are to the left of the cut (the remainder
of this paragraph will imply that this is indeed possible). The involution ψ : S → S

is given by ψ(si) = sn+1−i. This implies that Heap(ψ(sortc(w0))) has the same “shape”
as Heap(sortc(w0)), except that it is flipped upside-down, and (6.2) tells us that if we
place Heap(sortc(w0)) immediately to the left of Heap(ψ(sortc(w0))) and add edges as
appropriate, we will obtain Heap(cn+1). Hence, the path that we drew to make the cut
has the same shape as Heap(ψ(c)), and it follows from (6.2) that the combinatorial AR
quiver Heap(sortc(w0)) is the part of the graph on the left of the cut.

In our drawing of Heap(sortc(w0)), if (a, 1) and (b, n) are the leftmost points in the
bottom and top rows, respectively, then (n − 1 + b, 1) and (n − 1 + a, n) are the right-
most points in the bottom and top rows, respectively. It follows that this drawing of
Heap(sortc(w0)) lies within the square Rc whose sides lie on the lines y = x + n − b,
y = x− n+ 2− b, y = −x+ a+ 1, and y = −x+ 2n− 1 + a.

Example 6.1. Suppose n = 9. Let c be the word s3s2s1s4s5s7s6s8s9, and let c ∈ A9 be
the element represented by c. Figure 3 shows how to arrange n + 1 = 10 copies of
Heap(c) (drawn in different colors) and add edges (drawn in black) to obtain Heap(c10).
The thick black-and-blue path has the same shape as Heap(ψ(c)) and cuts Heap(c10) into
two halves; the left half is Heap(sortc(w0)). Indeed, the c-sorting word for w0 is

s3s2s1s4s5s7s6s8s9s3s2s1s4s5s7s6s8s9s3s2s1s4s5s7s6s8s9s3s2s1s4s5s7s6s8s9s3s2s1s4s5

s3s2s1s4.

In the notation from above, we have a = 2 and b = 4. Figure 4 shows that the square
Rc (drawn dotted) whose sides lie on the lines y = x + 5, y = x − 11, y = −x + 3, and
y = −x+ 19 contains our drawing of Heap(sortc(w0)).

The fact that our drawing of Heap(sortc(w0)) fits inside the square Rc readily implies
that Heap(sortc(w0)) is a subposet of the n × n rectangle poset Rn×n. It follows from
Theorem 1.9 and Corollary 4.1 that

E(J(Heap(sortc(w0)))) ≤ E(J(Rn×n)) =
1

p

(
2 + 2

√
1− p

)
n+ o(n).

On the other hand, (5.2) and (6.1) tell us that J(Heap(sortc(w0))) is isomorphic to the
spine of Cambc. Invoking Theorem 1.11, we find that

E(Cambc) ≤
1

p

(
2 + 2

√
1− p

)
n+ o(n),

and this proves Theorem 1.13.

6.3 Cambrian lattices of type B

This subsection is devoted to proving Theorem 1.14, which provides an asymptotic
upper bound for E(L) when L is a (large) Cambrian lattice of type B.
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Figure 3: A drawing of the (type A) combinatorial AR quiver Heap(c10), where
c = s3s2s1s4s5s7s6s8s9 is the word from Example 6.1. The thick black-and-blue path
cuts Heap(c10) into a left half, which is Heap(sortc(w0)), and a right half, which is
Heap(ψ(sortc(w0))).

Figure 4: The (type A) combinatorial AR quiver Heap(sortc(w0)) from Example 6.1 fits
inside the square Rc.

The Coxeter group Bn is the n-th hyperoctahedral group; it has simple reflec-
tions s0, s1, . . . , sn−1. The Coxeter graph of Bn is a path with edges {si, si+1} for
i ∈ {0, . . . , n − 2}. The label of the edge {s0, s1} is m(s0, s1) = 4, while each edge
{si, si+1} with 1 ≤ i ≤ n − 2 is unlabeled (i.e., m(si, si+1) = 3). The Coxeter number of
Bn is 2n.
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Fix a reduced word c of a Coxeter element c of Bn. As discussed in Section 6.1, there
is a unique orientation of the Coxeter graph of Bn corresponding to c; let r(c) be the
number of edges {si, si+1} that are oriented from si to si+1 in this orientation.

Finding the c-sorting word for w0 is actually quite simple because the involution
ψ : S → S is the identity map. Therefore, it follows from (6.2) that sortc(w0) = ch/2 = cn.
To draw Heap(cn), simply draw n copies of Heap(c) in a row and add in edges as appro-
priate so that the result has the shape of a chain-link fence. Let us coordinatize this
drawing in the xy-plane so that the leftmost point has x-coordinate 0, each edge extends
1 unit horizontally and 1 unit vertically, and all of the vertices that are copies of si lie on
the line y = i. It is a straightforward exercise to show that there exist integers q1 and q2
such that this drawing of Heap(cn) lies in the rectangle Rc whose sides lie on the lines
y = x+ q1, y = x+ q1 − 4n+ 4 + 2r(c), y = −x+ q2, and y = −x+ q2 − 2n+ 2− 2r(c).

Example 6.2. Suppose n = 7. Let c = s1s0s2s3s5s4s6, and let c ∈ B7 be the element
represented by c. The orientation of the Coxeter graph of B7 corresponding to c is

.

Figure 5 shows how to arrange 7 copies of Heap(c) (drawn in different colors) and add
edges (drawn in black) to obtain Heap(c7) = Heap(sortc(w0)). In the notation from above,
we have r(c) = 4, q1 = 4 and q2 = 22. Figure 5 shows that the square Rc (drawn dotted)
whose sides lie on the lines y = x+ 4, y = x− 12, y = −x+ 22, and y = −x+ 2 contains
our drawing of Heap(sortc(w0)).

As in the statement of Theorem 1.14, let us now choose a sequence (c(n))n≥2, where
each c(n) is a Coxeter element of Bn, and let us assume that the limit r = lim

n→∞
1
nr(c

(n))

exists. For each n, let c(n) be a reduced word for c(n). Because our drawing of
Heap(sortc(n)(w0)) fits inside the rectangle Rc(n) , Heap(sortc(n)(w0)) is a subposet of the
(2n− 1− r(c(n)))× (n+ r(c(n))) rectangle poset R(2n−1−r(c(n)))×(n+r(c(n))). It follows from
Theorem 1.9 and Corollary 4.1 that

E(J(Heap(sortc(n)(w0)))) ≤ E
(
J
(
R(2n−1−r(c(n)))×(n+r(c(n)))

))
=

1

p

(
3 + 2

√
(1− p)(2− r)(1 + r)

)
n+ o(n).

On the other hand, (5.2) and (6.1) tell us that J(Heap(sortc(n)(w0))) is isomorphic to the
spine of Cambc(n) . Invoking Theorem 1.11, we find that

E(Cambc(n)) ≤
1

p

(
3 + 2

√
(1− p)(2− r)(1 + r)

)
n+ o(n),

and this proves Theorem 1.14.

6.4 Cambrian lattices of type D

In this subsection, we prove Theorem 1.15, which provides an asymptotic upper
bound for E(L) when L is a (large) Cambrian lattice of type D.

The Coxeter group Dn has simple reflections s0, s1, . . . , sn−1. The Coxeter graph of
Dn has unlabeled edges {si, si+1} for i ∈ [n− 2] together with the additional unlabeled
edge {s0, s2}. The Coxeter number of Dn is 2n− 2.

Consider a reduced word c of a Coxeter element c of Dn. As discussed in Section 6.1,
there is a unique orientation of the Coxeter graph of Dn corresponding to c; let r(c) be
the number of edges of the form {si, si+1} with 1 ≤ i ≤ n− 2 that are oriented from si to
si+1 in this orientation (so the definition of r(c) ignores the edge {s0, s2}).

If n is even, the involution ψ : S → S is the identity map, but if n is odd, this involution
is the transposition that fixes s2, s3, . . . , sn−1 and swaps s0 and s1. It is certainly possible
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Figure 5: The (type B) combinatorial AR quiver Heap(sortc(w0)) = Heap(c7), where c =

s1s0s2s3s5s4s6 is the word from Example 6.2. This drawing fits inside the rectangle Rc.

to prove Theorem 1.15 by describing sortc(w0) in a manner that depends on the parity of
n. However, because Theorem 1.15 is only concerned with asymptotics, we can take a
shortcut by reducing our analysis to the case when n is even. We do so via the following
lemma, which makes tacit use of the standard identification of Dn with the subgroup of
Dn+1 generated by s0, s1, . . . , sn−1.

Lemma 6.3. Suppose n ≥ 4. Let c be a Coxeter element of Dn, and let c′ be the Coxeter
element snc of Dn+1. Then r(c) = r(c′), and

E(Cambc) ≤ E(spine(Cambc′)).

Proof. The identity r(c) = r(c′) is immediate from the relevant definitions. Denote by
w0({s0, . . . , sn−1}) the long element of Dn, seen as an element of Dn+1; it is known that
this element is c′-sortable. It is straightforward to show that an element v ∈ Dn+1 is
a c-sortable element of Dn if and only if v is c′-sortable and v ≤ w0({s0, . . . , sn−1}) in
the weak order on Dn+1. Consequently, Cambc is the interval [e, w0({s0, . . . , sn−1})] of
Cambc′ . The desired inequality now follows from Corollary 1.12.

Let us now assume n is even so that ψ is the identity map. Fix a reduced word c
of a Coxeter element c ∈ Dn. It follows from (6.2) that sortc(w0) = ch/2 = cn−1. We
will draw Heap(cn−1) in the xy-plane as follows (see Example 6.4 and Figure 6 for an
illustration). Draw n − 1 copies of Heap(c) in a row and add in edges as appropriate.
For each i ∈ [n− 1], draw all of the vertices that are copies of si on the line y = i. Also,

EJP 28 (2023), paper 163.
Page 23/39

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1056
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Ungarian Markov chains

draw all of the vertices that are copies of s0 on the line y = 2. Assume the leftmost point
in the drawing has x-coordinate 0. Draw each edge that does not include s0 as a line
segment that extends 1 unit horizontally and 1 unit vertically, and draw each edge that
does include s0 as a horizontal line segment of length 1.

As in Sections 6.2 and 6.3, we wish to find a rectangle Rc that encloses our drawing
of the combinatorial AR quiver Heap(sortc(w0)) = Heap(cn−1). Describing this rectangle
is a bit cumbersome because of the presence of vertices that are copies of s0. However,
these vertices can only increase the length and width of the rectangle by a small amount
that will be absorbed by the error term in our asymptotic results anyway. To be more
precise, consider the orientation of the Coxeter graph of Dn corresponding to c. Let
ε1 = 1 if one of the following conditions holds:

• {s0, s2} is oriented from s2 to s0, and {s1, s2} is oriented from s1 to s2;

• {s0, s2} is oriented from s0 to s2, and {si, si+1} is oriented from si to si+1 for all
2 ≤ i ≤ n− 2;

otherwise, let ε1 = 0. Let ε2 = 1 if one of the following conditions holds:

• {s0, s2} is oriented from s0 to s2, and {s1, s2} is oriented from s2 to s1;

• {s0, s2} is oriented from s2 to s0, and {si, si+1} is oriented from si+1 to si for all
2 ≤ i ≤ n− 2;

otherwise, let ε2 = 0. Then there are integers q1 and q2 such that the sides of Rc lie on the
lines y = x+q1, y = x+q1−4n+8+2r(c)−ε1, y = −x+q2, and y = −x+q2−2n+4−2r(c)−ε2.

Example 6.4. Suppose n = 6. Let c = s0s3s2s1s5s4, and let c ∈ D6 be the element
represented by c. The orientation of the Coxeter graph of D6 corresponding to c is

.

Figure 6 shows how to arrange 5 copies of Heap(c) (drawn in different colors) and add
edges (drawn in black) to obtain Heap(c5) = Heap(sortc(w0)). In the notation from above,
we have ε1 = 0, ε2 = 1, r(c) = 1, q1 = 5, and q2 = 13. Figure 6 shows that the rectangle
Rc (drawn dotted) whose sides lie on the lines y = x + 5, y = x − 9, y = −x + 13,
and y = −x+ 2 contains our drawing of Heap(sortc(w0)). Figure 6 also uses additional
diagonal grid lines to illustrate how Heap(sortc(w0)) is a subposet of the rectangle poset
R(4n−7−2r(c)+ε1)×(2n−3+2r(c)+ε2) = R15×12.

As illustrated in Figure 6, the fact that our drawing of Heap(sortc(w0)) fits inside Rc

allows us to see that Heap(sortc(w0)) is a subposet of the rectangle poset

R(4n−7−2r(c)+ε1)×(2n−3+2r(c)+ε2).

Hence, Heap(sortc(w0)) is a subposet of R(4n−2r(c))×(2n+2r(c)).
As in the statement of Theorem 1.15, let us now choose a sequence (c(n))n≥4, where

each c(n) is a Coxeter element of Dn. For each n, let c(n) be a reduced word for c(n).
Let us assume that the limits r = lim

n→∞
1
nr(c

(n)) and u = lim
n→∞

1
nu(c(n)) exist, where

u(c(n)) is the maximum number of edges in a directed path in the orientation of the
Coxeter graph of Dn corresponding to c(n) (equivalently, u(c(n)) is the length of the
poset Heap(c(n))). When n is even, we have seen that Heap(sortc(n)(w0)) is a subposet of
R(4n−2r(c(n)))×(2n+2r(c(n))); it follows from Theorem 1.9 and Corollary 4.1 that

E(J(Heap(sortc(n)(w0)))) ≤ E(J(R(4n−2r(c(n)))×(2n+2r(c(n)))))
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Figure 6: The (type D) combinatorial AR quiver Heap(sortc(w0)) = Heap(c5), where
c = s0s3s2s1s5s4 is the word from Example 6.4. This drawing fits inside the rectangle Rc.
The extra diagonal grid lines serve to reveal how Heap(sortc(w0)) is a subposet of the
rectangle poset R15×12.

=
1

p

(
6 + 4

√
(1− p)(2− r)(1 + r)

)
n+ o(n).

We also know by (5.2) and (6.1) that J(Heap(sortc(n)(w0))) is isomorphic to the spine of
Cambc(n) . Invoking Theorem 1.11, we find that

E(Cambc(n)) ≤
1

p

(
6 + 4

√
(1− p)(2− r)(1 + r)

)
n+ o(n)

for even n. Using Lemma 6.3, we find that the same inequality holds for odd n.
To complete the proof of Theorem 1.15, we must show that

E(Cambc(n)) ≤
1

p

(
2 + u+ log

(
5 · 2u

)
+

√
2(2 + u) log (5 · 2u) + (log (5 · 2u))

2

)
n+ o(n).

Because J(Heap(sortc(w0))) ∼= spine(Cambc(n)), we can do so by appealing to Theo-
rems 1.10 and 1.11. For even n, we need to prove that the maximum size of a chain in
Heap(sortc(n)(w0)) is at most (2 + u+ o(1))n and that

|MC(Heap(sortc(n)(w0)))| ≤
(
5 · 2u

)(1+o(1))n
;

the result for odd n will then follow from Lemma 6.3. Suppose n is even. The statement
about the maximum size of a chain is immediate; indeed, it follows from the above
discussion that the maximum size of a chain in Heap(sortc(n)(w0)) is 2n− 3 + u(c(n)). Now
imagine constructing a maximal chain C in Heap(sortc(n)(w0)) that uses exactly k copies
of s0. Specifying these k copies will also determine 2k − 1 or 2k of the edges used in
C; we must then choose the remaining edges. The number of remaining edges is at
most 2n− 3 + u(c(n))− 2k. If we choose these remaining edges one-by-one, starting at
the left of the combinatorial AR quiver Heap(sortc(n)(w0)), then we will have at most 2
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choices for each such edge. This shows that the total number of choices for C is at most(
n−1
k

)
22n−3+u(c

(n))−2k. Consequently,

|MC(Heap(sortc(n)(w0)))| ≤
n−1∑
k=0

(
n− 1

k

)
22n−3+u(c

(n))−2k

= 2(2+u)n+o(n)
n−1∑
k=0

(
n− 1

k

)
2−2k

= 2(2+u)n+o(n)(5/4)n−1

=
(
5 · 2u

)(1+o(1))n
.

6.5 Cambrian lattices of dihedral type

The dihedral group of order 2m, denoted I2(m), is a Coxeter group with two simple
generators s and t such that m(s, t) = m. This group has two Coxeter elements: st and
ts. The Cambrian lattices for these Coxeter elements are isomorphic, so we may assume
c = st. Let [s|t]k denote the word of length k that starts with s and alternates between s
and t. Let αk be the element of I2(m) represented by [s|t]k. For example, α3 = sts, and
α4 = stst. The c-Cambrian lattice consists of the two chains el α1 l α2 l · · ·l αm and
el tl αm. If C is a chain of length r, then E(C) = r/p. It follows immediately from the
definition of the Ungarian Markov chain UCambc that

E(Cambc) = p2 ·1+p(1−p) · (1+(m−1)/p)+p(1−p) · (1+1/p)+(1−p)2 · (1+E(Cambc)).

Solving this equation yields

E(Cambc) =
1 +m(1− p)

2p− p2
,

which proves Theorem 1.18.

7 ν-Tamari lattices

In this section, we define the ν-Tamari lattice Tam(ν) of Préville-Ratelle and Viennot,
and we give a simple description of its spine. This will allow us to use Theorem 1.11 to
prove the upper bound for E(Tam(ν)) stated in Theorem 1.19.

A lattice path is a finite path in R2 that starts at a point in Z2 and uses unit north (i.e.,
(0, 1)) steps and unit east (i.e., (1, 0)) steps; we consider lattice paths that are translations
of each other to be the same. We denote north steps by N and east steps by E, and
we identify lattice paths with finite words over the alphabet {N,E}. We frequently use
superscripts to denote concatenation of words; for instance, (NE2)3 = NEENEENEE.
Fix nonnegative integers n ≤ ` and a lattice path ν that uses n north steps and `− n east
steps, and let Tam(ν) denote the collection of lattice paths that lie weakly above ν and
have the same endpoints as ν.

Given a lattice point v = (x, y) that lies weakly above ν and satisfies 0 ≤ x ≤ ` − n
and 0 ≤ y ≤ n, we define the horizontal distance of v to be the largest integer d such
that (x + d, y) is on ν. Now suppose µ ∈ Tam(ν) and v is a lattice point on µ that is
immediately preceded by an east step and immediately followed by a north step in µ.
Let v′ be the first lattice point on µ that appears after v and has the same horizontal
distance as v. Let D[v,v′] be the subpath of µ whose endpoints are v and v′. There are
lattice paths X and Y such that µ = XED[v,v′]Y. Let µ′ = XD[v,v′]EY. Then µl µ′ is a cover
relation in Tam(ν). (See Figure 7.)

The cover relations defined in the previous paragraph make Tam(ν) into a poset.
Préville-Ratelle and Viennot [41] showed that Tam(ν) is a lattice called the ν-Tamari
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Figure 7: The lattice paths µ = EENENNENEE (left) and µ′ = EENNNEENEE (right)
form the cover relation µl µ′ in Tam(ν), where ν = EEENENENNE.

lattice. The n-th m-Tamari lattice Tamn(m), which was originally introduced by Bergeron
and Préville-Ratelle [11], is Tam((NEm)n). Finally, Tamn(1) = Tam((NE)n) is the n-th
Tamari lattice, which was originally defined by Tamari [55]; we denote it simply by
Tamn. Préville-Ratelle and Viennot actually proved that the ν-Tamari lattice is an interval
of some Tamari lattice; since Tamari lattices are known to be trim, it follows from
Proposition 5.1 that Tam(ν) is trim. Figure 8 portrays Tam3(2).

If we draw the lattice path ν in the square grid, then we can consider the set Cells(ν)

of all unit grid cells that lie directly north of one of the east steps in ν and lie directly
west of one of the north steps in ν. Define a partial order ≤ on Cells(ν) so that for all
21,22 ∈ Cells(ν), we have 21 ≤ 22 if and only if 21 is weakly southwest of 22. For
example, Figure 9 shows Cells(ENEEENNEENNE) with each cover relation 21 l 22

represented by an arrow from 21 to 22.

Proposition 7.1. For any lattice path ν, the Galois poset P(Tam(ν)) is isomorphic to
Cells(ν).

The previous proposition provides a simple description of the spine of Tam(ν) because,
according to (5.2), spine(Tam(ν)) ∼= J(P(Tam(ν))). Before proving it, let us quickly see
how it implies Theorem 1.19. For each ` ≥ 1, choose a lattice path ν(`) with n` north
steps and ` − n` east steps, and assume that the limit n = lim

`→∞
1
`n` exists. Because

Cells(ν(`)) is clearly a subposet of the rectangle Rn`,`−n` , it follows from Theorem 1.9
and Corollary 4.1 that

E(J(Cells(ν(`)))) ≤ 1

p

(
1 + 2

√
(1− p)n(1− n)

)
`+ o(`).

If we assume Proposition 7.1, then we can deduce from (5.2) and Theorem 1.11 that

E(Tam(ν(`))) ≤ E(spine(Tam(ν(`)))) = E(J(Cells(ν(`)))),

thereby proving Theorem 1.19.
Let ν be a lattice path that starts at (0, 0) and ends at (` − n, n). In order to prove

Proposition 7.1, we will need an alternative way of thinking about the ν-Tamari lattice.
Let h(ν) = (h0(ν), . . . , h`(ν)) be the vector obtained by reading the heights (i.e., y-
coordinates) of the lattice points on ν in the order they appear in ν. For 0 ≤ k ≤ n, let
fk be the maximum index such that hfk(ν) = k. A ν-bracket vector is an integer vector
b = (b0, . . . , b`) satisfying the following conditions:

(I) bfk = k for all 0 ≤ k ≤ n;

(II) hi(ν) ≤ bi ≤ n for all 0 ≤ i ≤ `;

(III) b avoids the pattern 121.

The third condition means that there do not exist indices i1 < i2 < i3 such that
bi1 = bi3 < bi2 . Ceballos, Padrol, and Sarmiento [20] proved that for each lattice path
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Figure 8: The Hasse diagram of Tam3(2) = Tam(ν), where ν = (NE2)3. Each lattice path
appears above its associated ν-bracket vector.

Figure 9: The set Cells(ν), where ν = ENEEENNEENNE. Each cover relation 21 l22 is
represented by an arrow from 21 to 22.

µ ∈ Tam(ν), there is a unique ν-bracket vector vν(µ) such that for every k ∈ {0, . . . , n},
the number of lattice points on µ with height k is equal to the number of occurrences
of k in vν(µ). (In particular, vν(ν) = h(ν).) This correspondence is illustrated in Fig-
ure 8.
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There is an obvious partial order on the set of ν-bracket vectors given by componen-
twise comparison: b ≤ b′ if and only if bi ≤ b′i for all 0 ≤ i ≤ `. This poset has a meet
operation given by the componentwise minimum:

b ∧ b′ = (min{b0, b′0}, . . . ,min{b`, b′`}).

Indeed, it is straightforward to check that the componentwise minimum of two ν-bracket
vectors is a ν-bracket vector. It is well known that a finite poset with a meet operation and
a unique maximal element is a lattice. This poset on ν-bracket vectors has vν(NnE`−n)

as its unique maximal element, so it is a lattice. In fact, Ceballos, Padrol, and Sarmiento
[20] proved that the map µ 7→ vν(µ) is a lattice isomorphism from Tam(ν) to this lattice
on the set of ν-bracket vectors. Therefore, in the remainder of this subsection, we will
abuse notation and identify Tam(ν) (via this isomorphism) with the lattice of ν-bracket
vectors under the componentwise order.

Note that we 0-index our vectors. For instance, we would say that 5 appears in
positions 0 and 3 in the vector (5, 2, 1, 5, 1, 3). We always write bi for the entry in position
i of a vector b.

Define a descent of a ν-bracket vector b to be an index i ∈ {0, . . . , ` − 1} such that
bi > bi+1. Let Des(b) denote the set of descents of b. According to [30, Proposition 4.4],
the number of descents of b is equal to the number of elements covered by b in Tam(ν).
In particular, b is join-irreducible if and only if |Des(b)| = 1.

Suppose 1 ≤ k ≤ n, fk−1 < i < fk, and hi(ν) + 1 ≤ m ≤ n (note that hi(ν) = k). Let
bi,m and ci,m be the ν-bracket vectors such that for all 0 ≤ r ≤ `, the entries in position r
of bi,m and ci,m are

bi,mr =

{
m if fk−1 + 1 ≤ r ≤ i;
hr(ν) otherwise.

(7.1)

and

ci,mr =


s if r = fs for some s ∈ {0, . . . , n};
m− 1 if i ≤ r < fm−1 and r 6∈ {f0, . . . , fn};
n otherwise.

(7.2)

Example 7.2. Suppose ν = ENEEENNEENNE. Then

h(ν) = (0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 4, 5, 5),

so f0 = 1, f1 = 5, f2 = 6, f3 = 9, f4 = 10, and f5 = 12. Setting i = 3 and m = 4 in (7.1)
and (7.2), we find that

b3,4 = and c3,4 =

(where we are representing elements of Tam(ν) as both lattices paths and ν-bracket
vectors).

We will need the notation and terminology from Section 5.1. The lattice path corre-
sponding to ci,m only has a single east step that is immediately followed by a north step,
so it follows from the above description of cover relations in Tam(ν) (in terms of lattice
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paths) that ci,m is meet-irreducible in Tam(ν). Moreover, it is straightforward to see that
every meet-irreducible element of Tam(ν) arises in this way. In other words,

MTam(ν) = {ci,m : i ∈ {0, . . . , `} \ {f0, . . . , fn}, hi(ν) + 1 ≤ m ≤ n}. (7.3)

The vector bi,m is join-irreducible because its only descent is i. Because Tam(ν) is trim,
we know from Section 5.1 that there is a bijection κ = κTam(ν) : JTam(ν) →MTam(ν). In
light of (7.3), this implies that every join-irreducible element of Tam(ν) is of the form
bi,m. In other words,

JTam(ν) = {bi,m : i ∈ {0, . . . , `} \ {f0, . . . , fn}, hi(ν) + 1 ≤ m ≤ n}. (7.4)

In order to understand the Galois poset P(Tam(ν)), we must understand the Galois
graph G(Tam(ν)). This, in turn, requires us to understand the bijection κ : JTam(ν) →
MTam(ν).

Lemma 7.3. Suppose 1 ≤ k ≤ n, fk−1 < i < fk, and hi(ν) + 1 ≤ m ≤ n. Then

κ(bi,m) = ci,m.

Proof. By the definition of κ in (5.1), we just need to demonstrate that bi,m ∧ ci,m is
covered by bi,m and that bi,m ∨ ci,m covers ci,m. The meet operation is given by the
componentwise minimum, so it follows from (7.1) and (7.2) that

(bi,m ∧ ci,m)r =


m if fk−1 + 1 ≤ r ≤ i− 1;

m− 1 if r = i;

hr(ν) otherwise.

It is immediate from this description that bi,m ∧ ci,m is covered by bi,m.
Now let b = (ci,m)∗ be the unique element that covers ci,m. Note that bi,m 6≤ ci,m

because bi,mi = m > m− 1 = ci,mi . Hence, to prove that bi,m ∨ ci,m = b, we just need to
show that bi,m ≤ b. For every index q ∈ {0, . . . , `} \ {i}, we have bi,mq ≤ ci,mq ≤ bq by (7.1)

and (7.2). Thus, we are left to show that bi,mi ≤ bi.
Since b > ci,m, we know that bi ≥ ci,mi = m− 1 and that there is an index r such that

br > ci,mr . Appealing to (7.2) and the definition of a ν-bracket vector, we find that i ≤ r <
fm−1, r 6∈ {f0, . . . , fn}, and ci,mr = m− 1. If bi = m− 1, then bi = bfm−1 = m− 1 < br, so
the entries of b in positions i, r, fm−1 form a 121-pattern, contradicting the definition of a
ν-bracket vector. It follows that bi ≥ m = bi,mi , as desired.

Proof of Proposition 7.1. Assume that ν starts at (0, 0) and ends at (` − n, n). Suppose
1 ≤ k ≤ n, fk−1 < i < fk, and hi(ν) + 1 ≤ m ≤ n (note that hi(ν) = k). The i-th step in ν
is an east step at height k; let 2i,m be the grid cell that lies above that east step and has
its center at height m− 1

2 . Every grid cell in Cells(ν) arises uniquely in this way; that is,

Cells(ν) = {2i,m : i ∈ {0, . . . , `} \ {f0, . . . , fn}, hi(ν) + 1 ≤ m ≤ n}.

Recall from Section 5.1 that the underlying set of the Galois poset P(Tam(ν)) is JTam(ν).
It is now immediate from (7.4) that we have a bijection P(Tam(ν))→ Cells(ν) given by
bi,m 7→ 2i,m; we just need to prove that this map is a poset isomorphism.

We first show that if 2i,m ≤ 2i
′,m′ in Cells(ν) (so i ≤ i′ and m ≤ m′), then bi,m � bi

′,m′

in P(Tam(ν)); it suffices to do so when either i = i′ or m = m′. If i = i′, then m − 1 ≥
hi(ν) = hi′(ν). If m = m′, then m − 1 = m′ − 1 ≥ hi′(ν). In either case, m − 1 ≥ hi′(ν).
Recall that fhi′ (ν) is the largest position in which the vector h(ν) has the entry hi′(ν).
Since hi′(ν) is, by definition, the entry in position i′ of h(ν), it follows that i′ ≤ fhi′ (ν).
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Hence, i′ ≤ fm−1. This shows that i ≤ i′ ≤ fm−1, so we know by (7.2) and Lemma 7.3
that the entry in position i′ of κ(bi,m) is m− 1. On the other hand, (7.1) tells us that the
entry in position i′ of bi

′,m′ is m′, which is strictly greater than m− 1. This proves that
bi
′,m′ 6≤ κ(bi,m) in Tam(ν). Hence, there is an arrow bi

′,m′ → bi,m in the Galois graph
G(Tam(ν)), which implies that bi,m � bi

′,m′ in P(Tam(ν)), as desired.
We now show that if bi,m � bi

′,m′ in P(Tam(ν)), then 2i,m ≤ 2i
′,m′ in Cells(ν) (i.e.,

i ≤ i′ and m ≤ m′); it suffices to do so when there is an arrow bi
′,m′ → bi,m in G(Tam(ν)).

Thus, bi
′,m′ 6≤ κ(bi,m) in Tam(ν). This means that there is some index r such that

(κ(bi,m))r < bi
′,m′

r . Let k′ be the index such that fk′−1 < i′ < fk′ . We know from the
definition of a ν-bracket vector that (κ(bi,m))r ≥ hr(ν), so bi

′,m′

r > hr(ν). According
to (7.1), we have bi

′,m′

r = m′ and fk′−1 + 1 ≤ r ≤ i′. Also, we have bi
′,m′

r ≤ n, so
(κ(bi,m))r 6= n. Since r 6∈ {f0, . . . , fn} (because fk′−1 < r ≤ i′ < fk′), it follows from (7.2)
and Lemma 7.3 that (κ(bi,m))r = m− 1 and i ≤ r < fm−1. We have shown that i ≤ r ≤ i′
and m− 1 = (κ(bi,m))r < bi

′,m′

r = m′. Hence, i ≤ i′ and m ≤ m′, so 2i,m ≤ 2i
′,m′ .

8 Tamari lattices

A permutation x ∈ Sn is called 312-avoiding if there do not exist indices i1 < i2 < i3
such that x(i2) < x(i3) < x(i1). Let Avn(312) denote the set of 312-avoiding permutations
in Sn. Then Avn(312) is precisely the set of c-sortable elements of Sn, where c =

s1s2 · · · sn−1 ∈ An−1 = Sn, so Cambc is the sublattice of the weak order on Sn consisting
of 312-avoiding permutations. The Tamari lattice Tamn is isomorphic to this Cambrian
lattice Cambc [43], so it follows from Theorem 1.13 that E(Tamn) ≤ 1

p

(
2 + 2

√
1− p

)
n+

o(n). This bound is also a special case of Theorem 1.19. Because Tamari lattices are
such important objects, we wish to improve upon this bound by proving Theorem 1.20.
To do so, we will analyze Tamari lattices directly (without appealing to Theorem 1.11),
using the interpretation of the n-th Tamari lattice as Avn(312) under the weak order.

Figure 10 shows the plots of twelve of the permutations that we obtained while
running UAv400(312) with p = 1/2 starting with the decreasing permutation. These plots
illustrate behavior that appears to be typical: the permutations become “mostly sorted”
after a small number of steps, but there are a few entries that straggle behind and take
a long time to reach their correct positions. Experiments also suggest that the number
of steps needed to go from the decreasing permutation to the identity permutation in
UAvn(312) has a relatively high variance, and this makes the analysis difficult.

In order to analyze UAvn(312), we first need an explicit combinatorial description of
how to apply a random Ungar move to a permutation in Avn(312). Consider x ∈ Sn. If
there exist indices i and i′ such that i + 1 < i′ and x(i + 1) < x(i′) < x(i), then we can
perform an allowable swap by swapping the entries x(i) and x(i+ 1) (i.e., replacing x
by xsi). Let π↓(x) denote the permutation obtained by starting with x and repeatedly
applying allowable swaps until no more allowable swaps can be performed. The element
π↓(x) is well defined (i.e., does not depend on the sequence of allowable swaps) and is
in Avn(312) [43]. Thus, we have a projection π↓ : Sn → Avn(312). Note that π↓(x) = x if
and only if x is 312-avoiding.

The first author showed [30, Equation (1)] that PopAvn(312)(x) = π↓(PopSn(x)) for
every x ∈ Avn(312). In other words, if x ∈ Avn(312), then applying a maximal Ungar
move to x within the Tamari lattice Avn(312) is equivalent to applying a maximal Ungar
move to x within the weak order lattice Sn and then applying the projection π↓. The
exact same argument (which we omit) shows that applying a random Ungar move to x
within Avn(312) is equivalent to applying a random Ungar move to x within Sn and then
applying π↓. Thus, a random Ungar move within Avn(312) will send x to π↓(xw0(T )),
where T is a random subset of Des(x) (with each descent of x added to T with probability
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Figure 10: We ran the Ungarian Markov chain UAv400(312) with p = 1/2 starting with the
decreasing permutation. Here, we show the plots of the permutations that the Markov
chain reached at times 0, 1, 2, 3, 4, 5, 6, 7, 90, 180, 270, 360 (read from left to right, row by
row). Note that the permutations get “mostly sorted” within the first few steps. To
indicate that the permutations in the bottom row follow a time skip, we have colored
their bounding boxes with a slightly different hue.

p) and w0(T ) is the maximal element of the parabolic subgroup of Sn generated by
{si : i ∈ T}.

As in Section 3, we write DB(w) for the set {w(i+ 1) : i ∈ Des(w)} of descent bottoms
of a permutation w ∈ Sn. Let LRMax(w) denote the set

{w(i) : w(j) < w(i) for all 1 ≤ j ≤ i− 1}

of left-to-right maxima of w. If w′ ≤ w in the weak order, then LRMax(w) ⊆ LRMax(w′).
A simple but useful fact that we will exploit is that if w is 312-avoiding, then DB(w) and
LRMax(w) form a partition of [n]. This implies that if w′ ≤ w in Avn(312) (for instance, if
w′ is obtained by applying an Ungar move to w), then DB(w′) ⊆ DB(w).

For integers β ∈ [n − 1] and j ≥ 0, let X(β)
j be a Bernoulli random variable with

expected value p; assume that all of these random variables for different choices of
β and j are independent. We can simulate UAvn(312) using these random variables as
follows. Starting with the decreasing permutation σ0 = n(n− 1) · · · 1, we will create a
sequence σ0, σ1, . . . of 312-avoiding permutations. Suppose we have already generated
the permutations σ0, . . . , σt. Let

Tt =
{
i ∈ Des(σt) : X

(σt(i+1))
t = 1

}
.
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We define σt+1 to be the permutation obtained by applying the random Ungar move
(within Avn(312)) corresponding to the set Tt to σt; that is, σt+1 = π↓(σtw0(Tt)). Note
that for permutations w,w′ ∈ Avn(312), the conditional probability P(σt+1 = w′ | σt = w)

is equal to the transition probability P(w → w′) in UAvn(312).
Let N be the unique integer such that σN−1 6= σN = 12 · · ·n. Then σt = 12 · · ·n for

all t ≥ N . For β ∈ [n − 1], let q(β) be the largest integer t such that β ∈ DB(σt). As
the sequence σ0, σ1, . . . is weakly decreasing in the weak order, we have the chain of
containments DB(σ0) ⊇ DB(σ1) ⊇ · · · . Thus, β ∈ DB(σt) for all t ≤ q(β). This tells us

that whenever 0 ≤ t ≤ q(β) and X(β)
t = 1, the number β must move to the left when we

transition from σt to σt+1. If β < β′ and β appears to the left of β′ in σt, then β must also
appear to the left of β′ in each of the permutations σt+1, σt+2, . . . . Consequently,

q(β)∑
j=0

X
(β)
j ≤ n− β. (8.1)

Observe that N − 1 = max
1≤β≤n−1

q(β). This already shows that E(Tamn) ≤ 1
pn+ o(n), which

improves upon the estimate from Theorem 1.13, but we will further improve upon this
bound in what follows.

For each β ∈ [n− 1], let Fβ be the smallest nonnegative integer j such that X(β)
j = 1.

Then F1, . . . , Fn−1 are independent geometric random variables, each with expected
value 1/p. For each real number ζ ∈ [1/n, 1], let Aζ be the event that Fβ ≤ max{Fi :

β + 1 ≤ i ≤ β + ζn} for all integers β satisfying 1 ≤ β < (1− ζ)n.

Lemma 8.1. Suppose B is an event that only depends on the random variables X(β)
j

with 1 ≤ β ≤ n − 1 and 0 ≤ j ≤
√
n. If ξ ∈ (0, 1], n ≥ 1/ξ, and B ⊆ Aξ, then

E(N | B) ≤ ξn/p+ o(n).

Proof. Suppose the event B occurs. In particular, this implies that Aξ occurs. Consider
some β ∈ [n−1]. Let β′ be the entry immediately to the left of β in σFβ . If 1 ≤ β < (1−ξ)n,
then Fβ ≤ max{Fi : β+1 ≤ i ≤ β+ ξn}, so β′ ≤ β+ ξn. On the other hand, if β ≥ (1− ξ)n,

then the inequality β′ ≤ β + ξn holds automatically. Since X(β)
Fβ

= 1, the entry β appears
to the left of β′ in σFβ+1. Since σFβ+1 is 312-avoiding, all entries that are greater than
β and appear to the left of β in σFβ+1 must be at most β + ξn; hence, there are at
most ξn − 1 such entries (the −1 term comes from the fact that β′ is not one of these
entries). Consequently,

∑q(β)
j=Fβ+1X

(β)
j ≤ ξn − 1. The definition of Fβ now guarantees

that
∑q(β)
j=0 X

(β)
j ≤ ξn. Hence,

∑
√
n<j≤q(β)X

(β)
j ≤ ξn. Because B is independent of

the variables X(β)
j with j >

√
n, this implies that q(β) −

√
n is bounded above by a

sum of ξn independent geometric random variables, each with expected value 1/p. For
m ≥ ξn/p

1−n−1/4 , we can set k = ξn and γ = pm
ξn in Lemma 2.1 to find that

P(q(β)−
√
n > m | B) ≤ exp

(
−(p/2)m

(
1− ξn

pm

)2
)
≤ exp

(
−(p/2)mn−1/2

)
.

As β was arbitrary, we can use the identity N − 1 = max
1≤β≤n−1

q(β) and a union bound to

see that
P(N − 1−

√
n > m | B) ≤ n exp

(
−(p/2)mn−1/2

)
.

Hence, ∑
m≥ ξn/p

1−n−1/4

P(N − 1−
√
n > m | B) ≤

∑
m≥ ξn/p

1−n−1/4

n exp
(
−(p/2)mn−1/2

)
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≤ n
exp

(
−(p/2)n−1/2 ξn/p

1−n−1/4

)
1− exp

(
−(p/2)n−1/2

)
≤ n

exp
(
−ξn1/2/2

)
1− exp

(
−(p/2)n−1/2

)
= O

(
n3/2e−ξn

1/2/2
)

= o(1).

We deduce that

E(N | B) =
∑

0≤m< ξn/p

1−n−1/4
+
√
n+1

P(N > m | B) +
∑

m≥ ξn/p

1−n−1/4
+
√
n+1

P(N > m | B)

≤ ξn/p

1− n−1/4
+
√
n+ 2 +

∑
m≥ ξn/p

1−n−1/4

P(N − 1−
√
n > m | B)

= ξn/p+ o(n).

Now let A′ be the event that max{F1, . . . , Fn−1} ≤
√
n. Lemma 8.1 yields the following

corollaries.

Corollary 8.2. For ζ ∈ (0, 1] and n ≥ 1/ζ, we have E(N | Aζ ∩A′) ≤ ζn/p+ o(n).

Proof. The event Aζ ∩ A′ only depends on the random variables X(β)
j with β ∈ [n − 1]

and 0 ≤ j ≤
√
n, so we can set ξ = ζ in Lemma 8.1 to deduce the desired result.

Corollary 8.3. We have P(¬A′)E(N | ¬A′) = O(n2e−p
√
n/3).

Proof. For each β ∈ [n− 1], we can set k = 1 and γ = p
√
n in Lemma 2.1 to see that

P(Fβ >
√
n) ≤ e−

p
√
n

2 (1−(p
√
n)−1)2 = O(e−p

√
n/3).

Taking a union bound over all β ∈ [n− 1] shows that P(¬A′) = O(ne−p
√
n/3).

To complete the proof, we just need to show that E(N | ¬A′) = O(n). The event ¬A′

only depends on the random variables X(β)
j with β ∈ [n− 1] and 0 ≤ j ≤

√
n. Also, the

event A1 always occurs vacuously, so (¬A′) ⊆ A1. Setting ξ = 1 in Lemma 8.1, we derive
the estimate E(N | ¬A′) ≤ n/p+ o(n) = O(n).

Corollary 8.4. For ζ ∈ (0, 1] and n ≥ 1/ζ, we have E(N | A′ \Aζ) ≤ n/p+ o(n).

Proof. The event A′ \Aζ only depends on the random variables X(β)
j with β ∈ [n− 1] and

0 ≤ j ≤
√
n. The event A1 always occurs vacuously, so (A′ \ Aζ) ⊆ A1. Setting ξ = 1 in

Lemma 8.1 yields the estimate E(N | A′ \Aζ) ≤ n/p+ o(n).

Let G1, G2, . . . be independent geometric random variables, each with expected value
1/p. Recall from Section 1 that Bruss and O’Cinneide [17] proved that lim

n→∞
(ρp(n) −

Υp(n)) = 0, where

Υp(x) =

px
∑
k∈Z

(1− p)ke−(1−p)
kx if p < 1;

0 if p = 1
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and ρp(n) is the probability that there is a unique integer i ∈ [n] such that Gi =

max{G1, . . . , Gn}. Moreover, Υp(x) is logarithmically periodic, so max
0<x<1

Υp(x) is equal to

lim sup
n→∞

ρp(n). Let

ρp = max
0<x<1

Υp(x) = lim sup
n→∞

ρp(n).

We can now complete the proof of Theorem 1.20.

Proof of Theorem 1.20. If p = 1, then Theorem 1.20 states that E(Tamn) = o(n), which
is certainly true because 1̂ transitions to 0̂ in a single step in UTamn . Now assume

p < 1. Let ζ =
√
ρp/(1 + ρp) ∈ (0, 1], and assume n ≥ 1/ζ. If β is an integer satisfying

1 ≤ β < (1−ζ)n, then Fβ , Fβ+1, . . . , Fβ+bζnc are independent geometric random variables,
each with expected value 1/p, so

P (Fβ > max{Fi : β + 1 ≤ i ≤ β + ζn}) =
1

bζnc+ 1
ρp(n) ≤ 1

ζn
(ρp + o(1)).

Consequently,

1− P(Aζ) ≤
1− ζ
ζ

(ρp + o(1)).

Appealing to Corollaries 8.2 to 8.4, we compute

E(Tamn) = E(N)

= P(Aζ ∩A′)E(N | Aζ ∩A′) + P(¬A′)E(N | ¬A′) + P(A′ \Aζ)E(N | A′ \Aζ)

≤ P(Aζ ∩A′)(ζn/p+ o(n)) +O(n2e−p
√
n/3) + P(A′ \Aζ)(n/p+ o(n))

= P(Aζ ∩A′)ζn/p+ P(A′ \Aζ)n/p+ o(n)

≤ P(Aζ)ζn/p+ (1− P(Aζ))n/p+ o(n)

= ζn/p+ (1− P(Aζ))(1− ζ)n/p+ o(n)

≤ ζn/p+

(
1− ζ
ζ

(ρp + o(1))

)
(1− ζ)n/p+ o(n)

=
1

p

(
ζ +

(1− ζ)2

ζ
ρp

)
n+ o(n).

Substituting ζ =
√
ρp/(1 + ρp) and simplifying yields

E(Tamn) ≤ 2

p

(√
ρp(1 + ρp)− ρp

)
n+ o(n),

as desired.

9 Future directions

9.1 Better estimates

It would be interesting to improve upon the asymptotic upper bounds that we proved
for E(L) for various lattices L. With regard to the weak order on Sn, we conjecture that
the upper bound in Theorem 1.8, which is on the order of n log n, can be improved to a
linear bound.

Conjecture 9.1. We have E(Sn) = O(n).

In Theorem 1.20, we focused on Tamari lattices and improved upon the upper bound
that one would obtain from Theorem 1.13 by viewing Tamn as a Cambrian lattice of
type A. There are other specific interesting families of Cambrian lattices where one could
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try to make similar improvements. For example, Reading’s Tamari lattices of type Bn
[43] are the Cambrian lattices of type Bn given by the Coxeter elements s0s1 · · · sn−1
and sn−1 · · · s1s0. Another interesting class of Cambrian lattices worth exploring in more
detail consists of the bipartite Cambrian lattices. To construct these, choose a bipartition
X t Y of the Coxeter graph of a finite irreducible Coxeter group W (this is possible
because the Coxeter graph is a tree), and let cX =

∏
s∈X s and cY =

∏
s∈Y s. The two

bipartite Cambrian lattices of type W are the Cambrian lattices corresponding to the
Coxeter elements cXcY and cY cX .

Most of our results focus on upper bounds for E(L). It would be very interesting to
have nontrivial lower bounds, especially for specific choices of L. Appealing to Ungar’s
work, we did find a lower bound for E(Sn) in Theorem 1.8; can one find an improvement?
Can one obtain any nontrivial asymptotic lower bound for E(Tamn)?

9.2 The elements we reach along the way

Figure 1 shows the plots of some permutations obtained by applying the Ungarian
Markov chain US400

. There are very clear patterns in these plots that we do not know
how to explain. Describing these shapes rigorously would be highly substantial. This
problem seems similar, at least superficially, to the monumental works [2, 3, 27, 28] on
random sorting networks.

More generally, we have the following.

Problem 9.2. Given a lattice L, describe the elements that we are likely to reach when
we run the Ungarian Markov chain UL starting at 1̂.

There are multiple ways to interpret the previous problem. On the one hand, one could
study the probability distribution on L that results from running UL for a prescribed
number of steps (starting at 1̂). In a similar but slightly different vein, one could study
the hitting probabilities of the elements of L.

9.3 Variance

This article has focused exclusively on E(L), the expected value of the number of
steps needed to go from the top element 1̂ to the bottom element 0̂ in UL (i.e., the
expected hitting time of the unique absorbing state). It would be very interesting to say
something about the variance of this number of steps. Experiments suggest that this
variance is relatively small when L is the weak order on Sn but is relatively large when
L is the Tamari lattice Tamn.

9.4 Other lattices

There are several diverse families of lattices, and we have certainly not explored all
of them through the lens of Ungarian Markov chains in this paper. Considering other
families would likely be a rich source of future research directions.

One particular family that stands out is that of geometric lattices, which are funda-
mental because of their numerous examples and their strong connection with matroid
theory. A lattice is atomic if each of its elements can be expressed as a join of atoms. If
L is a graded lattice, then it has a unique rank function rk : L→ Z≥0 such that rk(0̂) = 0

and rk(y) = rk(x) + 1 whenever xl y. We say a lattice L is semimodular if it is graded
and its rank function satisfies

rk(x ∧ y) + rk(x ∨ y) ≤ rk(x) + rk(y)

for all x, y ∈ L. A lattice is geometric if it is atomic and semimodular. It is well known
that a lattice is geometric if and only if it is isomorphic to the lattice of flats of a
matroid.
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Let us say a geometric lattice L is primitive if it cannot be written as a product of
smaller geometric lattices. Then L is primitive if and only if it is isomorphic to the lattice
of flats of a connected matroid.

Conjecture 9.3. If (L(n))n≥1 is a sequence of primitive geometric lattices such that
|L(n)| → ∞ as n→∞, then

E(L(n)) = 1 + o(1).
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