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An invariance principle for one-dimensional random
walks in degenerate dynamical random environments*
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Abstract

We study random walks on the integers driven by a sample of time-dependent nearest-
neighbor conductances that are bounded but are permitted to vanish over time
intervals of positive Lebesgue-length. Assuming only ergodicity of the conductance
law under space-time shifts and a moment assumption on the time to accumulate a unit
conductance over a given edge, we prove that the walk scales, under a diffusive scaling
of space and time, to a non-degenerate Brownian motion for a.e. realization of the
environment. The conclusion particularly applies to random walks on one-dimensional
dynamical percolation subject to fairly general stationary edge-flip dynamics.
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1 Definitions and main results

This note is concerned with large-scale behavior of a particular class of one-dimen-
sional nearest-neighbor random walks in dynamical random environments. Each of our
random walks is technically a continuous-time Markov chain on Z with time-varying
generator Lt at time t that acts on f : Z→ R as

Ltf(x) :=
∑
z=±1

at(x, x+ z) [ f(x+ z)− f(x)] , (1.1)

where at(x, x+ z) is a non-negative number interpreted as the instantaneous jump rate
from x to x+z at time t. The key restriction we impose is that this jump rate is symmetric,

at(x, x+ z) = at(x+ z, x), x ∈ Z, z = ±1, (1.2)
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Degenerate 1D random walk

and so at(e) is just a function of the undirected edge e. No jump across edge e can occur
at time t when at(e) vanishes.

In order to construct the Markov chain precisely we need to make some regularity
assumptions on the environment. Writing E(Z) for the set of undirected edges of Z, let
Ω := [0,∞)R×E(Z) denote the set of all environments and F :=

⊗
R×E(Z) B([0,∞)) for

the product σ-algebra on Ω. For each t ∈ R and x ∈ Z, let τt,x : Ω→ Ω be the canonical
space-time shift acting on a ∈ Ω as

(τt,xa)s(y, y + z) = at+s(y + x, y + x+ z), s ∈ R, x ∈ Z, z = ±1. (1.3)

We will assume throughout that a probability measure P on (Ω,F) is given, with expecta-
tion denoted as E, such that the following holds:

Assumption 1.1. For each edge e ∈ E(Z), the map t→ at(e) is Borel measurable and
locally Lebesgue integrable. The law P is invariant and ergodic with respect to the
family of space-time shifts {τt,x : t ∈ R, x ∈ Z}.

Under Assumption 1.1, a Z-valued Markov chain with generator (1.1) can be con-
structed for all environments in a measurable set Ω0 of full P-measure. (See [6]
for an outline of that construction with non-explosivity being its main concern.) Let
X = {Xt : t ≥ 0} denote the càdlàg trajectory of the chain and write P xa to denote the law
of X in environment a ∈ Ω0 subject to the initial condition P xa (X0 = x) = 1. The aim of
the present note is to give sufficient conditions under which the walk behaves “usually”
at large space-time scales. We formalize this as:

Definition 1.2. We say that a Quenched Invariance Principle holds if there exists a
constant σ2 ∈ (0,∞) such that for any t0 > 0 and P-a.e. environment a, the law of

t 7→ 1√
n
Xnt, 0 ≤ t ≤ t0, (1.4)

induced by P 0
a on the Skorohod space D[0, t0] of càdlàg paths converges, as n→∞, to

the law of Brownian motion {Bt : t ∈ [0, t0]} with EBt = 0 and EB2
t = σ2t.

We note that, for one-dimensional walks subject to Assumption 1.1, a Quenched
Invariance Principle was proved earlier by Deuschel and Slowik [9] assuming the finite-
ness of the p-th positive and the q-th negative moments of at(e) subject to p, q ≥ 1 and
1
p−1 (1 + 1

q ) < 1. The latter inequality stems from the method of proof, which is based on
elliptic regularity techniques. In [6], the first author discovered a different proof that
works solely under the first-moment conditions

E[at(e)] <∞ and E[at(e)
−1] <∞. (1.5)

These were also shown to be necessary for the result to hold in general.
Unfortunately, under Assumption 1.1, the negative moment condition in (1.5) makes

it impossible for t 7→ at(e) to vanish on a set of positive Lebesgue measure. This excludes
natural examples of prime interest. We mend this partially in:

Theorem 1.3. In addition to Assumption 1.1, suppose that

(1) at(e) ∈ [0, 1] for all t ∈ R and e ∈ E(Z),

(2) the quantity

T := inf

{
t ≥ 0 :

∫ t

0

as(0, 1) ds ≥ 1

}
(1.6)

obeys
∃ε > 0: E(T 3+ε) <∞. (1.7)

Then a Quenched Invariance Principle holds.
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Degenerate 1D random walk

An important family of examples covered by Theorem 1.3, but not the conclusions
of [9, 6], are random walks on dynamical percolation. Here at(e) takes values in {0, 1},
with value 1 representing the edge being “ON” and 0 for the edge being “OFF.” The
processes {t 7→ at(e)}e∈E(Z) are i.i.d. copies of a given stationary process on {0, 1} which
we assume to have càdlàg (and thus piecewise-constant) sample paths and take both
values a.s. To make a connection to percolation we note that, at each given time t ∈ R,
the configuration of the “ON” edges is Bernoulli with probability p := Ea0(0, 1).

While the nature of the individual edge dynamics can be quite arbitrary, the as-
sumptions permit a representation via a sequence of pairs of strictly positive random
variables {

(T OFF

i , T ON

i )
}
i∈Z, (1.8)

to be called “OFF” and “ON”-times, that stand for the lengths of successive time intervals
on which t 7→ at(e) equals 0 and 1, respectively. Explicitly, writing {τi}i∈Z for the
successive times when t 7→ at(e) switches from 1 to 0 and {τ ′i}i∈Z for the times it
switches from 0 to 1, indexed so that τi < τ ′i < τi+1 for each i ∈ Z and τ0 ≤ 0 < τ1, these
are defined as T OFF

i := τ ′i − τi and T ON
i := τi+1 − τ ′i .

The sequence (1.8) in turn determines the trajectory t 7→ at(e) except for the place-
ment of the “initial” jump time τ0. For this we note that, as t 7→ at(e) is stationary,
the random variable U := −τ0/(τ1 − τ0) is uniform on [0, 1] and independent of the
family (1.8). (See the proof of Lemma 4.2 for a justification.) Starting from (1.8) and an
independent uniform U , we thus set τ0 := −(T OFF

0 + T ON
0 )U and define the other τi and τ ′i

by adding/subtracting appropriate terms from (1.8).
A minor complication of the representation via (1.8) is that the law of the interarrival

times {(T OFF
i , T ON

i )}i∈Z is not stationary under the law P, but rather under the de-size-
biased measure P̃ defined for A ∈ σ({at(e) : t ∈ R}) by

P̃(A) :=
E((T OFF

0 + T ON
0 )−11A)

E((T OFF
0 + T ON

0 )−1)
, (1.9)

where, as before, E is expectation with respect to P. This in particular requires that the
expectation in the denominator is finite. See, again, the proof of Lemma 4.2.

The main advantage of the representation based on (1.8) and (1.9) is that it makes
it easier to describe specific examples. For instance, {(T OFF

i , T ON
i )}i∈Z could be i.i.d.

under P̃ which makes t 7→ at(e) a stationary renewal process modulo 2 under P. This is
exactly the setting that many earlier studies (e.g., by Peres, Stauffer and Steif [16], Peres,
Sousi and Steif [17, 18] or Hermon and Sousi [12]) have focused on. Another possibility
is to draw {(T OFF

i , T ON
i )}i∈Z from a stationary Markovian law on (0,∞)× (0,∞) although

even this is still unnecessarily restrictive for our purposes. Our result on dynamical
percolation is cast as follows:

Theorem 1.4. Consider the random walk on dynamical percolation as specified above:
The conductance processes {t 7→ at(e)}e∈E(Z) are i.i.d. taking values in {0, 1} with the

associate sequence {(T OFF
i , T ON

i )}i∈Z of interarrival times stationary under P̃. Assume, in
addition to T OFF

1 , T ON
1 being positive and finite, that

∃p > 4 ∃s > 4
1− 1/p

1− 4/p
: Ẽ

(
(T OFF

1 + T ON

1 )p
)
<∞ and Ẽ

(
(T ON

1 )−s
)
<∞, (1.10)

where Ẽ is expectation with respect to P̃. Then a Quenched Invariance Principle holds.

The restriction to (at least) four moments of the “OFF” and “ON” times comes from
the restriction in Theorem 1.3. That being said, some moment condition is definitely
needed to ensure convergence to a non-degenerate Brownian motion. Indeed, as we
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Degenerate 1D random walk

show in Lemma 4.4, when T ON
i := 1 for all i ∈ Z and {T OFF

i }i∈Z are i.i.d. under P̃ with
Ẽ((T OFF

1 )1/2) = ∞, the random walk behaves subdiffusively. (Note that this translates
to divergence of the 3/2-th moment of T from (1.6) under P.) We do not know what
moments of the “ON/OFF”-times are critical for existence of such singular examples
and/or the validity of a Quenched Invariance Principle. In any case, we do not believe
that our conditions (1.7) and (1.10) are optimal; cf Remark 3.8.

The specific example of random walk on dynamical percolation irregardless, the
main thrust of our result is that it requires no assumptions (beyond stationarity and
ergodicity under space-time shifts) on how the conductances evolve. This takes our
approach significantly beyond earlier works (e.g., by Bérard [3], Rassoul-Agha and Sep-
pälainen [19], Bandyopadhyay and Zeitouni [2], Boldrighini, Minlos and Pellegrinotti [8],
Dolgopyat, Keller and Liverani [10], Redig and Völlering [20]) that require more explicit
assumptions. A limitation of our approach compared to these studies is its restriction to
time-continuous variable-speed random walks with uniformly bounded jump rates. (The
standard time-change argument that allows us to represent the constant-speed walk by
its variable-speed counterpart applies only for static environments.)

2 Main steps and technical claims

We proceed to discuss the main steps of the proof articulating the key technical
statements to be established. The actual proofs come in Section 3.

2.1 Overall picture

There are two strategies we could follow in the proof of Theorem 1.3. One would be
based on elliptic regularity techniques developed earlier by Andres, Chiarini, Deuschel
and Slowik [1] in d ≥ 2 and by Deuschel and Slowik [9] in d = 1 for models satisfying, on
top of Assumption 1.1, suitable positive and negative moment conditions on the conduc-
tances. Besides a rather disqualifying restriction to (a.s.) strictly positive conductances,
a disadvantage of this approach is its significant complexity caused by its reliance on
advanced techniques such as functional inequalities and Moser iteration.

The complexity notwithstanding, an important feature of the proofs in [1] and [9] is
that the negative-moment condition is used only lightly — mainly, to convert unadorned
norms of important quantities to norms weighted by the conductances. In dimensions
d ≥ 2, this was observed and fruitfully utilized by the first author and P.-F. Rodriguez [7] to
prove a Quenched Invariance Principle for models with bounded conductances assuming
that the quantity in (1.6) obeys

∃ε > 0: E(T 4d+ε) <∞. (2.1)

While a similar (albeit still very technical) proof is expected to work for random walks
with degenerate conductances in d = 1, details of this have not been completed due to a
different behavior of the Sobolev inequality in spatial dimension one.

Another strategy we could follow would rely on the aforementioned work of the first
author [6]. An inspection of the proofs of [6] reveals that also here the negative moment
condition is used only sporadically; namely, only in [6, Lemma 4.2], dealing with the
construction of an auxiliary random walk that the whole proof is based on, and in [6,
Theorem 5.5] that constructs and proves the relevant properties of so called parabolic
coordinates. We will follow this route and show that a slightly weaker form of Lemma 4.2
remains true, still sufficient to serve our purposes, and so does Theorem 5.5 provided we
replace the negative-moment condition by assumptions (1-2) of Theorem 1.3. Our proof
thus turns out to be a blend of the two approaches, relying mainly on [6] but drawing on
some key observations from [7].
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2.2 Main steps

In order to bring the reader into the picture, let us recount the main steps of the
proof in [6]. The overall structure adheres to that of the proofs of invariance principles
by the corrector method; see Biskup [5] or Kumagai [13] for recent reviews. The proof
thus starts with the construction of a parabolic coordinate which is a random map
ψ : R×Z→ R of which we require the following:

(1) t 7→ ψ(t, x) is continuous for each x ∈ Z and t, x 7→ ψ(t, x) is a weak solution to

∂

∂t
ψ(t, x) + Ltψ(t, x) = 0, t ∈ R, x ∈ Z, (2.2)

with the “initial” data
ψ(0, 0) = 0. (2.3)

Here Lt acts only on the second coordinate.

(2) For each t, s ∈ R and each x, y ∈ Z, the cocycle condition holds

ψ(t+ s, x+ y)− ψ(t, x) = ψ(s, y) ◦ τt,x. (2.4)

(3) ψ(·, x) is, for each x ∈ Z, a jointly measurable function of time (i.e., the first
variable) and the random environment and we have

ψ(t, x) ∈ L1(P) and Eψ(t, x) = x, t ∈ R, x ∈ Z, (2.5)

and
E
(
a0(0, 1)ψ(0, 1)2

)
<∞. (2.6)

(4) The spatial gradients of ψ(t, ·) are a.s. positive,

ψ(t, x+ 1)− ψ(t, x) > 0, t ∈ R, x ∈ Z. (2.7)

Thinking of the map x 7→ ψ(t, x) as a different embedding of Z into R, the above
properties ensure that, in the new embedding, the random walk t 7→ ψ(t,Xt) is an
L2-martingale (under P 0

a ). See [6, Fig. 2] for an illustration.
Relying on the point of view of the particle enabled by Assumption 1.1 and the Markov

property of X, we now check the conditions of the Functional Central Limit Theorem
(see, e.g., Helland [11, Theorem 5.1(a)]) for the process t 7→ ψ(t,Xt), which thus tends
in law, under a diffusive scaling of space and time, to Brownian motion with variance

σ2 := 2E
(
a0(0, 1)ψ(0, 1)2

)
. (2.8)

The proof of [6, Theorem 1.2] contains all relevant (and explicit) details that apply to the
present setting more or less verbatim.

While σ2 < ∞ by (2.6) and σ2 > 0 is checked via (2.7), the next, and usually the
hardest, technical problem is to show that the “deformation” ψ(t,Xt)−Xt of the random-
walk path caused by the change of embedding of Z is asymptotically irrelevant under
the diffusive scaling of the process. As usual, it suffices to show this for the embedding
itself which amounts to proving that the parabolic corrector,

χ(t, x) := ψ(t, x)− x, (2.9)

obeys

max
x∈Z
|x|≤
√
n

sup
t∈R

0≤t≤n

|χ(t, x)|√
n

−→
n→∞

0, P-a.s. (2.10)
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Indeed, the aforementioned Functional CLT gives max0≤t≤n |ψ(t,Xt)| = O(
√
n) P-a.s.

and (2.10) then shows max0≤t≤n |χ(t,Xt)| = o(
√
n) P-a.s. as desired. (Here and hence-

forth, O(r) denotes a quantity bounded by a constant times r while o(r) is a quantity that
upon division by r vanishes as r →∞.)

The proof of Theorem 1.3 is thus reduced to two technical steps: a construction of the
parabolic coordinate ψ satisfying (1-4) above and a proof of the sublinear/subdiffusive
bound (2.10). In the approach of references [1, 9, 7], this is exactly where elliptic
regularity techniques are employed to their full extent. The approach of [6] instead
relies on the observation that, thanks to the one-dimensional nature of the problem, the
spatial gradient of the parabolic coordinate

g(t, x) := ψ(t, x+ 1)− ψ(t, x) (2.11)

obeys the PDE

− ∂

∂t
g(t, x) = L+

t g(t, x), (2.12)

where the operator on the right-hand side acts on the spatial variable as

L+
t f(x) := bt(x+ 1)f(x+ 1) + bt(x− 1)f(x− 1)− 2bt(x)f(x) (2.13)

with

bt(x) := at(x, x+ 1) (2.14)

henceforth abbreviating the conductance of edge (x, x+ 1).
As our use of adjoint notation suggests, L+

t is the adjoint in `2(Z) of an operator Lt
that acts on f : Z→ R as

Ltf(x) := bt(x)
[
f(x+ 1) + f(x− 1)− 2f(x)

]
. (2.15)

A key point is that Lt is the generator of a continuous time simple symmetric random
walk Y time-changed so that the jump rate at x at time t is 2bt(x), which is a much
simpler process than X to analyze. As it turns out, the process Y supplies all the needed
tools for the proof of a Quenched Invariance Principle for the walk X.

2.3 Statements to be proved

We will now describe what needs to be done in order to extend the proofs of [6] to
that of Theorem 1.3. The first item of business is a formal construction of the random
walk Y . Note that this walk moves on the set of edges of Z so we will refer to it as a
dual random walk. The negative sign on the left of (2.12) necessitates that Y be run
in negative time direction. The following generalizes [6, Lemma 4.2] to the situation
when t 7→ bt(x) is allowed to vanish over sets of positive Lebesgue measure:

Lemma 2.1. Suppose that t → b−t(x) is Borel-measurable and locally integrable on
(0,∞) and, in addition, for all x ∈ Z,∫ ∞

0

b−t(x) dt =∞. (2.16)

Given x ∈ Z, let P x be the measure under which Z is a discrete-time simple symmetric
random walk on Z started from x and N is an independent rate-1 Poisson point process.
Then, for all x ∈ Z, there is a non-decreasing continuous function A : [0,∞) → [0,∞)

satisfying

A(t) =

∫ t

0

2b−s(ZN(A(s)))ds, t ≥ 0, (2.17)
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such that P x(A(t) <∞) = 1 for each t ≥ 0 and x ∈ Z. Moreover, the process

Yt := ZN(A(t)), t ≥ 0, (2.18)

is a continuous-time Markov chain on Z with generator Lt in (2.15).

We note that (1.7) along with stationarity implies that, P-a.s., at any time and position,
the time it takes to accumulate one unit of conductance is finite. Hence, the P-a.s. validity
of (2.16) follows. Lemma 2.1 then shows that the dual random walk Y is well defined (as
a time change of the constant-speed simple symmetric random walk) for P-a.e. sample
of the random environment.

As it turns out, the construction of the parabolic coordinate for X is equivalent to the
construction of an invariant measure Q for the environment as seen by the walk Y . In [6],
such an invariant measure is extracted by constructing its Radon-Nikodym derivative
with respect to P, and thus proving that Q� P. For us this comes in:

Theorem 2.2. Under the conditions of Theorem 1.3, there exists ϕ ∈ L1(P) that satisfies

(1) P(ϕ > 0) = 1 and Eϕ = 1,

(2) E(b0(0)ϕ2) ≤ Eb0(0),

(3) the map t→ ϕ ◦ τt,x is continuous and weakly differentiable such that

∂

∂t
ϕ ◦ τt,x + L+

t ϕ ◦ τt,x = 0 (2.19)

holds for all t ∈ R and x ∈ Z.

In particular, Q defined for A ∈ F by Q(A) := E(ϕ1A) is a probability measure on (Ω,F)

that is stationary and ergodic for the chain t 7→ τ−t,Yt(a).

The link between the above Radon-Nikodym derivative and the parabolic coordinate
is supplied by the observation that the PDEs (2.12) for t, x 7→ g(t, x) and (2.19) for
t, x 7→ ϕ ◦ τt,x are identical. Setting g(t, x) := ϕ ◦ τt,x would give us access to the gradient
of ψ. The parabolic coordinate ψ is extracted from this via

ψ(t, x) := χ(t, 0) ◦ τ0,x +

x−1∑
k=0

ϕ ◦ τ0,k, (2.20)

where

χ(t, 0) := −
∫ t

0

(
bs(0)ϕ ◦ τs,0 − bs(−1)ϕ ◦ τs,−1

)
ds. (2.21)

Here the (Lebesgue) integral converges absolutely under expectation, and thus P-a.s., by
Tonelli’s Theorem along with ϕ ∈ L1(P) and bt(x) ∈ [0, 1] as implied by the assumptions
of Theorem 1.3. Standard interpretations of the integral in (2.21) and the sum in (2.20)
are to be used for negative t and x.

It is straightforward to check (see the proof of [6, Theorem 3.2]) that ψ from (2.20)
obeys conditions (1-4) listed earlier. (In particular, (2.4) makes (2.9) and (2.21) consis-
tent.) It then remains to prove the bound (2.10) for the corrector. In light of the cocycle
conditions (2.4), for this suffices to prove separately sublinearity in space

lim
n→±∞

|χ(0, n)|
n

= 0, P-a.s. (2.22)

and subdiffusivity in time

lim
t→∞

|χ(t, 0)|√
t

= 0, P-a.s. (2.23)
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Indeed, the “good grid” argument (originally designed in Berger and Biskup [4] for
random walk on static percolation) used in [6] then builds this into (2.10).

As to the above almost sure limits, the one in (2.22) is proved by following the
argument from [6, Lemma 7.1] with the moment conditions supplied by Theorem 2.2(1).
(In particular, no path interpolation as used in Berger and Biskup [4] are needed, nor is
the conversion of the first moment of χ to the weighted second moment from Biskup [5].)
The proof of (2.23), which comes as [6, Proposition 7.2], is considerably longer as it
involves a different representation of χ(0, t) and the use of a Quenched Central Limit
Theorem for the walk Y (which needs the invariant measure Q and its equivalence
with P, as implied by Theorem 2.2(1)). But, as an inspection of these proofs reveals,
the negative moment condition is not used throughout and some proofs (e.g., that of [6,
Lemma 8.1]) become even simpler for bounded conductances.

The bottom line is that the proof of Theorem 1.3 is reduced to those of Lemma 2.1
and Theorem 2.2. These proofs, which we will address in the next section, are the main
technical contributions of the present note.

3 Actual proofs

We now move to the proofs of the technical claims from Section 2, starting with the
construction of the dual random walk Y on which the rest of the argument is based. We
assume the conditions of Theorem 1.3 throughout this section.

3.1 The dual random walk

Our overall goal is to construct the continuous-time random walk Y from (2.18). As
is standard in the theory of continuous-time Markov chains (cf., e.g., Liggett [14]), we
first construct the associated transition probabilities. For this we define a family of
non-negative kernels Kn(s, x; t, y) indexed by integers n ≥ 0 and depending on reals
−∞ < t ≤ s <∞ and vertices x, y ∈ Z inductively via

Kn+1(s, x; t, y) := e−
∫ s
t

2bu(x) du δx,y

+

∫ s

t

e−
∫ s
r

2bu(x) du br(x)
(∑
z=±1

Kn(r, x+ z; t, y)
)

dr (3.1)

with the initial value K0(s, x; t, y) := 0. Note that time runs in the opposite direction of
how the conductances are parametrized.

The definition (3.1) readily yields that n 7→ Kn(s, x; t, y) is non-decreasing and non-
negative with

∑
y∈Z Kn(s, x; t, y) ≤ 1. The limit

K(s, x; t, y) := lim
n→∞

Kn(s, x; t, y) (3.2)

thus exists, is non-negative and obeys
∑
y∈Z K(s, x; t, y) ≤ 1 thanks to the Monotone

Convergence Theorem. With all these objects being random variables on the probability
space (Ω,F ,P), we also have

K(s, x; t, y) ◦ τu,z = K(s+ u, x+ z; t+ u, y + z) (3.3)

for all s ≥ t, all u ∈ R and all x, y, z ∈ Z. The main difficulty is to show that K is stochastic
which, as usual, is achieved by constructing the continuous time Markov chain as a
time-change of a discrete-time chain. This is what is done in:

Proof of Lemma 2.1. As in the proof of [6, Lemma 4.2], instead of A we construct its
inverse. Unfortunately, due to s 7→ b−s(x) potentially vanishing over sets of positive
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Lebesgue measure, this inverse is no longer continuous which complicates its use. We
thus proceed by a perturbation argument.

Abusing our earlier notation, let τ0 := 0 < τ1 < . . . denote the successive arrivals
of a rate-1 (right-continuous) Poisson process N and let Z be the sample path of an
independent discrete-time simple symmetric random walk on Z. Given δ > 0, and
restricting to the full-measure event

⋂
n≥0{τn <∞}, set Wδ(0) := 0 and, for each n ≥ 0

and t ∈ (τn, τn+1], let Wδ(t) be the unique number such that∫ Wδ(t)

Wδ(τn)

[
δ + 2b−s(Zn)

]
ds = t− τn. (3.4)

The assumptions ensure that Wδ(t) is finite for each t ≥ 0 with t 7→ Wδ(t) continuous
and strictly increasing with the lower bound Wδ(t)−Wδ(s) ≥ (2 + δ)−1(t− s) whenever
t ≥ s ≥ 0. In particular, limt→∞Wδ(t) =∞.

It follows that Wδ admits a unique continuous and strictly increasing inverse Aδ
mapping [0,∞) onto itself. Thanks to the strict monotonicity, the defining relation (3.4)
shows that Aδ(s) ∈ [τn, τn+1) is equivalent to s ∈ [Wδ(τn),Wδ(τn+1)) and, since this forces
N(Aδ(s)) = n for all s ∈ [Wδ(τn),Wδ(τn+1)), we may rewrite (3.4) into∫ t

Wδ(τn)

[
δ + 2b−s(ZN(Aδ(s)))

]
ds = Aδ(t)− τn, t ∈ [Wδ(τn),Wδ(τn+1)]. (3.5)

Here continuity of both sides in t was used to include t = Wδ(τn+1).

We now take δ ↓ 0 to extract the desired function A. To that end we first note that a
telescoping argument applied to (3.5) gives∫ t

0

[
δ + 2b−s(ZN(Aδ(s)))

]
ds = Aδ(t) (3.6)

for all t ≥ 0, where we used that Aδ(0) = 0. A similar argument applied to (3.4) shows
that δ 7→ Wδ(t) is non-increasing and so δ 7→ Aδ(t) is non-decreasing. In light of the
Lipschitz bound 0 ≤ Aδ(t)−Aδ(s) ≤ (2 + δ)(t− s) for t ≥ s ≥ 0, the limit

A(t) := lim
δ↓0

Aδ(t) (3.7)

exists and defines a continuous real-valued non-decreasing function t 7→ A(t) satisfying
A(0) = 0. The upward monotonicity of δ 7→ Aδ(s) in conjunction with the right-continuity
of N gives b−s(ZN(Aδ(s))) → b−s(ZN(A(s))) as δ ↓ 0, for each s ≥ 0. Taking δ ↓ 0 in (3.6)
with the help of the Bounded Convergence Theorem then proves (2.17).

Define Y from the processes N , Z and A by the formula (2.18). Recall that P x is the
law of these objects such that P x(Z0 = x) = 1. The identity (3.1) then inductively shows
that, for all t ≥ 0,

Kn(0, x;−t, y) = P x
(
Yt = y, N(A(t)) < n

)
, n ≥ 0. (3.8)

As P x(N(A(t)) <∞) = 1 due to P x(A(t) <∞) = 1, taking n→∞ gives

K(0, x;−t, y) = P x(Yt = y). (3.9)

In particular, K is stochastic and, taking n→∞ in (3.1) using the Monotone Convergence
Theorem, Y is a Markov chain with generator Lt.
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3.2 Proof of Theorem 2.2

Having constructed the random walk Y , we now move to the construction of the
Radon-Nikodym derivative ϕ of the invariant measure on environments as seen from Y .
As in [6], we will extract ϕ as an ε ↓ 0 limit of the quantity

ϕε := ε

∫ ∞
0

e−εt
(∑
y∈Z

K(t, y; 0, 0)
)

dt. (3.10)

We first pull some observations from [6]:

Lemma 3.1. For each ε > 0,
E(ϕε) = 1 (3.11)

and, in particular, ϕε is finite P-a.s. Moreover, abbreviating

ϕε(t, x) := ϕε ◦ τt,x (3.12)

the function t 7→ ϕε(t, x) is continuous and weakly differentiable with

∂

∂t
ϕε(t, x) = ε (ϕε(t, x)− 1)− L+

t ϕε(t, x). (3.13)

Proof. Formula (3.11) is obtained by invoking stationarity of P along with (3.3) and
the Monotone Convergence Theorem to rewrite the sum in (3.10) under expectation
into

∑
y∈Z K(0, 0;−t, y) = 1. Formula (3.13) is a limit version of [6, formula 5.20] whose

derivation applies verbatim.

Lemma 3.2. For each ε > 0, we have

E
(
b0(0)ϕ2

ε

)
≤ Eb0(0). (3.14)

Proof. This is a restatement of [6, Proposition 5.1] whose proof applies without changes
in our case as well.

The argument of [6] proceeds by taking a weak limit of ϕε as ε ↓ 0 and using (3.14)
to show that “no mass is lost” in (3.11) in this process. In [6], this step required the
negative moment condition which would restrict us to b0(0) > 0 P-a.s. Once this does
not apply, even the subsequent use of (3.14) becomes problematic as the inequality can
at best give control of the weak limit on the set where b0(0) > 0.

In order to overcome these issues, we invoke an idea from Biskup and Rodriguez [7]
that is itself drawn from Mourrat and Otto [15]. In these works, the argument proceeds
by finding a version of (3.14) in which bt(x) is replaced by the time-averaged quantity of
the form

ct(x) :=

∫ ∞
t

ks−tbs(x) ds, (3.15)

where t 7→ kt is a suitable positive function on (0,∞) with sufficient decay at infinity.
Note that ct(x) is positive as soon as s 7→ bs(x) is positive on a set of positive Lebesgue
measure, which for us occurs P-a.s. thanks to (1.7).

As it turns out, the most useful choice is to take t 7→ kt with a power-law decay and
so we henceforth set

kt := (1 + t)−α (3.16)

for some α > 0 to be determined momentarily. The reason for this is seen from:

Lemma 3.3. Recall the quantity T from (1.6) and let α > 0. Then for c0(0) defined using
the kernel (3.16),

E(Tα) <∞ ⇒ E(c0(0)−1) <∞. (3.17)
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Proof. We have

c0(0) =

∫ ∞
0

ktbt(0) dt ≥
∫ T

0

ktbt(0) dt ≥ 1

(1 + T )α

∫ T

0

bt(0)dt =
1

(1 + T )α
, (3.18)

which yields c0(0)−1 ≤ (1 + T )α. The claim follows.

The restriction on the moment of T now comes via:

Proposition 3.4. For any α > 3 and for c0(0) defined using the kernel (3.16),

sup
0<ε<1

E
(
c0(0)ϕ2

ε

)
<∞. (3.19)

Before giving the proof of Proposition 3.4, which comes in Section 3.3, we give:

Proof of Theorem 2.2 from Proposition 3.4. Suppose the moment condition (1.7) holds
with some ε > 0 and let α := 3 + ε. Writing L0(P) for the set of measurable f : Ω → R

modulo changes on P-null sets, consider the Hilbert space

H :=
{
f ∈ L0(P) : E

(
c0(0)−1f2

)
<∞

}
(3.20)

endowed with the inner product 〈f, g〉H := E(c0(0)−1fg). Using C to denote the supre-
mum in (3.19), for any f ∈ L∞(P) and ε ∈ (0, 1) the Cauchy-Schwarz inequality shows

E(ϕεf) ≤ C1/2
[
E(c0(0)−1f2)

]1/2
. (3.21)

It follows that
φε(f) := E(ϕεf) (3.22)

defines a continuous linear functional on H with the operator norm bounded by C1/2

uniformly in ε ∈ (0, 1). AsH is separable, and the unit ball inH? thus weakly compact, the
Cantor diagonal argument yields a sequence εn ↓ 0 and φ ∈ H? such that φεn(f)→ φ(f)

for all f ∈ H. The Riesz lemma then shows that φ takes the form φ(f) = E
[
c0(0)−1hf

]
for some h ∈ H. We define ϕ := c0(0)−1h.

Lemma 3.3 along with the moment condition (1.7) implies that the space L∞(P) of
bounded measurable functions obeys

L∞(P) ⊂ H. (3.23)

In particular, 1 ∈ H. The identity φε(1) = E(ϕε) = 1 then survives the limit and so we get
E(ϕ) = 1, proving the second half of (1). For the inequality in (2), we first note that the
bound E[b0(0)(ϕε − f)2] ≥ 0 shows that, for any f ∈ L∞(P),

2E(b0(0)fϕε)− E(b0(0)f2) ≤ E[b0(0)ϕ2
ε] ≤ E[b0(0)], (3.24)

where the last inequality is taken from Lemma 3.2. Since b0(0) ∈ [0, 1] implies b0(0)f ∈
L∞(P) for f ∈ L∞(P), the first term on the left of (3.24) converges to 2E(b0(0)fϕ) along
the sequence {εn}n≥1 that was used to define ϕ. Combining this with

E[b0(0)ϕ2] = sup
f∈L∞(P)

[
2E(b0(0)fϕ)− E(b0(0)f2)

]
(3.25)

which, as is checked by a suitable truncation, holds regardless whether the left-hand
side is finite or infinite, then yields the inequality in (2).

The proof of the needed regularity of t 7→ ϕ ◦ τt,x — or, more precisely, the existence
of a continuous, weakly-differentiable version — so that the PDE (2.19) holds is identical
to that in [6] and we omit it here. It remains to prove the P-a.s. positivity of ϕ. First
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note that ϕ is nonnegative. This is because E(1{ϕ<0}ϕεn) tends to E(1{ϕ<0}ϕ) in the limit
and ϕεn ≥ 0 then shows E(1{ϕ<0}ϕ) ≥ 0 forcing P(ϕ < 0) = 0. Next we observe that, for
each t ≥ 0 we have

ϕ =
∑
x∈Z

ϕ ◦ τt,x K(t, x; 0, 0) (3.26)

on a set of full P-measure, which is proved using the same argument as in [6, The-
orem 5.5]. As K(t, 0; 0, 0) > 0, assuming ϕ = 0 in (3.26) forces ϕ ◦ τt,0 = 0 P-a.s. for
each t ≥ 0. Using shift invariance and continuity, we conclude

{ϕ = 0} P-a.s.
=

{
∀t ∈ R : ϕ ◦ τt,0 = 0

}
. (3.27)

But for each x ∈ Z and P-a.e. realization of the random environment, K(t, x; 0, 0) > 0

once t ≥ 0 is large enough and so, invoking (3.26) and shift invariance again we get

{ϕ = 0} P-a.s.
=

{
∀t ∈ R ∀x ∈ Z : ϕ ◦ τt,x = 0

}
. (3.28)

The event on the right is shift invariant and so, in light of ergodicity of P from Assump-
tion 1.1, it is a zero-one event under P. The case of full measure is ruled out by Eϕ = 1

thus proving P(ϕ = 0) = 0.

3.3 Boundedness of weighted Dirichlet energy

The last remaining item needed to complete the proof of Theorem 1.3 is the proof
of the uniform bound (3.19). We again need a couple lemmas that are drawn from, or
otherwise available in [6]. Define

χε :=

∫ ∞
0

e−εt
[
bt(0)ϕε(t, 0)− bt(−1)ϕε(t,−1)

]
dt, (3.29)

where the integral of each of the two terms in the square bracket is finite under expecta-
tion with respect to P, and thus P-a.s., by the fact that 0 ≤ bt(0)ϕε(t, 0) ≤ ϕε(t, 0) thanks
to (1.6) and ϕε(t, 0) ∈ L1(P) thanks to (3.11). We start with:

Lemma 3.5. For each ε > 0,

‖χε‖L2(P) ≤
2

ε
. (3.30)

Proof. Minkowski’s inequality yields

‖χε‖L2(P) ≤
∫

e−εt
∥∥bt(0)ϕε(t, 0)− bt(−1)ϕε(t,−1)

∥∥
L2(P)

dt

≤ 2

∫
e−εt

∥∥bt(0)ϕε(t, 0)
∥∥
L2(P)

dt ≤ 2

∫
e−εt

∥∥bt(0)1/2ϕε(t, 0)
∥∥
L2(P)

dt,

(3.31)

where we used bt(0) ≤ 1 in the last inequality. Lemma 3.2 along with Eb0(0) ≤ 1 bounds
the last L2-norm by one.

The motivation for introducing χε in [6] is that its spatial gradients (under environ-
ment shifts) are those of centered ϕε, which (in light of ϕ being the gradient of the
parabolic coordinate) makes χε an approximate corrector. Indeed, we have:

Lemma 3.6. For each ε > 0,

χε ◦ τ0,1 − χε = ϕε − 1. (3.32)

Proof. [6, Lemma 5.2] proves a truncated version of this equation; namely,

χε,n ◦ τ0,1 − χε,n = ϕε,n+1 − 1, (3.33)

EJP 28 (2023), paper 153.
Page 12/18

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1053
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Degenerate 1D random walk

where ϕε,n is defined by (3.10) with K replaced by Kn and

χε,n :=

∫ ∞
0

e−εt
[
bt(0)ϕε,n ◦ τt,0 − bt(−1)ϕε,n ◦ τt,−1

]
dt. (3.34)

The monotonicity of n 7→ Kn implies ϕε,n ↑ ϕε as n→∞ and the Monotone Convergence
Theorem shows χε,n → χε as n→∞. Hence (3.32) follows from (3.33).

Lemma 3.6 now extends the bound from Lemma 3.5 to ϕε as well:

Lemma 3.7. For each ε > 0,

E(ϕ2
ε) ≤

(
1 +

4

ε

)2
. (3.35)

Proof. The triangle inequality applied to the identity from Lemma 3.6 gives

‖ϕε‖L2(P) ≤ 1 + ‖χε ◦ τ0,1‖L2(P) + ‖χε‖L2(P) = 1 + 2‖χε‖L2(P). (3.36)

Lemma 3.5 now bounds the right-hand side by 1 + 4
ε .

With the above lemmas in hand, we are ready to give:

Proof of Proposition 3.4. Our task is to convert the Dirichlet energy with averaged
conductance to the Dirichlet energy with instantaneous conductance to which the
inequality in Lemma 3.2 can be applied. As observed first in Mourrat and Otto [15] and
further exploited in Biskup and Rodriguez [7], this is possible thanks to the fact that
t, x 7→ ϕε(t, x) obeys the (massive) heat equation (3.13). We start with the rewrite

c0(0)ϕε(0, 0)2 =

∫ ∞
0

ktbt(0)ϕε(0, 0)2dt

=

∫ ∞
0

ktbt(0)
[
ϕε(0, 0)− ϕε(t, 0) + ϕε(t, 0)

]2
dt

≤ 2

∫ ∞
0

ktbt(0)ϕε(t, 0)2dt+ 2

∫ ∞
0

ktbt(0)
(
ϕε(0, 0)− ϕε(t, 0)

)2
dt

≤ 2

∫ ∞
0

ktbt(0)ϕε(t, 0)2dt+ 2

∫ ∞
0

kt
(
ϕε(0, 0)− ϕε(t, 0)

)2
dt,

(3.37)

where we use the inequality (a + b)2 ≤ 2a2 + 2b2 and the assumption bt(0) ≤ 1. For
the integrand of the second term, the heat equation in Lemma 3.1 along with the
Cauchy-Schwarz inequality and the bound (

∑4
i=1 ai)

2 ≤ 4
∑4
i=1 a

2
i yields

(
ϕε(0, 0)− ϕε(t, 0)

)2
=

[∫ t

0

L+
s ϕε(s, 0)− ε (ϕε(t, x)− 1) ds

]2
=
[∫ t

0

bs(1)ϕε(s, 1) + bs(−1)ϕε(s,−1)− 2bs(0)ϕε(s, 0)− ε (ϕε(s, 0)− 1) ds
]2

≤ t
∫ t

0

[
bs(1)ϕε(s, 1) + bs(−1)ϕε(s,−1)− 2bs(0)ϕε(s, 0)− ε (ϕε(s, 0)− 1)

]2
ds

≤ 4tε2
∫ t

0

(ϕε(s, 0)− 1)2ds+ 16t

1∑
z=−1

∫ t

0

[
bs(z)ϕε(s, z)

]2
ds,

(3.38)

where the factor 16 results from overcounting that makes the resulting expression
simpler to write. Bounding (ϕε(s, 0) − 1)2 ≤ 2 + 2ϕε(s, 0)2 and using bs(z) ≤ 1 to drop
one bs(z) from the second integral wraps this into

(
ϕε(0, 0)− ϕε(t, 0)

)2 ≤ 8t2ε2 + 8tε2
∫ t

0

ϕε(s, 0)2ds+ 16t

1∑
z=−1

∫ t

0

bs(z)ϕε(s, z)
2ds. (3.39)
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Plugging the resulting bound on the right of (3.37) and performing a simple change of
order of integration then shows

c0(0)ϕε(0, 0)2 ≤ 2

∫ ∞
0

ktbt(0)ϕε(t, 0)2dt+ 16ε2
∫ ∞
0

t2kt dt

+ 16ε2
∫ ∞
0

Ktϕε(t, 0)2dt+ 32

1∑
z=−1

∫ ∞
0

Ktbt(z)ϕε(t, z)
2dt, (3.40)

where

Kt :=

∫ ∞
t

sks ds. (3.41)

Taking expectation and invoking stationarity of P with respect to shifts gives

E
(
c0(0)ϕε(0, 0)2

)
≤ 2E

(
b0(0)ϕ2

ε

)( ∫ ∞
0

kt dt
)

+ 16ε2
(∫ ∞

0

t2kt dt
)

+
(∫ ∞

0

Kt dt
)[

16ε2E(ϕ2
ε) + 96E

(
b0(0)ϕ2

ε

)]
. (3.42)

For our choice (3.16) of t 7→ kt with α > 3, the integrals with respect to t converge
and the terms involving the expectations are bounded uniformly in ε ∈ (0, 1) thanks to
Lemmas 3.2 and 3.7.

Remark 3.8. Similar to the derivations of [7], the use of the Cauchy-Schwarz inequality
while dropping factors of bs(·) is likely a wasteful step that forces the need for higher
moments of T than what should be optimal and, in addition, limits us to bounded
conductances. Unfortunately, we do not know how to proceed otherwise.

4 Random walk on dynamical percolation

We will now apply the conclusions of Theorem 1.3 to random walks on dynamical per-
colation. Recall that, in our interpretation, a dynamical percolation is any conductance
environment with law P under which {t 7→ at(e)}e∈E(Z) are i.i.d. copies of a zero-one val-
ued, non-degenerate (i.e., truly two-valued), stationary process on {0, 1} with piece-wise
constant right-continuous sample paths. A standard argument gives:

Lemma 4.1. Any dynamical percolation law P obeys Assumption 1.1.

Proof. The required regularity of sample paths follows from the assumed piece-wise
constancy. The law P is also clearly invariant under all space time shifts. In order to
show ergodicity, let A ∈ F be invariant under the space shifts (invariance under time
shifts is not required). The product structure of A ensures that, given n ≥ 1, there
exists An ∈ σ(at(x, x+ 1): − n ≤ x < n, t ∈ R) such that E|1A − 1An | < 1/n. Now define
A′n := τ0,n(An) and A′′n := τ0,−n(An) and use space-shift invariance of A to check that
E|1A − 1A′

n
| < 1/n, E|1A − 1A′′

n
| < 1/n and so P(A) − P(A′n ∩ A′′n) < 2/n. Observing

that A′n and A′′n are independent under P and taking n → ∞ this yields P(A) ≤ P(A)2,
thus showing that A is trivial under P.

Thanks to the assumed non-degeneracy, each realization of the individual conductance
process t 7→ at(e) induces a sequence {(T OFF

i , T ON
i )}i∈Z of (a.s.) positive and finite random

variables (see the discussion before Theorem 1.4). We now observe:

Lemma 4.2. Given a dynamical percolation law P and an edge e, assume that the
probability measure P̃ on σ({at(e) : t ∈ R}) is well defined by (1.9). Then {(T OFF

i , T ON
i )}i∈Z

is stationary (with respect to the shifts of the index set) under P̃.
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Proof. Recall the notation {τi}i∈Z (from Section 1) for the sequence of successive times
that t 7→ at(e) switches from 1 to 0 indexed so that τ0 ≤ 0 < τ1. We will abbreviate Ti :=

τi+1 − τi = T OFF
i + T ON

i . The assumption that P̃ is well defined amounts to T−10 ∈ L1(P).
Recall also the definition U := −τ0/(τ1 − τ0).

In order to prove the desired claim, given any s > 0 consider the events

A0(s) :=
{

0 ≤ s < (1− U)T0
}

(4.1)

and, for k ≥ 1, also

Ak(s) :=

{
(1− U)T0 +

k−1∑
i=1

Ti ≤ s < (1− U)T0 +

k∑
i=1

Ti

}
(4.2)

and note that these define a partition of the whole probability space minus the null
set {(1 − U)T0 +

∑∞
i=1 Ti ≤ s}. The reason for introducing these is that, on A0(s), an

application of the shift by s to t 7→ at(e) changes U to U + s/T0 and keeps the sequence
{(T OFF

i , T ON
i )}i∈Z intact while, on Ak(s) with k ≥ 1, it changes U to T−1k [s − (1 − U)T0 −∑k−1

i=1 Ti] and shifts the sequence {(T OFF
i , T ON

i )}i∈Z by k indices to the left.
Given a bounded measurable function f : R× (R×R)Z → [0,∞), the invariance of

the law of t 7→ at(e) under the shift by s then yields

E
(
T−10 f

(
U, {(T OFF

i , T ON

i )}i∈Z
))

= E
(

1A0(s)T
−1
0 f

(
U + s/T0, {(T OFF

i , T ON

i )}i∈Z
))

+
∑
k≥1

E

(
1Ak(s)T

−1
k f

(s− (1− U)T0 −
∑k−1
i=1 Ti

Tk
, {(T OFF

i+k, T
ON

i+k)}i∈Z
))

. (4.3)

Next we pick n ≥ 1 and average s over [0, n]. There are only two terms on the right that
“witness” the endpoints of the interval [0, n] — namely, the first term and the term in the
sum for which (1− U)T0 +

∑k−1
i=1 Tj ≤ n < (1− U)T0 +

∑k
i=1 Tj — and their contribution

is bounded thanks to fact that the integration over s produces a factor that is dominated
by T0 and Tk, respectively. A simple change of variables then shows

E
(
T−10 f

(
U, {(T OFF

i , T ON

i )}i∈Z
))

= lim
n→∞

1

n

∑
k≥1

E

(
1(1−U)T0+

∑k
i=1 Tj≤n

∫ 1

0

f
(
v, {(T OFF

i+k, T
ON

i+k)}i∈Z
)
dv

)
, (4.4)

where the limit exists because the left-hand side does not depend on n. The expectation
on the left is finite by the assumption that T−10 ∈ L1(P).

Next we observe that the event (1− U)T0 +
∑k
i=1 Tj ≤ n in the indicator in (4.4) can

be changed to (1− U)T0 +
∑k−1
i=1 Tj ≤ n without changing the limit. (Indeed, this again

affects at most two terms in the sum.) Hence, for each f as above we get

E
(
T−10 f

(
U, {(T OFF

i , T ON

i )}i∈Z
))

= E
(
T−10 f

(
U, {(T OFF

i+1, T
ON

i+1)}i∈Z
))

(4.5)

thus proving that the law of {(T OFF
i , T ON

i )}i∈Z is shift invariant under P̃. (Note that (4.4)
also allows us to replace f(U, ·) by its average over the first coordinate and thus shows
that U is independent of {(T OFF

i , T ON
i )}i∈Z.) This proves the claim.

With this in hand, we now give:

Proof of Theorem 1.4. Using the “OFF/ON”-times, the random variable T from (1.6) can
be bounded as

T ≤
N∑
i=0

(T OFF

i + T ON

i ), (4.6)
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where

N := inf
{
n ≥ 1:

n∑
i=1

T ON

i ≥ 1
}
. (4.7)

In order to estimate the moments of the sum on the right of (4.6), we recall the following
observation from Berger and Biskup [4]:

Lemma 4.3 (Lemma 4.5 of [4]). Given reals p > 1, r ∈ [1, p) and s satisfying

s > r
1− 1/p

1− r/p
, (4.8)

if X1, X2, . . . are random variables such that supi≥1 ‖Xi‖p <∞ and N is integer valued

such that N ∈ Ls, then
∑N
i=1Xi ∈ Lr.

To apply this to our situation, let p and s be reals satisfying the inequalities and the
moment bounds in (1.10). Pick any s̃ satisfying

s > s̃ > 4
1− 1/p

1− 4/p
. (4.9)

Continuity then ensures that there is r ∈ (4, p) such that (4.8) holds with s̃ in place of s.
In order to apply Lemma 4.3, we need to control the moments of N in (4.7). Here the
Markov and Jensen inequalities along with the stationarity proved in Lemma 4.2 yield

P̃(N > n) ≤ P̃
( n∑
i=1

T ON

i < 1

)
≤ Ẽ

(( n∑
i=1

T ON

i

)−s)

=
1

ns
Ẽ

(( 1

n

n∑
i=1

T ON

i

)−s)
≤ 1

ns
Ẽ

(
1

n

n∑
i=1

(T ON

i )−s
)

=
1

ns
Ẽ
(
(T ON

1 )−s
)
.

(4.10)

The formula Ẽ(N s̃) =
∫∞
0
s̃ns̃−1P̃(N > n)dn then gives N ∈ Ls̃ and Lemma 4.3 (with s̃ in

place of s) shows Ẽ(T r) <∞. In order to convert this to a bound under expectation with
respect to P, we invoke the Hölder inequality to get

E(Tα) =
Ẽ
(
(T OFF

0 + T ON
0 )Tα

)
Ẽ(T OFF

0 + T ON
0 )

≤
[
Ẽ((T OFF

0 + T ON
0 )4)

]1/4
Ẽ(T OFF

0 + T ON
0 )

[
Ẽ(T 4α/3)

]3/4
. (4.11)

Note that the fourth moment exists by our assumption in (1.10). Setting α := 3r/4 and
noting that then α > 3, we have verified the moment condition (1.7). Theorem 1.3 shows
that a Quenched Invariance Principle holds.

Lemma 4.4. Suppose that the conductance processes {t 7→ at(e)}e∈E(Z) are i.i.d. zero-
one valued with the underlying sequence {(T OFF

i , T ON
i )}i∈Z of “OFF/ON”-times such that

T ON
i := 1 for all i ∈ Z and {T OFF

i }i∈Z i.i.d. under P̃. Assume that T OFF
0 < ∞ P̃-a.s. yet

T OFF
0 6∈ L1/2(P̃). Then Xt/

√
t→ 0 in probability as t→∞ for P-a.e. sample of the random

environment.

Proof. For each edge e ∈ E(Z), let

T̃ (e) := inf
{
t ≥ 0: at(e) > 0

}
. (4.12)

Under the assumptions of the lemma, and reflecting on the connection between t 7→ at(e)

and the OFF/ON times for edge e, the random variables {T̃ (e)}e∈E(Z) are i.i.d. with the
common law determined by

P̃
(
T̃ (e) > u

)
= P̃⊗ P

(
T OFF

0 − U(1 + T OFF

0 ) > u
)
, (4.13)
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where P is the law of a uniform random variable U on [0, 1] which (under P̃ ⊗ P ) is
independent of T OFF

0 . The assumption T OFF
0 6∈ L1/2(P̃) then forces Ẽ(T̃ (e)1/2) =∞ and so,

by the standard facts about sequences of i.i.d. random variables,

∀ε > 0:
1

n
max

0≤x≤ε
√
n
T̃ (x, x+ 1) −→

n→∞
∞ P̃-a.s. (4.14)

Since the random walk X cannot cross edge e before time T̃ (e), on the event that
the maximum in (4.14) is larger than n we have maxt∈[0,n]Xt ≤ ε

√
n. By symmetry,

Xt = o(
√
t) a.s. as t→∞ thus showing that X is subdiffusive.
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