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Abstract

In this note, we study asymptotic zero distribution of multivariable full system of
random polynomials with independent Bernoulli coefficients. We prove that with
overwhelming probability their simultaneous zeros sets are discrete and the associated
normalized empirical measure of zeros asymptotic to the Haar measure on the unit
torus.
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1 Introduction

A random Kac polynomial on the complex plane is of the form

fd(z) =

d∑
j=0

ajz
j (1.1)

where the coefficients aj are independent copies of the (real or complex) standard
Gaussian. A classical result due to Kac, Hammersley and Shepp & Vanderbei [21, 17,
25] asserts that almost surely the normalized empirical measure of zeros δZ(fd) :=
1
d

∑
fd(ζ)=0 δζ , converges to normalized arc length measure on S1 := {|z| = 1} as d→∞.

Asymptotic zero distribution of Kac polynomials with independent identically distributed
(i.i.d.) discrete random coefficients have also been studied extensively (see e.g. [24, 15]).
More recently, Ibragimov and Zaporozhets [20] proved that the empirical measure of
zeros δZ(fd) almost surely converges to the the normalized arc length measure if and
only if the moment condition E[log(1 + |ai|)] <∞ holds. This property can be considered
as a global universality property of the zeros of random polynomials (see also [29] for a
local version).
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Random Bernoulli polynomial mappings

Building upon the work of Shiffman and Zelditch [28], equilibrium distribution of
random systems of polynomials with Gaussian coefficients was obtained by Bloom &
Shiffman [9] and Shiffman [26]. More recently, these results were generalized for i.i.d.
random coefficients with bounded density [1, 2]. We refer the reader to the survey [4]
and references therein for the state of the art. On the other hand, asymptotic zero
distribution of random polynomial mappings with discrete random coefficients remained
open (cf. [3, 8, 5]). In this note, we study asymptotic zero distribution of multivariable
full system of random polynomials with independent Bernoulli coefficients.

1.1 Statement of the results

A random Bernoulli polynomial is of the form

fd,i(x) =
∑
|J|≤d

αi,Jx
J ∈ C [x1, . . . , xn]

where xJ = xj11 . . . xjnn and αi,J are ±1 Bernoulli random variables for i = 1, . . . , n.
Throughout this work, we consider systems (fd,1, . . . , fd,n) of random Bernoulli polynomi-
als with independent coefficients. We write fd = (fd,1, . . . , fd,n) for short. We denote the
collection of all systems of polynomials in n variables and of degree d by Polyn,d that is
endowed with the product probability measure Probd.

Theorem 1.1. Let fd = (fd,1, . . . , fd,n) be a system of random polynomials with inde-
pendent ±1 valued Bernoulli coefficients. Then there exists a dimensional constant
K = K(n) > 0 and an exceptional set En,d ⊂ Polyn,d such that Probd(En,d) ≤ K/d and for
all fd ∈ Polyn,d \ En,d the simultaneous zeros Z(fd) of the system fd are isolated with
#Z(fd) = dn.

For a system fd ∈ Polyn,d, if the simultaneous zeros Z(fd) are isolated we denote
the corresponding normalized empirical measure by δZ(fd)

. That is δZ(fd)
is a probability

measure supported on the isolated zeros with equal weight on each zero. We also let
νHaar denote the Haar measure on (S1)n of total mass 1. As an application of Theorem 1.1
together with a deterministic equidistribution result [14, Theorem 1.7], we obtain
asymptotic zero distribution of random Bernoulli polynomial mappings:

Corollary 1.2. Let fd = (fd,1, . . . , fd,n) be system of random polynomials with indepen-
dent ±1 valued Bernoulli coefficients and En,d ⊂ Polyn,d be as in Theorem 1.1. Then for
each sequence fd ∈ Polyn,d \ En,d we have

lim
d→∞

δZ(fd)
= νHaar.

in the weak topology. In particular, δZ(fd)
→ νHaar in probability Probd as d→∞.

Finally, we consider the measure valued random variables

Z̃(fd) :=

{∑
ξi∈Z(fd)

δ(ξi) for fd ∈ Polyn,d \ En,d
0 otherwise

(1.2)

and define the expected zero measure by〈
E[Z̃(fd)], ϕ

〉
=

∫
Polyn,d\En,d

∑
ξi∈Z(fd)

ϕ(ξi) dProbd(fd) (1.3)

where ϕ is a continuous function with compact support in Cn and En,d denote the
exceptional set given by Theorem 1.1.
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Random Bernoulli polynomial mappings

Theorem 1.3. Let fd = (fd,1, . . . , fd,n) be a system of random polynomials with indepen-
dent ±1 valued Bernoulli coefficients. Then

lim
d→∞

d−nE[Z̃(fd)] = νHaar

in the weak topology.

The outline of this work as follows. In §2, we review some basic properties of
resultants. In particular, we recall multi-polynomial resultant and sparse resultant for
polynomial systems [16, 11] as well as directional resultant [13]. In §3, we prove the
main result Theorem 1.1. Finally, in §4 we prove Theorem 1.3.

2 Preliminaries

In this section, we review some basic results in algebraic geometry and discrepancy
theory related to our results. More precisely, we discuss the multi-homogenous (classical)
resultant and the sparse eliminant as well as the relation of these two notions. For a
detailed account of the subject and proofs we refer the reader to [16, 11]. We also
discuss the sparse resultant introduced by D’Andrea and Sombra, and corresponding
directional sparse resultants [14, 13].

2.1 Lattice points, polytopes

For a nonempty subset P ⊂ Rn, we denote its convex hull in Rn by conv(P ). For two
nonempty convex sets Q1, Q2, their Minkowski sum is defined as

Q1 +Q2 := {q1 + q2 : q1 ∈ Q1, q2 ∈ Q2}

and for λ ∈ R, the scaled polytope is of the form

λQ := {λq : q ∈ Q}.

It is well known that V oln(d1Q1 + . . .+ dnQn) is a homogenous polynomial of degree n in
the variables d1, . . . , dn ∈ Z+ where V oln denotes the normalized volume of the subsets
in Rn with respect to the Lebesgue measure. The coefficient of the monomial d1 . . . dn
is called the mixed volume of Q1, . . . , Qn and denoted by MV (Q1, . . . , Qn). One can use
the polarization formula to compute the mixed volume of the convex sets Q1, . . . , Qn.
Namely,

MVn(Q1, . . . , Qn) =

n∑
k=1

∑
1≤j1≤...≤jk≤n

(−1)n−kV oln(Qj1 + . . .+Qjk).

In particular, if Q = Q1 = . . . = Qn then

MVn(Q) := MVn(Q, . . . , Q) = n!V oln(Q).

For a convex set Q ⊂ Rn its support function sQ : Rn → R is defined by

sQ(v) := inf
q∈Q
〈q,v〉 (2.1)

where 〈·, ·〉 represents the Euclidean inner product of Rn. Given a vector v ∈ Rn the
equation

〈q,v〉 = sQ(v)

defines supporting hyperplane of Q and v is called an inward pointing normal. The
intersection of Q with the supporting hyperplane in the direction v ∈ Rn is denoted by

Qv := {q ∈ Q : 〈q,v〉 = sQ(v)}. (2.2)

The set Qv is called the face of Q determined by v. If Qv has codimension 1, it is called
a facet of Q.
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Random Bernoulli polynomial mappings

2.2 Resultant of polynomial systems

2.2.1 Multipolynomial resultant

We consider homogenous polynomials of degree di ≥ 0 of the form

Fi(t0, . . . , tn) =
∑
|J|=di

ui,Jt
J

for i = 0, . . . , n where J is a multi-index (j0, . . . , jn) and tJ := tj00 · · · tjnn is the monomial
of degree |J | =

∑n
i=0 ji. The set of such polynomials form an affine space by identifying∑

|J|=di ui,Jt
J with the point ui := (ui,J)|J|=di ∈ CN(di), where N(di) =

(
n+di−1
n−1

)
. Letting

N :=
∑n
i=0N(di), recall that the incidence variety is defined by

W =
{

(u, t) ∈ CN × P(Cn) : F0(u0, t) = · · · = Fn(un, t) = 0
}
.

We also let π : CN × P(Cn) → CN be the projection onto first coordinate where P(Cn)

denotes the complex projective space. Then by Projective Extension Theorem (see e.g.
[11]) the image π(W) forms a variety in the affine space CN .

Definition 2.1. The multipolynomial resultant Resd0,...,dn is defined as the irreducible
unique (up to a sign) polynomial in Z[u0, . . . ,un] which is the defining equation of the
variety π(W). The resultant of the homogeneous polynomials F0, . . . , Fn is the evaluation
of Resd0,...,dn at the coefficients of F0, . . . , Fn and it is denoted by Resd0,...,dn(F0, . . . , Fn).

Note that if d0 = . . . = dn = 1, then the evaluation of multipolynomial resultant
Resd0,...,dn at the coefficients of F0, . . . , Fn is the determinant of the coefficient matrix.

Theorem 2.2 ([16], [11]). Let F0, . . . , Fn ∈ C[t0, . . . , tn] be homogenous polynomials of
positive total degrees d0, . . . , dn. Then the system F0 = . . . = Fn = 0 has a solution in the
complex projective space Pn if and only if Resd0...,dn(F0, . . . , Fn) = 0.

Theorem 2.2 gives a characterization to determine the existence of nontrivial solutions
for the systems of homogenous polynomials based on the coefficients of the polynomials
in the system. However, not all the systems of equations are homogenous, and in the
power series expansions not all the monomial terms appear. Hence, we need to introduce
a more general version of the multi-homogenous resultant.

2.2.2 Sparse eliminant

Following [16], we will recall the definition of sparse resultant. Let A0, . . . , An be a
collection of non-empty finite subsets of Zn, and let ui := {ui,J}J∈Ai

be a group of
#Ai variables, i = 0, . . . , n and set u = {u0, . . . ,un}. For each i, the general Laurent
polynomial fi with support Ai := supp(fi) is given by

fi(ui,x) =
∑
J∈Ai

ui,Jx
J ∈ C[u][x±11 , . . . , x±1n ].

We let A = (A0, . . . , An) and consider the incidence variety in this setting defined by

WA =

{
(u,x) ∈

n∏
i=0

P(CNi)× (C∗)
n

: f0(u1,x) = · · · = fn(un,x) = 0

}
(2.3)

where Ni = #Ai. Next, we consider the canonical projection on the first coordinate

πA :

n∏
i=0

P(CNi)× (C∗)
n →

n∏
i=0

P(CNi)

and let πA(WA) denote the Zariski closure of WA under the projection πA.
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Random Bernoulli polynomial mappings

Definition 2.3. The sparse eliminant, denoted by ResA, is defined as follows: if the
variety πA(WA) has codimension 1, then the sparse eliminant is the unique (up to
sign) irreducible polynomial in Z[u] which is the defining equation of πA(WA). If
codim(πA(WA)) ≥ 2, then ResA is defined to be the constant polynomial 1. The ex-
pression

ResA(f0, . . . , fn)

is the evaluation of ResA at the coefficients of f0, . . . , fn.

Example 2.4. For A0 = {0} , A1 = {0, 1} ⊂ Z, we have that ResA(u) = ±u00 where
A = (A0, A1).

The classical resultant Resd0,...,dn is the special case of the sparse eliminant ResA.
Indeed, by letting Ai be the set of all integer points in the di-simplex, i.e., Ai = diΣn ∩Zn
and Σn be the standard unit simplex

diΣn :=

{
(a0, . . . , an) ∈ Rn+1 : aj ≥ 0 and

∑
j

aj ≤ di
}

one recovers ResA = Resd0,...,dn up to a sign. Indeed, following [11] and [16] for
simplicity we let all the sparse polynomials f0, . . . , fn have the same support Ai =

dΣn ∩Zn for some positive integer d and consider the system
f0 = u01x

α1 + . . .+ u0dx
αn = 0

...
fn = un1x

α1 + . . .+ undx
αn = 0

(2.4)

We also let t0, . . . , tn be the homogenous coordinates which are related to x1, . . . , xn by
xi = ti/t0. Then we define the homogenous polynomials

Fi(t0, . . . , tn) = td0fi(t1/t0, . . . , tn/t0) = td0fi(x1, . . . , xn), (2.5)

for 0 ≤ i ≤ n. This gives n+1 homogenous polynomials of total degree d in the variables
t0, . . . , tn and this procedure is independent of the choice of homogeneous coordinates.

Proposition 2.5 ([11]). Let Ai := dΣn∩Zn for each i = 1, . . . , n and consider the systems
of polynomials F and f as above. Then

ResAd
(f0, . . . , fn) = ±Resd,...,d(F0, . . . , Fn),

where Ad := (A1, . . . , An).

Using the above proposition, we can give a version of Theorem 2.2 as follows.

Corollary 2.6. Let f = (f1, . . . , fn) be a system of polynomials with Ai = dΣn ∩ Zn for
i = 1, . . . , n. Assume that the system F = (F0, . . . , Fn) consists the homogenizations of
fi according to process in (2.5) and denote the set of simultaneous nonzero solutions
of F by Z(F ). Suppose that Z(F ) ∩ H∞(t0) = ∅ where H∞(t0) is the hyperplane at
infinity for t0 = 0. Then the system of polynomials f = 0 has no solution if and only if
ResAd

(f0, . . . , fn) 6= 0 where Ad := (A1, . . . , An).

Proof. If ResAd
(f0, . . . , fn) 6= 0, then by definition of the sparse resultant the system

f0(x) = . . . = fn(x) = 0

has no solution. Conversely, letting Fi be the homogenization of fi as in (2.5) with the
corresponding variable t = (t0, . . . , tn), i.e. Fi(t) = td0fi(x). If the system of polynomials
f = 0 has no solution then Fi(t) = 0 for i = 1, . . . , n if and only if t0 = 0 which contradicts
our assumption. Hence, by Theorem 2.2 we have

±ResAd
(f0, . . . , fn) = Resd0,...,dn(F0, . . . , Fn) 6= 0.
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Random Bernoulli polynomial mappings

2.2.3 Sparse resultant

In spite of being a generalization of the multipolynomial resultant and involving consid-
erable large amount of the system of polynomials, the sparse eliminant does not satisfy
some essential properties such as additivity property and Poisson formula which are
essential in many applications. More recently, D’Andrea and Sombra [13] introduced the
following version which has the desired features:

Definition 2.7. The sparse resultant, denoted by ResA, is defined as any primitive
polynomial in Z[u] that is the defining equation of the direct image ofWA where

(πA)∗(WA) = deg(πA|WA)πA(WA)

if this variety has codimension one, and otherwise we set ResA ≡ 1. The expression

ResA(f0, . . . , fn)

is the evaluation of ResA at the coefficients of f0, . . . , fn.

According to this definition, the sparse resultant is not irreducible but it is a power
of the irreducible sparse eliminant, i.e.,

ResA = ±Res
deg(πA|WA )

A

where deg(πA|WA) is the degree of the projection πA. We also remark that ResA 6≡ 1

whenever ResA 6≡ 1.

Example 2.8. Let A0 = A1 = A2 = {(0, 0), (2, 0), (0, 2)}. Then ResA = det(ui,j) and
ResA = ±[det(ui,j)]

4.

For the detailed account of the subject we refer the reader to the manuscripts [13]
and [14].

2.2.4 Directional resultant

For a finite subset A ⊂ Zn and a non-zero vector v ∈ Zn we denote

Av := {J ∈ A : 〈J,v〉 = sQ(v)}

where Q = conv(A) and sQ(v) as in the equation (2.1). For a Laurent polynomial
f(x) =

∑
J∈A uJx

J with support supp(f) = A we also define the directed polynomial

fv(x) :=
∑
J∈Av

uJx
J .

Definition 2.9. Let A1, . . . , An ⊂ Zn be a family of n non-empty finite subsets, v ∈
Zn \ {0}, and v⊥ ⊂ Rn the orthogonal subspace. Then there exists bi,v ∈ Zn such that

Avi − bi,v ⊂ Zn ∩ v⊥

for i = 1, . . . , n. The resultant of A1, . . . , An in the direction of v, denoted by ResAv

is defined as the sparse resultant of the family of the finite subsets Avi − bi,v for i ∈
{1, . . . , n}.

Given a collection fi ∈ C[x±11 , . . . , x±1n ] of Laurent polynomials with support supp(fi) ⊂
Ai for i = 1, . . . , n we write fvi = xbi,vgi,v where gi,v ∈ C[Zn ∩ v⊥] ' C[y±11 , . . . , y±1n−1] is a
Laurent polynomial with supp(gi,v) ⊂ Avi − bi,v. The expression

ResAv (fv1 , . . . , f
v
n )

is defined as the evaluation of the resultant ResAv at the coefficients of the gi,v.
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Random Bernoulli polynomial mappings

We remark that the definition of directional resultant is independent of the choice of
the vector bi,v (see [13, Proposition 3.3]). Moreover, the directional resultant ResAv 6≡ 1

only if the direction vector v is an inward pointing normal to a facet of the Minkowski sum∑n
i=1 conv(Ai) (cf. [13, Proposition 3.8]). Therefore, for a family of subsets A1, . . . , An ⊂

Zn there are only finitely many directions v ∈ Zn \{0} for which the directional resultant
can vanish.

Example 2.10. Let f(x) = a0 + . . .+ anx
n ∈ C[x] be a polynomial of degree n. Then the

nontrivial directional resultants are

ResA(fv) =

{
±a0 if v = 1,

±an if v = −1

for the polytope conv(A) = [0, n] ⊂ R.

In the last part of this section we review Bernstein’s Theorem about the number of
the common solutions for Laurent polynomial systems and its relation to the directional
resultant. The classical Bézout’s Theorem states that for n polynomials g1, . . . , gn ∈
C[x1, . . . , xn] of (positive) degrees d1, . . . , dn the system

g1(x1, . . . , xn) = · · · = gn(x1, . . . , xn) = 0

has either infinite number of solutions or the number of the number of complex roots
cannot exceed d1 . . . dn. Moreover, if the solutions in the hyperplane at infinity are
counted with multiplicity, the exact number of solutions in the complex projective space
Pn is d1 · · · dn (see e.g. [11]). A generalization of this result to the context of Laurent
polynomials was obtained by Bernstein [6] (see also Kushnirenko [23]). More precisely,
we have the following:

Theorem 2.11 ([6]). Let f = (f1, . . . , fn) be a system of Laurent polynomials with
support supp(fi) = Ai ⊂ Zn for i = 1, . . . , n. If for any nonzero vector v ∈ Zn the
directed system fv = (fv1 , . . . , f

v
n ) has no common zeros in (C∗)n then the set of solutions

of the system f = 0 are isolated and the exact number of the solutions is #Z(f) =

MVn(Q1, . . . , Qn) where Qi = conv(Ai) for i = 1, . . . , n.

In particular, for a system of Laurent polynomials f = (f1, . . . , fn) if the directional
resultant ResAv (fv1 , . . . , f

v
n ) 6= 0 for every direction v ∈ Zn \ {0} then simultaneous

solutions of the system f are isolated. This condition on the directional resultant holds
for a generic (i.e. all except for some algebraic subset) choice of f in the space of
coefficients. In the next section, we prove a probabilistic version of this result for
polynomial systems with Bernoulli coefficients.

3 Equidistribution of zeros

3.1 Random polynomial systems

First, we recall a theorem of Kozma and Zeitouni [22] asserts that overdetermined
random Bernoulli polynomial systems have no common zeros with overwhelming proba-
bility:

Theorem 3.1. Let f1, . . . , fn+1 ∈ Z[x1, . . . , xn] be n + 1 independent random Bernoulli
polynomials of degree d and

P(d, n) := Probd{∃x ∈ Cn : fi(x) = 0 for i = 1 . . . , n+ 1}

denote the probability that the system f1(x) = . . . = fn+1(x) = 0 has a common solution.
Then there exists a dimensional constant K = K(n) <∞ such that

P(d, n) ≤ K/d
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Random Bernoulli polynomial mappings

for all d ∈ Z+.

Next, we prove our main result:

Proof of Theorem 1.1. Let fd,i be a random Bernoulli polynomial of the form

fd,i(x) =
∑
|J|≤d

αi,Jx
J ∈ Z[x1, . . . , xn], (3.1)

where {αi,J} is a family of independent Bernoulli random variables for i = 1, . . . , n.
We investigate the directional resultants of the system f for all nonzero primitive

direction vectors v ∈ Zn. By [13, Proposition 3.8] it is enough to check the inward
normals to the Minkowski sum of the supports ndΣn which has n+ 1 facets with n+ 1

inward normals given by vm := em for m = 1, . . . , n and vn+1 := −
∑n
m=1 em where

{em}nm=1 is the standard basis of Rn.
For vm = em the intersection of the support with the supporting hyperplane in the

direction em is of the form

Avm =

{
(j1, . . . , jn) ∈ dΣn ∩Zn : jm = 0 and

n∑
l=1

jl ≤ d

}
(3.2)

m = 1, . . . , n. Hence, the polynomials fvm
i can be written as

fvm
i :=

∑
J∈Avm

αi,Jx
J (3.3)

for i = 1, . . . , n. Note that polynomials fvm
i depend on n − 1 variables. As in the

Definition 2.9, we choose the vector bi,vm
= 0 so that Avm − bi,vm

⊂ Zn ∩ vm⊥ and we
may take gi,vm

:= fvm
i for each i = 1, . . . , n.

Recall that for two univariate polynomials h1, h2 ∈ C[x], their resultant Res(h1, h2)

is zero if and only if h1 and h2 have a common solution in C. Therefore, if n = 2 the
necessary and sufficient condition for g1,vm

and g2,vm
have zero resultant is that they

have a common zero. Theorem 3.1 implies that there exists a constant Km which is
independent of d so that the aforementioned event has probability at most Km/d.

On the other hand, when n > 2, we perform the homogenization process to each
(n− 1) variable polynomial gi,vm

for i = 1, . . . , n as described in equation (2.5). We obtain
the n variable homogenous polynomials Gi,vm

of the form

Gi,vm
(t,x) =

∑
J∈Avm

αi,J t
d−|J|xJ . (3.4)

In order to compare the sparse resultant of the polynomials gi,vm and the multipolynomial
resultant of the homogeneous polynomialsGi,vm , we check the conditions of Corollary 2.6.
Let Z(G) be the set of nontrivial solutions of the system G = (G1,vm , . . . , Gn,vm) and
suppose that G has a solution ξ = (t, ξ2, . . . , ξn) in the hyperplane at infinity H∞(t).
Evaluating these homogeneous polynomials at t = 0, we obtain the top degree homoge-
neous part of the polynomials gi,vm for i = 1, . . . , n. Since ξ ∈ H∞(t), it has a nonzero
coordinate ξk for some k ∈ {2, . . . , n}. For simplicity, let us assume k = 2 and define the
new variables zi := ξi+2/ξ2 for i = 1, . . . , n − 2. Applying this change of variables, we
obtain

G̃i,vm
(z1, . . . , zn−2) =

∑
|J|≤d

αi,Jz
ϕ(J) (3.5)

where ϕ : Rn → Rn−2 with ϕ(j1, . . . , jn) = (j3, . . . , jn). This gives n random Bernoulli
polynomials of degree d in n − 2 variables. Hence by Theorem 3.1, there exists a
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positive constant Ci, depending only the dimension n such that the probability that
the overdetermined system of Bernoulli polynomials G̃i,vm

(z1, . . . , zn−2) have a common
solution is less than Ci/d. We infer that the system of homogenized polynomials Gi,vm

has no common zero at hyperplane at infinity H∞(t) except a set that has probability
at most Ci/d. Then by Corollary 2.6, outside of a set of small probability, the system
of polynomials consisting gi,vm

has a common solution if and only if the directional
resultant ResAvm (fvm

1 , . . . , fvm
n ) = 0. Now, since the system of Bernoulli polynomials

gi,vm
contains n polynomials in n− 1 variables, by Theorem 3.1, there is a dimensional

constant C̃i so that the probability that this system has common solution is at most C̃i/d.
Hence outside of a set that has probability Ki/d := Ci/d+ C̃i/d, the directional resultant
ResAvm (fvm

1 , . . . , fvm
n ) 6= 0 for all vm for m = 1, . . . , n.

Next, we consider the inward normal vector vn+1 = −
∑n
m=1 em and we find the

minimal weighted set in this direction as Avn+1 = {J ∈ dΣn ∩Zn : |J | = d}. Hence, the
directed polynomials in this case are of the form

f
vn+1

i (x) =
∑
|J|=d

αi,Jx
J (3.6)

In this case Avn+1 is not a subspace of Zn ∩ v⊥n+1, hence we need to translate it by
subtracting a suitable vector bi,vn+1

. For Laurent polynomial systems, the sparse resul-
tant is invariant under translations of supports (see [13], Proposition 3.3). Since the
polynomials fd,i are not Laurent, we need to determine the effects of this translations.
Consider the system of Bernoulli polynomials fd and set of its simultaneous zeros Z(fd).
For a solution x = (x1, . . . , xn) ∈ Z(fd) and assume that x1 = 0. In order to examine the
incidence of this case, we evaluate the system fd at x1 = 0 and we obtain a new system
of n Bernoulli polynomials with n− 1 variables. By Theorem 3.1, there exists a constant
C1 which is independent of d such that this system has a common solution with proba-
bility at most C1/d. Therefore the probability of the event that x1 = 0 is less than C1/d.
Hence, there is no harm of translation of supports outside of a set that has probability at
most C/d, where C :=

∑n
i=1 Ci. Now, choosing the vector bi,vn+1 = (d, 0, . . . , 0) so that

Avn+1 − bi,vn+1 ⊂ Zn ∩ v⊥n+1, we obtain the polynomials of the form

gi,vn+1
(x) =

∑
J∈Avn+1−bi,vn+1

αi,Jx
w(J) (3.7)

with w : Rn → Rn satisfying (j1, j2, . . . , jn) 7→ (−d+ j1, j2, . . . , jn). We substitute the new
variables yi := xi+1/x1 into gi,vn+1 for i = 1, . . . , n− 1 and obtain

gi,vn+1
(y) =

∑
|J|≤d

αi,Jy
σ(J) (3.8)

for y ∈ Cn−1 and σ : Rn → Rn with σ(j1, j2, . . . , jn) = (0, j2, . . . , jn). The system contain-
ing the polynomials gi,vn+1(y), i = 1, . . . , n contains n random Bernoulli polynomials with
n− 1 random variable as in the cases vm = em. By applying the same argument, we can
show that ResAvn+1 (f

vn+1

1 , . . . , f
vn+1
n ) 6= 0 outside of a set that has probability at most

Ki+1/d.
Now, we define the exceptional set En,d as a subset of Polyn,d which contains the

systems fd that has a zero directional resultant for some nonzero primitive vector v or
the systems fd have a common solution x ∈ Cn with xi = 0 for some i = 1, . . . , n. More
precisely, letting

En,d := {fd ∈ Polyn,d : ∃ v ∈ Zn \ {0} 3 ResAvfvd = 0} (3.9)⋃
{fd ∈ Polyn,d : ∃ x ∈ Z(fd) 3

∏
xi = 0}
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we see that there exists a positive constant K which is independent of d such that

Probd(En,d) ≤
K

d

where K :=
∑n+1
i=1 Ki + C.

Next, we recall a deterministic equidistribution results for the solutions of systems of
integer coefficient polynomials [14]. For a polynomial f ∈ C[x1, . . . , xn], the supremum
norm of f on the unit torus is defined as

‖f‖sup := sup
|w1|=...=|wn|=1

|f(w1, . . . , wn)| .

Let νHaar be the Haar measure on Cn with support (S1)n and of total mass 1. Assume
that f ∈ Polyn,d be a polynomial mapping such that the set of simultaneous zeros Z(f)

is a discrete set. We denote by denote the discrete probability measure on Cn associated
to the Z(f) by δZ(f). The following result gives the asymptotic distribution of the zeros
of such a system f if the coefficients are integer:

Theorem 3.2 ([14]). Let f = (f1, . . . , fn) be a polynomial mapping with fi ∈ Z[x1, . . . , xn]

of degree d ≥ 1 for each i = 1, . . . , n. Assume that ResAv (fv1 , . . . , f
v
n ) 6= 0 for all

v ∈ Zn \ {0} and log ‖fi‖sup = o(d). Then

lim
d→∞

δZ(f) = νHaar

in the weak topology.

Proof of Corollary 1.2. Consider the system of Bernoulli polynomials fd = (fd,1, . . . , fd,n).
Since all the coefficients are 1 or −1, by triangle inequality

‖fd,i‖sup = sup
|w1|=...=|wn|=1

|fd,i(w1, . . . , wn)| ≤
(
n+ d

d

)
= dn +O(dn−1) (3.10)

where
(
n+d
d

)
is the dimension of space of polynomials Polyn,d. This in turn implies that

log ‖fd,i‖sup = o(d). Moreover, by Theorem 1.1 for each fd ∈ Polyn,d \ En,d we have

ResAv (fv1 , . . . , f
v
n ) 6= 0

for all v ∈ Zn \ {0}. Hence, by Theorem 3.2

lim
d→∞

δZ(fd)
= νHaar

in the weak topology. In particular, δZ(fd)
→ νHaar in probability since Probd(En,d)→ 0

as d→∞.

4 Expected zero distribution

In this section, we introduce radial and angle discrepancies for random Bernoulli
polynomial mappings in order to study asymptotics of expected zero measures. We adapt
these concepts from [14] and refer the reader to the manuscript [14] and references
therein for a detailed account of the preliminary results this section.

Let Z be a 0-dimensional effective cycle in Cn that is there is a non-empty finite
collection of points ξ = (ξ1, . . . , ξn) ∈ Cn and mξ ∈ N, called the multiplicity of ξ, such
that Z =

∑
ξmξ[ξ]. The degree of Z is defined by deg(Z) =

∑
ξmξ which is a positive

number.
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Definition 4.1 ([14]). Let Z be a 0-dimensional effective cycle in Cn. For each α =

(α1, . . . , αn) and β = (β1, . . . , βn) ∈ Rn such that −π ≤ αj < βj ≤ π, j = 1, . . . , n we
consider the cycle

Zα,β :=
∑

{ξ∈Z:αj<arg(ξj)≤βj}

mξ[ξ].

The angle discrepancy of Z is defined as

∆ang(Z) := sup
α,β

∣∣∣∣∣∣deg(Zα,β)

deg(Z)
−

n∏
j=1

βj − αj
2π

∣∣∣∣∣∣ .
For 0 < ε < 1 we consider the cycle

Zε :=
∑

{ξ∈Z:1−ε<|ξj |<(1−ε)−1}

mξ[ξ].

The radius discrepancy of Z with respect to ε is defined as

∆rad(Z, ε) := 1− deg(Zε)

deg(Z)
.

Note that 0 < ∆ang(Z) ≤ 1 and 0 ≤ ∆rad(Z, ε) ≤ 1. Observe that the angle discrepancy
and the radial discrepancy are generalizations of their one dimensional versions defined
in [15, 18].

Let A1, . . . , An ⊂ Zn be a collection of finite sets and let Qi = conv(Ai) for each
i = 1, . . . , n. Throughout this section we assume that D := MVn(Q1, . . . , Qn) ≥ 1. For
a vector w ∈ Sn−1 in the unit sphere in Rn, let w⊥ be its orthogonal subspace and
πw⊥ : Rn → w⊥ be the corresponding orthogonal projection. We let MVw⊥ denote the
mixed volume of the convex bodies in w⊥ induced by the Euclidean measure on w⊥. We
also denote

Dw,i = MVw⊥ (πw(Q1), . . . , πw(Qi−1), πw(Qi+1), . . . , πw(Qn)) .

Let f = (f1, . . . , fn) be a mapping such that the coordinates fi are Laurent polynomials
with supp(fi) = Ai for i = 1, . . . , n. Following [14], we define the Erdös-Turán size of f
by

η(f) :=
1

D
sup

w∈Sn−1

log

( ∏n
i=1 ‖f‖

Dw,i
sup∏

v |ResAv (fv1 , . . . , f
v
n )|

|〈v,w〉|
2

)
(4.1)

where 〈·, ·〉 is the standard inner product in Rn and the product in the denominator is
taken over all non-zero primitive vectors v ∈ Zn. We remark that the Erdös-Turán size of
a polynomial mapping f coincides with the bound in the Erdös-Turán Theorem [15] for
univariate polynomials.

The next result gives an upper bound for the Erdös-Turán size of polynomial systems
f with integer coefficients.

Proposition 4.2 ([14, Proposition 3.15]). Let A1, . . . , An be a non-empty finite subsets of
Zn and set Qi = conv(Ai) with MVn(Q1, . . . , Qn) ≥ 1. Let di ∈ Z≥1 and bi ∈ Zn so that
diΣn + bi, i = 1, . . . , n. Suppose that f1, . . . , fn ∈ Z[x±11 , . . . , x±1n ] with supp(fi) ⊆ Ai and
such that ResAv

1 ,...,Av
n
(fvd,1, . . . , f

v
d,n) 6= 0 for all v ∈ Zn \ {0}. Then

η(f) ≤ 1

D

((
n+
√
n
)( n∏

i=1

di

)
n∑
i=1

log ‖fi‖sup
di

)
.
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The following theorem gives bounds for angle discrepancy and radius discrepancy of
Z(f) in terms of the Erdös-Turán size of f . For one dimensional version see for instance
[15] and [18].

Theorem 4.3 ([14]). Let A1, . . . , An be a non-empty finite subsets of Zn such that

MVn(Q1, . . . , Qn) ≥ 1

with Qi = conv(Ai) for n ≥ 2. Let f1, . . . , fn ∈ C[x±11 , . . . , x±1n ] with supp(fi) ⊆ Ai and
such that ResAv (fvd,1, . . . , f

v
d,n) 6= 0 for all v ∈ Zn \ {0}. Then

∆ang(Z(f)) ≤ 66n2n(18 + log+(η(f)−1))
2
3 (n−1)η(f)

1
3 . (4.2)

Moreover, for 0 < ε < 1,

∆rad(Z(f), ε) ≤ 2n

ε
η(f). (4.3)

For a random Bernoulli polynomial mapping fd we let Z(fd) be the set of simultane-
ous zeros of fd. We define the angle discrepancy ∆ang(Z(f)) and the radius discrepancy
∆rad(Z(f), ε) as above whenever Z(fd) is a discrete set of points. Otherwise, we set
∆rad(Z(f), ε) = ∆ang(Z(f)) = 1. Note that as our probability space (Polyn,d, P robd) is
discrete, measurability of these random variables is not an issue in this setting. Next,
we estimate the asymptotic expected discrepancies:

Proposition 4.4. Let fd = (fd,1, . . . , fd,n) be a random Bernoulli polynomial mapping of
degree d ≥ 1. Then

lim
d→∞

E[∆ang(Z(fd))] = 0 and lim
d→∞

E[∆rad(Z(fd))] = 0. (4.4)

Proof. We adapt the argument in [[14], Theorem 4.9] to our setting. Consider the
expected value of the angular discrepancy which is

E[Z(fd)] =

∫
Polyn,d

∆ang(Z(fd))dProbd(fd). (4.5)

Let En,d be the exceptional set which contains all the systems in Polyn,d with zero
directional resultants for some nonzero primitive vector v ∈ Zn as described in the
proof of Theorem 1.1. Since 0 < ∆ang(Z(fd)) ≤ 1 there exist constants K1 which is
independent of d such that

0 ≤
∫
En,d

∆ang(Z(fd))dProb(fd) ≤ Probd{En,d} ≤ K1d
−1. (4.6)

Hence, ∫
En,d

∆ang(Z(fd))dProbd(fd)→ 0

as d→∞.
Let fd ∈ Polyn,d \ En,d, then by Proposition 4.2

η(fd) ≤
1

dn

(
dn−1(n+

√
n)

n∑
i=1

log ‖fd,i‖sup

)
(4.7)

≤ 1

dn

(
dn−1(n+

√
n)

n∑
i=1

log(d+ 1)

)
(4.8)

≤ K2
log d

d
(4.9)
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for a constant K2 which is independent of d. On the other hand, by Theorem 4.3 for
fd ∈ Polyn,d \ En,d there exists constants K3,K4,K5 and K6 such that

∆ang(Z(fd)) ≤ K3η(fd)
1
3 log

(
K4

η(fd)

) 2
3 (n−1)

(4.10)

≤ K5

(
log d

d

) 1
3

log

(
d

log d

) 2
3 (n−1)

≤ K6
log d

2n
3 −

1
3

d
1
3

, (4.11)

since the function t
1
3 log(at )

n−1
3 is increasing for small values of t > 0. Combining the

equations (4.9) and (4.11), we deduce that limd→∞E[∆ang(Z(fd))] = 0.
The proof of the second assertion is analogous and we omit it.

Proof of Theorem 1.3. We adapt the argument in [14, Theorem 1.8] to our setting. Let

us denote νd := E[Z̃(fd)]
dn , where E[Z̃(fd)] is the expected zero measure and νHaar be the

Haar probability on (S1)n. We need to show that for each continuous function ϕ with
compact support in Cn we have

∫
ϕdνd →

∫
ϕdνHaar as d→∞. To this end, it is enough

to prove the claim for characteristic functions ϕU of the open sets

U := {(z1, . . . , zn) ∈ Cn : r1,j < |zj | < r2,j and αj < arg(zj) < βj} (4.12)

where 0 ≤ r1,j < r2,j ≤ ∞, ri,j 6= 1 for i = 1, 2 and −π < αj < βj ≤ π.
First, we consider the case when U ∩ (S1)n = ∅. Then one can find an 0 < ε < 1 such

that U is disjoint from the set

{(ξ1, . . . , ξn) ∈ Cn : 1− ε < |ξj | < (1− ε)−1 for all j}. (4.13)

Let En,d be the exceptional set as in the proof of Theorem 1.1. If fd ∈ Polyn,d \ En,d then
Z(fd) is discrete and

#{U ∩ Z(fd)} ≤ deg(Z(fd))∆rad(fd, ε) ≤ dn∆rad(fd, ε).

On the other hand, if fd ∈ En,d then by definition deg(Z̃(fd)|U ) = 0. Hence,

νd(U) ≤ E[∆rad(Z̃(fd, ε))]

and by Proposition 4.4,

lim
d→∞

∫
Polyn,d

ϕUdνd = 0 = νHaar(U).

If U ∩ (S1)n 6= ∅ let
Ũ = {z : αj ≤ arg(zj) ≤ βj for all j }. (4.14)

Then we have

νd(U)−
n∏
j=1

βj − αj
2π

=

νd(Ũ)−
n∏
j=1

βj − αj
2π

− νd(Ũ \ U).

By Theorem 1.1 we have∣∣∣∣∣∣νd(Ũ)−
n∏
j=1

βj − αj
2π

∣∣∣∣∣∣ ≤
∫
Polyn,d\En,d

∣∣∣∣∣∣deg(Z(fd)α,β)

dn
−

n∏
j=1

βj − αj
2π

∣∣∣∣∣∣ dProbd(fd) +
Kn

d

≤
∫
Polyn,d\En,d

∆ang(Z(fd))dProbd(fd) +
Kn

d
. (4.15)
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Note that the set Ũ \ U is a union of a finite number of subsets Um of the form (4.12)
such that Um ∩ (S1)n = ∅ for all m, we have limd→∞ νd(Um) = 0 by previous case and
hence limd→∞ νd(U \ U) = 0. Therefore, by Proposition 4.4 and (4.15),

lim
d→∞

νd(U) = lim
d→∞

(Ũ) =

n∏
j=1

βj − αj
2π

= νHaar(U)

which completes the proof.
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