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Multivariate discrete probability laws are considered. We show that such laws are
quasi-infinitely divisible if and only if their characteristic functions are separated
from zero. We generalize the existing results for the univariate discrete laws and for
the multivariate laws on Zd. The Cramér–Wold devices for infinite and quasi-infinite
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Keywords: multivariate probability laws; characteristic functions; infinitely divisible laws; the
Lévy representation; quasi-infinitely divisible laws; Cramér–Wold device.
MSC2020 subject classifications: 60E05; 60E07; 60E10.
Submitted to EJP on March 8, 2023, final version accepted on September 27, 2023.

1 Introduction

Let F be a distribution function of a multivariate probability law on Rd, where R is
the real line, d is a positive integer. Recall that F and the corresponding law are called
infinitely divisible if for every positive integer n there exists a distribution function Fn
such that F = F ∗nn , where “∗” denotes the convolution, i.e. F is the n-fold convolution
power of Fn. It is known that F is infinitely divisible if and only if its characteristic
function

f(t) :=

∫
Rd

ei〈t,x〉dF (x), t ∈ Rd,
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admits the following Lévy representation (see [26, Theorem 8.1])

f(t) = exp

{
i〈t, γ〉 − 1

2 〈t, Qt〉+

∫
Rd

(
ei〈t,x〉 − 1− i〈t,x〉

1+‖x‖2

)
ν(dx)

}
, t ∈ Rd, (1.1)

where 〈 · , · 〉 denotes the standard scalar product in Rd, ‖x‖ :=
√
〈x, x〉 for any x ∈ Rd,

γ ∈ Rd is a fixed vector, Q is a symmetric nonnegative-definite d× d matrix, and ν is a
measure on Rd that satisfies the following conditions

ν
(
{0̄}
)

= 0,

∫
Rd

min
{
‖x‖2, 1

}
ν(dx) <∞.

Here and below, we denote by 0̄ the zero vector of Rd. The vector (γ,Q, ν) is called a
characteristic triplet and it is uniquely determined by f and hence by F .

The notion of quasi-infinitely divisible distributions on Rd was introduced in the
recent paper by Berger, Kutlu, and Lindner [5]. Following this paper, a distribution
function F and the corresponding law are called quasi-infinitely divisible, if there exist
infinitely divisible distribution functions F1 and F2 such that F1 = F ∗ F2 (in the papers
[13, 14, 15], such property is proposed to be called rational infinite divisibility). It was
proved in [5] that F is quasi-infinitely divisible if and only if the representation (1.1)
holds, where ν is a signed finite measure on Rd \ (−r, r)d for any r > 0 that satisfies
ν
(
{0̄}
)

= 0, and ∫
Rd

min
{
‖x‖2, 1

}
|ν|(dx) <∞,

where |ν| denotes the total variation of the measure ν (see [5] for more details). It is
seen that the class of quasi-infinitely divisible distributions is a natural generalization of
the class of infinitely divisible distributions.

The examples of univariate quasi-infinitely divisible laws can be found in the classical
monographs [9, 19], and [20]. The first detailed analysis of these laws on R was
performed in [18], and a lot of results for the univariate case are contained in the works
[1, 3, 4, 12, 13], and [14]. The multivariate case was considered in the recent papers
[5, 6], and [23]. The authors of these works studied questions concerning supports,
moments, continuity, and the weak convergence. The most complete results were
obtained for probability laws on the set Zd, where Z is the set of integers. In particular,
the following important fact was stated in [6].

Theorem 1.1. Let F be the distribution function of a probability law on Zd. Let f be its
characteristic function. Then F is quasi-infinitely divisible if and only if f(t) 6= 0 for all
t ∈ Rd. In that case, f admits the following representation

f(t) = exp

{
i〈t, γ〉+

∑
k∈Zd\{0̄}

λk
(
ei〈t,k〉 − 1

)}
, t ∈ Rd, (1.2)

where γ ∈ Zd, λk ∈ R, k ∈ Zd \ {0̄}, and
∑
k∈Zd\{0̄} |λk| <∞.

It is clear that (1.2) can be rewritten in the form (1.1). Using this theorem, the
authors of [6] also proved the Cramér–Wold device for infinite divisibility of Zd-valued
distributions. We formulate the corresponding result in a simplified form omitting
equivalent propositions.

Theorem 1.2. Let ξ be a Zd-valued random vector with distribution function F . Let Fc
denote the distribution function of 〈c, ξ〉, c ∈ Rd. The distribution function F is infinitely
divisible if and only if for any c ∈ Rd the distribution functions Fc is infinitely divisible.

Recall that the classical Cramér–Wold device is a fact that a probability distribution
of a d-dimensional random vector ξ is uniquely determined by distributions of all linear
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combinations of its components, i.e. by distributions of 〈c, ξ〉 for all c ∈ Rd (see [7]).
Statements concerning some property for multivariate random vectors that can be
expressed by corresponding statements for its linear combinations are also called
as Cramér–Wold devices. So Theorem 1.2 is an interesting particular example of it.
The Cramér–Wold device is well known for strict and symmetric stabilities (see [25]):
d-dimensional random vector ξ is strictly (symmetrically) stable if and only if random
variable 〈c, ξ〉 is strictly (symmetrically) stable for any c ∈ Rd. Note that, however, the
Cramér–Wold device for infinite divisibility in general does not hold. If a d-dimensional
random vector ξ has infinitely divisible distribution, then the distribution of 〈c, ξ〉 is
infinitely divisible too for all c ∈ Rd, but for d > 2 there exist examples that the converse
is not true (see [8] and [11]).

The purpose of this article is to generalize Theorems 1.1 and 1.2 to arbitrary multivari-
ate discrete distribution functions. More precisely, we obtain a criterion of quasi-infinitely
divisibility, we get representations, which are similar to (1.2), and we also prove the
Cramér–Wold devices for infinite and quasi-infinite divisibility. The corresponding results
are formulated in Section 2. The necessary tools, which are also of independent interest,
are formulated in Section 3. All of the mentioned results are proved in Section 4.

2 Main results

Let us consider a multivariate discrete probability law with the following distribution
function

F (x) =
∑
k∈N:

xk∈(−∞,x]

pxk
, x ∈ Rd, (2.1)

where xk ∈ Rd, k ∈ N, are distinct numbers with probability weights pxk
> 0, k ∈ N (the

set of positive integers),
∑∞
k=1 pxk

= 1. We denote by (−∞, x] with x = (x(1), . . . , x(d)) ∈
Rd the set (−∞, x(1)]× · · · × (−∞, x(d)] ⊂ Rd. Let f be the characteristic function of F ,
i.e.

f(t) :=

∫
Rd

ei〈t,x〉dF (x) =
∑
k∈N

pxk
ei〈t,xk〉, t ∈ Rd. (2.2)

We will formulate a criterion for the distribution function F to be quasi-infinitely
divisible through condition for characteristic function f . For the sharp formulation of
the result we need to introduce the set of all finite Z-linear combinations of elements
from a set Y ⊂ Cd (C is the set of complex numbers):

〈Y 〉 :=

{ n∑
k=1

zkyk : n ∈ N, zk ∈ Z, yk ∈ Y
}
. (2.3)

So 〈Y 〉 is a module over the ring Z with the generating set Y . It is easily seen that
Y ⊂ 〈Y 〉, 0̄ ∈ 〈Y 〉. If a countable set Y 6= ∅, then 〈Y 〉 is an infinite countable set.

Theorem 2.1. Let F be a discrete distribution function of the form (2.1) with character-
istic function f of the form (2.2). The following statements are equivalent:

(a) F is quasi-infinitely divisible;
(b) inft∈Rd |f(t)| > 0.

If one of the conditions is satisfied, and hence all, then f admits the following represen-
tation

f(t) = exp

{
i〈t, γ〉+

∑
u∈〈X〉\{0̄}

λu
(
ei〈t,u〉 − 1

)}
, t ∈ Rd, (2.4)

where X := {xk : pxk
> 0, k ∈ N} 6= ∅, γ ∈ 〈X〉, λu ∈ R for all u ∈ 〈X〉 \ {0̄}, and∑

u∈〈X〉\{0} |λu| <∞.
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It is easily seen that (2.4) can be rewritten in the form (1.1). So if characteristic
function of multivariate discrete probability law is represented by (2.4), then the cor-
responding distribution function F is quasi-infinitely divisible. Also observe that, by
this theorem and on account of the conditions and uniqueness of the Lévy representa-
tion (1.1), the multivariate discrete distribution function F is infinitely divisible if and
only if its characteristic function f admits representation (2.4) with the same X and γ,
but with λu > 0 for all u ∈ 〈X〉 \ {0̄}, and

∑
u∈〈X〉\{0} λu <∞.

Note that Theorem 2.1 generalizes Theorem 1.1. Indeed, for characteristic function f
of probability law on Zd the condition that f(t) 6= 0, t ∈ Rd, is equivalent to the condition
that inft∈R |f(t)| > 0. It follows due to the continuity and 2π-periodicity of the function
|f(t)|, t = (t1, . . . , td) ∈ Rd, over each tj . Theorem 2.1 also generalizes the corresponding
results from [1] and [13] for the discrete distributions in the univariate case.

We now formulate the Cramér–Wold devices for the infinite and quasi-infinite divisi-
bility of multivariate discrete distribution functions.

Theorem 2.2. Let ξ be a discrete random vector with distribution function F of the
form (2.1). Let Fc denote the distribution function of 〈c, ξ〉, c ∈ Rd. The distribution
function F is (quasi-)infinitely divisible if and only if for any c ∈ Rd the distribution
function Fc is (quasi-)infinitely divisible.

It is easily seen that Theorem 2.2 generalizes Theorem 1.2. It should be noted that
Theorem 2.2 does not contradict with the results from the [8] and [11], because the
distributions from the counterexamples contained an absolutely continuous part.

3 Tools

We will get the main result from more general positions. Namely, we will consequently
study admission of the Lévy type representations for general almost periodic functions h,
which are very similar to f .

Theorem 3.1. Let h : Rd → C be a function of the following form:

h(t) =
∑
y∈Y

qye
i〈t,y〉, t ∈ Rd,

where Y ⊂ Rd is a nonempty at most countable set, qy ∈ C for all y ∈ Y , and 0 <∑
y∈Y |qy| <∞. Assume that h(0̄) =

∑
y∈Y qy = 1. If inft∈Rd |h(t)| = µ > 0, then h admits

the following representation

h(t) = exp

{
i〈t, γ〉+

∑
u∈〈Y 〉\{0̄}

λu
(
ei〈t,u〉 − 1

)}
, t ∈ Rd, (3.1)

where γ ∈ 〈Y 〉, λu ∈ C for all u ∈ 〈Y 〉 \ {0̄}, and
∑
u∈〈Y 〉\{0̄} |λu| <∞.

It should be noted that the function h in Theorem 3.1 is an almost periodic function
on Rn with the absolutely convergent Fourier series. Recall that (see [16, p. 255] or [21,
Definition 1]) a function h : Rd → C is called almost periodic if for any sequence {tn}n∈N
from Rd there exists a subsequence (tnk

)k∈N and a continuous function ϕ : Rd → C such
that

sup
t∈Rd

∣∣h(t+ tnk
)− ϕ(t)

∣∣ −→
k→∞

0.

The detailed information about almost periodic functions on Rd can be found in [2, 16,
17, 21], and [22] with a greater generality (for local compact Abelian groups).

We now turn to the following general version of Theorem 2.1.
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Theorem 3.2. Let h : Rd → C be a function of the following form

h(t) =
∑
y∈Y

qye
i〈t,y〉, t ∈ Rd,

where Y ⊂ Rd is a nonempty at most countable set, qy ∈ C for all y ∈ Y , and 0 <∑
y∈Y |qy| < ∞. Suppose that h(0̄) =

∑
y∈Y qy = 1. Then the following statements are

equivalent:

(i) inft∈Rd |h(t)| > 0;

(ii) there exist a countable set Z ⊂ Rd and coefficients rz ∈ C, z ∈ Z,
∑
z∈Z |rz| <∞,

such that
1

h(t)
=
∑
z∈Z

rze
i〈t,z〉, t ∈ Rd;

(iii) h admits the representation

h(t) = exp

{
i〈t, γ〉+

∑
u∈〈Y 〉\{0̄}

λu
(
ei〈t,u〉 − 1

)}
, t ∈ Rd,

where γ ∈ 〈Y 〉, λu ∈ C for all u ∈ 〈Y 〉 \ {0̄}, and
∑
u∈〈Y 〉\{0} |λu| <∞;

(iv) h admits the representation

h(t) = exp

{
i〈t, γ〉 − 1

2 〈t, Qt〉+

∫
Rd

(
ei〈t,u〉 − 1− i〈t,u〉

1+‖u‖2

)
ν(du)

}
, t ∈ Rd, (3.2)

where γ ∈ Cd, Q ∈ Cd×d is a matrix, ν is a complex measure on Rd such that

ν({0̄}) = 0, and

∫
Rd

min
{
‖x‖2, 1

}
|ν|(dx) <∞.

4 Proofs

Proof of Theorem 3.1. We will sequentially consider the following cases: 1) Y = Zd, 2)
Y is a finite subset of Rd, 3) Y is at most countable subset of Rd (the general case). We
always assume that Y 6= ∅. Each subsequent case will be based on the previous one.

1) Suppose that Y = Zd. It is easy to see that the function h is 2π-periodic in all
coordinates, i.e. for any k = 1, . . . , d and t ∈ Rd we have h(t + 2πek) = h(t), where
{e1, e2, . . . , ed} denotes the canonical basis in Rd. Let us consider the distinguished
logarithm t 7→ Lnh(t), t ∈ Rd, which satisfies exp{Lnh(t)} = h(t), t ∈ Rd, and it is
uniquely defined by continuity with the condition Lnh(0̄) = 0 (see [26, Lemma 7.6]). For
any k = 1, . . . , d we have

exp{Lnh(t+ 2πek)} = h(t+ 2πek) = h(t) = exp{Lnh(t)}, t ∈ Rd.

So Lnh(t + 2πek) − Lnh(t) ∈ 2πiZ for any k = 1, . . . , d and t ∈ Rd. Since t 7→ Lnh(t +

2πek)− Lnh(t) is a continuous function on Rd, there exist constants γ1, . . . , γd ∈ Z such
that

γk =
Lnh(t+ 2πek)− Lnh(t)

2πi
, t ∈ Rd, k = 1, . . . , d.

Let us define the vector γ = (γ1, . . . , γd)
T ∈ Zd. So the function t 7→ Lnh(t) − i〈t, γ〉 is

2π-periodic in all coordinates. By [6, Proposition 3.1], one can conclude that

Lnh(t) = i〈t, γ〉+
∑

u∈Zd\{0̄}

λu
(
ei〈t,u〉 − 1

)
, t ∈ Rd,

where λu ∈ C for all u ∈ Zd\{0̄}, and
∑
u∈Zd\{0̄} |λu| <∞. Note that 〈Y 〉 = Zd in this case.
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2) Assume that Y = {y1, . . . , yn}, where y1, . . . , yn are distinct elements from Rd. So
we have h(t) =

∑n
k=1 qyke

i〈t,yk〉, t ∈ Rd. If n = 1 then Y = {y1} and qy1 = 1. For this
case representation (3.1) holds with γ = y1 and λu = 0 for all u ∈ 〈Y 〉 \ {0̄}. We next

suppose that n > 2. We set yk = (y
(1)
k , . . . , y

(d)
k ), k = 1, . . . , n. Without loss of generality,

we can assume that for every j = 1, . . . , d there exist k = 1, . . . , n such that y(j)
k 6= 0, since

otherwise we can turn to the space Rd′ with some d′ < d. Next, for every j = 1, . . . , d

we can choose non-zero β
(j)
1 , . . . , β

(j)
mj ∈ Y (j) = {y(j)

1 , . . . , y
(j)
n } ⊂ R that constitute a

basis in Y (j) over Q, i.e. for any j ∈ {1, . . . , d} and k ∈ {1, . . . , n} there exist uniquely

determined values c(j)k,1, . . . , c
(j)
k,mj

∈ Q, such that y(j)
k =

∑mj

l=1 c
(j)
k,lβ

(j)
l (see [16] p. 67–68).

Let κ(j) be the minimal positive integer such that c̃(j)k,l := κ(j)c
(j)
k,l ∈ Z for any j, k, l. We set

β̃
(j)
l := β

(j)
l /κ(j) and we have y(j)

k =
∑mj

l=1 c̃
(j)
k,l β̃

(j)
l for any j ∈ {1, . . . , d} and k ∈ {1, . . . , n}.

So it is easy to check that

〈Y 〉 ⊂
{ m1∑
l=1

z
(1)
l β̃

(1)
l : z

(1)
l ∈ Z

}
× · · ·×

{ md∑
l=1

z
(d)
l β̃

(d)
l : z

(d)
l ∈ Z

}
. (4.1)

Note that for every j = 1, . . . , d the values β̃(j)
1 , . . . , β̃

(j)
mj are linearly independent over

Z, i.e. the equation l1β̃
(j)
1 + · · · + lmj β̃

(j)
mj = 0 holds with l1, . . . , lmj ∈ Z if and only if

l1 = · · · = lmj = 0.
We now consider the function

ϕ
(
t
(1)
1 , . . . , t(1)

m1
, . . . , t

(d)
1 , . . . , t(d)

md

)
:=

n∑
k=1

qyk exp

{
i

d∑
j=1

mj∑
l=1

c̃
(j)
k,l β̃

(j)
l t

(j)
l

}
, (4.2)

where t(j)l ∈ R, l = 1, . . . ,mj , and j = 1, . . . , d. If for any such j and l we set t(j)l := t(j) ∈ R,
then

ϕ
(
t
(1)
1 , . . . , t(1)

m1
, . . . , t

(d)
1 , . . . , t(d)

md

)
= h(t), (4.3)

where t = (t(1), . . . , t(d)). We set M := m1 + · · ·+md. Let us fix an arbitrary ε > 0. Since
the function ϕ is uniformly continuous, there exists δε > 0 such that for any t̃1 and t̃2
from RM satisfying ‖t̃1 − t̃2‖ < δe we have

∣∣ϕ(t̃1)− ϕ(t̃2)
∣∣ < ε. Let us arbitrarily fix the

vector t :=
(
t
(1)
1 , . . . , t

(1)
m1 , . . . , t

(d)
1 , . . . , t

(d)
md

)
∈ RM . We set bj := min

{
|β̃(j)

1 |, . . . , |β̃
(j)
mj |
}
> 0

for every j = 1, . . . , d. Since for every j the values β̃(j)
1 , . . . , β̃

(j)
mj are linearly independent

over Z, then, by the Kronecker theorem (see [17, p.37]), we conclude that the inequalities∣∣β̃(j)
l s(j) − t(j)l − 2πn

(j)
l

∣∣ < δεbj√
mjd

, l = 1, . . . ,mj ,

have a common solution s(j) ∈ R for some n
(j)
l ∈ Z. We fix these numbers and we

conclude that ∣∣∣∣∣s(j) −
t
(j)
l + 2πn

(j)
l

β̃
(j)
l

∣∣∣∣∣ < δε√
mjd

, l = 1, . . . ,mj ,

and
d∑
j=1

mj∑
l=1

∣∣∣∣∣s(j) −
t
(j)
l + 2πn

(j)
l

β̃
(j)
l

∣∣∣∣∣
2

< δ2
ε .

The latter inequality means that ‖s− t̃ ‖ < δε, where

s :=
(
s(1), . . . , s(1), . . . , s(d), . . . , s(d)

)
∈ RM ,

t̃ :=

(
t
(1)
1 +2πn

(1)
1

β̃
(1)
1

, . . . ,
t(1)m1

+2πn(1)
m1

β̃
(1)
m1

, . . . ,
t
(d)
1 +2πn

(d)
1

β̃
(d)
1

, . . . ,
t(d)md

+2πn(d)
md

β̃
(d)
md

)
∈ RM ,
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in the vector s: s(1) repeats m1 times, s(2) repeats m2 times, . . . , s(d) repeats md times.
Therefore

∣∣ϕ(s)− ϕ(t̃)
∣∣ < ε. It is easily seen from (4.2) that

ϕ(t̃) = ϕ

(
t
(1)
1 +2πn

(1)
1

β̃
(1)
1

, . . . ,
t(1)m1

+2πn(1)
m1

β̃
(1)
m1

, . . . ,
t
(d)
1 +2πn

(d)
1

β̃
(d)
1

, . . . ,
t(d)md

+2πn(d)
md

β̃
(d)
md

)
= ϕ

(
t
(1)
1

β̃
(1)
1

, . . . ,
t(1)m1

β̃
(1)
m1

, . . . ,
t
(d)
1

β̃
(d)
1

, . . . ,
t(d)md

β̃
(d)
md

)
=: ϕ̃(t),

i.e.

ϕ̃(t) =

n∑
k=1

qyk exp

{
i

d∑
j=1

mj∑
l=1

c̃
(j)
k,l t

(j)
l

}
; (4.4)

since t was fixed arbitrarily, we consider ϕ̃ as a function from RM to C. So we have
that

∣∣ϕ(s) − ϕ̃(t)
∣∣ < ε. Thus, due to (4.3), we get that for any ε > 0 and t ∈ RM there

exists s′ =
(
s(1), . . . , s(d)

)
∈ Rd such that

∣∣h(s′)− ϕ̃(t)
∣∣ < ε. According to the assumption

infs∈Rd |h(s)| > 0, we conclude that inft∈RM |ϕ̃(t)| > 0.
We now apply the previous part 1) to the function (4.4) (it is valid, because there are

c̃
(j)
k,l ∈ Z in (4.4)). So we have the following representation:

Ln ϕ̃(t) = Ln ϕ̃
(
t
(1)
1 , . . . , t(1)

m1
, . . . , t

(d)
1 , . . . , t(d)

md

)
= i

d∑
j=1

mj∑
l=1

γ
(j)
l t

(j)
l +

∑
z∈ZM\{0̄}

λz

(
exp

{
i

d∑
j=1

mj∑
l=1

z
(j)
l t

(j)
l

}
− 1

)
,

where z =
(
z

(1)
1 , . . . , z

(1)
m1 , . . . , z

(d)
1 , . . . , z

(d)
md

)
∈ ZM \{0̄}, γ(j)

l ∈ Z, λz ∈ C for all z ∈ ZM \{0̄},
and

∑
z∈ZM\{0̄} |λz| <∞. From the above, we get

Lnϕ
(
t
(1)
1 , . . . , t(1)

m1
, . . . , t

(d)
1 , . . . , t(d)

md

)
= i

d∑
j=1

mj∑
l=1

γ
(j)
l β̃

(j)
l t

(j)
l

+
∑

z∈ZM\{0̄}

λz

(
exp

{
i

d∑
j=1

mj∑
l=1

z
(j)
l β̃

(j)
l t

(j)
l

}
− 1

)
.

Due to (4.3), for every t = (t(1), . . . , t(d)) we have

Lnh(t) = i

d∑
j=1

(mj∑
l=1

γ
(j)
l β̃

(j)
l

)
t(j) +

∑
z∈ZM\{0̄}

λz

(
exp

{
i

d∑
j=1

(mj∑
l=1

z
(j)
l β̃

(j)
l

)
t(j)
}
− 1

)
.

For every j = 1, . . . , d we set γ(j) :=
∑mj

l=1 γ
(j)
l β̃

(j)
l , γ := (γ(1), . . . , γ(d)), and u

(j)
z :=∑mj

l=1 z
(j)
l β̃

(j)
l , uz = (u

(1)
z , . . . , u

(d)
z ). By the well known theorem on the argument of an al-

most periodic function and its corollaries (see [24] and [16] p. 128–135), γ and all uz with
λz 6= 0 belong to 〈Y 〉. Setting λuz

:= λz for every z ∈ ZM \ {0̄}, we can deal only with λu,

u ∈ 〈Y 〉 \ {0̄} (u determines the corresponding vector z uniquely, because β(j)
l constitute

a basis, see (4.1) and comments above). Thus we come to the representation (3.1) for h.
3) We now turn to the general case: Y is at most countable subset of Rd. Without loss

of generality we can set Y := {y1, y2, . . .} with distinct yk ∈ Rd. So A :=
∑∞
k=1 |qyk | <∞

and h(t) :=
∑∞
k=1 qyke

i〈t,yk〉, t ∈ Rd. We approximate h by the following functions:

hn(t) :=

n∑
k=1

qn,yke
i〈t,yk〉, t ∈ Rd, n ∈ N,
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where
qn,yk :=

qyk∑n
m=1 qym

, k = 1, . . . , n, n ∈ N.

Since
∑∞
k=1 qyk = 1, we have

∣∣∑n
m=1 qym

∣∣ > 1
2 for all n > n0 with a positive integer n0.

Let us estimate the approximation error for every n > n0:

sup
t∈Rd

|h(t)− hn(t)| = sup
t∈Rd

∣∣∣∣ n∑
k=1

(qyk − qn,yk)ei〈t,yk〉 +

∞∑
k=n+1

qyke
i〈t,yk〉

∣∣∣∣
6

n∑
k=1

|qyk − qn,yk |+
∞∑

k=n+1

|qyk |.

Due to
∑∞
m=1 qym = 1, we have

n∑
k=1

|qyk − qn,yk | =
∣∣∣∣1− 1∑n

m=1 qym

∣∣∣∣ · n∑
k=1

|qyk |

=

∣∣∣∣
∑∞
m=n+1 qym∑n
m=1 qym

∣∣∣∣ · n∑
k=1

|qyk | 6 2A

∞∑
m=n+1

|qym |.

We used
∑∞
k=1 |qyk | = A and

∣∣∑n
m=1 qym

∣∣ > 1
2 for the last inequality. Thus we obtain

sup
t∈Rd

|h(t)− hn(t)| 6 (2A+ 1)

∞∑
m=n+1

|qym |, n > n0.

Since
∑n
k=1 |qyk | < ∞, we have that supt∈Rd |h(t) − hn(t)| → 0, n → ∞. Hence for any

fixed ε ∈ (0, 1
4 ) there exists a positive integer nε > n0 such that for every n > nε we have

sup
t∈Rd

∣∣h(t)− hn(t)
∣∣ 6 εµ, (4.5)

where we set µ := inft∈Rd |h(t)| > 0. So for every n > nε

inf
t∈Rd

∣∣hn(t)
∣∣ > inf

t∈Rd

∣∣h(t)
∣∣− sup

t∈Rd

∣∣h(t)− hn(t)
∣∣ > (1− ε)µ. (4.6)

We now fix n > nε and we represent h(t) = hn(t) · Rn(t) with Rn(t) := h(t)/hn(t),
t ∈ Rd. Since h, hn, Rn are continuous functions without zeroes on Rd and they equal
1 at t = 0̄, we can proceed to the distinguished logarithms:

Lnh(t) = Lnhn(t) + LnRn(t), t ∈ Rd. (4.7)

Let us consider the function Lnhn. By the result of part 2), we have

Lnhn(t) = i〈t, γn〉+
∑

u∈〈Yn〉\{0̄}

λn,u
(
ei〈t,u〉 − 1

)
, t ∈ Rd,

with a set Yn :=
{
yk : qyk 6= 0, k = 1, . . . , n

}
, and numbers γn ∈ 〈Yn〉, λn,u ∈ C for all

u ∈ 〈Yn〉 \ {0̄},
∑
u∈〈Yn〉\{0̄} |λn,u| < ∞. Setting λn,0̄ := −

∑
u∈〈Yn〉\{0̄} λn,u ∈ C, we

represent Lnhn in the following form

Lnhn(t) = i〈t, γn〉+
∑

u∈〈Yn〉

λn,ue
i〈t,u〉, t ∈ Rd.

Observe that Yn ⊂ Y , and hence 〈Yn〉 ⊂ 〈Y 〉. So we can write

Lnhn(t) = i〈t, γn〉+
∑
u∈〈Y 〉

λn,ue
i〈t,u〉, t ∈ Rd, (4.8)
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where for every u ∈ 〈Y 〉 \ 〈Yn〉 we define λn,u := 0 for the case 〈Y 〉 \ 〈Yn〉 6= ∅.
We next consider the function LnRn. Observe that

LnRn(t) = ln

(
1 +

h(t)− hn(t)

hn(t)

)
, t ∈ Rd, (4.9)

where the latter is the principal value of the logarithm. Indeed, due to (4.5) and (4.6),

sup
t∈Rd

∣∣∣∣h(t)− hn(t)

hn(t)

∣∣∣∣ 6 supt∈Rd |h(t)− hn(t)|
inft∈Rd |hn(t)|

6
ε

1− ε
< 1, (4.10)

and the function in the right-hand side of (4.9) is continuous and it equals 0 at t = 0̄.
Therefore we get the decomposition

LnRn(t) =

∞∑
m=1

(−1)m−1

m

(
h(t)− hn(t)

hn(t)

)m
, t ∈ Rd,

which yields the estimate

sup
t∈R
|LnRn(t)| 6

∞∑
m=1

1

m
sup
t∈Rd

∣∣∣∣h(t)− fn(t)

fn(t)

∣∣∣∣m 6
∞∑
m=1

1

m

(
ε

1− ε

)m
.

Since ε ∈ (0, 1
4 ), we have

∞∑
m=1

1

m

(
ε

1− ε

)m
6
∞∑
m=1

(
ε

1− ε

)m
=

ε
1−ε

1− ε
1−ε

=
ε

1− 2ε
< 2ε.

Thus we obtain
sup
t∈Rd

|LnRn(t)| < 2ε. (4.11)

Let us consider the function (h − hn)/hn from (4.9). It is clear that h − hn is an
almost periodic function with the absolutely convergent Fourier series. Due to [2, The-
orem 3.2] the function 1/hn is also an almost periodic with the absolutely convergent
Fourier series. Since the function z 7→ ln(1 + z), z ∈ C, is analytic on the unit disk,
due to (4.10), [2, Theorem 3.2], and [10, Corollary 5.15], we get that LnRn is an almost
periodic function with the absolutely convergent Fourier series:

LnRn(t) =
∑
u∈∆n

βn,ue
i〈t,u〉, t ∈ Rd, (4.12)

where ∆n is at most countable set of vectors from Rd, βn,u ∈ C for u ∈ ∆n, and∑
u∈∆n

|βn,u| <∞.
We now return to the function Lnh and (4.7). The formulas (4.8) and (4.12) yield

Lnh(t) = i〈t, γn〉+
∑
u∈〈Y 〉

λn,ue
i〈t,u〉 +

∑
u∈∆n

βn,ue
i〈t,u〉, t ∈ Rd.

This formula is valid for every n > nε. Let us fix the vector e on the unit sphere
Sd−1 = {x ∈ Rd : ‖x‖ = 1}. Since

∑
u∈〈Y 〉 |λn,u| <∞ and

∑
u∈∆n

|βn,u| <∞, n > nε, it is
easy to see that

lim
T→∞

Lnh(Te)

iT
= 〈γn, e〉, n > nε.

Since the vector e is choosen arbitrarily from Sd−1, γn are equal for n > nε, and we set
γ := γn. Due to γn ∈ 〈Yn〉 ⊂ 〈Y 〉, we have γ ∈ 〈Y 〉. Thus for every n > nε we obtain

Lnh(t) = i〈t, γ〉+
∑
u∈〈Y 〉

λn,ue
i〈t,u〉 +

∑
u∈∆n

βn,ue
i〈t,u〉, t ∈ Rd.

EJP 28 (2023), paper 130.
Page 9/17

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1032
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A criterion and a Cramér–Wold device for quasi-infinite divisibility

Due to the uniqueness theorem for the Fourier coefficients (see [2, Lemma 3.1]), one
can conclude that

Lnh(t) = i〈t, γ〉+
∑
u∈〈Y 〉

λue
i〈t,u〉 +

∑
u∈Z

λue
i〈t,u〉, t ∈ Rd,

where Z is at most countable subset of Rd such that 〈Y 〉 ∩ Z = ∅, λu ∈ C for all
u ∈ 〈Y 〉 ∪ Z,

∑
u∈〈Y 〉∪Z |λu| <∞. So for every n > nε the following estimate is true:∑

u∈Z
|λu|2 6

∑
u∈∆n

|βn,u|2.

Using the Parseval identity (see [16, Ch. VI, §4] or [21, Theorem 28]) and (4.11), we get∑
u∈Z
|λu|2 6 lim

T→∞

1

(2T )d

∫
[−T,T ]d

∣∣LnRn(t)
∣∣2dt < (2ε)2, n > nε.

Since ε > 0 can be chosen arbitrarily small, we conclude that Z = ∅ or Z 6= ∅, but
λu = 0 for all u ∈ Z. Thus

Lnh(t) = i〈t, γ〉+
∑
u∈〈Y 〉

λue
i〈t,u〉, t ∈ Rd,

with γ ∈ 〈Y 〉, λu ∈ C for all u ∈ 〈Y 〉, and
∑
u∈〈Y 〉 |λu| < ∞. According to

(
Lnh(t) −

i〈t, γ〉
)∣∣
t=0̄

= 0, we get λ0̄ = −
∑
u∈〈Y 〉\{0̄} λu and we come to the required representa-

tion (3.1).

We now return to the proof of the Theorem 3.2.

Proof of Theorem 3.2. The proof will be carried out in the following sequence: (ii)
I−→

(i)
II−→ (iii)

III−→ (iv)
IV−→ (i)

V−→ (ii).
I. Due to (ii), we have

sup
t∈Rd

∣∣∣∣ 1

h(t)

∣∣∣∣ 6 ∑
z∈Z
|rz| =

1

µ
<∞.

It follows that

inf
t∈Rd
|h(t)| = 1

supt∈Rd |1/h(t)|
= µ > 0.

II. This implication directly follows from Theorem 3.1.
III. It is clear that (iii) yields (iv) with zero matrix Q and the signed measure

ν(B) =
∑

u∈B∩〈Y 〉\{0̄}

λu for every Borel set B.

IV. Let us assume the contrary, i.e. h has the representation (3.2) and inft∈Rd |h(t)| =
0. Since ez 6= 0 for all z ∈ C, then h(t) 6= 0 for all t ∈ Rd. Hence it is sufficient to
focus on the case, where h has the representation (3.2), h(t) 6= 0 for all t ∈ Rd, and
inft∈Rd |h(t)| = 0.

Due to (3.2), for every fixed τ ∈ Rd we have the following representation

h(t+ τ)h(t− τ)

h2(t)
= exp

{
− 1

2 〈τ,Qτ〉+ 2

∫
Rd\{0̄}

ei〈t,u〉
(

cos
(
〈τ, u〉

)
− 1
)
ν(du)

}
, t ∈ Rd.
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It follows that for any t ∈ Rd∣∣∣∣h(t+ τ)h(t− τ)

h2(t)

∣∣∣∣ 6 exp

{(
1
2‖Q‖+

∫
0<‖u‖<1

‖u‖2
∣∣ν∣∣(du)

)
‖τ‖2 + 4

∫
‖u‖>1

∣∣ν∣∣(du)

}
.

Hence for every τ ∈ Rd there exists Cτ such that

sup
t∈Rd

∣∣∣∣h(t+ τ)h(t− τ)

h2(t)

∣∣∣∣ 6 Cτ .

Let (tn)n∈N, tn ∈ Rd, be a sequence such that h(tn) tends to 0 as n → ∞. If there
exists R > 0 such that ‖tn‖ < R for every n ∈ N, then there exists subsequence (nk)k∈N
satisfying tnk

→ t∗ ∈ Rd as k → ∞. Since h is a continuous function, h(t∗) = 0 that
contradicts with the (iv). It follows that ‖tn‖ → ∞ as n → ∞. Since h is an almost
periodic function, the sequence (h(·+ tn))n∈N is dense in the set of continuous functions,
i.e. there exists a subsequence (nk)k∈N and a continuous function ϕ such that

sup
τ∈Rd

∣∣h(tnk
+ τ)− ϕ(τ)

∣∣ −→
k→∞

0.

It is obvious that |ϕ(τ)| 6 C := supt∈Rd |h(t)| <∞ for all τ ∈ Rd. Then

∆k := sup
τ∈Rd

∣∣h(tnk
+ τ)h(tnk

− τ)− ϕ(τ)ϕ(−τ)
∣∣

6 sup
τ∈Rd

∣∣h(tnk
− τ)

∣∣·∣∣h(tnk
+ τ)− ϕ(τ)

∣∣+ sup
τ∈Rd

∣∣h(tnk
− τ)− ϕ(−τ)

∣∣ · |ϕ(τ)|

6 2C sup
τ∈Rd

∣∣h(tnk
+ τ)− ϕ(τ)

∣∣ −→
k→∞

0.

Let us assume that ϕ(τ)ϕ(−τ) = 0 for all τ ∈ Rd. It follows that

sup
τ∈Rd

∣∣h(tnk
+ τ)h(tnk

− τ)
∣∣ −→
k→∞

0.

So for any fixed s ∈ Rd

h(tnk
+ τ)h(tnk

− τ)
∣∣∣
τ=−tnk

−s
= h(−s)h(2tnk

+ s) −→
k→∞

0.

Since h(s) 6= 0 for every s ∈ Rd, we have

h(2tnk
+ s) −→

k→∞
0. (4.13)

Next, it is easy to see that the function h(2tnk
+ · ) is almost periodic. It means that there

exists a subsequence (nkm)m∈N such that a sequence
(
h(2tnkm

+ · )
)
m∈N has a uniform

limit. From (4.13) one can conclude that

sup
s∈Rd

∣∣h(2tnkm
+ s)

∣∣ −→
m→∞

0.

Applying this with s = −2tnkm
, we come to a contradiction with h(0) = 1. Therefore the

assumption inft∈Rd |h(t)| = 0 is false, i.e. (i) follows from (iv).
V. If (i) holds, then (ii) follows directly from [2, Theorem 3.2].

Proof of Theorem 2.1. The implication (a) → (b) directly follows from the implication
(iv)→ (i) of Theorem 3.2. The converse (b)→ (a) holds due to (i)→ (iv) of Theorem 3.2
with applying [5, Theorem 2.7] (so γ ∈ Rd, Q ∈ Rd×d, ν is real-valued measure). The
representation (2.4) holds due to (iii) of Theorem 3.2 and [5, Theorem 2.7] (so γ ∈ Rd
and λu ∈ R).
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Proof of Theorem 2.2. Necessity. Due to Theorem 2.1 and comments below, it is easily
seen using formula (2.4) that if the distribution function F of a discrete random vector ξ
is (quasi-)infinitely divisible, then for any c ∈ Rd distribution functions Fc of the random
variables 〈c, ξ〉 are (quasi-)infinitely divisible, respectively (there is the case d = 1 for Fc).

Sufficiency. Let us consider a discrete random vector ξ with distribution function (2.1)
and characteristic function (2.2). We write the latter in the expanded form:

f(t(1), . . . , t(d)) =

∞∑
k=1

pxk
exp

{
i

d∑
j=1

t(j)x
(j)
k

}
,

where xk = (x
(1)
k , . . . , x

(d)
k ) ∈ Rd and t(1), . . . , t(d) ∈ R.

We now assume that the distribution functions Fc of 〈c, ξ〉 are quasi-infinitely divisible
for any c = (c(1), . . . , c(d)) ∈ Rd. Let fc denote the corresponding characteristic functions.
It is easily seen that

fc(t) = f(c(1)t, . . . , c(d)t), t ∈ R.

Applying Theorem 2.1 to Fc (here the case d = 1), we conclude that there exists a
constant µc > 0 such that∣∣f(c(1)t, . . . , c(d)t)

∣∣ > µc for all t ∈ R. (4.14)

In order to prove the quasi-infinite divisibility of F , according to Theorem 2.1, it is
sufficient to show that for some µ > 0∣∣f(t(1), . . . , t(d))

∣∣ > µ for all t(1), . . . , t(d) ∈ R. (4.15)

We set X(j) := {x(j)
k : pxk

> 0, k ∈ N} ⊂ R, j = 1, . . . , d. Let us suppose that X(j) 6= {0}
for every j = 1, . . . , d, i.e. for every j there exists k ∈ N such that x(j)

k 6= 0. Therefore

for every j = 1, . . . , d one can choose non-zero β(j)
l ∈ X(j), l ∈ I(j) (here I(j) is at most

countable index set) such that for every k ∈ N and for some numbers z(j)
k,l ∈ Q we have

x
(j)
k =

∑
l∈I(j)

z
(j)
k,lβ

(j)
l , (4.16)

where only finite number of z(j)
k,l are non-zero (see [16] p. 67–68). Note that the numbers

β
(j)
l can be chosen as linearly independent over Q, that is the equation z1β

(j)
l1

+ · · · +
znβ

(j)
ln

= 0 holds with z1, . . . , zn ∈ Q, and distinct l1, . . . , ln ∈ I(j), n ∈ N, if and only if

z1 = · · · = zn = 0. It follows that the numbers z(j)
k,l are uniquely determined for x(j)

k

in (4.16). We observe that for every j = 1, . . . , d

〈X(j)〉r =

{
z1β

(j)
l1

+ · · ·+ znβ
(j)
ln

: z1, . . . , zn ∈ Q, l1, . . . , ln ∈ I(j), n ∈ N
}
, (4.17)

where 〈X(j)〉r is the module over the ring Q with the generating set X(j) (see defini-
tion (2.3) for the one-dimesional case with zk ∈ Q).

We now propose the procedure of choosing of the numbers c(1), . . . , c(d) ∈ R such
that the elements of the union system

{
c(1)β

(1)
l : l ∈ I(1)

}
∪ · · · ∪

{
c(d)β

(d)
l : l ∈ I(d)

}
are

linearly independent over Q. We first fix any c(1) ∈ R \ {0}. For every v ∈ 〈X(2)〉r \ {0}
we define

D(2)
v :=

{
c ∈ R : cv ∈ 〈c(1)X(1)〉r

}
.
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Here and below, for any set X ⊂ R we denote by cX the set {cx : x ∈ X} with c ∈ R.

Observe that every set D(2)
v is countable. Then the set

D(2) :=
⋃

v∈〈X(2)〉r\{0}

D(2)
v

is countable too. Hence the set C(2) := R \D(2) is not empty. We choose any c(2) ∈ C(2).
Observe that

C(2) = R \
⋃

v∈〈X(2)〉r\{0}

D(2)
v =

⋂
v∈〈X(2)〉r\{0}

R \D(2)
v .

This means that for any v ∈ 〈X(2)〉r \ {0} the quantity c(2)v can not be a finite linear

combination of elements c(1)β
(1)
l , l ∈ I(1), with rational coefficients. Let v = z1β

(2)
l1

+

· · · + znβ
(2)
ln

with some z1, . . . , zn ∈ Q. l1, . . . , ln ∈ I(2), and n ∈ N. Since c(2)v =

z1(c(2)β
(2)
l1

) + · · ·+ zn(c(2)β
(2)
ln

), by the above argument, the elements in the union system{
c(1)β

(1)
l : l ∈ I(1)

}
∪
{
c(2)β

(2)
l : l ∈ I(2)

}
are linear independent over Q. We next consider

the set of all finite linear combitations of
{
c(1)β

(1)
l : l ∈ I(1)

}
∪
{
c(2)β

(2)
l : l ∈ I(2)

}
with

rational coefficients. It is the set 〈c(1)X(1) ∪ c(2)X(2)〉r. For every v ∈ 〈X(3)〉r \ {0} we
define

D(3)
v :=

{
c ∈ R : cv ∈ 〈c(1)X(1) ∪ c(2)X(2)〉r

}
.

Every D(3)
v is countable. Hence the set

D(3) :=
⋃

v∈〈X(3)〉r\{0}

D(3)
v

is countable too. Since the set C(3) := R \D(3) is not empty, we choose any c(3) ∈ C(3).
Observe that

C(3) = R \
⋃

v∈〈X(3)〉r\{0}

D(3)
v =

⋂
v∈〈X(3)〉r\{0}

R \D(3)
v .

Hence for any v ∈ 〈X(3)〉r \ {0} the quantity c(3)v can not be a finite linear combination

of elements of
{
c(1)β

(1)
l : l ∈ I(1)

}
∪
{
c(2)β

(2)
l : l ∈ I(2)

}
with rational coefficients. This

implies that the elements in the union system
{
c(1)β

(1)
l : l ∈ I(1)

}
∪
{
c(2)β

(2)
l : l ∈ I(2)

}
∪{

c(3)β
(3)
l : l ∈ I(3)

}
are linear independent over Q. We next proceed analogously and

thus we obtain that the elements of the union system
{
c(1)β

(1)
l : l ∈ I(1)

}
∪ · · · ∪

{
c(d)β

(d)
l :

l ∈ I(d)
}

are linearly independent over Q as required.
We now prove (4.15). Suppose, contrary to our claim, that (4.15) is false, i.e. for any

ε > 0 there exist t(1)
ε , . . . , t

(d)
ε ∈ R such that |f(t

(1)
ε , . . . , t

(d)
ε )| 6 ε. So we fix ε > 0 and such

t
(j)
ε , j = 1, . . . , d. We first find Nε ∈ N such that

∑∞
k=Nε+1 pxk

6 ε (see (2.1) and (2.2),∑∞
k=1 pxk

= 1, pxk
> 0). Then

sup
t(1),...,t(d)∈R

∣∣∣∣ ∞∑
k=Nε+1

pxk
exp

{
i

d∑
j=1

x
(j)
k t(j)

}∣∣∣∣ 6 ∞∑
k=Nε+1

pxk
6 ε. (4.18)

Hence we get

∣∣f(t(1)
ε , . . . , t(d)

ε )
∣∣ =

∣∣∣∣∑
k∈N

pxk
exp

{
i

d∑
j=1

x
(j)
k t(j)ε

}∣∣∣∣
>

∣∣∣∣ Nε∑
k=1

pxk
exp

{
i

d∑
j=1

x
(j)
k t(j)ε

}∣∣∣∣− ∣∣∣∣ ∞∑
k=Nε+1

pxk
exp

{
i

d∑
j=1

x
(j)
k t(j)ε

}∣∣∣∣
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>

∣∣∣∣ Nε∑
k=1

pxk
exp

{
i

d∑
j=1

x
(j)
k t(j)ε

}∣∣∣∣− ε.
Due to representations (4.16), we write:

Nε∑
k=1

pxk
exp

{
i

d∑
j=1

x
(j)
k t(j)ε

}
=

Nε∑
k=1

pxk
exp

{
i

d∑
j=1

( ∑
l∈I(j)

z
(j)
k,lβ

(j)
l

)
t(j)ε

}

=

Nε∑
k=1

pxk
exp

{
i

d∑
j=1

∑
l∈I(j)

z
(j)
k,l

(
β

(j)
l t(j)ε

)}
. (4.19)

Let us fix c(1), . . . , c(d) ∈ R such that the elements of the union system
{
c(1)β

(1)
l : l ∈

I(1)
}
∪ · · · ∪

{
c(d)β

(d)
l : l ∈ I(d)

}
are linearly independent over Q. Let κ(j) be the minimal

positive integer such that κ(j)z
(j)
k,l ∈ Z for any j ∈ {1, . . . , d}, k ∈ {1, . . . , Nε}, l ∈ I(j).

By the Kronecker theorem (see [17, p.37]), for any δ > 0 we can find t′δ such that all

following inequalities hold with some integers n(j)
l :∣∣∣∣c(j)β(j)

l t′δ −
β

(j)
l t

(j)
ε

κ(j)
− 2πn

(j)
l

∣∣∣∣ < δ, l ∈ I(j)
ε , j = 1, . . . , d, (4.20)

where I(j)
ε is the set of all l ∈ I(j) such that z(j)

k,l 6= 0 for some k = 1, . . . , Nε. Since only

finite number of z(j)
k,l are non-zero in (4.16), the set I(j)

ε is finite and the system (4.20)
has only finite number of inequalities. Let us choose δ = δε such that

δε · max
k=1,...,Nε

{ d∑
j=1

∑
l∈I(j)ε

κ(j)|z(j)
k,l |
}

6 ε. (4.21)

Observe that

∆ε :=

∣∣∣∣ Nε∑
k=1

pxk
exp

{
i

d∑
j=1

∑
l∈I(j)ε

κ(j)z
(j)
k,l c

(j)β
(j)
l t′δε

}

−
Nε∑
k=1

pxk
exp

{
i

d∑
j=1

∑
l∈I(j)ε

z
(j)
k,lβ

(j)
l t(j)ε

}∣∣∣∣
6

Nε∑
k=1

pxk

∣∣∣∣exp

{
i

d∑
j=1

∑
l∈I(j)ε

κ(j)z
(j)
k,l

(
c(j)β

(j)
l t′δε −

β
(j)
l t

(j)
ε

κ(j)

)}
− 1

∣∣∣∣
=

Nε∑
k=1

pxk

∣∣∣∣exp

{
i

d∑
j=1

∑
l∈I(j)ε

κ(j)z
(j)
k,l

(
c(j)β

(j)
l t′δε −

β
(j)
l t

(j)
ε

κ(j)
− 2πn

(j)
l

)}
− 1

∣∣∣∣.
The last equality holds because all κ(j)z

(j)
k,l and n

(j)
l are integers. Next, using the well

known inequality |eiy − 1| 6 |y|, y ∈ R, and applying (4.20) and (4.21), we obtain

∆ε 6
Nε∑
k=1

(
pxk

d∑
j=1

∑
l∈I(j)ε

(
κ(j)

∣∣z(j)
k,l

∣∣ · ∣∣∣∣c(j)β(j)
l t′δε −

β
(j)
l t

(j)
ε

κ(j)
− 2πn

(j)
l

∣∣∣∣ )
)

6 max
k=1,...,Nε

{ d∑
j=1

∑
l∈I(j)ε

κ(j)|z(j)
k,l | · δε

}
·
Nε∑
k=1

pxk
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6 δε · max
k=1,...,Nε

{ d∑
j=1

∑
l∈I(j)ε

κ(j)|z(j)
k,l |
}

6 ε.

Returning to (4.19), we have∣∣∣∣ Nε∑
k=1

pxk
exp

{
i

d∑
j=1

∑
l∈I(j)

z
(j)
k,lβ

(j)
l t(j)ε

}∣∣∣∣ > ∣∣∣∣ Nε∑
k=1

pxk
exp

{
i

d∑
j=1

∑
l∈I(j)

κ(j)z
(j)
k,l c

(j)β
(j)
l t′δε

}∣∣∣∣− ε.
Note that we write I(j) instead of I(j)

ε here. This is obviously possible by the definition
of I(j)

ε . Thus we get

∣∣f(t(1)
ε , . . . , t(d)

ε )
∣∣ > ∣∣∣∣ Nε∑

k=1

pxk
exp

{
i

d∑
j=1

∑
l∈I(j)

κ(j)z
(j)
k,l c

(j)β
(j)
l t′δε

}∣∣∣∣− 2ε.

According to (4.16), we next write

Nε∑
k=1

pxk
exp

{
i

d∑
j=1

∑
l∈I(j)

κ(j)z
(j)
k,l c

(j)β
(j)
l t′δε

}
=

Nε∑
k=1

pxk
exp

{
i

d∑
j=1

κ(j)c(j)x
(j)
k t′δε

}
.

Due to (4.18), we get∣∣∣∣ Nε∑
k=1

pxk
exp

{
i

d∑
j=1

κ(j)c(j)x
(j)
k t′δε

}∣∣∣∣ > ∣∣∣∣ ∞∑
k=1

pxk
exp

{
i

d∑
j=1

κ(j)c(j)x
(j)
k t′δε

}∣∣∣∣− ε
=
∣∣f(κ(1)c(1)t′δε , . . . ,κ

(d)c(d)t′δε
)∣∣− ε.

So we have

ε > |f(t(1)
ε , . . . , t(d)

ε )| >
∣∣f(κ(1)c(1)t′δε , . . . ,κ

(d)c(d)t′δε
)∣∣− 3ε.

Thus for any ε > 0 we found t′δε such that∣∣f(κ(1)c(1)t′δε , . . . ,κ
(d)c(d)t′δε

)∣∣ 6 4ε.

This obviously contradicts to the assumption (4.14). So (4.15) holds.
We have proved the Cramér–Wold device for the quasi-infinite divisibility. Let us

now consider the case of infinite divisibility. Let the distribution functions Fc of random
variables 〈c, ξ〉 be infinitely divisible for any c ∈ Rd. Then they are also quasi-infinitely
divisible. From what has already been proved, the distribution function F of the random
vector ξ is also quasi-infinitly divisible and, by Theorem 2.1, its characteristic function f
admits the representation

f(t) = exp

{
i〈t, γ〉+

∑
u∈〈X〉\{0̄}

λu
(
ei〈t,u〉 − 1

)}
, t ∈ Rd,

where γ ∈ 〈X〉, λu ∈ R for all u ∈ 〈X〉 \ {0̄}, and
∑
u∈〈X〉\{0} |λu| <∞. It remains to show

that λu > 0 for all u ∈ 〈X〉 \ {0̄}. Let us write the characteristic function fc of Fc for any
c ∈ Rd:

fc(t) = exp

{
it〈c, γ〉+

∑
u∈〈X〉\{0̄}

λu
(
eit〈c,u〉 − 1

)}
, t ∈ R.

Let us fix c = (c(1), . . . , c(d)) ∈ Rd such that the elements of the union system {c(1)β
(1)
l :

l ∈ I(1)} ∪ · · · ∪ {c(d)β
(d)
l : l ∈ I(d)} are linearly independent over Q. On account

of (4.16), (4.17), and that 〈X〉 ⊂ 〈X(1)〉r × · · · × 〈X(d)〉r, we have 〈c, u1〉 6= 〈c, u2〉 for any
distinct u1, u2 ∈ 〈X〉 \ {0̄}. Since Fc is infinitely divisible (by assumption), we conclude
that λu > 0 for all u ∈ 〈X〉 \ {0̄}.

EJP 28 (2023), paper 130.
Page 15/17

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1032
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A criterion and a Cramér–Wold device for quasi-infinite divisibility

References

[1] Alexeev, I. A. and Khartov, A. A.: Spectral representations of characteristic functions of
discrete probability laws. Bernoulli 29 (2), (2023), 1392–1409. MR4550228

[2] Balan, R. and Krishtal, I.: An almost periodic noncommutative Wiener’s Lemma. J. Math.
Analysis and Appl. 370 (2010), 339–349. MR2651657

[3] Berger, D.: On quasi-infinitely divisible distributions with a point mass. Math. Nachr. 292
(2019), 1674–1684. MR3994295

[4] Berger, D. and Kutlu, M.: Quasi-infinite divisibility of a class of distributions with discrete
part. Proc. Amer. Math. Soc. (2023, to appear). arXiv:2204.09651. MR4556212

[5] Berger, D., Kutlu, M. and Linder, A.: On multivariate quasi-infinitely divisible distributions.
A Lifetime of Excersions Through Random Walks and Lévy Processes. A Volume in Honour of
Ron Doney’s 80th Birthday. L. Chaumont, A.E. Kyprianou (eds.), Progress in Probability 78.
Birkhäuser, 2021, 87–120. MR4425787

[6] Berger, D. and Lindner, A.: A Cramér–Wold device for infinite divisibility of Zd-valued
distributions. Bernoulli 28 (2) (2022), 1276–1283. MR4388938

[7] Cramér, H. and Wold, H. O.: Some theorems on distribution functions. Journal of The London
Mathematical Society, Second Series (1936), 290–294. MR1574927

[8] Dwass, M. and Teicher, H.: On infinitely divisible random vectors. Ann. Math. Statist. 28
(1957), 461–470. MR0091550

[9] Gnedenko, B. V. and Kolmogorov, A. N.: Limit Distributions for Sums of Independent Random
Variables. Addison-Wesley, Cambridge, 1954. MR0062975

[10] Gröchenig, K.: Wiener’s lemma: Theme and variations. An introduction to spectral invariance
and its applications. In: Four Short Courses on Harmonic Analysis: Wavelets, Frames,
Time-frequency Methods, and Applications to Signal and Image Analysis. B. Forster and P.
Massopust (eds.), Birkhäuser, Basel, 2010. MR2640516

[11] Ibragimov, I. A.: On a problem of C.R. Rao on i.d. laws. Sankhya A 34 (1972), 447–448.
MR0331464

[12] Khartov, A. A.: Compactness criteria for quasi-infinitely divisible distributions on the integers.
Stat. Probab. Lett. 153 (2019), 1–6. MR3957474

[13] Khartov, A. A.: A criterion of quasi-infinite divisibility for discrete laws. Stat. Probab. Lett.
185 (2022), 109436. MR4393935

[14] Khartov, A. A.: On weak convergence of quasi-infinitely divisible laws (2022), Pacific J. Math.
322 (2) (2023), 341–367. MR4592234

[15] Khartov, A. A.: On representation of the logarithm for arbitrary characteristic function on seg-
ments. Zapiski Nauchnykh Seminarov POMI 510 (2022), 262–281 (in Russian). MR4503201

[16] Levitan, B. M.: Almost Periodic Functions. GITTL, Moscow, 1953 (in Russian). MR0060629

[17] Levitan, B. M. and Zhikov V. V.: Almost Periodic Functions and Differential Equations.
Cambridge University Press, Cambridge, 1982. MR0690064

[18] Lindner, A., Pan, L. and Sato, K.: On quasi-infinitely divisible distributions. Trans. of AMS
370 (2018), 8483–8520. MR3864385

[19] Linnik, Yu. V. and Ostrovskii, I. V.: Decomposition of Random Variables and Vectors. Transl.
Math. Monog. 48. AMS, Providence, Rhode Island, 1977. MR0428382

[20] Lukacs, E.: Characteristic Functions. Griffin, London, 1970. MR0346874

[21] Neumann, J. V.: Almost periodic functions in a group. I. Trans. of AMS, 36 (3) (1934), 445–492.
MR1501752

[22] Pankov, A. A.: Bounded and Almost Periodic Solutions of Nonlinear Operator Differential
Equations. Kluwer Academic Publishers, Dordrecht, 1990. MR1120781

[23] Passeggeri, P.: Spectral representation of quasi-infinitely divisible processes. Stoch. Process.
Appl. 130 (3) (2020), 1735–1791. MR4058288

[24] Perov, A. and Kibenko, A.: Theorem on the argument of the almost periodic function of many
variables. Lithuanian Math. J. 7 (3) (1967), 505–508. MR0228928

EJP 28 (2023), paper 130.
Page 16/17

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=4550228
https://mathscinet.ams.org/mathscinet-getitem?mr=2651657
https://mathscinet.ams.org/mathscinet-getitem?mr=3994295
https://arXiv.org/abs/2204.09651
https://mathscinet.ams.org/mathscinet-getitem?mr=4556212
https://mathscinet.ams.org/mathscinet-getitem?mr=4425787
https://mathscinet.ams.org/mathscinet-getitem?mr=4388938
https://mathscinet.ams.org/mathscinet-getitem?mr=1574927
https://mathscinet.ams.org/mathscinet-getitem?mr=0091550
https://mathscinet.ams.org/mathscinet-getitem?mr=0062975
https://mathscinet.ams.org/mathscinet-getitem?mr=2640516
https://mathscinet.ams.org/mathscinet-getitem?mr=0331464
https://mathscinet.ams.org/mathscinet-getitem?mr=3957474
https://mathscinet.ams.org/mathscinet-getitem?mr=4393935
https://mathscinet.ams.org/mathscinet-getitem?mr=4592234
https://mathscinet.ams.org/mathscinet-getitem?mr=4503201
https://mathscinet.ams.org/mathscinet-getitem?mr=0060629
https://mathscinet.ams.org/mathscinet-getitem?mr=0690064
https://mathscinet.ams.org/mathscinet-getitem?mr=3864385
https://mathscinet.ams.org/mathscinet-getitem?mr=0428382
https://mathscinet.ams.org/mathscinet-getitem?mr=0346874
https://mathscinet.ams.org/mathscinet-getitem?mr=1501752
https://mathscinet.ams.org/mathscinet-getitem?mr=1120781
https://mathscinet.ams.org/mathscinet-getitem?mr=4058288
https://mathscinet.ams.org/mathscinet-getitem?mr=0228928
https://doi.org/10.1214/23-EJP1032
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A criterion and a Cramér–Wold device for quasi-infinite divisibility

[25] Samorodnitsky, G. and Taqqu, M. S.: Stable Non-Gaussian Random Processes: Stochastics
Models with Infinite Variance. Chapman & Hall, London, 1994. MR1280932

[26] Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press,
Cambridge, 2013. MR3185174

EJP 28 (2023), paper 130.
Page 17/17

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=1280932
https://mathscinet.ams.org/mathscinet-getitem?mr=3185174
https://doi.org/10.1214/23-EJP1032
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

•Very high standards

•Free for authors, free for readers

•Quick publication (no backlog)

•Secure publication (LOCKSS1)

•Easy interface (EJMS2)

Economical model of EJP-ECP

•Non profit, sponsored by IMS3, BS4, ProjectEuclid5

•Purely electronic

Help keep the journal free and vigorous

•Donate to the IMS open access fund6 (click here to donate!)

•Submit your best articles to EJP-ECP

•Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System: https://vtex.lt/services/ejms-peer-review/
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: https://imstat.org/shop/donation/

http://en.wikipedia.org/wiki/LOCKSS
https://vtex.lt/services/ejms-peer-review
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://imstat.org/shop/donation/
http://www.lockss.org/
https://vtex.lt/services/ejms-peer-review/
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
https://imstat.org/shop/donation/

	Introduction
	Main results
	Tools
	Proofs
	References

