

Electron. J. Probab. **28** (2023), article no. 130, 1–17. ISSN: [1083-6489](https://imstat.org/journals-and-publications/electronic-journal-of-probability/)<https://doi.org/10.1214/23-EJP1032>

A criterion and a Cramér–Wold device for quasi-infinite divisibility for discrete multivariate probability laws*

Ivan Alexeev†‡ Alexey Khartov§¶

Abstract

Multivariate discrete probability laws are considered. We show that such laws are quasi-infinitely divisible if and only if their characteristic functions are separated from zero. We generalize the existing results for the univariate discrete laws and for the multivariate laws on \mathbb{Z}^d . The Cramér–Wold devices for infinite and quasi-infinite divisibility are proved.

Keywords: multivariate probability laws; characteristic functions; infinitely divisible laws; the Lévy representation; quasi-infinitely divisible laws; Cramér–Wold device. **[MSC2020 subject classifications:](https://ams.org/mathscinet/msc/msc2020.html)** 60E05; 60E07; 60E10. Submitted to EJP on March 8, 2023, final version accepted on September 27, 2023.

1 Introduction

Let F be a distribution function of a multivariate probability law on \mathbb{R}^d , where $\mathbb R$ is the real line, d is a positive integer. Recall that F and the corresponding law are called infinitely divisible if for every positive integer n there exists a distribution function F_n such that $F = F_n^{*n}$, where "*" denotes the convolution, i.e. F is the *n*-fold convolution power of F_n . It is known that F is infinitely divisible if and only if its characteristic function

$$
f(t) := \int_{\mathbb{R}^d} e^{i \langle t, x \rangle} dF(x), \quad t \in \mathbb{R}^d,
$$

^{*}The work of A. A. Khartov was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement 075-15-2022-289 date 06/04/2022. The work of I. A. Alexeev was supported in part by the Möbius Contest Foundation for Young Scientists.

[†] Institute for Information Transmission Problems of Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow. E-mail: vanyalexeev@list.ru

[‡]St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, 27 Fontanka, Saint-Petersburg.

[§]Laboratory for Approximation Problems of Probability, Smolensk State University, 4 Przhevalsky st., 214000 Smolensk, Russia. E-mail: alexeykhartov@gmail.com,<https://approlab.org>

[¶]Scientific and Educational Center of Mathematics, ITMO University, Kronverksky Pr. 49, 197101, Saint-Petersburg, Russia.

admits the following Lévy representation (see [\[26,](#page-16-0) Theorem 8.1])

$$
f(t) = \exp\left\{i\langle t, \gamma \rangle - \frac{1}{2}\langle t, Qt \rangle + \int_{\mathbb{R}^d} \left(e^{i\langle t, x \rangle} - 1 - \frac{i\langle t, x \rangle}{1 + ||x||^2}\right) \nu(dx)\right\}, \quad t \in \mathbb{R}^d,
$$
 (1.1)

where $\langle\,\cdot\,,\cdot\,\rangle$ denotes the standard scalar product in \mathbb{R}^d , $\|x\|:=\sqrt{\langle x,x\rangle}$ for any $x\in\mathbb{R}^d$, $\gamma \in \mathbb{R}^d$ is a fixed vector, Q is a symmetric nonnegative-definite $d \times d$ matrix, and ν is a measure on \mathbb{R}^d that satisfies the following conditions

$$
\nu(\{\bar{0}\}) = 0, \quad \int_{\mathbb{R}^d} \min\{\|x\|^2, 1\} \nu(dx) < \infty.
$$

Here and below, we denote by $\bar{0}$ the zero vector of $\mathbb{R}^d.$ The vector (γ,Q,ν) is called a characteristic triplet and it is uniquely determined by f and hence by F .

The notion of quasi-infinitely divisible distributions on \mathbb{R}^d was introduced in the recent paper by Berger, Kutlu, and Lindner [\[5\]](#page-15-0). Following this paper, a distribution function F and the corresponding law are called quasi-infinitely divisible, if there exist infinitely divisible distribution functions F_1 and F_2 such that $F_1 = F * F_2$ (in the papers [\[13,](#page-15-1) [14,](#page-15-2) [15\]](#page-15-3), such property is proposed to be called rational infinite divisibility). It was proved in [\[5\]](#page-15-0) that F is quasi-infinitely divisible if and only if the representation [\(1.1\)](#page-1-0) holds, where ν is a signed finite measure on $\mathbb{R}^d \setminus (-r,r)^d$ for any $r > 0$ that satisfies $\nu(\{\bar{0}\})=0$, and

$$
\int_{\mathbb{R}^d} \min\left\{ ||x||^2, 1 \right\} |\nu|(dx) < \infty,
$$

where $|\nu|$ denotes the total variation of the measure ν (see [\[5\]](#page-15-0) for more details). It is seen that the class of quasi-infinitely divisible distributions is a natural generalization of the class of infinitely divisible distributions.

The examples of univariate quasi-infinitely divisible laws can be found in the classical monographs [\[9,](#page-15-4) [19\]](#page-15-5), and [\[20\]](#page-15-6). The first detailed analysis of these laws on $\mathbb R$ was performed in [\[18\]](#page-15-7), and a lot of results for the univariate case are contained in the works [\[1,](#page-15-8) [3,](#page-15-9) [4,](#page-15-10) [12,](#page-15-11) [13\]](#page-15-1), and [\[14\]](#page-15-2). The multivariate case was considered in the recent papers [\[5,](#page-15-0) [6\]](#page-15-12), and [\[23\]](#page-15-13). The authors of these works studied questions concerning supports, moments, continuity, and the weak convergence. The most complete results were obtained for probability laws on the set \mathbb{Z}^d , where $\mathbb Z$ is the set of integers. In particular, the following important fact was stated in [\[6\]](#page-15-12).

Theorem 1.1. Let F be the distribution function of a probability law on \mathbb{Z}^d . Let f be its characteristic function. Then F is quasi-infinitely divisible if and only if $f(t) \neq 0$ for all $t \in \mathbb{R}^d.$ In that case, f admits the following representation

$$
f(t) = \exp\bigg\{i\langle t, \gamma \rangle + \sum_{k \in \mathbb{Z}^d \setminus \{\bar{0}\}} \lambda_k \big(e^{i\langle t, k \rangle} - 1\big)\bigg\}, \quad t \in \mathbb{R}^d,
$$
\n(1.2)

where $\gamma\in\mathbb{Z}^d$, $\lambda_k\in\mathbb{R}$, $k\in\mathbb{Z}^d\setminus\{\bar{0}\}$, and $\sum_{k\in\mathbb{Z}^d\setminus\{\bar{0}\}}|\lambda_k|<\infty$.

It is clear that (1.2) can be rewritten in the form (1.1) . Using this theorem, the authors of [\[6\]](#page-15-12) also proved the Cramér–Wold device for infinite divisibility of \mathbb{Z}^d -valued distributions. We formulate the corresponding result in a simplified form omitting equivalent propositions.

Theorem 1.2. Let ξ be a \mathbb{Z}^d -valued random vector with distribution function F. Let F_c denote the distribution function of $\langle c,\xi\rangle$, $c\in\mathbb{R}^d$. The distribution function F is infinitely divisible if and only if for any $c \in \mathbb{R}^d$ the distribution functions F_c is infinitely divisible.

Recall that the classical Cramér–Wold device is a fact that a probability distribution of a d-dimensional random vector ξ is uniquely determined by distributions of all linear

combinations of its components, i.e. by distributions of $\langle c,\xi\rangle$ for all $c\in\mathbb{R}^d$ (see [\[7\]](#page-15-14)). Statements concerning some property for multivariate random vectors that can be expressed by corresponding statements for its linear combinations are also called as Cramér–Wold devices. So Theorem [1.2](#page-1-2) is an interesting particular example of it. The Cramér–Wold device is well known for strict and symmetric stabilities (see [\[25\]](#page-16-1)): d-dimensional random vector ξ is strictly (symmetrically) stable if and only if random variable $\langle c,\xi\rangle$ is strictly (symmetrically) stable for any $c\in\mathbb{R}^d.$ Note that, however, the Cramér–Wold device for infinite divisibility in general does not hold. If a d-dimensional random vector ξ has infinitely divisible distribution, then the distribution of $\langle c, \xi \rangle$ is infinitely divisible too for all $c \in \mathbb{R}^d$, but for $d \geqslant 2$ there exist examples that the converse is not true (see [\[8\]](#page-15-15) and [\[11\]](#page-15-16)).

The purpose of this article is to generalize Theorems [1.1](#page-1-3) and [1.2](#page-1-2) to arbitrary multivariate discrete distribution functions. More precisely, we obtain a criterion of quasi-infinitely divisibility, we get representations, which are similar to [\(1.2\)](#page-1-1), and we also prove the Cramér–Wold devices for infinite and quasi-infinite divisibility. The corresponding results are formulated in Section [2.](#page-2-0) The necessary tools, which are also of independent interest, are formulated in Section [3.](#page-3-0) All of the mentioned results are proved in Section [4.](#page-4-0)

2 Main results

Let us consider a multivariate discrete probability law with the following distribution function

$$
F(x) = \sum_{\substack{k \in \mathbb{N}: \\ x_k \in (-\infty, x]}} p_{x_k}, \quad x \in \mathbb{R}^d,
$$
\n(2.1)

where $x_k \in \mathbb{R}^d$, $k \in \mathbb{N}$, are distinct numbers with probability weights $p_{x_k} \geqslant 0$, $k \in \mathbb{N}$ (the set of positive integers), $\sum_{k=1}^{\infty} p_{x_k} = 1$. We denote by $(-\infty, x]$ with $x = (x^{(1)}, \ldots, x^{(d)}) \in$ \mathbb{R}^d the set $(-\infty, x^{(1)}] \times \cdots \times (-\infty, x^{(d)}] \subset \mathbb{R}^d.$ Let f be the characteristic function of F , i.e.

$$
f(t) := \int_{\mathbb{R}^d} e^{i \langle t, x \rangle} dF(x) = \sum_{k \in \mathbb{N}} p_{x_k} e^{i \langle t, x_k \rangle}, \quad t \in \mathbb{R}^d.
$$
 (2.2)

We will formulate a criterion for the distribution function F to be quasi-infinitely divisible through condition for characteristic function f . For the sharp formulation of the result we need to introduce the set of all finite Z-linear combinations of elements from a set $Y\subset\mathbb{C}^d$ ($\mathbb C$ is the set of complex numbers):

$$
\langle Y \rangle := \left\{ \sum_{k=1}^{n} z_k y_k : n \in \mathbb{N}, z_k \in \mathbb{Z}, y_k \in Y \right\}.
$$
 (2.3)

So $\langle Y \rangle$ is a module over the ring Z with the generating set Y. It is easily seen that $Y \subset \langle Y \rangle$, $\overline{0} \in \langle Y \rangle$. If a countable set $Y \neq \emptyset$, then $\langle Y \rangle$ is an infinite countable set.

Theorem 2.1. Let F be a discrete distribution function of the form (2.1) with characteristic function f of the form [\(2.2\)](#page-2-2). The following statements are equivalent:

- (a) F is quasi-infinitely divisible;
- (b) $\inf_{t \in \mathbb{R}^d} |f(t)| > 0.$

If one of the conditions is satisfied, and hence all, then f admits the following representation

$$
f(t) = \exp\left\{i\langle t, \gamma \rangle + \sum_{u \in \langle X \rangle \setminus \{0\}} \lambda_u \big(e^{i\langle t, u \rangle} - 1\big) \right\}, \quad t \in \mathbb{R}^d,
$$
\n(2.4)

where $X := \{x_k : p_{x_k} > 0, k \in \mathbb{N}\}\neq \emptyset$, $\gamma \in \langle X \rangle$, $\lambda_u \in \mathbb{R}$ for all $u \in \langle X \rangle \setminus \{\overline{0}\}$, and $\sum_{u\in \langle X\rangle\setminus\{0\}}|\lambda_u|<\infty.$

It is easily seen that [\(2.4\)](#page-2-3) can be rewritten in the form [\(1.1\)](#page-1-0). So if characteristic function of multivariate discrete probability law is represented by [\(2.4\)](#page-2-3), then the corresponding distribution function F is quasi-infinitely divisible. Also observe that, by this theorem and on account of the conditions and uniqueness of the Lévy representa-tion [\(1.1\)](#page-1-0), the multivariate discrete distribution function F is infinitely divisible if and only if its characteristic function f admits representation [\(2.4\)](#page-2-3) with the same X and γ , but with $\lambda_u \geqslant 0$ for all $u \in \langle X \rangle \setminus \{\bar{0}\}$, and $\sum_{u \in \langle X \rangle \setminus \{0\}} \lambda_u < \infty$.

Note that Theorem [2.1](#page-2-4) generalizes Theorem [1.1.](#page-1-3) Indeed, for characteristic function f of probability law on \mathbb{Z}^d the condition that $f(t)\neq 0$, $t\in \mathbb{R}^d$, is equivalent to the condition that $\inf_{t\in\mathbb{R}} |f(t)| > 0$. It follows due to the continuity and 2π -periodicity of the function $|f(t)|$, $t = (t_1, \ldots, t_d) \in \mathbb{R}^d$, over each t_j . Theorem [2.1](#page-2-4) also generalizes the corresponding results from [\[1\]](#page-15-8) and [\[13\]](#page-15-1) for the discrete distributions in the univariate case.

We now formulate the Cramér–Wold devices for the infinite and quasi-infinite divisibility of multivariate discrete distribution functions.

Theorem 2.2. Let ξ be a discrete random vector with distribution function F of the form [\(2.1\)](#page-2-1). Let F_c denote the distribution function of $\langle c,\xi\rangle$, $c\in\mathbb{R}^d$. The distribution function F is (quasi-)infinitely divisible if and only if for any $c \in \mathbb{R}^d$ the distribution function F_c is (quasi-)infinitely divisible.

It is easily seen that Theorem [2.2](#page-3-1) generalizes Theorem [1.2.](#page-1-2) It should be noted that Theorem [2.2](#page-3-1) does not contradict with the results from the [\[8\]](#page-15-15) and [\[11\]](#page-15-16), because the distributions from the counterexamples contained an absolutely continuous part.

3 Tools

We will get the main result from more general positions. Namely, we will consequently study admission of the Lévy type representations for general almost periodic functions h , which are very similar to f .

Theorem 3.1. Let $h: \mathbb{R}^d \to \mathbb{C}$ be a function of the following form:

$$
h(t) = \sum_{y \in Y} q_y e^{i \langle t, y \rangle}, \quad t \in \mathbb{R}^d,
$$

where $Y \subset \mathbb{R}^d$ is a nonempty at most countable set, $q_y \in \mathbb{C}$ for all $y \in Y$, and $0 <$ $\sum_{y\in Y}|q_y|<\infty$. Assume that $h(\bar{0})=\sum_{y\in Y}q_y=1$. If $\inf_{t\in\mathbb{R}^d}|h(t)|=\mu>0$, then h admits the following representation

$$
h(t) = \exp\left\{i\langle t, \gamma \rangle + \sum_{u \in \langle Y \rangle \setminus \{\bar{0}\}} \lambda_u \left(e^{i\langle t, u \rangle} - 1\right) \right\}, \quad t \in \mathbb{R}^d,
$$
\n(3.1)

where $\gamma \in \langle Y \rangle$, $\lambda_u \in \mathbb{C}$ for all $u \in \langle Y \rangle \setminus \{\overline{0}\}\$, and $\sum_{u \in \langle Y \rangle \setminus \{\overline{0}\}} |\lambda_u| < \infty$.

It should be noted that the function h in Theorem [3.1](#page-3-2) is an almost periodic function on \mathbb{R}^n with the absolutely convergent Fourier series. Recall that (see [\[16,](#page-15-17) p. 255] or [\[21,](#page-15-18) Definition 1]) a function $h\colon \R^d\to\mathbb{C}$ is called almost periodic if for any sequence $\{t_n\}_{n\in\mathbb{N}}$ from \R^d there exists a subsequence $(t_{n_k})_{k\in\R}$ and a continuous function $\varphi\colon\R^d\to\mathbb C$ such that

$$
\sup_{t\in\mathbb{R}^d} \left| h(t+t_{n_k}) - \varphi(t) \right| \underset{k\to\infty}{\longrightarrow} 0.
$$

The detailed information about almost periodic functions on \mathbb{R}^d can be found in [\[2,](#page-15-19) [16,](#page-15-17) [17,](#page-15-20) [21\]](#page-15-18), and [\[22\]](#page-15-21) with a greater generality (for local compact Abelian groups).

We now turn to the following general version of Theorem [2.1.](#page-2-4)

Theorem 3.2. Let $h: \mathbb{R}^d \to \mathbb{C}$ be a function of the following form

$$
h(t) = \sum_{y \in Y} q_y e^{i \langle t, y \rangle}, \quad t \in \mathbb{R}^d,
$$

where $Y \subset \mathbb{R}^d$ is a nonempty at most countable set, $q_y \in \mathbb{C}$ for all $y \in Y$, and $0 <$ $\sum_{y \in Y} |q_y| < \infty.$ Suppose that $h(\bar{0}) = \sum_{y \in Y} q_y = 1.$ Then the following statements are equivalent:

- (i) inf_{t∈ℝ}d $|h(t)| > 0$;
- (*ii*) there exist a countable set $Z\subset \mathbb{R}^d$ and coefficients $r_z\in \mathbb{C}$, $z\in Z$, $\sum_{z\in Z}|r_z|<\infty$, such that

$$
\frac{1}{h(t)} = \sum_{z \in Z} r_z e^{i \langle t, z \rangle}, \quad t \in \mathbb{R}^d;
$$

 (iii) h admits the representation

$$
h(t) = \exp\bigg\{i\langle t, \gamma \rangle + \sum_{u \in \langle Y \rangle \setminus \{\bar{0}\}} \lambda_u\big(e^{i\langle t, u \rangle} - 1\big)\bigg\}, \quad t \in \mathbb{R}^d,
$$

where $\gamma \in \langle Y \rangle$, $\lambda_u \in \mathbb{C}$ for all $u \in \langle Y \rangle \setminus \{ \overline{0} \}$, and $\sum_{u \in \langle Y \rangle \setminus \{ 0 \}} |\lambda_u| < \infty$; (iv) h admits the representation

$$
h(t) = \exp\bigg\{i\langle t, \gamma \rangle - \frac{1}{2}\langle t, Qt \rangle + \int_{\mathbb{R}^d} \Big(e^{i\langle t, u \rangle} - 1 - \frac{i\langle t, u \rangle}{1 + \|u\|^2}\Big)\nu(du)\bigg\}, \quad t \in \mathbb{R}^d, \quad (3.2)
$$

where $\gamma \in \mathbb{C}^d$, $Q \in \mathbb{C}^{d \times d}$ is a matrix, ν is a complex measure on \mathbb{R}^d such that

$$
\nu(\{\bar{0}\}) = 0
$$
, and $\int_{\mathbb{R}^d} \min\{|x\|^2, 1\} |\nu|(dx) < \infty$.

4 Proofs

Proof of Theorem [3.1.](#page-3-2) We will sequentially consider the following cases: 1) $Y = \mathbb{Z}^d$, 2) Y is a finite subset of \mathbb{R}^d , 3) Y is at most countable subset of \mathbb{R}^d (the general case). We always assume that $Y \neq \emptyset$. Each subsequent case will be based on the previous one.

1) Suppose that $Y = \mathbb{Z}^d$. It is easy to see that the function h is 2π -periodic in all coordinates, i.e. for any $k = 1, ..., d$ and $t \in \mathbb{R}^d$ we have $h(t + 2\pi e_k) = h(t)$, where $\{e_1, e_2, \ldots, e_d\}$ denotes the canonical basis in \mathbb{R}^d . Let us consider the distinguished logarithm $t \mapsto \text{Ln} \, h(t)$, $t \in \mathbb{R}^d$, which satisfies $\exp\{\text{Ln} \, h(t)\} = h(t)$, $t \in \mathbb{R}^d$, and it is uniquely defined by continuity with the condition $\text{Ln } h(\overline{0}) = 0$ (see [\[26,](#page-16-0) Lemma 7.6]). For any $k = 1, \ldots, d$ we have

$$
\exp{\{\ln h(t + 2\pi e_k)\}} = h(t + 2\pi e_k) = h(t) = \exp{\{\ln h(t)\}}, \quad t \in \mathbb{R}^d.
$$

So $\text{Ln } h(t + 2\pi e_k) - \text{Ln } h(t) \in 2\pi i \mathbb{Z}$ for any $k = 1, ..., d$ and $t \in \mathbb{R}^d$. Since $t \mapsto \text{Ln } h(t + 2\pi e_k)$ $(2\pi e_k) - \text{Ln} \, h(t)$ is a continuous function on \mathbb{R}^d , there exist constants $\gamma_1,\ldots,\gamma_d\in\mathbb{Z}$ such that

$$
\gamma_k = \frac{\operatorname{Ln} h(t + 2\pi e_k) - \operatorname{Ln} h(t)}{2\pi i}, \quad t \in \mathbb{R}^d, \quad k = 1, \dots, d.
$$

Let us define the vector $\gamma=(\gamma_1,\ldots,\gamma_d)^T\in\mathbb{Z}^d.$ So the function $t\mapsto \mathrm{Ln}\, h(t)-i\langle t,\gamma\rangle$ is 2π -periodic in all coordinates. By [\[6,](#page-15-12) Proposition 3.1], one can conclude that

$$
\operatorname{Ln} h(t) = i \langle t, \gamma \rangle + \sum_{u \in \mathbb{Z}^d \setminus \{\bar{0}\}} \lambda_u \big(e^{i \langle t, u \rangle} - 1 \big), \quad t \in \mathbb{R}^d,
$$

where $\lambda_u\in \mathbb{C}$ for all $u\in \mathbb{Z}^d\setminus\{\bar{0}\}$, and $\sum_{u\in \mathbb{Z}^d\setminus\{\bar{0}\}}|\lambda_u|<\infty.$ Note that $\langle Y\rangle=\mathbb{Z}^d$ in this case.

2) Assume that $Y = \{y_1, \ldots, y_n\}$, where y_1, \ldots, y_n are distinct elements from \mathbb{R}^d . So we have $h(t) = \sum_{k=1}^n q_{y_k} e^{i \langle t, y_k \rangle}$, $t \in \mathbb{R}^d$. If $n = 1$ then $Y = \{y_1\}$ and $q_{y_1} = 1$. For this case representation [\(3.1\)](#page-3-3) holds with $\gamma = y_1$ and $\lambda_u = 0$ for all $u \in \langle Y \rangle \setminus \{ \bar{0} \}$. We next suppose that $n\geqslant 2.$ We set $y_k=(y_k^{(1)})$ $y_k^{(1)},\ldots,y_k^{(d)}$ $(k_k^{(u)})$, $k = 1, \ldots, n$. Without loss of generality, we can assume that for every $j=1,\ldots,d$ there exist $k=1,\ldots,n$ such that $y_k^{(j)}\neq 0$, since we can assume that for every $j = 1, ..., a$ there exist $k = 1, ..., b$ such that $y_k \neq 0$, since
otherwise we can turn to the space $\mathbb{R}^{d'}$ with some $d' < d$. Next, for every $j = 1, ..., d$ we can choose non-zero $\beta_1^{(j)},\ldots,\beta_{m_j}^{(j)}\in Y^{(j)}=\{y_1^{(j)},\ldots,y_n^{(j)}\}\subset\mathbb{R}$ that constitute a basis in $Y^{(j)}$ over $\mathbb Q$, i.e. for any $j \in \{1, \ldots, d\}$ and $k \in \{1, \ldots, n\}$ there exist uniquely determined values $c_{k,1}^{(j)}$ $c_{k,1}^{(j)}, \ldots, c_{k,r}^{(j)}$ $\hat{y}_{k,m_j}^{(j)} \in \mathbb{Q}$, such that $y_k^{(j)} = \sum_{l=1}^{m_j} c_{k,l}^{(j)} \beta_l^{(j)}$ $l_l^{\text{\tiny{(J)}}}$ (see [\[16\]](#page-15-17) p. 67–68). Let $\varkappa^{(j)}$ be the minimal positive integer such that $\tilde c_{k,l}^{(j)}:=\varkappa^{(j)}c_{k,l}^{(j)}\in\mathbb Z$ for any j , k , l . We set $\tilde{\beta}_l^{(j)}$ $\beta_l^{(j)} := \beta_l^{(j)}$ $\mu_l^{(j)}/\varkappa^{(j)}$ and we have $y_k^{(j)} = \sum_{l=1}^{m_j} \tilde{c}_{k,l}^{(j)} \tilde{\beta}_l^{(j)}$ $\{a_i^{(j)} \text{ for any } j \in \{1, ..., d\} \text{ and } k \in \{1, ..., n\}.$ So it is easy to check that

$$
\langle Y \rangle \subset \Big\{ \sum_{l=1}^{m_1} z_l^{(1)} \tilde{\beta}_l^{(1)} \colon z_l^{(1)} \in \mathbb{Z} \Big\} \times \cdots \times \Big\{ \sum_{l=1}^{m_d} z_l^{(d)} \tilde{\beta}_l^{(d)} \colon z_l^{(d)} \in \mathbb{Z} \Big\}.
$$
 (4.1)

Note that for every $j=1,\ldots,d$ the values $\tilde{\beta}_1^{(j)},\ldots,\tilde{\beta}_{m_j}^{(j)}$ are linearly independent over \Z , i.e. the equation $l_1\tilde\beta_1^{(j)}+\cdots+l_{m_j}\tilde\beta_{m_j}^{(j)}=0$ holds with $l_1,\ldots,l_{m_j}\in\Z$ if and only if $l_1 = \cdots = l_{m_i} = 0.$

We now consider the function

$$
\varphi(t_1^{(1)},\ldots,t_{m_1}^{(1)},\ldots,t_1^{(d)},\ldots,t_{m_d}^{(d)}) := \sum_{k=1}^n q_{y_k} \exp\bigg\{i \sum_{j=1}^d \sum_{l=1}^{m_j} \tilde{c}_{k,l}^{(j)} \tilde{\beta}_l^{(j)} t_l^{(j)} \bigg\},\tag{4.2}
$$

where $t^{(j)}_l \in \mathbb{R}$, $l=1,\ldots,m_j$, and $j=1,\ldots,d.$ If for any such j and l we set $t^{(j)}_l$ $l_i^{(j)} := t^{(j)} \in \mathbb{R}$, then

$$
\varphi(t_1^{(1)}, \dots, t_{m_1}^{(1)}, \dots, t_1^{(d)}, \dots, t_{m_d}^{(d)}) = h(t),
$$
\n(4.3)

where $t=(t^{(1)},\ldots,t^{(d)}).$ We set $M:=m_1+\cdots+m_d.$ Let us fix an arbitrary $\varepsilon>0.$ Since the function φ is uniformly continuous, there exists $\delta_{\varepsilon} > 0$ such that for any \tilde{t}_1 and \tilde{t}_2 from \mathbb{R}^M satisfying $\|\tilde{t}_1 - \tilde{t}_2\| < \delta_e$ we have $|\varphi(\tilde{t}_1) - \varphi(\tilde{t}_2)| < \varepsilon$. Let us arbitrarily fix the $\text{vector } t := \big(t_1^{(1)},\ldots,t_{m_1}^{(1)},\ldots,t_1^{(d)},\ldots,t_{m_d}^{(d)}\big) \in \mathbb{R}^M. \text{ We set } b_j := \min\bigl\{|\tilde{\beta}_1^{(j)}|,\ldots,|\tilde{\beta}_{m_j}^{(j)}|\bigr\} > 0$ for every $j=1,\ldots,d.$ Since for every j the values $\tilde{\beta}_1^{(j)},\ldots,\tilde{\beta}_{m_j}^{(j)}$ are linearly independent over $\mathbb Z$, then, by the Kronecker theorem (see [\[17,](#page-15-20) p.37]), we conclude that the inequalities

$$
\left|\tilde{\beta}_l^{(j)}s^{(j)} - t_l^{(j)} - 2\pi n_l^{(j)}\right| < \frac{\delta_\varepsilon b_j}{\sqrt{m_j d}}, \quad l = 1, \ldots, m_j,
$$

have a common solution $s^{(j)} \in \mathbb{R}$ for some $n_l^{(j)} \in \mathbb{Z}$. We fix these numbers and we conclude that

$$
\left| s^{(j)} - \frac{t_l^{(j)} + 2\pi n_l^{(j)}}{\tilde{\beta}_l^{(j)}} \right| < \frac{\delta_{\varepsilon}}{\sqrt{m_j d}}, \quad l = 1, \dots, m_j,
$$

and

$$
\sum_{j=1}^{d} \sum_{l=1}^{m_j} \left| s^{(j)} - \frac{t_l^{(j)} + 2\pi n_l^{(j)}}{\tilde{\beta}_l^{(j)}} \right|^2 < \delta_{\varepsilon}^2.
$$

The latter inequality means that $\|s - \tilde{t}\| < \delta_{\varepsilon}$, where

$$
s := (s^{(1)}, \ldots, s^{(1)}, \ldots, s^{(d)}, \ldots, s^{(d)}) \in \mathbb{R}^M, \n\tilde{t} := \left(\frac{t_1^{(1)} + 2\pi n_1^{(1)}}{\tilde{\beta}_1^{(1)}}, \ldots, \frac{t_{m_1}^{(1)} + 2\pi n_m^{(1)}}{\tilde{\beta}_{m_1}^{(1)}}, \ldots, \frac{t_1^{(d)} + 2\pi n_1^{(d)}}{\tilde{\beta}_1^{(d)}}, \ldots, \frac{t_{m_d}^{(d)} + 2\pi n_{m_d}^{(d)}}{\tilde{\beta}_{m_d}^{(d)}}\right) \in \mathbb{R}^M,
$$

EJP **28** [\(2023\), paper 130.](https://doi.org/10.1214/23-EJP1032)

[https://www.imstat.org/ejp](https://imstat.org/journals-and-publications/electronic-journal-of-probability/)

in the vector $s\colon s^{(1)}$ repeats m_1 times, $s^{(2)}$ repeats m_2 times, \ldots , $s^{(d)}$ repeats m_d times. Therefore $\big|\varphi(s)-\varphi(\tilde t)\big|<\varepsilon$. It is easily seen from [\(4.2\)](#page-5-0) that

$$
\varphi(\tilde{t}) = \varphi\left(\frac{t_1^{(1)} + 2\pi n_1^{(1)}}{\tilde{\beta}_1^{(1)}}, \dots, \frac{t_{m_1}^{(1)} + 2\pi n_{m_1}^{(1)}}{\tilde{\beta}_{m_1}^{(1)}}, \dots, \frac{t_1^{(d)} + 2\pi n_1^{(d)}}{\tilde{\beta}_1^{(d)}}, \dots, \frac{t_{m_d}^{(d)} + 2\pi n_1^{(d)}}{\tilde{\beta}_{m_d}^{(d)}}\right)
$$

\n
$$
= \varphi\left(\frac{t_1^{(1)}}{\tilde{\beta}_1^{(1)}}, \dots, \frac{t_{m_1}^{(1)}}{\tilde{\beta}_{m_1}^{(1)}}, \dots, \frac{t_1^{(d)}}{\tilde{\beta}_1^{(d)}}, \dots, \frac{t_{m_d}^{(d)}}{\tilde{\beta}_{m_d}^{(d)}}\right)
$$

\n
$$
=:\tilde{\varphi}(t),
$$

i.e.

$$
\tilde{\varphi}(t) = \sum_{k=1}^{n} q_{y_k} \exp\bigg\{ i \sum_{j=1}^{d} \sum_{l=1}^{m_j} \tilde{c}_{k,l}^{(j)} t_l^{(j)} \bigg\};\tag{4.4}
$$

since t was fixed arbitrarily, we consider $\tilde{\varphi}$ as a function from \mathbb{R}^M to \mathbb{C} . So we have that $|\varphi(s) - \tilde{\varphi}(t)| < \varepsilon$. Thus, due to [\(4.3\)](#page-5-1), we get that for any $\varepsilon > 0$ and $t \in \mathbb{R}^M$ there exists $s' = (s^{(1)}, \ldots, s^{(d)}) \in \mathbb{R}^d$ such that $|h(s') - \tilde{\varphi}(t)| < \varepsilon$. According to the assumption $\inf_{s\in\mathbb{R}^d} |h(s)| > 0$, we conclude that $\inf_{t\in\mathbb{R}^M} |\tilde{\varphi}(t)| > 0$.

We now apply the previous part **1)** to the function [\(4.4\)](#page-6-0) (it is valid, because there are $\tilde{c}^{(j)}_{k,l} \in \mathbb{Z}$ in [\(4.4\)](#page-6-0)). So we have the following representation:

$$
\begin{split} \text{Ln}\,\tilde{\varphi}(t) &= \text{Ln}\,\tilde{\varphi}\big(t_1^{(1)},\ldots,t_{m_1}^{(1)},\ldots,t_1^{(d)},\ldots,t_{m_d}^{(d)}\big) \\ &= i \sum_{j=1}^d \sum_{l=1}^{m_j} \gamma_l^{(j)} t_l^{(j)} + \sum_{z \in \mathbb{Z}^M \setminus \{\bar{0}\}} \lambda_z \bigg(\exp\bigg\{i \sum_{j=1}^d \sum_{l=1}^{m_j} z_l^{(j)} t_l^{(j)}\bigg\} - 1\bigg), \end{split}
$$

where $z=$ $(z_1^{(1)},\ldots,z_{m_1}^{(1)},\ldots,z_1^{(d)},\ldots,z_{m_d}^{(d)})\in \mathbb{Z}^M\setminus\{\bar{0}\}$, $\gamma_l^{(j)}\in \mathbb{Z}$, $\lambda_z\in\mathbb{C}$ for all $z\in\mathbb{Z}^M\setminus\{\bar{0}\}$, and $\sum_{z\in\mathbb{Z}^M\setminus\{\bar{0}\}}|\lambda_z|<\infty.$ From the above, we get

$$
\begin{split} \mathrm{Ln}\,\varphi\big(t_1^{(1)},\ldots,t_{m_1}^{(1)},\ldots,t_1^{(d)},\ldots,t_{m_d}^{(d)}\big) &= i \sum_{j=1}^d \sum_{l=1}^{m_j} \gamma_l^{(j)} \tilde{\beta}_l^{(j)} t_l^{(j)} \\ &+ \sum_{z \in \mathbb{Z}^M \setminus \{\bar{0}\}} \lambda_z \Bigg(\exp\bigg\{ i \sum_{j=1}^d \sum_{l=1}^{m_j} z_l^{(j)} \tilde{\beta}_l^{(j)} t_l^{(j)} \bigg\} - 1 \Bigg). \end{split}
$$

Due to [\(4.3\)](#page-5-1), for every $t=(t^{(1)},\ldots,t^{(d)})$ we have

$$
\operatorname{Ln} h(t) = i \sum_{j=1}^d \left(\sum_{l=1}^{m_j} \gamma_l^{(j)} \tilde{\beta}_l^{(j)} \right) t^{(j)} + \sum_{z \in \mathbb{Z}^M \setminus \{\bar{0}\}} \lambda_z \left(\exp \left\{ i \sum_{j=1}^d \left(\sum_{l=1}^{m_j} z_l^{(j)} \tilde{\beta}_l^{(j)} \right) t^{(j)} \right\} - 1 \right).
$$

For every $j=1,\ldots,d$ we set $\gamma^{(j)}:=\sum_{l=1}^{m_j}\gamma^{(j)}_l$ $\tilde{\beta}_l^{(j)}$ $\mathcal{U}^{(j)}_l$, $\gamma:=(\gamma^{(1)},\ldots,\gamma^{(d)}).$ and $u^{(j)}_z:=$ $\sum_{l=1}^{m_j} z_l^{(j)}$ $\begin{pmatrix} j \ 0 \end{pmatrix} \tilde{\beta}_l^{(j)}$ $l^{(j)}_l$, $u_z=(u_z^{(1)},\ldots,u_z^{(d)}).$ By the well known theorem on the argument of an al-most periodic function and its corollaries (see [\[24\]](#page-15-22) and [\[16\]](#page-15-17) p. 128–135), γ and all u_z with $\lambda_z\neq 0$ belong to $\langle Y\rangle$. Setting $\lambda_{u_z}:=\lambda_z$ for every $z\in\mathbb{Z}^M\setminus\{\bar{0}\}$, we can deal only with λ_u , $u \in \langle Y\rangle \setminus \{\bar{0}\}$ (u determines the corresponding vector z uniquely, because $\beta^{(j)}_l$ $l_l^{(J)}$ constitute a basis, see [\(4.1\)](#page-5-2) and comments above). Thus we come to the representation [\(3.1\)](#page-3-3) for h.

3) We now turn to the general case: Y is at most countable subset of \mathbb{R}^d . Without loss of generality we can set $Y:=\{y_1,y_2,\ldots\}$ with distinct $y_k\in\mathbb{R}^d.$ So $A:=\sum_{k=1}^\infty|q_{y_k}|<\infty$ and $h(t) := \sum_{k=1}^{\infty} q_{y_k} e^{i \langle t, y_k \rangle}$, $t \in \mathbb{R}^d$. We approximate h by the following functions:

$$
h_n(t) := \sum_{k=1}^n q_{n,y_k} e^{i \langle t, y_k \rangle}, \quad t \in \mathbb{R}^d, \quad n \in \mathbb{N},
$$

where

$$
q_{n,y_k} := \frac{q_{y_k}}{\sum_{m=1}^n q_{y_m}}, \quad k = 1, ..., n, \quad n \in \mathbb{N}.
$$

Since $\sum_{k=1}^{\infty} q_{y_k} = 1$, we have $\left| \sum_{m=1}^n q_{y_m} \right| \geq \frac{1}{2}$ for all $n \geq n_0$ with a positive integer n_0 . Let us estimate the approximation error for every $n \geq n_0$:

$$
\sup_{t \in \mathbb{R}^d} |h(t) - h_n(t)| = \sup_{t \in \mathbb{R}^d} \left| \sum_{k=1}^n (q_{y_k} - q_{n,y_k}) e^{i \langle t, y_k \rangle} + \sum_{k=n+1}^\infty q_{y_k} e^{i \langle t, y_k \rangle} \right|
$$

$$
\leq \sum_{k=1}^n |q_{y_k} - q_{n,y_k}| + \sum_{k=n+1}^\infty |q_{y_k}|.
$$

Due to $\sum_{m=1}^\infty q_{y_m}=1$, we have

$$
\sum_{k=1}^{n} |q_{y_k} - q_{n,y_k}| = \left| 1 - \frac{1}{\sum_{m=1}^{n} q_{y_m}} \right| \cdot \sum_{k=1}^{n} |q_{y_k}|
$$

=
$$
\left| \frac{\sum_{m=n+1}^{\infty} q_{y_m}}{\sum_{m=1}^{n} q_{y_m}} \right| \cdot \sum_{k=1}^{n} |q_{y_k}| \le 2A \sum_{m=n+1}^{\infty} |q_{y_m}|.
$$

We used $\sum_{k=1}^{\infty} |q_{y_k}| = A$ and $\left| \sum_{m=1}^{n} q_{y_m} \right| \geqslant \frac{1}{2}$ for the last inequality. Thus we obtain

$$
\sup_{t \in \mathbb{R}^d} |h(t) - h_n(t)| \leq (2A + 1) \sum_{m=n+1}^{\infty} |q_{y_m}|, \quad n \geq n_0.
$$

Since $\sum_{k=1}^n |q_{y_k}| < \infty$, we have that $\sup_{t \in \mathbb{R}^d} |h(t) - h_n(t)| \to 0$, $n \to \infty$. Hence for any fixed $\varepsilon\in(0,\frac{1}{4})$ there exists a positive integer $n_\varepsilon\geqslant n_0$ such that for every $n\geqslant n_\varepsilon$ we have

$$
\sup_{t \in \mathbb{R}^d} |h(t) - h_n(t)| \leq \varepsilon \mu,\tag{4.5}
$$

where we set $\mu := \inf_{t \in \mathbb{R}^d} |h(t)| > 0$. So for every $n \ge n_{\varepsilon}$

$$
\inf_{t \in \mathbb{R}^d} |h_n(t)| \ge \inf_{t \in \mathbb{R}^d} |h(t)| - \sup_{t \in \mathbb{R}^d} |h(t) - h_n(t)| \ge (1 - \varepsilon)\mu.
$$
\n(4.6)

We now fix $n \geq n_{\varepsilon}$ and we represent $h(t) = h_n(t) \cdot R_n(t)$ with $R_n(t) := h(t)/h_n(t)$, $t \in \mathbb{R}^d.$ Since h , h_n , R_n are continuous functions without zeroes on \mathbb{R}^d and they equal 1 at $t = \overline{0}$, we can proceed to the distinguished logarithms:

$$
\operatorname{Ln} h(t) = \operatorname{Ln} h_n(t) + \operatorname{Ln} R_n(t), \quad t \in \mathbb{R}^d. \tag{4.7}
$$

Let us consider the function $\text{Ln } h_n$. By the result of part 2), we have

$$
\operatorname{Ln} h_n(t) = i \langle t, \gamma_n \rangle + \sum_{u \in \langle Y_n \rangle \setminus \{\bar{0}\}} \lambda_{n,u} \big(e^{i \langle t, u \rangle} - 1 \big), \quad t \in \mathbb{R}^d,
$$

with a set $Y_n := \{y_k: q_{y_k} \neq 0, k = 1, ..., n\}$, and numbers $\gamma_n \in \langle Y_n \rangle$, $\lambda_{n,u} \in \mathbb{C}$ for all $u \in \langle Y_n \rangle \setminus \{ \bar{0} \}, \ \sum_{u \in \langle Y_n \rangle \setminus \{ \bar{0} \}} \left| \lambda_{n,u} \right| < \infty.$ Setting $\lambda_{n,\bar{0}} := - \sum_{u \in \langle Y_n \rangle \setminus \{ \bar{0} \}} \lambda_{n,u} \in \mathbb{C}$, we represent $\text{Ln } h_n$ in the following form

$$
\operatorname{Ln} h_n(t) = i \langle t, \gamma_n \rangle + \sum_{u \in \langle Y_n \rangle} \lambda_{n, u} e^{i \langle t, u \rangle}, \quad t \in \mathbb{R}^d.
$$

Observe that $Y_n \subset Y$, and hence $\langle Y_n \rangle \subset \langle Y \rangle$. So we can write

$$
\operatorname{Ln} h_n(t) = i \langle t, \gamma_n \rangle + \sum_{u \in \langle Y \rangle} \lambda_{n,u} e^{i \langle t, u \rangle}, \quad t \in \mathbb{R}^d,
$$
\n(4.8)

EJP **28** [\(2023\), paper 130.](https://doi.org/10.1214/23-EJP1032)

[https://www.imstat.org/ejp](https://imstat.org/journals-and-publications/electronic-journal-of-probability/)

where for every $u \in \langle Y \rangle \setminus \langle Y_n \rangle$ we define $\lambda_{n,u} := 0$ for the case $\langle Y \rangle \setminus \langle Y_n \rangle \neq \emptyset$. We next consider the function $\text{Ln } R_n$. Observe that

$$
\operatorname{Ln} R_n(t) = \ln\left(1 + \frac{h(t) - h_n(t)}{h_n(t)}\right), \quad t \in \mathbb{R}^d,
$$
\n(4.9)

where the latter is the principal value of the logarithm. Indeed, due to [\(4.5\)](#page-7-0) and [\(4.6\)](#page-7-1),

$$
\sup_{t \in \mathbb{R}^d} \left| \frac{h(t) - h_n(t)}{h_n(t)} \right| \leq \frac{\sup_{t \in \mathbb{R}^d} |h(t) - h_n(t)|}{\inf_{t \in \mathbb{R}^d} |h_n(t)|} \leq \frac{\varepsilon}{1 - \varepsilon} < 1,
$$
\n(4.10)

and the function in the right-hand side of [\(4.9\)](#page-8-0) is continuous and it equals 0 at $t = 0$. Therefore we get the decomposition

$$
\operatorname{Ln} R_n(t) = \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m} \left(\frac{h(t) - h_n(t)}{h_n(t)} \right)^m, \quad t \in \mathbb{R}^d,
$$

which yields the estimate

$$
\sup_{t\in\mathbb{R}}|\ln R_n(t)|\leqslant \sum_{m=1}^{\infty}\frac{1}{m}\sup_{t\in\mathbb{R}^d}\left|\frac{h(t)-f_n(t)}{f_n(t)}\right|^m\leqslant \sum_{m=1}^{\infty}\frac{1}{m}\left(\frac{\varepsilon}{1-\varepsilon}\right)^m.
$$

Since $\varepsilon \in (0, \frac{1}{4})$, we have

$$
\sum_{m=1}^{\infty} \frac{1}{m} \left(\frac{\varepsilon}{1-\varepsilon} \right)^m \leqslant \sum_{m=1}^{\infty} \left(\frac{\varepsilon}{1-\varepsilon} \right)^m = \frac{\frac{\varepsilon}{1-\varepsilon}}{1-\frac{\varepsilon}{1-\varepsilon}} = \frac{\varepsilon}{1-2\varepsilon} < 2\varepsilon.
$$

Thus we obtain

$$
\sup_{t \in \mathbb{R}^d} |\ln R_n(t)| < 2\varepsilon. \tag{4.11}
$$

Let us consider the function $(h - h_n)/h_n$ from [\(4.9\)](#page-8-0). It is clear that $h - h_n$ is an almost periodic function with the absolutely convergent Fourier series. Due to [\[2,](#page-15-19) Theorem 3.2] the function $1/h_n$ is also an almost periodic with the absolutely convergent Fourier series. Since the function $z \mapsto \ln(1 + z)$, $z \in \mathbb{C}$, is analytic on the unit disk, due to [\(4.10\)](#page-8-1), [\[2,](#page-15-19) Theorem 3.2], and [\[10,](#page-15-23) Corollary 5.15], we get that $\text{Ln} R_n$ is an almost periodic function with the absolutely convergent Fourier series:

$$
\operatorname{Ln} R_n(t) = \sum_{u \in \Delta_n} \beta_{n,u} e^{i \langle t, u \rangle}, \quad t \in \mathbb{R}^d,
$$
\n(4.12)

where Δ_n is at most countable set of vectors from \mathbb{R}^d , $\beta_{n,u} \in \mathbb{C}$ for $u \in \Delta_n$, and $\sum_{u \in \Delta} |\beta_{n,u}| < \infty$. $|u \in \Delta_n$ $|\beta_{n,u}| < \infty$.

We now return to the function Ln h and (4.7) . The formulas (4.8) and (4.12) yield

$$
\mathop{\rm Ln}\nolimits h(t)=i\langle t,\gamma_n\rangle+\sum_{u\in \langle Y\rangle}\lambda_{n,u}e^{i\langle t,u\rangle}+\sum_{u\in \Delta_n}\beta_{n,u}e^{i\langle t,u\rangle},\quad t\in \mathbb{R}^d.
$$

This formula is valid for every $n \geq n_{\varepsilon}$. Let us fix the vector e on the unit sphere $\mathbb{S}^{d-1} = \{x \in \mathbb{R}^d \colon ||x|| = 1\}$. Since $\sum_{u \in \langle Y \rangle} |\lambda_{n,u}| < \infty$ and $\sum_{u \in \Delta_n} |\beta_{n,u}| < \infty$, $n \geqslant n_{\varepsilon}$, it is easy to see that

$$
\lim_{T \to \infty} \frac{\text{Ln } h(T\mathbf{e})}{iT} = \langle \gamma_n, \mathbf{e} \rangle, \quad n \geq n_{\varepsilon}.
$$

Since the vector ${\bf e}$ is choosen arbitrarily from \mathbb{S}^{d-1} , γ_n are equal for $n\geqslant n_\varepsilon$, and we set $\gamma := \gamma_n$. Due to $\gamma_n \in \langle Y_n \rangle \subset \langle Y \rangle$, we have $\gamma \in \langle Y \rangle$. Thus for every $n \geq n_\varepsilon$ we obtain

$$
\operatorname{Ln} h(t) = i \langle t, \gamma \rangle + \sum_{u \in \langle Y \rangle} \lambda_{n,u} e^{i \langle t, u \rangle} + \sum_{u \in \Delta_n} \beta_{n,u} e^{i \langle t, u \rangle}, \quad t \in \mathbb{R}^d.
$$

Due to the uniqueness theorem for the Fourier coefficients (see [\[2,](#page-15-19) Lemma 3.1]), one can conclude that

$$
\operatorname{Ln} h(t) = i \langle t, \gamma \rangle + \sum_{u \in \langle Y \rangle} \lambda_u e^{i \langle t, u \rangle} + \sum_{u \in Z} \lambda_u e^{i \langle t, u \rangle}, \quad t \in \mathbb{R}^d,
$$

where Z is at most countable subset of \mathbb{R}^d such that $\langle Y \rangle \cap Z\,=\, \varnothing, \; \lambda_u\,\in\, \mathbb{C}$ for all $u \in \langle Y \rangle \cup Z$, $\sum_{u \in \langle Y \rangle \cup Z} |\lambda_u| < \infty$. So for every $n \geqslant n_\varepsilon$ the following estimate is true:

$$
\sum_{u \in Z} |\lambda_u|^2 \leqslant \sum_{u \in \Delta_n} |\beta_{n,u}|^2.
$$

Using the Parseval identity (see [\[16,](#page-15-17) Ch. VI, §4] or [\[21,](#page-15-18) Theorem 28]) and [\(4.11\)](#page-8-3), we get

$$
\sum_{u\in Z} |\lambda_u|^2 \leq \lim_{T\to\infty} \frac{1}{(2T)^d} \int\limits_{[-T,T]^d} |\operatorname{Ln} R_n(t)|^2 dt < (2\varepsilon)^2, \quad n \geq n_\varepsilon.
$$

Since $\varepsilon > 0$ can be chosen arbitrarily small, we conclude that $Z = \emptyset$ or $Z \neq \emptyset$, but $\lambda_u = 0$ for all $u \in Z$. Thus

$$
\mathop{\rm Ln}\nolimits h(t)=i\langle t,\gamma\rangle+\sum_{u\in\langle Y\rangle}\lambda_u e^{i\langle t,u\rangle},\quad t\in\mathbb{R}^d,
$$

with $\gamma \in \langle Y \rangle$, $\lambda_u \in \mathbb{C}$ for all $u \in \langle Y \rangle$, and $\sum_{u \in \langle Y \rangle} |\lambda_u| < \infty$. According to $\big(\text{Ln } h(t)$ $i\langle t,\gamma\rangle\bigr)|_{t= \bar0} = 0$, we get $\lambda_{\bar0} = -\sum_{u\in \langle Y\rangle\setminus\{\bar0\}}\lambda_u$ and we come to the required representation [\(3.1\)](#page-3-3). \Box

We now return to the proof of the Theorem [3.2.](#page-4-1)

Proof of Theorem [3.2.](#page-4-1) The proof will be carried out in the following sequence: $(ii) \stackrel{\text{I}}{\longrightarrow}$ $(i) \stackrel{\textbf{II}}{\longrightarrow} (iii) \stackrel{\textbf{III}}{\longrightarrow} (iv) \stackrel{\textbf{IV}}{\longrightarrow} (i) \stackrel{\textbf{V}}{\longrightarrow} (ii).$

I. Due to (ii) , we have

$$
\sup_{t\in\mathbb{R}^d}\left|\frac{1}{h(t)}\right|\leqslant \sum_{z\in Z}|r_z|=\frac{1}{\mu}<\infty.
$$

It follows that

$$
\inf_{t \in \mathbb{R}^d} |h(t)| = \frac{1}{\sup_{t \in \mathbb{R}^d} |1/h(t)|} = \mu > 0.
$$

II. This implication directly follows from Theorem [3.1.](#page-3-2)

III. It is clear that (iii) yields (iv) with zero matrix Q and the signed measure

$$
\nu(B)=\sum_{u\in B\cap \langle Y\rangle\setminus\{\bar{0}\}}\lambda_u\quad\text{for every Borel set B}.
$$

IV. Let us assume the contrary, i.e. h has the representation [\(3.2\)](#page-4-2) and $\inf_{t\in\mathbb{R}^d} |h(t)| =$ 0. Since $e^z \neq 0$ for all $z \in \mathbb{C}$, then $h(t) \neq 0$ for all $t \in \mathbb{R}^d$. Hence it is sufficient to focus on the case, where h has the representation [\(3.2\)](#page-4-2), $h(t)\neq 0$ for all $t\in \mathbb{R}^d$, and $\inf_{t\in\mathbb{R}^d} |h(t)| = 0.$

Due to [\(3.2\)](#page-4-2), for every fixed $\tau \in \mathbb{R}^d$ we have the following representation

$$
\frac{h(t+\tau)h(t-\tau)}{h^2(t)} = \exp\bigg\{-\frac{1}{2}\langle \tau, Q\tau \rangle + 2 \int_{\mathbb{R}^d \setminus \{\bar{0}\}} e^{i\langle t, u \rangle} \big(\cos(\langle \tau, u \rangle) - 1\big) \nu(du)\bigg\}, \quad t \in \mathbb{R}^d.
$$

It follows that for any $t \in \mathbb{R}^d$

$$
\bigg|\frac{h(t+\tau)h(t-\tau)}{h^2(t)}\bigg|\leqslant \exp\Biggl\{\Biggl(\tfrac12\|Q\|+\int\limits_{0<\|u\|<1}\|u\|^2\bigl|\nu\bigl|(du)\Biggr)\|\tau\|^2+4\int\limits_{\|u\|>1}\bigl|\nu\bigl|(du)\Biggr\}.
$$

Hence for every $\tau \in \mathbb{R}^d$ there exists C_τ such that

$$
\sup_{t \in \mathbb{R}^d} \left| \frac{h(t+\tau)h(t-\tau)}{h^2(t)} \right| \leqslant C_\tau.
$$

Let $(t_n)_{n\in\mathbb{N}}$, $t_n\in\mathbb{R}^d$, be a sequence such that $h(t_n)$ tends to 0 as $n\to\infty.$ If there exists $R > 0$ such that $||t_n|| < R$ for every $n \in \mathbb{N}$, then there exists subsequence $(n_k)_{k \in \mathbb{N}}$ satisfying $t_{n_k}\to t_*\in\mathbb{R}^d$ as $k\to\infty.$ Since h is a continuous function, $h(t_*)=0$ that contradicts with the (iv). It follows that $||t_n|| \to \infty$ as $n \to \infty$. Since h is an almost periodic function, the sequence $(h(\cdot + t_n))_{n \in \mathbb{N}}$ is dense in the set of continuous functions, i.e. there exists a subsequence $(n_k)_{k\in\mathbb{N}}$ and a continuous function φ such that

$$
\sup_{\tau \in \mathbb{R}^d} \left| h(t_{n_k} + \tau) - \varphi(\tau) \right| \underset{k \to \infty}{\longrightarrow} 0.
$$

It is obvious that $|\varphi(\tau)| \leqslant C := \sup_{t\in \mathbb{R}^d} |h(t)| < \infty$ for all $\tau \in \mathbb{R}^d.$ Then

$$
\Delta_k := \sup_{\tau \in \mathbb{R}^d} \left| h(t_{n_k} + \tau)h(t_{n_k} - \tau) - \varphi(\tau)\varphi(-\tau) \right|
$$

\n
$$
\leq \sup_{\tau \in \mathbb{R}^d} \left| h(t_{n_k} - \tau) \right| \cdot \left| h(t_{n_k} + \tau) - \varphi(\tau) \right| + \sup_{\tau \in \mathbb{R}^d} \left| h(t_{n_k} - \tau) - \varphi(-\tau) \right| \cdot \left| \varphi(\tau) \right|
$$

\n
$$
\leq 2C \sup_{\tau \in \mathbb{R}^d} \left| h(t_{n_k} + \tau) - \varphi(\tau) \right| \xrightarrow[k \to \infty]{} 0.
$$

Let us assume that $\varphi(\tau) \varphi(-\tau) = 0$ for all $\tau \in \mathbb{R}^d.$ It follows that

$$
\sup_{\tau \in \mathbb{R}^d} \left| h(t_{n_k} + \tau)h(t_{n_k} - \tau) \right| \underset{k \to \infty}{\longrightarrow} 0.
$$

So for any fixed $s \in \mathbb{R}^d$

$$
h(t_{n_k}+\tau)h(t_{n_k}-\tau)\Big|_{\tau=-t_{n_k}-s}=h(-s)h(2t_{n_k}+s)\underset{k\to\infty}{\longrightarrow}0.
$$

Since $h(s) \neq 0$ for every $s \in \mathbb{R}^d$, we have

$$
h(2t_{n_k} + s) \underset{k \to \infty}{\longrightarrow} 0. \tag{4.13}
$$

Next, it is easy to see that the function $h(2t_{n_k} + \cdot)$ is almost periodic. It means that there exists a subsequence $(n_{k_m})_{m\in\mathbb{N}}$ such that a sequence $\big(h(2t_{n_{k_m}}+\cdot)\big)_{m\in\mathbb{N}}$ has a uniform limit. From [\(4.13\)](#page-10-0) one can conclude that

$$
\sup_{s \in \mathbb{R}^d} \left| h(2t_{n_{k_m}} + s) \right| \xrightarrow[m \to \infty]{} 0.
$$

Applying this with $s = -2t_{n_{k_m}}$, we come to a contradiction with $h(0) = 1$. Therefore the assumption $\inf_{t \in \mathbb{R}^d} |h(t)| = 0$ is false, i.e. (i) follows from (iv).

V. If (i) holds, then (ii) follows directly from [\[2,](#page-15-19) Theorem 3.2]. \Box

Proof of Theorem [2.1.](#page-2-4) The implication $(a) \rightarrow (b)$ directly follows from the implication $(iv) \rightarrow (i)$ of Theorem [3.2.](#page-4-1) The converse $(b) \rightarrow (a)$ holds due to $(i) \rightarrow (iv)$ of Theorem [3.2](#page-4-1) with applying [\[5,](#page-15-0) Theorem 2.7] (so $\gamma \in \mathbb{R}^d$, $Q \in \mathbb{R}^{d \times d}$, ν is real-valued measure). The representation [\(2.4\)](#page-2-3) holds due to (iii) of Theorem [3.2](#page-4-1) and [\[5,](#page-15-0) Theorem 2.7] (so $\gamma \in \mathbb{R}^d$ and $\lambda_u \in \mathbb{R}$). \Box Proof of Theorem [2.2.](#page-3-1) Necessity. Due to Theorem [2.1](#page-2-4) and comments below, it is easily seen using formula [\(2.4\)](#page-2-3) that if the distribution function F of a discrete random vector ξ is (quasi-)infinitely divisible, then for any $c \in \mathbb{R}^d$ distribution functions F_c of the random variables $\langle c, \xi \rangle$ are (quasi-)infinitely divisible, respectively (there is the case $d = 1$ for F_c).

Sufficiency. Let us consider a discrete random vector ξ with distribution function [\(2.1\)](#page-2-1) and characteristic function [\(2.2\)](#page-2-2). We write the latter in the expanded form:

$$
f(t^{(1)},...,t^{(d)}) = \sum_{k=1}^{\infty} p_{x_k} \exp\bigg\{i \sum_{j=1}^{d} t^{(j)} x_k^{(j)}\bigg\},\,
$$

where $x_k = (x_k^{(1)})$ $x_k^{(1)}, \ldots, x_k^{(d)}$ $\mathbf{R}^{(d)}_k) \in \mathbb{R}^d$ and $t^{(1)}, \ldots, t^{(d)} \in \mathbb{R}.$

We now assume that the distribution functions F_c of $\langle c, \xi \rangle$ are quasi-infinitely divisible for any $c=(c^{(1)},\ldots,c^{(d)})\in\mathbb{R}^d.$ Let f_c denote the corresponding characteristic functions. It is easily seen that

$$
f_c(t) = f(c^{(1)}t, ..., c^{(d)}t), \quad t \in \mathbb{R}.
$$

Applying Theorem [2.1](#page-2-4) to F_c (here the case $d = 1$), we conclude that there exists a constant $\mu_c > 0$ such that

$$
\left|f(c^{(1)}t, \ldots, c^{(d)}t)\right| \geq \mu_c \quad \text{for all} \quad t \in \mathbb{R}.\tag{4.14}
$$

In order to prove the quasi-infinite divisibility of F , according to Theorem [2.1,](#page-2-4) it is sufficient to show that for some $\mu > 0$

$$
|f(t^{(1)},...,t^{(d)})| \ge \mu \quad \text{for all} \quad t^{(1)},...,t^{(d)} \in \mathbb{R}.
$$
 (4.15)

We set $X^{(j)} := \{x_k^{(j)}\}$ $\mathbb{R}^{(j)}_k: p_{x_k} > 0, k \in \mathbb{N} \} \subset \mathbb{R}$, $j = 1, \ldots, d$. Let us suppose that $X^{(j)} \neq \{0\}$ for every $j=1,\ldots,d$, i.e. for every j there exists $k\in\mathbb{N}$ such that $x_k^{(j)}$ $k^{(j)} \neq 0$. Therefore for every $j=1,\ldots,d$ one can choose non-zero $\beta_l^{(j)}\in X^{(j)}$, $l\in {\cal I}^{(j)}$ (here ${\cal I}^{(j)}$ is at most countable index set) such that for every $k\in\mathbb{N}$ and for some numbers $z_{k,l}^{(j)}\in\mathbb{Q}$ we have

$$
x_k^{(j)} = \sum_{l \in \mathcal{I}^{(j)}} z_{k,l}^{(j)} \beta_l^{(j)},\tag{4.16}
$$

where only finite number of $z_{k,l}^{(j)}$ are non-zero (see [\[16\]](#page-15-17) p. 67–68). Note that the numbers $\beta_l^{(j)}$ $l_l^{(j)}$ can be chosen as linearly independent over $\mathbb Q$, that is the equation $z_1\beta_{l_1}^{(j)}$ $\hat{l}_{l_1}^{(J)} + \cdots +$ $z_n\beta_{l_n}^{(j)}$ $l_n^{(j)}=0$ holds with $z_1,\ldots,z_n\in\mathbb{Q}$, and distinct $l_1,\ldots,l_n\in\mathcal{I}^{(j)}$, $n\in\mathbb{N}$, if and only if $z_1=\cdots=z_n=0.$ It follows that the numbers $z_{k,l}^{(j)}$ are uniquely determined for $x_k^{(j)}$ k in [\(4.16\)](#page-11-0). We observe that for every $j = 1, \ldots, d$

$$
\langle X^{(j)} \rangle_r = \left\{ z_1 \beta_{l_1}^{(j)} + \dots + z_n \beta_{l_n}^{(j)} \colon z_1, \dots, z_n \in \mathbb{Q}, l_1, \dots, l_n \in \mathcal{I}^{(j)}, n \in \mathbb{N} \right\},\tag{4.17}
$$

where $\langle X^{(j)} \rangle_r$ is the module over the ring ${\mathbb Q}$ with the generating set $X^{(j)}$ (see defini-tion [\(2.3\)](#page-2-5) for the one-dimesional case with $z_k \in \mathbb{Q}$).

We now propose the procedure of choosing of the numbers $c^{(1)},\ldots,c^{(d)}\in\mathbb{R}$ such that the elements of the union system $\{c^{(1)}\beta^{(1)}_l\}$ $\ell_l^{(1)}: l \in \mathcal{I}^{(1)} \big\} \cup \cdots \cup \big\{ c^{(d)} \beta_l^{(d)} \big\}$ $l_l^{(d)} \colon l \in \mathcal{I}^{(d)} \big\}$ are linearly independent over Q. We first fix any $c^{(1)}\in \R\setminus\{0\}.$ For every $v\in\langle X^{(2)}\rangle_r\setminus\{0\}$ we define

$$
D_v^{(2)} := \{c \in \mathbb{R} : cv \in \langle c^{(1)}X^{(1)} \rangle_r \}.
$$

Here and below, for any set $X \subset \mathbb{R}$ we denote by cX the set $\{cx : x \in X\}$ with $c \in \mathbb{R}$. Observe that every set $D_v^{(2)}$ is countable. Then the set

$$
D^{(2)} := \bigcup_{v \in \langle X^{(2)} \rangle_r \setminus \{0\}} D_v^{(2)}
$$

is countable too. Hence the set $C^{(2)} := \mathbb{R} \setminus D^{(2)}$ is not empty. We choose any $c^{(2)} \in C^{(2)}.$ Observe that

$$
C^{(2)} = \mathbb{R} \setminus \bigcup_{v \in \langle X^{(2)} \rangle_r \setminus \{0\}} D_v^{(2)} = \bigcap_{v \in \langle X^{(2)} \rangle_r \setminus \{0\}} \mathbb{R} \setminus D_v^{(2)}.
$$

This means that for any $v \in \langle X^{(2)} \rangle_r \setminus \{0\}$ the quantity $c^{(2)}v$ can not be a finite linear combination of elements $c^{(1)}\beta_l^{(1)}$, $l\in\mathcal{I}^{(1)}$, with rational coefficients. Let $v=z_1\beta_{l_1}^{(2)}+1$ l_l , $l \in \mathcal{L}^{\setminus \mathcal{L}}$, with rational coefficients. Let $v = \lambda_1 \nu_{l_1}$ $\cdots + z_n \beta_{l_n}^{(2)}$ $l_n^{(2)}$ with some $z_1, \ldots, z_n \in \mathbb{Q}$. $l_1, \ldots, l_n \in \mathcal{I}^{(2)}$, and $n \in \mathbb{N}$. Since $c^{(2)}v =$ $z_1(c^{(2)}\beta_{l_1}^{(2)})$ $\binom{1}{l_1}$ + \cdots + $z_n(c^{(2)}\beta_{l_n}^{(2)})$ $\binom{n(2)}{l_n}$, by the above argument, the elements in the union system $\{c^{(1)}\beta_l^{(1)}\}$ $\{c^{(1)}: l \in \mathcal{I}^{(1)}\} \cup \{c^{(2)}\beta_l^{(2)}\}$ $\mathcal{H}_l^{(2)}: l \in \mathcal{I}^{(2)}\big\}$ are linear independent over $\mathbb{Q}.$ We next consider the set of all finite linear combitations of $\{c^{(1)}\beta^{(1)}_l\}$ $\{e^{(1)}: l \in \mathcal{I}^{(1)}\} \cup \{e^{(2)}\beta_l^{(2)}\}$ $l_l^{(2)} \colon l \in {\cal I}^{(2)} \big\}$ with rational coefficients. It is the set $\langle c^{(1)}X^{(1)}\cup c^{(2)}X^{(2)}\rangle_r.$ For every $v\in \langle X^{(3)}\rangle_r\setminus\{0\}$ we define

$$
D_v^{(3)} := \{c \in \mathbb{R} : cv \in \langle c^{(1)}X^{(1)} \cup c^{(2)}X^{(2)} \rangle_r \}.
$$

Every $D_v^{(3)}$ is countable. Hence the set

$$
D^{(3)}:=\bigcup_{v\in \langle X^{(3)}\rangle_r\backslash\{0\}}D^{(3)}_v
$$

is countable too. Since the set $C^{(3)}:=\mathbb{R}\setminus D^{(3)}$ is not empty, we choose any $c^{(3)}\in C^{(3)}.$ Observe that

$$
C^{(3)} = \mathbb{R} \setminus \bigcup_{v \in \langle X^{(3)} \rangle_r \setminus \{0\}} D_v^{(3)} = \bigcap_{v \in \langle X^{(3)} \rangle_r \setminus \{0\}} \mathbb{R} \setminus D_v^{(3)}
$$

Hence for any $v \in \langle X^{(3)}\rangle_r \setminus \{0\}$ the quantity $c^{(3)}v$ can not be a finite linear combination of elements of $\{c^{(1)}\beta^{(1)}_l$ $\{c^{(1)}: l \in \mathcal{I}^{(1)}\} \cup \{c^{(2)}\beta_l^{(2)}\}$ $\{u_l^{(2)}: l \in \mathcal{I}^{(2)}\}$ with rational coefficients. This implies that the elements in the union system $\{c^{(1)}\beta^{(1)}_l\}$ $\{c^{(1)}: l \in \mathcal{I}^{(1)}\} \cup \{c^{(2)}\beta_l^{(2)}\}$ $\theta_l^{(2)}: l \in {\mathcal I}^{(2)} \big\} \cup$ $\{c^{(3)}\beta_1^{(3)}\}$ $\mathcal{U}^{(3)}_l: l \in \mathcal{I}^{(3)}\big\}$ are linear independent over $\mathbb{Q}.$ We next proceed analogously and thus we obtain that the elements of the union system $\{c^{(1)}\beta^{(1)}_l\}$ $\ell_l^{(1)}: l \in \mathcal{I}^{(1)} \} \cup \cdots \cup \{c^{(d)}\beta_l^{(d)}\}$ $\hat{l}^{(u)}$: $l \in {\mathcal I}^{(d)} \big\}$ are linearly independent over ${\mathbb Q}$ as required.

We now prove [\(4.15\)](#page-11-1). Suppose, contrary to our claim, that [\(4.15\)](#page-11-1) is false, i.e. for any $\varepsilon>0$ there exist $t_{\varepsilon}^{(1)},\ldots,t_{\varepsilon}^{(d)}\in\mathbb{R}$ such that $|f(t_{\varepsilon}^{(1)},\ldots,t_{\varepsilon}^{(d)})|\leqslant\varepsilon.$ So we fix $\varepsilon>0$ and such $t_{\varepsilon}^{(j)},\,j=1,\dots,d.$ We first find $N_{\varepsilon}\in\mathbb{N}$ such that $\sum_{k=N_{\varepsilon}+1}^{\infty}p_{x_{k}}\leqslant\varepsilon$ (see [\(2.1\)](#page-2-1) and [\(2.2\)](#page-2-2), $\sum_{k=1}^{\infty} p_{x_k} = 1$, $p_{x_k} \ge 0$). Then

$$
\sup_{t^{(1)},\ldots,t^{(d)}\in\mathbb{R}}\left|\sum_{k=N_{\varepsilon}+1}^{\infty}p_{x_k}\exp\left\{i\sum_{j=1}^{d}x_k^{(j)}t^{(j)}\right\}\right|\leqslant\sum_{k=N_{\varepsilon}+1}^{\infty}p_{x_k}\leqslant\varepsilon.
$$
 (4.18)

Hence we get

$$
|f(t_{\varepsilon}^{(1)},\ldots,t_{\varepsilon}^{(d)})| = \left| \sum_{k\in\mathbb{N}} p_{x_k} \exp\left\{i \sum_{j=1}^{d} x_k^{(j)} t_{\varepsilon}^{(j)}\right\} \right|
$$

$$
\geqslant \left| \sum_{k=1}^{N_{\varepsilon}} p_{x_k} \exp\left\{i \sum_{j=1}^{d} x_k^{(j)} t_{\varepsilon}^{(j)}\right\} \right| - \left| \sum_{k=N_{\varepsilon}+1}^{\infty} p_{x_k} \exp\left\{i \sum_{j=1}^{d} x_k^{(j)} t_{\varepsilon}^{(j)}\right\} \right|
$$

EJP **28** [\(2023\), paper 130.](https://doi.org/10.1214/23-EJP1032)

[https://www.imstat.org/ejp](https://imstat.org/journals-and-publications/electronic-journal-of-probability/)

.

$$
\geqslant \biggl|\sum_{k=1}^{N_{\varepsilon}}p_{x_k}\exp\biggl\{i\sum_{j=1}^{d}x_k^{(j)}t_\varepsilon^{(j)}\biggr\}\biggr|-\varepsilon.
$$

Due to representations [\(4.16\)](#page-11-0), we write:

$$
\sum_{k=1}^{N_{\varepsilon}} p_{x_k} \exp\left\{i \sum_{j=1}^{d} x_k^{(j)} t_{\varepsilon}^{(j)}\right\} = \sum_{k=1}^{N_{\varepsilon}} p_{x_k} \exp\left\{i \sum_{j=1}^{d} \left(\sum_{l \in \mathcal{I}^{(j)}} z_{k,l}^{(j)} \beta_l^{(j)}\right) t_{\varepsilon}^{(j)}\right\}
$$

$$
= \sum_{k=1}^{N_{\varepsilon}} p_{x_k} \exp\left\{i \sum_{j=1}^{d} \sum_{l \in \mathcal{I}^{(j)}} z_{k,l}^{(j)} (\beta_l^{(j)} t_{\varepsilon}^{(j)})\right\}.
$$
(4.19)

Let us fix $c^{(1)},\ldots,c^{(d)}\in\mathbb{R}$ such that the elements of the union system $\{c^{(1)}\beta^{(1)}_l:l\in$ l $\mathcal{I}^{(1)}\}\cup\cdots\cup\{c^{(d)}\beta_l^{(d)}\}$ $\mathcal{L}^{(d)}_l: l \in \mathcal{I}^{(d)}\big\}$ are linearly independent over $\mathbb{Q}.$ Let $\varkappa^{(j)}$ be the minimal positive integer such that $\varkappa^{(j)}z_{k,l}^{(j)}\in\mathbb{Z}$ for any $j\in\{1,\ldots,d\}$, $k\in\{1,\ldots,N_\varepsilon\}$, $l\in\mathcal{I}^{(j)}.$ By the Kronecker theorem (see [\[17,](#page-15-20) p.37]), for any $\delta > 0$ we can find t'_δ such that all following inequalities hold with some integers $n_{l}^{\left(j\right)}$ $i^{\prime\prime}$:

$$
\left| c^{(j)} \beta_l^{(j)} t'_\delta - \frac{\beta_l^{(j)} t_\varepsilon^{(j)}}{\varkappa^{(j)}} - 2\pi n_l^{(j)} \right| < \delta, \quad l \in \mathcal{I}_\varepsilon^{(j)}, \quad j = 1, \dots, d,\tag{4.20}
$$

where $\mathcal{I}^{(j)}_\varepsilon$ is the set of all $l\in\mathcal{I}^{(j)}$ such that $z_{k,l}^{(j)}\neq 0$ for some $k=1,\ldots,N_\varepsilon.$ Since only finite number of $z_{k,l}^{(j)}$ are non-zero in [\(4.16\)](#page-11-0), the set $\mathcal{I}^{(j)}_\varepsilon$ is finite and the system [\(4.20\)](#page-13-0) has only finite number of inequalities. Let us choose $\delta=\delta_\varepsilon$ such that

$$
\delta_{\varepsilon} \cdot \max_{k=1,\dots,N_{\varepsilon}} \left\{ \sum_{j=1}^{d} \sum_{l \in \mathcal{I}_{\varepsilon}^{(j)}} \varkappa^{(j)} |z_{k,l}^{(j)}| \right\} \leq \varepsilon.
$$
\n(4.21)

Observe that

$$
\begin{split} \Delta_{\varepsilon} &:=\bigg|\sum_{k=1}^{N_{\varepsilon}}p_{x_k}\exp\bigg\{i\sum_{j=1}^{d}\sum_{l\in\mathcal{I}_{\varepsilon}^{(j)}}\varkappa^{(j)}z_{k,l}^{(j)}c^{(j)}\beta_{l}^{(j)}t_{\delta_{\varepsilon}}'\bigg\}\\ &\qquad -\sum_{k=1}^{N_{\varepsilon}}p_{x_k}\exp\bigg\{i\sum_{j=1}^{d}\sum_{l\in\mathcal{I}_{\varepsilon}^{(j)}}z_{k,l}^{(j)}\beta_{l}^{(j)}t_{\varepsilon}^{(j)}\bigg\}\bigg|\\ &\leqslant \sum_{k=1}^{N_{\varepsilon}}p_{x_k}\bigg|\exp\bigg\{i\sum_{j=1}^{d}\sum_{l\in\mathcal{I}_{\varepsilon}^{(j)}}\varkappa^{(j)}z_{k,l}^{(j)}\bigg(c^{(j)}\beta_{l}^{(j)}t_{\delta_{\varepsilon}}^{\prime}-\frac{\beta_{l}^{(j)}t_{\varepsilon}^{(j)}}{\varkappa^{(j)}}\bigg)\bigg\}-1\bigg|\\ &=\sum_{k=1}^{N_{\varepsilon}}p_{x_k}\bigg|\exp\bigg\{i\sum_{j=1}^{d}\sum_{l\in\mathcal{I}_{\varepsilon}^{(j)}}\varkappa^{(j)}z_{k,l}^{(j)}\bigg(c^{(j)}\beta_{l}^{(j)}t_{\delta_{\varepsilon}}^{\prime}-\frac{\beta_{l}^{(j)}t_{\varepsilon}^{(j)}}{\varkappa^{(j)}}-2\pi n_{l}^{(j)}\bigg)\bigg\}-1\bigg|. \end{split}
$$

The last equality holds because all $\varkappa^{(j)}z_{k,l}^{(j)}$ and $n_l^{(j)}$ $\mathcal{U}^{(j)}$ are integers. Next, using the well known inequality $|e^{iy}-1|\leqslant |y|$, $y\in \mathbb{R}$, and applying [\(4.20\)](#page-13-0) and [\(4.21\)](#page-13-1), we obtain

$$
\Delta_{\varepsilon} \leq \sum_{k=1}^{N_{\varepsilon}} \left(p_{x_k} \sum_{j=1}^{d} \sum_{l \in \mathcal{I}_{\varepsilon}^{(j)}} \left(\varkappa^{(j)} |z_{k,l}^{(j)}| \cdot \left| c^{(j)} \beta_l^{(j)} t'_{\delta_{\varepsilon}} - \frac{\beta_l^{(j)} t_{\varepsilon}^{(j)}}{\varkappa^{(j)}} - 2\pi n_l^{(j)} \right| \right) \right)
$$

$$
\leq \max_{k=1,...,N_{\varepsilon}} \left\{ \sum_{j=1}^{d} \sum_{l \in \mathcal{I}_{\varepsilon}^{(j)}} \varkappa^{(j)} |z_{k,l}^{(j)}| \cdot \delta_{\varepsilon} \right\} \cdot \sum_{k=1}^{N_{\varepsilon}} p_{x_k}
$$

EJP **28** [\(2023\), paper 130.](https://doi.org/10.1214/23-EJP1032)

[https://www.imstat.org/ejp](https://imstat.org/journals-and-publications/electronic-journal-of-probability/)

$$
\leqslant \delta_{\varepsilon} \cdot \max_{k=1,...,N_{\varepsilon}}\biggl\{\sum_{j=1}^{d}\sum_{l\in \mathcal{I}_{\varepsilon}^{(j)}}\varkappa^{(j)}|z_{k,l}^{(j)}|\biggr\} \leqslant \varepsilon.
$$

Returning to [\(4.19\)](#page-13-2), we have

$$
\bigg|\sum_{k=1}^{N_{\varepsilon}} p_{x_k} \exp\bigg\{i\sum_{j=1}^d \sum_{l\in \mathcal{I}^{(j)}} z_{k,l}^{(j)} \beta_l^{(j)} t_{\varepsilon}^{(j)}\bigg\}\bigg| \geqslant \bigg|\sum_{k=1}^{N_{\varepsilon}} p_{x_k} \exp\bigg\{i\sum_{j=1}^d \sum_{l\in \mathcal{I}^{(j)}} \varkappa^{(j)} z_{k,l}^{(j)} c^{(j)} \beta_l^{(j)} t_{\delta_{\varepsilon}}' \bigg\}\bigg| - \varepsilon.
$$

Note that we write ${\cal I}^{(j)}$ instead of ${\cal I}^{(j)}_\varepsilon$ here. This is obviously possible by the definition of $\mathcal{I}^{(j)}_\varepsilon.$ Thus we get

$$
\left|f(t_{\varepsilon}^{(1)},\ldots,t_{\varepsilon}^{(d)})\right|\geqslant \left|\sum_{k=1}^{N_{\varepsilon}}p_{x_k}\exp\left\{i\sum_{j=1}^d\sum_{l\in\mathcal{I}^{(j)}}\varkappa^{(j)}z_{k,l}^{(j)}c^{(j)}\beta_l^{(j)}t'_{\delta_{\varepsilon}}\right\}\right|-2\varepsilon.
$$

According to [\(4.16\)](#page-11-0), we next write

$$
\sum_{k=1}^{N_{\varepsilon}} p_{x_k} \exp\bigg\{i\sum_{j=1}^d \sum_{l\in\mathcal{I}^{(j)}} \varkappa^{(j)} z_{k,l}^{(j)} c^{(j)} \beta_l^{(j)} t'_{\delta_{\varepsilon}}\bigg\} = \sum_{k=1}^{N_{\varepsilon}} p_{x_k} \exp\bigg\{i\sum_{j=1}^d \varkappa^{(j)} c^{(j)} x_k^{(j)} t'_{\delta_{\varepsilon}}\bigg\}.
$$

Due to [\(4.18\)](#page-12-0), we get

$$
\left| \sum_{k=1}^{N_{\varepsilon}} p_{x_k} \exp \left\{ i \sum_{j=1}^d \varkappa^{(j)} c^{(j)} x_k^{(j)} t'_{\delta_{\varepsilon}} \right\} \right| \geqslant \left| \sum_{k=1}^{\infty} p_{x_k} \exp \left\{ i \sum_{j=1}^d \varkappa^{(j)} c^{(j)} x_k^{(j)} t'_{\delta_{\varepsilon}} \right\} \right| - \varepsilon
$$

$$
= \left| f \left(\varkappa^{(1)} c^{(1)} t'_{\delta_{\varepsilon}}, \dots, \varkappa^{(d)} c^{(d)} t'_{\delta_{\varepsilon}} \right) \right| - \varepsilon.
$$

So we have

$$
\varepsilon \geq |f(t_{\varepsilon}^{(1)},\ldots,t_{\varepsilon}^{(d)})| \geq |f(\varkappa^{(1)}c^{(1)}t'_{\delta_{\varepsilon}},\ldots,\varkappa^{(d)}c^{(d)}t'_{\delta_{\varepsilon}})| - 3\varepsilon.
$$

Thus for any $\varepsilon > 0$ we found $t'_{\delta_{\varepsilon}}$ such that

$$
\left|f\big(\varkappa^{(1)}c^{(1)}t'_{\delta_{\varepsilon}},\ldots,\varkappa^{(d)}c^{(d)}t'_{\delta_{\varepsilon}}\big)\right|\leqslant 4\varepsilon.
$$

This obviously contradicts to the assumption [\(4.14\)](#page-11-2). So [\(4.15\)](#page-11-1) holds.

We have proved the Cramér–Wold device for the quasi-infinite divisibility. Let us now consider the case of infinite divisibility. Let the distribution functions F_c of random variables $\langle c, \xi \rangle$ be infinitely divisible for any $c \in \mathbb{R}^d.$ Then they are also quasi-infinitely divisible. From what has already been proved, the distribution function F of the random vector ξ is also quasi-infinitly divisible and, by Theorem [2.1,](#page-2-4) its characteristic function f admits the representation

$$
f(t) = \exp\bigg\{i\langle t, \gamma \rangle + \sum_{u \in \langle X \rangle \setminus \{0\}} \lambda_u \big(e^{i\langle t, u \rangle} - 1\big) \bigg\}, \quad t \in \mathbb{R}^d,
$$

where $\gamma\in\langle X\rangle$, $\lambda_u\in\mathbb{R}$ for all $u\in\langle X\rangle\setminus\{\bar{0}\}$, and $\sum_{u\in\langle X\rangle\setminus\{0\}}|\lambda_u|<\infty.$ It remains to show that $\lambda_u \geq 0$ for all $u \in \langle X \rangle \setminus \{ \bar{0} \}$. Let us write the characteristic function f_c of F_c for any $c \in \mathbb{R}^d$:

$$
f_c(t) = \exp\bigg\{it\langle c, \gamma \rangle + \sum_{u \in \langle X \rangle \setminus \{\bar{0}\}} \lambda_u\big(e^{it\langle c, u \rangle} - 1\big)\bigg\}, \quad t \in \mathbb{R}.
$$

Let us fix $c=(c^{(1)},\ldots,c^{(d)})\in\mathbb{R}^d$ such that the elements of the union system $\{c^{(1)}\beta^{(1)}_l$ $\frac{1}{l}$: $l\, \in\, {\cal I}^{(1)}\} \cup \cdots \cup \{c^{(d)}\beta_l^{(d)}\, :\, l\, \in\, {\cal I}^{(d)}\}$ are linearly independent over Q. On account of [\(4.16\)](#page-11-0), [\(4.17\)](#page-11-3), and that $\langle X \rangle \subset \langle X^{(1)} \rangle_r \times \cdots \times \langle X^{(d)} \rangle_r$, we have $\langle c, u_1 \rangle \neq \langle c, u_2 \rangle$ for any distinct $u_1, u_2 \in \langle X \rangle \setminus \{\overline{0}\}\)$. Since F_c is infinitely divisible (by assumption), we conclude that $\lambda_u \geq 0$ for all $u \in \langle X \rangle \setminus \{ \bar{0} \}.$ \Box

References

- [1] Alexeev, I. A. and Khartov, A. A.: Spectral representations of characteristic functions of discrete probability laws. Bernoulli **29** (2), (2023), 1392–1409. [MR4550228](https://mathscinet.ams.org/mathscinet-getitem?mr=4550228)
- [2] Balan, R. and Krishtal, I.: An almost periodic noncommutative Wiener's Lemma. J. Math. Analysis and Appl. **370** (2010), 339–349. [MR2651657](https://mathscinet.ams.org/mathscinet-getitem?mr=2651657)
- [3] Berger, D.: On quasi-infinitely divisible distributions with a point mass. Math. Nachr. **292** (2019), 1674–1684. [MR3994295](https://mathscinet.ams.org/mathscinet-getitem?mr=3994295)
- [4] Berger, D. and Kutlu, M.: Quasi-infinite divisibility of a class of distributions with discrete part. Proc. Amer. Math. Soc. (2023, to appear). [arXiv:2204.09651.](https://arXiv.org/abs/2204.09651) [MR4556212](https://mathscinet.ams.org/mathscinet-getitem?mr=4556212)
- [5] Berger, D., Kutlu, M. and Linder, A.: On multivariate quasi-infinitely divisible distributions. A Lifetime of Excersions Through Random Walks and Lévy Processes. A Volume in Honour of Ron Doney's 80th Birthday. L. Chaumont, A.E. Kyprianou (eds.), Progress in Probability **78**. Birkhäuser, 2021, 87–120. [MR4425787](https://mathscinet.ams.org/mathscinet-getitem?mr=4425787)
- [6] Berger, D. and Lindner, A.: A Cramér-Wold device for infinite divisibility of \mathbb{Z}^d -valued distributions. Bernoulli **28** (2) (2022), 1276–1283. [MR4388938](https://mathscinet.ams.org/mathscinet-getitem?mr=4388938)
- [7] Cramér, H. and Wold, H. O.: Some theorems on distribution functions. Journal of The London Mathematical Society, Second Series (1936), 290–294. [MR1574927](https://mathscinet.ams.org/mathscinet-getitem?mr=1574927)
- [8] Dwass, M. and Teicher, H.: On infinitely divisible random vectors. Ann. Math. Statist. **28** (1957), 461–470. [MR0091550](https://mathscinet.ams.org/mathscinet-getitem?mr=0091550)
- [9] Gnedenko, B. V. and Kolmogorov, A. N.: Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Cambridge, 1954. [MR0062975](https://mathscinet.ams.org/mathscinet-getitem?mr=0062975)
- [10] Gröchenig, K.: Wiener's lemma: Theme and variations. An introduction to spectral invariance and its applications. In: Four Short Courses on Harmonic Analysis: Wavelets, Frames, Time-frequency Methods, and Applications to Signal and Image Analysis. B. Forster and P. Massopust (eds.), Birkhäuser, Basel, 2010. [MR2640516](https://mathscinet.ams.org/mathscinet-getitem?mr=2640516)
- [11] Ibragimov, I. A.: On a problem of C.R. Rao on i.d. laws. Sankhya A **34** (1972), 447–448. [MR0331464](https://mathscinet.ams.org/mathscinet-getitem?mr=0331464)
- [12] Khartov, A. A.: Compactness criteria for quasi-infinitely divisible distributions on the integers. Stat. Probab. Lett. **153** (2019), 1–6. [MR3957474](https://mathscinet.ams.org/mathscinet-getitem?mr=3957474)
- [13] Khartov, A. A.: A criterion of quasi-infinite divisibility for discrete laws. Stat. Probab. Lett. **185** (2022), 109436. [MR4393935](https://mathscinet.ams.org/mathscinet-getitem?mr=4393935)
- [14] Khartov, A. A.: On weak convergence of quasi-infinitely divisible laws (2022), Pacific J. Math. **322** (2) (2023), 341–367. [MR4592234](https://mathscinet.ams.org/mathscinet-getitem?mr=4592234)
- [15] Khartov, A. A.: On representation of the logarithm for arbitrary characteristic function on segments. Zapiski Nauchnykh Seminarov POMI **510** (2022), 262–281 (in Russian). [MR4503201](https://mathscinet.ams.org/mathscinet-getitem?mr=4503201)
- [16] Levitan, B. M.: Almost Periodic Functions. GITTL, Moscow, 1953 (in Russian). [MR0060629](https://mathscinet.ams.org/mathscinet-getitem?mr=0060629)
- [17] Levitan, B. M. and Zhikov V. V.: Almost Periodic Functions and Differential Equations. Cambridge University Press, Cambridge, 1982. [MR0690064](https://mathscinet.ams.org/mathscinet-getitem?mr=0690064)
- [18] Lindner, A., Pan, L. and Sato, K.: On quasi-infinitely divisible distributions. Trans. of AMS **370** (2018), 8483–8520. [MR3864385](https://mathscinet.ams.org/mathscinet-getitem?mr=3864385)
- [19] Linnik, Yu. V. and Ostrovskii, I. V.: Decomposition of Random Variables and Vectors. Transl. Math. Monog. **48**. AMS, Providence, Rhode Island, 1977. [MR0428382](https://mathscinet.ams.org/mathscinet-getitem?mr=0428382)
- [20] Lukacs, E.: Characteristic Functions. Griffin, London, 1970. [MR0346874](https://mathscinet.ams.org/mathscinet-getitem?mr=0346874)
- [21] Neumann, J. V.: Almost periodic functions in a group. I. Trans. of AMS, **36** (3) (1934), 445–492. [MR1501752](https://mathscinet.ams.org/mathscinet-getitem?mr=1501752)
- [22] Pankov, A. A.: Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations. Kluwer Academic Publishers, Dordrecht, 1990. [MR1120781](https://mathscinet.ams.org/mathscinet-getitem?mr=1120781)
- [23] Passeggeri, P.: Spectral representation of quasi-infinitely divisible processes. Stoch. Process. Appl. **130** (3) (2020), 1735–1791. [MR4058288](https://mathscinet.ams.org/mathscinet-getitem?mr=4058288)
- [24] Perov, A. and Kibenko, A.: Theorem on the argument of the almost periodic function of many variables. Lithuanian Math. J. **7** (3) (1967), 505–508. [MR0228928](https://mathscinet.ams.org/mathscinet-getitem?mr=0228928)

- [25] Samorodnitsky, G. and Taqqu, M. S.: Stable Non-Gaussian Random Processes: Stochastics Models with Infinite Variance. Chapman & Hall, London, 1994. [MR1280932](https://mathscinet.ams.org/mathscinet-getitem?mr=1280932)
- [26] Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge, 2013. [MR3185174](https://mathscinet.ams.org/mathscinet-getitem?mr=3185174)

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- •Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)
- Secure publication [\(LOCKSS](http://en.wikipedia.org/wiki/LOCKSS)¹)
- \bullet Easy interface [\(EJMS](https://vtex.lt/services/ejms-peer-review)²)

Economical model of EJP-ECP

- \bullet Non profit, sponsored by [IMS](http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics)³, [BS](http://en.wikipedia.org/wiki/Bernoulli_Society)⁴, [ProjectEuclid](https://projecteuclid.org/)⁵
- Purely electronic

Help keep the journal free and vigorous

- \bullet Donate to the IMS open access fund⁶ [\(click here to donate!\)](https://imstat.org/shop/donation/)
- •Submit your best articles to EJP-ECP
- •Choose EJP-ECP over for-profit journals

¹LOCKSS: Lots of Copies Keep Stuff Safe <http://www.lockss.org/>

²EJMS: Electronic Journal Management System: <https://vtex.lt/services/ejms-peer-review/>

³ IMS: Institute of Mathematical Statistics <http://www.imstat.org/>

⁴BS: Bernoulli Society <http://www.bernoulli-society.org/>

⁵Project Euclid: <https://projecteuclid.org/>

⁶ IMS Open Access Fund: <https://imstat.org/shop/donation/>