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Abstract

We propose a new class of Markov chain Monte Carlo methods, called k-polar slice
sampling (k-PSS), as a technical tool that interpolates between and extrapolates
beyond uniform and polar slice sampling. By examining Wasserstein contraction
rates and spectral gaps of k-PSS, we obtain strong quantitative results regarding
its performance for different kinds of target distributions. Because k-PSS contains
uniform and polar slice sampling as special cases, our results significantly advance the
theoretical understanding of both of these methods. In particular, we prove realistic
estimates of the convergence rates of uniform slice sampling for arbitrary multivariate
Gaussian distributions on the one hand, and near-arbitrary multivariate t-distributions
on the other. Furthermore, our results suggest that for heavy-tailed distributions,
polar slice sampling performs dimension-independently well, whereas uniform slice
sampling suffers a rather strong curse of dimensionality.
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1 Introduction

Sampling from intractable distributions is a ubiquitous problem in all fields that
rely on probabilistic modeling. One of the standard approaches to solve this problem
is Markov chain Monte Carlo (MCMC), which works by constructing a Markov chain
whose iterate distribution converges to the target distribution as the chain progresses.
Samples from such a chain are then used as approximate samples from the target.
Although there are many heuristics for assessing the quality of such samples, there is
no general way to definitively determine how well they are suited for estimating an
unknown target quantity. It is therefore of vital importance to gain a good understanding
of the theoretical properties of MCMC methods, as these provide more reliable, general
insights than heuristics and numerical results.
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Wasserstein contraction and spectral gap of slice sampling revisited

In this paper, we focus on a class of MCMC methods called slice sampling, which
originated in physics research and was popularized in statistics in [1]. We view slice
sampling as being defined for distributions on (Rd,B(Rd)), where B(G) denotes the Borel-
sigma algebra of a set G, though we note that recent advances have also extended the
concept to the d-sphere [4]. More specifically, the setting we assume is the following. Let
ν be a probability measure (in the following often just called distribution) on (Rd,B(Rd)).
Suppose that ν has a potentially unnormalized Lebesgue density, that is, a measurable
function η : Rd → R+ := [0,∞[ such that

ν(A) =

∫
A
η(x)dx∫

Rd
η(x)dx

, A ∈ B(Rd).

We assume that we can evaluate η at any given point x ∈ Rd but that its normalization
constant (the denominator in the above expression) is unknown. Slice sampling for ν
further assumes η to be factorized into measurable functions ηi : Rd → R+, i = 0, 1, such
that

η(x) = η0(x)η1(x), x ∈ Rd. (1.1)

Given an initial state x0 ∈ Rd, slice sampling for ν then generates a realization (xn)n∈N0

of a Markov chain (Xn)n∈N0
with invariant distribution ν by setting X0 := x0 and using

the following steps to perform the transition from Xn−1 = xn−1 to Xn = xn:

1. Sample Tn ∼ U( ]0, η1(xn−1)[), call the result tn.

2. Sample Xn ∼ µtn , where µtn is defined by1.

µt(A) :=

∫
A
η0(x)I(η1(x) > t)dx∫

Rd
η0(x)I(η1(x) > t)dx

, A ∈ B(Rd), t > 0,

call the result xn.

Following [17], we refer to step 2 as the X-update of the slice sampling transition. Intu-
itively, the X-update samples the new state from the distribution whose (unnormalized)
density is the first factor η0 restricted to the super-level set (or slice) w.r.t. the second
factor η1 at the current threshold tn.

The above definition is frequently restricted by specifying a mapping that determines
for each target density η the factorization (1.1), thereby defining what we call a slice
sampling variant. In our view, only three such variants are currently practically relevant.
First there is uniform slice sampling (USS), which uses the factorization

η0(x) := 1, η1(x) := η(x).

Then there is polar slice sampling (PSS), proposed in [13], which uses

η0(x) := ‖x‖1−d, η1(x) := ‖x‖d−1
η(x)

for x 6= 0, where ‖·‖ denotes the Euclidean norm on Rd. Finally, there is Gaussian slice
sampling (GSS), which sets η0 to the density of a multivariate Gaussian and η1 to η

divided by it.
As all three variants lead to an X-update that is typically infeasible to implement,

in practice one uses methods that mimic these “ideal” formulations while enabling
computationally efficient implementation. For USS, one can use the stepping-out and

1We denote by I(cond) an indicator that takes the value 1 whenever the condition cond is satisfied and the
value 0 otherwise.
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shrinkage procedures proposed in [9], for PSS the Gibbsian polar slice sampling frame-
work recently developed in [17], and for GSS the elliptical slice sampling framework
proposed in [7]. Of course theoretical results for the ideal methods do not readily yield
results for their efficient approximations. However, for USS it has been shown in [6] that
some theoretical results, even quantitative ones, can be explicitly transferred from the
ideal to the efficient version. We are cautiously optimistic that analogous theories can
also be developed for PSS and GSS, making it all the more worthwhile to investigate the
theoretical properties of the ideal methods.

Though we are of course also interested in GSS, we focus our efforts in this paper
exclusively on the other two methods, USS and PSS. Moreover, we observe that these
two can often be analyzed simultaneously. To this end, we propose a new class of
slice sampling variants, which we term k-polar slice sampling (k-PSS). For any fixed
k ∈ R>0 := ]0,∞[, we define k-PSS as slice sampling with factorization

η0(x) := ηk,0(x) := ‖x‖k−d,

η1(x) := ηk,1(x) := ‖x‖d−kη(x)

for x 6= 0. Clearly, k-PSS coincides with PSS for k = 1 and with USS for k = d. For
1 ≤ k ≤ d, it continuously interpolates between USS and PSS, and for k < 1 and k > d

it extrapolates beyond them in both directions. As we will see in the following, the
quantitative theoretical properties of k-PSS often also interpolate between those of USS
and PSS. However, we emphasize right away that we do not deem the k-PSS methods
apart from USS and PSS to be useful in actual practical use as samplers. Rather, we
view them as technical tools that we can use to prove theoretical results, and, as we
shall see later on (in Theorem 3.3), their use in this regard goes far beyond unifying the
analysis of USS and PSS.

Let us now briefly mention some related work. It is well-known that slice sampling
is geometrically ergodic (essentially meaning that the total variation distance between
iterate distribution and target distribution converges geometrically to zero) under
extremely weak assumptions [12]. However, this is a purely qualitative result, as the
convergence can in practice still be arbitrarily slow, and – unsurprisingly – the known
quantitative results are much less extensive. Some quantitative convergence guarantees
were already established in [12], but only under fairly restrictive conditions, including
on the initial value, and the guarantees given there were, in retrospect, far from sharp.
Realistic quantitative results on slice sampling are a comparatively recent achievement.
In [8], the authors examine Wasserstein contraction rates and spectral gaps (see below)
of USS and in [15] some of their methodology is extended to general slice sampling
and a dimension-independent lower bound on the spectral gap of PSS, for rotationally
invariant targets that are log-concave along rays emanating from the origin, is proven.

Following the example of [8] and [15], we also focus on Wasserstein contraction rates
and spectral gaps as quantities of interest in order to arrive at realistic quantitative
results. We now briefly introduce and motivate both of these quantities.

Let (G,G) be a measurable space and let P be a Markov kernel on G×G with invariant
distribution ν ∈ P(G), where P(G) denotes the set of probability measures on (G,G).
Define the L2-space belonging to ν as

L2(ν) := {g : G→ R : ‖g‖2,ν <∞},

where

‖g‖2,ν :=

(∫
G

g(x)2ν(dx)

)1/2

.
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Observe that P acting on measurable functions g : G→ R via g 7→ Pg with

Pg(x) :=

∫
G

g(y)P (x,dy), x ∈ G

defines a linear operator mapping L2(ν)→ L2(ν). Note further that by interpreting ν as
a Markov kernel that is constant in its first argument, ν also defines a linear operator
L2(ν)→ L2(ν). This framing allows us to define the spectral gap of P as

gapν(P ) := 1− ‖P − ν‖L2(ν)→L2(ν),

where ‖·‖L2(ν)→L2(ν) is the operator norm w.r.t. ‖·‖2,ν .
The result regarding spectral gaps that one is typically interested in is a lower bound,

i.e. a statement of the form gapν(P ) ≥ δ for some δ > 0 (in the following simply called
spectral gap estimate). The reason for this is that there are various useful implications
of such a bound. Suppose gapν(P ) ≥ 1− ρ for some ρ ∈ ]0, 1[, then it is well-known, see
e.g. [10, Lemma 2], that for any initial distribution ξ ∈ P(G) with ξ � ν one has

dtv(ξPn, ν) ≤ ρn
∥∥∥∥dξ

dν
− 1

∥∥∥∥
2,ν

, n ∈ N0, (1.2)

where dξ
dν denotes the Radon-Nikodym derivative of ξ w.r.t. ν and dtv the total variation

distance, which for ξ1, ξ2 ∈ P(G) is defined as

dtv(ξ1, ξ2) := sup
A∈G
|ξ1(A)− ξ2(A)|.

Note that ξPn is the distribution of Xn when (Xn)n∈N0
is a Markov chain with transition

kernel P and initial distributionX0 ∼ ξ, see [2, Theorem 1.3.4]. Aside from this geometric
convergence result, consequences of a spectral gap estimate include a quantitative bound
on the error of Monte Carlo integration [14, Theorem 3.41], a central limit theorem [5]
and an estimate of the central limit theorem’s asymptotic variance [3].

The second kind of quantity we examine is the Wasserstein contraction rate. To
express it, denote byW the Wasserstein 1-distance, which for ξ1, ξ2 ∈ P(Rd) is defined
as

W(ξ1, ξ2) := inf
γ∈Γ(ξ1,ξ2)

∫
Rd×Rd

‖x− y‖γ(dx,dy),

where Γ(ξ1, ξ2) denotes the set of couplings of ξ1 and ξ2,

Γ(ξ1, ξ2) := {γ ∈ P(Rd ×Rd) | ∀A ∈ B(Rd) : γ(A×Rd) = ξ1(A), γ(Rd ×A) = ξ2(A)}.

Suppose now that G ⊆ Rd is a non-empty, closed set and let P be a Markov kernel on
G× B(G). Then the Dobrushin coefficient Dob(P ) of P is given by

Dob(P ) = sup
x,y∈G, x 6=y

W(P (x, ·), P (y, ·))
‖x− y‖

,

see [2, Definition 20.3.1, Lemma 20.3.2]. Given this definition, P is called Wasserstein
contractive if Dob(P ) < 1. Moreover, it is called Wasserstein contractive with rate ρ if
Dob(P ) ≤ ρ < 1.

There are two main reasons why Wasserstein contraction is an extremely desirable
property. The first is that it implies a very intuitive convergence result w.r.t. the Wasser-
stein distance: Suppose that P is Wasserstein contractive with rate ρ and has ν ∈ P(G)

as an invariant distribution, then for any initial distribution ξ ∈ P(G) one has

W(ξPn, ν) ≤ ρnW(ξ, ν), n ∈ N0,
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see [2, Theorem 20.3.4]. In other words, one has a bound for the error expressed as
the Wasserstein distance between iterate and target distribution, and that error bound
decreases by the factor ρ with each step of the Markov chain, with its coefficient explicitly
given byW(ξ, ν), the Wasserstein distance between initial and target distribution.

The second reason why Wasserstein contraction is particularly desirable is that it is
a strictly more powerful result than a spectral gap estimate. That is, if P is reversible
w.r.t. ν, and if additionally ν has finite second moment, meaning

∫
Rd
‖x‖2ν(dx) <∞, then

one has
Dob(P ) ≤ ρ ⇒ gapν(P ) ≥ 1− ρ, (1.3)

for any ρ < 1, see [11, Proposition 30]. Hence all the implications of a spectral gap
estimate that we mentioned above are also implications of a kernel being Wasserstein
contractive.

Given that Wasserstein contraction is a strictly more powerful result than a spectral
gap, it is unsurprising that the former is also much harder to establish than the latter.
Accordingly, we begin our investigation by proving Wasserstein contraction of slice
sampling wherever feasible. First, we generalize the contraction result of [8] from
USS to k-PSS, proving that k-PSS is Wasserstein contractive for all target densities
η for which the factors ηk,1 are rotationally invariant and log-concave. Afterwards,
we investigate the Wasserstein contraction rates of slice sampling for heavy-tailed
distributions. Here we end up computing precise rates for, on the one hand, USS applied
to standard multivariate t-distributions and, on the other hand, k-PSS applied to a class of
distributions that mimics the aforementioned one, while being much simpler to analyze.

We then augment our contraction results by proving spectral gap estimates for
broader classes of distributions, even some that are rotationally asymmetric (unlike
any of those for which contraction results on slice sampling are available). To enable
more elegant and often also further-reaching results, we begin this part of the paper
by improving a theorem that can provide realistic estimates of the spectral gap of slice
sampling. We note here that the best previously known version of this theorem was
proven in [15], whereas the original theorem, applying just to USS, was developed in [8].
Given this improved theorem, we first consider k-PSS for classes of rotationally invariant
target densities η with factors ηk,1 of varying degrees of log-concavity, even reaching
into log-convexity. We then examine k-PSS for a class of rotationally asymmetric targets,
which allows us in particular to prove a realistic spectral gap estimate for USS applied
to arbitrary multivariate Gaussian distributions. Finally, we consider USS in isolation
once more to augment the aforementioned contraction result for standard multivariate
t-distributions by a spectral gap estimate for near-arbitrary multivariate t-distributions.

We take this opportunity to emphasize that our interest in the quantitative prop-
erties of slice sampling for standard distributions (such as Gaussians or multivariate
t-distributions) does not reflect a desire to actually apply slice sampling to such targets
in practice. Even if strong guarantees regarding the performance of slice sampling are
available, standard methods to directly generate samples from these tractable targets
(i.e. ways to suitably transform samples from the uniform distribution) would still be
substantially more efficient. Rather, we view the standard distributions we often con-
sider in this paper as proxies for intractable target distributions that share some of the
standard distributions’ properties (e.g. their tail behavior). We then expect our results
on the performance of slice sampling for standard targets to be indicative, to some
extent, of their performance for these somehow similar intractable targets. Of course
this then further needs to carry over to the performance of the efficiently implementable
approximations of the slice samplers we analyze here, see our remarks on this above.

The paper is structured as follows. Section 2 details our investigation of the Wasser-
stein contraction rates of slice sampling for different classes of target distributions.
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Section 3 establishes a theorem that allows estimating the spectral gap of slice sampling,
and then discusses several applications of said theorem. We conclude each subsection
with a detailed discussion of our results. Some auxiliary results are stated and (if nec-
essary) proven in Appendix A. Finally, Appendix B gives some numerical results that
strongly suggest the sharpness of one of our spectral gap results, for which we were
unable to establish this sharpness theoretically.

Throughout the paper, we use a few non-notational conventions: When talking about
densities, we mean densities with respect to the Lebesgue measure, unless stated
otherwise. We do not require densities to be normalized2 and will instead explicitly
emphasize whenever a density is required or constructed to be normalized. Finally, it
should be noted that we view a probability distribution and its density as a fixed unit,
ignoring the ambiguous normalization and the fact that non-negative functions which
coincide with the density almost everywhere are also densities for the same distribution.
Hence, whenever we introduce a distribution with a specific density and talk about a
sampler for this distribution, we actually mean the sampler for the density we specified.

2 Wasserstein contraction results

2.1 Targets with log-concave factors

Our first result establishes, for any k ∈ R>0, Wasserstein contraction of k-PSS for a
class of distributions Dk(Rd) that is defined as follows. By this we generalize a result of
[8] that proved Wasserstein contraction of USS for all rotationally invariant, log-concave
target densities.

Definition 2.1. For any k ∈ R>0 we define a class Dk(Rd) ⊂ P(Rd) of distributions by
the constraint that each ν ∈ Dk(Rd) must have a density η of the form

η(x) = ‖x‖k−d exp(−φ(‖x‖))1 ]0,κ[(‖x‖), (2.1)

where κ ∈ ]0,∞] and φ : ]0, κ[→ R is strictly increasing and convex.

We state our Wasserstein contraction result and prove it using auxiliary results that
we provide in Appendix A.

Theorem 2.2. For any k > 0 and ν ∈ Dk(Rd), k-PSS for ν is Wasserstein contractive
with rate ρ = k/(k + 1).

Proof. For the entirety of the proof, arbitrarily fix k > 0 and ν ∈ Dk(Rd) with density η as
in (2.1). To estimate the Wasserstein distance between two instances of k-PSS currently
positioned at different points x, y ∈ Rd, we construct a coupling between the respective
transition kernels. To this end, we begin by analyzing how the slice sampling procedure
simplifies for k-PSS on Dk(Rd). First of all, note that in this setting we have

ηk,1(x) = exp(−φ(‖x‖))1 ]0,κ[(‖x‖). (2.2)

Now observe that3

sup ηk,1 := sup
0 6=x∈Rd

ηk,1(x) = exp(− inf φ).

Hence we only need to consider values smaller than sup ηk,1 for the variable t standing
in for the auxiliary variable Tn in the following. Next, observe that

inf ηk,1 := inf
x∈Rd, ‖x‖∈ ]0,κ[

ηk,1(x) =

{
exp(− supφ) κ <∞,
0 κ =∞.

2In our view, this admittedly somewhat unconventional nomenclature is justified by our using the term
density, rather than probability density function, as only the latter explicitly implies normalization.

3See Lemma A.3 for notation.
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We now characterize the slices of k-PSS for ν. For t ∈ ]0, inf ηk,1] and x ∈ Rd, one has

ηk,1(x) > t ⇔ ‖x‖ ∈ ]0, κ[.

For t ∈ ] inf ηk,1, sup ηk,1[ and 0 6= x ∈ Rd, we get4

ηk,1(x) > t ⇔ exp(−φ(‖x‖)) > t and ‖x‖ < κ

⇔ φ(‖x‖) < − log t and ‖x‖ < κ

⇔ ‖x‖ < φ−1(− log t) and ‖x‖ < κ

⇔ ‖x‖ < φ−1(− log t),

where the third equivalence relies on φ−1 being strictly increasing and the fourth on
it mapping to Dφ = ]0, κ[, s.t. in particular φ−1 < κ. Using the notation introduced in
Lemma A.4, we can summarize these two cases as

ηk,1(x) > t ⇔ ‖x‖ ∈ ]0, φ̂−1(− log t)[ (2.3)

for any t ∈ ]0, sup ηk,1[. With this we can write

ηk,0(x)I(ηk,1(x) > t) = ‖x‖k−d1 ]0,φ̂−1(− log t)[(‖x‖) = h1,t(‖x‖) (2.4)

for x 6= 0, where we define h1,t : R+ → R+ by

h1,t(r) := rk−d1 ]0,φ̂−1(− log t)[(r).

Denote by λd the Lebesgue measure on (Rd,B(Rd)), by Sd−1 := {x ∈ Rd : ‖x‖ = 1}
the (d− 1)-sphere and by σd the surface measure on (Sd−1,B(Sd−1)), that is, the unique
rotationally invariant measure whose total mass ωd := σd(S

d−1) equals the surface area
of Sd−1.

Then, by (2.4) and Corollary A.2, the X-update of k-PSS, given Tn = t, can be
implemented in polar coordinates as Xn := Rn Θn by sampling (Rn,Θn) from the joint
distribution with density

(r, θ) 7→ h2,t(r) := rd−1h1,t(r)1R+
(r) = rk−11 ]0,φ̂−1(− log t)[(r)

w.r.t. λ1 ⊗ σd. As this density is constant in θ, it can in turn be implemented by inde-
pendently sampling Θn from U(Sd−1) and Rn from the distribution with density h2,t. To
couple the sampling of Rn, we apply the inversion method (also called inverse transform
sampling). For that we first need to compute the c.d.f. Ft corresponding to density h2,t.

Let s ∈ [0, φ̂−1(− log t)], then

Ft(s) =

∫ s
−∞ h2,t(r)dr∫∞
−∞ h2,t(r)dr

=

∫ s
0
rk−1dr∫ φ̂−1(− log t)

0
rk−1dr

=

[
1
k r
k
]s
0[

1
k r
k
]φ̂−1(− log t)

0

=

(
s

φ̂−1(− log t)

)k
.

From this it is easy to see that Ft restricted to [0, φ̂−1(− log t)] maps bijectively onto [0, 1]

and that the inverse F−1
t : [0, 1]→ [0, φ̂−1(− log t)] of this restriction is given by

F−1
t (u) = φ̂−1(− log t)u1/k, u ∈ [0, 1].

Denote by P the transition kernel of k-PSS for ν and fix x, y ∈ Rd with ‖x‖, ‖y‖ ∈ ]0, κ[.
Intuitively, we can now couple the sampling from P (x, ·) and P (y, ·) as follows:

4See Lemma A.3 for context on φ−1.
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1. Sample U1 ∼ U( ]0, 1[), call the result u1 and set tx := u1ηk,1(x) and ty := u1ηk,1(y).

2. Sample U2 ∼ U( ]0, 1[), call the result u2 and set rx := F−1
tx (u2) and ry := F−1

ty (u2).

3. Sample Θ ∼ U(Sd−1), call the result θ and return rxθ and ryθ as the new samples.

This corresponds to the coupling γx,y determined by

γx,y(A×B) := ω−1
d

∫ 1

0

∫ 1

0

∫
Sd−1

1A

(
F−1
u1ηk,1(x)(u2)θ

)
· 1B

(
F−1
u1ηk,1(y)(u2)θ

)
σd(dθ)du2du1

for A,B ∈ B(Rd). Using this coupling, we can estimate the Wasserstein distance as

W(P (x, ·), P (y, ·))

≤
∫
Rd×Rd

‖x̃− ỹ‖γx,y(dx̃× dỹ)

= ω−1
d

∫ 1

0

∫ 1

0

∫
Sd−1

∥∥∥F−1
u1ηk,1(x)(u2)θ − F−1

u1ηk,1(y)(u2)θ
∥∥∥σd(dθ)du2du1

=

∫ 1

0

∫ 1

0

∣∣∣F−1
u1ηk,1(x)(u2)− F−1

u1ηk,1(y)(u2)
∣∣∣du2du1

=

∫ 1

0

∫ 1

0

∣∣∣φ̂−1
(
− log(u1ηk,1(x))

)
− φ̂−1

(
− log(u1ηk,1(y))

)∣∣∣u1/k
2 du2du1

=
k

k + 1

∫ 1

0

∣∣∣φ̂−1
(
φ(‖x‖)− log u1

)
− φ̂−1

(
φ(‖y‖)− log u1

)∣∣∣du1

≤ k

k + 1
|‖x‖ − ‖y‖|,

where we use∫ 1

0

u1/pdu =

[
1

1 + 1/p
u1+1/p

]1

0

=
1

1 + 1/p
=

p

p+ 1
, p ∈ R \ {−1} (2.5)

to compute the u2-integral and apply Lemma A.4 and monotonicity of the Lebesgue
integral to obtain the inequality in the last line. Furthermore, by triangle inequality of
the Euclidean norm, one has |‖x‖ − ‖y‖| ≤ ‖x− y‖, which is sharp whenever x and y lie
on the same ray emanating from the origin. Thus we now have

Dob(P ) = sup
x 6=y

W(P (x, ·), P (y, ·))
‖x− y‖

≤ sup
x 6=y

k
k+1 |‖x‖ − ‖y‖|
‖x− y‖

=
k

k + 1
,

proving that P is Wasserstein contractive with rate ρ = k/(k + 1).

Discussion 2.3.

(a) We can alternatively state Theorem 2.2 as follows. If ν ∈ P(Rd) is a distribution with
density η and k > 0 a constant such that ηk,1 is rotationally invariant and log-concave
(meaning that it takes the shape (2.2)), then k-PSS for ν is Wasserstein contractive
with rate ρ = k/(k+ 1). This interpretation would become particularly relevant if one
were to view the function ηk,0 as an (improper) prior and ask about the performance
of the corresponding slice sampler for rotationally invariant, log-concave likelihood
functions ηk,1. An analogous interpretation also makes sense for two of our later
results, Theorems 3.5 and 3.7.
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(b) Letting k = d in Theorem 2.2, we retrieve precisely [8, Theorem 2.1], the result we
are generalizing, which established Wasserstein contraction with rate ρ = d/(d+ 1)

of USS for rotationally invariant, log-concave densities.

(c) With k = 1, Theorem 2.2 establishes Wasserstein contraction of PSS, for which, to
our knowledge, no such result had been proven yet, with rate ρ = 1/2. Though the
property is only shown for densities that have a pole of order (d− 1) at zero, we still
deem it noteworthy that the contraction rate is 1/2, regardless of the dimension d of
the underlying space Rd (in contrast to the result for USS).

(d) Furthermore, we make note of the fact that the densities for which Wasserstein
contraction of PSS is proven are not necessarily log-concave, not even along rays
emanating from the origin. For example, with κ = ∞ and φ(r) := α r for an α > 0,
we get log η(rθ) = (1− d) log r − α r for r ∈ R>0, θ ∈ Sd−1, which for d > 1 is actually
strictly convex in r. This is particularly noteworthy because even the broadest
previously known quantitative convergence result for PSS [13, Theorem 7] required
log-concavity (at least along rays emanating from the origin). In this sense, our
result broadens the range of target distributions in which quantitative convergence
guarantees for PSS are available. We will further extend this range in the following
subsection.

(e) Finally, but perhaps most importantly, as k-PSS continuously interpolates between
USS and PSS through the parameter k, the contraction rate ρ = k/(k + 1) provided
by Theorem 2.2 interpolates accordingly, which shows the interpolation between the
samplers to be meaningful in the context of convergence rates.

2.2 Heavy-tailed targets

Some numerical experiments recently published in [17] suggest that PSS performs
extremely well for heavy-tailed target distributions in high dimension (provided that
they are centered on the origin), whereas USS performs very poorly for the same
targets. However, as far as we can tell, no quantitative theoretical results are avail-
able to substantiate this hypothesis. Even beyond these specifics, the quantitative
theoretical properties of slice sampling for heavy-tailed targets appear to be entirely
unexplored.

We therefore deem it worthwhile to detail our investigation of the theoretical behavior
of PSS and USS for certain – admittedly somewhat inflexible – classes of heavy-tailed
targets. The results we state and prove in this section, Theorems 2.4 and 2.6, as well as
Propositions 2.5 and 2.7, should serve to provide some first answers about the samplers’
properties and may well inspire future work on the topic.

Arguably the textbook example of multivariate heavy-tailed distributions are the
multivariate t-distributions, which in their standard form have unnormalized densities
of the form (2.6) on Rd, where m > 0 is called the degrees of freedom parameter.
Considering only USS, it is feasible to analyze the behavior for (2.6), and we obtain the
following result.

Theorem 2.4. Let ν ∈ P(Rd) be a distribution with density η given by

η(x) =

(
1 +

1

m
‖x‖2

)−(d+m)/2

, (2.6)

where m ∈ ]1,∞[. Then USS for ν is Wasserstein contractive with rate

ρ =
d(d+m)

(d+ 1)(d+m− 1)
.
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Proof. We begin by observing for x ∈ Rd, t > 0, that

η(x) > t ⇔ 1 +
1

m
‖x‖2 < t−2/(d+m)

⇔ ‖x‖ <
√
mt−2/(d+m) −m.

Thus the level set at threshold t is

{x ∈ Rd | η(x) > t} = B(
√
mt−2/(d+m) −m),

where B(κ) denotes the open zero-centered Euclidean ball of radius κ, for any κ > 0.
Note that for USS the X-update consists of uniform sampling from the slice. Moreover,
it is well-known (and also a straightforward consequence of Corollary A.2 and inversion
method) that if κ > 0, U ∼ U([0, 1[) and Θ ∼ U(Sd−1), then U1/dκΘ ∼ U(B(κ)). We make
use of this in the construction of our coupling.

Denote by P the transition kernel of USS for ν. For any x, y ∈ Rd, we intuitively
couple P (x, ·) and P (y, ·) as follows:

1. Sample U1 ∼ U( ]0, 1[), call the result u1 and set

tx := u1η(x) = u1

(
1 +

1

m
‖x‖2

)−(d+m)/2

,

ty := u1η(y) = u1

(
1 +

1

m
‖y‖2

)−(d+m)/2

.

2. Sample U2 ∼ U( [0, 1[), call the result u2 and set

rx(u1, u2) := u
1/d
2

√
mt
−2/(d+m)
x −m = u

1/d
2

√
mu
−2/(d+m)
1

(
1 + 1

m‖x‖
2
)
−m

= u
1/d
2

√(
u
−1/(d+m)
1 ‖x‖

)2

+mu
−2/(d+m)
1 −m,

ry(u1, u2) := u
1/d
2

√(
u
−1/(d+m)
1 ‖y‖

)2

+mu
−2/(d+m)
1 −m.

3. Sample Θ ∼ U(Sd−1), call the result θ and set x̃ := rx(u1, u2)θ and ỹ := ry(u1, u2)θ.

4. Return x̃ and ỹ as the new states

This corresponds to the coupling γx,y determined by

γx,y(A×B) = ω−1
d

∫ 1

0

∫ 1

0

∫
Sd−1

1A(rx(u1, u2)θ)1B(ry(u1, u2)θ)σd(dθ)du2du1 (2.7)

for A,B ∈ B(Rd). Hence we obtain

W(P (x, ·), P (y, ·)) ≤
∫
Rd×Rd

‖x̃− ỹ‖γx,y(dx̃× dỹ)

= ω−1
d

∫ 1

0

∫ 1

0

∫
Sd−1

‖rx(u1, u2)θ − ry(u1, u2)θ‖σd(dθ)du2du1

=

∫ 1

0

∫ 1

0

|rx(u1, u2)− ry(u1, u2)|du2du1

=

∫ 1

0

u
1/d
2 du2 ·

∫ 1

0

∣∣∣∣
√(

u
−1/(d+m)
1 ‖x‖

)2

+mu
−2/(d+m)
1 −m
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−
√(

u
−1/(d+m)
1 ‖y‖

)2

+mu
−2/(d+m)
1 −m

∣∣∣∣du1

≤
∫ 1

0

u
1/d
2 du2 ·

∫ 1

0

∣∣∣u−1/(d+m)
1 ‖x‖ − u−1/(d+m)

1 ‖y‖
∣∣∣du1

=
d

d+ 1
· d+m

d+m− 1
· |‖x‖ − ‖y‖|.

Note that, somewhat analogous to the proof of Theorem 2.2, the second inequality
follows by Lemma A.4, here applied with φ(s) := s2, and monotonicity of the Lebesgue
integral. The equality in the last line follows by (2.5), applied with p = d and p = −(d+m).
By the same arguments as in Theorem 2.2, the above estimation yields our claim.

To demonstrate the sensitivity of our estimations in Theorem 2.4, we complement
them by the following sharpness result.

Proposition 2.5. The contraction rate estimate provided by Theorem 2.4 is sharp. That
is, for any m > 1 the transition kernel P of USS for (2.6) satisfies

Dob(P ) =
d(d+m)

(d+ 1)(d+m− 1)
. (2.8)

Proof. Theorem 2.4 shows (2.8) with “≤” in place of equality. Thus it only remains to
show “≥”. For this we make use of the Kantorovich-Rubinstein theorem [18, Section
1.2], which states that

W(P (x, ·), P (y, ·)) = sup
‖g‖Lip≤1

∣∣∣∣∫
Rd
g(z)P (x,dz)−

∫
Rd
g(z)P (y,dz)

∣∣∣∣,
where

‖g‖Lip := sup
z1 6=z2∈Rd

|g(z1)− g(z2)|
‖z1 − z2‖

.

Note that, by triangle inequality of ‖·‖, for g := ‖·‖ one has ‖g‖Lip = 1.
The analysis in the proof of Theorem 2.4 shows

P (x,A) = ω−1
d

∫ 1

0

∫ 1

0

∫
Sd−1

1A(rx(u1, u2)θ)σd(dθ)du2du1,

so that ∫
Rd
‖z‖P (x,dz) = ω−1

d

∫ 1

0

∫ 1

0

∫
Sd−1

‖rx(u1, u2)θ‖σd(dθ)du2du1

=

∫ 1

0

∫ 1

0

rx(u1, u2)du2du1

=
d

d+ 1

∫ 1

0

√(
u
−1/(d+m)
1 ‖x‖

)2

+mu
−2/(d+m)
1 −m du1.

We now consider the points x = rθ0, y = 1
2rθ0 for varying r ∈ R+ and arbitrary but fixed

θ0 ∈ Sd−1. By the Kantorovich-Rubinstein theorem, we obtain

Dob(P ) ≥ sup
x 6=y

∣∣∫
Rd
‖z‖P (x,dz)−

∫
Rd
‖z‖P (y,dz)

∣∣
‖x− y‖

≥ lim
r→∞

∣∣∫
Rd
‖z‖P (rθ0,dz)−

∫
Rd
‖z‖P ( 1

2rθ0,dz)
∣∣∥∥rθ0 − 1

2rθ0

∥∥
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=
2d

d+ 1
lim
r→∞

∣∣∣∣ ∫ 1

0

√(
u
−1/(d+m)
1

)2

+
mu
−2/(d+m)
1 −m

r2
du1

−
∫ 1

0

√(
1

2
u
−1/(d+m)
1

)2

+
mu
−2/(d+m)
1 −m

r2
du1

∣∣∣∣
=

2d

d+ 1

∣∣∣∣∫ 1

0

(
u
−1/(d+m)
1 − 1

2
u
−1/(d+m)
1

)
du1

∣∣∣∣ =
d

d+ 1

∫ 1

0

u
−1/(d+m)
1 du1

=
d

d+ 1
· d+m

d+m− 1
,

which is precisely what we set out to prove. Note that the limes can be pulled into the
integrals by the monotone convergence theorem.

Unfortunately, for k-PSS besides USS, so in particular for PSS, the density factors
ηk,1 for η as in (2.6) have intractable level sets, which prevents us from extending
the analysis of Theorem 2.4 to these cases. However, we may instead consider a
class of distributions that have a simpler structure, while possessing tails asymptotically
equivalent to those of the standard multivariate t-distributions (2.6). Namely, we consider
the target densities (2.9), which also have a parameter m > 0 that serves the same role
as in (2.6). We obtain the following result.

Theorem 2.6. For an ε > 0 let ν ∈ P(Rd \B(ε)) ⊂ P(Rd) be a distribution with density
η given by

η(x) = ‖x‖−(d+m)
I(‖x‖ ≥ ε) (2.9)

for some m > 1. Then k-PSS for ν is Wasserstein contractive with rate

ρ =
k(k +m)

(k + 1)(k +m− 1)

for any k ≥ 1.

Proof. Arbitrarily fix k ≥ 1. Note that for any r ≥ ε and θ ∈ Sd−1, the distribution-
dependent factor of the k-PSS factorization becomes ηk,1(rθ) = r−(k+m). Thus, for any
θ ∈ Sd−1 and t ∈ ]0, ε−(k+m)[, we get

{r ∈ R+ | ηk,1(rθ) > t} = [ε, t−1/(k+m)[.

As in the proof of Theorem 2.2, we decompose k-PSS into polar coordinates and couple
the sampling of the radii via inversion method. To this end, we note that by Corollary A.2,
given threshold t, radius and direction need to be drawn from the joint distribution with
density

(r, θ) 7→ rk−1I(ηk,1(rθ) > t)1R+
(r) = rk−11 [ε,t−1/(k+m)[(r).

This corresponds to the c.d.f. Ft that for s ∈ [ε, t−1/(k+m)] is given by

Ft(s) :=

∫ s
ε
rk−1dr∫ t−1/(k+m)

ε
rk−1dr

=

[
1
k r
k
]s
ε[

1
k r
k
]t−1/(k+m)

ε

=
sk − εk

t−k/(k+m) − εk
.

Observe that Ft bijectively maps [ε, t−1/(k+m)] onto [0, 1] and that the inverse F−1
t of this

restriction is given by

F−1
t (u) = ((t−k/(k+m) − εk)u+ εk)1/k = (u t−k/(k+m) + (1− u)εk)1/k, u ∈ [0, 1].

By introducing the trivially invertible auxiliary function h : R+ → R+, r 7→ rk, we may
alternatively write

F−1
t (u) = h−1(h(u1/kt−1/(k+m)) + (1− u)εk).
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Denote by P the transition kernel of k-PSS for ν. For any x, y ∈ Rd \ B(ε), we
intuitively construct our coupling of P (x, ·) and P (y, ·) as follows:

1. Sample U1 ∼ U( ]0, 1[), call the result u1 and set

tx := u1ηk,1(x) = u1‖x‖−(k+m) and ty := u1ηk,1(y) = u1‖y‖−(k+m)
.

2. Sample U2 ∼ U( [0, 1[), call the result u2 and set

rx(u1, u2) := F−1
tx (u2) = h−1(h(u

1/k
2 u

−1/(k+m)
1 ‖x‖) + (1− u2)εk),

ry(u1, u2) := F−1
ty (u2) = h−1(h(u

1/k
2 u

−1/(k+m)
1 ‖y‖) + (1− u2)εk).

3. Sample Θ ∼ U(Sd−1), call the result θ and set x̃ := rx(u1, u2)θ and ỹ := ry(u1, u2)θ.

4. Return x̃ and ỹ as the new states.

The resulting coupling again takes the shape (2.7). Thus, omitting some steps that
coincide with ones in Theorem 2.4, we get

W(P (x, ·), P (y, ·)) ≤
∫ 1

0

∫ 1

0

|rx(u1, u2)− ry(u1, u2)|du2du1

=

∫ 1

0

∫ 1

0

|h−1(h(u
1/k
2 u

−1/(k+m)
1 ‖x‖) + (1− u2)εk)

− h−1(h(u
1/k
2 u

−1/(k+m)
1 ‖y‖) + (1− u2)εk)|du2du1

≤
∫ 1

0

∫ 1

0

∣∣∣u1/k
2 u

−1/(k+m)
1 ‖x‖ − u1/k

2 u
−1/(k+m)
1 ‖x‖

∣∣∣du2du1

=

∫ 1

0

u
1/k
2 du2 ·

∫ 1

0

u
−1/(k+m)
1 du1 · |‖x‖ − ‖y‖|

=
k

k + 1
· k +m

k +m− 1
· |‖x‖ − ‖y‖|.

Note that, as in Theorem 2.4, the second inequality follows by Lemma A.4, here applied
with φ := h, which is convex thanks to our assumption that k ≥ 1. The final equality
again follows by (2.5), here applied with p = k and p = −(k+m). By the same arguments
as in the proof of Theorem 2.2, the above estimation yields our claim.

Analogous to what we did for Theorem 2.4 with Proposition 2.5, we can complement
the estimates of Theorem 2.6 by a sharpness guarantee.

Proposition 2.7. The contraction rate estimate provided by Theorem 2.6 is sharp. That
is, for any m > 1 and k ≥ 1, the transition kernel P of k-PSS for (2.9) satisfies

Dob(P ) =
k(k +m)

(k + 1)(k +m− 1)
.

Proof. This follows by the same proof strategy as Proposition 2.5, though of course
the differing transition kernel causes some of the details to change. For the reader’s
convenience we provide the part of the estimation affected by this (using notation and
auxiliary results from the proof of Theorem 2.6).

Dob(P ) ≥ lim
r→∞

∣∣∫
Rd
‖z‖P (rθ0,dz)−

∫
Rd
‖z‖P ( 1

2rθ0,dz)
∣∣∥∥rθ0 − 1

2rθ0

∥∥
= 2 lim

r→∞

1

r

∣∣∣∣ ∫ 1

0

∫ 1

0

(
h−1(h(u

1/k
2 u

−1/(k+m)
1 r) + (1− u2)εk)
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− h−1(h( 1
2u

1/k
2 u

−1/(k+m)
1 r) + (1− u2)εk)

)
du2du1

∣∣∣∣
= 2 lim

r→∞

∣∣∣∣ ∫ 1

0

∫ 1

0

(
h−1

(
h(u

1/k
2 u

−1/(k+m)
1 ) +

(1− u2)εk

rk

)
− h−1

(
h( 1

2u
1/k
2 u

−1/(k+m)
1 ) +

(1− u2)εk

rk

))
du2du1

∣∣∣∣
= 2

∣∣∣∣∫ 1

0

∫ 1

0

(
u

1/k
2 u

−1/(k+m)
1 − 1

2u
1/k
2 u

−1/(k+m)
1

)
du2du1

∣∣∣∣
=

∫ 1

0

u
1/k
2 du2 ·

∫ 1

0

u
−1/(k+m)
1 du1 =

k

k + 1
· k +m

k +m− 1

Discussion 2.8.

(a) We note that, much like in Theorem 2.2, the contraction rate shown in Theorem 2.6
only depends on the sample space dimension d if k depends on it. Consequently the
rate obtained for PSS (i.e. k = 1), which is

ρ =
m+ 1

2m
,

is dimension-independent. We note that it tends to 1/2 as m→∞.

(b) For USS (i.e. k = d) on the other hand, the rate obtained in both Theorems 2.4
and 2.6 is the dimension-dependent

ρ =
d(d+m)

(d+ 1)(d+m− 1)
. (2.10)

(c) That the contraction rates of USS for (2.6) and (2.9) coincide suggests that the
relevant properties of the former are retained when approximating it by the latter
– especially because, by the sharpness results of Propositions 2.5 and 2.7, we do
not merely have coinciding rate estimates, but actually coinciding rates. We also
note here that the weight the density (2.9) places on its tails can be freely controlled
by the parameter ε > 0 (which does not affect the contraction rates), so that in
particular this tail weight can be matched precisely with that of the corresponding
density (2.6). This further justifies using (2.9) as a proxy for (2.6).

(d) We note that (2.10) tends to d/(d + 1) for any fixed d as m → ∞. This is perhaps
not too surprising, since in the same limit the density (2.6) approaches that of
the multivariate standard normal distribution, which in turn fits (with κ = ∞ and
φ(r) = r2/2) into Theorem 2.2, restricted to USS, where we also obtain Wasserstein
contraction with rate ρ = d/(d+ 1).

(e) On the other hand, for any fixed m, as d → ∞, the rate (2.10) tends to 1. This is
particularly noteworthy to us because we are interested in the behavior of USS in
high dimension. We emphasize that (2.10) deteriorates fairly quickly with increasing
dimension. For example, for target density (2.9) with m = 2 in dimension d = 100,
the contraction rate of PSS is ρ = 3/4, whereas that of USS is ρ ≈ 0.9999.

(f) Our result has the caveat that it does not explain the empirically excellent per-
formance (cf. [17, Section 6.1]) of PSS even for the standard multivariate Cauchy
distribution, which results from (2.6) with m = 1, and thus corresponds in the
simplified setting to (2.9) with m = 1. We emphasize that the issue here is not
an insufficiently detailed analysis: When plugging m = 1 into the proofs of both
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Theorem 2.6 and Proposition 2.7, they yield Dob(P ) = 1, meaning that PSS simply is
not Wasserstein contractive for this target.

This discrepancy between empirical and theoretical results gives reason to believe
that the rates we obtain w.r.t. the Wasserstein distance may not reflect those that
hold (albeit so far unproven) w.r.t. the total variation distance (i.e. corresponding to
spectral gaps).

3 Spectral gap estimates

3.1 General tool

In [8], the authors developed a method to prove quantitative spectral gap estimates
for USS. Roughly speaking, their method yields a spectral gap estimate for USS applied to
a target density % whenever one is able to verify that the level set function ` : R>0 → R+

given by
`(t) := λd({x ∈ Rd | %(x) > t}), t > 0

has certain properties. In [15] this method was adapted to general slice samplers, using
arbitrary factorization % = %0 %1, which necessitated replacing ` by the generalized level
set function `%0,%1 : R>0 → R+ given by

`%0,%1(t) :=

∫
Rd
%0(x)I(%1(x) > t)dx, t > 0. (3.1)

Using the first of our Wasserstein contraction results, Theorem 2.2, we further generalize
the method to allow for more fine-grained and in some cases even further-reaching
results. For this we require the following auxiliary result from [15].

Lemma 3.1. Let d1, d2 ∈ N and let π ∈ P(Rd1) and ν ∈ P(Rd2) be distributions with
densities % and η arbitrarily factorized as % = %0 %1 and η = η0 η1, like in (1.1). Provided
that `%0,%1 ≡ `η0,η1 , i.e. if `%0,%1(t) = `η0,η1(t) for all t ∈ R>0, one has

gapπ(Pπ) = gapν(Pν),

where Pπ and Pν are the transition kernels of slice sampling for π and ν, respectively.

Proof. See [15, Theorem 3.5].

Following both [8] and [15], we conveniently package the conditions one needs to
verify to obtain a spectral gap estimate by defining classes Λk of all functions ` that
satisfy them.

Definition 3.2. For any fixed k ∈ R>0, we define Λk as the class of continuous functions
` : R>0 → R+ for which all of the following hold:

(i) limt→∞ `(t) = 0 and sup ` := limt↘0 `(t) ∈ ]0,∞]

(ii) ` restricted to supp(`) := ]0, sup{t ∈ R>0 | `(t) > 0}[ is strictly decreasing

(iii) the function ]0, (sup `)1/k[→ R>0, r 7→ `−1(rk) is log-concave.

Note that for functions `%0,%1 as in (3.1), it is easy to see that condition (i) is always
satisfied, so we ignore it when trying to show statements of the form `%0,%1 ∈ Λk.

Following [15], we note that the assumed continuity and conditions (i) and (ii) al-
together imply that ` restricted to supp(`) maps bijectively onto ]0, sup `[, which in
turn implies the existence of the inverse function `−1 : ]0, sup `[→ supp(`) used in condi-
tion (iii). It is easy to see that `−1 is also strictly decreasing.

We are now prepared to state and prove our generalization of the method for estab-
lishing quantitative spectral gap estimates.
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Theorem 3.3. Let π ∈ P(Rd) be a distribution with density % factorized as % = %0 %1 like
in (1.1). Suppose that `%0,%1 ∈ Λk for some k ∈ R>0, then

gapπ(Pπ) ≥ 1

k + 1
,

where Pπ is the transition kernel of slice sampling for π.

Proof. Our proof strategy is to construct a distribution ν ∈ Dk(R) with density η, factor-
ized according to k-PSS, such that `ηk,0,ηk,1 ≡ `%0,%1 . Afterwards we just need to apply a
number of earlier results to obtain the claimed estimate. We note that our proof strategy
would also work if we instead constructed a ν ∈ Dk(Rm) for some m > 1 and that we
simply chose m = 1 for simplicity.

Fix any k ∈ R>0 such that `%0,%1 ∈ Λk, set

κ :=

(
k

2
sup `%0,%1

)1/k

∈ ]0,∞]

and define φ : ]0, κ[→ R by

φ(r) := − log

(
`−1
%0,%1

(
2

k
rk
))

.

Note that since φ is a composition of the strictly decreasing functions − log and `−1
%0,%1

and the strictly increasing function r 7→ 2
k r
k, it is strictly increasing. Furthermore, since

φ can also be viewed as a composition of the (by condition (iii) of Definition 3.2) convex
function r 7→ − log `−1

%0,%1(rk) and the linear function r 7→ (2/k)1/k r, it is convex as well.
Hence it satisfies both assumptions of Definition 2.1 and therefore defines a distribution
ν ∈ Dk(R) with density η as in (2.1).

It is easy to verify that the inverse5 φ−1 : Iφ → Dφ of φ is given by

φ−1(s) =

(
k

2
`%0,%1(exp(−s))

)1/k

.

Furthermore, one has

supφ = lim
r↗κ

φ(r) = lim
r′↗sup `%0,%1

− log `−1
%0,%1(r′) = lim

r′′↘0
− log r′′ =∞,

which yields φ̂−1 ≡ φ−1 (see Lemma A.4). Plugging this into (2.3) and the result into the
definition of `ηk,0,ηk,1 , we get

`ηk,0,ηk,1(t) =

∫
R

|x|k−1
1 ]0,φ−1(− log t)[(|x|)dx = 2

∫ φ−1(− log t)

0

rk−1dr

= 2

[
1

k
rk
]φ−1(− log t)

0

=
2

k
φ−1(− log t)k = `%0,%1(t)

for any t ∈ supp(`ηk,0,ηk,1). Note that

sup{t ∈ R>0 | `ηk,0,ηk,1(t) > 0} = exp(− inf φ) = lim
r↘0

exp(−φ(r))

= lim
r↘0

`−1
%0,%1

(
2

k
rk
)

= lim
r′↘0

`−1
%0,%1(r′) = sup{t ∈ R>0 | `%0,%1(t) > 0}

5See Lemma A.3 for nomenclature.
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and therefore supp(`ηk,0,ηk,1) = supp(`%0,%1). Of course we also have

`ηk,0,ηk,1(t) = 0 = `%0,%1(t)

for thresholds t too large to be contained in the supports. Overall, we have now shown
`ηk,0,ηk,1 ≡ `%0,%1 , so that Lemma 3.1 applies.

Denote by Pν the transition kernel of k-PSS for ν. From Theorem 2.2 we know that
Pν is Wasserstein contractive with rate ρ = k/(k + 1). Moreover, it is easy to see that
all distributions in Dk(Rd), for any k > 0 and d ∈ N, have finite second moment, so in
particular this must be true of ν ∈ Dk(R). Hence (1.3) applies and we can conclude the
proof by

gapπ(Pπ)
3.1
= gapν(Pν)

(1.3)
≥ 1

k + 1
.

Discussion 3.4.

(a) We emphasize that Definition 3.2 is virtually identical to [15, Definition 3.7], which
underlies the result we generalize here. The only difference is that the parameter k,
which was restricted to N in [15], is now allowed to take any value in R>0. Hence we
generalize the method from a discrete sequence of classes (Λk)k∈N to a continuous
spectrum (Λk)k∈R>0

that contains the sequence as a subset.

(b) This generalization is made possible by a subtle change in the proof strategy: Where
the corresponding proof in [15] constructed for each k ∈ N a ν that was defined on
Rk and then used the Wasserstein contraction result of [8] for USS in that dimension,
we instead stay in dimension one and use our own contraction result for k-PSS.
Hence the increased flexibility of Theorem 3.3 (w.r.t. the available choices of k)
over the theorem’s counterpart in [15] is essentially due to the fact that k-PSS is
well-defined and Wasserstein contractive for any k ∈ R>0, not just for integer values
k ∈ N.

(c) We will see in the following that our generalization is useful in the sense that we
can find for any k ∈ R>0 a target distribution π with density %, factorized as in (1.1),
satisfying `%0,%1 ∈ Λk and `%0,%1 6∈ Λk′ for all k′ < k.

(d) A particularly valuable aspect of the continuous spectrum in our result is that we
allow the cases k ∈ ]0, 1[, for which the theorem yields lower bounds on the spectral
gap that lie in ]1/2, 1[, whereas the result from [8] could at best give a lower bound
of 1/2 (with k = 1). This is of importance to both of the applications of Theorem 3.3
that we develop in the subsequent subsections.

In order to ease application of Theorem 3.3, we provide in Appendix A two more
results from [15] (Lemma A.5 and Proposition A.6). In the remainder of this section, we
present two non-trivial applications of Theorem 3.3 to k-PSS and a result for USS that
follows by an analogous approach.

3.2 Rotationally invariant targets

Our first application of Theorem 3.3 concerns k-PSS for certain types of rotationally
invariant target densities. For target densities % we obtain spectral gap estimates that
depend on the degree to which their factor %k,1 is log-concave.

Theorem 3.5. Let k ∈ R>0 and let π ∈ P(Rd) be a distribution with density % given by

%(rθ) = rk−d exp(−φ(rm))1 ]0,κ[(r
m), r ∈ R+, θ ∈ Sd−1, (3.2)

EJP 28 (2023), paper 136.
Page 17/28

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1030
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Wasserstein contraction and spectral gap of slice sampling revisited

where m ∈ R>0, κ ∈ ]0,∞] and φ : ]0, κ[→ R is strictly increasing and convex and satisfies
limr↗κ φ(r) =∞. Then one has

gapπ(P ) ≥ m

k +m
,

where P is the transition kernel of k-PSS for π.

Proof. Observe that for t ∈ ]0, exp(− inf φ)[, r > 0 and θ ∈ Sd−1 one has

%k,1(rθ) > t ⇔ exp(−φ(rm)) > t and rm < κ

⇔ rm < φ−1(− log t) and rm < κ

⇔ rm < φ−1(− log t)

⇔ r < φ−1(− log t)1/m,

where the second and fourth equivalence rely on φ−1 and r 7→ r1/m being strictly
increasing, and the third equivalence on φ−1 mapping to ]0, κ[, s.t. in particular φ−1 < κ.
Thus, by the polar coordinates formula (Proposition A.1), for t ∈ ]0, exp(− inf φ)[ we get

`%k,0,%k,1(t) =

∫
Rd
‖x‖k−dI(%k,1(x) > t)dx = ωd

∫ ∞
0

rk−1I(r < φ−1(− log t)1/m)dr

= ωd

[
1

k
rk
]φ−1(− log t)1/m

0

=
ωd
k
φ−1(− log t)k/m.

From this it is easy to see that `%k,0,%k,1 is continuous and strictly decreasing on its
support, so only condition (iii) of Definition 3.2 remains to be verified in order to enable
application of Theorem 3.3. To this end, observe that the above computation yields

`%k,0,%k,1(exp(−s))m/k =
(ωd
k
φ−1(s)k/m

)m/k
=
(ωd
k

)m/k
φ−1(s),

which is concave in s by the assumptions on φ and Lemma A.5. By Proposition A.6, this
shows `%k,0,%k,1 to satisfy condition (iii) of Definition 3.2 with parameter k/m. Therefore
Theorem 3.3 applies and yields

gapπ(P ) ≥ 1

k/m+ 1
=

m

k +m
.

Discussion 3.6.

(a) We point out that there is a very intuitive relationship between the result of Theo-
rem 3.5 and our Wasserstein contraction result, Theorem 2.2: If we set m = 1 in
Theorem 3.5, we obtain π ∈ Dk(Rd), so that Theorem 2.2 applies and yields that
k-PSS for π is Wasserstein contractive with rate ρ = k/(k + 1). By (1.3), this in turn
yields a spectral gap estimate of 1/(k+ 1), which is the same as that provided by The-
orem 3.5 (due to our setting m = 1). Hence, if one interprets the contraction result
purely as a spectral gap estimate, then Theorem 3.5 generalizes it by introducing
the parameter m ∈ R>0.

(b) Furthermore, in the cases m > 1, the value of m intuitively provides information
about the ‘degree of log-concavity’ of %k,1, which controls the target density’s rate of
decay along rays emanating from the origin. This additional information enables a
more sensitive estimation of the spectral gap, leading to a lower bound of m/(k+m),
which is strictly larger than the lower bound of 1/(k + 1) that could be obtained
without it.
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(c) The cases m < 1 complement this by requiring less information, as the resulting
exp-term in % does no longer need to be log-concave (e.g. for φ(r) = r, m = 1/2 we
get φ(rm) =

√
r, which is strictly concave rather than convex). Correspondingly, the

resulting lower bounds of m/(k + m) are strictly smaller than the lower bound of
1/(k + 1) one could obtain in the case m = 1.

(d) Though we are unable to formally show that the spectral gap estimates provided by
Theorem 3.5 are sharp, there is substantial numerical evidence suggesting that they
are. We refer to Appendix B for details.

(e) We deem it worthwhile to consider the implications of Theorem 3.5 for the spectral
gap of USS, which thus far was most effectively examined in [8]. The theorem yields
for USS applied to

%(rθ) = exp(−φ(rm))1 ]0,κ[(r
m)

the estimate

gapπ(P ) ≥ m

d+m
.

Despite being a restriction of the theorem, this can still be viewed as a vast gen-
eralization of the most closely related previous result: With κ = ∞, φ(r) = αr and
m ≤ d we obtain the setting of [8, Example 3.15]. Aside from generalizing this to
potentially bounded support, non-linear φ and larger values of m, we also replace
the gap estimate 1/(dd/me+ 1) shown in [8] for this setting by the much nicer (and
for almost all m also larger) estimate m/(d+m) = 1/(d/m+ 1).

(f) Note that in the limit m→∞, Theorem 3.5 yields a spectral gap of 1, corresponding
to instantaneous convergence. We can give some intuition for this: Suppose we were
using k-PSS for a target density % of the form

%(x) = ‖x‖k−d c1A(x)

for some c > 0 and A ∈ B(Rd) with λd(A) <∞. Then we would get for t ∈ ]0, c[ that

%k,1(x) > t ⇔ c1A(x) > t ⇔ x ∈ A

and thus

%k,0(x)I(%k,1(x) > t) = ‖x‖k−d1A(x) ∝ %(x),

so that each X-update would sample directly from the target distribution. We say
that the sampler is exact in this setting. Furthermore, since for r ≥ 0 one has

lim
m→∞

rm =


0 r < 1

1 r = 1

∞ r > 1

the density (3.2) converges for m→∞ almost everywhere to

rθ 7→ rk−d exp(− inf φ)1 ]0,1[(r),

which fits into the exact sampling setting described above via c := exp(− inf φ)

and A = B(1) \ {0}. In other words, k-PSS performs increasingly well for the
target densities (3.2) with increasing m because they become closer and closer
approximations of a target density for which the sampler is exact. Note that the
same dynamic is also at play in our next result, Theorem 3.7.
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3.3 Rotationally asymmetric targets

In our second application of Theorem 3.3, we consider what happens to the spectral
gap of k-PSS when the target density is not rotationally invariant. Here it turns out to
be very helpful to first restrict the setting of Theorem 3.5 by eliminating the domain
parameter κ and the functional parameter φ, and then generalize it by introducing a
different functional parameter χ that allows for rotational asymmetry. In the resulting
setting, the asymmetry does not have any effect on the spectral gap estimates we obtain,
i.e. it does not appear to hamper the samplers’ performance.

Theorem 3.7. Let k ∈ R>0 and let π ∈ P(Rd) be a distribution with density % given by

%(rθ) = rk−d exp(−χ(θ)rm), r ∈ R+, θ ∈ Sd−1,

where χ : Sd−1 → R>0 is a measurable function6 and m ∈ R>0. Then

gapπ(P ) ≥ m

k +m
,

where P is the transition kernel of k-PSS for π.

Proof. Note firstly that

%k,1(rθ) = exp(−χ(θ)rm), r ∈ R+, θ ∈ Sd−1,

and secondly that by χ > 0 we have %k,1 ≤ %k,1(0) = exp(0) = 1. For t ∈ ]0, 1[ one has

%k,1(rθ) > t ⇔ rm < − log(t)/χ(θ)

⇔ r < (− log(t)/χ(θ))1/m,

where the first equivalence again relies on χ > 0 and the second on r 7→ r1/m being
strictly increasing. Thus, by the polar coordinates formula (Proposition A.1),

`%k,0,%k,1(t) =

∫
Rd
‖x‖k−dI(%k,1(x) > t)dx =

∫
Sd−1

∫ ∞
0

rk−1I(%k,1(rθ) > t)drσd(dθ)

=

∫
Sd−1

[
1

k
rk
](− log(t)/χ(θ))1/m

0

σd(dθ) =
1

k

∫
Sd−1

(− log(t)/χ(θ))
k/m

σd(dθ)

=
1

k

∫
Sd−1

χ(θ)−k/mσd(dθ) · (− log(t))k/m =: C(k, χ,m) · (− log(t))k/m.

From this it is clear that `%k,0,%k,1 is continuous and strictly decreasing on its support ]0, 1[,
so it only remains to verify condition (iii) of Definition 3.2 in order to apply Theorem 3.3.
To this end, we observe that the above computation shows in particular

`%k,0,%k,1(exp(−s))m/k = C(k, χ,m)m/ks,

which is linear, and therefore concave, in s. Thus, again by Proposition A.6, we have
shown `%k,0,%k,1 ∈ Λk/m, so that Theorem 3.3 applies and yields

gapπ(P ) ≥ 1

k/m+ 1
=

m

k +m
.

6Note that some implicit assumptions are made on χ by assuming % to be integrable. These assumptions are
rather weak, however. For example, assuming χ to be uniformly lower-bounded straightforwardly yields the
required integrability.
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Discussion 3.8.

(a) As far as we can tell, the result in Theorem 3.7 is not closely related to any result for
slice sampling from any previously published work. It appears to be a major advance
in understanding the spectral gap of slice sampling, particularly USS, in rotationally
asymmetric settings, as we will elaborate in the following.

(b) We note, however, that there is some overlap between the classes of distributions for
which Theorems 3.5 and 3.7 apply. Namely, when setting χ(θ) := c for some c > 0

and all θ ∈ Sd−1, as well as κ :=∞, φ(r) := c r, and choosing k ∈ R>0 and m ∈ R>0

the same in both theorems, the target densities they consider coincide. Notably also
the spectral gap estimates they provide in these cases coincide.

(c) Aside from allowing us to prove the desired result, the computation of `%k,0,%k,1 in
the proof of Theorem 3.7 also shows that

`%k,0,%k,1(exp(−s))1/p = C(k, χ,m)1/psk/(mp)

for any p > 0. This is concave in s if and only if k/(pm) ≤ 1, i.e. p ≥ k/m. By
Proposition A.6, this yields `%k,0,%k,1 ∈ Λp for p ≥ k/m and `%k,0,%k,1 6∈ Λp for p < k/m.
As both k and m are allowed to take arbitrary values in R>0, this is an example of our
generalization of the statement of Theorem 3.3 from a discrete sequence of classes
(Λk)k∈N (as in [15]) to a continuous spectrum (Λk)k∈R>0 (as in our Theorem 3.3)
leading to a quantifiable improvement in the resulting spectral gap estimates.

(d) Again it is worthwhile to contemplate the theorem’s restriction to USS, i.e. the case
k = d. Here the theorem yields for USS applied to

%(rθ) = exp(−χ(θ)rm)

the estimate
gapπ(P ) ≥ m

d+m
. (3.3)

(e) As it may not be obvious how the theorem could be applied in practice, we point
out that, for USS, setting m := 2 and χ(θ) := 1

2θ
TΣ−1θ for a symmetric and positive

definite Σ ∈ Rd×d, one obtains

%(rθ) = exp

(
−1

2
θTΣ−1θ · r2

)
= exp

(
−1

2
(rθ)TΣ−1(rθ)

)
∝ Nd(rθ; 0,Σ),

so that π = Nd(0,Σ). The lower bound on the spectral gap proven in this case is
2/(d+2). By location invariance of USS7, the same lower bound holds for the sampler
applied to any multivariate normal target Nd(a,Σ).

(f) Furthermore, by leaving m ∈ R>0 arbitrary, setting χ(θ) := 1
2

(
θTΣ−1θ

)m/2
and again

using the location invariance of USS, one can cover a large class of generalized
Gaussian distributions, namely all those with densities of the shape

%(x) = exp

(
−1

2

(
(x− a)TΣ−1(x− a)

)m/2)
for an a ∈ Rd and a positive definite Σ ∈ Rd×d. The estimate obtained in these cases
is (3.3).

7That is, the fact that the transition mechanism of USS does not depend on where the target distribution’s
high probably regions are, only how they are located relative to one another.
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(g) Regarding the theorem’s restriction to PSS, we note that, much like in Theorem 3.5,
it is unfortunate that we only obtain a result for target densities with a pole of order
(d − 1) at the origin. Nevertheless, we find it noteworthy that the only previously
available quantitative theoretical result regarding PSS for rotationally asymmetric
targets was the broadly applicable but comparatively unsharp convergence estimate
in [13], which additionally does not seem to imply a spectral gap. In other words,
the restriction of Theorem 3.7 to PSS is, as far as we can tell, both the first result to
provide “realistic” (i.e. potentially sharp) estimates of the convergence rate (cf. (1.2))
of PSS for a class of rotationally asymmetric targets, and the first to estimate the
sampler’s spectral gap in such a setting, which, as explained in the introduction, has
many useful implications besides convergence.

3.4 USS for multivariate t-distributions

By combining the strategy of Theorem 3.7 with the results of Theorems 2.4, Lemma 3.1
and (1.3), we can ultimately estimate the spectral gap of USS for virtually arbitrary
multivariate t-distributions.

Theorem 3.9. Let π ∈ P(Rd) with density % given by

%(rθ) =

(
1 +

1

m
χ(θ)r2

)−(d+m)/2

, r ∈ R+, θ ∈ Sd−1, (3.4)

where m > 2 and χ : Sd−1 → R>0 is measurable. Then

gapπ(Pπ) ≥ 1− d(d+m)

(d+ 1)(d+m− 1)
, (3.5)

where Pπ denotes the transition kernel of USS for π.

Proof. First of all, it is easily seen that the transition kernel of USS for any density
η coincides, for any c > 0, with that of slice sampling for ζ := c · η with factorization
ζ0 := c · 1, ζ1 := η. Of course the transition kernels coinciding means that the respective
spectral gaps must also coincide. Furthermore, we trivially get c · `1,η ≡ `c·1,η ≡ `ζ0,ζ1 .
Therefore, if `1,% ≡ c · `1,η, then `1,% ≡ `ζ0,ζ1 , so that by Lemma 3.1 the spectral gap of
USS for % coincides with that of slice sampling for ζ. Since this gap in turn coincides
with that of USS for η, we ultimately obtain coinciding spectral gaps of USS for % and
USS for η. For proving Theorem 3.9, the relevant consequence of all this is

`1,% ∝ `1,η ⇒ gapπ(Pπ) = gapν(Pν), (3.6)

where ν denotes the distribution with yet-to-be-specified density η and Pν the transition
kernel of USS for ν.

Next, note that for r ∈ R+, θ ∈ Sd−1, t ∈ ]0, 1[, we get

%(rθ) > t ⇔ 1 +
1

m
χ(θ)r2 < t−2/(d+m)

⇔ r <

√
m

χ(θ)
(t−2/(d+m) − 1).

Thus, by the polar coordinates formula (Proposition A.1), and omitting some very ele-
mentary integration steps already performed in detail in other proofs,

`1,%(t) =

∫
Rd
I(%(x) > t)dx

=

∫
Sd−1

∫ ∞
0

I

(
r <

√
m

χ(θ)
(t−2/(d+m) − 1)

)
rd−1drσd(dθ)
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=
1

d

∫
Sd−1

(
m

χ(θ)
(t−2/(d+m) − 1)

)d/2
σd(dθ)

=
md/2

d

∫
Sd−1

χ(θ)−d/2σd(dθ) ·
(
t−2/(d+m) − 1

)d/2
.

This shows that `1,% ∝ `1,η, where η is given by (3.4) with χ ≡ 1, which is simply (2.6).
Hence, (3.6) yields gapπ(Pπ) = gapν(Pν). Finally, by Theorem 2.4 and (1.3) (which can
be applied here because the constraint m > 2 ensures that π has finite second moment),
we get

gapν(Pν) ≥ 1− d(d+m)

(d+ 1)(d+m− 1)
.

Combining the last two partial results yields the claim.

Discussion 3.10.

(a) By choosing χ(θ) := θTΣ−1θ for a positive definite matrix Σ ∈ Rd×d, choosing
any a ∈ Rd and again using the location invariance of USS (cf. footnote in Discus-
sion 3.8 (e)), one obtains the gap estimate (3.5) for USS applied to the target density

%(x) =

(
1 +

1

m
(x− a)TΣ−1(x− a)

)−(d+m)/2

.

Setting aside their normalization, the densities of this form are precisely those of
arbitrary multivariate t-distributions, except that we require m > 2, whereas the
distribution is also well-defined for 0 < m ≤ 2.

(b) Both here and in our result on USS for arbitrary multivariate Gaussians Nd(a,Σ)

(cf. Discussion 3.8 (e)), the matrix Σ that causes the target density to be rotationally
asymmetric does not affect the spectral gap estimate we obtain. Our analysis
(specifically the computations of `1,%, combined with (3.6)) shows that this is actually
a strong point of our technique, as the spectral gap of USS in these scenarios is
indeed unaffected by Σ.

A Auxiliary results

A.1 Polar coordinates

We frequently make use of the following well-known result, which we refer to as the
polar coordinates formula.

Proposition A.1. For any function g : (Rd,B(Rd))→ (R,B(R)) that is measurable and
integrable, one has ∫

Rd
g(x)dx =

∫
Sd−1

∫ ∞
0

g(rθ)rd−1drσd(dθ),

where σd denotes the surface measure on (Sd−1,B(Sd−1)).

Proof. See [16, Theorem 15.13].

At some points, we require the following consequence of the polar coordinates
formula, which, following [17], we refer to as sampling in polar coordinates.

Corollary A.2. Let ξ ∈ P(Rd) with density hξ : Rd → R+, then by Proposition A.1 we
have

ξ(A) =

∫
Rd
1A(x)hξ(x)dx =

∫
Sd−1

∫ ∞
0

1A(rθ)hξ(rθ)r
d−1drσd(dθ), A ∈ B(Rd).
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Thus X ∼ ξ can be sampled in polar coordinates as X := R ·Θ by sampling (R,Θ) from
the joint distribution with density

(r, θ) 7→ hξ(rθ)r
d−11R+

(r)

w.r.t. λ1 ⊗ σd, where λ1 denotes the Lebesgue measure on (R,B(R)).

A.2 Some elementary results

Lemma A.3. Let φ : ]0, κ[ → R be as in Definition 2.1. Denote the domain of φ by
Dφ := ]0, κ[ and the image by Iφ := φ(Dφ). Then one has Iφ = ] inf φ, supφ[, where

inf φ := inf
r∈Dφ

φ(r) = lim
r↘0

φ(r)

supφ := sup
r∈Dφ

φ(r) = lim
r↗κ

φ(r).

Furthermore, φ maps bijectively onto Iφ and its inverse φ−1 : Iφ → Dφ is again strictly
increasing.

Proof. Because φ is a convex function defined on an open interval, it is continuous, which
shows that its image is again an open interval. That this interval must have the claimed
boundaries is clear from the fact that φ is strictly increasing.

Observe that the strict monotonicity of φ also guarantees its injectivity and note that
every function is surjective onto its image. Hence φ maps bijectively Dφ → Iφ and there
exists an inverse function φ−1 : Iφ → Dφ.

Let now s1, s2 ∈ Iφ with s1 > s2. Set ri := φ−1(si), i = 1, 2, so that in particular
φ(ri) = si. Then, since φ is strictly increasing and φ(r1) = s1 > s2 = φ(r2) by assumption,
we must have r1 > r2. This yields φ−1(s1) = r1 > r2 = φ−1(s2), so φ−1 is again strictly
increasing.

Lemma A.4. Let φ : Dφ → Iφ be as specified in Definition 2.1 and analyzed in Lemma A.3.

Define the extension φ̂−1 : R>0 → R of its inverse φ−1 to R>0 by

φ̂−1(s) :=

{
φ−1(s) s ∈ Iφ = ]inf φ, supφ[ ,

κ s ∈ [supφ,∞[ .

Note that assuming κ =∞ leads to supφ =∞ (because a non-decreasing convex function
on R>0 must either be constant or unbounded and we require φ to be strictly increasing,
thus preventing it from being constant) and consequently φ̂−1 ≡ φ−1. In particular, φ̂−1

cannot attain the value∞.
For this function φ̂−1 and all r, r̃ ∈ Dφ, v ∈ R+ one has∣∣∣φ̂−1(φ(r) + v)− φ̂−1(φ(r̃) + v)

∣∣∣ ≤ |r − r̃|.
An illustration of this property can be found in Figure 1.

Proof. We use arguments very similar to those in [8]. Fix r, r̃ ∈ Dφ and v ∈ R+. Assume
w.l.o.g. that r > r̃ and set

r′ := φ̂−1(φ(r) + v),

r̃′ := φ̂−1(φ(r̃) + v),

s.t. what we need to prove becomes |r′ − r̃′| ≤ |r − r̃|.
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Figure 1: Illustration of the property shown in Lemma A.4 for κ = ∞. Two points
r1, r2 ∈ ]0, κ[ are fixed, φ is evaluated at each of them and the resulting function
values are shifted upwards by the same value v, resulting in φ(r1) + v and φ(r2) + v. The
expressions r′1 := φ−1(φ(r1)+v) and r′2 := φ−1(φ(r2)+v) then correspond to the locations
where φ reaches the shifted values. The lemma’s claim is simply that the thick orange
line, corresponding to |r′1 − r′2|, is at most as long as the thick blue line, corresponding
to |r1 − r2|.

Since φ−1 is strictly increasing, φ̂−1 is still non-decreasing, so r′ ≥ r̃′ and

r′ = φ̂−1(φ(r) + v) ≥ φ̂−1(φ(r)) = φ−1(φ(r)) = r, (A.1)

r̃′ = φ̂−1(φ(r̃) + v) ≥ φ̂−1(φ(r̃)) = φ−1(φ(r̃)) = r̃. (A.2)

We now prove the claim by distinguishing four cases w.r.t. the values of r′, r̃′ and supφ,
given that r′ ≥ r̃′ (as observed above) and r′, r̃′ ≤ κ (by definition of φ̂−1):

1. Suppose r′ = r̃′. Then |r′ − r̃′| ≤ |r − r̃| holds trivially.

2. Suppose r̃′ < r′ < κ. Then r′, r̃′ ∈ Dφ and therefore φ(r′) = φ(r) + v as well as
φ(r̃′) = φ(r̃) + v. Furthermore, it is well-known that φ being convex implies that

Sφ(r1, r2) :=
φ(r1)− φ(r2)

r1 − r2

is non-decreasing in r1 for fixed r2 and vice-versa. Thus

φ(r′)− φ(r̃′)

r′ − r̃′
= Sφ(r′, r̃′)

(A.1)
≥ Sφ(r, r̃′)

(A.2)
≥ Sφ(r, r̃) =

φ(r)− φ(r̃)

r − r̃

=
(φ(r) + v)− (φ(r̃) + v)

r − r̃
=
φ(r′)− φ(r̃′)

r − r̃
,

which, because all occurring numerators and denominators are positive, implies
r′ − r̃′ ≤ r − r̃. For the general case, i.e. without assuming r > r̃, this translates
precisely to the desired relation |r′ − r̃′| ≤ |r − r̃|.

3. Suppose r̃′ < κ = r′ and supφ =∞. Then Iφ = ]inf φ,∞[, meaning that φ(r) + v and
φ(r̃) + v are contained in Iφ and thus we again have r′, r̃′ ∈ Dφ. Since the analysis
of the second case relied solely on this property, it applies to this case as well.
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4. Suppose r̃′ < κ = r′ and supφ <∞. Note that r′ attaining the value κ must mean
κ <∞. Hence we may continuously extend φ to the domain ]0, κ] = Dφ∪{κ} ⊂ R>0,

denoting the extension φ̂ : ]0, κ]→ R, i.e. we set

φ̂(r̂) :=

{
φ(r̂) r̂ ∈ Dφ,

supφ r̂ = κ.

By construction, φ̂ is still convex and inverts the restriction of φ̂−1 to ]inf φ, supφ].
Observe that r̃′ < κ again yields r̃′ ∈ Dφ and thus φ(r̃′) = φ(r̃) + v and that, by
definition of the involved quantities, r′ = κ implies φ(r) + v ≥ supφ. Equipped with
all of these relations, we can employ the same approach as in the second case and
obtain

φ̂(r′)− φ̂(r̃′)

r′ − r̃′
= Sφ̂(r′, r̃′)

(A.1)
≥ Sφ̂(r, r̃′)

(A.2)
≥ Sφ̂(r, r̃) =

φ̂(r)− φ̂(r̃)

r − r̃

=
φ(r)− φ(r̃)

r − r̃
=

(φ(r) + v)− (φ(r̃) + v)

r − r̃
=

(φ(r) + v)− φ(r̃′)

r − r̃

≥ supφ− φ(r̃′)

r − r̃
=
φ̂(r′)− φ̂(r̃′)

r − r̃
,

again showing r′ − r̃′ ≤ r − r̃, so in the general case |r′ − r̃′| ≤ |r − r̃|.

A.3 Auxiliary results for proving spectral gap estimates

Lemma A.5. Suppose h : I1 → I2 is a strictly monotone, continuous function mapping
between open intervals I1, I2 ⊆ R. Then h maps bijectively onto its image, w.l.o.g. I2,
and its inverse h−1 : I2 → I1 has the same monotonicity property. Furthermore,

• if h is increasing, then it is convex if and only if h−1 is concave

• if h is decreasing, then it is convex if and only if h−1 is convex.

Proof. See [15, Lemma A.4].

Proposition A.6. For any k ∈ R>0, given all the other conditions, condition (iii) of
Definition 3.2 is equivalent to concavity of s 7→ `(exp(−s))1/k restricted to the domain

D := ]− log sup{t ∈ R>0 | `(t) > 0},∞[ .

Proof. For k ∈ N this was shown in [15, Proposition A.5]. As the proof only requires k to
be positive, it does not need to be modified to cover all the cases k ∈ R>0.

B Numerical support

We can give some numerical support for the sharpness of our spectral gap estimates
in Theorem 3.5 by comparing them with heuristic approximations of the gaps from
experimental data. The heuristic we consider is derived by identifying two different
notions of effective sample sizes.

Let P be a transition kernel with invariant distribution π and gapπ(P ) > 0. Denote by
(Xm)m∈N0 a Markov chain with transition kernel P that is initialized with its invariant
distribution, i.e. X0 ∼ π.

Further denoting by IATg(P ) the integrated autocorrelation time of P w.r.t. some
reasonable summary function g : Rd → R, one would commonly define the effective
sample size as

neff :=
n

IATg(P )
.
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Figure 2: Comparisons of empirical spectral gaps (scattered points), computed according
to (B.1), and spectral gap estimates provided by Theorem 3.5 (dashed lines). The figure
on the left shows these values for PSS applied to %(rθ) = r1−d exp(−rm) with parameter
choices m = 20, 2−0.5, . . . , 2−7. The IATs for the empirical gaps were computed from the
sample log radii, i.e. with g(x) := log ‖x‖, which renders the results independent of the
sample space dimension d. The right figure similarly shows empirical gaps and gap
estimates for USS applied to %(rθ) = exp(−rm) with parameter values m = 20, . . . , 24 in
dimensions d = 21, . . . , 210. Here the IATs for the empirical gaps were computed from
the sample radii, i.e. with g(x) := ‖x‖.

On the other hand it is known from [14, Corollary 3.37] that, for a suitably normalized
integrand, the mean squared Monte Carlo integration error of the truncated chain
(Xm)m≤n asymptotically (i.e. as n→∞) behaves exactly as

2− gapπ(P )

n · gapπ(P )
=

1

n

(
2

gapπ(P )
− 1

)
.

As this quantity would be 1/n with i.i.d. sampling, we may view its reciprocal as another
notion of effective sample size. By informally identifying the two, we obtain the heuristic

IATg(P )

n
≈ 1

n

(
2

gapπ(P )
− 1

)
⇔ gapπ(P ) ≈ 2

IATg(P ) + 1
(B.1)

for the approximate computation of gapπ(P ). This enables us to estimate spectral gaps
from sample runs through their (also approximated) IATs.

The results of some example applications of this technique are shown in Figure 2.
They show the empirical gaps to match our gap estimates very well, which, if one believes
the heuristic to be good, suggests the gap estimates to be very sharp. We note however
that, in our experience, the approach only works this well if the spectral gaps in question
are small – if the proven gap estimates are large, the empirical gaps are consistently
even larger, which causes discrepancies between the two.
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