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Non-degeneracy of stochastic line integrals
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Abstract

We derive quantitative criteria for the existence of density for stochastic line integrals
and iterated line integrals along solutions of hypoelliptic differential equations driven
by fractional Brownian motion. As an application, we also prove a signature uniqueness
theorem for these rough differential equations.
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1 Introduction and summary of main results

It is classical that there is a natural pairing between a C1-path γ : [0, T ] → M in
a differentiable manifold M and a differential 1-form φ on M , which is defined by
integration: ∫ T

0

φ(dγt) ,
∫ T

0

〈φ, γ̇t〉dt.

Here 〈·, ·〉 denotes the pairing between cotangent and tangent vectors. This notion of
integration, sometimes known as line integrals, has an intrinsic geometric meaning in
the sense that it does not rely on local coordinates or embeddings of M into ambient
Euclidean spaces. More generally, given a finite sequence of 1-forms (φ1, . . . , φm), one
can consider an associated iterated line integral∫

0<t1<···<tm<T
φ1(dγt1) · · ·φm(dγtm) ,

∫
0<t1<···<tm<T

〈φ1, γ̇t1〉 · · · 〈φm, γ̇tm〉dt1 · · · dtm.

The definition of such integrals can be naturally extended to the rough path context
under suitable regularity conditions on the path γ and the 1-forms (cf. [21, 3]). In the
rough path literature, these iterated line integrals are often referred to as extended
signatures of γ (cf. [19] for their use in the context of Brownian motion).
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Non-degeneracy of stochastic line integrals

A natural reason of considering line integrals is that they encode rich geomet-
ric/topological information about the original path γ. For instance, if γ = (xt, yt) is a
simple closed curve in R2, the line integral of γ against the 1-form

φ ,
1

2
(xdy − ydx) (1.1)

gives the (signed) area enclosed by the path γ. The integral against the 1-form

dθ ,
1

x2 + y2
(xdy − ydx)

on the punctured plane gives the winding number of γ around the origin. Other topo-
logical properties associated with paths, e.g. turning number and linking number, can
also be defined in a similar way in terms of line integrals. In the probabilistic context,
one can considder distributional properties of stochastic line integrals along stochastic
processes such as diffusion paths. A well-known example is Lévy’s formula for the
characteristic function of the area process associated with a planar Brownian motion, i.e.
the stochastic line integral of Brownian motion against the area 1-form defined by (1.1)
(cf. [18]). Another famous example is Spitzer’s asymptotic Cauchy law for the Brownian
winding number (cf. [25]). Stochastic line integrals are also essential in the study of
diffusions/martingales on manifolds (cf. [16]).

A more fundamental reason of considering (iterated) line integrals is that the original
path γ is uniquely determined by these integrals when one varies the degree m and
the 1-forms φ1, . . . , φm in a suitably rich class. Indeed, when M = Rd, the collection of
numbers (known as the signature of γ){∫

0<t1<···<tm<T
dγi1t1 · · · dγ

im
tm : m ∈ N, i1, . . . , im = 1, . . . , d

}
uniquely determines the path γ : [0, T ] → Rd up to tree-like pieces (cf. [7, 14, 2]). In
[8], the author used iterated line integrals against differential forms to construct a de
Rham cohomology theory on loop spaces over manifolds and proved that such a theory is
canonically isomorphic to the singular cohomology theory in classical algebraic topology.

In the probabilistic context, in the pioneering work of Le Jan and Qian [19], the
authors developed an explicit method of recovering a generic Brownian trajectory from
the knowledge of its extended signatures. Their underlying idea can be summarised as
follows. Given an arbitrary bounded domain D in Rd, by constructing a suitable 1-form
φ supported on D one can detect whether the Brownian motion B has visited D from the
knowledge of the line integral against φ. More generally, given a discretisation of Rd

into disjoint cubes with suitably constructed 1-forms supported inside each of them, one
can detect the discrete route of the motion from the knowledge of iterated line integrals
against these 1-forms. By refining the space discretisation, one recovers the original
trajectory in the limit under this mechanism (cf. Section 4 below for more discussion).

In the method of [19], an essential property of the required 1-forms φ is that∫ T

0

φ(dBt) 6= 0⇐⇒ B visits the domain D a.s.

where B is a Brownian motion in Rd. Such a property can be trivially implied by a much
stronger non-degeneracy property that the conditional law of

∫ T
0
φ(dBt) given that B

visits the domain D is absolutely continuous with respect to the Lebesgue measure. This
motivates the following general question which is the main object of study in the present
work.
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Non-degeneracy of stochastic line integrals

In this artcle, we consider the following SDE on M (M = Rn or a compact differen-
tiable manifold): {

dXt =
∑d
α=1 Vα(Xt)dB

α
t , 0 6 t 6 T ;

X0 = x0 ∈M.
(1.2)

Here B = (B1, . . . , Bd) is assumed to be a d-dimensional fractional Brownian motion with
Hurst parameter H > 1/4. This falls into the rough path framework under which the SDE
is well-posed in the sense of rough paths. The vector fields V1, . . . , Vd on M are assumed
to be of class C∞b and satisfy the so-called Hörmander’s condition (cf. Definition 3.5).
This is a natural non-degeneracy condition under which the solution Xt is known to have
a smooth density function with respect to the Lebesgue measure (cf. [5]). Throughout
the rest, we use C∞p to mean the class of functions/1-forms whose derivatives (of all
orders) have at most polynomial growth. This property ensures the Lp-integrability (for
all p > 1) of all relevant random variables under consideration.

Question. Let φ be a C∞p 1-form on M . Can we identify an explicit quantitative condition

on φ, such that the conditional distribution of the stochastic line integral
∫ T
0
φ(dXt),

given that X visits the interior of the support of φ, admits a density function with respect
to the Lebesgue measure?

We first make a few comments. It is necessary to restrict on the event that X visits
(suppφ)◦, for otherwise the line integral is trivially zero. In addition, suppose that

M = Rn, suppφ 6= M and x0 ∈ (suppφ)◦. For the stochastic line integral
∫ T
0
φ(dXt) to

have a density function, it is necessary that φ is not closed. Indeed, if dφ = 0, then φ = df

for some smooth function f (every closed 1-form on Rn is exact). In this case, we have∫ T

0

φ(dXt) = f(XT )− f(x0).

This integral will have constant value on the non-trivial event {XT /∈ suppφ}. As a result,
the line integral cannot have a density function in this case.

As we will see, in the elliptic case, the non-closedness of φ is essentially sufficient for
the line integral to have a density.

Theorem 1.1. Suppose that the vector fields V1, . . . , Vd are elliptic. Let φ be a C∞p 1-form
such that

dφ 6= 0 a.e. on suppφ.

Then the conditional distribution of
∫ T
0
φ(dXt), given that X visits (suppφ)◦, admits a

density with respect to the Lebesgue measure.

The hypoelliptic case requires a stronger condition and more delicate analysis. The
general result is given by Theorem 3.9 below. Here we state the special version in the
step-2 hypoelliptic case.

Theorem 1.2. Consider the case when M = R3 and d = 2. Suppose that the vector
fields V = {V1, V2, [V1, V2]} linearly span TxM at every point x ∈M . Let φ be a C∞p 1-form
on M . Suppose that

d
(
φ+ dφ(V1, V2)ω3

)
6= 0 a.e. on suppφ,

where {ω1, ω2, ω3} is the cotangent frame field dual to V. Then the conditional distri-

bution of
∫ T
0
φ(dXt), given that X visits (suppφ)◦, admits a density with respect to the

Lebesgue measure.

In Theorem 3.13 below, we also derive an explicit method of constructing 1-forms
that satisfy the general non-degeneracy criterion given by Theorem 3.9. In the above
step-2 hypoelliptic case, the method is summarised in the following result. In this case,
the class of 1-forms that satisfy such a condition is as generic as pairs of C∞p -functions.
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Non-degeneracy of stochastic line integrals

Proposition 1.3. Under the setting of Theorem 1.2, consider a 1-form φ defined by

φ , c1ω
1 + c2ω

2 + (V1c2 − V2c1)ω3

where c1, c2 ∈ C∞p (M). Suppose that

dφ 6= 0 a.e. on suppφ. (1.3)

Then the conditional distribution of
∫ T
0
φ(dXt), given that X visits (suppφ)◦, admits a

density with respect to the Lebesgue measure.

Our analysis can be extended to the case of iterated line integrals

F ,
∫
0<t1<···<tm<T

φ1(dXt1) · · ·φm(dXtm).

As we will see, if φ1, . . . , φm have disjoint supports, our general condition given by (3.10)
imposed on each φi continues to guarantee the conditional non-degeneracy of F . On
the other hand, if these 1-forms have a common compact support, when m > 2 it is
indeed possible to have all the φi’s being exact while F is non-degenerate. Recall what
we explained earlier that this is not possible when m = 1. Our results for iterated line
integrals are discussed in Section 3.2 below.

Our study is motivated by the signature uniqueness problem in the spirit of [19]. As
an application, in Section 4 we prove a signature uniqueness theorem for the SDE (1.2) in
the elliptic or step-2 hypoelliptic case, which asserts that with probability one the solution
path t 7→ Xt is uniquely determined by its signature transform up to reparametrisation.
Under existing methodology, the key ingredient is the explicit construction of compactly
supported 1-forms that satisfy our non-degeneracy conditions. The main result for this
part is stated in Theorem 4.3 below.

Finally, we remark that our results hold for more general Gaussian driving processes
essentially without changing any part of the proofs. The required Gaussian setting is
precisely the one formulated in the work of [5] concerning the smoothness of density
for Gaussian rough differential equations. We formulate our results in the context of
fractional Brownian motion simply to avoid the non-rewarding effort of restating all the
assumptions proposed in [3].

Organisation The present article is organised in the following way. In Section 2, we
recall basic notions from rough path theory and some terminology from differential
geometry. In Section 3.1, we derive our quantitative criteria for the non-degeneracy
of single stochastic line integrals as well as an explicit method of construction. We
begin with the elliptic case and then proceed to the hypoelliptic case. The analysis is
made more transparent in the step-2 hypoelliptic case after the general discussion. In
Section 3.2, we extend our analysis to the case of iterated line integrals. In Section 4,
we discuss the application of our results to the signature uniqueness problem for rough
differential equations.

2 Preliminary notions from rough path theory and differential
geometry

In this section, we recall some basic tools and discuss the basic kind of pathwise
analysis that will be performed frequently in the sequel. We first give a notational
comment which will be applied throughout the rest of the article.
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Non-degeneracy of stochastic line integrals

Notation Above all, we will adopt Einstein’s convention of summation, i.e. doubly
repeated indices are summed automatically. We will also use matrix notation exclusively.
For instance, a vector field V = V i ∂

∂xi on Rn is identified as an n × 1 column vector

function. DV is the n × n matrix whose (i, j)-entry is ∂V i

∂xj . A 1-form φ = φidx
i on Rn

is identified as a 1× n row vector function. If f ∈ C∞(Rn), df is the 1-form defined by
df , ∂f

∂xi dx
i. Given a smooth function f and vector field V , we write V f , df · V = V i ∂f∂xi .

The pairing between a 1-form φ and a vector field V is obviously φ · V , while on the other
hand we write V φ as the 1 × n row vector defined by V φ , (V φ1, . . . , V φn). Note that
DV and V φ are local quantities that do not have intrinsic geometric meaning.

2.1 Pathwise differential calculus

Let B = {Bt : t > 0} be an fBM with Hurst parameter H > 1/4. We assume that B
is realised on the canonical path space. More specifically, the underlying probability
space is (W,B(W),P) whereW is the Banach space of continuous paths w : [0, T ]→ Rd

starting at the origin, B(W) is the Borel σ-algebra overW and P is the law of the fBM.
Under the probability measure P, the coordinate process Bt(w) , wt becomes an fBM.
It is well-known that (cf. [21, Theorem 4.5.1]) there is a P-null set N , such that every
w /∈ N admits a canonical lifting as a geometric rough path (defined through dyadic
piecewise linear approximations).

Let {Xt : 0 6 t 6 T} be the solution to the SDE (1.2) where M = Rn for now,
Bt is the canonical d-dimensional fBM defined on (W,B(W),P) and the vector fields
V1, . . . , Vd ∈ C∞b . Under the framework of rough path theory, for every w /∈ N the SDE
(1.2) can be solved pathwisely (with respect to the aforementioned canonical lifting
of w as a geometric rough path). The solution Xt, as well as stochastic line integrals
along B, can thus be viewed as functionals onW that are well-defined P-a.s. It is worth
pointing out that the rough integrals are not the same as the ones defined in the sense
of Skorokhod using the Malliavin calculus (cf. [23]); in the Brownian case the former
coincides with Stratonovich integrals (cf. [21, Theorem 4.4.3]) while the latter reduces
to Itô integrals.

The rough path nature of (1.2) allows us to justify and make use of pathwise differ-
ential calculus in the ordinary manner. To illustrate this, we first recall the following
definition of the Cameron-Martin subspace (cf. [10]).

Definition 2.1. The Cameron-Martin subspace associated with fBM is the subspace H
of paths h ∈ W that can be represented in the form

ht = E[ZBt], 0 6 t 6 T,

where Z is an element in the first Wiener chaos (i.e. the L2-closure of linear functions
onW under P). H is a Hilbert space with respect to the inner product

〈h1, h2〉H , E[Z1Z2],

where Zi is the chaos element associated with hi in its definition (i = 1, 2).

We use the following lemma to illustrate an example of the type of pathwise calculation
that will appear frequently later on (we give a precise proof here but will not repeatedly
justify similar calculations in later sections). If F :W → R is a functional of B and h ∈ H
is a Cameron-Martin path, we write

DhF (w) ,
d

dε

∣∣∣∣
ε=0

F (w + εh)

as the derivative of F along direction h at the location w ∈ W. The Malliavin derivative
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Non-degeneracy of stochastic line integrals

of F is the H-valued random variable defined by

DF (w) ,
[
h 7→ DhF (w)

]
∈ H∗ ∼= H.

Higher order H-derivatives are defined in a similar way. Typical examples that are
differentiable in the sense of Malliavin are solutions to RDEs with Lipγ (γ > 1/H) vector
fields (cf. [10, Chapter 11] and [17]). Our primary interest is that

F ,
∫ T

0

φ(dXt), (2.1)

where φ = φidx
i is a given fixed C∞p 1-form on Rn. The integral F is defined in the sense

of rough integration (cf. [10, Section 10.6]).

Lemma 2.2. Let φ be a C∞p 1-form on Rn and consider the stochastic line integral F
defined by (2.1). Then F is smooth in the sense of Malliavin and for any h ∈ H, we have

DhF (w) =

∫ T

0

((
ζT (w)− ζt(w)

)
· Φ−1t (w) + φ

(
Xt(w)

))
· Vα

(
Xt(w)

)
dhαt . (2.2)

Here Φt(w) , ∂Xt(w)
∂x0

denotes the Jacobian of the RDE (1.2) and

ζt(w) ,
∫ t

0

d
(
φiV

i
α

)(
Xs(w)

)
· Φs(w)dwαs . (2.3)

Remark 2.3. The integral on the right hand side of (2.2) is understood in the sense of
Young, due to a variational embedding theorem for the Cameron Martin space H proved
by Friz-Victoir (cf. [10, Proposition 15.7]). The path ζt is either understood in the sense
of rough integration or in the sense of RDE, namely the last component of the triple
(Xt,Φt, ζt) which is defined through the RDE system

dXt = Vα(Xt)dB
α
t ,

dΦt = DVα(Xt)ΦtdB
α
t ,

dζt = d(φ · Vα)(Xt) · ΦtdBαt .

These objects, as well as other related integrals, are pathwisely well-defined at every
w ∈ W outside some P-null set for which w admits a canonical lifting as a geometric
rough path (cf. [10, Chapter 15]). Throughout the rest, it is always understood that w is
taken from outside such a null set.

Proof. First of all, theH-directional differentiability of F follows from [10, Theorem 11.3],
since the integration map w 7→

∫ 1

0
φ(dXt(w)) satisfies a non-explosion condition ([10,

Definition 11.1]) due to standard RDE and rough integration estimates ([10, Theorem
10.36, Theorem 10.47]). To be more precise, given fixed w, we first replace φ by a
C∞c 1-form φ̃ such that φ̃ = φ on the ball of radius M(w) , 2‖X(w)‖∞;[0,T ]. Clearly, we

have F (w) =
∫ 1

0
φ̃(dXt(w)) since the line integral is defined along the actual path X(w).

Denoting w as the canonical rough path lifting of w, it follows from the aforementioned
two theorems that

|F (w)| 6 C(‖V ‖Lipγ−1 + ‖φ̃‖Lipγ−1 + ‖w‖p-var;[0,T ])
r, (2.4)

where p satisfies pH > 1, γ > p and C, r are some universal constants depending only
on H. In addition, since φ ∈ C∞p , the Lipγ−1-norm of φ̃ is controlled by a certain power
of M(w), which is in turn controlled by another power of ‖w‖p-var;[0,T ]. Therefore, the
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Non-degeneracy of stochastic line integrals

non-explosion condition in [10, Definition 11.1] is satisfied. The existence of DhF (w) is
then a consequence of [10, Theorem 11.3].

Next, we establish the formula (2.2) for DhF (w). To simplify notation we will omit
the dependence on w. By the definition of DhF (w), we have

DhF (w) =
d

dε

∣∣∣∣
ε=0

∫ T

0

φi
(
Xt(w + εh)

)
dXi

t(w + εh)

=

∫ T

0

∂φi
∂xj

(Xt)DhX
j
t dX

i
t +

∫ T

0

φi(Xt)dDhX
i
t .

By differentiating the SDE (1.2) along the direction h, it is seen that DhXt satisfies the
differential equation

dDhX
i
t =

∂V iα
∂xj

(Xt)DhX
j
t dw

α
t + V iα(Xt)dh

α
t . (2.5)

As a result, we have

DhF (w) =

∫ T

0

∂φi
∂xj

(Xt)DhX
j
t V

i
α(Xt)dw

α
t

+

∫ T

0

φi(Xt)

(
∂V iα
∂xj

(Xt)DhX
j
t dw

α
t + V iα(Xt)dh

α
t

)
=

∫ T

0

∂

∂xj
(
φiV

i
α

)
(Xt)DhX

j
t dw

α
t +

∫ T

0

φi(Xt)V
i
α(Xt)dh

α
t . (2.6)

On the other hand, the Jabocian Φt satisfies the homogeneous linear equation

dΦt = DVα(Xt)Φtdw
α
t , Φ0 = Id.

By the variational principle, it is standard that

DhXt = Φt

∫ t

0

Φ−1s Vα(Xs)dh
α
s . (2.7)

By using the formula (2.7) and integration by parts, the first integral in (2.6) can be
written as ∫ T

0

(
dζt ·

∫ t

0

Φ−1s Vα(Xs)dh
α
s

)
= ζT ·

∫ T

0

Φ−1s Vα(Xs)dh
α
s −

∫ T

0

ζtΦ
−1
t Vα(Xt)dh

α
t

=

∫ T

0

(ζT − ζt)Φ−1t Vα(Xt)dh
α
t ,

where ζt is the integral path defined by (2.3). The equation (2.2) thus follows.
Finally, we show that F is smooth in the sense of Malliavin (i.e. DkF ∈ Lq for all

k ∈ N and q > 1). To this end, we adopt an elegant idea of Inahama [17] by representing
the Malliavin derivatives through an auxiliary copy of the fBM. In what follows, by
enlarging the underlying probability space we let b be another fBM that is independent
of w. We use E′ and Ê to denote the expectation with respect to w and b respectively.
The expectation with respect to (w, b) is the product E = E′ × Ê.

We first consider the case when k = 1. In view of the formula (2.2), it is easily seen
that

DhF (w) = D̂hΘ1(w, b), (2.8)
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Non-degeneracy of stochastic line integrals

where D̂ denotes the derivative with respect to b and

Θ1(w, b) ,
∫ T

0

((
ζT (w)− ζt(w)

)
· Φ−1t (w) + φ

(
Xt(w)

))
· Vα

(
Xt(w)

)
dbαt .

Note that the left hand side of (2.8) is constant in b. As a result, we have

‖DF (w)‖H = Ê
[
‖D̂Θ1(w, ·)‖2H

]1/2
. ‖Θ1(w, ·)‖D1,2 . ‖Θ1(w, ·)‖L2 ,

where the last inequality follows from the fact that Θ1(w, ·) belongs to the first order
Wiener chaos with respect to b. By taking expectation with respect to w, for any q > 2

we have
E′
[
‖DF‖q

]1/q
. E′

[
Ê
[
|Θ1|2

]q/2]1/q
. E

[
|Θ1|q

]1/q
. (2.9)

According to (2.9), moment estimates of DF is now reduced to moment estimates
of the rough integral Θ1(w, b) with respect to (w, b). Following similar lines to the first
paragraph of the current proof, it is seen that

|Θ1(w, b)| 6 C
(
‖Φ‖p-var + ‖Φ−1‖p-var + ‖X‖p-var + ‖X‖∞ + ‖(w,b)‖p-var

)r
where C, r are constants depending on φ, V,H. To understand the integrability of the
right hand side, we first observe that ‖X‖p-var + ‖X‖∞ is bounded by a power of ‖w‖p-var.
In addition, according to [17, Inequalities (4.7) and (5.2)] we have

‖Φ‖p-var + ‖Φ−1‖p-var 6 C exp
(
CNα(w)

)
,

where Nα(w) denotes the total number of α-greedy partition points for w (cf. [6]). As
a consequence of [6, Theorem 6.3], we conclude that ‖Φ‖p-var + ‖Φ−1‖p-var has finite
moments of all orders. Therefore, DF ∈ Lq for all q > 2.

The case of D2F follows essentially the same argument (only with more complicated
notation). Given fixed w ∈ W and h, l ∈ H, by explicit calculation we find that

D2
h,lF (w) =

∫ T

0

∂2(φiV
i
α)

∂xj∂xk
(Xt)DlX

k
t DhX

j
t dw

α
t +

∫ T

0

∂(φiV
i
α)

∂xj
(Xt)D

2
h,lX

j
t dw

α
t

+

∫ T

0

∂(φiV
i
α)

∂xj
(Xt)DhX

j
t dl

α
t +

∫ T

0

∂(φiV
i
α)

∂xj
(Xt)DlX

j
t dh

α
t .

Similar to the relation (2.8), by defining

Θ2(w, b) ,
∫ T

0

∂2(φiV
i
α)

∂xj∂xk
(Xt)Ξ

k
1(w, b)tΞ

j
1(w, b)tdw

α
t

+

∫ T

0

∂(φiV
i
α)

∂xj
(Xt)Ξ

j
2(w, b)tdw

α
t + 2

∫ T

0

∂(φiV
i
α)

∂xj
(Xt)Ξ

j
1(w, b)tdb

α
t

where Ξi(w, b) (i = 1, 2) are the quantities defined by [17, Equations (2.8) and (2.9)], we
have

D2
h,kF (w) =

1

2
D̂2
h,kΘ2(w, b).

By the same argument as in the first order case, we conclude that D2F ∈ Lq for all q > 2.
The higher order case is treated in a similar way, although only F ∈ D2,2 is sufficient for
our purpose.

Remark 2.4. Lemma 2.2 is not exactly a direct application of [17, Theorem 1.2], since
we assumed that φ ∈ C∞p instead of C∞b . The extra technical effort in the above proof lies
in separating out the study of rough integrals (instead of viewing them as RDE solutions)
and localising the 1-form φ on the ball of radius ‖X(w)‖∞.
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The following theorem is a standard regularity result in the Malliavin calculus which
will be used in Section 3 (cf. [23, Theorem 2.1.1] and the paragraph following its proof.)

Theorem 2.5. Let F be a twice differentiable random variable on W (in the sense of
Malliavin) and F,DF,D2F ∈ Lq for some q > 1. Then conditional on the event {DF 6= 0},
the distribution of F is absolutely continuous with respect to the Lebesgue measure
on R.

2.2 Some terminology from differential geometry

The notion of RDEs, stochastic line integrals as well as our non-degeneracy criteria
in Section 3 are intrinsic properties, in the sense that they are defined in terms of
the underlying vector fields and 1-forms. In particular, they are independent of the
choice of local coordinates or embedding of the state manifold into an ambient Euclidean
space. It is thus beneficial to perform some of the analysis in geometric terms. The
benefit is particularly clear in the hypoelliptic analysis developed in Section 3.1.2. In
this section, we recall some notation from differential geometry that will be used later
on (cf. Chern-Chen-Lam [9]).

Let M be a differentiable manifold. We denote Ωk(M) (0 6 k 6 n) as the space of
(smooth) k-forms on M . Given a (smooth) vector field X, the interior product i(X) :

Ωk(M)→ Ωk−1(M) is defined by(
i(X)ω

)
(Y1, . . . , Yk−1) , ω(X,Y1, . . . , Yk−1). (2.10)

The Lie derivative LX : Ωk(M)→ Ωk(M) is defined by

(LXω)(Y1, . . . , Yk) , X
(
ω(Y1, . . . , Yk)

)
−

k∑
i=1

ω
(
Y1, . . . , Yi−1, [X,Yi], Yi+1, . . . , Yk

)
. (2.11)

Here Y1, . . . , Yk are arbitrary vector fields, a k-form is viewed as an antisymmetric k-
linear functional on vector fields and Xf is the directional derivative of f along X. These
two operators are related through the so-called Cartan’s identity:

d ◦ i(X) + i(X) ◦ d = LX , (2.12)

where d : Ωk(M)→ Ωk+1(M) is the exterior derivative operator. We also recall that the
exterior product of two 1-forms α, β is defined by

α ∧ β(X,Y ) = α(X)β(Y )− β(X)α(Y )

and the exterior derivative of 1-form α has the following characterisation:

dα(X,Y ) = X
(
α(Y )

)
− Y

(
α(X)

)
− α

(
[X,Y ]

)
, (2.13)

where X,Y are arbitrary vector fields. A 1-form α is closed if dα = 0. It is exact if α = df

for some smooth function f . Every exact form is closed, and on Rn the converse is also
true. Throughout the rest, we will simply write α ·X for the pairing α(X) which is also
consistent with matrix notation in the Euclidean case.

It is convenient to re-interpret Lemma 2.2 in geometric terms. For instance, the
Jacobian Φt : Tx0

M → TXtM is the linear isomorphism that pushes tangent vectors at
x0 forward along the solution path by the flow of diffeomorphisms associated with the
RDE (1.2). The Malliavin derivative t 7→ DhXt ∈ TXtM is a path on the tangent bundle
(cf. (2.7)). The formula (2.2) can be expressed as

DhF (w) =

∫ T

0

(∫ T

t

〈
Φ∗sd(φ · Vβ)(Xs),Φ

−1
t Vα(Xt)

〉
dwβs + (φ · Vα)(Xt)

)
dhαt , (2.14)
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where 〈·, ·〉 denotes the pairing between cotangent and tangent vectors at the starting
point x0. Equation (2.14) clearly has an intrinsic meaning.

Finally, we recall an equation for the pull-back of vector fields by the Jacobian. This
equation, which played an essential role in the proof of Hörmander’s theorem for RDEs
(cf. [4, 5]), will also be crucial for our analysis. Its proof is a straight forward application
of the chain rule.

Lemma 2.6. LetW be a smooth vector field onM . Then the path t 7→ Φ−1t W (Xt) ∈ Tx0
M

satisfies the equation

Φ−1t W (Xt) = W (x0) +

∫ t

0

Φ−1s [Vα,W ](Xs)dw
α
s .

3 Non-degeneracy criteria for stochastic line integrals

In this section, we establish quantitative criteria for the non-degeneracy (i.e. exis-
tence of density) of stochastic/rough line integrals (extended signatures) of the form∫

0<t1<···<tm<T
φ1(dXt1) · · ·φm(dXtm),

where Xt ∈ M is the solution to the RDE (1.2) and φ1, . . . , φm are C∞p 1-forms. Our
results hold when M is either Rn or a (compact) manifold, but we will only work with
the case when M = Rn and the vector fields Vα ∈ C∞b . Extension of the argument to
the manifold case is routine by either working in local charts or embedding M into an
ambient Euclidean space. To illustrate the idea better, we first consider the case when
m = 1 and then extend the analysis to the case of iterated integrals.

3.1 Single line integrals

We begin by considering a single line integral F ,
∫ T
0
φ(dXt). We divide the discus-

sion into two cases: elliptic and hypoelliptic. In the elliptic case, the result is particularly
simple and neat, while the hypoelliptic case requires a strong condition as well as more
delicate analysis.

3.1.1 The elliptic case

By ellipticity, we assume that n = d and the vector fields V1, . . . , Vd in the RDE (1.2)
linearly span Rd at every point. In the introduction, we saw that the line integral F
may fail to have a density if the 1-form φ is closed. In the elliptic case, it turns out that
non-closedness is essentially sufficient for the non-degeneracy of F . The main result is
stated as follows.

Theorem 3.1. Let φ be a C∞p 1-form on Rd. Suppose that dφ 6= 0 almost everywhere
inside the support of φ. Let E denote the event that “Xt enters the interior of suppφ at
some time t”. Then conditional on E, the line integral F =

∫ T
0
φ(dXt) has a density with

respect to the Lebesgue measure on R.

Our proof of Theorem 3.1, as well as its hypoelliptic counterpart, relies crucially on
the following two properties of fBM. Its proof is contained in [5].

Lemma 3.2. (i) Let f = (f1, . . . , fd) : [0, T ] → Rd be a deterministic path such that∫ T
0
ftdht is well-defined in the sense of Young for all h ∈ H. If

∫ T
0
fα(t)dhαt = 0 for

all h ∈ H, then f ≡ 0.
(ii) The fBM is a.s. truly rough in the sense of [11]. As a result, with probability one

we have ∫ t

0

ysdBs = 0 ∀t ∈ [0, T ] =⇒ y ≡ 0,
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whenever y is a rough path controlled by B so that the rough integral is well-
defined.

Remark 3.3. In [5], these two properties are implied by a nondeterminism-type condition
which was used by the authors to establish the smoothness of density for the RDE solution.
It was proved in the same paper that fBM satisfies their nondeterminism condition.

Proof of Theorem 3.1. According to Theorem 2.5, the point is to show that E ⊆ {DF 6=
0} modulo some P-null set N . First of all, let N1 ⊆ W be a null set such that w admits
a canonical rough path lifting and is truly rough (so that Lemma 3.2 (ii) holds) for all
w ∈ N c

1 .
Now suppose that w ∈ E∩N c

1 is a path such that DF (w) = 0. According to Lemma 2.2
and Lemma 3.2 (i), we have(

(ζT − ζt) · Φ−1t + φ(Xt)
)
· Vα(Xt) = 0 ∀t ∈ [0, T ], α = 1, . . . , d (3.1)

at the driving path w, where ζt is defined by (2.3) and Φt is the Jacobian of the RDE.
Since the vector fields are assumed to be elliptic, the matrix V , (V1, . . . , Vd) is invertible
everywhere. After multiplying (3.1) by V (Xt)

−1Φt, we obtain that

ζT − ζt + φ(Xt) · Φt = 0.

Recall from the equations for Xt and Φt that

d
(
φ(Xt) · Φt

)
=

(
∂φ

∂xi
V iα(Xt)Φt + (φ ·DVα)(Xt) · Φt

)
dwαt . (3.2)

In view of the definition (2.3) of ζt and (3.2), Lemma 3.2 (ii) implies that(
−d
(
φiV

i
α

)
+
∂φ

∂xi
V iα + φ ·DVα

)
(Xt) = 0 ∀t ∈ [0, T ], α = 1, . . . , d.

By taking the j-th component of this equation, it is seen that(
∂φj
∂xi
− ∂φi
∂xj

)
(Xt)V

i
α(Xt) = 0 ∀t, α, j. (3.3)

By ellipticity, the equation (3.3) is equivalent to the property that (dφ)(Xt) = 0 for all t.
Note that this property holds at the particular path w. To summarise, we have shown
that

w ∈ E ∩N c
1 , DF (w) = 0 =⇒ (dφ)

(
Xt(w)

)
= 0 ∀t ∈ [0, T ], (3.4)

which is particularly true for t ∈ Q ∩ (0, T ].
On the other hand, by the definition of E and continuity, there is a rational time r such

that Xr(w) ∈ (suppφ)◦. In addition, we know from [4] that the law of Xr is absolutely
continuous with respect to the Lebesgue measure. Since Λ , {x ∈ (suppφ)◦ : (dφ)(x) =

0} is a Lebesgue null set by assumption, we have

P(Xr ∈ Λ) = 0, ∀r ∈ Q ∩ [0, T ].

In view of (3.4), by further excluding the P-null set

N2 ,
⋃

r∈Q∩[0,T ]

{Xr ∈ Λ},

we conclude that
w ∈ E\(N1 ∪N2) =⇒ DF (w) 6= 0.

The result thus follows from Theorem 2.5.
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Examples that satisfy the assumptions of Theorem 3.1 are generic and easy to
construct.

Example 3.4. Let h(t) ∈ C∞c (R) be a function such that

h(t) > 0, t ∈ (−1, 1); h(t) = 0, t /∈ (−1, 1),

and h′(t) is everywhere nonzero in (−1, 1) except at t = 0. Define the following 1-form
on R2:

φ = h(x)h(y)eh(y)
2

dx.

Then φ is supported on [−1, 1]2 and

dφ = −h(x)h′(y)
(
1 + 2h(y)2

)
eh(y)

2

dx ∧ dy.

Inside its support, dφ = 0 precisely on the slice y = 0 which has zero Lebesgue measure.

3.1.2 The hypoelliptic case

We now extend the previous analysis to the hypoelliptic case. We first give the following
key definition. Let V1, . . . , Vd be a family of smooth vector fields on a differentiable
manifold M .

Definition 3.5. We say that V1, . . . , Vd satisfy Hörmander’s condition if the following
family of vector fields

Vi, [Vi, Vj ],
[
Vi, [Vj , Vk]

]
,
[
Vi,
[
Vj , [Vk, Vl]

]]
, . . . (i, j, k, l etc. = 1, . . . , d)

linearly span TxM at every x ∈M .

It is a well-known fact that under Hörmander’s condition, the solution Xt to the RDE
(1.2) admits a smooth density function with respect to the Lebesgue measure (cf. [4, 5]).
In the diffusion case, this result was first established in the seminal work of Hörmander
[15].

We now consider a stochastic line integral F =
∫ T
0
φ(dXt), where Xt is the solution to

the RDE (1.2) and V1, . . . , Vd are C∞b -vector fields on M = Rn that satisfy Hörmander’s
condition. We shall obtain a quantitative criterion for the non-degeneracy of F and
derive an explicit method of constructing 1-forms that satisfy such criterion.

A general criterion

In order to derive a non-degeneracy criterion for F , as in the elliptic case we start by
assuming that DF (w) = 0 at a given fBM path w. We aim at obtaining a geometric
constraint on φ which holds at paths w satisfying DF (w) = 0 (in the elliptic case, the
constraint is closedness: dφ = 0). Our non-degeneracy criterion will simply be that “φ
does not satisfy such a geometric constraint” (in the elliptic case, dφ 6= 0 a.e. inside
suppφ).

We begin by fixing the following notation. Given a word I = (i1, . . . , ik) over the
letters {1, . . . , d}, we set

VI ,
[
Vi1 ,

[
Vi2 , . . . , [Vik−1

, Vik ]
]]
.

The set of finite words (respectively, of length k) is denoted asW (respectively,Wk). The
following lemma is crucial for us.

Lemma 3.6. We define {ψI : I ∈ W} inductively in the following way:

ψI , 0 for I ∈ W1,
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and
ψI , dφ(Vi, VJ) + ViψJ for I = (i, J). (3.5)

Suppose that DF (w) = 0. Then at the path w, we have(
η · Φ−1 + φ

)
· VI + ψI = 0 ∀I ∈ W, (3.6)

where

ηt(w) ,
∫ T

t

d(φ · Vα)
(
Xs(w)

)
· Φs(w)dwαs .

Proof. We prove the claim by induction on the length of I. When I ∈ W1, this is a
restatement of (3.1), whose proof clearly does not rely on ellipticity. Suppose that (3.6)
is true for all words of length 6 k. By taking differential with I ∈ Wk, we find that

dη ·
(
Φ−1VI

)
+ η · d

(
Φ−1 · VI

)
+ Vi(φ · VI + ψI)dw

i
t = 0.

By the definition of η and Lemma 2.6, we have(
η · Φ−1[Vi, VI ]− VI(φ · Vi) + Vi(φ · VI) + ViψI

)
dwit = 0.

It follows from Lemma 3.2 (ii) that

η · Φ−1[Vi, VI ]− VI(φ · Vi) + Vi(φ · VI) + ViψI = 0 ∀i = 1, . . . , d.

In addition, note that

Vi(φ · VI)− VI(φ · Vi) = (Viφ)VI − (VIφ)Vi + φ · (DVI · Vi −DVi · VI)
= dφ(Vi, VI) + φ · [Vi, VI ].

Therefore, we obtain that(
η · Φ−1 + φ

)
[Vi, VI ] + dφ(Vi, VI) + ViψI = 0 ∀i.

According to the definition of ψI′ , the above relation is precisely the desired property for
the word I ′ = (i, I) (i = 1, . . . , d). This completes the induction step.

We shall make use of properly chosen local frame fields (i.e. family of vector fields
that form a basis of TxRn at every point x) associated with Hörmander’s condition. As
a result, our condition on φ will be expressed locally in terms of these frame fields.
For each x ∈ Rn, according to Hörmander’s condition and continuity, there exists a
neighbourhood U of x together with subsets I1, . . . , Ir of words (Ik ⊆ Wk), such that

{VI : I ∈ I1 ∪ · · · ∪ Ir}

form a local frame field of Rn on U . We may assume that suppφ is covered by such local
“charts”.

Now suppose that X(w) passes through a local chart U of suppφ on which a local
frame field

V = {VI : I ∈ I1 ∪ · · · ∪ Ir}

is chosen and fixed. Note that

|I1|+ · · ·+ |Ir| = n.

Let W be the Mat(n, n)-valued function on U defined by

W , (VI)I∈Ik,16k6r
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and set

Θ , (ψI)I∈Ik,16k6r,

where ψI is defined by (3.5). Under the assumption DF (w) = 0, the relation (3.6) can be
written in matrix form as (

η · Φ−1 + φ
)
·W + Θ = 0.

Since W is invertible, we have

η + φ · Φ = Ξ · Φ, (3.7)

where Ξ , −Θ ·W−1. Note that (3.7) holds at w for all times in

Lw ,
{
t ∈ [0, 1] : Xt(w) ∈ U

}
.

Let {ωI} be the coframe field dual to V. As a 1-form on U , we have

Ξ = −
r∑

k=2

∑
I∈Ik

ψIω
I on U. (3.8)

Lemma 3.7. Let ω = ωidx
i be a 1-form and V = V i∂i be a vector field. Then the

following two identities hold true:

(i) −d(ω · V ) + V ω + ω ·DV = i(V )dω;

(ii) V ω + ω ·DV = LV ω.

Proof. By the definition (2.11) of the Lie derivative, we have

(LV ω)(∂i) = V ωi − ω · [V, ∂i] = V j
∂ωi
∂xj

+ ωj
∂V j

∂xi

= (V ω + ω ·DV ) · ∂i.

This justifies the relation in (ii). The relation of (i) is a simple consequence of (ii) and
Cartan’s identity (2.12).

Lemma 3.8. Suppose that DF (w) = 0 and X(w) passes through the local chart U . Then
at the path w, we have

i(Vα)dφ = LVαΞ (3.9)

for all α = 1, . . . , d and t ∈ Lw.

Proof. By taking differential of the relation (3.7), we obtain that(
−d(φ · Vα) · Φ + (Vα · φ) · Φ + φ ·DVα · Φ

)
dwα =

(
(VαΞ) · Φ + Ξ ·DVα · Φ

)
dwα.

After cancelling Φ on both sides, Lemma 3.2 (ii) implies that

−d(φ · Vα) + Vαφ+ φ ·DVα = VαΞ + Ξ ·DVα ∀α = 1, . . . , d and t ∈ Lw.

The result follows immediately from Lemma 3.7.

Equivalently, Lemma 3.8 suggests that if the relation (3.9) does not hold on U and
if X(w) passes through U , then DF (w) 6= 0. As a consequence, along the same lines
of argument as in the elliptic case, we have proved the following result, which is the
main theorem in this section giving a quantitative non-degeneracy criterion for the line
integral F .

EJP 28 (2023), paper 121.
Page 14/28

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1017
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Non-degeneracy of stochastic line integrals

Theorem 3.9. Let φ be a C∞p 1-form on Rn. Suppose that the support of φ is covered by
local charts U on which suitable local frame fields V are chosen and fixed. For each U ,
define the local 1-form ΞU on U by (3.8) with respect to the coframe dual to V. Suppose
that on each chart U , we have

i(Vα)dφ− LVαΞU 6= 0 a.e. on U ∩ suppφ (3.10)

for some α = 1, . . . , d. Then conditional on the event that “X enters the support of φ”, the
stochastic line integral

∫ T
0
φ(dXt) has a density with respect to the Lebesgue measure.

Remark 3.10. The condition (3.10) is stronger than the non-closedness condition dφ 6= 0

a.e. obtained in the elliptic case. Indeed, it is obvious that

dφ = 0 =⇒ ΞU = 0 =⇒ i(Vα)dφ− LVαΞU = 0.

An explicit method of construction

The next basic question is whether there are rich examples of 1-forms that satisfy the
non-degeneracy criteria derived in the previous sections. In the elliptic case, the non-
closedness condition is fairly easy to achieve. In the hypoelliptic case, there is also
a rich class of 1-forms (at least as generic as pairs of smooth functions) that satisfy
the condition (3.10). In what follows, we discuss a general and explicit method of
constructing them.

We first recall some basic notation from sub-Riemannian geometry. Suppose that
{V1, . . . , Vd} are given smooth vector fields on a differentiable manifold M which satisfy
Hörmander’s condition. Define D1 to be the C∞(M)-module generated by {V1, . . . , Vd}.
Equivalently, for each x ∈M , D1(x) is the subspace of Tx(M) defined by

D1(x) = Span
{
V1(x), . . . , Vd(x)

}
, x ∈M.

Inductively, define

Dk , Dk−1 + [D1,Dk−1], k > 2,

where [D1,Dk−1] denote the C∞(M)-module generated by {[X,Y ] : X ∈ D1, Y ∈ Dk−1}.
Elements in Dk are linear combinations of {VI : |I| 6 k} with smooth coefficients.
According to Hörmander’s condition, at every x ∈ M there is a smallest integer r(x)

such that Dr(x)(x) = TxM . Observe that

{0} =: D0(x) ⊆ D1(x) ⊆ D2(x) ⊆ · · · ⊆ Dr(x)(x).

The list of integers

dimD1(x) < dimD2(x) < · · · < dimDr(x)(x)

is known as the growth vector of {V1, . . . , Vd} at x. A point x is a regular point if the
growth vector is constant near x. The set of regular points is open and dense in M .

The following simple algebraic lemma allows us to choose preferable local frame
fields to work with.

Lemma 3.11. Let x0 ∈ M be a regular point. There exists a neighbourhood U of x0
and a collection of words (I1, . . . , Ir) (r , r(x0), Ik ⊆ Wk), such that the following two
properties hold true for each k = 1, . . . , r:

(i) Ik ⊆ I1 × Ik−1;

(ii) {VI : I ∈ I1 ∪ · · · ∪ Ik} is a local frame field of Dk on U .
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Proof. We construct Ik by induction. First of all, let U0 be a neighbourhood of x0 on
which the growth vector is constant. Choose I1 so that {Vi(x0) : i ∈ I1} form a basis
of D1(x0). By continuity, there exists U1 ⊆ U0 such that {Vi(x) : i ∈ I1} are linearly
independent for each x ∈ U1. Since dimD1 is constant on U1, we see that {Vi : i ∈ I1} is
a local frame field of D1 on U1.

Now suppose that a neighbourhood Uk and I(k) = I1 ∪ · · · ∪ Ik have been obtained to
satisfy the required properties. We claim that

Dk+1(x0) = Span
{
VI(x0), [Vi, VJ ](x0) : i ∈ I1, I ∈ I(k), J ∈ Ik

}
. (3.11)

Indeed, let W ∈ D1(Uk) and Z ∈ Dk(Uk). By the induction hypothesis, we can write

W =
∑
i∈I1

fiVi, Z =
∑

J∈I1∪···∪Ik

gJVJ

where fi, gI ∈ C∞(Uk). It follows that

[W,Z] =
∑
i∈I1

∑
J∈I1∪···∪Ik

(
(fiVigJ)VJ − (gJVJfi)Vi + figJ [Vi, VJ ]

)
.

For J ∈ I(k−1), since [Vi, VJ ] ∈ Dk is a C∞(M)-linear combination of VI (I ∈ I(k)) on Uk,
the claim (3.11) follows immediately. Note that {VI(x0)} : I ∈ I(k)} are already linearly
independent. As a result, we can choose a collection Ik+1 of (i, J) with i ∈ I1, J ∈ Ik
such that {

VI(x0), [Vi, VJ ](x0) : I ∈ I(k), (i, J) ∈ Ik+1

}
form a basis of Dk+1(x0). By continuity and the constant dimensionality of Dk+1 on Uk,
we see that {VI : I ∈ I(k+1)} is a local frame field of Dk+1 on some Uk+1 ⊆ Uk. From the
construction, it is also clear that Ik+1 ⊆ I1 × Ik.

Remark 3.12. We know from Property (i) that Ik 6= ∅ for all k.

We now derive a general method of constructing 1-forms that satisfy Theorem 3.9.
Let (U ;V = {VI : I ∈ I1 ∪ · · · ∪ Ir}) be a chosen local frame field that satisfies the
properties in Lemma 3.11. For I = (i, J), we denote 〈〈dφ, VI〉〉 , dφ(Vi, VJ). From the
definition of ψI (cf. (3.5)) and Property (i) of Lemma 3.11, it is not hard to see that

〈〈dφ, VI〉〉 = 0 ∀I ∈ I2 ∪ · · · ∪ Ir =⇒ Ξ = 0,

where Ξ is the 1-form defined by (3.8) with respect to the local frame field V. In addition,
since Ξ · Vα = 0 for all α ∈ I1, we have

i(Vα)dφ− LVαΞ = i(Vα)d(φ− Ξ). (3.12)

As a result, a sufficient condition for (3.10) to hold on U is that:

(A) 〈〈dφ, VI〉〉 = 0 for all I ∈ I2 ∪ · · · ∪ Ir;
(B) i(Vα)dφ 6= 0 a.e. on U for some α ∈ I1.

We shall reduce the above two conditions to a more explicit set of relations in terms of
coefficients. To this end, let {ωI : I ∈ I(r) , I1 ∪ · · · ∪ Ir} be the coframe dual to V and
express φ on U as

φ =
∑
I∈I(r)

cIω
I ,

where cI ∈ C∞(U). Let us fix a total ordering ≺ on I(r) such that I ≺ J if |I| < |J |. For
I, J,K ∈ I(r), we set

ΛIJK , dωI(VJ , VK) = VJ
(
ωI(VK)

)
− VK

(
ωI(VJ)

)
− ωI

(
[VJ , VK ]

)
= −ωI

(
[VJ , VK ]

)
.

EJP 28 (2023), paper 121.
Page 16/28

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1017
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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It follows that

dφ =
∑
I

(
dcI ∧ ωI +

∑
J≺K

cIΛ
I
JKω

J ∧ ωK
)

=
∑
I

(∑
J

VJcIω
J ∧ ωI −

∑
J≺K

cIω
I
(
[VJ , VK ]

)
ωJ ∧ ωK

)
=
∑
I≺J

(
VIcJ − VJcI −

∑
K

cKω
K
(
[VI , VJ ]

))
ωI ∧ ωJ .

Let ci (i ∈ I1) be an arbitrary family of smooth functions on U . Given I = (i, j) ∈ I2,
since i, j ∈ I1, we have

〈〈dφ, VI〉〉 = ±
(
Vicj − Vjci −

∑
K

cKω
K(VI)

)
= ±(Vicj − Vjci − cI).

As a result, by setting
cI , Vicj − Vjci, I = (i, j) ∈ I2,

we conclude that 〈〈dφ, VI〉〉 = 0 for all I ∈ I2. Inductively on k, for I = (i, J) ∈ Ik we set

cI , VicJ − VJci

where cJ has already been defined since J ∈ Ik−1. It then follows that

〈〈dφ, VI〉〉 = 0 ∀I ∈ I2 ∪ · · · ∪ Ir

on U . In particular, the aforementioned Condition (A) holds. For Condition (B), note that

i(Vα)dφ =
∑
J:J 6=α

(
VαcJ − VJcα −

∑
K

cKω
K
(
[Vα, VJ ]

))
ωJ (3.13)

for each α ∈ I1. As a result, Condition (B) boils down to requiring that at least one of the
ωJ -coefficients in (3.13) is a.e. nonzero on U .

To summarise, we have obtained the following result which provides an explicit
method of constructing 1-forms that satisfy the criterion (3.10).

Theorem 3.13. Let ci ∈ C∞c (U) (i ∈ I1) be given and define cI (I ∈ Ik) inductively by

cI , VicJ − VJci, I = (i, J) ∈ Ik.

Suppose that for some α ∈ I1 and J ∈ Ir, we have

VαcJ − VJcα −
∑
K

cKω
K
(
[Vα, VJ ]

)
6= 0 a.e. on U. (3.14)

Then conditional on the event that “X enters the support of φ”, the stochastic line
integral

∫ T
0
φ(dXt) has a density with respect to the Lebesgue measure.

Remark 3.14. The left hand side of (3.14) is an expression involving up to the r-th
derivatives of ci (i ∈ I1). The property (3.14) is essentially generic for functions ci ∈
C∞c (U) (i ∈ I1).

The step-2 case and the Heisenberg group

Let us consider the simplest hypoelliptic situation, i.e. when d = 2, dimM = 3 and the
vector fields

V =
{
V1, V2, V3 , [V1, V2]

}
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form a basis of TxM at every point x ∈M (i.e. a global frame field over M ). In this case,
Theorems 3.9 and 3.13 are simplified substantially. Let {ω1, ω2, ω3} be the coframe of V.
The definition (3.8) of the 1-form Ξ reads

Ξ = −dφ(V1, V2)ω3.

According to the identity (3.12) and the anti-symmetry of d(φ− Ξ) as a bilinear form on
vector fields, the condition (3.10) in Theorem 3.9 is equivalent to that

d
(
φ+ dφ(V1, V2)ω3

)
6= 0 a.e. on suppφ.

In addition, Conditions (A) and (B) in the last section simply reads

dφ(V1, V2) = 0 and dφ 6= 0 a.e. on suppφ.

In terms of coefficients of φ with respect to {ω1, ω2, ω3}, we have the following direct
corollary of Theorem 3.13.

Corollary 3.15. Consider a 1-form

φ = c1ω
1 + c2ω

2 + (V1c2 − V2c1)ω3, (3.15)

where c1, c2 ∈ C∞p (M). Suppose that dφ 6= 0 a.e. inside the support of φ. Then conditional

on the event that “X enters suppφ”, the stochastic line integral
∫ T
0
φ(dXt) has a density

with respect to the Lebesgue measure.

We conclude with an explicit example: the Heisenberg group. More precisely, we
consider M = R3, where the vector fields V1, V2 are given by

V1 = ∂x − y∂z, V2 = ∂y + x∂z

respectively. In this case, the solution to the RDE (1.2) is explicitly given by the original
fBM B coupled with the associated Lévy area process

Xt =

(
Bxt , B

y
t ,

∫ t

0

Bxs dB
y
s −

∫ t

0

BysdB
x
s

)
06t6T

.

By explicit calculation, it is easily seen that [V1, V2] = 2∂z. In particular, V ,
{V1, V2, [V1, V2]} is a global frame field. Its coframe is found to be

ω1 = dx, ω2 = dy, ω3 =
y

2
dx− x

2
dy +

1

2
dz.

Let φ = ciω
i where ci ∈ C∞p (R3). Under Cartesian coordinates, we have

φ =

(
c1 +

yc3
2

)
dx+

(
c2 −

xc3
2

)
dy +

1

2
c3dz. (3.16)

Let us further assume that c1, c2 depend only on the x, y coordinates. Define

c3 , −V2c1 + V1c1 = −∂yc1 + ∂xc2,

so that dφ(V1, V2) = 0 as seen before. Note that c3 also depends only on x, y. We obtain
from (3.16) that {

dφ(∂x, ∂z) = 1
2∂xc3 = 1

2

(
−∂2xyc1 + ∂2xxc2

)
,

dφ(∂y, ∂z) = 1
2∂yc3 = 1

2

(
−∂2yyc1 + ∂2xyc2

)
.

(3.17)

As a consequence, as long as the functions (c1, c2) are chosen such that(
−∂2xyc1 + ∂2xxc2

)
·
(
−∂2yyc1 + ∂2xyc2

)
6= 0 a.e. in suppφ, (3.18)

the non-degeneracy of the line integral
∫ T
0
φ(dXt) holds. Since there are no a priori

constraints on c1, c2, the property (3.18) is apparently generic.
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3.2 Iterated line integrals

We now turn to the stuy of an extended signature

F =

∫
0<t1<···<tm<T

φ1(dXt1) · · ·φm(dXtm) (m > 2).

We consider two typical situations: (i) the supports of the 1-forms φ1, . . . , φm are mutually
disjoint, or (ii) they all have common support. As we will see, in the first case the
conditions provided by Theorem 3.9 (imposed on each φi) continue to ensure the non-
degeneracy of F . In the second case, we demonstrate that it is possible to have all φi’s
being exact while F is non-degenerate, which is surprising in contrast to the case of
m = 1.

We first prepare a lemma that will be used in both cases. It is a natural extension of
(3.1).

Lemma 3.16. For k = 1, . . . ,m, we set

Gkt ,
∫
0<t1<···<tk−1<t

φ1(dXt1) · · ·φk−1(dXtk−1
), (3.19)

Hk
t ,

∫
t<tk+1<···<tm<T

φk+1(dXtk+1
) · · ·φm(dXtm), (3.20)

where G1
t = Hm

t , 1. Suppose that DF (w) = 0. Then at the path w we have

m∑
k=1

(∫ T

t

GksH
k
s dζ

k
s · Φ−1t +GktH

k
t φk(Xt)

)
· Vα(Xt) = 0 (3.21)

for all α = 1, . . . , d and t ∈ [0, T ], where

ζkt ,
∫ t

0

d(φk · Vα)(Xs)Φsdw
α
s . (3.22)

Proof. As in the proof of Lemma 2.2, given any h ∈ H we have

DhF (w) =

m∑
k=1

∫
0<t1<···<tk<···<tm<T

φ1(dXt1) · · ·Dhφk(dXtk) · · ·φm(dXtm)

=

m∑
k=1

(∫
0<···<tk<···<T

· · ·
(
dζktk · ηtk

)
· · ·

+

∫
0<···<tk<···<T

· · · (φk · Vα)(Xtk)dhαtk · · ·
)

=

m∑
k=1

(∫ T

0

GktH
k
t

(
dζkt · ηt

)
+

∫ T

0

GktH
k
t (φk · Vα)(Xt)dh

α
t

)
=: A1 +A2,

where ηt ,
∫ t
0

Φ−1s Vα(Xs)dh
α
s . The same integration by parts argument as in the proof of

Lemma 2.2 yields that

A1 =

m∑
k=1

∫ T

0

∫ T

t

GksH
k
s dζ

k
s · Φ−1t Vα(Xt)dh

α
t .

As a consequence, we have

DhF (w) =

m∑
k=1

∫ T

0

(∫ T

t

GksH
k
s dζ

k
s · Φ−1t Vα(Xt) +GktH

k
t (φk · Vα)(Xt)

)
dhαt .

Since DhF (w) = 0 for all h ∈ H, the result thus follows from Lemma 3.2 (i).
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3.2.1 The case of disjoint supports

Let φ1, . . . , φm be smooth 1-forms such that suppφi ∩ suppφj = ∅ for all i 6= j. Define E
to be the event that “there exist times t1 < · · · < tm such that Xti ∈ (suppφi)

◦ for all i”.
From the definition of F , it is not hard to see in a deterministic way that the line integral
F is identically zero on Ec. Our main result in this case is stated as follows.

Theorem 3.17. Suppose that each φi satisfies the conditions in Theorem 3.9. Then
conditional on the event E, the extended signature F has a density with respect to the
Lebesgue measure.

The following lemma, which is an extension of Lemma 3.6, is needed for our proof of
Theorem 3.17.

Lemma 3.18. For each k = 1, . . . ,m, we define {ψk,I : I ∈ W} by ψk,I , 0 if I ∈ W1 and

ψk,I , dφk(Vi, VJ) + Viψk,J

for I = (i, J). Suppose that DF (w) = 0. Then at the path w, we have(
ρt · Φ−1t +

m∑
k=1

GktH
k
t φk

)
· VI +

m∑
k=1

GktH
k
t ψk,I = 0 ∀I ∈ W, t ∈ [0, T ], (3.23)

where ρt ,
∑m
k=1

∫ T
t
GksH

k
s dζ

k
s and Gkt , H

k
t , ζ

k
t are defined by (3.19), (3.20), (3.22) respec-

tively.

Proof. We prove the claim by induction on the length of the word I. When I ∈ W1, the
claim reduces to the equation (3.21). Suppose that (3.23) is true for all words of length
6 k. By differentiating (3.23) with I ∈ Wk, we have

dρ ·
(
Φ−1VI

)
+ ρ · d

(
Φ−1VI

)
+
∑
k

d
(
GktH

k
t

)
· (φk · VI + ψk,I)

+
∑
k

GktH
k
t Vi(φk · VI + ψk,I)dw

i = 0.

Recall that

dρt = −
∑
k

GktH
k
t d(φk · Vi) · Φtdwit, d

(
Φ−1t VI

)
= Φ−1t · [Vi, VI ]dwit.

As a result, we have

ρ · Φ−1[Vi, VI ] +
∑
k

GktH
k
t

(
−VI(φk · Vi) + Vi(φk · VI) + Viψk,I

)
+
∑
k

GktH
k+1
t φk ∧ φk+1(Vi, VI) +

∑
k

GktH
k+1
t (ψk+1,Iφk − ψk,Iφk+1) · Vi = 0 (3.24)

for all i. Since suppφk ∩ suppφk+1 = ∅, it is readily seen that

φk ∧ φk+1 = 0, ψk+1,Iφk − ψk,Iφk+1 = 0.

In addition, note that

Vi(φk · VI)− VI(φk · Vi) = dφk(Vi, VI) + φk · [Vi, VI ].

The equation (3.24) thus reduces to(
ρ · Φ−1 +

∑
k

GktH
k
t φk

)
· [Vi, VI ] +

∑
k

GktH
k
t

(
dφk(Vi, VI) + Vi(ψk,I)

)
= 0.
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By the definition of {ψk,I : I ∈ W}, the last expression is equivalent to that(
ρ · Φ−1 +

∑
k

GktH
k
t φk

)
· VI′ +

∑
k

GktH
k
t ψk,I′ = 0

where I ′ = (i, I). Since I ∈ Wk and i ∈ {1, . . . , d} are arbitrary, we conclude that (3.23)
is true for words of length k + 1.

We now prove Theorem 3.17 by induction on the degree of F .

Proof of Theorem 3.17. Consider the following slightly more general claim:

(Pm) Let φ1, . . . , φm be smooth 1-forms with disjoint support and each of them satisfies
the conditions in Theorem 3.9. For each pair of s < t ∈ [0, T ], let Es,t be the event that
“X visits (suppφ1)◦, . . . , (suppφm)◦ in order over [s, t]”. Then∫

s<t1<···<tm<t
φ1(dXt1) · · ·φm(dXtm)

∣∣∣∣
Es,t

admits a density with respect the Lebesgue measure.

We are going to prove (Pm) by induction on m. The case when m = 1 is just Theorem 3.9.
Suppose that the claim is true for iterated integrals of degree less than m and consider
an m-th order integral

F =

∫
s<t1<···<tm<t

φ1(dXt1) · · ·φm(dXtm).

We wish to show that
w ∈ Es,t ∩N c =⇒ DF (w) 6= 0, (3.25)

where N is a suitable P-null set to be excluded.
Suppose that w ∈ Es,t and DF (w) = 0. Let k be fixed and consider a time u such

that Xu ∈ (suppφk)◦ and X|[s,u] (respectively, X|[u,t]) visits the supports of φ1, . . . , φk−1
(respectively, of φk+1, . . . , φm). Such a time u exists as w ∈ Es,t. By the assumption of the
theorem, we may take a chart U nearXu on which a local frame field {VI : I ∈ I1∪· · ·∪Ir}
is defined and

i(Vα)dφk − LVαΞk 6= 0 a.e. on U (3.26)

for some α, where under the notation of Section 3.1.2 we set

Ξk , ΘkW
−1, Θk , (ψk,I)I∈Il,16l6r,W , (VI)I∈Il,16l6r on U.

In a small time neighbourhood v ∈ (u− ε, u+ ε), the equation (3.23) yields(
ρ · Φ−1 +GkvH

k
vφk

)
·W +GkvH

k
v ·Θk = 0 ⇐⇒ ρ+GkvH

k
vφk · Φ = GkvH

k
vΞk · Φ.

Note that the above relation holds at k (not summing over k!) near Xu. By differentiating
both sides with respect to wαt , we obtain that

GkvH
k
v

(
−d(φk · Vα) + Vαφk + φk ·DVα

)
+ d
(
GkvH

k
v

)
φk

= GkvH
k
v · (VαΞk + Ξk ·DVα) + d

(
GkvH

k
v

)
Ξk (3.27)

for all α and v ∈ (u− ε, u+ ε).
Next, we observe that

d
(
GkvH

k
v

)
= Gk−1v Hk

vφk−1(dXv)−GkvHk+1
v φk+1(dXv) = 0,
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since Xv ∈ suppφk for v close to u. As a result, the equation (3.27) reduces to

GkvH
k
v

(
−d(φk · Vα) + Vαφk + φk ·DVα

)
= GkvH

k
v · (VαΞk + Ξk ·DVα).

By using the relations

−d(φk · Vα) + Vαφk + φk ·DVα = i(Vα)dφk,

VαΞk + Ξk ·DVα = LVαΞk,

we obtain that
GkvH

k
v

(
i(Vα)dφk − LVαΞk

)
= 0 (3.28)

for all α and v ∈ (u − ε, u + ε). According to the assumption (3.26), we conclude that
either Xv lives on some Lebesgue null set C ⊆ U , or GkvH

k
v = 0.

For each v, we set

E′v ,
{
∃t1 < · · · < tk−1 ∈ (0, v) : Xti ∈ (suppφi)

◦},
E′′v ,

{
∃tk+1 < · · · < tm ∈ (0, v) : Xti ∈ (suppφi)

◦}
respectively. To summarise, by continuity we have obtained from (3.28) that

w ∈ Es,t ∩ {DF = 0}

=⇒ w ∈ N ,
⋃

r∈Q∩(s,t)

(
{Xr ∈ C} ∪

({
Gkr = 0

}
∩ E′r

)
∪
({
Hk
r = 0

}
∩ E′′r

))
.

Since Xr has a density, we know that {Xr ∈ C} is a P-null set. In addition, since Gkr and
Hk
r are iterated line integrals with degree less than m, by the induction hypothesis both

of Gkr |E′r and Hk
r |E′′r have densities. In particular,{

Gkr = 0
}
∩ E′r) ∪

({
Hk
r = 0

}
∩ E′′r

)
is also a P-null set. As a result, P(N) = 0 and the desired relation (3.25) follows. In other
words, we conclude that DF 6= 0 a.s. on Es,t, which implies the existence of conditional
density by Theorem 2.5. This completes the induction step for the claim (Pm).

3.2.2 The case of common support

Next, we assume that the supports of φ1, . . . , φm have a common intersection S. Our
aim here is to demonstrate a surprising fact that the extended signature F can still be
non-degenerate even when all the φi’s are exact and compactly supported (i.e. φi = dfi
where fi ∈ C∞c (S)). As we mentioned in the introduction, this is not possible when m = 1

(cf. Remark 3.20 as well). Our result in this case is stated as follows. For simplicity, we
only consider the elliptic situation.

Proposition 3.19. Consider an elliptic RDE (1.2) where X0 = x0 ∈ Rd. Let f1, . . . , fm
be compactly supported smooth functions. Suppose that the 2-forms

{dfi ∧ dfi+1 : i = 1, . . . ,m− 1}

are linearly independent at x0. Then the extended signature

F ,
∫
0<t1<···<tm<T

(df1)(dXt1) · · · (dfm)(dXtm)

has a density with respect to the Lebesgue measure.
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Proof. Write φk , dfk. Let w be an fBM path such that DF (w) = 0. According to the
equation (3.21) and ellipticity, we have

∑
k

∫ 1

t

GksH
k
s dζ

k
s +

∑
k

GktH
k
t φk · Φt = 0 ∀t ∈ [0, T ].

By taking differentiation with respect to wαt , we find that∑
k

GktH
k
t

(
−d(φk · Vα) + Vα(φk) + φk ·DVα

)
+
∑
k

GktH
k+1
t ((φk · Vα)φk+1 − (φk+1 · Vα)φk = 0,

which is equivalent to that

i(Vα)
∑
k

(
GktH

k
t dφk +GktH

k+1
t φk ∧ φk+1

)
= 0

for all α = 1, . . . , d and t ∈ [0, T ]. Again by ellipticity and the fact that dφk = d2fk = 0, we
have ∑

k

GktH
k+1
t φk ∧ φk+1 = 0 (3.29)

for all t ∈ [0, T ] at the path w.
We first consider the case when m = 2. In this case, the relation (3.29) simply reads

(φ1 ∧ φ2)
(
Xt(w)

)
= 0 ∀t ∈ [0, T ].

By taking t = 0, we reach a contradiction as φ1 ∧ φ2(x0) 6= 0 by the assumption. Next, we
consider the case when m = 3. In this case, the relation (3.29) becomes

H2
t φ1 ∧ φ2 +G2

tφ2 ∧ φ3 = 0.

By the linear independence assumption and continuity, when t is small we have H2
t =

G2
t = 0. In particular,

G2
t =

∫ t

0

φ1(dXs) = f1(Xt)− f1(x0) = 0 ∀t small. (3.30)

On the other hand, since df1(x0) 6= 0 (otherwise the linear independence assumption
cannot hold), there exists a neighbourhood U of x0 such that

P ,
{
x ∈ U : f1(x) = f1(x0)

}
is an (n− 1)-dimensional submanifold in U . In particular, the event

N ,
⋃
r∈Q+

{Xr ∈ P}

is a P-null set. Note that the property (3.30) implies that N happens. Consequently, in
both cases m = 2, 3, we see that DF (w) 6= 0 a.s. The existence of density thus follows.

Now suppose that the claim is true for iterated integrals of degree m−2 where m > 4.
For the degree m case, by taking the component in the φm−1 ∧ φm direction we have

DF (w) = 0 =⇒ Gm−1t =

∫
0<t1<···<tm−2<t

φ1(dXs) · · ·φm−2(dXs) = 0
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when t is small. In particular,

{DF = 0} ⊆
⋃
r∈Q+

{
Gm−1r = 0

}
,

which is a P-null set since Gm−1r has a density by the induction hypothesis. Therefore,
DF 6= 0 a.s. and the claim holds for the degree-m case. The result thus follows by
induction.

Remark 3.20. In contrast, when m = 1, the stochastic line integral of a compactly
supported exact form will never have a density. Indeed, let f be a compactly supported
smooth function. Then

F ,
∫ T

0

(df)(dXt) = f(XT )− f(x0).

According to [12, Theorem 1.5], the density of XT is everywhere strictly positive. It
follows that

P
(
XT ∈ (supp f)c

)
> 0.

In particular, there is a positive probability that F = −f(x0). As a result, F cannot have
a density. Nonetheless, if we allow supp f = Rn it is clearly possible that F has a density.
For instance, take f(x) = |x|2 with Xt being a Brownian motion.

4 An application to the signature uniqueness problem

In this section, we discuss an application of Theorem 3.13 to the probabilistic sig-
nature uniqueness problem. We first give the definition of the signature transform of

a rough path (cf. [20]). Let T ((Rn)) ,
[
m= 0]∞

∏
(Rn)⊗m denote the algebra of formal

tensor series over Rn where (Rn)⊗0 , R.

Definition 4.1. Let X = (Xt)06t6T be a rough path over Rn. The signature of X is the
formal tensor series defined by

S(X) ,

(
1,

∫ T

0

dXt, . . . ,

∫
0<t1<···<tm<T

dXt1 ⊗ · · · ⊗ dXtm , . . .

)
∈ T

((
Rn
))
. (4.1)

Remark 4.2. If X is a continuous path in Rn with bounded variation, the iterated
integrals in (4.1) are all defined in the classical sense of Lebesgue-Stieltjes. In the rough
path case, the well-definedness of S(X) follows from a basic extension theorem of Lyons
(cf. [21]).

After extracting coordinates, the signature S(X) consists of a countable family of
numbers associated with the path X. It can be viewed as the pathwise / deterministic
analogue of moments of a random variable. There are two basic reasons of considering
the signature transform:

(i) [The signature uniqueness theorem] Every (geometric) rough path is uniquely
determined by its signature up to tree-like pieces (cf. [14, 2]). Here a tree-like
piece is a portion along which the path travels out and reverses back to cancel
itself.

(ii) The signature S(X) has nice algebraic and analytic properties that are concealed
at the level of paths (cf. [20, 24]).

In the probabilistic setting, the signature uniqueness theorem may take a stronger form
as we do not expect tree-like pieces to appear for a suitably non-degenerate stochastic
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process. Below is the main result in this section which extends earlier probabilistic works
[19, 13, 1]. To reduce technicalities, we only consider the elliptic or step-2 hypoelliptic
case.

Theorem 4.3. Consider an n-dimensional RDE (1.2) driven by a d-dimensional fractional
Brownian motion. Suppose that the vector fields {V1, . . . , Vd} are C∞b and we are in one
of the following two situations:

(i) n = d and the vector fields are elliptic;

(ii) n = 3, d = 2 and the vector fields satisfy Hörmander’s condition.

Then with probability one, every sample path of the solution process X = {Xt : 0 6 t 6
T} is uniquely determined by its signature up to bicontinuous reparametrisation.

Remark 4.4. We expect the result to be true for the general hypoelliptic case of arbitrary
order, although the construction of relevant 1-forms (cf. Condition (ND) below) may be
technically more involved in the general case.

Such a probabilistic uniqueness theorem was first established by Le Jan and Qian [19]
for the Brownian motion case. The result was later extended to the cases of hypoelliptic
diffusions in [13] and Gaussian processes in [1]. These works were largely based on
a technique developed in [19], which was formalised in [1] down to the verification of
three key conditions in the context of a general stochastic process X. The first two
conditions are: (i) X can be lifted as a rough path in a canonical way and (ii) Xt has a
density for each t > 0. These two conditions are naturally satisfied for hypoelliptic RDEs.
The last condition is stated as follows.

Non-degeneracy Condition (ND). For any cube H in Rn, there exists a smooth 1-form
φ supported in H, such that conditional on the event that “X enters H at some time”,
the stochastic line integral

∫ T
0
φ(dXt) is a.s. non-zero.

It was proved in [1] that the above three conditions imply the signature uniqueness
theorem for a general stochastic process X. As a result, in order to prove the aforemen-
tioned Theorem 4.3, it remains to verify Condition (ND) under the given assumptions.
Before doing so, for the sake of completeness, we briefly recapture the main strategy
of [19] and explain at a conceptual level how Condition (ND) leads to the signature
uniqueness property.

Step one. Decompose the state space Rn into disjoint cubes of order ε with narrow gaps
δ (δ � ε). Label the cubes by a set L (L = Zn in [19]).

Step two. For each cube Hz (z ∈ L), construct a 1-form φz supported in Hz according to
Condition (ND). For each word w = (z1, . . . , zm) over L, one can define the associated
extended signature

[φz1 , . . . , φzm ]0,T ,
∫
0<t1<···<tm<T

φz1(dXt1) · · ·φzm(dXtm)

along the path X. Due to an algebraic property of the signature (the shuffle product
formula) and polynomial approximations of 1-forms, these extended signatures are all
uniquely determined by the signature of X (cf. [1, Proposition 4.1]).

Step three. Due to Condition (ND), there exists a unique word w of maximal length, with
respect to which the extended signature is non-zero. This word precisely corresponds
to the discrete route of the path X in the given space discretisation. As a result, the
signature of X uniquely determines its discrete route.
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Step four. As we refine the discretisation (i.e. sending ε, δ → 0), the discrete route
converges to the original sample path X in a suitable sense. Therefore, the signature
uniquely determines the trajectory of X.

The rest of this section is devoted to the proof of Theorem 4.3.

Proof of Theorem 4.3: verification of Condition (ND)

In the elliptic case, we can use Example 3.4 to explicitly construct 1-forms satisfying
Condition (ND). According to Theorem 3.1, conditional on X entering the cube H, the
associated line integral

∫ T
0
φ(dXt) (for φ given by Example 3.4) has a density. This clearly

implies that its value is a.s. non-zero.
We now consider the step-2 hypoelliptic case. Suppose that n = 3, d = 2 and

V = {V1, V2, [V1, V2]} form a global frame field of R3. We use the method of Corollary 3.15
to construct suitable 1-forms. Recall from (3.15) that such 1-forms are given by

φ = c1ω
1 + c2ω

2 + (V1c2 − V2c1)ω3,

where {ωi} is the coframe of V and c1, c2 are arbitrary smooth functions supported in
the cube H. We want to choose φ with suppφ = H and dφ 6= 0 a.e. in H. Note that
dφ(V1, V2) = 0. Hence we have to look at dφ(Vi, [V1, V2]). Straightforward calculation
yields

dφ
(
Vi, [V1, V2]

)
= Vi(V1c2 − V2c1)− [V1, V2]ci −

〈
φ,
[
Vi, [V1, V2]

]〉
, i = 1, 2.

We will set c2 = 0, so that

dφ
(
V2, [V1, V2]

)
= −V2(V2c1)−

〈
ω1,
[
V2, [V1, V2]

]〉
· c1 +

〈
ω3,
[
V2, [V1, V2]

]〉
· V2c1. (4.2)

In other words, we want to construct c1 with supp c1 = H, such that the above expression
is a.e. non-zero in H.

According to [9, Chap. 1, Theorem 4.3], a non-degenerate vector field locally gener-
ates coordinate curves. Since we will eventually refine the space discretisation, we may
assume without loss of generality that H is contained in a coordinate chart [U ;x, y, z] of
R3 where V2 = ∂x. To simplify notation, we further assume that H is the unit cube

H =
{

(x, y, z) : max{|x|, |y|, |z|} < 1
}

under the above coordinate system. We define

c1(x, y, z;λ) , hλ(x)η(y, z),

where λ > 0 is a parameter to be chosen later on,

hλ(x) ,

{
e
− λ

1−x2 , |x| < 1;

0, |x| > 1,

and η(y, z) is a given smooth function supported on H̄y,z , {(y, z) : max{|y|, |z|} 6 1}
which is strictly positive in the interior. Under such choice of c1, the equation (4.2) can
be concisely written as

−dφ
(
V2, [V1, V2]

)
=
(
h′′λ(x) + f(x, y, z)h′λ(x) + g(x, y, z)hλ(x)

)
η(y, z),

where f, g are known C∞-functions. Our proof will be concluded from the following
lemma.
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Lemma 4.5. There exists λ > 0, such that

Nλ ,
{

(x, y, z) ∈ H : h′′λ(x) + f(x, y, z)h′λ(x) + g(x, y, z)hλ(x) = 0
}

is a Lebesgue null set.

Remark 4.6. It will be clear from the proof below that Lemma 4.5 holds for all λ outside
a suitable null set of (0,∞). For our purpose, we only need one such λ.

Proof. Explicit calculation shows that

h′′λ(x) + f(x, y, z)h′λ(x) + g(x, y, z)hλ(x) =
hλ(x)

(1− x2)4
· Φλ(x, y, z),

where

Φλ(x, y, z) = 4x2λ2 − 2
(
1− x2

)(
1 + 3x2 + x

(
1− x2

)
f
)
λ+

(
1− x2

)4
g. (4.3)

Observe that Φλ(x, y, z) is a quadratic polynomial in λ. It is easy to see that (x, y, z) ∈
Nλ ∩ {x 6= 0} if and only if

λ =
−p±

√
∆

8x2
and ∆ > 0,

where p,∆ are known C∞-functions on H that can be expressed explicitly in terms of
f, g (∆ is the discriminant of (4.3)).

We now consider the following three smooth functions:

ψ± ,
−p±

√
∆

8x2
, q ,

−p
8x2

,

where ψ± are defined on E , {∆ > 0} ∩ {x 6= 0} (could possibly be empty) and q is
defined on H ∩ {x 6= 0}. Recall that the critical set of a smooth function F : U → R

consists of those points in U at which ∇F = 0. The classical Sard’s theorem (cf. [22,
Chap. 2]) asserts that the image of the critical set of a smooth function is a Lebesgue
null set. Let Y±, Z be the critical sets of ψ±, q respectively. It follows that

C , ψ+(Y+) ∪ ψ−(Y−) ∪ q(Z)

is a Lebesgue null set in R. As a result, there exists at least one λ ∈ (0,∞) ∩ Cc. We fix
one such λ. Then each of ψ−1+ (λ), ψ−1− (λ), q−1(λ) is either empty or a two-dimensional
sub-manifold in H. The result thus follows from the observation that

Nλ ∩ {x 6= 0} ⊆ ψ−1+ (λ) ∪ ψ−1− (λ) ∪ q−1(λ).

Note that the slice {x = 0} is a Lebesgue null set and has no effect on our discussion.

If we choose λ as in Lemma 4.5, for the resulting 1-form φ we have

dφ
(
V2, [V1, V2]

)
6= 0

except on a low dimensional manifold which has zero Lebesgue measure. Therefore,
dφ 6= 0 a.e. inside the support of φ. The Condition (ND) is then a consequence of
Corollary 3.15.
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