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Abstract

We analyse the law of the SLE tip at a fixed time in capacity parametrization. We
describe it as the stationary law of a suitable diffusion process, and show that it has
a density which is the unique solution (up to a multiplicative constant) of a certain
PDE. Moreover, we identify the phases in which the even negative moments of the
imaginary value are finite. For the negative second and negative fourth moments we
provide closed-form expressions.
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1 Introduction

The Schramm-Loewner evolution (SLEκ) is a family of random planar fractal curves
indexed by the real parameter κ ≥ 0, introduced by Schramm in [22]. These random
fractal curves are proved to describe scaling limits of a number of discrete models
that are of great interest in planar statistical physics. For instance, it was proved
in [16] that the scaling limit of loop-erased random walk (with the loops erased in a
chronological order) converges in the scaling limit to SLEκ with κ = 2 . Moreover, other
two-dimensional discrete models from statistical mechanics including Ising model cluster
boundaries, Gaussian free field interfaces, percolation on the triangular lattice at critical
probability, and uniform spanning tree Peano curves were proved to converge in the
scaling limit to SLEκ for values of κ = 3, κ = 4, κ = 6 and κ = 8 respectively in the series
of works [25], [23], [24] and [16]. There are also other models of statistical physics in
2D that are conjectured to have SLEκ, for some value of κ, as a scaling limit, among
which is the two-dimensional self-avoiding walk which is conjectured to converge in the
scaling limit to SLE8/3. For a detailed exposure and pedagogical introduction to SLE
theory, we refer the reader to [21], [15], and [14].
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Law of the SLE tip

Questions concerning the behaviour of the SLE trace at the tip can be found in the
existing body of SLE literature, for example in [11] where the almost sure multi-fractal
spectrum of the SLE trace near its tip is computed, and in [29] in which the ergodic
properties of the harmonic measure near the tip of the SLE trace are studied.

However, to the best of our knowledge, the law of the SLE tip at fixed capacity time
has not been studied in the SLE literature until very recently. One of the first papers in
this direction is [17] where a method based on stopping times was applied in order to
try to deduce information about the law of the SLE tip.

In this article, we develop an approach that allows for an in-depth study of this
fundamental quantity. More precisely, we derive a PDE whose unique solution is the
density of the SLE tip. This allows us to obtain explicit values for the negative second
and negative fourth moment of the imaginary value of the SLE tip. We deduce that they
are finite only for κ < 8 resp. κ < 8/3. For further negative moments, we identify the
values of κ where the moments are finite.

To obtain these results we combine PDE techniques with certain tools from the
theory of stochastic stability of stochastic differential equations (SDEs). Namely, we
work with an SDE obtained from the backward Loewner differential equation. By a
scaling argument, we derive a two-dimensional diffusion process that converges in law
to the SLE tip. Using tools from ergodic theory (in the spirit of [18]), we prove that this
diffusion process has a unique invariant measure. This allows us to show that the density
of the SLE tip solves the Fokker-Planck-Kolmogorov (FPK) equation associated with the
process.

Showing that the density of SLE tip is the unique solution of the FPK equation
requires further tools. Note that while there is a vast literature on FPK equations (see
e.g. [2]), usually only the case of elliptic operators are considered, while our FPK is
hypoelliptic. Therefore, to show uniqueness of solutions to this equation and derive the
support of the solution we utilise the generalized Ambrosio-Figalli-Trevisan superposition
principle obtained recently in [3] as well as more standard methods such as Lyapunov
functions and Harnack inequalities.

This paper is organised in three sections, the first one being the introduction. In the
second section we state the main results. In the last section which is further divided in
two subsections we give their proofs.

Convention on constants Throughout the paper C denotes a positive constant whose
value may change from line to line.

2 Main results

First, let us introduce the basic notation. For a domain D ⊂ Rk, k > 1, let C∞(D,R)

be a set of functions D → R which have derivatives of all orders. The set of functions
from C∞(D,R) which are bounded and have bounded derivatives of all orders will be
denoted by C∞b (D,R). As usual, for a function f : D → Rd, d > 1, we will denote its
supremum norm by ‖f‖∞ := supx∈D |f(x)|. Let H be the open complex upper half-plane
{Im(z) > 0}.

Until the end of the paper we fix κ ∈ (0,∞). Let gt : Ht → H, t > 0, be the forward
SLE flow, that is the solution to the Loewner ODE

∂tgt(z) =
2

gt(z)−
√
κBt

, g0(z) = z, t > 0, z ∈ H,

where B is a standard Brownian motion, Ht = {z ∈ H | Tz > t}, and Tz is the time until
which the ODE is solvable. Let (γt)t>0 be the SLEκ path associated with this flow. It is
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Law of the SLE tip

well-known [21, Theorem 3.6], [16, Theorem 4.7] that P-a.s. for any t > 0

γ(t) = lim
u→0+

g−1
t (
√
κBt + iu). (2.1)

Throughout the paper we use the notations γ(t) and γt interchangeably.
Our main result is the following statement.

Theorem 2.1. The random vector (Re(γ1), Im(γ1)) has a density ψ ∈ C∞(R× (0,∞),R)

which is the unique solution in the class of probability densities (non-negative functions
that integrate to 1 over the whole space) of the following PDE:

κ

2
∂2
xxψ +

(
1

2
x+

2x

x2 + y2

)
∂xψ +

(
1

2
y − 2y

x2 + y2

)
∂yψ +

(
1 +

4(y2 − x2)

(x2 + y2)2

)
ψ = 0, (2.2)

where x ∈ R, y ∈ (0,∞).
Furthermore, ψ is strictly positive in R × (0, 2), ψ ≡ 0 on R × [2,∞), and ψ(x, y) =

ψ(−x, y) for x ∈ R, y > 0.

We have attached in Figure 1 numerical simulations of γ(1) with various values of κ.
There we have chosen the coordinates (α, y) where α = arg γ(1) and y = Im γ(1) so that
they fit well in the plot.

Figure 1: Simulation of γ(1) with 20000 samples each. Plotted are the coordinates (α, y)

where α = arg γ(1) and y = Im γ(1).

As an application of Theorem 2.1, we show that the following quantities can be
explicitly calculated.

Theorem 2.2. The following holds:

(i) For any measurable set Λ ⊂ H one has

E

∫ ∞
0

1
(
γ(t) ∈ Λ

)
dt =

Γ(1 + 4
κ )

2
√
πΓ( 1

2 + 4
κ )

∫
Λ

(
1 +

x2

y2

)−4/κ

dx dy. (2.3)
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(ii) For any n ∈ N we have

E(Im γ1)−2n <∞ if and only if κ < 8/(2n− 1). (2.4)

Further,

E(Im γ1)−2 =
2

8− κ
for κ < 8 (2.5)

E(Im γ1)−4 =
16(3− κ)

(12− κ)(8− κ)(8− 3κ)
for κ < 8/3. (2.6)

Remark 2.3. Note that the left-hand side of (2.3) is an average amount of time SLE
spends in a set Λ. A version of this identity has previously appeared in [30, Corollary
5.3]. However, in that paper the constant in front of the integral has been implicitly
specified as 1/Cκ,1 with

Cκ,1 =

∫
H

(
M0(z)− E

[
M1(z)1Tz>1

])
dx dy

and Mt(z) = |g′t(z)|2( Im gt(z)
|gt(z)−

√
κBt|

)8/κ. In particular, our result implies

Cκ,1 =
2
√
πΓ( 1

2 + 4
κ )

Γ(1 + 4
κ )

As we will point out in Section 3.2, our Theorem 2.2 may seem like a simple con-
sequence of Theorem 2.1 that can be heuristically deduced from integration by parts
arguments. However, it is surprisingly tricky to control the boundary behaviour of ψ and
its derivatives. Therefore it requires more work to rigorously prove Theorem 2.2.

One of our initial motivations was to know more about the marginal law of α = arg γ(1).
We believe that the marginal density should behave like α8/κ as α ↘ 0. We did not
succeed in proving this; instead, we prove the following in Section 3.2. Denote (α, y) =

(arg γ(1), Im γ(1)) and let q(α, y) = ψ(y cotα, y) y
sin2 α

the density in these coordinates.

Then for n > 1 we have
∫ 2

0
y−2nq(α, y) dy ≈ α8/κ−2n as α↘ 0.

Remark 2.4. The support of the density is quite natural since the half-plane capacity of
γ[0, t] is always at least 1

2 Im γ(t)2, and hence we always have Im γ(t) 6
√

2 hcap(γ[0, t]) =

2
√
t. Note also that Im γ(t) = 2

√
t is only attained by SLE0, i.e. γ(t) = i2

√
t which is

driven by the constant driving function.

To obtain these results we establish the following lemma which links the law of SLEκ
with invariant measure of a certain diffusion process. Introduce the reverse SLE flow

∂tht(z) =
−2

ht(z)−
√
κB̃t

, h0(z) = z, t > 0, z ∈ H; (2.7)

where B̃ is the time-reversed Brownian motion, that is,

B̃t := B1−t −B1 for t 6 1; B̃t := B′t−1 −B1 for t > 1, (2.8)

where B′ is a Brownian motion independent of B. It is obvious that B̃ is a Brownian
motion.

Lemma 2.5. We have

1√
t

(
ht(i)−

√
κB̃t

)
→ γ(1) in law as t→∞.
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3 Proofs

3.1 Proofs of Theorems 2.1 and 2.5

We begin with the proof of Theorem 2.5.

Proof of Theorem 2.5. Introduce f̂t(z) := g−1
t (
√
κBt + z), z ∈ H, t > 0. We claim that

f̂1(z) = h1(z) +
√
κB1. (3.1)

Indeed, it follows from (2.7) that for z ∈ H, t ∈ [0, 1]

∂t
(
h1−t(z) +

√
κB1

)
=

2

h1−t(z)−
√
κB̃1−t

=
2

(h1−t(z) +
√
κB1)−

√
κBt

,

which implies h1−t(z) +
√
κB1 = gt(h1(z) +

√
κB1). Recalling the definition of f̂ and

taking t = 1, we obtain (3.1).
Next, we note that the following scaling property holds: for any c > 0

Law

(
1

c

√
κB̃c2 ,

1

c
hc2(cz)

)
= Law

(√
κB̃1, h1(z)

)
). (3.2)

Indeed, using again the definition of h in (2.7), we see that for any t > 0

∂t

(
1

c
hc2t(cz)

)
=

−2c

hc2t(cz)−
√
κB̃c2t

=
−2

1
chc2t(cz)−

1
c

√
κB̃c2t

.

Since the process ( 1
c

√
κB̃c2t)t>0 has the same law as (

√
κB̃t)t≥0 and the solution of the

Loewner differential equation is a deterministic function of the driver, we see that (3.2)
holds.

Fix u > 0. Applying (3.1) with z = iu and (3.2) with z = iu, c = 1/u, we deduce

Law
(
f̂1(iu)

)
= Law

(
uh 1

u2
(i)− u

√
κB̃ 1

u2

)
.

where we have also used the fact that B1 = −B̃1. Since, by (2.1), we have γ(1) =

limu↘0 f̂1(iu), it follows that u(h1/u2(i) −
√
κB̃1/u2) converges in law to γ(1) as u ↘ 0.

This implies the statement of the lemma.

Recall the definition of the reverse SLE flow h in (2.7) and the reversed Brownian
Motion B̃ in (2.8). Theorem 2.5 implies the following result.

Corollary 3.1. Let (X̂t, Ẑt)t>0 be the stochastic process that satisfies the following
equation

dX̂t =

(
−1

2
X̂t −

2X̂t

X̂2
t + e2Ẑt

)
dt+

√
κ dB̂t, (3.3)

dẐt =

(
−1

2
+

2

X̂2
t + e2Ẑt

)
dt, (3.4)

with the initial data X̂0 = Re(h1(i))−
√
κB̃1, Ẑ0 = log(Im(h1(i))); here B̂t :=−

∫ t
0
e−s/2 dB̃es

and the filtration F̂t := σ(B̃r, r ∈ [0, et]). Then

(X̂t, Ẑt)→
(
Re(γ1), log

(
Im(γ1)

))
in law as t→∞. (3.5)

Note that the initial value of the process (X̂, Ẑ) is random but measurable with
respect to F̂0.
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Proof. Put Xt + iYt := ht(i)−
√
κB̃t. Then, it follows from (2.7) that

dXt =
−2Xt

X2
t + Y 2

t

dt−
√
κ dB̃t,

dYt =
2Yt

X2
t + Y 2

t

dt, (3.6)

X0 = 0, Y0 = 1. For t > 0, let X̂t := e−t/2Xet and Ŷt := e−t/2Yet . We apply Itô’s formula
to derive

dX̂t =

(
−1

2
X̂t −

2X̂t

X̂2
t + Ŷ 2

t

)
dt+

√
κ dB̂t, (3.7)

dŶt =

(
−1

2
Ŷt +

2Ŷt

X̂2
t + Ŷ 2

t

)
dt. (3.8)

Clearly, B̂ is a standard Brownian motion with respect to the filtration F̂t. By definition,
we also have X̂0 = X1, Ŷ0 = Y1. The change of variables Ẑt := log Ŷt and another
application of Itô’s formula implies that the process (X̂, Ẑ)t>0 satisfies SDE (3.3)–(3.4)
with the initial conditions X̂0 = X1 = Re(h1(i)) −

√
κB̃1, Ẑ0 = log(Y1) = log(Im(h1(i))).

Note that by (3.6), Y1 > Y0 = 1, therefore |Ẑ0| <∞.
Furthermore,

e−t/2
(
het(i)−

√
κB̃et

)
= e−t/2(Xet + iYet) = X̂t + iŶt.

Thus, by Theorem 2.5, we have

(X̂t, Ŷt)→
(
Re
(
γ(1)

)
, Im

(
γ(1)

))
in law as t→∞. (3.9)

Note that
P
(
Im
(
γ(1)

)
= 0
)

= 0. (3.10)

Indeed, the trace of a Loewner chain a.s. spends zero capacity time at the boundary, i.e.,
λ({t | Im γ(t) = 0}) = 0 a.s., where λ is the Lebesgue measure (cf. [28, Proposition 1.7];
the case for SLEκ appeared already in [30, Corollary 5.3]). Therefore, by Fubini’s
theorem, P(Im(γ(t)) = 0) = 0 Lebesgue a.e.. By scale invariance, this implies (3.10).

Now, combining (3.9) and (3.10), we get (3.5).

It follows from Theorem 3.1 that to prove Theorem 2.1 one needs to study invariant
measures of (3.3)–(3.4). PDE (2.2) is then the Fokker-Planck-Kolmogorov equation for
this process. However, since the coefficients have a singularity at 0, a bit of care is
needed to make the statements rigorous.

First, we show that this SDE is well-posed and is a Markov process. We will need
the following notation. For a vector field U : R2 → R2 denote its derivative matrix by
(DU)i,j := ∂xjUi. The Lie bracket between two vector fields U, V : R2 → R2 is given by

[U, V ](x) := DV (x)U(x)−DU(x)V (x), x ∈ R2.

It is immediate to see that if U = ( 1
0 ), then

[U, V ] =

(
∂x1

V1

∂x1
V2

)
,
[
U, [U, V ]

]
=

(
∂2
x1x1

V1

∂2
x1x1

V2

)
. (3.11)

We begin with the following technical statement.
Let W be a standard Brownian motion. For ε > 0, let gε : R→ [ε/2,+∞) be a C∞(R)

function with bounded derivatives of all orders such that{
gε(x) = x, x > ε;

ε/2 6 gε(x) 6 ε, −∞ < x < ε.
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Lemma 3.2. Fix ε > 0 and consider stochastic differential equation

dXε
t =

(
−1

2
Xε
t −

2Xε
t

(Xε
t )2 + gε(e2Zεt )

)
dt+

√
κ dWt, (3.12)

dZεt =

(
−1

2
+

2

(Xε
t )2 + gε(e2Zεt )

)
dt, (3.13)

where (Xε
0 , Z

ε
0) = (x0, z0) ∈ R2. Then for any initial condition (x0, z0) ∈ R2 SDE (3.12)–

(3.13) has a unique strong solution. This solution is a strong Feller Markov process.

Proof. Since the drift and diffusion of (3.12)–(3.13) are uniformly Lipschitz continuous
functions, it is immediate that SDE (3.12)–(3.13) has a unique strong solution and this
solution is a Markov process. To show that (Xε

t , Z
ε
t ) is a strong Feller process we use

(parabolic) Hörmander’s theorem.
Denote

bε(x, z) :=

(
b1,ε(x, z)

b2,ε(x, z)

)
:=

− 1
2x−

2x
x2+gε(e2z)

− 1
2 + 2

x2+gε(e2z)

 , x, z ∈ R; σ :=

(√
κ

0

)
. (3.14)

Then we can rewrite (3.12)–(3.13) as

dξεt = bε
(
ξεt
)
dt+ σdWt, (3.15)

where we put ξε :=
(
Xε

Zε.

)
Let us verify that SDE (3.15) satisfies all conditions of Hörman-

der’s theorem [8, Theorem 1.3] (see also [20, Theorem 6.1]).
We see that the drift bε is in C∞ and all its derivatives are bounded. Furthermore,

using (3.11), we see that for x 6= 0, z ∈ R we have span(σ, [σ, bε(x, z)]) = R2, and for
x = 0, z ∈ R we have span(σ, [σ, [σ, bε(x, z)]]) = R2. Thus, the parabolic Hörmander
condition holds. Hence, all the conditions of the Hörmander theorem are met and [8,
Theorem 1.3] implies that (Xε, Zε) is strong Feller.

Now we can show well-posedness of (3.3)–(3.4).

Lemma 3.3. For any random vector (x̂0, ẑ0) independent of B̂ the stochastic differential
equation (3.3)–(3.4) has a unique strong solution with (X̂0, Ẑ0) = (x̂0, ẑ0). This solution
is a Markov process in the state space R2 and its transition kernel Pt is strong Feller for
any t > 0.

Proof. First, we consider the case when the initial data (x̂0, ẑ0) is deterministic. Then it
is immediate to see that for any T > 0 a solution to (3.3)–(3.4) satisfies

Ẑt > ẑ0 − T/2, (3.16)

t ∈ [0, T ]. Hence, on time interval [0, T ], any solution to (3.3)–(3.4) solves SDE (3.12)–
(3.13) with (Xε

0 , Z
ε
0) = (x̂0, ẑ0), ε = exp(2ẑ0 − T ), W = B̂ and vice versa. Since, by

Theorem 3.2, the latter equation has a unique strong solution, we see that SDE (3.3)–
(3.4) has a unique strong solution on [0, T ] and

(X̂t, Ẑt) =
(
Xε
t , Z

ε
t

)
, t ∈ [0, T ]. (3.17)

Since T is arbitrary, it follows that SDE (3.3)–(3.4) has a unique strong solution on [0,∞).
Strong existence for the case of arbitrary initial data follows now from [12, Theo-

rem 1], and strong uniqueness from [10, Remark IV.1.4]. Moreover, [13, Theorem 5.4.20]
shows that (X̂t, Ẑt)t>0 is a Markov process with the state space R2 equipped with the
Borel topology.
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Now let us show that (Pt)t>0 is strong Feller. Let f be an arbitrary bounded measur-
able function R2 → R, let (x0, z0) ∈ R2. Let (xn0 , z

n
0 ) ∈ R2, n ∈ Z+ be a sequence con-

verging to (x0, z0) as n→∞. Without loss of generality we can assume that zn0 > −2|z0|
for all n ∈ Z+. Fix t > 0. Then, denoting by (P εt )t>0 the transition kernel associated with
SDE (3.12)–(3.13), we derive

Ptf
(
xn0 , z

n
0

)
= E(xn0 ,z

n
0 )f(X̂t, Ẑt) = E(xn0 ,z

n
0 )f
(
Xε
t , Z

ε
t

)
= P εt f

(
xn0 , z

n
0

)
, (3.18)

where ε := exp(−4|z0| − t) and we used here (3.16) and (3.17). By Theorem 3.2, we have

P εt f
(
xn0 , z

n
0

)
→ P εt f(x0, z0) = Ptf(x0, z0), as n→∞, (3.19)

here we used once again (3.16) and (3.17). Combining (3.18) and (3.19), we see that Pt
is strong Feller.

To show uniqueness of the invariant measure of (Pt), we will need the following
support theorem. For δ > 0, v ∈ R2 let Bδ,v be the ball of radius δ centred at v.

Lemma 3.4. For any (x0, z0) ∈ R2, δ > 0, there exists T > 0 such that

PT
(
(x0, z0), Bδ,(0,log 2)

)
> 0.

Proof. Fix (x0, z0) ∈ R2. Consider the following deterministic control problem associated
with (3.3)–(3.4):

d

dt
xt =

(
−1

2
xt −

2xt
x2
t + e2zt

)
+
√
κ
d

dt
Ut, (3.20)

d

dt
zt =

(
−1

2
+

2

x2
t + e2zt

)
, (3.21)

where x(0) = x0, z(0) = z0 and U ∈ C1([0, T ];R) is a non-random function with U0 = 0.
We claim that we can find T > 0 and U such that xT = 0 and |zT − log 2| < δ/2.

First, we take a C1 path x : [0, 1]→ R such that x(0) = x0, x(1) = 0, d
dtx(t)|t=1 = 0. Let

zt, t ∈ [0, 1], be a solution to (3.21) with the initial condition z0 (for x constructed above).
Consider now the equation

d

dt
zt =

(
−1

2
+

2

e2zt

)
, t > 1

with the initial condition z1 constructed above. It is easy to see that there exists
T = T (x0, z0) > 1 such that |zT − log 2| < δ/2. Set xt = 0 for t ∈ [1, T ].

Finally, let Ut, t ∈ [0, T ], be a C1 path such that (3.20) holds for x, z constructed above
and U0 = 0. The desired control U has been constructed.

Now for arbitrary ε > 0, consider the event

Aε :=
{

sup
t∈[0,T ]

|Wt − Ut| < ε
}
.

It is well-known (see, e.g., [6, Theorem 38]) that P(Aε) > 0. Let (X̂t, Ẑt)t∈[0,T ] be the
solution of (3.3)–(3.4) with the initial condition (x0, z0). Then

zt > z0 − T/2, Ẑt > z0 − T/2, for all t ∈ [0, T ]. (3.22)

Therefore, for any t ∈ [0, T ] we have on Aε

|X̂t − xt|+ |Ẑt − zt| 6 C

∫ t

0

(|X̂s − xs|+ |Ẑs − zs|) ds+
√
κε, (3.23)
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where we used (3.22) and the fact that the Lipschitz constant of the drift of SDE (3.3)–
(3.4) is bounded on the set R× [z0 − T/2,+∞). By the Gronwall inequality and (3.23),
we have on Aε

|X̂T − xT |+ |ẐT − zT | 6 C(T )
√
κε.

Choose now ε small enough, such that the right-hand side of the above inequality is less
than δ/2. Then recalling that xT = 0 and |zT − log 2| < δ/2, we finally deduce

PT
(
(x0, z0), Bδ,(0,log 2)

)
> P(Aε) > 0.

Lemma 3.5. The measure π := Law(Re(γ1), log(Im(γ1))) is the unique invariant measure
for the process (3.3)–(3.4).

Proof. The fact that the measure π is invariant follows by a standard argument. Denote,
as usual, for a measurable bounded function f : R2 → R and a measure ν on R2

Ptf(x) :=

∫
R2

f(y)Pt(x, dy), x ∈ R2; Ptν(A) :=

∫
R2

Pt(y,A) ν(dy), A ∈ B
(
R2
)
.

Consider the measure µ := Law(Re(h1(i)) −
√
κB̃1, log(Im(h1(i)))). Rewriting (3.5), we

see that
Ptµ→ π weakly as t→∞. (3.24)

Fix any s > 0. Let us show that Psπ = π. Indeed, let f : R2 → R be an arbitrary
continuous bounded function. Then∫

R2

f(x)Psπ(dx) =

∫
R2

Psf(x)π(dx) = lim
t→∞

∫
R2

Psf(x)Ptµ(dx)

= lim
t→∞

∫
R2

f(x)Pt+sµ(dx) =

∫
R2

f(x)π(dx),

where the second identity follows from (3.24) and the fact that Psf is a bounded con-
tinuous function (this is guaranteed by the Feller property of P ). Since f was arbitrary
bounded continuous function, we see that Psπ = π for any s > 0. Thus, the measure π is
invariant for SDE (3.3)–(3.4).

Now let us show that SDE (3.3)–(3.4) have a unique invariant measure. Assume the
contrary. Then SDE (3.3)–(3.4) must have two different ergodic invariant measures ν, ν̃
([7, Lemma 7.1], [27, Theorem 5.1.3(iv)]). By Theorem 3.3 the semigroup (Pt) is strong
Feller. Therefore, by [4, Proposition 7.8]

supp(ν) ∩ supp(ν̃) = ∅. (3.25)

We claim now that the point (0, log 2) belongs to the support of both of these measures.
Indeed, fix arbitrary δ > 0. Take any (x0, z0) ∈ supp(ν). Then, by Theorem 3.4, there

exists T > 0, ε > 0 such that PT ((x0, z0), Bδ,(0,log 2)) > ε. By the strong Feller property
of PT , the function (x, z) 7→ PT ((x, z), Bδ,(0,log 2)) is continuous. Therefore, there exists
δ′ > 0 such that

PT
(
(x, z), Bδ,(0,log 2)

)
> ε/2, for any (x, z) ∈ Bδ′,(x0,z0).

This implies that

ν(Bδ,(0,log 2)) >
∫
Bδ′,(x0,z0)

ν(x, z)PT
(
(x, z), Bδ,(0,log 2)

)
dxdz >

ε

2
ν(Bδ′,(x0,z0)) > 0

where the last inequality follows from the fact that (x0, z0) ∈ supp(ν). Since δ was
arbitrary, we see that (0, log 2) ∈ supp(ν). Similarly, (0, log 2) ∈ supp(ν̃), which contradicts
(3.25). Therefore, SDE (3.3)–(3.4) has a unique invariant measure.
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Let L be the generator of the semigroup P

Lf :=
1

2
κ∂2

xxf +

(
−1

2
x− 2x

x2 + e2z

)
∂xf +

(
−1

2
+

2

x2 + e2z

)
∂zf,

where f ∈ C∞(R2). As usual, the adjoint of L will be denoted by L∗.

Lemma 3.6. The measure π := Law(Re(γ1), log(Im(γ1))) has a smooth density p with
respect to the Lebesgue measure. Further, p is the unique solution in the class of
densities of the Fokker-Planck-Kolmogorov equation

L∗p = 0. (3.26)

Finally, p(x, z) = 0 for x ∈ R, z > log 2, and p(x, z) > 0 for x ∈ R, z < log 2.

Proof. Since the measure π is invariant for P , we have (in the weak sense)

L∗π = 0. (3.27)

Let us now check that L∗ satisfies the (standard) Hörmander condition.
Denote by b the drift of (3.3)–(3.4)

b(x, z) :=

(
b1(x, z)

b2(x, z)

)
:=

(
− 1

2x−
2x

x2+e2z

− 1
2 + 2

x2+e2z

)
, x, z ∈ R. (3.28)

and recall the notation for σ (3.14). Using (3.11), we see that for x 6= 0, z ∈ R we have
span(σ, [σ, b(x, z)]) = R2, and for x = 0, z ∈ R we have span(σ, [σ, [σ, b(x, z)]]) = R2. Thus,
the Hörmander condition holds and by Hörmander’s theorem [26, Theorem 7.4.3], L∗ is
hypoelliptic.1 Therefore, (3.27) implies that the Schwarz distribution π ∈ C∞(R2). Thus,
the measure π has a C∞ density p with respect to the Lebesgue measure and (3.26)
holds.

Now let us show that (3.26) does not have any other solutions. We have already
seen that semigroup (Pt) has a unique invariant measure (this has been established in
Theorem 3.5). In general, without extra conditions, this does not immediately imply
uniqueness of solutions to (3.26) in the class of probability measures, see [2, hint to
exercise 9.8.48]. This is because not every probability solution to the Fokker–Planck–
Kolmogorov equation corresponds to a solution of the martingale problem; we refer to
[3, p. 719] for further discussion.

Thus, we assume the contrary and suppose that p′ is another probability density
which solves (3.26). Let π′ be the measure with density p′. We claim that π′ is another
invariant measure for (Pt).

Consider a Lyapunov function V (the suggestion to take this specific function is due
to Stas Shaposhnikov)

V (x, z) := x2 + log
(
1 + z2

)
, (x, z) ∈ R2.

Then

LV (x, z) = κ− x2 − 4x2

x2 + e2z
− z

1 + z2
+

4z

(x2 + e2z)(1 + z2)

6 κ+ 3−
(
x2 +

4|z|1(z 6 0)

(x2 + e2z)(1 + z2)

)
.

1In the proof of Theorem 3.2, we use [8, Theorem 1.3] which is a probabilistic version of Hörmander’s
theorem, and it imposes global assumptions on boundedness of derivatives of the drift. Here we use [26,
Theorem 7.4.3] which is a purely PDE result and it does not require any global assumptions. Therefore we do
not have to smoothen the drift b here.
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By [2, Theorem 2.3.2 and inequality (2.3.2)], this implies (note that V is obviously
quasi-compact in the sense of [2, Definition 2.3.1])∫

R2

(
x2 +

4|z|1(z 6 0)

(x2 + e2z)(1 + z2)

)
p′(x, z) dxdz <∞. (3.29)

Then recalling (3.28) we have

1 + |b1(x, z)x|+ |b2(x, z)z|
1 + x2 + z2

6 5 +
2|z|1(z 6 0)

(x2 + e2z)(1 + z2)
.

Combining this with (3.29), we see that for any T > 0∫ T

0

∫
R2

1 + |b1(x, z)x|+ |b2(x, z)z|
1 + x2 + z2

p′(x, z) dxdzdt <∞.

Therefore, by the generalized Ambrosio-Figalli-Trevisan superposition principle [3, The-
orem 1.1] and the standard equivalence between weak solutions of SDE and the mar-
tingale problems, see, e.g., [13, Proposition 5.4.11], there exists a weak solution to
SDE (3.3)–(3.4) on the interval [0, T ] such that for any t > 0 we have Law(X̂t, Ẑt) = π′.
Thus, the measure π′ is also invariant for the semigroup (Pt). However, this contradicts
Theorem 3.5. Therefore, (3.26) has a unique solution in the class of probability densities.

Finally, let us prove the results concerning the support of p. Note that if Ẑ0(ω) > log 2,
then Ẑ0(ω) > Ẑ1(ω). Let f : R→ [0,∞) be an increasing function such that f(x) = 0 for
x 6 log 2 and f(x) > 0 for x > log 2. Then f(Ẑ0) − f(Ẑ1) > 0. On the other hand, by
invariance

Eπ
(
f(Ẑ0)− f(Ẑ1)

)
= 0.

This implies that Pπ a.s. we have f(Ẑ0) = f(Ẑ1). By the definition of f this implies that
Pπ(Ẑ0 > log 2) = 0 and thus π(R× (log 2,∞)) = 0. Since the density p is continuous we
have

p(x, z) = 0, x ∈ R, z > log 2. (3.30)

Now let us show that p(x, z) > 0 for any z < log 2. The idea of this part of the proof
is due to Stas Shaposhnikov. Suppose the contrary that for some x0 ∈ R, z0 < log 2 we
have p(x0, z0) = 0. We claim that this implies that p ≡ 0. Note that the set {z = z0} is the
set of elliptic connectivity for operator L∗ in the sense of [19, Chapter III.1] (see also
[9, Section 2]). Therefore, the maximum principle for degenerate elliptic equations [19,
Theorem 3.1.2] (see also [9, Theorem 1], [1, Theorem 4]) implies that p(x, z0) = 0 for any
x ∈ R.

Note that in the domain

D :=
{
x2 + exp(2z) < 4

}
PDE (3.26) becomes a parabolic equation in (z, x) and on its complement (3.26) is
a backward parabolic equation. This corresponds to the fact that the process Ẑt is
increasing on D and decreasing on R2 \D, see Figure 2.

Fix now small δ such that δ2 + exp(2z0) < 4 (this is possible since z0 < log 2). Consider
now the domain D′ := [−δ, δ] × (−∞, z0) ⊂ D. In this domain (3.26) is a parabolic
equation

∂zp− a(x, z)∂xxp+ b(x, z)∂xp+ c(x, z)p = 0, (3.31)

for certain smooth functions a, b, c and

a(x, z) =
κ

4
x2+e2z − 1

> 0, (x, z) ∈ D′,
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Figure 2: Support of the density p (yellow and red regions). The process Ẑt is increasing
when (X̂t, Ẑt) is in the red region, and decreasing whenever (X̂t, Ẑt) is in the yellow
region. The dashed line, which touches the red region, is z = log 2.

since 4
x2+e2z >

4
δ2+e2z0

> 1 on D′. Therefore, by the Harnack inequality for parabolic
equations (see, e.g., [5, Section 7.1, Theorem 10]), we get for arbitrary z1 6 z0, and
C > 0

sup
x∈(−δ,δ)

p(x, z1) 6 C inf
x∈(−δ,δ)

p(x, z0) = 0.

Using again the maximum principle for degenerate elliptic equations, we deduce from
this that p(x, z1) = 0 for any x ∈ R. Since z1 6 z0 was arbitrary we have that p ≡ 0 on
R× (−∞; z0].

We use a similar argument to treat the case z > z0. Consider now the domain
D′′ := [3, 4]× (z0,∞) ⊂ R2 \D. In this domain (3.26) is a backward parabolic equation
(3.31) and

a(x, z) =
κ

4
x2+e2z − 1

< 0, (x, z) ∈ D′′

since 4
x2+e2z <

4
9 < 1 on D′′. The Harnack inequality for parabolic equations implies now

for arbitrary z1 > z0, and C > 0

sup
x∈(3,4)

p(x, z1) 6 C inf
x∈(3,4)

p(x, z0) = 0,

and thus, as above, the maximum principle implies that p ≡ 0 on R× [z0,∞).
Therefore the function p is identically 0 which is not possible since p is a density. This

contradiction shows that p(x, z) > 0 for any x ∈ R, z < log 2. Together with (3.30) this
concludes the proof of the theorem.

Proof of Theorem 2.1. By Theorem 3.6, the measure Law(Re(γ1), log(Im(γ1))) has a
smooth density p with respect to the Lebesgue measure, which solves (3.26). Therefore,
the measure Law(Re(γ1), Im(γ1)) has a density

ψ(x, y) :=
1

y
p(x, log y), x ∈ R, y > 0.

Now, by change of variables, it is easy to see that ψ is the unique solution of (2.2) in the
class of probability densities. Since p(x, z) is positive whenever z < log 2, we see that
ψ(x, y) is positive whenever y ∈ (0, 2). Finally, it is immediate that the function ψ̄(x, y) :=

ψ(−x, y) also solves (2.2). By uniqueness, this implies that ψ(x, y) = ψ(−x, y).
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3.2 Proof of Theorem 2.2

To establish Theorem 2.2, it will be convenient to work in the coordinates (A,U),
where

A := arg γ1 = cot−1(Re γ1/ Im γ1), U := (Im γ1)2.

Denoting the density of (A,U) by ϕ, we note that

ψ(x, y) =
2y2

x2 + y2
ϕ
(
cot−1(x/y), y2

)
, x ∈ R, y > 0.

It follows from Theorem 2.1 that the density ϕ is the unique solution to the corresponding
Fokker-Planck-Kolmogorov equation, which in the new coordinates is given by

κ

2u
sin4 α∂2

ααϕ+
3κ− 4

u
sin3 α cosα∂αϕ+

(
u− 4 sin2 α

)
∂uϕ

+
κ− 4

u

(
3 sin2 α cos2 α− sin4 α

)
ϕ+ ϕ = 0, (α, u) ∈ (0, π)× (0, 4]. (3.32)

Recall that we can consider this equation on a larger domain (0, π)× (0,∞), but since
ψ(x, y) = 0 for y > 2, we have ϕ(α, u) = 0 for u > 4.

Note that this PDE can be rewritten as

∂u
((
u− 4 sin2 α

)
ϕ
)

+
κ− 4

u
∂α
(
sin3 α cosαϕ

)
+

κ

2u
∂α
(
sin4 α∂αϕ

)
= 0. (3.33)

The crucial statement on the way to prove Theorem 2.2 is the following lemma.

Lemma 3.7. For any α ∈ (0, π) we have∫ 4

0

1

u
ϕ(α, u) du =

Γ(1 + 4
κ )

4
√
πΓ( 1

2 + 4
κ )

(sinα)8/κ−2. (3.34)

Before we go into the technical details, let us outline heuristically the main idea of
the proof. If we assume ϕ(α, 0+) = ϕ(α, 4) = 0, then integrating (3.33) in u yields

∂α

(∫ 4

0

(
κ− 4

u
sin3 α cosαϕ(α, u) +

κ

2u
sin4 α∂αϕ(α, u)

)
du

)
= 0.

Hence the expression J(α) :=
∫ 4

0
(κ−4
u sin3 α cosαϕ + κ

2u sin4 α∂αϕ) du does not depend
on α. Moreover, let us suppose that α4|∂αϕ| and α3ϕ monotonically go to 0 as α→ 0 for
any u ∈ (0, 4]. Then J(0+) = 0 and thus J(α) = 0 for any α ∈ (0, π). Therefore,

0 = J(α) sin−8/κ−2 α =

∫ 4

0

κ

2u
∂α
(
(sinα)2−8/κ ϕ(α, u)

)
du.

This yields that
∫ 4

0
1
u (sinα)2−8/κ ϕ(α, u) du is constant in α, which gives∫ 4

0

1

u
ϕ(α, u) du = c(sinα)8/κ−2

for some c > 0, which is almost the statement of Theorem 3.7.
However, since the boundary behavior of ϕ as α approaches 0 is not clear, we

developed an alternative approach which avoids these steps. Instead of integrating all
the way to 0, we will integrate only up to ε > 0 and obtain approximate identities. Then
we would like to let ε↘ 0. For this, we would need the following technical results about
approximating ODEs.
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Lemma 3.8. Let S, T ∈ R, S 6 T . Suppose xk : [S, T ] → Rd, k ∈ N, are continuous
functions that solve the integral equation

xk(t)− xk(s) =

∫ t

s

(
F
(
r, xk(r)

)
+ gk(r)

)
dr + hk(s, t), s, t ∈ [S, T ], (3.35)

where

• F is a continuous function [S, T ] × Rd → Rd and there exists C > 0 such that
|F (t, x)| 6 C(1 + |x|) for t ∈ [S, T ], x ∈ Rd;

• g and gk, k ∈ Z+, are integrable functions [S, T ]→ Rd, gk → g pointwise as k →∞,
and supk‖gk‖∞ <∞;

• hk, k ∈ Z+, are functions [S, T ]2 → Rd, and ‖hk‖∞ → 0 as k →∞.

Moreover, suppose that there exist tk ∈ [S, T ] such that supk |xk(tk)| <∞.
Then there exists a continuous function x : [S, T ]→ Rd such that along some subse-

quence (kj)j∈Z+
we have xkj → x uniformly as j →∞ and

x(t)− x(s) =

∫ t

s

(
F
(
r, x(r)

)
+ g(r)

)
dr, s, t ∈ [S, T ]. (3.36)

Proof. First, we show that xk are uniformly bounded. Indeed, by our assumptions we
have for any t ∈ [S, T ]

∣∣xk(t)
∣∣ 6 ∣∣xk(tk)

∣∣+

∫ t

tk

∣∣F (r, xk(r)
)

+ gk(r)
∣∣ dr + ‖hk‖∞

6 C + C

∫ t

tk

(
1 +

∣∣xk(r)
∣∣) dr,

and an application of Grönwall’s inequality implies xk are uniformly bounded.
Consequently, we can assume F to be bounded. It follows that the family (xk)k∈Z+

is equicontinuous. Indeed, for ε > 0 let kε large enough such that ‖hk‖∞ < ε for k > kε.
Then, for k > kε, we have

∣∣xk(t)− xk(s)
∣∣ 6 ∫ t

s

∣∣F (r, xk(r)
)

+ gk(r)
∣∣ dr + ε

6 C|t− s|+ ε

which is smaller than 2ε whenever |t− s| < ε/C. For k < kε, by continuity of xk we can
find δε > 0 such that |xk(t)− xk(s)| < ε whenever |t− s| < δε.

Hence, by the Arzelà-Ascoli theorem, we have xkj → x uniformly along some subse-
quence. Equation (3.36) follows now from (3.35) by taking limits.

We will later also frequently use integation by parts arguments. In order to control
the boundary terms that appear, the following lemma will be useful.

Lemma 3.9. Let T > 0, and f : (0, T ] → R be a differentiable function such that∫ T
ε
f(s) ds neither diverges to +∞ nor −∞ as ε ↘ 0. Let h : (0, T ] → (0,∞) be a

non-increasing differentiable function such that
∫ T

0
h(s) ds = +∞. Then there exists a

sequence tk ↘ 0 such that∣∣f(tk)
∣∣ 6 h(tk) and f ′(tk) > h′(tk), k ∈ Z+.
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Proof. First we note that there must exist a sequence sk ↘ 0 such that |f(sk)| < h(sk)

for all k ∈ Z+, otherwise we would have
∫ T

0
f(s) ds = +∞ or

∫ T
0
f(s) ds = −∞. To control

f ′, we distinguish two cases.

Case 1: We have |f(t)| 6 h(t) for all small t. In that case, consider g(t) := h(t) −
f(t). The function g cannot be always increasing for small t, otherwise we would have∫ T

0
f(s) ds =∞. Consequently there must be a sequence tk ↘ 0 such that g′(tk) 6 0.

Case 2: We have |f(rk)| > h(rk) along a sequence rk ↘ 0. We can pick the sequence
such that either f(rk) > h(rk) for all k or f(rk) < −h(rk) for all k. In the former case
f(rk) > h(rk) for all k, let tk = sup{t < rk | f(t) 6 h(t)} (this set is non-empty due to the
existence of a sequence sk with |f(sk)| < h(sk)). Then f(tk) = h(tk) and f ′(tk) > h′(tk)

as desired. In the latter case f(rk) < −h(rk) for all k, let tk = inf{t > rk | f(t) > −h(t)}
(again, (tk) is well-defined and tends to 0 due to the existence of (sk) as above). Then
f(tk) = h(tk) and f ′(tk) > −h′(tk) > h′(tk) since h is non-increasing.

Corollary 3.10. Consider the same setup as Theorem 3.9, and suppose additionally that
f > 0. Then there exists a sequence tk ↘ 0 such that

f(tk) 6 h(tk) and
∣∣f ′(tk)

∣∣ 6 ∣∣h′(tk)
∣∣, k ∈ Z+. (3.37)

Proof. Let (tk)k∈Z+
be a sequence as in Theorem 3.9. Fix now k ∈ Z+. If f ′(tk) 6 |h′(tk)|,

then, by Theorem 3.9 we have f ′(tk) > −|h′(tk)| and f(tk) 6 h(tk). Hence the point tk
satisfies (3.37).

Otherwise, if f ′(tk) > |h′(tk)|, define sk = sup{t 6 tk | f ′(t) 6 |h′(t)|} (this set is
non-empty, otherwise we would have f(t) → −∞ as t ↘ 0). By definition, we have
f ′(t) > |h′(t)| for t ∈ ]sk, tk], and hence also f(sk) < f(tk). Moreover, we find some
rk 6 sk close to sk with f ′(rk) 6 |h′(rk)|. By continuity, we still have f(t) < f(tk) for
t ∈ [rk, tk[. Since the derivative of any differentiable function satisfies the intermediate
value theorem, we find some t̃k ∈ [rk, tk] such that f ′(t̃k) = |h′(t̃k)|. Then we also have
f(t̃k) < f(tk) 6 h(tk) 6 h(t̃k) as desired.

We now proceed to the main part of our proof. In the following, we denote for n ∈ Z+,
α ∈ (0, π), and ε > 0

In(α) :=

∫ 4

0

u−nϕ(α, u) du; Iεn(α) :=

∫ 4

ε

u−nϕ(α, u) du.

From the equation (3.32), we will deduce a recursive system of ODEs that are satisfied
for the functions In. In fact, the relation is satisfied for general n ∈ R but we will use it
only with n ∈ Z+.

Lemma 3.11. Let n ∈ Z+ be fixed. Suppose that either n = 0 or In is continuous (and
finite) on (0, π). Assume that for any δ > 0 there exists a sequence (εk)k∈Z+ converging
to 0 such that

ε−nk

∫ π−δ

δ

ϕ(α, εk) dα→ 0 (3.38)

Then either In+1 =∞ everywhere on (0, π) or In+1 is twice differentiable on (0, π) and
satisfies the following ODE

0 = nIn − 4n sin2 α In+1 + (κ− 4)
(
3 sin2 α cos2 α− sin4 α

)
In+1

+ (3κ− 4) sin3 α cosα I ′n+1 +
κ

2
sin4 α I ′′n+1. (3.39)
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Proof. Fix n ∈ Z+. Let ε > 0. Multiplying (3.32) by u−n and integrating in u ∈ [ε, 4]

yields

0 =

∫ 4

ε

u−n∂u
((
u− 4 sin2 α

)
ϕ
)
du

+ (κ− 4)
(
3 sin2 α cos2 α− sin4 α

) ∫ 4

ε

u−n−1 ϕdu

+ (3κ− 4) sin3 α cosα

∫ 4

ε

u−n−1 ∂αϕdu+
κ

2
sin4 α

∫ 4

ε

u−n−1 ∂2
ααϕdu

= − ε−n
(
ε− 4 sin2 α

)
ϕ(α, ε) + nIεn − 4n sin2 α Iεn+1

+ (κ− 4)
(
3 sin2 α cos2 α− sin4 α

)
Iεn+1

+ (3κ− 4) sin3 α cosα
(
Iεn+1

)′
+
κ

2
sin4 α

(
Iεn+1

)′′
. (3.40)

We would like to apply Theorem 3.8 to pass to the limit as ε → 0 in the above ODE.
Suppose now that In+1 is not infinite everywhere, i.e. In+1(α0) <∞ for some α0 ∈ (0, π).
Fix arbitrary δ > 0 small enough such that α0 ∈ (δ, π − δ) and set S := δ, T := π − δ,

xk :=

(
I

(εk)
n+1

∂αI
(εk)
n+1

)
,

F
(
α, x(1), x(2)

)
:=

(
x(2)

2
κ sin2 α

(
4nx(1)−x(1)(κ−4)

(
3 cos2 α−sin2 α

)
−(3κ− 4)x(2) sinα cosα

)) ,
gk(α) :=

(
0

− 2
κ sin4 α

nIεkn (α)

)
,

hk(α1, α2) :=

(
0∫ α2

α1

2
κ sin4 α

ε−nk
(
εk − 4 sin2 α

)
ϕ(α, εk) dα

)
where εk are the same as in the condition (3.38). It is obvious that on [δ, π − δ] the
function F is continuous and has linear growth in x(1), x(2). Moreover, gk(α)→ g(α) =(

0 − 2nIn(α)
κ sin4 α

)T
monotonically by the assumptions of the Lemma. Finally, thanks to

(3.38), we have ‖hk‖∞ → 0 on [δ, π − δ]2.

It remains to find a sequence αk such that I(εk)
n+1(αk) and (I

(εk)
n+1)′(αk) are bounded.

First assume that there exists α′, α′′ ∈ [δ, π−δ] such that α′ < α0 < α′′ and In+1(α0) <

In+1(α′), In+1(α0) < In+1(α′′) (at this point, we allow In+1(α′) or In+1(α′′) to be infinite).
Then for all large enough k we have Iεkn+1(α0) < Iεkn+1(α′), Iεkn+1(α0) < Iεkn+1(α′′). Pick
some αk ∈ argmin[α′,α′′] I

εk
n+1. By above, αk ∈ (α′, α′′) and hence (Iεkn+1)′(αk) = 0. More-

over, Iεkn+1(αk) 6 Iεkn+1(α0) 6 In+1(α0). Thus the sequence (Iεkn+1(αk), (Iεkn+1)′(αk))k∈Z+ is
bounded.

If In+1(α0) > In+1(α) for all α ∈ [δ, α0], then

sup
α∈[δ,α0]

Iεkn+1(α) 6 sup
α∈[δ,α0]

In+1(α) 6 In+1(α0). (3.41)

Hence for each k there exists αk ∈ [δ, α0] such that |(Iεkn+1)′(αk)| 6 In+1(α0)/(α0 − δ).
Combining this with (3.41) we see again that the sequence (Iεkn+1(αk), (Iεkn+1)′(αk))k∈Z+

is bounded.
The case when In+1(α0) > In+1(α) for all α ∈ [α0, π − δ] is treated in a similar way.
Thus we see that all the conditions of Theorem 3.8 are satisfied. By passing to the

limit as ε→ 0 in (3.40) and using continuity of g, we get (3.39).

As we mentioned before, we are planning to apply Theorem 3.11 recursively starting
with n = 0. To verify condition (3.38) we will use the following result.
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Lemma 3.12. For any n > 0 we have∫ 4

0

∫ π

0

u−n−1 sin2 αϕ(α, u) dαdu =
1

4

∫ 4

0

∫ π

0

u−nϕ(α, u) dαdu. (3.42)

In case both sides of this identity are finite, for any δ > 0 there exists a sequence
(εk)k∈Z+ ↘ 0 such that

ε−nk

∫ π−δ

δ

ϕ(α, εk) dα→ 0 as k →∞. (3.43)

Note that (3.42) can be rewritten as∫ π

0

In+1(α) sin2 αdα =
1

4

∫ π

0

In(α)dα.

Proof. Fix arbitrary δ > 0. Integrating (3.33) in α from δ to π/2 yields for any u ∈ (0, 4]

∂u

∫ π/2

δ

(
u− 4 sin2 α

)
ϕ(α, u) dα =

(κ− 4)

u
ϕ(δ, u) sin3 δ cos δ +

κ

2u
sin4 δ ∂αϕ(α, u)|α=δ.

(3.44)
By Theorem 2.1, ϕ(α, 4) = 0 for any α ∈ (0, π/2). Fix now arbitrary u0 ∈ (0, 4] and denote

J(α) := Iu0
1 (α) =

∫ 4

u0

u−1ϕ(α, u)du, α ∈ (0, π).

Integrating (3.44) in u from u0 to 4 we get∣∣∣∣∫ π/2

δ

(
u0 − 4 sin2 α

)
ϕ(α, u0) dα

∣∣∣∣ 6 CJ(δ)δ3 + Cδ4|J ′(δ)|. (3.45)

Let us pass to the limit in (3.45) as δ → 0. Note that A :=
∫ 1

0
J(α) dα is obviously

finite. Hence, we can apply Theorem 3.10 with f = J , h(t) = 1/t. Then, there exists a
sequence (δk)k∈Z+ , such that

δk ↓ 0, δkJ(δk) 6 1, δ2
k|J ′(δk)| 6 1

for all k ∈ Z+. Applying now (3.45) with δ = δk and passing to the limit as k → ∞, we
get ∫ π/2

0

(
u0 − 4 sin2 α

)
ϕ(α, u0) dα = 0,

which by symmetry of ϕ implies∫ π

0

(
u0 − 4 sin2 α

)
ϕ(α, u0) dα = 0

for any u0 ∈ (0, 4]. Dividing now this identity by un+1
0 and integrating in u0, we get (3.42).

To show (3.43), fix δ > 0. Assuming the left-hand side of (3.42) to be finite, we get∫ 4

0

∫ π−δ

δ

u−n−1ϕ(α, u) dα du 6
1

sin2 δ

∫ 4

0

∫ π−δ

δ

u−n−1 sin2 αϕ(α, u) dα du <∞.

Therefore there must exist a sequence of εk ↘ 0 satisfying (3.43) because otherwise the
left-hand side of the above inequality would be infinite.
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Remark 3.13. Theorem 3.12 can be deduced from a general PDE argument [2, Theo-
rem 2.3.2 and inequality (2.3.2)]. Indeed, note that PDE (3.32) can be written as

L∗ϕ = 0,

where L = κ
2u sin4 α∂2

αα + 4+κ
u cosα sin3 α∂α + (4 sin2 α− u) ∂u, u > 0, α ∈ (0, π). If n = 1,

take a Lyapunov function V (α, u) := − log u; otherwise set V (α, u) := 1
n−1u

−n+1. Then

LV (α, u) =
(
u− 4 sin2 α

)
u−n.

Note however that even though V does not satisfy all the conditions of [2, Theorem 2.3.2],
a standard mollification argument and [2, inequality (2.3.2)] yield (3.42). However,
writing up rigorously all the technical details gets a bit complicated, so we found it
simpler to give a direct proof.

We are now able to prove (3.34) rigorously.

Proof of Theorem 3.7. Let us apply Theorem 3.11 with n = 0. We see that the right-hand
side of (3.42) is finite for n = 0. Hence Theorem 3.12 implies that (3.43) holds for n = 0.
Therefore, condition (3.38) is satisfied for n = 0.

Note now that if I1 =∞ for all α ∈ (0, π), then the left-hand side of (3.42) with n = 0

is infinite. However this is not the case. Thus, by Theorem 3.11, the function I1 is twice
differentiable and solves

(κ− 4)
(
3 sin2 α cos2 α− sin4 α

)
I1 + (3κ− 4) sin3 α cosα I ′1 +

κ

2
sin4 α I ′′1 = 0.

This can be rewritten as

∂α

(
(κ− 4) sin3 α cosα I1 +

κ

2
sin4 α I ′1

)
= 0. (3.46)

Let α ∈ (0, π). Then integrating (3.46) in α′ ∈ [α, π − α], we get

(κ− 4) sin3 α cosα
(
I1(α) + I1(π − α)

)
+
κ

2
sin4 α

(
I ′1(α)− I ′1(π − α)

)
= 0. (3.47)

Recall that by Theorem 2.1 we have that the density ψ is symmetric, ψ(x, y) = ψ(−x, y)

for x ∈ R, y > 0. This implies that ϕ is also symmetric and ϕ(α, u) = ϕ(π − α, u),
∂αϕ(α, u) = −∂αϕ(π − α, u) for α ∈ (0, π), u > 0. Hence I1(α) = I1(π − α), I ′1(α) =

−I ′1(π − α) and (3.47) yields

(κ− 4) sin3 α cosα I1(α) +
κ

2
sin4 α I ′1(α) = 0. (3.48)

Therefore,

∂α
(
sin2−8/κ α I1(α)

)
= 0,

and we finally get

I1(α) = c sin8/κ−2 α, α ∈ (0, π),

for some c > 0. The precise value of c follows from (3.42):

1

4
=

∫ 4

0

∫ π

0

1

u
sin2 αϕ(α, u) dα du = c

∫ π

0

sin8/κ αdα = c
√
π

Γ( 1
2 + 4

κ )

Γ(1 + 4
κ )
,

which gives (3.34).
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Proof of Theorem 2.2(i). Note that the Law(γ(t)) = Law(t1/2γ(1)). Therefore

E

∫ ∞
0

1γ(t)∈Λ dt =

∫ ∞
0

P
(
γ(t) ∈ Λ

)
dt =

∫ ∞
0

P
(
γ(1) ∈ t−1/2Λ

)
dt. (3.49)

Fix 0 < a < b, 0 < α < β < π. First consider sets Λ of the form

Λ =
{
x+ iy | cot−1(x/y) ∈ [α, β], y2 ∈ [a, b]

}
. (3.50)

Then, writing γ(1) =
√
U(cotA+ i), we continue (3.49) in the following way

E

∫ ∞
0

1γ(t)∈Λ dt =

∫ ∞
0

P
(
A ∈ [α, β], U ∈ [a/t, b/t]

)
dt

=

∫ ∞
0

∫ β

α

∫ b/t

a/t

ϕ
(
α′, u

)
dudα′dt

=

∫ ∞
0

∫ β

α

b− a
u

ϕ
(
α′, u

)
dα′du

= (b− a)
Γ(1 + 4

κ )

4
√
πΓ( 1

2 + 4
κ )

∫ β

α

(
sinα′

)8/κ−2
dα′,

where the last identity follows from Theorem 3.7. Since∫
Λ

(
1 +

x2

y2

)−4/κ

dx dy =
1

2

∫ β

α

∫ b

a

(
sinα′

)8/κ−2
dudα′

=
b− a

2

∫ β

α

(
sinα′

)8/κ−2
dα′,

we see that

E

∫ ∞
0

1γ(t)∈Λ dt =
Γ(1 + 4

κ )

2
√
πΓ( 1

2 + 4
κ )

∫
Λ

(
1 +

x2

y2

)−4/κ

dx dy.

Clearly, sets Λ of the form (3.50) generate the Borel σ-algebra on H. This implies
(2.3).

To prove Theorem 2.2(ii), we need the following key result.

Lemma 3.14. Let n ∈ Z+, n > 1. Then
∫ π

0
In(α) dα is finite for κ < 8/(2n−1) and infinite

for κ > 8/(2n− 1).
Furthermore, let 8

κ > 2n− 3. Then the function In : (0, π)→ R+ is continuous and for
any δ > 0 there exists α0 = α0(n, δ) ∈ (0, π/2) such that for α ∈ (0, α0)

In(α) > α8/κ−2n|logα|−δ. (3.51)

If, additionally, 8
κ > (2n− 3) and κ < 16

3 , then for any δ > 0 there exists α0 = α0(n, δ) ∈
(0, π/2) such that for α ∈ (0, α0)

In(α) 6 α8/κ−2n−δ. (3.52)

Proof. We will prove this lemma by induction over n, with the case n = 1 already
established in Theorem 3.7. Let us first explain the heuristic idea. Consider for simplicity
the first non-trivial case n = 2. Then approximating (3.39) near α ≈ 0 and knowing that
I1 = c0(sinα)8/κ−2, the equation reads

0 ≈ c0α8/κ−2 − 4α2 I2 + (κ− 4)3α2 I2 + (3κ− 4)α3 I ′2 +
κ

2
α4 I ′′2 .
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If we naively suppose I2 ≈ αs, I ′2 ≈ sαs−1, I ′′2 ≈ s(s − 1)αs−2, then we find that either
s = 8/κ−4, cancelling the first term I1, or s < 8/κ−4 in which case the remaining terms
need to cancel each other. In the latter case, the coefficients need to sum to 0, i.e.

0 = (3κ− 16) + (3κ− 4)s+
κ

2
s(s− 1). (3.53)

Recall also, that by Theorem 3.12 with n = 1, we have
∫ π

0
I2 sin2 αdα <∞, which implies

s > −3. However, on the interval (−3, 8/κ− 4) equation (3.53) has no solutions, and thus
the case s < 8/κ− 4 is not possible. Hence, the only remaining option is s = 8/κ− 4.

To make this heuristic precise, we find a suitable subsequence αk ↘ 0 where we can
apply a similar argument.

Let us now proceed to the rigorous induction on n.

Base case. n = 1 In this case (3.51), (3.52) and continuity of I1 was already proven in
(3.34). The fact that

∫ π
0
I1(α) dα is finite if and only if κ < 8 is immediate.

Inductive step Suppose that the statement of the lemma is valid for n ∈ Z+. Let us
prove it for n+ 1.

If κ > 8/(2n−1), then
∫ π

0
In(α) dα=∞, and this obviously implies that

∫ π
0
In+1(α) dα =

∞. Therefore it is sufficient to consider the case κ < 8/(2n− 1). By the inductive step,
for these values of κ we have

∫ π
0
In(α) dα < ∞. Hence, Theorem 3.12 implies that

condition (3.43) holds. This, together with continuity of In, shows that all the conditions
of Theorem 3.11 are met. Note that we cannot have In+1 =∞ for all α ∈ (0, π). Indeed,
in this case the left-hand side of identity (3.42) would be infinite but the right-hand side
of this identity is finite (because it is equal to C

∫ π
0
In(α) dα). Thus, Theorem 3.11 implies

that
In+1 is twice differentiable and satisfies (3.39). (3.54)

Using this, we now show (3.51) and (3.52). The statement about the finiteness of
∫
In dα

follows immediately.

Lower bound We begin with the lower bound (3.51). Denote

s :=
8

κ
− 2n− 2. (3.55)

Fix δ ∈ (0, 1) and suppose that the lower bound does not hold, i.e. we have In+1(α̃k) <

α̃sk|log α̃k|−δ for a sequence of α̃k ↘ 0. We distinguish two cases.
Case 1.1. In+1(α) 6 αs|logα|−δ for all small α > 0. We apply Theorem 3.9 with

f(α) := ∂α(α−sIn+1(α)), h(α) = α−1|logα|−δ. It is easy to see that all the conditions of
the lemma are satisfied, and therefore there exists a sequence of αk ↘ 0 such that (for
some C <∞) ∣∣In+1(αk)

∣∣ 6 αsk|logαk|−δ,∣∣I ′n+1(αk)
∣∣ 6 Cαs−1

k |logαk|−δ,
I ′′n+1(αk) > −Cαs−2

k |logαk|−δ.

Plugging this into (3.39) we derive

0 = nIn(αk) + sin2 αk
(
3κ− 4n− 12 + (16− 4κ) sin2 αk

)
In+1(αk)

+ (3κ− 4) sin3 αk cosαk I
′
n+1(αk) +

κ

2
sin4 αk I

′′
n+1(αk)

> nIn(αk) + sin2 αk
[(

3κ− 4n− 12 + (16− 4κ) sin2 αk
)
∧ 0
]
αsk|logαk|−δ

− C sin3 αk cosαk α
s−1
k |logαk|−δ − C sin4 αk α

s−2
k |logαk|−δ. (3.56)
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Multiplying (3.56) by α−s−2|logα|δ and passing to the limit as αk ↘ 0, we get

− C + n lim inf
α→0

In(α)|logα|δ

αs+2
6 0 (3.57)

By induction hypothesis (applied with δ/2 in place of δ), In(α)α−s−2|logα|δ → ∞. This
contradicts (3.57). Therefore it cannot be that In+1(α) 6 αs|logα|−δ for all small α.

Case 1.2. In the other case one can find two sequences α̃k,
≈
αk ↘ 0 such that

≈
αk+1 6 α̃k 6

≈
αk and In+1(α̃k) < α̃sk|log α̃k|−δ, In+1(

≈
αk) >

≈
αsk|log

≈
αk|−δ. Pick αk ∈

arg min
[
≈
αk+1,

≈
αk]

(In+1(α)− αs|logα|−δ). Then αk ∈ (
≈
αk+1,

≈
αk) and∣∣In+1(αk)

∣∣ < αsk|logαk|−δ,
I ′n+1(αk) = sαs−1

k |logαk|−δ + o
(
αs−1
k |logαk|−δ

)
,

I ′′n+1(αk) > s(s− 1)αs−2
k |logαk|−δ + o

(
αs−2
k |logαk|−δ

)
.

This implies that (3.56) holds for this sequence (αk), which again leads to a contradiction.
Thus, we have shown that In+1(α) > αs|logα|−δ for all small enough α. Recalling the

definition of s in (3.55), we see that this is exactly the desired lower bound in (3.51).
This bound implies that for κ > 8/(2(n+ 1)− 1) = 8/(2n+ 1) we have

∫ π
0
In+1(α) dα =∞.

Upper bound Now we proceed with the upper bound in (3.52). We suppose now that
κ < 8

2n−1 ∧
16
3 . We use again notation (3.55). Write In+1(α) =: αs(α) for α ∈ (0, π). We

will distinguish two cases.
Case 2.1. Suppose that

lim inf
α→0

s(α) < lim sup
α→0

s(α).

We show that this is impossible by deriving a contradiction.
Note that by Step 1, lim supα→0 s(α) 6 s. Further, there exists a sequence βk ↘ 0,

such that s(βk) > −3. Indeed, otherwise the left-hand side of identity (3.42) would
be infinite whilst the right-hand side of this identity is finite thanks to the induction
hypothesis. Therefore, by continuity of s(α) there exists r ∈ [−3, s), and sequences
α̃k,

≈
αk ↘ 0 such that

≈
αk+1 6 α̃k 6

≈
αk and s(α̃k) < r, s(

≈
αk) > r. Pick now

αk ∈ arg max
[
≈
αk+1,

≈
αk]

(
In+1(α)− αr

)
.

Then αk ∈ (
≈
αk+1,

≈
αk) and

In+1(αk) > αrk,

I ′n+1(αk) = rαr−1
k ,

I ′′n+1(αk) 6 r(r − 1)αr−2
k .

Substituting this into (3.39), dividing it by αr+2
k and letting αk ↘ 0, we get

(3κ− 4n− 12) + (3κ− 4)r +
κ

2
r(r − 1) + n lim sup

α→0

In(α)

αr+2
> 0.

(Here we have used κ 6 16/3, implying 3κ− 4n− 12 + (16− 4κ) sin2 αk < 0).
Since r+ 2 < s+ 2 = 8/κ− 2n, we have In(α)

αr+2 → 0 by the induction hypothesis. Hence,

(3κ− 4n− 12) + (3κ− 4)r +
κ

2
r(r − 1) > 0. (3.58)
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Recall that r ∈ [−3, s). Note that the left-hand side of the above expression is strictly
negative for r = −3 and for r = s; in the latter case it equals n(κ(2n− 1)− 12) < 0 thanks
to our standing assumption κ < 8/(2n− 1). Hence the left-hand side of (3.58) is strictly
negative for any r ∈ [−3, s) which is a contradiction.

Case 2.2. It follows from above that lim infα→0 s(α) = lim supα→0 s(α) =: r and
r ∈ [−3, s]. We would like to show r = s which is (3.52).

Suppose r < s. Note that (3.54) implies that s(α) is twice differentiable. Therefore,
all the conditions of Theorem 3.9 are satisfied for the functions f(α) := s′(α), h(α) :=

1
α|logα| log|logα| . Thus there exists a sequence αk ↘ 0 such that |s′(αk)| 6 1

αk|logαk| log|logαk|
and s′′(αk) > − 1

α2
k|logαk| log|logαk|

.

Recalling that

I ′n+1(α) =

(
s(α)

α
+ s′(α) logα

)
αs(α),

I ′′n+1(α) =

(
−s(α)

α2
+ 2

s′(α)

α
+ s′′(α) logα+

(
s(α)

α
+ s′(α) logα

)2)
αs(α),

we get

In+1(αk) = α
s(αk)
k ,

I ′n+1(αk) =
(
s(αk) + o(1)

)
α
s(αk)−1
k ,

I ′′n+1(αk) 6
(
−s(αk) + s(αk)2 + o(1)

)
α
s(αk)−2
k ,

where o(1) denote some sequences that tend to 0 as k →∞. Now we substitute this into

(3.39), divide it by αs(αk)+2
k and let αk ↘ 0. We derive

(3κ− 4n− 12) + (3κ− 4)r +
κ

2
r(r − 1) + n lim sup

α→0

In(α)

αs(α)+2
> 0. (3.59)

If now r < s, then there exists δ > 0 such that s(α) 6 r + δ < s for all α small enough.
Hence, thanks to the induction hypothesis, lim supα→0

In(α)
αs(α)+2 = 0. Therefore inequality

(3.58) holds for a certain r ∈ [−3, s) which is a contradiction as before.
Thus we have shown that lim infα→0 s(α) = s. Therefore, In+1(α) = αs(α) 6 αs−δ for

all α small enough, so the upper bound (3.52) holds. Hence for κ < 8/(2(n+ 1)− 1) =

8/(2n+ 1) we have
∫ π

0
In+1(α) dα <∞.

Now we are ready to complete the proof of Theorem 2.2

Proof of Theorem 2.2(ii). Inequality (2.4) follows directly from Theorem 3.14 and the
definition of In. Further, for κ < 8 we have from Theorem 3.7:

E(Im γ1)−2 =

∫ π

0

∫ 4

0

1

u
ϕ(α, u) dαdu =

2

8− κ
,

which is (2.5).
To show (2.6), fix κ < 8/3. Note that in this regime by Theorem 3.14, we have∫ 1

0
I2(α) < ∞, and thus by Theorem 3.10 with f = I2, h = 1/(α| logα|) there exists a

sequence αk ↘ 0 such that

lim
αk↘0

αkI2(αk) = 0, (3.60)

lim
αk↘0

α2
kI
′
2(αk) = 0. (3.61)
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It was shown in the proof of Theorem 3.14, that in this case I2 satisfies (3.39) which can
be rewritten as

I1

sin2 α
− 4I2 + (κ− 4)

(
3− 4 sin2 α

)
I2 + (3κ− 4) sinα cosα I ′2 +

κ

2
sin2 α I ′′2 = 0. (3.62)

Integrate now the above equation in α from αk to π−αk, then integrate by parts. Thanks
to (3.60) and (3.61), all the boundary terms vanish when we send αk ↘ 0. Note also that
by Theorem 3.12, we have

∫ π
0
I2(α) sin2 αdα = 1

4

∫ π
0
I1(α) dα. We get∫ π

0

I1(α)

sin2 α
dα+ (κ− 12)

∫ π

0

I2(α) dα+ 2

∫ π

0

I1(α) dα = 0. (3.63)

Recalling the expression for I1 from Theorem 3.7, we deduce

E(Im γ1)−4 =

∫ π

0

I2(α) dα =
48− 16κ

(12− κ)(8− κ)(8− 3κ)
.

Remark 3.15. For general n, the identity (3.63) reads

(4n+ 8− κ)

∫ π

0

In+1(α) dα = n

∫ π

0

In(α)

sin2 α
dα+ 2

∫ π

0

In(α) dα.

Unfortunately, we do not have an explicit formula for
∫ π

0
In(α)
sin2 α

dα for n > 2. This prevents
us from getting explicit formulas of negative moments of Im(γ1) of higher order.

Remark 3.16. Another possible approach to find explicit formulas for In would be
through its Fourier coefficients

a0 =
1

π

∫ π

0

In dα, aj =
2

π

∫ π

0

In cos(2jα) dα.

Formally expanding (3.62), we obtain a (countable) system of linear equations for (aj)j>0

in terms of the Fourier coefficients (bj)j>0 of the function In−1/ sin2 α. However, it seems
difficult to solve the system of equations explicitly. Only for a0, a1 we get a system of two
equations in terms of b0, b1 which correspond exactly to what we obtain from the proof
above.
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