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differential equations with distributional drift
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Abstract

We study existence and uniqueness of solutions to the equation dXt = b(Xt)dt+ dBt,
where b is a distribution in some Besov space and B is a fractional Brownian motion
with Hurst parameter H 6 1/2. First, the equation is understood as a nonlinear
Young equation. This involves a nonlinear Young integral constructed in the space of
functions with finite p-variation, which is well suited when b is a measure. Depending
on H, a condition on the Besov regularity of b is given so that solutions to the equation
exist. The construction is deterministic, and B can be replaced by a deterministic
path w with a sufficiently smooth local time. Using this construction we prove the
existence of weak solutions (in the probabilistic sense).

We also prove that solutions coincide with limits of strong solutions obtained by
regularisation of b. This is used to establish pathwise uniqueness and existence of
a strong solution. In particular when b is a finite measure, weak solutions exist for
H <

√
2 − 1, while pathwise uniqueness and strong existence hold when H 6 1/4.

The proofs involve fine properties of the local time of the fractional Brownian motion,
as well as new regularising properties of this process which are established using the
stochastic sewing Lemma.
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1 Introduction

We are interested in the well-posedness of the one-dimensional equation

dXt = b(Xt)dt+ dBt, (1.1)
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Regularisation by fractional noise

when b is a distribution in some Besov space and (Bt)t>0 is a fractional Brownian motion
of Hurst parameter H. We will explain in which sense this equation can be solved when
b is a genuine distribution. It is noteworthy that, even when b is a function, this equation
can be well-posed while the corresponding equation without noise is not. This effect
is often called regularisation by noise. We refer to [15] for a thorough presentation
of this phenomenon, in particular on PDE models of fluid mechanics. This equation
encompasses at least two classes of equations which have frequently been studied in the
literature.

First, when B is the standard Brownian motion, there is an extensive literature
which we will not attempt to describe thoroughly. Let us mention the early work of
Veretennikov [44] for bounded measurable drifts, then the more general Lp−Lq criterion
of Krylov and Röckner [31] for which the authors proved strong existence and uniqueness
(both works allowing for time inhomogeneous drifts in dimension d > 1). Flandoli, Russo
and Wolf [17] developed a weak well-posedness theory while Bass and Chen [5] proved
existence and uniqueness of strong solutions with the drift being the distributional
derivative of a γ-Hölder function for γ > 1/2. Then Davie [11] provided conditions for
path-by-path existence and uniqueness, which is a stronger form of uniqueness, for time
inhomogeneous bounded measurable drift. Using rough path methods, Delarue and
Diel [12] proved weak existence and uniqueness in dimension 1 when the drift is the
distributional derivative of a γ-Hölder function for γ > 1/3. In higher dimension, Flandoli,
Issoglio and Russo [16] identified a class of SDEs with distributional drifts in Bessel
spaces such that there exists a solution that is unique in law. In addition, when the drift
is random, another well-posedness result is given by Duboscq and Réveillac [14]. We
also point out the work [29], with extensions in [33] on an SDE involving the local time at
0 of the solution, which formally corresponds to a drift b = aδ0, for some a ∈ [−1, 1] and
δ0 being the Dirac distribution. This setting corresponds to the so-called skew Brownian
motion, see [34] for more details and various constructions.

This leads to a second class of interesting problems, namely solving Equation (1.1)
when b is a distribution and B is a fractional Brownian motion with sufficiently small
Hurst parameter H. A first attempt in this direction seems to be due to Nualart and
Ouknine [35], who proved existence and uniqueness for some non-Lipschitz drifts. When
b = aδ0 with a ∈ R, the well-posedness of this equation was established for H < 1/4 by
Catellier and Gubinelli [8] (who also consider multidimensional drifts in negative Hölder
spaces) and independently for H < 1/6 in [1, 3] with extensions to dimension d > 1 in the
three papers [1, 3, 8]. The solution is generally referred to as skew fractional Brownian
motion. We observe a gap between the one-dimensional Brownian case (H = 1/2), with
well posedness for |a| 6 1 proven in [33], and the aforementioned result for fractional
Brownian motion with H smaller than 1/4. The intent of this paper is to partially close
this gap. Note also that the case a = 1 corresponds to reflection above 0 in the Brownian
case. The well-posedness of reflected equations was established even for multiplicative
rough noises in case X is one-dimensional [13, 38], while uniqueness might fail as soon
as the dimension is greater than 2 (see [23]).

Finally, let us mention that regularisation by noise was also investigated for other
types of noise, for instance α-stable noises [9], regular noises [25] and other classes of
rough processes [27, 28]. Recently, the regularisation phenomenon was studied for SDEs
with multiplicative noise (whether fractional Brownian motion [10], or more general
rough paths [7]).

In this paper, the drift b is in some Besov space Bβp,∞ (denoted Bβp hereafter). The
solutions we consider are stochastic processes of the form

Xt = X0 +Kt +Bt, (1.2)
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Regularisation by fractional noise

where Kt is the limit in probability of
∫ t

0
bn(Xs) ds for any sequence (bn) of smooth

approximations of b (in line with [2, 5]). Roughly, when such a solution exists and X

and B are adapted to the filtration of the underlying probability space, we call it a weak
solution. When X is adapted to the natural filtration of B, it is called a strong solution.
We refer to Definition 2.4 for more details.

Our first main result, Theorem 2.5, gives conditions on β, p and H that ensure the
existence of a weak solution to (1.1) when b is a measure. In particular when b = aδ0,
for a ∈ R, we obtain the existence of weak solutions to (1.1) for any H <

√
2− 1. In the

standard Brownian case, Theorem 2.5 provides weak solutions when the drift is in B
1
4 +
1 .

This space contains functions which, to the best of our knowledge, are not covered by
the existing literature (see Remark 2.7).

To prove Theorem 2.5, we consider another approach to study Equation (1.1) which is
via nonlinear Young integrals as introduced in [8], extending Young’s theory of integration
[46]. Consider the more general equation

dXt = b(Xt) dt+ dZt, (1.3)

where Z is a continuous stochastic process. The idea is to define path-by-path solutions
to (1.3), that is, to solve this equation for a fixed realisation of the noise (Zt(ω))t. In
order to do this one rewrites the equation as a random ODE: dYt = b(Yt + Zt) dt, with
Yt = Xt−Zt and studies the regularity of the averaging operator TZt b : y 7→

∫ t
0
b(y+Zs) ds.

In some interesting cases, TZt b is more regular than b itself, which permits to have
solutions of the form Yt = Y0 +

∫ t
0
TZdsb(Ys), where the integral is a so-called nonlinear

Young integral. We refer to [20] for a review of nonlinear Young integrals in the Hölder
setting and also to the recent work [21].

In Theorem 2.15 we give conditions such that solutions w.r.t. the probabilistic
approach via approximation of the drift and w.r.t. the approach via nonlinear Young
integral theory are equivalent (i.e. weak solutions coincide). Therefore, in order to show
existence of a weak solution to Equation (1.1), it is sufficient to construct a solution to
the corresponding nonlinear Young integral equation that is additionally adapted to a
small enough filtration.

To do so, we construct nonlinear Young integrals in the p-variation setting (instead of
Hölder). In our one-dimensional setting this allows us to exploit the nonnegativity of b
to get existence of solutions to (1.3) under some milder conditions on the regularity of
b. To obtain the regularity of the averaging operator, we proceed similarly to Harang
and Perkowski [28] by rewriting it as a convolution between b and the local time of Z.
We are then able to deduce the Hölder regularity of the averaging operator from the
Besov regularity of the local time of Z (see Lemma 4.4). These two ingredients permit to
construct path-by-path solutions by convergence of the Euler scheme associated to the
equation, see Theorem 2.14. Alternatively, if the local time of Z has some probabilistic
properties, as in the case Z = B, we are able to show that the averaging operator has a
certain tightness property, see Lemma 4.11. This permits to prove that the sequence of
(random) Euler schemes which approximate the nonlinear Young solution is compact in
the space of continuous adapted stochastic processes, from which adaptedness of X is
deduced.

Our second main result, Theorem 2.10, states pathwise uniqueness of weak solutions
in a class of processes which have some Hölder regularity. The main condition is that b
is in Bβp with β and p satisfying β − 1

p > 1− 1
2H . As with the Yamada-Watanabe Theorem,

weak existence and pathwise uniqueness also lead here, under the same conditions on
β, p and H, to the existence of a strong solution. Moreover, when b is a measure, any
strong solution is proven to have sufficient Hölder regularity, thus ensuring pathwise
uniqueness. For instance, we get strong existence and pathwise uniqueness to (1.1)
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when b = aδ0 for a ∈ R and any H 6 1/4. This extends the previously known condition
H < 1/4 from [8, 21] to H = 1/4.

To prove this theorem, we follow the recent approach of Athreya et al. [2]. In this
paper, the authors proved the strong well-posedness of the one-dimensional stochastic
heat equation with Besov drift by a tightness-stability argument. The main regularity
estimates are obtained via the recent and powerful stochastic sewing Lemma introduced
by Lê [32]. To adapt this argument to our setting, we control the Hölder norm of the
conditional expectation of x 7→

∫ t
s
f(x + Br) dr in terms of the Besov norm of f (see

Lemma 7.1). One difficulty that arises here is the non-Markovian nature of B, which
we could compensate by using a slightly adapted version of the local nondeterminism
property of the fractional Brownian motion.

In the development of the proof of Theorem 2.10, we obtain that weak solutions
to (1.1) are limits of strong solutions to (1.1) with b replaced by a smooth bounded drift
bn, where the sequence (bn) converges to b in Besov norm. This result is detailed in
Theorem 2.8 and can be of independent interest in view of numerical applications.

Structure of the paper In Sect. 2, the main definitions and results are stated. We
also present the organisation of the proofs in the paper. In Sect. 3, we develop the
construction of nonlinear Young integrals in p-variation (Theorem 3.1) and use it to
find solutions to nonlinear Young integral equations with nonnegative (or nonpositive)
drifts, see Theorem 3.4. Then in Sect. 4, we prove successively Theorem 2.15 (relation
between different notions of solution) and Theorem 2.14 (existence of path-by-path
solutions). Then we conclude with the proof of Theorem 2.5 about the existence of weak
solutions. The regularity of weak solutions is studied in Sect. 5. The uniqueness part of
Theorem 2.10 is proven in Sect. 6. The tightness-stability argument which leads to the
existence of strong solutions is in Sect. 7.

Besides, we recall some useful results on Besov spaces in Appendix A. The local
nondeterminism property of the fBm is stated and proven in Appendix B.2, jointly with
the proof of the important regularity estimates of the conditional expectation of the fBm
(Lemma 5.1). Finally, we recall the stochastic sewing Lemma in Appendix C and use it to
derive several Hölder bounds on the integrals of fBm.

1.1 Notations and definitions

Various notations Throughout the paper, we use the following notations and conven-
tions:

• Constants C might vary from line to line.
• For p ∈ [1,∞], p′ ∈ [1,∞] is such that 1/p+ 1/p′ = 1.
• For topological spaces X,Y we denote the set of continuous functions from X to Y

by CX(Y ).
• For a Banach space E, the ball of radius R > 0 is denoted by DR := {x ∈ E : ‖x‖ 6
R}.

• Let s < t be two real numbers and Π = (s = t0 < t1 < · · · < tn = t) be a partition of
[s, t], we denote |Π| = supi=1,...,n(ti − ti−1) the mesh of Π.

• For s, t ∈ R with s 6 t, we denote ∆[s,t] := {(u, v) : s 6 u 6 v 6 t}.
• For any function f defined on [s, t], we denote fu,v := fv − fu for (u, v) ∈ ∆[s,t].
• For any function g defined on ∆[s,t] and s 6 r 6 u 6 v 6 t, we denote δgr,u,v :=

gr,v − gr,u − gu,v.
• For a probability space Ω and p ∈ [1,∞], the norm on Lp(Ω) is denoted by ‖ · ‖Lp .
• We denote by (Bt)t>0 a fractional Brownian motion with Hurst parameter H 6 1/2.
• The filtration (Ft)t>0 is denoted by F.
• The filtration generated by a process (Zt)t>0 is denoted by FZ .
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Regularisation by fractional noise

• All filtrations are assumed to fulfill the usual conditions.
• Let F be a filtration. We call (Wt)t>0 a F-Brownian motion if (Wt)t>0 is a Brownian

motion adapted to F and for 0 6 s 6 t, Wt −Ws is independent of Fs. For such a
filtration, the conditional expectation E[· | Fs] is denoted by Es[·].

Gaussian semigroup For any t > 0 and x ∈ R, let gt(x) := 1√
2πt

e−
x2

2t . For a tempered
distribution φ on R, let

Gtφ(x) := (gt ∗ φ)(x). (1.4)

The occupation time formula Let T > 0, w : [0, T ] → R be a measurable function
and let λ denote the Lebesgue measure on R. For A ∈ B([0, T ]), let µA be the occupation
measure defined by µA(Λ) := λ({t ∈ A : wt ∈ Λ}) for Λ ∈ B(R). If µ[0,T ] � λ then
there exists a measurable map ` : B([0, T ]) × R → R+ such that for A ∈ B([0, T ]),
µA(dx) = `(A, x)λ(dx). For any bounded measurable function f , the occupation time
formula reads (see [24] for more details)∫

A

f(wr)dr =

∫
R

f(x) `(A, x) dx. (1.5)

We define a local time L : [0, T ] ×R → R by Lt(x) := `([0, t], x). By (1.5), it comes that
for any bounded measurable f and t ∈ [0, T ],∫ t

0

f(wr) dr =

∫
R

f(x)Lt(x) dx. (1.6)

Note that if w : [0, T ] → K ⊂ R for some compact K, then Lt(·) vanishes on Kc for all
t ∈ [0, T ].

Finite variations spaces Let p ∈ [1,∞) and (F, ‖ ‖F ) be a Banach space. Define the
p-variation seminorm of a function x : [s, t]→ F as

[x]Cp-var
[s,t]

(F ) := sup
{ti}

(
N−1∑
i=0

‖xti,ti+1‖
p
F

) 1
p

,

where the supremum runs over all partitions {ti}Ni=0, N ∈ N, of [s, t]. We denote by
Cp-var

[s,t] (F ) the set of such continuous functions with finite p-variation.

If F is just a Fréchet space, we say that a function mapping from [s, t] to F has finite
p-variation if its p-variation is finite with respect to any continuous seminorm and we
also use the notation Cp-var

[s,t] (F ). If F = R, we use the alleviate notations Cp-var
[s,t] and [x]Cp-var

[s,t]
.

A continuous function κ : ∆[s,t] → [0,∞) is a control function if, for s 6 r 6 u 6 v 6 t,

κ(r, u) + κ(u, v) 6 κ(r, v), (1.7)

and κ(r, r) = 0 for all r ∈ [s, t]. A typical example of a control function is [x]pCp-var
[s,t]

(F )
(see

[18, Prop. 5.8]).

Besov and Hölder spaces

Definition 1.1. For s ∈ R and 1 6 p, q 6 ∞, we denote the nonhomogeneous Besov
space with these parameters by Bsp,q. For a precise definition see Appendix A.

Besides, for a bounded open interval I ⊂ R, we denote by Bsp,q(I) the space of all
distributions u on I for which there exists v ∈ Bsp,q such that u = v|I (see [43, Def. 1,
p. 192]).
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If q =∞, we write Bsp instead of Bsp,∞. We have the following important embeddings
between Besov spaces.

Remark 1.2. Let s ∈ R, 1 6 p1 6 p2 6 ∞ and 1 6 q1 6 q2 6 ∞. From [4, Prop. 2.71],

the space Bsp1,q1 continuously embeds into Bs−(p−1
1 −p

−1
2 )

p2,q2 , which we write as Bsp1,q1 ↪→
Bs−(p−1

1 −p
−1
2 )

p2,q2 .

Remark 1.3. Let I be a bounded open interval. Let p1, p2, q1, q2 ∈ [1,∞] and −∞ < s2 <

s1 <∞. If s1− 1/p1 > s2− 1/p2, then from [43, Th. p.196] we have Bs1p1,q1(I) ↪→ Bs2p2,q2(I).

For s ∈ R+ \N and p = q = ∞, Besov spaces coincide with Hölder spaces (see [4,
p. 99]). We now give a definition of Hölder spaces in space domain for s ∈ (0, 1].

Definition 1.4. Let E,F be Banach spaces, U ⊂ E and β ∈ (0, 1].

• We denote the supremum norm of f ∈ CU (F ) by ‖f‖CU (F ) = supx∈U ‖f(x)‖F . When
U and F are clear from the context, we might also denote ‖f‖∞ = ‖f‖CU (F ).

• The Hölder space CβU (F ) is the collection of all f ∈ CU (F ) such that ‖f‖CβU (F ) is
finite, where

‖f‖CβU (F ) := [f ]CβU (F ) + ‖f‖CU (F ) with [f ]CβU (F ) := sup
x 6=y∈U

‖f(x)− f(y)‖F
‖x− y‖βE

.

If U = E, we alleviate the notations and write ‖f‖Cβ(F ) and [f ]Cβ(F ). Similarly,
if F = R or if F is clear from the context, we write ‖f‖CβU and [f ]CβU

. Finally, if

U = F = R we just write Cβ .

• The space CβE,loc(F ) of locally Hölder continuous functions is the collection of all
f ∈ CE(F ) such that ‖f‖CβDR (F ) is finite for all R > 0.

Remark 1.5. In some results, we assume that the drift is a (nonnegative) measure in
some Bβp . This is actually equivalent to the assumption that b is a nonnegative distribution
in Bβp . Indeed, thanks to [42, Exercise 22.5], any nonnegative distribution is given by a
Radon measure (i.e. a locally finite, complete measure fulfilling regularity conditions).
Hence, it is sufficient to consider Radon measures lying in Besov spaces instead of
considering general nonnegative distributions. Throughout the paper all measures are
assumed to be Radon.

2 Main results

2.1 Definitions of solution

We define here weak and strong solutions to (1.1).

Definition 2.1. Let β ∈ R, p ∈ [1,∞]. We say that (fn)n∈N converges to f in Bβ−p as
n→∞ if supn∈N ‖fn‖Bβp <∞ and

∀β′ < β, lim
n→∞

‖fn − f‖Bβ′p = 0.

Remark 2.2. For any f ∈ Bβp , there exists a sequence (fn)n of bounded smooth functions
converging to f in the sense of Definition 2.1: e.g. fn := G 1

n
f , where G is the Gaussian

semigroup introduced in (1.4). This can be seen to hold true by applying Lemmas A.4
and A.6.

We recall here a link between fractional Brownian motion and Brownian motion. For
each H ∈ (0, 1

2 ), there exist operators A and Ā, where both can be given in terms of
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fractional integrals and derivatives (see (B.1) and [36, Th. 11]), such that

if B is a fractional Brownian motion, W = A(B) is a Brownian motion, (2.1)

if W is a Brownian motion, B = Ā(W ) is a fractional Brownian motion. (2.2)

Besides, B and W generate the same filtration.
We give here the definition of a F-fractional Brownian motion, for a given filtration F.

Definition 2.3. Let F be a filtration. We say that B is a F-fractional Brownian motion if
W = A(B) is a F-Brownian motion.

Definition 2.4. Let β ∈ R, p ∈ [1,∞], b ∈ Bβp , T > 0 and X0 ∈ R.

• Weak solution: We call a couple ((Xt)t∈[0,T ], (Bt)t∈[0,T ]) defined on some filtered
probability space (Ω,F ,F,P) a weak solution to (1.1) on [0, T ], with initial condition
X0, if

– B is a F-fBm;
– X is adapted to F;
– there exists a process (Kt)t∈[0,T ] such that, a.s.,

Xt = X0 +Kt +Bt for all t ∈ [0, T ]; (2.3)

– for every sequence (bn)n∈N of smooth bounded functions converging to b in
Bβ−p , we have that

sup
t∈[0,T ]

∣∣∣∣∫ t

0

bn(Xr)dr −Kt

∣∣∣∣ P−→
n→∞

0. (2.4)

If the couple is clear from the context, we simply say that (Xt)t∈[0,T ] is a weak
solution.

• Pathwise uniqueness: As in the classical literature on SDEs, we say that pathwise
uniqueness holds if for any two solutions (X,B) and (Y,B) defined on the same
filtered probability space with the same fBm B and same initial condition X0 ∈ R,
X and Y are indistinguishable.

• Strong solution: A weak solution (X,B) such that X is FB-adapted is called a
strong solution.

2.2 Existence and uniqueness results

Theorem 2.5. Let β ∈ R, p ∈ [1,∞] and H ∈ (0, 1
2 ]. Let b ∈ Bβp be a measure. Assume

that one of the following conditions holds:

(i) H > 1
3 and β > 1 + H

2 −
1

2H ;

(ii) H < 1
3 and β > 2H − 1;

(iii) p ∈ [2,∞] and β > − 1
2H + 1.

Then,

(a) there exists a weak solution X to (1.1) such that the convergence in (2.4) holds
a.s.

(b) Additionally, X −B ∈ Cκ[0,T ](L
m) for any κ ∈ (0, 1 +H(β − 1

p ) ∧ 0] \ {1} and m > 2.

Corollary 2.6. For any finite measure b, there exists a weak solution to (1.1) for H <√
2− 1. If b = aδ0, for some a ∈ R, we call it an a-skew fractional Brownian motion.
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Remark 2.7. In the Brownian motion case (H = 1/2), we obtain existence of a weak
solution in new cases. For instance, consider for ε > 0

b(x) = |x|−3/4+εa(x),

where a is a smooth, compactly supported, nonnegative function equal to 1 on [−1, 1].

We have that b ∈ B
1
4 +
1 (see [4, Prop. 2.21] for similar computations), and the space B

1
4 +
1

is covered by Assumption (i) of Theorem 2.5. Since b is neither in
⋃
p>2 L

p(R) nor in

C− 2
3 +, we cannot directly apply results from [31] or [12].

The following theorem gives, as Theorem 2.5 does, conditions on the drift and the
Hurst parameter such that (1.1) has a weak solution. Note that this time, there is no
nonnegativity assumption on b. Even in the case of considering b to be a measure,
none of the two theorems is stronger than the other. However, if b is a finite measure,
Theorem 2.5 allows for a wider range of Hurst parameters to get existence of weak
solutions to (1.1). Moreover, even though Theorem 2.5(iii) is fully covered by (2.5), it
still adds value as it gives a.s. convergence in (2.4).

Theorem 2.8. Let β ∈ R, p ∈ [1,∞], b ∈ Bβp and X0 ∈ R. Let (bn)n∈N be a sequence of
smooth bounded functions converging to b in Bβ−p . Let Xn be the unique strong solution
to (1.1) with drift bn. Assume

β − 1

p
> − 1

2H
+

1

2
. (2.5)

Then, there exists a subsequence (nk)k∈N such that (Xnk)k∈N converges in law w.r.t.
‖ · ‖∞ to a process X which is a weak solution to (1.1) with drift b. Furthermore,
X −B ∈ Cκ[0,T ](L

m) for any κ ∈ (0, 1 +H(β − 1
p ) ∧ 0] \ {1} and m > 2.

Remark 2.9. Without loss of generality, the previous theorem can directly be formulated
for Hölder spaces by fixing p =∞, using the embedding from Remark 1.2. However, this
is not the case for Theorem 2.10 below. Hence we keep working in general Besov spaces
for a better comparison of the results.

Under slightly stronger assumptions than (2.5), the following theorem states strong
existence and pathwise uniqueness. In particular, it implies that under this stronger
condition, convergence in probability of the approximation scheme in Theorem 2.8 holds
without passing to a subsequence.

Theorem 2.10. Let H < 1/2, β ∈ R, p ∈ [1,∞], b ∈ Bβp and X0 ∈ R. Assume

β > − 1

2H
+ 1 and β − 1

p
> − 1

2H
+ 1. (2.6)

Then,

(a) there exists a strong solution X to (1.1) such that X − B ∈ C
1
2 +H

[0,T ] (Lm) for any
m > 2;

(b) pathwise uniqueness holds in the class of all solutions X such that X − B ∈
C

1
2 +H

[0,T ] (L2);

(c) for any sequence (bn)n∈N of smooth bounded functions converging to b in Bβ−p ,
the corresponding sequence of strong solutions (Xn)n∈N to (1.1) with drift bn

converges in probability to the unique strong solution for which X−B ∈ C
1
2 +H

[0,T ] (L2).
In particular X is independent of the chosen sequence of approximations.

(d) if b is a measure, there exists a pathwise unique strong solution to (1.1).
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Remark 2.11. • For b being a finite measure (hence in B0
1), Theorem 2.10 gives

existence of a unique strong solution to (1.1) for H 6 1/4 and Theorem 2.8 gives
existence of a weak solution to (1.1) for H < 1/3.

Such a finite measure b is also in B−1
∞ . In this space, the existence of a unique

strong solution was shown in [22] for H < 1/4 (elaborating on the path-by-path
result of [8]). Hence in this case, Theorem 2.10 extends this result to H = 1/4.

• In the Brownian motion case, Theorem 2.8 gives existence of weak solutions for
b ∈ Bβp when β − 1/p > −1/2. In this regime strong existence and pathwise
uniqueness are already known by [5].

• Note thatH = 1/2 is excluded from Theorem 2.10. Strong existence and uniqueness
result are already known under our assumptions (see [31]).

The following diagrams display for which Besov-valued distributions b we have well-
posedness for Equation (1.1). The black-hatched area and the turquoise area correspond
to the result obtained in Theorem 2.5. The graphics visualize that the weak solution
constructed in Theorem 2.5 is a solution that, in some cases, does not arise from the
weak solution constructed in Theorem 2.8.

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

p

β

b ∈ Bβp a measure and H = 1/4

strong existence
weak existence by Thm 2.8
weak existence by Thm 2.5

0 1 2 3 4 5 6

−1/3

−2/3

−1

−2

p

β

b ∈ Bβp a measure and H = 1/3

weak existence by Thm 2.8
weak existence by Thm 2.5

Figure 1: Existence (and uniqueness) for b a measure and H fixed.

2.3 Reformulation as a nonlinear Young equation

Let w ∈ C[0,T ]. Rewriting Equation (1.3) with Z ≡ w and X̃t = Xt − wt, we formally
obtain

X̃t = X̃0 +

∫ t

0

b(X̃r + wr) dr. (2.7)

For a bounded measurable function b, we define the averaging operator Tw by

Tw
t b(x) :=

∫ t

0

b(x+ wr) dr, for (t, x) ∈ [0, T ]×R. (2.8)

Assuming that w has a local time L and using the occupation time formula (1.6), it comes
that

Tw
s,tb(x) =

∫ t

s

b(x+ wr) dr =

∫
R

b(x+ z)Ls,t(z) dz = b ∗ Ľs,t(x), ∀x ∈ R, (2.9)
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0 0.1 0.2 0.3 0.4 0.5
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−6
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−2

0

H

β
−

1/
p

Existence and uniqueness for b ∈ Bβp

strong existence
and uniqueness
weak existence

0 0.1 0.2 0.3 0.4 0.5

1

1/4
0

−1/3

−1

−2

H

β

Weak existence
for a measure b ∈

⋃
p∈[1,∞] Bβp

Figure 2: Existence (and uniqueness) for variable H.

where Ľs,t(x) = Ls,t(−x). This operator and its connection to the local time was already
considered in [8]. In view of the expression of Twb as a convolution, one can expect that
for w with a sufficiently regular local time, the definition of Twb will extend to b with
lower regularity (we will consider suitable Besov spaces, see Sect. 4). This idea was
exploited in [28], in the case of noises with infinitely differentiable local times.

Using (2.7), we get that for b continuous and bounded, X̃ ∈ C[0,T ] and a sequence of

partitions {tni }
Nn
i=1 of [0, t] with mesh size converging to 0,

∫ t

0

b(X̃r + wr) dr = lim
n→∞

Nn−1∑
i=1

∫ tni+1

tni

b(X̃tni
+ wr) dr

= lim
n→∞

Nn−1∑
i=1

Tw
tni ,t

n
i+1
b(X̃n

ti)

=

∫ t

0

Tw
drb(X̃r), (2.10)

where the final equality is only formal at this point. We give a rigorous definition of this
integral in Sect. 3 and call it a nonlinear Young integral. This also suggests to rewrite
Equation (1.3) as a nonlinear Young integral equation. Thus we give another definition
of a solution to (1.3) and (1.1). Combining the theory of nonlinear Young integrals from
Sect. 3 and the extension of the averaging operator applied to distributions (see Sect. 4)
will give sense to the following definition.

Definition 2.12. Let Z be a stochastic process. We call X : Ω → C[0,T ] a path-by-path
solution to (1.3) if there exists a null-set N , η ∈ (0, 1] and p, q > 1 such that 1/p+ η/q > 1

and for any ω /∈ N , TZ(ω)b ∈ Cp-var
[0,T ](C

η), X(ω)− Z(ω) ∈ Cq-var
[0,T ] and

Xt(ω) = X0 +

∫ t

0

T
Z(ω)
dr b(Xr(ω)− Zr(ω)) + Zt(ω), for all t ∈ [0, T ]. (2.11)

The assumption involving η ∈ (0, 1] and p, q > 1 is simply the (sufficient) condition
formulated in Theorem 3.1 that ensures the existence of the nonlinear Young integral.
Note that in the above definition no measurability or adaptedness of X is required.
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Theorem 2.14 gives conditions on the local time of the process Z such that there
exists a path-by-path solution to (1.3). These conditions will be needed multiple times
thoughout the paper, hence we give them here.

Assumption 2.13. Let γ, η ∈ (0, 1), β ∈ R and p ∈ [1,∞]. Let b ∈ Bβp and w ∈ C[0,T ] with
local time L.

(I) There exists p̃ ∈ [1,∞] with 1/p+ 1/p̃ > 1 and L ∈ Cγ[0,T ](B
−β+η+1/p+1/p̃−1
p̃ );

(II) There exists p̃ ∈ [1,∞] with 1/p+ 1/p̃ 6 1 and L ∈ Cγ[0,T ](B
−β+η
p̃ ).

Theorem 2.14. Let γ, η ∈ (0, 1) with γ + η > 1. Let b ∈ Bβp be a measure with β ∈ R,
p ∈ [1,∞]. Let Z : Ω → C[0,T ] be a continuous stochastic process with a local time
LZ : Ω× [0, T ]×R→ R. Assume that there exists a null-set N such that for any ω /∈ N ,
LZ(ω) satisfies (I) or (II). Then there exists a path-by-path solution to Equation (1.3).

Recall that Theorem 2.14 does not imply existence of a measurable/adapted solution.
However in the case of fBm, using properties of its local time, additionally adaptedness
of the path-by-path solution can be proven (see Theorem 2.5).

The following theorem provides a comparison between solutions constructed by
approximation with a smooth drift and solutions in the nonlinear Young sense. More
precisely, it shows that being a solution to (1.3) (i.e. for a noise Z) in the sense of
Definition 2.12 implies being a solution in the sense of Definition 2.4. Under some
regularity restrictions, the reverse implication holds as well. We rephrase (2.3) and (2.4)
(without specifying the mode of convergence yet) for a noise Z instead of B:

Xt = X0 +Kt + Zt for all t ∈ [0, T ]; (2.12)

sup
t∈[0,T ]

∣∣∣∣∫ t

0

bn(Xr)dr −Kt

∣∣∣∣ −→n→∞ 0 (2.13)

for every sequence (bn)n∈N of smooth bounded functions converging to b in Bβ−p .

Theorem 2.15. Let γ, η ∈ (0, 1) and q > 1 with γ + η/q > 1, X0 ∈ R, p ∈ [1,∞], β ∈ R,
b ∈ Bβp and X : Ω → C[0,T ]. Let Z : Ω → C[0,T ] be a continuous stochastic process and
LZ : Ω× [0, T ]×R→ R its local time. Assume that there exists a null-set N such that
for any ω /∈ N , LZ(ω) satisfies (I) or (II).

(a) Assume that X is a path-by-path solution to (1.3) and that X − Z ∈ Cq-var
[0,T ]. Then

for any sequence of smooth bounded functions (bn)n∈N that converges to b in Bβ−p ,

X·(ω) − Z·(ω) − X0 = K·(ω) =
∫ ·

0
T
Z(ω)
dr b(Xr(ω) − Zr(ω)) is the uniform limit of∫ ·

0
bn(Xr(ω)) dr for all ω /∈ N (i.e. (2.13) holds on the set of full measure N c).

(b) Assume that there exists a process K : Ω → C[0,T ] such that (2.12) and (2.13)
hold, where the convergence in (2.13) is in probability. Assume further that a.s.,
X(ω)− Z(ω) ∈ Cq-var

[0,T ]. Then X is a path-by-path solution to (1.3).

Remark 2.16. In particular, statement (a) implies that if X is an F-adapted path-by-path
solution, it is a weak solution. Moreover, for the weak solution constructed in Theo-
rem 2.5, the convergence in (2.4) holds on a set of full measure instead of convergence
in probability.

2.4 Organisation of the proofs

In Sect. 3, we construct nonlinear Young integrals in p-variation via a classical
sewing argument. In particular, we establish existence of solutions to a nonlinear Young
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integral equation with monotone drift under milder regularity constraints than in the
non-monotone case.

Then we rigorously rewrite Equation (1.1) as a nonlinear Young integral equation.
The existence of a solution to the more general Equation (1.3), when Z has a sufficiently
regular local time, is stated in Theorem 2.14 and proven in Sect. 4.2. We then establish
that a solution to (1.1) in this nonlinear Young sense is also a solution in the sense of
Definition 2.4 (see Theorem 2.15, which is proven in Sect. 4.2). For instance, when
applied to the case of a fractional Brownian noise (after investigating the regularity
properties of its local time), these theorems imply the existence of path-by-path solutions.
However, in Theorem 2.5(a) one wants to prove the existence of solutions that are
adapted to the filtration F of the underlying filtered probability space. Theorems 2.14
and 2.15 cannot be applied directly and a modified approach is developed using the
tightness of the averaging operator of the fBm (Lemma 4.11) and the continuity of the
operator A transforming a fBm to a Bm, see (2.1) and Lemma B.1. These arguments are
given in Sect. 4.4 and lead to the proof of Theorem 2.5(a).

In Sect. 5, we use some new regularity estimates on conditional expectations of
the fBm (Lemma 5.1) and the stochastic sewing Lemma with random control (see
Lemma C.2) to establish that any weak solution X satisfies X −B ∈ Cκ[0,T ](L

m) for any

κ ∈ (0, 1 + H(β − 1
p ) ∧ 0] \ {1} and m > 2 when b is a measure in Bβp . This proves

Theorem 2.5(b) and Theorem 2.10(d).

In Sect. 6, in order to establish pathwise uniqueness of weak solutions to (1.1) (see
Proposition 6.1), we adapt an approach developed recently for the stochastic heat
equation with distributional drift, see [2]. This requires several regularity estimates on
solutions which are derived from the crucial regularity Lemma C.3 and the stochastic
sewing Lemma with critical exponent (Theorem 4.5 in [2]). The proof of Lemma C.3
relies on the stochastic sewing Lemma and the aforementioned regularity estimates on
conditional expectations of the fBm (Lemma 5.1).

Theorem 2.8 is proven in Sect. 7 by an approximation of the drift with smooth
bounded functions. The corresponding sequence of strong solutions will be shown to be
tight and furthermore reveal a stability property, such that we can identify the limit as a
solution to (1.1), where continuity of the operator linking fBm to Brownian motion (see
Lemma B.1) is needed to prove adaptedness. This works thanks to a priori regularity
estimates of solutions, see Lemma 7.2 and Lemma 7.3.

Strong existence will follow by a Yamada-Watanabe type argument, using Gyöngy-
Krylov’s lemma [26, Lem. 1.1] and requires the uniqueness result Proposition 6.1. The
proofs of Theorems 2.8 and 2.10 are then completed in Sect. 7.3.

3 Nonlinear Young integrals and nonlinear Young equations in
Cp-var

3.1 Construction of nonlinear Young integrals and properties

Throughout this subsection, E and F denote arbitrary Banach spaces. Theorem 3.1
provides conditions for the existence of a nonlinear Young integral in terms of p-variations
(rather than Hölder continuity as in [8, Th. 2.4] and [20]).

Theorem 3.1. Let η ∈ (0, 1] and p, q ∈ [1,∞) such that θ := 1/p + η/q > 1. Let A ∈
Cp-var

[0,T ](C
η
E,loc(F )) and x ∈ Cq-var

[0,T ](E). Then for (s, t) ∈ ∆[0,T ] and any sequence of partitions

(Πn)n of [s, t] with limn |Πn| = 0, the sum
∑

Πn
Ati,ti+1(xti) converges. Besides, the limit

is independent of the sequence of partitions (Πn)n. We denote it by
∫ t
s
Adr(xr) and call it

the nonlinear Young integral with respect to A and x.

In addition, there exists C(θ) > 0 such that for (s, t) ∈ ∆[0,T ] and R > 0 with ‖x‖∞ 6 R,
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one has ∥∥∥∥∫ t

s

Adr(xr)−As,t(xs)
∥∥∥∥
F

6 C(θ)[A]Cp-var
[s,t]

(CηDR )[x]ηCq-var
[s,t]

. (3.1)

Proof. We apply the sewing lemma [19, Theorem 2.2 and Remark 2.3] formulated with
controls. Let 0 6 u 6 v 6 w 6 T . Then, for R > 0 such that ‖x‖∞ 6 R,

|Au,w(xu)−Au,v(xu)−Av,w(xv)| = |Av,w(xu)−Av,w(xv)|
6 [Av,w]CηDR

[x]ηCq-var
[u,w]

6 [A]Cp-var
[u,w]

(CηDR )[x]ηCq-var
[u,w]

,

which gives the result as the last expression in the above defines a control raised to the
power θ by [18, Exercise 1.9].

As a corollary we obtain the following result.

Corollary 3.2. Let T > 0. Let p, q ∈ [1,∞) and η ∈ (0, 1] with θ := 1/p + η/q > 1. Let
x ∈ Cq-var

[0,T ] and A ∈ Cp-var
[0,T ](C

η). If a sequence An converges to A in Cp-var
[0,T ](C

η), then

sup
t∈[0,T ]

∣∣∣∣∫ t

0

(An −A)dr(xr)

∣∣∣∣ −→n→∞ 0.

Proof. By (3.1), we have∣∣∣∣∫ t

0

(An −A)dr(xr)

∣∣∣∣ 6 ∣∣∣∣∫ t

0

(An −A)dr(xr)− (An −A)0,t(x0)

∣∣∣∣+ |(An −A)0,t(x0)|

6 C(θ)[An −A]Cp-var
[0,T ]

(Cη)[x]ηCq-var
[0,T ]

+ [An −A]Cp-var
[0,T ]

(Cη).

Taking the supremum over all t ∈ [0, T ] and letting n go to∞ gives the result.

The next lemma establishes the sensitivity in the “x” variable of the nonlinear Young
integral. See [20, Th. 2.7] for its counterpart in the Hölder setting.

Lemma 3.3. Let η ∈ (0, 1] and p, q ∈ [1,∞) with θ := 1/p + η/q > 1. Let A ∈
Cp-var

[0,T ](C
η
E,loc(F )), x, y ∈ Cq-var

[0,T ](E). We denote R = Max(‖x‖∞, ‖y‖∞). Then, for δ ∈
(q(1− 1

p ), η) and (s, t) ∈ ∆[0,T ], one has∥∥∥∥∫ t

s

Adr(xr)−
∫ t

s

Adr(yr)

∥∥∥∥
F

6 C(θ)[A]Cp-var
[s,t]

(CηDR )

(
[x]Cq-var

[s,t]
+ [y]Cq-var

[s,t]

)δ
‖x− y‖η−δ∞

+ ‖As,t‖CηDR ‖x− y‖
η
∞. (3.2)

Proof. For (u,w) ∈ ∆[0,T ], let

Γu,w := (Au,w(xu)−Au,w(yu)).

Again, we aim to apply the sewing lemma. For any z ∈ Cq-var
[0,T ](E), let κz(u,w)θ :=

[A]Cp-var
[u,w]

(CηDR )[z]
η
Cq-var

[u,w]

. Furthermore, let

κ̂(u,w)δ/q+p
−1

:= (κx(u,w) + κy(u,w))
δ
η θ
(

[A]Cp-var
[u,w]

(CηDR )

)1− δη
.

By [18, Exercise 1.9] and by definition of a control, we get that κx, κy, κx + κy and κ̂
are control functions.
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Note that, for v ∈ [u,w],

‖Γu,w − Γu,v − Γv,w‖F 6 ‖Av,w(xv)−Av,w(xu)‖F + ‖Av,w(yv)−Av,w(yu)‖F
6 [A]Cp-var

[v,w]
(CηDR )([x]ηCq-var

[u,v]

+ [y]ηCq-var
[u,v]

)

6 (κx(u,w) + κy(u,w))θ.

Furthermore, we also have that

‖Γu,w − Γu,v − Γv,w‖F 6 ‖Av,w(xv)−Av,w(yv)‖F + ‖Av,w(xu)−Av,w(yu)‖F
6 2[A]Cp-var

[v,w]
(CηDR )‖x− y‖η∞.

It clearly holds true that a ∧ b 6 aξb1−ξ for a, b > 0 and ξ ∈ [0, 1]. Hence, for ξ = δ/η ∈
(0, 1), it comes

‖Γu,w − Γu,v − Γv,w‖F 6 Cκ̂(u,w)
δ
q+p−1

‖x− y‖η(1− δη )
∞ .

Applying the sewing lemma and the inequality

‖Γu,w‖F 6 ‖Au,w‖CηDR ‖x− y‖
η
∞

gives (3.2).

3.2 Solving nonlinear Young equations

We are now ready to state a result of existence of solutions to nonlinear Young integral
equations with a positive drift. From now on we will work with real-valued functions
and vector fields. The proof resembles the one in the Hölder setting, see [20, Th. 3.2].
However, there is one crucial step where the p-variation permits to take into account the
nonnegative drift and which then allows to assume milder regularity conditions than in
the Hölder setting.

Theorem 3.4. Let η ∈ (0, 1] and p > 1 with 1/p+η > 1. Let A ∈ Cp-var
[0,T ](C

η) with As,t(y) > 0

for all y ∈ R and all (s, t) ∈ ∆[0,T ]. Then for any x0 ∈ R, there exists a solution x ∈ C1-var
[0,T ]

to the nonlinear Young equation

xt = x0 +

∫ t

0

Adr(xr), ∀t ∈ [0, T ]. (3.3)

Proof. Without loss of generality, let T = 1. Let θ := 1/p+ η. For n ∈ N and 0 6 k 6 n,
let tnk := k/n, x̄n0 := x0 and define recursively

x̄nk+1 = x̄nk +Atnk ,tnk+1
(x̄nk ).

We embed (x̄nk )nk=0 into C[0,1] by setting

xnt = x0 +
∑

06k6bntc

Atnk ,t∧tnk+1
(x̄nk ),

which we write as follows

xnt = x0 +

∫ t

0

Adr(x
n
r ) +

∑
06k6bntc

(∫ t∧tnk+1

tnk

Adr(x
n
tnk

)−Adr(xnr )

)
. (3.4)

Denote the sum in (3.4) by ψnt . Let us introduce the control function

κn(s, t) :=

(
[A]Cp-var

[s,t]
(Cη)[x

n]ηC1-var
[s,t]

) 1
θ

.
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Then using (3.1) and the superadditivity property (1.7) of a control,

|ψnt | =

∣∣∣∣∣∣
∑

06k6bntc

(∫ t∧tnk+1

tnk

Adr(x
n
tnk

)−Adr(xnr )

)∣∣∣∣∣∣
6 C(θ)

∑
06k6bntc

κn(tnk , t ∧ tnk+1)θ

6 C(θ)κn(0, t) max
06k6bntc

{κn(tnk , t ∧ tnk+1)}θ−1. (3.5)

Let 0 6 s 6 u 6 T = 1. We note i = bnsc and i+ j = bnuc. We assume that j > 0 as
the case j = 0 is simpler. Then

|ψns,u| 6

∣∣∣∣∣
∫ tni+1

s

Adr(x
n
tni

)−Adr(xnr )

∣∣∣∣∣+

j∑
k=1

∣∣∣∣∣
∫ u∧tni+k+1

tni+k

Adr(x
n
tni+k

)−Adr(xnr )

∣∣∣∣∣
6

∣∣∣∣∣
∫ tni+1

s

Adr(x
n
s )−Adr(xnr )

∣∣∣∣∣+ |As,tni+1
(xns )−As,tni+1

(xntni )|

+

j∑
k=1

∣∣∣∣∣
∫ u∧tni+k+1

tni+k

Adr(x
n
tni+k

)−Adr(xnr )

∣∣∣∣∣ ,
so by the estimate (3.1) it comes

|ψns,u| 6 C(θ)

(
κn(s, u)θ + [A]Cp-var

[tn
i
,tn
i+1

]
(Cη)[x

n]ηC1-var
[tn
i
,tn
i+1

]

)
. (3.6)

We now look for a bound on the 1-variation norm of xn. Due to the non-negativity
assumption on A, xn is non-decreasing. Hence

[xn]C1-var
[tn
i
,tn
i+1

]
= |xntni ,tni+1

| = |Atni ,tni+1
(xntni )| 6 [A]Cp-var

[tn
i
,tn
i+1

]
(Cη) .

Then in view of (3.4), (3.6) and applying (3.1) to
∫ u
s
Adr(x

n
r ), we get

[xn]C1-var
[s,u]

6 C(θ)

((
|As,u(xns )|+ κn(s, u)θ

)
+

(
κn(s, u)θ + [A]1+η

Cp-var
[tn
i
,tn
i+1

]
(Cη)

))
.

Let now ε > 0 and choose n such that [A]Cp-var
[tn
i
,tn
i+1

]
(Cη) < ε1/(1+η) for all i = 0, . . . , n − 1.

Then one obtains

[xn]C1-var
[s,u]

6 2C(θ)

(
[A]Cp-var

[s,u]
(Cη) + [A]Cp-var

[s,u]
(Cη)[x

n]ηC1-var
[s,u]

+ ε

)
.

Using that aη 6 1 + a for a > 0 and η ∈ [0, 1], it follows that

[xn]C1-var
[s,u]

6 2C(θ)
(

[A]Cp-var
[s,u]

(Cη)(1 + [xn]C1-var
[s,u]

) + ε
)
.

Hence, for s 6 u such that 2C(θ)[A]Cp-var
[s,u]

(Cη) < 1, this leads to

[xn]C1-var
[s,u]

6 2C(θ)
[A]Cp-var

[s,u]
(Cη) + ε

1− 2C(θ)[A]Cp-var
[s,u]

(Cη)

, (3.7)

which gives both uniform boundedness and equicontinuity. In view of Equation (3.5),
the uniform boundedness of [xn]C1-var

[0,t]
combined with the continuity of [A]Cp-var

[0,t]
(Cη) give
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that ψn converges to 0 uniformly on [0, 1]. By the Arzelà-Ascoli Theorem, we deduce
that xn converges uniformly along a subsequence to some non-decreasing x ∈ C[0,1].
Without loss of generality, we still denote by xn this subsequence. Then using the
uniform boundedness of [xn]C1-var

[0,1]
and the uniform convergence of xn to x, one gets from

Lemma 3.3 that for any t, ∫ t

0

Adr(x
n
r ) −→

n→∞

∫ t

0

Adr(xr).

Hence, passing to the limit in (3.4), we finally obtain that x solves (3.3).

Remark 3.5. Theorem 3.4 extends to mappings A which are only locally Hölder in
space, giving existence possibly up to a blow-up time. Its proof can be done using typical
localisation arguments.

Since we are interested in differential equations perturbed by noise, it is natural to
look for an extension of Theorem 3.4 in case A is random, and to look for a measurable
solution. Therefore we conclude this section with an extension of Theorem 3.4 for
random A. We omit the proof as it is similar to the first part of the proof of Theorem 2.5
which is presented in Sect. 4.4 (i.e. showing tightness and then using Skorokhod’s
representation Theorem to pass to an almost sure limit).

Corollary 3.6. Let η ∈ (0, 1] and p > 1 with 1/p + η > 1. Let A : Ω → Cp-var
[0,T ](C

η) be a

random variable such that almost surely, As,t(y) > 0 for all y ∈ R and (s, t) ∈ ∆[0,T ].
Furthermore, assume that for any λ > 0,

lim
δ→0

P(Ωδ,λ) = 1, where Ωδ,λ := {ω : sup
|t−s|<δ

[A]Cp-var
[s,t]

(Cη) < λ}. (3.8)

Then for any Y0 ∈ R, there exists a probability space (Ω̃, Ẽ , P̃), a measurable map Ã

which satisfies Law(Ã) = Law(A) and a measurable map Y : Ω̃→ C1-var
[0,T ] such that almost

surely,

Yt = Y0 +

∫ t

0

Ãdr(Yr), ∀t ∈ [0, T ].

4 Existence of weak solutions with nonnegative drift

We prove Theorem 2.5, Corollary 2.6, Theorem 2.14 and Theorem 2.15 in this section.
First, we extend the averaging operator defined in (2.8) to distributions b in Besov
spaces. Obtaining some Hölder regularity properties for this object allows to prove
Theorem 2.15, which states roughly that solutions to (1.1) in the sense of Definition 2.4
are equivalent to solutions in the sense of Definition 2.12. Hence, we then only consider
solutions in the sense of Definition 2.12.

The remaining subsections are dedicated to the proof of Theorem 2.5, using some fine
results on the joint regularity in time and space of the local time of fractional Brownian
motion and the results on nonlinear Young equations from Sect. 3.

4.1 Definition and properties of the averaging operator

In this section we give the definition of the averaging operator Twb for distributional
b and w ∈ C[0,T ], extending the construction of Sect. 2.3. Note that this was already done
in a very general setup in [21, Sect. 3.1]. We take a less general approach by directly
mollifying b, which is in line with the definition in [21] by Lemma 3.9 therein.

Definition 4.1. Let w ∈ C[0,T ]. Let β ∈ R and p ∈ [1,∞], b ∈ Bβp . The averaging operator
is defined by

Tw
t b(x) := lim

n→∞
Tw
t b

n(x),
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if the limit exists for any sequence (bn) of smooth bounded functions converging to b in
Bβ−p and is independent of the choice of the sequence.

Lemma 4.2. Consider β, β̃ ∈ R with β − β̃ ∈ (0, 1], γ ∈ (0, 1], p ∈ [1,∞], b ∈ Bβp and

w ∈ C[0,T ]. Assume that w has a local time L ∈ Cγ[0,T ](B
−β̃
p′ ). For the above choice of b and

w , Twb is well-defined in Cγ(Cρ) for any ρ ∈ (0, β − β̃).

Remark 4.3. Recall from [4, Prop. 2.76] that for η ∈ R, p, p′, q, q′ ∈ [1,∞] with 1/p +

1/p′ = 1 and 1/q+1/q′ = 1, there is a continuous bilinear functional 〈·, ·〉 : Bηp,q × B
−η
p′,q′→R

extending the L2 inner product.

Proof of Lemma 4.2. Let ε = β−β̃. After an embedding of Besov spaces (see Remark 1.2),

we know that b ∈ Bβ−ε/2p and L ∈ Cγ[0,T ](B
−β̃−ε/2
p′,1 ). Let (bn)n∈N be any sequence of smooth

bounded functions converging to b in Bβ−p . By the convolutional representation (2.9) and
Remark 4.3, we have that

Tw
t b

n(x) = 〈bn, Lt(· − x)〉.

Using the continuity of the bilinear functional 〈·, ·〉, we get, for n,m ∈ N,

‖Tw
· b

n(·)− Tw
· b

m(·)‖∞ 6 C‖L‖
Cγ(B−β̃−ε/2

p′,1 )
‖bn − bm‖Bβ−ε/2p

.

Therefore Twbn forms a Cauchy sequence and is uniformly convergent. Hence, Twb is
well defined and is easily seen to be independent of the approximating sequence.

Let ρ ∈ (0, β − β̃). In order to show that Twb actually has the required regularity, we
have to check that

‖Twb‖Cγ
[0,T ]

(Cρ) = sup
s6=t,x 6=y

|Tw
s,tb(y)− Tw

s,tb(x)|
|t− s|γ |x− y|ρ

+ sup
s6=t

sup
x

|Tw
s,tb(x)|
|t− s|γ

(4.1)

+ sup
t

sup
x 6=y

|Tw
t b(y)− Tw

t b(x)|
|x− y|ρ

+ sup
t

sup
x
|Tw
t b(x)|

is finite. Fix s 6= t and x 6= y. For any n ∈ N,

|Tw
s,tb(x)− Tw

s,tb(y)| 6 2‖Tw
s,tb(·)− Tw

s,tb
n(·)‖∞ + |Tw

s,tb
n(x)− Tw

s,tb
n(y)|.

Choosing n = n(s, t, x, y) large enough, we have

‖Tw
s,tb(·)− Tw

s,tb
n(·)‖∞ 6 |t− s|γ |x− y|β−β̃ .

Moreover, using continuity of the bilinear form, an embedding of Besov spaces and
Lemma A.5(b), we have, for ε̄ = β − β̃ − ρ > 0,

|Tw
s,tb

n(x)− Tw
s,tb

n(y)| 6 C‖bn‖Bβ−ε̄/2
p

‖Ls,t(· − x)− Ls,t(· − y)‖B−β+ε̄

p′

6 C|t− s|γ |x− y|ρ‖b‖Bβp ‖L‖Cγ(B−β̃
p′ )

.

As the other terms in (4.1) can be controlled similarly, the result follows.

Lemma 4.4. Let p, p̃ ∈ [1,∞], β ∈ R, η, γ ∈ (0, 1) and b ∈ Bβp . Assume that the local time
L of w satisfies Assumption 2.13 (I) or (II). Then, for any ε ∈ (0, η), Twb ∈ Cγ[0,T ](C

η−ε).
Moreover, for any bounded open interval I that contains the (compact) support of L,
there exists a constant CI such that:

• If (I) holds, then [Twb]Cγ
[0,T ]

(Cη−ε) 6 CI‖b‖Bβp [L]Cγ
[0,T ]

(B−β+η+1/p+1/p̃−1
p̃ )

and

‖Twb‖Cγ
[0,T ]

(Cη−ε) 6 CI‖b‖Bβp ‖L‖Cγ[0,T ]
(B−β+η+1/p+1/p̃−1
p̃ )

;
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• If (II) holds, then [Twb]Cγ
[0,T ]

(Cη−ε) 6 CI‖b‖Bβp [L]Cγ
[0,T ]

(B−β+η
p̃ ) and

‖Twb‖Cγ
[0,T ]

(Cη−ε) 6 CI‖b‖Bβp ‖L‖Cγ[0,T ]
(B−β+η
p̃ ).

Remark 4.5. In particular Lemma 4.4 shows the following: Assume (I) or (II) holds for
γ, η ∈ (0, 1) with γ + η > 1. Then Twb ∈ Cγ[0,T ](C

η̃) for η̃ ∈ (0, η) with γ + η̃ > 1.

Proof. The proof follows along the same lines as Lemma 4.2, making use of several
Besov embeddings, including B−β+η+1/p+1/p̃−1

p̃ (I) ↪→ B−β+η−ε
p′,1 (I) (see Remark 1.3).

4.2 Path-by-path solutions: Existence and comparison of solutions

In this section we prove Theorem 2.14 on the existence of path-by-path solutions to
Equation (1.3) and Theorem 2.15 on the comparison of solutions.

Proof of Theorem 2.14. The idea of the proof is to identify a set of full measure on which
TZb is sufficiently regular and has nonnegative increments. Then, for ω in this set, we
can apply the (deterministic) theory of nonlinear Young integral equations developed
in Sect. 3. In particular, for any such ω, we use Theorem 3.4 to pick a solution. As
the proof of Theorem 3.4 is non-constructive (it relies on Arzelà-Ascoli’s Theorem), the
axiom of choice is needed to pick a solution simultaneously for all such ω. For ω outside
of this full-measure set, we can define the solution to be identically 0. Note that this
construction is indeed done in a path-by-path sense so that the solution solves (1.3) on a
set of full measure. However, a priori there is no reason why the constructed solution
should be adapted.

Let 0 6 s < t. Provided that

TZb ∈ Cγ[0,T ](C
η̃) for γ, η̃ ∈ (0, 1) with γ + η̃ > 1 and (4.2)

TZs,tb(x) > 0 for all x ∈ R (4.3)

hold a.s., using Cγ[0,T ](C
η̃) ⊂ C1/γ-var

[0,T ] (Cη̃), Theorem 3.4 will give a solution.

Under the assumptions of Theorem 2.14, Lemma 4.4 ensures that (4.2) holds. To see
that (4.3) holds, let ε ∈ (0, η) and δ := η − ε. Both under Assumption 2.13 (I) or (II), we

have that LZs,t ∈ B
−β+δ
p′,1 and LZs,t ∈ B

−β+2δ/3
p′ by the Besov embeddings in Remark 1.2 and

Remark 1.3. By Remark 2.2, the sequence of nonnegative function φxn := G1/nL
Z
s,t(· − x)

converges to LZs,t(· − x) in B(−β+2δ/3)−
p′ . Hence

lim
n
‖LZs,t(· − x)− φxn‖B−β

p′,1
6 C lim

n
‖LZs,t(· − x)− φxn‖B−β+δ/3

p′
= 0. (4.4)

Then we get, for any sequence of nonnegative smooth bounded functions bm converging
to b in Bβ−p ,

TZs,tb(x) = lim
m→∞

TZs,tb
m(x)

= lim
m→∞

lim
n→∞

〈bm, φxn〉,

where the first line holds true by definition and the second line by the continuity of 〈·, ·〉
and (4.4). The inequality (4.3) now follows from the fact that 〈bm, φxn〉 > 0, for any n,m
and x.

Proof of Theorem 2.15. (a): Let ε ∈ (0, η) such that γ + (η − ε)/q > 1. As Assump-
tion 2.13 (I) or (II) is fulfilled, we know by Lemma 4.4 that TZb ∈ Cγ[0,T ](C

η−ε) on N c
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(which we do not mention in the rest of the proof, although all equalities and conver-
gences happen on this set). Then, by the definition of the nonlinear Young integral of
TZbn in Theorem 3.1, we get that Equality (2.10) does hold for bn:∫ t

0

bn(Xr)dr =

∫ t

0

TZdrb
n(Xr − Zr). (4.5)

By Lemma 4.4, we get that TZbn converges to TZb in Cγ[0,T ](C
η−ε). Hence, by Corollary 3.2,

we obtain that

sup
t∈[0,T ]

∣∣∣ ∫ t

0

bn(Xr)dr −
∫ t

0

TZdrb(Xr − Zr)
∣∣∣ −→
n→∞

0.

Therefore the convergence in the statement holds for Kt :=
∫ t

0
TZdrb(Xr − Zr).

(b): By (2.13), we know that for some subsequence (nk)k∈N,

sup
t∈[0,T ]

∣∣∣ ∫ t

0

bnk(Xr)dr −Kt

∣∣∣ −→ 0 a.s.

We have again that (4.5) holds true and we deduce that

sup
t∈[0,T ]

∣∣∣ ∫ t

0

TZdrb
nk(Xr − Zr)−Kt

∣∣∣ −→ 0 a.s.

By Lemma 4.4 and Corollary 3.2, we get that almost surely, Kt =
∫ t

0
TZdrb(Xr − Zr) for all

t ∈ [0, T ]. Equation (2.11) now follows from (2.12).

4.3 Joint regularity of the local time of the fractional Brownian motion

In the rest of this section, L denotes the local time of a one-dimensional fBm B and
TB denotes the averaging operator associated to it, as constructed in Sect. 4.1.

First, we recall Theorem 3.1 from [30]. This result is stated in [30] for a compact
hypercube with side length equal to one. By dilatation, the result also holds for an
arbitrary large hyperrectangle.

Theorem 4.6 (Th. 3.1 in [30]). Consider the rectangle R = [mx,Mx]× [my,My] for some
mx < Mx and my < My. Let Y : R2 → R be a continuous stochastic process. Suppose
that for γ, β > 0, α > 1 and all (x1, y1), (x2, y2) ∈ R,

E [|Y (x2, y2)− Y (x2, y1)− Y (x1, y2) + Y (x1, y1)|α] 6 K|x2 − x1|1+γ |y2 − y1|1+β .

Then for every ε1, ε2 with 0 < ε1α < γ and 0 < ε2α < β, there exists a random variable ρ
with E[ρα] 6 K and a constant C = C(R) > 0 such that almost surely,

|Y (x2, y2)− Y (x2, y1)− Y (x1, y2) + Y (x1, y1)| 6 C ρ |x2 − x1|γ/α−ε1 |y2 − y1|β/α−ε2 ,

for all (x1, y1), (x2, y2) ∈ R.

Remark 4.7. Let T > 0 and n ∈ N. By Lemma 8.12 in [45], for any n ≥ 1 there exists a
constant C > 0 such that for any (x, y) ∈ R2, (s, t) ∈ ∆[0,T ] and 0 < β̄ < (1/(2H)−1/2)∧1,
the local time L of a one-dimensional fBm fulfills

E [|Ls,t(y)− Ls,t(x)|n] 6 C |t− s|n(1−H(1+β̄)) |x− y|nβ̄ . (4.6)

Lemma 4.8. Let 0 < β̄ < (1/(2H) − 1/2) ∧ 1 and 0 < γ < 1 − H(1 + β̄). Then, almost
surely, L ∈ Cγ[0,T ](C

β̄). Additionally for any n ∈ N there exists a random variable ρ with

E[ρn] <∞ such that for any M > 0, (s, t) ∈ ∆[0,T ] and x, y with |x|, |y| 6M , there exists
a constant CM > 0 such that

|Ls,t(x)− Ls,t(y)| 6 CMρ |t− s|γ |x− y|β̃ . (4.7)
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Proof. Note that by [24, Th. 26.1] we can assume L to be jointly continuous in (t, x). Then
choosing n large enough in (4.6) and by Theorem 4.6, there exists a random variable ρ
with finite n-th moment such that, a.s., for (s, t) ∈ ∆[0,T ] and x, y with |x|, |y| 6M ,

|Ls,t(x)− Ls,t(y)| 6 CMρ |t− s|γ |x− y|β̃ .

As L is a.s. compactly supported, after exhausting [0, T ]×R with an increasing sequence

of compacts [−Mi,Mi], it follows that L ∈ Cγ[0,T ](C
β̃) a.s.

Note that Lemma 4.8 does not give differentiability in space for the local time of
a fBm, even in case of a small Hurst parameter. It is also possible to get time-space
Sobolev regularity of L by following the methodology of [28], and in particular to
obtain differentiability for small enough H. This is used in proving Theorem 2.5 under
Assumption (iii).

Remark 4.9. With the same parameters as in the previous lemma, if b ∈ Bβp for β ∈
(−β̄, 1−β̄) and p ∈ [1,∞], then Lemma 4.4 and Lemma A.7 imply that TBb ∈ Cγ[0,T ](C

β̄+β−ε)

almost surely, for any ε ∈ (0, β̄ + β).

4.4 Existence of a weak solution

We first show in Proposition 4.10 that the assumptions of Theorem 2.5 imply that
either Assumption (I) or Assumption (II) holds. In particular, we get existence of a
path-by-path solution by Theorem 2.14. Then we observe, by “randomizing” the Euler
scheme, that it is actually possible to construct a weak solution (i.e. adapted solution).

Proposition 4.10. Let β, p, b be as in Theorem 2.5.

(a) Assume that (i) or (ii) from Theorem 2.5 holds. Then, a.s., L satisfies Assump-
tion 2.13 (II) for γ, η ∈ (0, 1) with γ + η > 1, 0 < −β + η < 1 and p̃ =∞.

(b) Assume that (iii) from Theorem 2.5 holds. Then, a.s., L satisfies Assumption 2.13 (II)
for γ, η ∈ (0, 1) with γ + η > 1, η < ( 1

2H + β − 1/2) and p̃ = 2.

Hence, by Theorem 2.14, whenever one of the conditions (i)–(iii) from Theorem 2.5
holds, there exists a path-by-path solution to (1.3).

Proof of Proposition 4.10. It is used multiple times throughout the proof that we can
also consider b to be in Bβ̃p for any β̃ < β by an embedding.

(a): Assume that (i) holds. W.l.o.g. assume that β ∈ (1 + H
2 −

1
2H ,

3
2 −

1
2H ). In

view of Lemma 4.8 and the assumption H > 1
3 , L ∈ Cγ[0,T ](C

−β+η) for η ∈ R such that

0 < −β + η < 1
2H −

1
2 and 0 < γ < 1−H(1− β + η). Thus Assumption (II) is fulfilled for

p̃ =∞. Choose η = β + 1
2H −

1
2 − ε and γ = 1−H( 1

2 − ε+ 1
2H )− ε. Then for small enough

ε one gets γ ∈ (0, 1), η ∈ (0 ∨ β, 1) and γ + η > 1.
Assume that (ii) holds. W.l.o.g. assume that β ∈ (2H − 1, 0). In view of Lemma 4.8 and

the assumption H < 1
3 , we have that L ∈ Cγ[0,T ](C

−β+η) for η ∈ R such that 0 < −β+η < 1

and 0 < γ < 1 − H(1 − β + η). Thus Assumption (II) is fulfilled for p̃ = ∞. Choose
η = β + 1− ε and γ = 1−H(2− ε)− ε. Then again, one gets γ ∈ (0, 1), η ∈ (0 ∨ β, 1) and
γ + η > 1 for small enough ε.

(b): Assume that (iii) holds. By Theorem 3.1 in [28], we know that L ∈ Cγ[0,T ](B
λ
2,2)

almost surely for λ < 1
2H − 1/2 and 0 < γ < 1−H(λ+ 1/2) .1 Hence, after a Besov space

embedding (see Remark 1.3), Assumption (II) is fulfilled for p̃ = 2, 0 < η < ( 1
2H−1/2+β)∧1

and 0 < γ < (1−H(η − β + 1/2)) ∧ 1. The assumption β > 1− 1
2H ensures that we can

choose η and γ such that η + γ > 1.

1Actually in [28] they use a Bessel space instead of Bλ2,2, but by Proposition 2.(iii) on page 47 and the
Theorem on page 88 in [43], this is equivalent.
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To construct weak solutions, we will proceed with an approximation by an Euler
scheme, similarly to the proof of Theorem 3.4. Although this time, we need the following
lemma, which gives tightness and is a crucial step in showing adaptedness by an
argument using Skorokhod’s representation Theorem.

Lemma 4.11. Assume that one of the assumptions (i)–(iii) in Theorem 2.5 holds. Then
there exist γ, η̃ ∈ (0, 1) with γ + η̃ > 1 such that for any λ > 0,

lim
δ→0

P(Ωδ,λ) = 1, where Ωδ,λ :=
{
ω : sup
|t−s|<δ

[TBb]C1/γ-var
[s,t]

(Cη̃)
< λ

}
.

Proof. In view of Proposition 4.10, L satisfies either Assumption 2.13 (I) or (II) for some
γ, η ∈ (0, 1) such that γ + η > 1. Hence by Lemma 4.4, there exists η̃ < η such that
η̃ + γ > 1 and TBb ∈ Cγ[0,T ](C

η̃).

For M > 0, define LM := 1ΩML, where ΩM = {ω : supt∈[0,T ] |Bt| 6M}. Then,

P(Ωc
δ,λ) 6 P

({
ω : δγ sup

|t−s|<δ
[TBb]Cγ

[s,t]
(Cη̃) > λ

}
∩ ΩM

)
+ P(Ωc

M ), (4.8)

as [TBb]C1/γ-var
[s,t]

(Cη̃)
6 |t− s|γ [TBb]Cγ

[s,t]
(Cη̃).

We will distinguish two cases, depending on whether (i) or (ii) is satisfied (first case),
or (iii) is satisfied (second case).

First case. Assume that (i) or (ii) in Theorem 2.5 holds true. Then by Proposi-
tion 4.10(a), L ∈ Cγ[0,T ](C

−β+η) with 0 < −β + η < 1 and by Lemma 4.8 E[[LM ]mCγ
[s,t]

(C−β+η)
]

is finite for any m > 1. Moreover, by Lemma 4.4, we have on ΩM that [TBb]Cγ
[0,T ]

(Cη̃) 6

CM [L]Cγ
[0,T ]

(C−β+η), where CM depends on M (but not on the realisation ω). Hence, we

can bound the right hand side of (4.8) from above by

∀m > 1, P
({
ω : δγ sup

|t−s|<δ
CM [LM ]Cγ

[s,t]
(C−β+η) > λ

})
+ P(Ωc

M )

6 CmMλ
−mδmγE

[
[LM ]mCγ

[0,T ]
(C−β+η)

]
+ P(Ωc

M ).

6 C(m,M)λ−mδmγ + P(Ωc
M ). (4.9)

Let ε > 0. By Fernique’s Theorem, ‖B‖∞ has exponential moments and we can
choose M such that P(Ωc

M ) < ε/2. Then δ can be chosen such that the other term in (4.9)
can also be controlled by ε/2.

Second case. Now assume that (iii) in Theorem 2.5 holds. By Proposition 4.10(b),
L satisfies Assumption 2.13 (II) with γ < (1 − H(−β + η + 1/2)) ∧ 1, p̃ = 2 and η <

( 1
2H − 1/2 + β) ∧ 1. In view of Lemma 4.4 and an embedding of Besov spaces (see

Remark 1.2), we have that on ΩM ,

[TBb]Cγ
[0,T ]

(Cη̃) 6 CM [L]Cγ
[0,T ]

(B−β+η
2,2 ) (4.10)

for some constant CM > 0 that depends on M but not on the realisation ω. Next, we use
the chain of inequalities on page 12 in [28] setting λ′ therein equal to −β+η+1/2+ε. To
check the condition λ′ < 1/(2H) appearing in [28], note that −β + η + 1/2 + ε < 1/(2H)

for ε small enough. Hence, we get for any m > 2 and some ε̃ > 0,

E[‖LMu,v‖mB−β+η
2,2

] 6 C |u− v|m(1−H(−β+η+1/2+ε)) 6 C |u− v|m(γ+ε̃).

An application of Kolmogorov’s continuity Theorem for Banach-valued stochastic pro-
cesses (see [41, Th. 4.3.2]) gives that E[[LM ]m

Cγ
[0,T ]

(B−β+η
2,2 )

] is finite. Using (4.10), we

deduce as in the first case (see (4.9)) that

P(Ωc
δ,λ) 6 C(m,M)λ−mδmγ + P(Ωc

M ),
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for a constant C(m,M) only depending on m and M . We can make the right-hand side
arbitrarily small by choosing M large enough and δ small enough.

Proof of Theorem 2.5. Proof of (a): By Proposition 4.10, Assumption 2.13 (I) or (II) is
fulfilled and thus there are some γ ∈ (0, 1) and p̃ ∈ [1,∞] such that L ∈ Cγ[0,T ](B

ξ
p̃) a.s., for

some ξ, with its precise value given in Assumption 2.13 (I) or (II). Besides it follows by
Remark 4.5 that TBb ∈ Cγ(Cη̃) for some η̃ ∈ (0, 1) such that γ + η̃ > 1.

W.l.o.g. let T = 1. First, we use the Euler scheme as in the proof of Theorem 3.4 in
order to construct a measurable solution. Let Xn be the random counterpart of xn in the
proof of Theorem 3.4 for A = TBb, p = 1/γ and θ := γ + η̃. Let ν > 0. The computations
done in the proof of Theorem 3.4 hold for almost every ω ∈ Ω until Equation (3.7). Choose
λ ∈ (0, 1) such that 2λC(θ) < 1 for C(θ) as in (3.7). Let δ such that P(Ωδ,λ) > 1−ν, which
is possible by Lemma 4.11. Then one can choose N = N(δ) large enough so that for any
n > N and any ω ∈ Ωδ,λ,

[Xn]C1-var
[s,t]

6 2C(θ)
[TBb]C1/γ-var

[s,t]
(Cη̃)

+ λ

1− 2C(θ)[TBb]C1/γ-var
[s,t]

(Cη̃)

6 2C(θ)
2λ

1− 2C(θ)λ
, ∀ (s, t) ∈ ∆[0,1] with |t− s| < δ.

It follows that we can choose M sufficiently large so that for any n > N ,

P(‖Xn‖∞ > M) 6 P(Ωδ,λ ∩ {‖Xn‖∞ > M}) + P(Ωc
δ,λ) < ν.

Therefore the sequence (Law(Xn))n∈N is tight in the space of continuous functions.
Hence, along some subsequence that we do not relabel, (Xn, B, L) converges in law
in C[0,T ] × C[0,T ] × Cγ[0,T ](B

ξ
p̃) to some (X, B̃, L̃). By Skorokhod’s representation Theorem,

there exists a sequence (Y n, Bn, LB
n

)n∈N with Law(Y n, Bn, LB
n

) = Law(Xn, B, L) for
all n ∈ N, such that (Y n, Bn, LB

n

)n∈N converges a.s. to some (Y, B̂, L̂). To get that L̂ is
the local time of B̂, observe that for any bounded measurable function f ,

1 = P
({
ω : ∀t ∈ [0, T ],

∫ t

0

f(Br)dr =

∫
R

f(x)Lt(x)dx
})

= P̂
({
ω : ∀t ∈ [0, T ],

∫ t

0

f(B̂r)dr =

∫
R

f(x)L̂t(x)dx
})
. (4.11)

As the local time of a fBm is characterised by the occupation time formula, we deduce
that L̂ is the local time of B̂. By (3.5), we have that for TBb(x) = 〈b, LB(· − x)〉,∣∣∣∣Xn

t −X0 −
∫ t

0

TBdrb(X
n
r )

∣∣∣∣ a.s.−→
n→∞

0.

Hence for TB
n

b(x) = 〈b, LBn(· − x)〉,∣∣∣∣Y nt −X0 −
∫ t

0

TB
n

dr b(Y
n
r )

∣∣∣∣ P−→
n→∞

0,

and therefore a.s. along a subsequence, which we do not relabel. Hence, using that
L̂ ∈ Cγ[0,T ](B

ξ
p̃), we get by Remark 4.5 and Lemma 3.3 that for T B̂b(x) = 〈b, L̂(· − x)〉,

Yt = X0 +

∫ t

0

T B̂drb(Yr), for all t ∈ [0, T ] a.s.
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In order for Y to be a weak solution, it remains to show that Y is adapted to a
filtration F̂ such that B̂ is an F̂-fBm. First note that by construction Xn is adapted to FB.
Hence, Y n is FB

n

measurable as

Law(Y n, Bn, LB
n

) = Law(Xn, B, L).

Therefore Bn is an F̂n-fBm for F̂nt := σ(Y ns , B
n
s , s ∈ [0, t]). By definition this implies that,

for s < t, Wn
t −Wn

s = A(Bn)t − A(Bn)s is independent of F̂ns . After passing to the
limit and using Lemma B.1 we infer that Wt −Ws = A(B̂)t − A(B̂)s is independent of
F̂s := σ(Yr, B̂r, r ∈ [0, s]). Hence, B̂ = Ā(W ) is an F̂-fBm and therefore (Y, B̂) is a weak
solution as Y is clearly F̂-adapted.

Proof of (b): this proof will be presented at the end of Sect. 5 as it follows from the
stochastic sewing arguments developed in the next section.

Proof of Corollary 2.6. Any finite measure lies in B0
1 by similar computations as in Propo-

sition 2.39 in [4]. Hence, if b is a measure, we can choose β = 0 in Theorem 2.5.
For H < 1/3 condition (i) therein is clearly fulfilled and condition (ii) is fulfilled if
H2 + 2H − 1 < 0, giving existence of a weak solution for H <

√
2− 1.

5 Regularity of weak solutions

We first state Lemma 5.1 which establishes various regularity estimates on the
conditional expectation of fractional Brownian motion. It is an extension to the fBm of
[2, Lemma C.4] (which was for standard Brownian motion). It is used several times in
the remainder of the paper and its proof is postponed to Appendix B.2. In particular,
the proof of Lemma 5.1(d) relies on a variant of local nondeterminism of the fBm, see
Lemma B.2. Note that Lemma 5.1(a) was already stated and proven in Proposition 3.6(iii)
of [6].

Lemma 5.1. Let (Ω,F ,F,P) be a filtered probability space and B be an F-fBm. Let
γ < 0 and p ∈ [1,∞]. Let d ∈ N, (t1, t2) ∈ ∆[0,T ] and f : R × Rd → R be a bounded
measurable function and Ξ be an Ft1 -measurable Rd-valued random variable. Assume
that ‖f(·,Ξ)‖C1 <∞ almost surely. Then there exists a constant C > 0 such that

(a) Et1 [f(Bt2 ,Ξ)] =
∫
R
gσ2

t1,t2
(x) f(Et1 [Bt2 ] − x,Ξ) dx, also written Et1 [f(Bt2 ,Ξ)] =

Gσ2
t1,t2

f(Et1 [Bt2 ],Ξ), where g is the Gaussian density and G is the Gaussian semi-

group introduced in (1.4) and σ2
t1,t2 := Var (Bt2 − Et1 [Bt2 ]);

(b) |Et1 [f(Bt2 ,Ξ)]| 6 C‖f(·,Ξ)‖Bγp (t2 − t1)H(γ−1/p);

(c) ‖f(Bt2 ,Ξ)− Et1 [f(Bt2 ,Ξ)]‖L1 6 C‖‖f(·,Ξ)‖C1‖L2(t2 − t1)H .

Furthermore, for n ∈ [1, p], there exists a constant C > 0 such that for any t̃ in the
interval (t1, t2),

(d) ‖Et̃[f(Bt2 ,Ξ)]‖Ln 6 C‖‖f(·,Ξ)‖Bγp ‖Ln(t2 − t̃)Hγ(t̃− t1)
− 1

2p (t2 − t1)
1−2H

2p .

Remark 5.2. In this section we assume that b ∈ Bβp for p ∈ [1,∞] and β ∈ R with
β − 1/p > −1/(2H). Note that this condition allows negative values of β for any H < 1

2 .
In the proofs of this section, we consider the case β < 0 and p > m for some m > 2.
Indeed, it is always possible to come back to these cases in the following way: If β > 0,
p ∈ [1,∞] and m > 2, there exist β̃ < 0, p̃ > m fulfilling β̃ − 1/p̃ > −1/(2H) such that

Bβp ↪→ B
β̃
p̃ . This can be seen using the embeddings Bβp ↪→ B

β−( 1
p−

1
p̃ )

p̃ (see Remark 1.2) and
Bsp ↪→ Bs̃p for s > s̃.
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The following proposition ensures smoothness of X −B for any solution X of (1.1).

Proposition 5.3. Let β ∈ R, p ∈ [1,∞] with 0 > β−1/p > −1/(2H). Suppose that b ∈ Bβp
is a measure. Then every weak solution X to (1.1) fulfills X −B ∈ C1+H(β−1/p)

[0,T ] (Lm), for
any m > 2.

Thus if X is a solution to (1.1) with b a finite measure, we deduce that X − B ∈
C1−H

[0,T ] (L
m), for any m > 2. It will imply Theorem 2.5(b) and is the main step in the proof

of Theorem 2.10(d).

Proof of Proposition 5.3. Let X be a weak solution to (1.1) and m > 2. W.l.o.g. we
assume that X0 = 0. We choose a sequence (bk)k∈N of smooth nonnegative bounded
functions converging to b in Bβ−p with ‖bk‖Bβp 6 ‖b‖Bβp for all k. For k ∈ N and t ∈ [0, T ],
let

Kk
t :=

∫ t

0

bk(Xr) dr =

∫ t

0

bk(Br +Kr) dr.

By Definition 2.4 of a weak solution, we know that Kk converges in probability to K
with respect to ‖ · ‖∞ on [0, T ]. Hence it also converges almost surely, up to passing to a
subsequence (without loss of generality, we do not relabel Kk and assume it converges
a.s.). By nonnegativity of bk, Kk is monotone for all k, and therefore K is monotone as
well. For any (s, t) ∈ ∆[0,T ], let

Aks,t :=

∫ t

s

bk(Br +Ks) dr.

We now want to apply the stochastic sewing Lemma with random controls (see
Lemma C.4) for Kk = Ak. In order to see that all conditions of this theorem are fulfilled
(i.e. (C.2) and (C.4)), we will show the following for a constant C that is independent of k
and for any u ∈ (s, t),

(i) ‖Aks,t‖Lm 6 C‖b‖Bβp (t− s)1+H(β−1/p);

(ii) |Eu[δAks,u,t]| 6 C‖b‖Bβp |Ku −Ks|(t− u)H(β−1/p−1)+1;

(iii) Identifying Kk with the limit of
∑Nn−1
i=0 Aktni ,tni+1

along any sequence of partitions

Πn = {tni }
Nn
i=0 of [0, t] with mesh converging to 0.

Notice that (i) gives (C.2) for n = m and that 1 + H(β − 1/p) > 1/2. Furthermore, (ii)
gives condition (C.4) for α1 = H(β−1/p−1) + 1 > 0, β1 = 1 and λ(s, t) := Kt−Ks, which
is a random control function by monotonicity of K.

Assume, for the moment, that (i)–(ii)–(iii) hold true. Then by Lemma C.2, there exists
a process Dk such that

|Kk
t −Kk

s −Aks,t| 6 C‖b‖Bβp (Kt −Ks)(t− s)H(β−1/p−1)+1 +Dk
s,t, (5.1)

with ‖Dk
s,t‖Lm 6 C‖b‖Bβp (t− s)1+H(β−1/p). Hence, by (i),

‖Kk
t −Kk

s ‖Lm 6 C‖b‖Bβp ‖Kt −Ks‖Lm(t− s)H(β−1/p−1)+1 + C‖b‖Bβp (t− s)1+H(β−1/p).

Hence, after letting k go to∞ in the previous inequality, we obtain that for (s, t) ∈ ∆[0,T ]

such that C‖b‖Bβp (t− s)H(β−1/p−1)+1 < 1/2,

‖Kt −Ks‖Lm 6 C‖b‖Bβp (t− s)1+H(β−1/p).

After covering [0, T ] with a finite number of small enough intervals, we obtain the result.
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Let us now verify (i)–(ii)–(iii).
Proof of (i): By Lemma C.3 applied to Ξ = Ks, f(z, x) = bk(z + x) and n = m, we have

‖Aks,t‖Lm 6 C
∥∥‖bk(·+Ks)‖Bβp

∥∥
Lm

(t− s)1+H(β−1/p).

Using Lemma A.5(a), we thus get

‖Aks,t‖Lm 6 C‖bk‖Bβp (t− s)1+H(β−1/p)

6 C‖b‖Bβp (t− s)1+H(β−1/p). (5.2)

Proof of (ii): By Lemma 5.1(a) applied to Ξ = (Ks,Ku) and f(z, (x1, x2)) = bk(z+x1)−
bk(z + x2), we get

|Eu[δAks,u,t]| =
∣∣∣ ∫ t

u

Eu[bk(Br +Ks)− bk(Br +Ku)]dr
∣∣∣ 6 ∫ t

u

‖Gσ2
u,r
bk‖C1 |Ku −Ks|dr,

where we recall σ2
u,r = Var(Br − Eu[Br]). From (B.4), we have that σ2

u,r = C(u − r)2H .
Apply now Lemma A.4(d), which is possible as β − 1/p < 0, and then use that β − 1/p >

−1/2H to ensure integrability. This gives

|Eu[δAks,u,t]| 6 C

∫ t

u

|r − u|H(β−1/p−1)‖bk‖Bβp |Ku −Ks|dr

6 C‖b‖Bβp |Ku −Ks|(t− u)H(β−1/p−1)+1.

Proof of (iii): For a sequence Πn = {tni }
Nn
i=0 of partitions of [0, t] with mesh size going

to 0, we have∣∣∣∣Kk
t −

Nn−1∑
i=0

Aktni ,tni+1

∣∣∣∣ 6∑
i

∫ tni+1

tni

|bk(Br +Kr)− bk(Br +Ktni
)|dr

6
∑
i

∫ tni+1

tni

‖bk‖C1 |Kr −Ktni
|dr

6
∑
i

‖bk‖C1(tni+1 − tni )|Ktni+1
−Ktni

|

6 ‖bk‖C1 |Πn|(Kt −K0)
a.s.−→
n→∞

0.

We conclude this section with the proof of Theorem 2.5(b).

Proof of Theorem 2.5(b). It is a direct consequence of Proposition 5.3. More precisely, in
order to apply Proposition 5.3, we check that β−1/p > −1/(2H) holds in all cases (i)–(iii).
In case (i) holds, the assumption β − 1 > −1/(2H) + H/2 and p > 1 yields β − 1/p >

−1/(2H). In case (ii) holds, then β − 1/p > 2H − 2 and 2H − 2 > −1/(2H) for H < 1/3.
Finally, in case (iii) the result follows from p > 1.

6 Uniqueness

In this section we state and prove Proposition 6.1, which gives pathwise uniqueness
to (1.1) among all weak solutions X fulfilling X −B ∈ C1/2+H

[0,T ] (L2). This is a crucial step
towards the proof of the uniqueness part in Theorem 2.10. Note that we do not assume
anymore that b is a measure. The scheme of proof of Proposition 6.1, which is briefly
described in Sect. 2.4, is inspired by the proof of Proposition 2.1 in [11] and closely
follows the steps of the proof of Proposition 3.6 in [2]. More precisely, we establish that
if two solutions X and Y are such that X −B and Y −B are ( 1

2 +H)-Hölder continuous,
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then their difference Z satisfies inequality (6.9), and since any continuous function
which satisfies such an inequality must be 0, the uniqueness follows. The most technical
part is to establish (6.9). This relies on variations of the stochastic sewing Lemma
(Sects. 6.1, 6.2 and Appendix C).

Even when it is not explicitly written, we assume in the whole section that H < 1/2.
In the rest of the paper we need the following definition. Let 0 6 s 6 t. Let

ψ : [s, t]× Ω→ R be a stochastic process. For α ∈ (0, 1] and m,n ∈ [1,∞], define

[ψ]Cα
[s,t]

(Lm,n) := sup
(u,v)∈∆[s,t]

‖Eu[|ψv − ψu|m]
1
m ‖Ln

(v − u)α
. (6.1)

where the conditional expectation is taken w.r.t. the filtration the space is equipped with.
By the tower property and Jensen’s inequality for conditional expectation, we know that,
for 1 6 m 6 n 6∞,

[ψ]Cα
[s,t]

(Lm) = [ψ]Cα
[s,t]

(Lm,m) 6 [ψ]Cα
[s,t]

(Lm,n) 6 [ψ]Cα
[s,t]

(Ln). (6.2)

Proposition 6.1. Let H < 1/2. Let β ∈ R, p ∈ [1,∞] such that (2.6) holds. Let b ∈ Bβp ,
and (Xt)t∈[0,T ] and (Yt)t∈[0,T ] be two weak solutions to (1.1) in the sense of Definition 2.4
with the same initial condition X0, both being defined on the same probability space and
adapted to the same filtration F. Suppose that (X −B) and (Y −B) are in C1/2+H

[0,T ] (L2).
Further assume that

[X −B]C1/2+H

[0,T ]
(L2,∞)

<∞ a.s. (6.3)

Then X and Y are indistinguishable.

Remark 6.2. In the above proposition, note that condition (2.6) allows negative values
of β for any H < 1

2 . In the proofs in this section, we will thus only consider the case β < 0

and p > 2. Indeed, it is always possible to come back to these cases in the following way:

If β > 0 and p ∈ [1,∞], there exist β̃ < 0, p̃ > 2 fulfilling (2.6) such that Bβp ↪→ B
β̃
p̃ . This

can be seen using the embeddings Bβp ↪→ B
β−( 1

p−
1
p̃ )

p̃ (see Remark 1.2) and Bsp ↪→ Bs̃p for
s > s̃.

6.1 Uniqueness: Proof of Proposition 6.1

For the proof of Proposition 6.1, which is detailed at the end of this subsection, we
will use Lemma 6.3, Lemma 6.4 and Lemma 6.5. From now on, assume w.l.o.g. that
X0 = 0. Let K := X −B and K̃ := Y −B. Let Z := X − Y = K − K̃.

Lemma 6.3. Let the assumptions of Proposition 6.1 hold. Let (bn)n∈N be a sequence of
smooth bounded functions converging to b in Bβ−p with supn ‖bn‖Bβp 6 ‖b‖Bβp . Then for

any (s, t) ∈ ∆[0,T ], there exist random variables T̃Ks,t and T̃ K̃s,t such that∫ t

s

bn(Br +Ks)dr
L2

−→
n→∞

T̃Ks,t and

∫ t

s

bn(Br + K̃s)dr
L2

−→
n→∞

T̃ K̃s,t. (6.4)

Moreover, there exists C > 0 such that, for any (s, t) ∈ ∆[0,T ], we have that

‖T̃Ks,t − T̃ K̃s,t‖L2 6 C‖b‖Bβp ‖Zs‖L2(t− s)1/2 and (6.5)

‖T̃Ks,t − T̃ K̃s,t‖L2 6 C‖b‖Bβp (t− s)1/2+H . (6.6)

The proof of this lemma is moved to Sect. 6.2.
For (s, t) ∈ ∆[0,T ], let

Rs,t := (Kt −Ks − T̃Ks,t)− (K̃t − K̃s − T̃ K̃s,t).
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It is now necessary to estimate the regularity of this remainder term. The proof of the
following lemma, which heavily relies on stochastic sewing, is moved to Sect. 6.2.

Lemma 6.4. Let the assumptions of Proposition 6.1 hold. There exists δ > 0 such that
for any α ∈ (1/2, 1), there exists C > 0 for which the following holds: for all (u, v) ∈ ∆[0,T ],
we have

‖Zv − Zu‖L2 6 C‖R‖Cα
[u,v]

(L2)(v − u)1/2+δ (6.7)

+ C‖Z‖C[u,v](L2)| log ‖Z‖C[u,v](L2)| (v − u) + C‖Z‖C[u,v](L2)(v − u)1/2,

‖Ru,v‖L2 6 C
(
‖Z‖C[u,v](L2) + ‖R‖Cα

[u,v]
(L2)

)
(v − u)1/2+δ (6.8)

+ C‖Z‖C[u,v](L2)| log ‖Z‖C[u,v](L2)| (v − u).

One can now deduce a regularity estimate on Z alone.

Lemma 6.5. Let the assumptions of Proposition 6.1 hold. Let T̃ ∈ (0, T ] such that
‖Z‖C[0,T̃ ](L

2) 6 1/e. Then there exist C > 0 and l > 0 such that for any (s, t) ∈ ∆[0,T̃ ] with
t− s < l, we have

‖Zt − Zs‖L2 6 C‖Z‖C[s,t](L2)(t− s)1/2 + C‖Z‖C[s,t](L2)| log ‖Z‖C[s,t](L2)| (t− s). (6.9)

Proof. Consider δ as in Lemma 6.4 and assume w.l.o.g. that δ < 2H. By assumption
on X and Y and by (6.6) we know that ‖R‖C1/2+H

[0,T ]
(L2)

< ∞. Let (s, t) ∈ ∆[0,T̃ ]. After

dividing both sides of Equation (6.8) by (v − u)1/2+δ/2 and taking the supremum over all
(u, v) ∈ ∆[s,t], we obtain for α = 1/2 + δ/2 that

‖R‖Cα
[s,t]

(L2) 6 C
(
‖Z‖C[s,t](L2) + ‖R‖Cα

[s,t]
(L2)

)
(t− s)δ/2 (6.10)

+ C‖Z‖C[s,t](L2)| log ‖Z‖C[s,t](L2)| (t− s)1/2−δ/2.

In the above we used that

sup
(u,v)∈∆[s,t]

‖Z‖C[u,v](L2)| log ‖Z‖C[u,v](L2)| 6 ‖Z‖C[s,t](L2)| log ‖Z‖C[s,t](L2)|

as f(x) = x log(1/x) is increasing on [0, 1/e] and ‖Z‖C[s,t](L2) 6 1/e by assumption. Using

δ < 2H, we have that ‖R‖Cα
[0,T ]

(L2) 6 C‖R‖C1/2+H

[0,T ]
(L2)

< ∞. Let l ∈ (0, T̃ ) be such that

Clδ/2 < 1/2 for C as in (6.10). For t− s < l, we have

1

2
‖R‖Cα

[s,t]
(L2) 6 C‖Z‖C[s,t](L2)(t− s)δ/2

+ C‖Z‖C[s,t](L2)| log ‖Z‖C[s,t](L2)| (t− s)1/2−δ/2.

Plugging this into (6.7) for u = s and v = t finishes the proof.

Proof of Proposition 6.1. Let T̃ := sup{t ∈ [0, T ] : sup06s6t ‖Zs‖L2 6 1/e}. We show in

the next paragraph that Z is indistinguishable from 0 on [0, T̃ ]. Note that this implies
that T̃ = T : Indeed, by definition of T̃ and continuity of Z : [0, T ]→ L2, ‖ZT̃ ‖L2 = 1/e if
T̃ < T . This would contradict Z being indistinguishable from 0 on [0, T̃ ]. Hence, we get
that Z is actually indistinguishable from 0 on [0, T ].

Assume that ‖Zt‖L2 is not identically 0 on [0, T̃ ]. Choose k0 ∈ N such that 2−k0 <

supt∈[0,T̃ ] ‖Zt‖L2 . For k > k0 let tk := inf{t : ‖Zt‖L2 > 2−k}. We have that ‖Zt‖L2 < 2−k

for t < tk and ‖Ztk‖L2 = 2−k as t 7→ ‖Zt‖L2 is continuous by (6.9). For l as in Lemma 6.5,
choose a ∈ (0, l) such that Ca1/2 < 1/4 for C as in (6.9). As the sequence tk is strictly
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decreasing we can choose M such that tk − tk+1 < a for k >M . Therefore by (6.9) we
have, for k >M , that

2−(k+1) 6 ‖Ztk − Ztk+1
‖L2 6 2−(k+2) + C 2−kk log(2) (tk − tk+1)

and therefore
1

4C log(2)k
6 tk − tk+1, (6.11)

which leads to a contradiction as the sequence tk is strictly decreasing and the left hand
side of (6.11) is diverging when summing over k >M . Hence, ‖Zt‖L2 is identically 0 on

[0, T̃ ]. Now using that Z ∈ C1/2+H
[0,T ] (L2), we get that E[|Zt−Zs|2] 6 ‖Z‖2

C1/2+H

[0,T ]
(L2)
|t−s|1+2H

for any s, t ∈ [0, T̃ ]. Hence by Kolmogorov’s continuity Theorem, Z is a.s. continuous and
is therefore indistinguishable from 0.

6.2 Intermediate regularity results: Proofs of Lemma 6.3 and Lemma 6.4

The proofs of Lemma 6.3 and Lemma 6.4 rely on several results about the regularity
of
∫ t
s
f(Br,Ξ) dr in terms of t− s and of the Besov norm of the random mapping f(·,Ξ),

for Ξ an Fs-measurable random variable. These regularity results are stated and proven
in Appendix C, and are derived from two main ingredients: the stochastic sewing Lemma
(Lemma C.1) and Lemma 5.1.

We now turn to the proofs of Lemmas 6.3 and 6.4.

Proof of Lemma 6.3. Recall that we assumed β < 0 at the beginning of this section
(Remark 6.2). Let β′ ∈ (− 1

2H , β) and (s, t) ∈ ∆[0,T ]. Let k, l ∈ N. Applying the crucial
regularity Lemma C.3 for Ξ = Ks and f(z, x) = bk(z + x)− bl(z + x), we get that∥∥∥∥∫ t

s

bk(Br +Ks)dr −
∫ t

s

bl(Br +Ks)dr

∥∥∥∥
L2

6 C
∥∥∥‖bk(·+Ks)− bl(·+Ks)‖Bβ′p

∥∥∥
L2

6 C‖bk − bl‖Bβ′p ,

using Lemma A.5(a) in the last inequality. Hence, (
∫ t
s
bk(Br + Ks)dr)k∈N is a Cauchy

sequence in L2, so it converges to some T̃Ks,t. The same holds for the sequence with K

being replaced by K̃. Using Fatou’s Lemma and Corollary C.4, for λ ∈ [0, 1] we obtain

‖T̃Ks,t − T̃ K̃s,t‖L2 6 lim inf
n

∥∥∥∥∫ t

s

bn(Br +Ks)dr −
∫ t

s

bn(Br + K̃s)dr

∥∥∥∥
L2

6 C sup
n
‖bn‖Bβp ‖Ks − K̃s‖λL2(t− s)1+H(β−λ−1/p)

6 C‖b‖Bβp ‖Ks − K̃s‖λL2(t− s)1/2+H−λH ,

using that β − 1/p > −1/(2H) + 1. Setting λ = 1 gives (6.5) and setting λ = 0 gives
(6.6).

Proof of Lemma 6.4. Let (bk)k∈N be a sequence of smooth bounded functions converging
to b in Bβ−p with supk ‖bk‖Bβp 6 ‖b‖Bβp . Fix (u, v) ∈ ∆[0,T ]. For (s, t) ∈ ∆[u,v], let

Aks,t :=

∫ t

s

(
bk(Br +Ks)− bk(Br + K̃s)

)
dr,

Akt :=

∫ t

u

(
bk(Br +Kr)− bk(Br + K̃r)

)
dr. (6.12)
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Then, for θ ∈ (s, t),

δAks,θ,t :=

∫ t

θ

(
bk(Br +Ks)− bk(Br + K̃s)− bk(Br +Kθ) + bk(Br + K̃θ)

)
dr. (6.13)

We now verify the conditions of the stochastic sewing Lemma with critical exponents,
as stated in [2, Th. 4.5]. To show that the conditions of this theorem hold (i.e. (C.1)
and (C.2) with β2 = 0 and m = n = 2 in the current paper, and (4.11) from [2]), we verify
that there exists C > 0 independent of s, t, u, v and θ such that for any k ∈ N,

(i) ‖EsδAks,θ,t‖L2 6 C(t− s)1+H ;

(ii) ‖δAks,θ,t‖L2 6 C
(
‖Z‖C[u,v](L2) + ‖R‖Cα

[u,v]
(L2)

)
(t− s)1/2+δ;

(iii) ‖EsδAks,θ,t‖L2 6 C‖Z‖C[u,v](L2)(t− s) + C‖R‖Cα
[u,v]

(L2)(t− s)1/2+α;

(iv) Identifying Ak, as given in (6.12), with the limit of
∑Nn−1
i=0 Aktni ,tni+1

along any se-

quence of partitions Πn = {tni }
Nn
i=0 of [u, t] with mesh converging to 0.

Assume for the moment that the above properties hold. Then applying Theorem 4.5
in [2], we get that for any (s, t) ∈ ∆[u,v],

‖Akt−Aks −Aks,t‖L2

6 C‖Z‖C[u,v](L2)

(
1 +

∣∣∣∣∣log
TH

‖Z‖C[u,v](L2)

∣∣∣∣∣
)
|t− s|

+ C
(
‖Z‖C[u,v](L2) + ‖R‖Cα

[u,v]
(L2)

)
(t− s)1/2+δ + C‖R‖Cα

[u,v]
(L2)(t− s)1/2+α

6 C
(
‖Z‖C[u,v](L2) + ‖R‖Cα

[u,v]
(L2)

)
(t− s)1/2+δ

+ C‖Z‖C[u,v](L2)| log ‖Z‖C[u,v](L2)| (t− s). (6.14)

By Definition 2.4 and Lemma 6.3, we have the following convergence in probability:

lim
k→∞

Akt−Aks −Aks,t = Zt − Zs − (T̃Ks,t − T̃ K̃s,t) = Rs,t.

Hence and letting k go to∞ in (6.14) and using Fatou’s Lemma, we get (6.8) by choosing
(s, t) = (u, v). Putting together (6.8) and (6.5), we get (6.7).

Proof of (i): Recall that we consider times 0 6 u 6 s 6 θ 6 t 6 v 6 T . Let
f1 : R×R4 → R and f2 : R×R2 → R be defined by

f1(z, (x1, x2, x3, x4)) = bk(z + x1)− bk(z + x2) + bk(z + x3)− bk(z + x4),

f2(z, (x1, x2)) = bk(z + x1)− bk(z + x2),

and consider the Fθ-measurable random vectors Ξ1 and Ξ2 given by:

Ξ1 = (Ks, K̃s,Kθ + K̃s −Ks,Kθ)

Ξ2 = (K̃θ,Kθ + K̃s −Ks).

We can rewrite the integrand on the right hand side of (6.13) as f1(Br,Ξ1) + f2(Br,Ξ2).
Hence using Lemma 5.1(b), we get that for λ ∈ [0, 1],

|EsδAks,θ,t| = |EsEθδAks,θ,t|

6 C

∫ t

θ

{
(r − θ)H(β−1−λ−1/p)Es‖f1(·,Ξ1)‖Bβ−1−λ

p

+ (r − θ)H(β−1−1/p)Es‖f2(·,Ξ2)‖Bβ−1
p

}
dr.

(6.15)
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Apply Lemma A.5(c) first, then Jensen’s inequality for conditional expectation to get that

Es‖f1(·,Ξ1)‖Bβ−1−λ
p

6 C‖bk‖Bβp |Ks − K̃s|λEs|Kθ −Ks|

6 C‖b‖Bβp |Ks − K̃s|λ(Es[|Kθ −Ks|2])1/2

6 C‖b‖Bβp |Zs|
λ [K]C1/2+H

[0,T ]
(L2,∞)

(θ − s)1/2+H .

Hence,

‖Es‖f1(·,Ξ1)‖Bβ−1−λ
p

‖L2 6 C‖b‖Bβp ‖Z‖
λ
C[u,v](L2)[K]C1/2+H

[0,T ]
(L2,∞)

(t− s)1/2+H . (6.16)

By Lemma A.5(b), we have that Es‖f2(·,Ξ2)‖Bβ−1
p

6 C‖bk‖BβpE
s|Zθ−Zs|. Therefore using

the contraction property of conditional expectation and (6.2), we get that

‖Es‖f2(·,Ξ2)‖Bβ−1
p
‖L2 6 C‖b‖Bβp ‖Zθ − Zs‖L2 (6.17)

6 C‖b‖Bβp

(
[K]C1/2+H

[0,T ]
(L2,∞)

+ [K̃]C1/2+H

[0,T ]
(L2)

)
(t− s)1/2+H . (6.18)

After putting λ = 0 in (6.15) and using inequalities (6.16) and (6.18), we get

|EsδAks,θ,t|

6 C ‖b‖Bβp

(
[K]C1/2+H

[0,T ]
(L2,∞)

+ [K̃]C1/2+H

[0,T ]
(L2)

)
(t− s)1/2+H

∫ t

θ

(r − θ)H(β−1−1/p) dr.

Now using that β − 1/p > −1/(2H) + 1, we obtain that for some C depending only on T ,
‖b‖Bβp , [K]C1/2+H

[0,T ]
(L2,∞)

and [K̃]C1/2+H

[0,T ]
(L2)

,

‖EsδAks,θ,t‖L2 6 C(t− s)1+H .

Proof of (ii): We use Corollary C.5 with f = bk, γ = β, ε > 0 small enough to ensure that
0 > β > −1/(2H) + 1 + ε, λ = λ1 = 1, λ2 = ε, κ1 = Ks, κ2 = K̃s, κ3 = Kθ and κ4 = K̃θ.

Hence, we get

‖δAks,θ,t‖L2 6 C‖b‖Bβp ‖E
s[|Kθ −Ks|2]1/2‖εL∞‖Ks − K̃s‖L2(t− θ)1+H(β−1/p−1−ε) (6.19)

+ C‖b‖Bβp ‖Zθ − Zs‖L2(t− θ)1+H(β−1−1/p).

We have ‖Zθ − Zs‖L2 6 ‖Rs,θ‖L2 + ‖T̃Ks,θ − T̃ K̃s,θ‖L2 . Thus by Lemma 6.3,

‖Zθ − Zs‖L2 6 ‖R‖Cα
[u,v]

(L2)(θ − s)α + C‖b‖Bβp ‖Zs‖L2(θ − s)1/2. (6.20)

It follows directly from the definitions that

‖Es[|Kθ −Ks|2]1/2‖L∞ 6 C(θ − s)1/2+H [K]C1/2+H

[0,T ]
(L2,∞)

and that ‖Ks − K̃s‖L2 6 ‖Z‖C[u,v](L2). Plugging the last three inequalities into (6.19) we
get that

‖δAks,θ,t‖L2 6 C‖b‖Bβp [K]ε
C1/2+H

[0,T ]
(L2,∞)

‖Z‖C[u,v](L2)(t− s)1−H+H(β−1/p)+ε/2

+ C‖b‖Bβp ‖R‖Cα[u,v]
(L2)(t− s)α+1+H(β−1−1/p)

+ C‖b‖2Bβp ‖Z‖C[u,v](L2)(t− s)3/2−H+H(β−1/p).

EJP 28 (2023), paper 135.
Page 30/49

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1010
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Regularisation by fractional noise

After using that β − 1/p > −1/(2H) + 1, we obtain that for some C depending only on T ,
‖b‖Bβp and [K]C1/2+H

[0,T ]
(L2,∞)

and some δ > 0,

‖δAks,θ,t‖L2 6 C
(
‖Z‖C[u,v](L2) + ‖R‖Cα

[u,v]
(L2)

)
(t− s)1/2+δ.

Proof of (iii): We use (6.15) with λ = 1, (6.16), (6.17) and (6.20) to obtain that

‖EsδAks,θ,t‖L2 6 C‖Z‖C[u,v](L2)(t− s) + C‖R‖Cα
[u,v]

L2(t− s)1/2+α.

That (iv) holds can be shown by similar arguments as for (iii) in the proof of Proposi-
tion 5.3.

7 Existence of weak and strong solutions

In this section we prove Theorem 2.8 and Theorem 2.10. As in Sect. 6, recall that b is
not assumed to be a measure.

In the proofs, we assume that p ∈ [m,∞] and β < 0 for some m > 2. As explained in
Remarks 5.2 and 6.2, it is not a restriction as we can always reduce to this case under
our assumptions.

The scheme of proof is the following: we use a sequence of smooth approximations
of the drift (bn)n∈N that converges in Bβ−p to b. We prove that the sequence (Xn)n∈N of
solutions associated to bn is tight and that each limit point is a weak solution to (1.1).
To prove the existence of a strong solution (which is in some sense a Yamada-Watanabe
result), we rely on a classical argument of Krylov [26], a new result on the continuity
of fractional operators (Lemma B.1) and the aforementionned construction of weak
solutions.

On the technical level, we follow the approach of [2] which is based on applications
of the stochastic sewing Lemma. However there are noticeable differences due to the
non-Markovian character of the fBm. In particular we state immediately below:

• Lemma 7.1, which is a crucial estimate on the regularity of the integrals of the fBm,
relying on fine properties of the fBm (notably Lemma 5.1) and stochastic sewing,
and which will be used in Sect. 7.1 to establish a priori estimates on the solutions;

• Lemma B.1, which will be used in Sect. 7.3 to prove that solutions are adapted.

Lemma 7.1. Let (ψt)t∈[0,T ] be a stochastic process adapted to F. Let m ∈ [2,∞),
n ∈ [m,∞], p ∈ [n,∞] and γ < 0 such that (γ − 1/p)H > −1/2. Let α ∈ (0, 1) such that
H(γ − 1/p− 1) + α > 0. There exists a constant C > 0 such that for any f ∈ C∞b (R) ∩ Bγp
and any (s, t) ∈ ∆[0,T ] we have∥∥∥∥Es[ ∣∣∣∣∫ t

s

f(Br + ψr)dr

∣∣∣∣m ]1/m∥∥∥∥
Ln

6C‖f‖Bγp (t− s)1+H(γ−1/p)

+ C‖f‖Bγp [ψ]Cα
[s,t]

(Lm,n)(t− s)1+H(γ−1−1/p)+α,

(7.1)

where we recall that the seminorm [ψ]Cα
[s,t]

(Lm,n) is defined in (6.1).

A similar regularisation result was proposed in [6, Lemma 4.7] for functions of positive
regularity. There, the deterministic sewing lemma is used instead of the stochastic
sewing Lemma, hence the conditional expectation does not appear. Note that due to an
embedding argument, it would be no restriction here to work in Hölder spaces, yet we
directly work in Besov spaces to stay consistent throughout the paper.

The proof of Lemma 7.1 is postponed to Appendix C.
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7.1 A priori estimates

Before starting the main proofs of existence of solutions, we need a priori estimates
on solutions. These estimates are established for drifts in C∞b (R) ∩ Bβp and therefore
the solution is unique and strong. Note that the following lemma looks similar to
Proposition 5.3. However we work here within the assumptions of Theorem 2.8, that
is with a drift that may not be a measure and β − 1/p > 1/2 − 1/(2H) (recall that
Proposition 5.3 allows the milder condition β − 1/p > −1/(2H)).

Lemma 7.2. Let m ∈ [2,∞). There exists C > 0, such that, for any b ∈ C∞b (R) ∩ Bβp with
β − 1/p > 1/2− 1/(2H), one has

[X −B]C1+H(β−1/p)

[0,T ]
(Lm,∞)

6 C ‖b‖Bβp

(
1 + ‖b‖

H(1/p−β)
1+H(β−1/p)−H

Bβp

)
6 C

(
1 + ‖b‖2Bβp

)
, (7.2)

where X is the strong solution to (1.1) with drift b, and we recall that the seminorm
[·]Cα

[s,t]
(Lm,n) was defined in (6.1).

Another difference with Proposition 5.3 is that we obtain here an estimate on the semi-
norm [·]C1+H(β−1/p)

[0,T ]
(Lm,∞)

, which is stronger (see (6.2)) than the seminorm [·]C1+H(β−1/p)

[0,T ]
(Lm)

used in Proposition 5.3.

Proof. Note that it is sufficient to show the first inequality in (7.2) as the second one
follows immediately from 1+H(β−1/p)−H > H(1/p−β) > 0. Without loss of generality,
we assume that X0 = 0 and denote K = X − B. Then [K]Cα

[0,T ]
(Lm,∞) is finite for any

α ∈ (0, 1] as

|Kt −Ks| =
∣∣∣∣∫ t

s

b(Br +Kr)dr

∣∣∣∣ 6 ‖b‖∞|t− s|.
We will apply Lemma 7.1 with n = ∞, α = 1 + H(β − 1/p) and considering b ∈ Bβ−1/p

∞
after an embedding. Remark that α > α − H > 1/2 − H/2 > 0 and since we assume
β < 0 in the whole section, α ∈ (0, 1). In addition, H(β − 1/p) > H/2− 1/2 > −1/2 and
H(β − 1/p− 1) + α > 0. So, the assumptions of Lemma 7.1 are fulfilled. Then we get for
some C, C̃ > 0 that

‖Es[|Kt −Ks|m]1/m‖L∞

6 C‖b‖Bβ−1/p
∞

(
(t− s)1+H(β−1/p) + [K]Cα

[s,t]
(Lm,∞)(t− s)1+H(β−1/p)+α−H

)
6 C̃‖b‖Bβp (t− s)1+H(β−1/p)

(
1 + [K]Cα

[s,t]
(Lm,∞)(t− s)α−H

)
, (7.3)

where we used a Besov space embedding in the second line.
Choose l = (4C̃‖b‖Bβp )1/(H−α) so that C̃‖b‖Bβp l

α−H < 1/2. Let u ∈ [0, T ]. After dividing

both sides in (7.3) by (t− s)1+H(β−1/p) and taking the supremum over (s, t) ∈ ∆[u,(u+l)∧T ]

we get

[K]C1+H(β−1/p)

[u,(u+l)∧T ]
(Lm,∞)

6
(
C̃‖b‖Bβp + 1/2[K]Cα

[u,(u+l)∧T ]
(Lm,∞)

)
and therefore

[K]C1+H(β−1/p)

[u,(u+l)∧T ]
(Lm,∞)

6 2C̃‖b‖Bβp . (7.4)

If l > T , then (7.2) follows immediately from (7.4). Hence, assume l 6 T . In order to
obtain (7.2) we will iteratively apply inequality (7.4). Let (s, t) ∈ ∆[0,T ] be arbitrary. Let
N = dT/le and define the sequence (sk)Nk=0 by sk = s + k(t − s)/N . Using the triangle
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inequality, that Fs ⊂ Fsk−1
for k > 1, the contraction property of conditional expectation

and (7.4) we get

‖Es[|Kt −Ks|m]1/m‖L∞ 6
N∑
k=1

‖Es[|Ksk −Ksk−1
|m]1/m‖L∞

6
N∑
k=1

‖Esk−1 [|Ksk −Ksk−1
|m]1/m‖L∞

6 C̃‖b‖Bβp
N∑
k=1

(sk − sk−1)1+H(β−1/p)

6 C̃‖b‖Bβp
N∑
k=1

(
t− s
N

)1+H(β−1/p)

6 C̃‖b‖BβpN
H(1/p−β)(t− s)1+H(β−1/p).

Using N 6 1 + T
l 6 2Tl 6 C‖b‖−

1
H−α

Bβp
, we get

‖b‖BβpN
H(1/p−β) 6 C‖b‖Bβp ‖b‖

−H(1/p−β)
H−α

Bβp

and therefore (7.2).

Lemma 7.3. Let b, h ∈ C∞b (R) ∩ Bβp where β − 1/p > 1/2− 1/(2H). Let X be the strong
solution to (1.1) with drift b. Let δ ∈ (0, 1 + H(β − 1/p)). Then there exists a constant
C > 0 which is independent of X0, b and h, and a nonnegative random variable Z which
satisfies E[Z] 6 C‖h‖Bβp (1 + ‖b‖2

Bβp
) such that∣∣∣∣∫ t

s

h(Xr)dr

∣∣∣∣ 6 Z |t− s|δ. (7.5)

Proof. Let Λht :=
∫ t

0
h(Xr)dr. We apply Lemma 7.1 to establish an upper bound for

‖Λht − Λhs‖Lm , with the parameters n = m, γ = β(< 0) and α = 1 + H(β − 1/p). Hence,
we get

‖Λht − Λhs‖Lm 6 C‖h‖Bβp (1 + [X −B]Cα
[0,T ]

(Lm))(t− s)1+H(β−1/p). (7.6)

By (6.2) and Lemma 7.2 we know that

[X −B]Cα
[0,T ]

(Lm) 6 [X −B]Cα
[0,T ]

(Lm,∞) 6 C (1 + ‖b‖2Bβp ).

Since for any m there exists a constant C such that (7.6) holds, the result follows from
Kolmogorov’s continuity criterion.

7.2 Tightness and stability

In Proposition 7.4 we show that if (bn)n∈N approximates b, the solution Xn to (1.1)
with drift bn converges weakly (up to taking a subsequence). Proposition 7.6 states that
the limit in probability of such a sequence (Xn)n∈N is a solution to the original equation
with drift b.

Proposition 7.4. Let (bn)n∈N be a sequence of smooth bounded functions converging
to b in Bβ−p where b ∈ Bβp for β − 1/p > 1/2 − 1/(2H). For n ∈ N, let Xn be the strong
solution to (1.1) with initial condition X0 and drift bn. Then there exists a subsequence
(nk)k∈N such that (Xnk , B)k∈N converges weakly in the space [C[0,T ]]

2.
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Proof. Let Kn
t :=

∫ t
0
bn(Xn

r )dr. For M > 0, let

AM := {f ∈ C[0,T ] : f(0) = 0, |f(t)− f(s)| 6M(t− s)1+H(β−1/p), ∀(s, t) ∈ ∆[0,T ]}.

By Arzelà-Ascoli’s Theorem, AM is compact in C[0,T ]. Applying Lemma 7.2 and Markov’s
inequality, we get

P(Kn /∈ AM ) 6 P(∃(s, t) ∈ ∆[0,T ] : |Kn
s,t| > M(t− s)1+H(β−1/p))

6 C (1 + sup
n∈N
‖bn‖2Bβp )M−1.

Hence, the sequence (Kn)n∈N is tight in C[0,T ]. So (Kn, B)n∈N is tight in [C[0,T ]]
2. Thus

by Prokhorov’s Theorem, there exists a subsequence (nk)k∈N such that (Knk , B)k∈N
converges weakly in the space [C[0,T ]]

2, and so does (Xnk , B)k∈N.

Remark 7.5. The previous proposition can be generalised to any pair of sequences of
approximations (X1,n, X2,n)n∈N of strong solution to (1.1) with two sequences (bn1 )n∈N
and (bn2 )n∈N of smooth approximations of b.

Proposition 7.6. Let (b̃k)k∈N be a sequence of smooth bounded functions converging
to b in Bβ−p where b ∈ Bβp for β − 1/p > 1/2 − 1/(2H). Let B̃k have the same law as

B. We consider X̃k the strong solution to (1.1) for B = B̃k, initial condition X0 and
drift b̃k. We assume that there exist stochastic processes X̃, B̃ : [0, T ] → R such that
(X̃k, B̃k)k∈N converges to (X̃, B̃) on [C[0,T ]]

2 in probability. Then X̃ fulfills (2.3) and (2.4)
from Definition 2.4 and for any m ∈ [2,∞), there exists C > 0 such that

[X̃ − B̃]C1+H(β−1/p)

[0,T ]
(Lm,∞)

6 C (1 + sup
k∈N
‖b̃k‖2Bβp ) <∞. (7.7)

Proof. We again assume here w.l.o.g. that X0 = 0 and let K̃ := X̃ − B̃, so that (2.3) is
automatically verified. Let now (bn)n∈N be any sequence of smooth bounded functions
converging to b in Bβ−p . In order to verify that K̃ and X̃ fulfill (2.4) from Definition 2.4,
we have to show that

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

bn(X̃r)dr − K̃t

∣∣∣∣ = 0 in probability. (7.8)

By the triangle inequality we have that for k, n ∈ N and t ∈ [0, T ],∣∣∣∣∫ t

0

bn(X̃r)dr − K̃t

∣∣∣∣ 6 ∣∣∣∣∫ t

0

bn(X̃r)dr −
∫ t

0

bn(X̃k
r )dr

∣∣∣∣+

∣∣∣∣∫ t

0

bn(X̃k
r )dr −

∫ t

0

b̃k(X̃k
r )dr

∣∣∣∣
+

∣∣∣∣∫ t

0

b̃k(X̃k
r )dr − K̃t

∣∣∣∣ =: A1 +A2 +A3. (7.9)

Now we will show that all summands on the right hand side of (7.9) converge to 0

uniformly on [0, T ] in probability as n→∞, choosing k = k(n) accordingly.
First we bound A1. Notice that∣∣∣∣∫ t

0

bn(X̃r)dr −
∫ t

0

bn(X̃k
r )dr

∣∣∣∣ 6 ‖bn‖C1

∫ t

0

|X̃r − X̃k
r |dr

6 ‖bn‖C1 T sup
t∈[0,T ]

|X̃t − X̃k
t |.

For any ε > 0, we can choose an increasing sequence (k(n))n∈N such that

P
(
‖bn‖C1 T sup

t∈[0,T ]

|X̃t − X̃k(n)
t | > ε

)
<

1

n
, ∀n ∈ N.
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Hence, we get that

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

bn(X̃r)dr −
∫ t

0

bn(X̃k(n)
r )dr

∣∣∣∣ = 0 in probability.

Now, let us bound A2. Let β′ < β with β′ − 1/p > −1/(2H) + 1/2. By Lemma 7.3 applied
to X̃k, h = bn − b̃k and β′ instead of β, we know that there exists a random variable Zn,k
such that

E[Zn,k] 6 C ‖bn − b̃k‖Bβ′p (1 + ‖b̃k‖2
Bβ
′
p

)

6 C (‖bn − b‖Bβ′p + ‖b̃k − b‖Bβ′p ) (1 + sup
m∈N

‖b̃m‖2
Bβ
′
p

), (7.10)

for C independent of k, n and that we have

sup
t∈[0,T ]

∣∣∣∣∫ t

0

bn(X̃k
r )dr −

∫ t

0

b̃k(X̃k
r )dr

∣∣∣∣ 6 Zn,k(1 + T ).

Using Markov’s inequality and (7.10) we obtain that

P

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

bn(X̃k
r )dr −

∫ t

0

b̃k(X̃k
r )dr

∣∣∣∣ > ε

)
6 ε−1E[Zn,k] (1 + T )

6 C ε−1 (1 + T ) (‖bn − b‖Bβ′p + ‖b̃k − b‖Bβ′p ) (1 + sup
m∈N

‖b̃m‖2
Bβ
′
p

).

Choosing k = k(n) as before we get

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

bn(X̃k(n)
r )dr −

∫ t

0

b̃k(n)(X̃k(n)
r )dr

∣∣∣∣ = 0 in probability.

To bound the last summand A3, recall that X̃k
t =

∫ t
0
b̃k(X̃k

r )dr + B̃kt . Hence, we get that

sup
t∈[0,T ]

∣∣∣∣∫ t

0

b̃k(X̃k
r )dr − K̃t

∣∣∣∣ 6 sup
t∈[0,T ]

(|X̃k
t − X̃t|+ |B̃kt − B̃t|).

Since by assumption (X̃k, B̃k)k∈N converges to (X̃, B̃) on [C[0,T ]]
2 in probability, we get

that

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

b̃k(n)(X̃k(n)
r )dr − K̃t

∣∣∣∣ = 0 in probability

and therefore (7.8) holds true.
It remains to show that (7.7) holds true. By Lemma 7.2, we know that there exists

some C > 0 such that for any (s, t) ∈ ∆[0,T ],

‖Es[|(X̃k
t − B̃kt )− (X̃k

s − B̃ks )|m]1/m‖L∞ 6 C (1 + sup
m∈N

‖b̃m‖2Bβp ) (t− s)1+H(β−1/p). (7.11)

Using that
∫ t

0
b̃k(X̃k

r )dr converges to Kt on C[0,T ] in probability (by assumption) and that

supm∈N ‖b̃m‖Bβp is finite, we get (7.7) by applying Fatou’s Lemma to (7.11).

7.3 Approximation by smooth drifts

Proof of Theorem 2.8. Instead of constructing a single weak solution, we will construct
a couple (Y 1, Y 2). This does not change the nature of the proof, but it will be extremely
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useful in the proof of Theorem 2.10 when we will seek to construct a strong solution, via
a Gyöngy-Krylov argument.

Let (bn1 )n∈N, (bn2 )n∈N be sequences of smooth bounded functions converging to b in
Bβ−p . By Proposition 7.4 and Remark 7.5, there exists a subsequence (nk)k∈N such that
(X1,nk , X2,nk , B)k∈N converges weakly in [C[0,T ]]

3. Without loss of generality, we assume
that (X1,n, X2,n, B)n∈N converges weakly. By the Skorokhod representation Theorem,
there exists a sequence of random variables (Y 1,n, Y 2,n, B̂n)n∈N defined on a common
probability space (Ω̂, F̂ , P̂ ), such that

Law(Y 1,n, Y 2,n, B̂n) = Law(X1,n, X2,n, B), ∀n ∈ N, (7.12)

and (Y 1,n, Y 2,n, B̂n) converges a.s. to some (Y 1, Y 2, B̂) in [C[0,T ]]
3. As Xi,n solves the

SDE (1.1) with drift bni , we know by (7.12) that Y i,n also solves (1.1) with drift bni and
B̂n instead of B. As Xi,n is a strong solution, we have that Xi,n is adapted to FB. Hence
by (7.12), we know that Y i,n is adapted to FB̂

n

as the conditional laws of Y i,n and Xi,n

agree and therefore they are strong solutions to (1.1) with B̂n instead of B.
By Proposition 7.6, we know that Y 1 and Y 2 fulfill (2.3) and (2.4) from Definition 2.4

with B̂ instead of B and they are both adapted with respect to the filtration F̂ defined by
F̂t := σ(Y 1

s , Y
2
s , B̂s, s ∈ [0, t]).

Following the same arguments as in the proof of Theorem 2.5, after passing to the
limit, we know that B̂ is an F̂-fBm and Y 1 and Y 1 are weak solutions adapted to F̂.

Lastly, (7.7) gives that

[Y i − B̂]C1+H(β−1/p)

[0,T ]
(Lm,∞)

<∞, i = 1, 2, (7.13)

and thus Y 1 − B̂ and Y 2 − B̂ belong to C1+H(β−1/p)
[0,T ] (Lm).

7.4 Existence of strong solutions

In order to prove strong existence, we follow a Yamada-Watanabe argument: this is
done here by combining the construction of weak solutions from the previous proof, the
uniqueness result Proposition 6.1 and Gyöngy-Krylov’s result.

Lemma 7.7. Let H < 1/2, p ∈ [1,∞] and β such that β > −1/(2H) + 1 and β − 1/p >
−1/(2H) + 1. Let b ∈ Bβp , and (bn)n∈N be a sequence of smooth bounded functions
converging to b in Bβ−p . For n ∈ N, consider Xn the strong solution to (1.1) with drift bn

and initial condition X0 ∈ R. Then there exists an FB-adapted process X : [0, T ]×Ω→ R

such that

(i) supt∈[0,T ] |Xn
t −Xt|

P−→
n→∞

0;

(ii) [X −B]C1/2+H

[0,T ]
(L2,∞)

<∞ a.s.

Proof. Let (Xφ(n))n∈N and (Xψ(n))n∈N be two arbitrary subsequences of (Xn)n∈N. From
the previous proof, we know that there exists a filtered probability space (Ω̂, F̂ , F̂, P̂ ),
an F̂-fBm B̂ and a pair (Y 1, Y 2) of weak solutions to (1.1) adapted to F̂. By tightness
(Proposition 7.4 and Remark 7.5), we also have that there exist subsequences φ̃(n) and

ψ̃(n) such that (X φ̃(n), Xψ̃(n)) converges weakly to (Y 1, Y 2) on [C[0,T ]]
2 for n→∞.

Combining (7.13), (6.2) and that by assumption 1 +H(β−1/p) > 1/2 +H, we get that

[Y i − B̂]C1/2+H

[0,T ]
(L2)

6 [Y i − B̂]C1/2+H

[0,T ]
(L2,∞)

<∞, i = 1, 2.

By Proposition 6.1, this gives Y 1 = Y 2 a.s. Hence by Lemma 1.1 in [26], we get that
there exists X such that Xn converges in probability to X on C[0,T ]. Notice that Xn is
adapted to FB, for any n ∈ N, as they are strong solutions to (1.1). So X is adapted to
the same filtration. Lastly, (ii) follows from (7.7).
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Proof of Theorem 2.10. (a) Let X be the process constructed in Lemma 7.7. Proposi-
tion 7.6 yields that X is a strong solution to (1.1) fulfilling (7.7) for any m > 2. Since
β − 1/p > 1− 1/(2H), we get that [X −B]

C
1
2

+H

[0,T ]
(Lm,∞)

<∞ for any m > 2.

(b) Let (Y 1, B) and (Y 2, B) be weak solutions defined on the same probability space,

with Y 1 − B and Y 2 − B in C1/2+H
[0,T ] (L2). On this probability space, let X be a strong

solution which satisfies (6.3) with the same fBm B. Since X is also a weak solution
adapted to F, it follows from Proposition 6.1 that X = Y i for i = 1, 2.

(c) By Lemma 7.7 the sequence of strong solutions corresponding to an approximation
sequence of the drift b converges in probability to a strong solution X to (1.1) such that

[X −B]C1/2+H

[0,T ]
(L2,∞)

<∞. (7.14)

The limit X is the same for any approximation sequence as uniqueness in the class of
solutions fulfilling (7.14) holds by (b).

(d) Observe that if b is a measure, then we know by applying Proposition 5.3 and using
β − 1/p > 1− 1/(2H) that any solution X to (1.1) verifies X −B ∈ C1/2+H

[0,T ] (L2). Hence by
the previous uniqueness statement, X is the pathwise unique solution to (1.1).

Appendices

A Elementary results on Besov spaces

Definition A.1 (Partition of unity). Let χ, ρ ∈ C∞(R) be even functions and for j > 0,
ρj(x) = ρ(2−jx). We assume that there exists a, b, c > 0 with supp(χ) ⊂ [−c, c] and
supp(ρ) ⊂ [−b,−a] ∪ [a, b]. Moreover, we have

χ+
∑
j>0

ρj ≡ 1, (A.1)

supp(χ) ∩ supp(ρj) = ∅, ∀j > 1, (A.2)

supp(ρj) ∩ supp(ρi) = ∅, if |i− j| > 2. (A.3)

Then we call the pair (χ, ρ) a partition of unity.

Existence of a partition of unity is proven in [4, Prop. 2.10]. Let such a partition be
fixed. We denote the Schwartz space on R by S and the space of tempered distributions
by S ′.
Definition A.2 (Littlewood-Paley blocks). Let f ∈ S ′. We define its j-th Littlewood-Paley
block by

∆jf =


F−1(ρjF(f)) for j > 0,

F−1(χF(f)) for j = −1,

0 for j 6 −2,

where F and F−1 denote the Fourier transform and its inverse.

Definition A.3. For s ∈ R and 1 6 p, q 6∞, let the nonhomogeneous Besov space Bsp,q
be the space of tempered distributions u ∈ S ′ such that

‖u‖Bsp,q :=

∑
j∈Z

(
2js‖∆ju‖Lp(R)

)q 1
q

<∞.

EJP 28 (2023), paper 135.
Page 37/49

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1010
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Regularisation by fractional noise

Lemma A.4 and A.5, both taken from [2], are used on a regular basis throughout the
paper. For the readers convenience we state them again below.

Lemma A.4. Let γ ∈ R and p ∈ [1,∞] and the Gaussian semigroup Gt defined by (1.4).
Then there exists C > 0 such that for any f ∈ Bγp ,

(a) ‖Gtf‖Lp(R) 6 C‖f‖Bγp tγ/2 for any t > 0, provided that γ < 0;

(b) limt→0Gtf = f in Bγ̃p for every γ̃ < γ;

(c) supt>0 ‖Gtf‖Bγp 6 ‖f‖Bγp ;

(d) ‖Gtf‖C1 6 C‖f‖Bγp t(γ−1/p−1)/2 for all t > 0, provided that γ − 1/p < 0.

Lemma A.5. Let f be a tempered distribution on R, γ ∈ R, p ∈ [1,∞]. Then for any
a, a1, a2, a3 ∈ R, α, α1, α2 ∈ [0, 1], there exists a constant C > 0 such that

(a) ‖f(a+ ·)‖Bγp = ‖f‖Bγp ;

(b) ‖f(a1 + ·)− f(a2 + ·)‖Bγp 6 C|a1 − a2|α‖f‖Bγ+α
p

;

(c) ‖f(a1 + ·) − f(a2 + ·) − f(a3 + ·) + f(a3 + a2 − a1 + ·)‖Bγp 6 C|a1 − a2|α1 |a1 −
a3|α2‖f‖Bγ+α1+α2

p
.

Lemma A.6. Let γ ∈ R, p ∈ [1,∞] and f ∈ Bγp and t > 0, the function Gtf defined
by (1.4) is smooth and bounded.

Proof. Smoothness comes from [40, Th 3.13]. We now prove boundedness: First, we
consider the case f ∈ Bγp for γ ∈ R and p ∈ [1,∞] such that γ − 1/p < 0. Using

Lemma A.4(a) and the embedding Bγp ↪→ B
γ−1/p
∞ , we have

‖Gtf‖L∞ 6 Cγ‖f‖Bγ−1/p
∞

t
γ
2−

1
2p 6 Cγ‖f‖Bγp t

γ
2−

1
2p .

So, Gtf is bounded. Now for arbitrary γ ∈ R and p ∈ [1,∞] such that f ∈ Bγp , one can

choose γ′ < γ such that γ′ − 1/p < 0. We then have f ∈ Bγ′p since Bγp ⊂ Bγ
′

p . By the first
part of the proof Gtf is bounded.

The following lemma provides an embedding between Hölder and Besov spaces for
functions with compact support. It is useful when we deal with local times.

Lemma A.7. Let M ⊂ R be a compact set, 0 < β < β̂ < 1 and p, q ∈ [1,∞]. There exists

constants C, C̃ > 0 only depending on M such that for any f ∈ Cβ̂ with support included
in M , we have

‖f‖Bβp,q 6 C‖f‖Bβ̂∞ 6 C̃‖f‖Cβ̂ .

The first inequality follows by Remark 1.3 and the second inequality by the Proposition
on page 14 in [39].

B Properties of fBm

B.1 Operator linking Bm and fBm

In Lemma B.1 we prove a continuity property of the operator A introduced in (2.1).
This is crucial in order to show adaptedness in the proof of 2.5(a) and Theorem 3.4. The
explicit form of the operator A is:

A = Π̃H−1/2I1/2−HΠ̃1/2−H , (B.1)
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where the operators Π̃h and Ih are defined as follows:

∀h ∈ R, (Π̃hf)(t) := thf(t)− h
∫ t

0

sh−1f(s)ds,

∀h > 0, (Ihf)(t) :=
1

Γ(h)

∫ t

0

(t− s)h−1f(s)ds.

Lemma B.1. Let H < 1/2. The operator A defined in (B.1) continuously maps the space
(C[0,T ], ‖ · ‖∞) to itself.

Proof. The operator A is linear, therefore it is sufficient to show that it is bounded. For
f ∈ C[0,T ] and t ∈ [0, T ], we have by (B.1) that

Π̃H−1/2I1/2−HΠ̃1/2−Hf(t) =

4∑
i=1

fi(t),

where

f1(t) = tH−1/2 1

Γ(1/2−H)

∫ t

0

(t− y)−1/2−Hy1/2−Hf(y)dy;

f2(t) = tH−1/2(1/2−H)
−1

Γ(1/2−H)

∫ t

0

(t− y)−1/2−H
∫ y

0

x−1/2−Hf(x)dxdy;

f3(t) = (1/2−H)
1

Γ(1/2−H)

∫ t

0

sH−3/2

∫ s

0

(s− y)−1/2−Hy1/2−Hf(y)dyds;

f4(t) = (1/2−H)2 −1

Γ(1/2−H)

∫ t

0

sH−3/2

∫ s

0

(s− y)−1/2−H
∫ y

0

r−1/2−Hf(r)drdyds.

We have, after doing a change of variables of the form ξ = y/t, uniformly on [0, T ], that

|f1(t)| 6 CtH−1/2‖f‖∞
∫ 1

0

t−1/2−Ht1/2−Ht(1− z)−1/2−Hz1/2−Hdz 6 CT 1/2−H‖f‖∞;

|f2(t)| 6 CtH−1/2‖f‖∞
∫ t

0

(t− y)−1/2−Hy1/2−Hdy 6 CT 1/2−H‖f‖∞;

|f3(t)| 6 C‖f‖∞
∫ t

0

sH−3/2s1−2Hds 6 CT 1/2−H‖f‖∞;

|f4(t)| 6 C‖f‖∞
∫ t

0

sH−3/2

∫ s

0

(s− y)−1/2−Hy1/2−Hdyds 6 CT 1/2−H‖f‖∞.

Hence, the operator is bounded. It remains to prove that A(f) is a bounded continuous
function. For f1, we perform the change of variables z = y/t and it comes

f1(t) = t1/2−H
1

Γ(1/2−H)

∫ 1

0

(1− z)−1/2−Hz1/2−Hf(tz)dz.

By the dominated convergence theorem, this is a continuous function. We proceed
similarly for f2. As for i = 3, 4, we have

fi(t) =

∫ t

0

gi(s)ds

for functions gi that are integrable on [0, T ], which implies the continuity of f3 and f4.
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B.2 Local nondeterminism of fBm and proof of Lemma 5.1

The goal of this section is to prove Lemma 5.1. As an intermediate step, we obtain
first the following lemma, which is a local nondeterminism property for the fractional
Brownian motion.

Lemma B.2. Let (Bt)t>0 be an F-fractional Brownian motion with H 6 1/2. There exists
C > 0 such that for any 0 6 s < u < t,

E
[
(Eu[Bt]− Es[Bt])2

]
> C(u− s)(t− s)2H−1.

Note that in the above the conditional expectation is taken as usual with respect to F
and not with respect to the filtration generated by B.

Proof. The case H = 1/2 is trivial, so we assume H < 1/2. Recall that the process
W = A(B), where A is the operator given in (2.1), is an F-Brownian motion. Moreover,
by Theorem 11 in [36], it satisfies

Bt =

∫ t

0

KH(t, r)dWr, (B.2)

where, for some dH > 0,

KH(t, r) = dH

[(
t

r

)H−1/2

(t− r)H−1/2 + (1/2−H)r1/2−H
∫ t

r

zH−3/2(z − r)H−1/2dz

]
.

Therefore

E
[
(Eu[Bt]− Es[Bt])2

]
= E

[(
Eu
[∫ t

0

KH(t, r)dWr

]
− Es

[∫ t

0

KH(t, r)dWr

])2
]

= E

[(∫ u

s

KH(t, r)dWr

)2
]

=

∫ u

s

KH(t, r)2dr

> (u− s) min
r∈[s,u]

KH(t, r)2. (B.3)

Notice that by the change of variables z̃ = z/r,∫ t

r

zH−3/2(z − r)H−1/2dz = r2H−1βH(t/r),

for βH(τ) =
∫ τ

1
z̃H−3/2(z̃ − 1)H−1/2dz̃. Hence,

KH(t, r) = dH

[(
t

r

)H−1/2

(t− r)H−1/2 + (1/2−H)rH−1/2βH(t/r)

]
.

Using that

βH
(
t
r

)
=

∫ t/r

1

zH−3/2(z − 1)H−1/2dz

>
∫ t/r

1

z2H−2dz

=
1

1− 2H

(
1−

(
t

r

)2H−1
)
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and subadditivity of x 7→ xα for α ∈ (0, 1) we get, for 0 < r < t, that

1

dH
KH(t, r) >

(
t

r

)H−1/2

(t− r)H−1/2 +
1/2−H
1− 2H

rH−1/2

(
1−

(
t

r

)2H−1
)

> (t− r)H−1/2

((r
t

)1/2−H
+

1

2
(t− r)1/2−HrH−1/2

(
1−

(r
t

)1−2H
))

> (t− r)H−1/2

((r
t

)1/2−H
+

1

2
(t1/2−H − r1/2−H)rH−1/2

(
1−

(r
t

)1−2H
))

=
1

2
(t− r)H−1/2

((r
t

)1/2−H
+

(
t

r

)1/2−H

+
(r
t

)1−2H

− 1

)

>
1

2
(t− r)H−1/2,

where the last line holds true as x+ x−1 > 2 for x > 0. Plugging this into (B.3) we get
that

E
[
(Eu[Bt]− Es[Bt])2

]
> (u− s) min

r∈[s,u]
KH(t, r)2

>
d2
H

4
(u− s)(t− s)2H−1.

Proof of Lemma 5.1. Proof of (a): Notice that Bt2 − Et1 [Bt2 ] is Gaussian with zero mean
and variance σ2

t1,t2 . Furthermore, it is independent of Ft1 , which can be seen using the
integral representation (see (B.2)). Hence, we have

Et1 [f(Bt2 ,Ξ)] = Et1 [f(Bt2 − Et1 [Bt2 ] + Et1 [Bt2 ],Ξ)]

= Gσ2
t1,t2

f(Et1 [Bt2 ],Ξ).

Proof of (b): By the local nondeterminism property of fBm (see Lemma 7.1 in [37]), there
exists C > 0 such that

σ2
t1,t2 = C(t2 − t1)2H . (B.4)

To see that (b) holds true we use (a), Lemma A.4(a), the embedding Bγp ↪→ Bγ−1/p
∞

and (B.4) to get that

|Et1 [f(Bt2 ,Ξ)]| 6 C‖f(·,Ξ)‖Bγ−1/p
∞

σ
γ−1/p
t1,t2 6 C‖f(·,Ξ)‖Bγp (t2 − t1)H(γ−1/p).

Proof of (c): First notice that for fixed x ∈ R, t > 0 and φ : R→ R with ‖φ‖C1 <∞,

|φ(x)−Gtφ(x)| 6 C‖φ‖C1

√
t. (B.5)

To see that (c) holds true note that due to (a), (B.5) and Cauchy-Schwarz’s inequality we
get

E[|f(Bt2 ,Ξ)− Et1 [f(Bt2 ,Ξ)]|] = E[|f(Bt2 ,Ξ)−Gσ2
t1,t2

f(Et1 [Bt2 ],Ξ)|]

6 E[|f(Bt2 ,Ξ)− f(Et1 [Bt2 ],Ξ)|] + E[|f(Et1 [Bt2 ],Ξ)−Gσ2
t1,t2

f(Et1 [Bt2 ],Ξ)|]

6 E[‖f(·,Ξ)‖C1 |Bt2 − Et1 [Bt2 ]|] + C E[‖f(·,Ξ)‖C1 ]σt1,t2

6 C ‖‖f(·,Ξ)‖C1‖L2(t2 − t1)H ,

where the last line holds true by (B.4) and as

‖(Bt2 − Et1 [Bt2 ])‖L2 6 ‖Bt2 −Bt1‖L2 + ‖Bt1 − Et1 [Bt2 ]‖L2 6 2(t2 − t1)H
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by Jensen’s inequality for conditional expectations.
Proof of (d): In order to prove (d) we first state the following inequality, for some

C > 0: for any t1 < t̃ < t2,

σ̂2
t1,t̃,t2

:= Var(Et̃[Bt2 ]− Et1 [Bt2 ]) > C(t̃− t1)(t2 − t1)−1+2H . (B.6)

The above inequality holds true by Lemma B.2. Notice that Et̃[Bt2 ]−Et1 [Bt2 ] is Gaussian
with mean zero and variance σ̂2

t1,t̃,t2
and it is independent of Ft1 . Using this, (a) and

Hölder’s inequality for q = p/n > 1 and q′ = q/(q − 1), we get

Et1
[
|Et̃[f(Bt2 ,Ξ)]|n

]
= Et1 [|Gσ2

t̃,t2

f(Et̃[Bt2 ],Ξ)|n]

=

∫
gσ̂2

t1,t̃,t2

(z)|Gσ2
t̃,t2

f(Et1 [Bt2 ] + z,Ξ)|ndz

6 ‖gσ̂2
t1,t̃,t2

‖Lq′ (R)

∥∥∥(Gσ2
t̃,t2

f(Et1 [Bt2 ] + ·,Ξ)
)n ∥∥∥

Lq(R)

= ‖Gσ̂2
t1,t̃,t2

δ0‖Lq′ (R)‖Gσ2
t̃,t2

f(·,Ξ)‖nLp(R).

Using Lemma A.4(a), (B.4), (B.6) and that ‖δ0‖B−1+1/x
x

<∞ for x > 1, we get

‖Gσ̂2
t1,t̃,t2

δ0‖Lq′ (R)‖Gσ2
t̃,t2

f(·,Ξ)‖nLp(R) 6 C‖f(·,Ξ)‖nBγp ‖δ0‖B−n/p
q′

σγn
t̃,t2

σ̂
−n/p
t1,t̃,t2

6 C‖f(·,Ξ)‖nBγp ‖δ0‖B−n/p
q′

(t2 − t̃)Hγn(t̃− t1)−n/(2p)(t2 − t1)n(1−2H)/(2p).

Hence,

Et1
[
|Et̃[f(Bt2 ,Ξ)]|n

]
6 C‖f(·,Ξ)‖nBγp ‖δ0‖B−n/p

q′
(t2 − t̃)Hγn(t̃− t1)−n/(2p)(t2 − t1)n(1−2H)/(2p).

(B.7)

After taking expectations in (B.7) and raising both sides to the power 1/n, we obtain
(d).

C Stochastic sewing Lemma and regularising properties of the
fBm

In this section we will state and prove some results that are crucial throughout the
paper. The statements and their proofs are close extensions to fBm of Lemma 6.1, its
corollaries and Lemma 5.2 in [2].

First, in the following two lemmas we recall two recent extensions of the stochastic
sewing Lemma (see [32, Th. 4.1 and Th. 4.7]). In both statements, let 0 < S < T , let
(Ω,F ,F,P) be a filtered probability space and let A : ∆[S,T ] → Lm such that As,t is
Ft-measurable for (s, t) ∈ ∆[S,T ].

Lemma C.1 (Stochastic sewing Lemma). Let n ∈ [m,∞]. Assume that there exist
constants Γ1,Γ2 > 0, ε1, ε2 > 0, α2 ∈ [0, 1/2) such that for every (s, t) ∈ ∆[S,T ] and
u := (s+ t)/2,

‖Es[δAs,u,t]‖Ln 6 Γ1(t− s)1+ε1 , (C.1)

‖ES [|δAs,u,t|m]1/m‖Ln 6 Γ2(u− S)−α2(t− s)1/2+ε2 . (C.2)

Suppose there exists a process (At)t∈[S,T ] such that, for any t ∈ [S, T ] and any sequence

of partitions Πk = {tki }
Nk
i=0 of [S, t] with mesh size going to zero, we have

At = lim
k→∞

Nk∑
i=0

Atki ,tki+1
in probability. (C.3)
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Moreover, there exists a constant C = C(ε1, ε2, α2,m) independent of S, T such that
for every (s, t) ∈ ∆[S,T ] we have

‖ES [|At −As −As,t|m]1/m‖Ln 6 CΓ2(t− s)1/2−α2+ε2 + CΓ1(t− s)1+ε1

and

‖ES [At −As −As,t]‖Ln 6 CΓ1(t− s)1+ε1 .

Lemma C.2 (Stochastic sewing lemma with random controls). Let λ be a random control.
Assume that there exist constants Γ1, α1, β1 > 0 with α1 + β1 > 1 such that

|EuδAs,u,t| 6 Γ1|t− s|α1λ(s, t)β1 a.s. (C.4)

for all (s, t) ∈ ∆[S,T ] and u := (s+ t)/2. Additionally, assume that (C.2) holds for m = n

and α2 = 0 and that there exists a process (At)t∈[S,T ] such that (C.3) holds. Then there
is a map B : ∆[S,T ] → Lm and a constant C > 0 such that for all (s, t) ∈ ∆[S,T ],

|At −As −As,t| 6 CΓ1|t− s|α1λ(s, t)β1 +Bs,t a.s. and (C.5)

‖Bs,t‖Lm 6 CΓ2|t− s|1/2+ε2 . (C.6)

Lemma C.3. Let γ ∈ (−1/(2H), 0), m ∈ [2,∞), n ∈ [m,∞], p ∈ [n,∞] and d ∈ N. Then
there exists a constant C > 0 such that for any 0 6 S 6 T , any FS-measurable random
variable Ξ in Rd and any bounded measurable function f : R×Rd → R fulfilling

(i) E[‖f(·,Ξ)‖2C1 ] <∞;

(ii) E[‖f(·,Ξ)‖nBγp ] <∞,

we have for any t ∈ [S, T ] that∥∥∥∥∥∥ES
[∣∣∣∣∫ t

S

f(Br,Ξ) dr

∣∣∣∣m
]1/m

∥∥∥∥∥∥
Ln

6 C ‖‖f(·,Ξ)‖Bγp ‖Ln (t− S)1+H(γ−1/p). (C.7)

Proof. In order to show (C.7), we will apply Lemma C.1. For S 6 s 6 t 6 T , let

At :=

∫ t

S

f(Br,Ξ)dr and As,t := Es
[∫ t

s

f(Br,Ξ)dr

]
.

Notice that we have Es[δAs,u,t] = 0, so (C.1) trivially holds.
In order to establish inequality (C.2), we show that

‖δAs,u,t‖Ln 6 Γ2(u− S)−α2(t− s)1/2+ε2 (C.8)

holds true for some α2 ∈ [0, 1/2) and ε2 > 0, which is sufficient by the tower property
and conditional Jensen’s inequality. For u = (s+ t)/2 we have by Minkowski’s integral
inequality, Jensen’s inequality for conditional expectation and Lemma 5.1(d) that

‖δAs,u,t‖Ln 6

∥∥∥∥Es [∫ t

u

f(Br,Ξ)dr

]∥∥∥∥
Ln

+

∥∥∥∥Eu [∫ t

u

f(Br,Ξ)dr

]∥∥∥∥
Ln

6
∫ t

u

(‖Esf(Br,Ξ)‖Ln + ‖Euf(Br,Ξ)‖Ln) dr

6 2

∫ t

u

‖Euf(Br,Ξ)‖Lndr

6 C

∫ t

u

‖‖f(·,Ξ)‖Bγp ‖Ln(r − u)Hγ(u− S)−
1
2p (r − S)

1−2H
2p dr

6 C

∫ t

u

‖‖f(·,Ξ)‖Bγp ‖Ln(r − u)Hγ(u− S)−
H
p dr

6 C ‖‖f(·,Ξ)‖Bγp ‖Ln (t− u)1+Hγ(u− S)−
H
p ,
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where the penultimate inequality holds true as r − S 6 2(u− S). Hence, we have (C.8)
for ε2 = 1/2 +Hγ > 0 and α2 = H/p < 1/2.

Let t ∈ [S, T ]. Let (Πk)k∈N be a sequence of partitions of [S, t] with mesh size
converging to zero. For each k, denote Πk = {tki }

Nk
i=0. By Lemma 5.1(c) we have that

‖At −
∑
i

Atki ,tki+1
‖L1 6

∑
i

∫ tki+1

tki

‖f(Br,Ξ)− Et
k
i f(Br,Ξ)‖L1dr

6 C ‖‖f(·,Ξ)‖C1‖L2 (t− S) |Πk|H −→ 0.

Hence (C.3) holds true.

Applying Lemma C.1, we get

‖ES [|At −AS |m]1/m‖Ln

6 ‖AS,t‖Ln + C ‖‖f(·,Ξ)‖Bγp ‖Ln
(∫ t

S

(r − S)−
2H
p dr

) 1
2

(t− S)
1
2 +Hγ

6 ‖AS,t‖Ln + C ‖‖f(·,Ξ)‖Bγp ‖Ln (t− S)1+H(γ−1/p).

Applying Minkowski’s integral inequality and Lemma 5.1(b), we get that

‖AS,t‖Ln =
∥∥∥ES ∫ t

S

f(Br,Ξ)dr
∥∥∥
Ln

6
∫ t

S

‖ESf(Br,Ξ)‖Lndr

6 C

∫ t

S

‖‖f(·,Ξ)‖Bγp ‖Ln (r − S)H(γ−1/p)dr

6 C ‖‖f(·,Ξ)‖Bγp ‖Ln (t− S)1+H(γ−1/p).

Hence

‖ES [|At −AS |m]1/m‖Ln 6 C ‖‖f(·,Ξ)‖Bγp ‖Ln (t− S)1+H(γ−1/p).

Corollary C.4. Let γ ∈ (−1/(2H), 0), m ∈ [2,∞) and p ∈ [m,∞]. Let λ ∈ [0, 1] and
assume that γ > −1/(2H) + λ. There exists C > 0 such that for any f ∈ C∞b (R) ∩ Bγp , any
0 6 s 6 t 6 T and any Fs-measurable random variables κ1, κ2 ∈ Lm, one has∥∥∥ ∫ t

s

(f(Br+κ1)− f(Br + κ2)) dr
∥∥∥
Lm

6 C‖f‖Bγp ‖κ1 − κ2‖λLm(t− s)1+H(γ−λ−1/p). (C.9)

Proof. We aim to apply Lemma C.3 for the function (z, (x1, x2)) 7→ f(z + x1)− f(z + x2)

with m = n and Ξ = (κ1, κ2). By Lemma A.5(b) and Jensen’s inequality, we have that

‖‖f(·+ κ1)− f(·+ κ2)‖Bγ−λp
‖Lm 6 C‖f‖Bγp ‖|κ1 − κ2|λ‖Lm .

6 C‖f‖Bγp ‖κ1 − κ2‖λLm .

Moreover

‖f(·+ κ1)− f(·+ κ2)‖C1 6 2‖f‖C1 <∞.

Therefore all assumptions of Lemma C.3 are fulfilled and the result follows.
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Corollary C.5. Let γ ∈ (−1/(2H), 0), m ∈ [2,∞) and p ∈ [m,∞]. Let λ, λ1, λ2 ∈ (0, 1] and
assume that γ > −1/(2H) + λ and γ > −1/(2H) + λ1 + λ2. There exists a constant C > 0

such that for any f ∈ C∞b (R) ∩ Bγp , any 0 6 s 6 u 6 t 6 T , any Fs-measurable random
variables κ1, κ2 ∈ Lm and any Fu-measurable random variables κ3, κ4 ∈ Lm, we have
that ∥∥∥∫ t

u

(f(Br + κ1)− f(Br + κ2)− f(Br + κ3) + f(Br + κ4)) dr
∥∥∥
Lm

6 C‖f‖Bγp ‖E
s[|κ1 − κ3|m]1/m‖λ2

L∞‖κ1 − κ2‖λ1

Lm(t− u)1+H(γ−λ1−λ2−1/p)

+ C‖f‖Bγp ‖κ1 − κ2 − κ3 + κ4‖λLm(t− u)1+H(γ−λ−1/p). (C.10)

Proof. Let h : R×R4 → R be defined by

h : (z, (x1, x2, x3, x4)) 7→ f(z + x1)− f(z + x2)− f(z + x3) + f(z + x3 + x2 − x1).

and g : R×R4 → R by

g : (z, (x1, x2, x3, x4)) 7→ f(z + x4)− f(z + x3 + x2 − x1).

Let Ξ = (κ1, κ2, κ3, κ4). Hence the integrand on the left hand side of (C.10) is h(Br,Ξ) +

g(Br,Ξ). The proof will consist in applying Lemma C.3 to the integral of h, and Corol-
lary C.4 to the integral of g. By Lemma A.5(c), we have

‖h(·,Ξ)‖Bγ−λ1−λ2
p

6 ‖f‖Bγp |κ1 − κ2|λ1 |κ1 − κ3|λ2 . (C.11)

Using that κ1 − κ2 is Fs-measurable, by the tower property, Jensen’s inequality for
conditional expectation and (C.11), we get that

E‖h(·,Ξ)‖m
Bγ−λ1−λ2
p

6 ‖f‖BγpE
[
|κ1 − κ2|mλ1Es[|κ1 − κ3|mλ2 ]

]
6 ‖f‖BγpE

[
|κ1 − κ2|mλ1

] ∥∥Es[|κ1 − κ3|mλ2 ]
∥∥
L∞

6 ‖f‖Bγp ‖κ1 − κ2‖mλ1

Lm ‖E
s[|κ1 − κ3|m]1/m‖mλ2

L∞ .

Furthermore

‖h(·,Ξ)‖C1 6 4‖f‖C1 .

Hence, we get the result by applying Lemma C.3 for S = u to the integral of h and
Corollary C.4 to the integral of g.

As another consequence of the stochastic sewing Lemma, we finally prove Lemma 7.1.

Proof of Lemma 7.1. We assume that [ψ]Cα
[s,t]

(Lm,n) < ∞, otherwise (7.1) trivially holds.

For (s̃, t̃) ∈ ∆[s,t], let

As̃,t̃ :=

∫ t̃

s̃

f(Br + ψs̃)dr and At :=

∫ t̃

s

f(Br + ψr)dr. (C.12)

In the following, we check the necessary conditions in order to apply Lemma C.1. In
order to show that (C.1) and (C.2) hold true with α2 = 0, ε1 = H(γ− 1/p− 1) +α > 0 and
ε2 = 1/2 +H(γ − 1/p) > 0, we show that there exists a constant C > 0 independent of
s, t, s̃ and t̃ such that

(i) ‖Es̃δAs̃,u,t̃‖Ln 6 C‖f‖Bγp [ψ]Cα
[s,t]

(Lm,n)(t̃− s̃)1+H(γ−1−1/p)+α.
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(ii) ‖Es[|δAs̃,u,t̃|m]1/m‖Ln 6 C‖f‖Bγp (t̃− s̃)1+H(γ−1/p).

(iii) If (i) and (ii) are verified, then (C.3) gives the convergence in probability of∑Nn−1
i=0 Atki ,tki+1

along any sequence of partitions Πk = {tki }
Nk
i=0 of [s, t̃] with mesh

converging to 0. We will show that the limit is the process A given in (C.12).

Assume for now that (i), (ii) and (iii) hold. Applying Lemma C.1, we obtain that∥∥∥∥Es[∣∣∣∣ ∫ t̃

s̃

f(Br + ψr)dr

∣∣∣∣m]1/m∥∥∥∥
Ln

6C‖f‖Bγp (t̃− s̃)1+H(γ−1/p)

+ C‖f‖Bγp [ψ]Cα
[s,t]

(Lm,n)(t̃− s̃)1+H(γ−1−1/p)+α

+ ‖Es[|As̃,t̃|m]1/m‖Ln .

In (C.14) we will see that ‖Es[|As̃,t̃|m]1/m‖Ln 6 C‖f‖Bγp (t̃− s̃)1+H(γ−1/p). Then, choosing

(s̃, t̃) = (s, t) we get (7.1).
We now check that the conditions (i), (ii) and (iii) actually hold.
Proof of (i): For s 6 s̃ 6 u 6 t̃ 6 t, we have

δAs̃,u,t̃ =

∫ t̃

u

f(Br + ψs̃)− f(Br + ψu)dr.

Hence, by the tower property of conditional expectation and Fubini’s Theorem, we get

|Es̃δAs̃,u,t̃| =

∣∣∣∣∣Es̃
∫ t̃

u

Eu[f(Br + ψs̃)− f(Br + ψu)]dr

∣∣∣∣∣ .
Now using Lemma 5.1(b) with the Fu-measurable variable Ξ = (ψs̃, ψu), Lemma A.5(b)
for α = 1 and again Fubini’s Lemma, we obtain that∣∣∣Es̃ ∫ t̃

u

Eu[f(Br + ψs̃)− f(Br + ψu)]dr
∣∣∣

6 Es̃
∫ t̃

u

‖f(·+ ψs̃)− f(·+ ψu)‖Bγ−1
p

(r − u)H(γ−1−1/p)dr

6 C‖f‖Bγp
∫ t̃

u

Es̃[|ψu − ψs̃|](r − u)H(γ−1−1/p)dr.

Hence we get

‖Es̃δAs̃,u,t̃‖Ln 6 C‖f‖Bγp
∫ t̃

u

‖Es̃|ψu − ψs̃|‖Ln(r − u)H(γ−1−1/p)dr. (C.13)

By the conditional Jensen’s inequality, we have

‖Es̃[|ψu − ψs̃|]‖Ln 6 [ψ]Cα
[s,t]

(Lm,n)(u− s̃)α.

Combining this with Equation (C.13), we get

‖Es̃δAs̃,u,t̃‖Ln 6 C‖f‖Bγp [ψ]Cα
[s,t]

(Lm,n)(t̃− s̃)1+H(γ−1−1/p)+α.

Proof of (ii): Note that by Jensen’s inequality for conditional expectation, tower property
and Lemma C.3 we have that

‖Es[|As̃,t̃|m]1/m‖Ln =
(
E
[
(EsEs̃|As̃,t̃|m)n/m

])1/n

6
(
EEs

[
Es̃[|As̃,t̃|m]n/m

])1/n

=
(
E
[
Es̃[|As̃,t̃|m]n/m

])1/n

6 C‖f‖Bγp (t̃− s̃)1+H(γ−1/p). (C.14)
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After similarly controlling ‖Es[|As̃,u|m]1/m‖Ln and ‖Es[|Au,t̃|m]1/m‖Ln , we get

‖Es[|δAs̃,u,t̃|m]1/m‖Ln 6 C‖f‖Bγp (t̃− s̃)1+H(γ−1/p).

The proof of (iii) can be done by similar arguments as for (iii) in the proof of Proposi-
tion 5.3.
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