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Abstract

We consider the Potts model on a two-dimensional periodic rectangular lattice with
general coupling constants Jij > 0, where i, j ∈ {1, 2, 3} are the possible spin values
(or colors). The resulting energy landscape is thus significantly more complex than in
the original Ising or Potts models. The system evolves according to a Glauber-type
spin-flipping dynamics. We focus on a region of the parameter space where there
are two symmetric metastable states and a stable state, and the height of a direct
path between the metastable states is equal to the height of a direct path between
any metastable state and the stable state. We study the metastable transition time in
probability and in expectation, the mixing time of the dynamics and the spectral gap
of the system when the inverse temperature β tends to infinity. Then, we identify all
the critical configurations that are visited with high probability during the metastable
transition. Our main tool is the so-called pathwise approach to metastability, which
requires a detailed analysis of the energy landscape.
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1 Introduction

Metastability is a phenomenon that is observed when a thermodynamical system is
close to a first-order phase transition. When a physical system lies close to its phase
coexistence line, it may remain trapped for a long (random) time in a local minimum
of the energy, the so-called metastable state, before hitting a stable state in a shorter
timescale. The phenomenon of metastability is observed in numerous physical systems,
such as supercooled liquids or supersaturated gases, but also plays a role in diverse
fields such as biology, computer science, chemistry, etc. Motivated by this, in the last
decades a lot of effort has been directed towards building a rigorous mathematical
understanding of metastability. In this context, a model typically consists of a space of
configurations X , an energy function H : X → R and a suitable Markov dynamics driven
by the energy difference between configurations. From a mathematical perspective, the
metastable behavior of such a system is summarized by the following three issues:

1. the first hitting time of the collection X s of stable configurations, starting from any
metastable configuration m ∈ Xm;

2. the set of critical configurations visited during the transition m→ X s with proba-
bility close to one;

3. the determination of the so-called tube of typical paths visited during the metastable
transition.

The classical Potts model with q ∈ N spins on a lattice is defined as follows. We fix a
finite graph Λ = (V,E) and consider a spin configuration space X := {1, 2, . . . , q}V . To
each configuration σ ∈ X is assigned the energy H(σ), given by

H(σ) := −J
∑

{v,w}∈E

1{σ(v)=σ(w)} − h
∑
v∈V

1{σ(v)=1}, (1.1)

where J > 0 is the coupling or interaction constant of the system and h ∈ R is the
external magnetic field. The model is said to be ferromagnetic since those configurations
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(a) Ising model, h > 0

sm

(b) Potts model, h = 0

s3

s2s1

(c) Potts model, h < 0

s3

s2s1

m

(d) Potts model, h > 0

m3

m2m1

s

(e) Symmetric generalization

m2m1

s

(f) Asymmetric generalization

m2m1

s

Figure 1: Energy landscape of the general Potts model for various choices of the coupling
constants. The dark-gray regions denote the stable valleys, whereas the white regions in
(a)–(e) and the light-gray region in (f) denote the metastable valleys. The white region in
(f) denotes the third-stable valley. In this paper, we focus on the landscape represented
in (e).

in which neighboring spins have the same value are energetically favored. When q = 2,
this is the well-known Ising model.

In this paper, we study the metastable behavior of a generalized three-state Potts
model (i.e., q = 3) with zero external field on a finite two-dimensional discrete torus,
in the sense that rather than dealing with a fixed coupling constant J as in (1.1), we
assume that the coupling constants differ among all possible pairs of spins:

H(σ) = −
∑
i∈S

Jii
∑

{v,w}∈E

1{σ(v)=σ(w)=i} +
∑

i,j∈S, i<j
Jij

∑
{v,w}∈E

1{{σ(v),σ(w)}={i,j}}. (1.2)

Here, S := {1, 2, . . . , q} and the generalized coupling constants Jii and Jij are assumed
to be positive. Because of this, the model is ferromagnetic and thus it is natural to expect
for every monochromatic configuration (all spins equal) to be energetically stable, at
least in a local sense. For simplicity, we assumed that the external field h is zero.

If Jii = J > 0 for all i ∈ S, and Jij , i < j are also identical, then we recover the
original Potts energy (1.1) (translated by a fixed real number) with h = 0. Thus, this
model is an extension of the classical Potts model. Different choices for the coupling
constants (Jij)i,j∈S lead to rather different energy landscapes, see Fig. 1. In this figure,
m and s indicate respectively the metastable and stable configurations. Moreover, gray
(resp. dark gray) disks indicate the valleys1 of the metastable (resp. stable) configu-
rations. Item (a) illustrates the well-known Ising model with small external field [62],

1These are actually initial cycles; see (6.11) for the exact definition.

EJP 28 (2023), paper 112.
Page 3/37

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1003
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Metastability of the three-state Potts model with general interactions

where the red area indicates the collection of so-called critical configurations. Item (b)
represents the energy landscape of Potts model with zero external field [12, 50, 51, 60],
so that between any si and sj, there lies a large plateau of saddle configurations de-
picted in red color. Item (c) corresponds to the degenerate Potts model with negative
external field [13], where there exists one metastable configuration m and multiple
stable configurations si. If the process starts from the metastable configuration m, with
probability close to one it passes through a critical configuration (colored red) to reach
one of the stable configurations si. After reaching some si, with high probability the
process makes transition to another stable configuration sj by visiting the large plateau
of configurations between si and sj, colored blue. With probability close to one, the red
region is not visited again since the blue region has energy much smaller than the red
region. Item (d) represents the degenerate Potts model with positive external field [14],
where there exist multiple metastable configurations and a unique stable configuration.
In this case, starting from any metastable configuration mi, the process necessarily
visits the red region between mi and s to reach the stable state s. Indeed, the plateaux
between any two metastable configurations (dotted region) have higher energy than
the red regions, so that with high probability they are not visited during the metastable
transition.

The discussion above allows us to illustrate the main contribution of our work. Indeed,
in all the energy landscapes in Fig. 1-(a)–(d), each metastable transition involves only
one of the following: either a transition through a single critical configuration (which
we call sharp), or a transition through a plateau of saddle configurations (which we call
complex). This property simplifies the study of metastable transitions considerably. On
the other hand, in our model with general coupling constants, depending on the precise
values of the couplings, it may happen that

(D1) during a single metastable transition, the system undergoes both sharp and complex
transitions, or

(D2) two metastable states do not have the same energy level.

These two situations are represented respectively in Fig. 1-(e) and 1-(f). We begin by
discussing the former setting. Here, m1 and m2 are symmetric metastable configurations.
If the process starts from, say, m1, then the system either moves to m2 via the large
plateau, or to s via a critical configuration. Therefore, a full metastable transition from m1

to s involves possibly several complex transitions between the two metastable states, and
a final sharp transition to s. Note that the coupling constants have been chosen precisely
such that the system must overcome the same energy barrier for both types of transitions.
This implies that both types happen with positive probability. Figure 1-(f) is a sketch of the
second situation (D2), where m1 and m2 are both metastable but m2 has lower energy
than m1. Starting from m1, the process either visits the stable state s or visits the other
metastable state m2. Moreover, starting from m2, the process makes a sharp transition
to s. In this case, all the metastble transitions are sharp. In this paper, we choose the
coupling constants such that the resulting energy landscape is the one represented in
Fig. 1-(e), see Sect. 2 for a more detailed discussion on the coupling constants.

The stochastic evolution is given by a Glauber-type dynamics, which is a Markov
chain with transition probabilities given by the Metropolis algorithm that only allows
single spin flip updates (cf. (2.7)). This dynamics is reversible with respect to the Gibbs
measure (2.6), and hence (2.6) is the stationary distribution. We study this system in the
low-temperature regime, i.e., in the limit β →∞ where β is the inverse temperature.

Let us now briefly describe our approach. Without loss of generality, we choose the
coupling constants so that the constant configurations 2 and 3 (all spins equal to 2 and 3
respectively) are the metastable configurations and the configuration 1 (all spins equal
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to 1) is stable. In Sect. 3.1, we begin by proving that, indeed, the set of metastable
configurations is Xm = {2,3} and that the only stable configuration is X s = {1}. We
prove that the energy barrier between a metastable state m ∈ Xm and X s is equal to
the energy barrier between the two metastable configurations 2 and 3, which is the key
feature of our model. We also need to prove that any configuration other than 1, 2 or 3 has
a sufficiently lower stability level than 2 or 3. To this end, we carefully analyze the local
geometry of configurations to deduce a necessary condition for a configuration to be a
local minimum of the energy function. Then, we apply this necessary condition to deduce
a non-trivial, but still sufficient upper bound for the stability level, see Proposition 3.3.
As a byproduct, we also obtain the recurrence property which means that starting
from an arbitrary initial configuration, the process visits one of the monochromatic
configurations in a much shorter timescale than the metastable transition time, see
Theorem 3.6. Then, we focus on the transition m → 1, and we are able to obtain the
expected value and distribution of the transition time (cf. Theorem 3.5-(a)). Furthermore,
in Theorem 3.5-(b)(c), we study the behavior of the mixing time and give an estimate
of the spectral gap in the low-temperature regime, see (3.12) and (3.13) for the exact
definitions. Finally, in Theorems 3.8 and 3.9 we identify the set of all minimal gates for
the same transition, so that then we can characterize in Corollary 3.10 all the essential
saddle configurations visited during the transition.

Mathematical obstacles In the Potts model with positive external field analyzed in
[14] there is an arbitrary number of metastable configurations (e.g., two) and one
stable configuration. However, the energy level of a canonical path from a metastable
configuration to the stable configuration is strictly less than the energy level of a
canonical path between two distinct metastable configurations. This indicates that, with
high probability, during a metastable transition, no other metastable configurations are
visited, see Fig. 1-(d) or [14, Fig. 2]. On the other hand, as mentioned above, in our
model the energy barrier between m ∈ {2,3} and 1 equals the energy barrier between
2 and 3. This feature makes it challenging to analyze the model since the system may
perform an arbitrary number of excursions between the metastable states before the
actual metastable transition takes place. Moreover, the analysis of a transition between
two monochromatic configurations (say, from 2 to 1) is made significantly harder by
possible spin flips involving the third spin (say, 3). Indeed, it is more likely to observe
such a spin update in our setting than in the setting of [14]; see also Remark 2.2.

In order to face these obstacles, we define a projection operator Prs, r, s ∈ S on the
configuration space X . This operator replaces all spins r in a configuration with spins
s, so that there is no spin r in the resulting configuration, which simplifies the analysis
greatly. This is made possible because, intuitively, the resulting configuration is more
homogeneous than the original one in terms of spin values (i.e., lower energy), since the
spin disagreements between r and s disappear. We will define the operator precisely and
study it in detail in Sect. 4.

Additional obstacle appears when we estimate the stability level of configurations
other than 1, 2 and 3. A case of particular difficulty is when a configuration has a small
cluster of spin 1 which is surrounded by both spins 2 and 3, see the second subcase
of (Case 1) in the proof of Proposition 3.3. To overcome this problem, we introduce a
procedure to update the spins 1 in a distinctive manner which is sufficient to provide an
upper bound for the stability level. More precisely, we choose a candidate spin between
2 and 3, say r ∈ {2, 3}, and then update each spin 1 to r first on the boundary of the
1-cluster and then in the interior, so that we can explicitly calculate the energy difference
of spin updates in the worst-case scenario. We refer to the proof of Proposition 3.3 for
details.
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Literature on the Potts model The Potts model, which originates from statistical
physics, has been studied extensively both in the mathematics literature and the physics
literature. The study of the equilibrium properties of the Potts model and their depen-
dence on q have been investigated on the square lattice Zd in [6, 7], on the triangular
lattice in [8, 40] and on the Bethe lattice in [2, 33, 37]. The mean-field version of the
Potts model has been studied in [31, 38, 39, 43, 69]. In [12, 50, 51, 60] the authors
investigate the tunneling behavior of the Potts model with zero external magnetic field.
In this energy landscape there are q stable states and no relevant metastable state. In
[60], the authors derive the asymptotic behavior of the first hitting time for the transition
between stable configurations, and give results in probability, in expectation and in
distribution. They also focus on the behavior of the mixing time and give a lower and
an upper bound for the spectral gap. In [12], the authors study the tunneling from a
stable state to the other stable configurations and between two stable states. In both
cases, they also identify the set of all the critical configurations and the tube of typical
trajectories. Finally, in [50, 51], the authors study the model in dimensions two and three.
They give a description of the so-called gateway configurations in order to compute the
prefactor of the expected metastable transition time. The q-Potts model with positive
and negative external magnetic field has been studied in [14] and [13], respectively. In
[14], the energy landscape is characterized by q − 1 multiple degenerate metastable
states and a unique stable configuration. On the other hand, in [13], there is a unique
metastable state and q − 1 stable configurations. In both scenarios, the authors tackle
all the three issues of metastability discussed in the introduction.

Literature on metastability In this paper we adopt the framework known as pathwise
approach. This was introduced in [22] in 1984 by Cassandro, Galves, Olivieri and Vares,
and then it was further developed in [1, 64, 65, 66]. The pathwise approach requires a
detailed knowledge of the energy landscape to give precise answers to the three issues of
metastability in the form of ad hoc large deviations estimates. In [25, 26, 41, 42, 57, 61]
the pathwise approach was further built up by separating the study of the first and
second issues of metastability from that regarding the tube of typical trajectories since
this requires more detailed model-dependant data. The framework of the pathwise
approach has been also adopted in [4, 23, 30, 52, 59, 62, 63, 66] to tackle the three
issues for Ising-like models with Glauber dynamics. Moreover, it was also used in
[3, 34, 45, 46, 61, 70] to study the transition time and the gates for Ising-like and
hard-core models with Kawasaki and Glauber dynamics. Finally, this approach has been
applied in [24, 27, 28, 32, 67] to probabilistic cellular automata (parallel dynamics).

The so-called potential-theoretic approach exploits a suitable Dirichlet form and
spectral properties of the transition matrix to give sharp asymptotics for the hitting time.
More precisely, this method estimates the leading order of the expected value of the
transition time including its prefactor, see [17, 19, 20, 29]. In [5, 18, 21, 29, 35, 36, 47],
the authors adopt the potential-theoretic approach to estimate the prefactor for Ising-like
models and the hard-core model for Glauber and Kawasaki dynamics and in [15, 58] for
parallel dynamics. We refer also to the approaches recently developed in [16, 44].

A new technique known as the martingale approach has been developed in [9, 11].
This approach is particularly useful to investigate a series of metastable transitions
happening at the same timescale, since we can characterize the successive metastable
transitions as a Markov chain on a simple representative set; this is called the method of
model reduction. Applying this methodology, numerous results regarding the metastable
systems with complex structures have been obtained [10, 16, 48, 49, 53, 68]. Moreover,
there has been a recent development of technology [56], known as the resolvent approach
to metastability, in which the authors successfully characterize metastability in the sense
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of equivalent conditions on whether a metastable behavior occurs by focusing on a
certain class of resolvent equations on the state space. See also [55] for a recent
breakthrough using this resolvent approach to characterize metastability of overdamped
Langevin dynamics with highly general potential functions.

Open problems As mentioned in the explanation regarding Fig. 1, we deal with the
case (e) when spins 2 and 3 have equal magnitude of both stability and energy, so
that the model is symmetric with respect to the action 2 ↔ 3. On the other hand, as
in Fig. 1-(f), it is also possible to choose coupling constants so that 2 and 3 has the
same stability level but with different energy values, say H(2) < H(3). In this case,
the resulting metastable transition on the system will be totally asymmetric, in the
sense that only the directions 3 → 2 → 1 are possible for a metastable transition to
occur.

Moreover, for simplicity we only deal with the three-state Potts model, i.e., q = 3.
One can also think of a more complex model, where there are generally q ≥ 3 spins
in the system and both the cases in Fig. 1-(e)–(f) emerge within the energy landscape.
The authors expect that one can construct energy landscapes which exhibit metastable
behavior in a high level of generality. This will be an important research objective in the
future.

In addition, one can proceed further to investigate more quantitative analysis of
metastability, which includes calculating the prefactor of expected transition time (the
so-called Eyring–Kramers formula), employing the method of model reduction to charac-
terize the law of successive metastable transitions, etc. To this end, one needs to apply
the potential-theoretic [17] and martingale approach [54] to metastability. Here, the
essential tasks are characterizing all the relevant configurations that have energy less
than or equal to the energy of saddle configurations, and then classifying the domains of
attraction and typical transition paths according to the metastable transitions. See also
the last remark in Definition A.3.

Outline The outline of the paper is as follows. In Sect. 2 we introduce the model and
its main distinctive features. In Sect. 3 we give the main results concerning the energy
landscape and the first two issues of metastability introduced in the first paragraph.
In order to prove these results, in Sect. 4 we introduce the projection operator and
prove some of its interesting properties. In Sect. 5 we recall some results related to the
original Ising model. Finally, Sect. 6 is devoted to the proof of the main results.

2 Model description

We consider a generalized three-state Potts model on a finite two-dimensional rectan-
gular lattice graph Λ = (V,E), where V = {0, . . . ,K − 1}×{0, . . . , L− 1} is the vertex set
and E is the edge set. Without loss of generality, we assume throughout the article that

K ≤ L.

To fix ideas, we assume periodic boundary conditions; more precisely, we also include
each pair of vertices lying on opposite sides of the lattice in the edge set, so that we
obtain a two-dimensional torus TK ×TL. We say that two vertices v, w ∈ V are nearest
neighbors (or simply neighbors) and denote by v ∼ w when they share an edge of Λ, i.e.,
when {v, w} ∈ E. To each vertex v ∈ V is associated a spin taking value in S := {1, 2, 3},
and thus X := SV denotes the set of spin configurations. We denote by 1,2,3 ∈ X those
configurations in which all the vertices have spin value 1, 2, 3, respectively.
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To each configuration σ ∈ X we associate the energy H(σ) ∈ R given by

H(σ) := −
∑
i∈S

Jii
∑

{v,w}∈E

1{σ(v)=σ(w)=i} +
∑

i,j∈S, i<j
Jij

∑
{v,w}∈E

1{{σ(v),σ(w)}={i,j}}, (2.1)

where for any i, j ∈ S, Jij > 0 are the coupling or interaction constants. The function
H : X → R is the so-called Hamiltonian, or energy function. We remark that our
techniques would also work if the Hamiltonian includes an external field, leading to
similar results. For simplicity we decided to focus on the case of zero external field.

We assume that

J11 > J22 = J33 and J12 = J13, (2.2)

so that, intuitively, spin 1 is more stable than spins 2 and 3, and the Hamiltonian is
symmetric with respect to the spin exchange 2↔ 3. Then, we write

γ1 := J11 − J22 > 0, γ12 := J12 + J22 > 0 and γ23 := J23 + J22 > 0. (2.3)

Define a function fh : (0,∞)→ R as

fh(x) := 4
(
x+

h

2

)⌈x+ h
2

h

⌉
− 2h

(⌈x+ h
2

h

⌉2

−
⌈x+ h

2

h

⌉
+ 1
)
. (2.4)

Here, dαe is the least integer not smaller than α. In Sect. A.2 we prove some useful
properties of fh. We assume the following conditions throughout this article.

Assumption 2.1. The following conditions hold.

A. 2γ12+γ1
2γ1

is not an integer.

B. fγ1(γ12) = 2(K + 1)γ23.

C. 2γ12 ≥ 4γ23 + γ1.

Intuitively, condition A corresponds to the familiar condition 2/h /∈ N, where h > 0

is the external field of the original Ising model, first proposed in [62, standard case].
Condition B implies that the energy barriers of the canonical transitions 2 → 1 and
2 → 3 are the same. It is clear that condition C is satisfied if there exists a constant
k > 0 sufficiently large so that γ12 ≥ kγ1 and γ12 ≥ kγ23. This is a natural selection of
constants which will be justified in more detail in Sect. A.3.

Remark 2.2. Condition C is an optimal condition on the coefficients and used in the
proof of Lemma 4.2 only. This inequality has the following interpretation. Keeping (2.3)
in mind, we can rewrite condition C as

2J12 − J11 + 3J22 ≥ 4J23 + 4J22. (2.5)

By a simple algebraic computation, we can see that the left-hand side of (2.5) is the
energy needed to add a protuberance to a cluster of spins 1 in the sea of spins 2, and the
right-hand side of (2.5) is the energy needed to add a new spin 3 in the sea of spins 2.
Thus, (2.5) suggests that the dynamics favor a single appearance of an unrelated spin (in
this case, 3) over the enlargement of a cluster of spins 1. This subtle dynamical behavior
constitutes a significant challenge that is not present in the ferromagnetic Ising and
Potts models analyzed in, say, [14].

The Gibbs measure is defined as a probability distribution on the configuration space
X given by

µβ(σ) :=
e−βH(σ)

Zβ
, (2.6)
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where β > 0 is the inverse temperature and where the normalization constant

Zβ :=
∑
σ′∈X

e−βH(σ′)

is the partition function.
The spin system evolves according to a discrete-time Glauber-type Metropolis dynam-

ics, which is described by a single-spin-updating Markov chain {Xβ
t }t∈N on the space X

with the following transition probabilities: for σ, σ′ ∈ X ,

Pβ(σ, σ′) :=

{
Q(σ, σ′)e−β[H(σ′)−H(σ)]+ , if σ′ 6= σ,

1−
∑
η: η 6=σ Pβ(σ, η), if σ′ = σ,

(2.7)

where [t]+ := max{0, t} is the positive part of t and

Q(σ, σ′) :=

{
1

3|V | , if |{v ∈ V : σ(v) 6= σ′(v)}| = 1,

0, if |{v ∈ V : σ(v) 6= σ′(v)}| > 1.

Here, Q is the so-called connectivity matrix and it is symmetric and irreducible, i.e., for
all σ, σ′ ∈ X , there exists a finite sequence of configurations ω0, . . . , ωn ∈ X such that
ω0 = σ, ωn = σ′ and Q(ωi, ωi+1) > 0 for i = 0, . . . , n − 1. We call the triplet (X , H,Q)

energy landscape. The resulting stochastic dynamics defined by (2.7) is reversible
with respect to the Gibbs measure defined µβ in (2.6). The law and the corresponding
expectation of the dynamics are denoted by P and E.

3 Main results

3.1 Stable and metastable states

We denote by X s the set of global minima of the Hamiltonian (2.1). A simple algebraic
computation implies the following proposition.

Proposition 3.1 (Identification of X s). It holds that X s = {1}.

Proof. By the definition (2.1) and the assumption (2.2), it is straightforward that

H(σ) ≥ −
∑
i∈S

Jii
∑

{v,w}∈E

1{σ(v)=σ(w)=i} ≥ −J11

∑
i∈S

∑
{v,w}∈E

1{σ(v)=σ(w)=i}.

The last double summation is exactly
∑
{v,w}∈E 1{σ(v)=σ(w)}, which is clearly bounded

above by |E| = 2KL. Therefore, we conclude that H(σ) ≥ −2J11KL. The equality holds
if and only if σ(v) = σ(w) = 1 for all {v, w} ∈ E, which is equivalent to σ = 1.

Next, we identify the metastable configurations. To this end, we need to define some
crucial notions. A path is a finite sequence ω of configurations ω0, . . . , ωn ∈ X , n ∈ N,
such that Q(ωi, ωi+1) > 0 for i = 0, . . . , n − 1. We denote by Ωσ,σ′ the set of all paths
between σ and σ′. For convenience of notation, we sometimes write ω : σ → σ′ to
indicate ω ∈ Ωσ,σ′ . For any path ω = (ω0, . . . , ωn), we define the height of ω as

Φω := max
i=0,...,n

H(ωi). (3.1)

For any pair of configurations σ, σ′ ∈ X , the communication height Φ(σ, σ′) between σ
and σ′ is defined as the minimal height among all paths ω : σ → σ′, i.e.,

Φ(σ, σ′) := min
ω:σ→σ′

Φω = min
ω:σ→σ′

max
η∈ω

H(η). (3.2)
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We define the set of optimal paths between σ, σ′ ∈ X as

Ωoptσ,σ′ := {ω ∈ Ωσ,σ′ : Φω = Φ(σ, σ′)}. (3.3)

Accordingly, for disjoint subsets A and B of X , we define

Φ(A,B) := min
σ∈A

min
σ′∈B

Φ(σ, σ′)

and
ΩoptA,B := {ω ∈ Ωσ,σ′ : σ ∈ A, σ′ ∈ B, Φω = Φ(A,B)}.

For any σ ∈ X , let Iσ := {η ∈ X : H(η) < H(σ)} be the set of configurations with energy
strictly smaller than H(σ). Then, we define the stability level of σ as

Vσ := Φ(σ, Iσ)−H(σ). (3.4)

If Iσ = ∅ (i.e. if σ ∈ X s), we set Vσ :=∞. Finally, we define the collection of metastable
states as

Xm :=
{
η ∈ X : Vη = max

σ∈X\X s
Vσ
}
. (3.5)

Furthermore, for any σ ∈ X and any ∅ 6= A ⊂ X , we set

Γ(σ,A) := Φ(σ,A)−H(σ). (3.6)

From the definition it immediately follows that Vσ = Γ(σ, Iσ).
First, we investigate the stability level of configurations 2 and 3. We define (cf.

Assumption 2.1-B)

`? :=
⌈2γ12 + γ1

2γ1

⌉
and Γ? := fγ1(γ12) = 2(K + 1)γ23. (3.7)

By definition (A.4) we have that

Γ? = 4`?
(
γ12 +

γ1

2

)
− 2γ1(`?2 − `? + 1) = 4`?γ12 − 2γ1(`?2 − 2`? + 1). (3.8)

The result below shows that the communication height between stable and metastable
states is exactly Γ? above the energy level of metastable configurations.

Theorem 3.2 (Communication height). It holds that

Γ(2,1) = Γ(3,1) = Γ(2,3) = Γ?.

By definition, the previous theorem is equivalent to Φ(2,1) = Φ(3,1) = Φ(2,3) =

H(2) + Γ?. This theorem is proved in Sect. 6.1.
Next, we claim that stability levels of any other configurations are significantly

smaller than Γ?. We present a proof of the following proposition in Sect. 6.2.

Proposition 3.3 (Stability level of other configurations). For any configuration η ∈
X \ {1,2,3},

Vη ≤ 2(`? − 1)(γ23 + γ1).

Remark 3.4. By (3.7), it holds that `? < 2γ12+γ1
2γ1

+ 1. Employing this inequality to the
formula of Γ? given in (3.8), we obtain

Γ? > 4`?γ12 − 2γ1
2γ12 + γ1

2γ1
(`? − 1) = (2γ12 − γ1)`? + (2γ12 + γ1).
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Again using `? < 2γ12+γ1
2γ1

+ 1 on the last term, we have

Γ? > (2γ12 − γ1)`? + 2γ1(`? − 1) = 2γ12`
? + γ1(`? − 2) ≥ 2γ12`

?.

On the other hand, the upper bound appearing in Proposition 3.3 is estimated via
Assumption 2.1-C as

2(`? − 1)(γ23 + γ1) < 2`? × 2γ12

k
=

4

k
γ12`

?

where k is sufficiently large. Therefore, we conclude that

Γ? >
k

2
× 2(`? − 1)(γ23 + γ1),

which implies that the stability levels of configurations other than 1, 2 and 3 are signifi-
cantly smaller than the stability level of metastable configurations 2 and 3.

By combining Theorem 3.2 and Proposition 3.3, we now identify the set Xm.

Theorem 3.5 (Identification of Xm). We have V2 = V3 = Γ? and Xm = {2,3}.

Proof. To prove the theorem, it suffices to demonstrate that

V2 = Γ?. (3.9)

Indeed, then by symmetry we also have V3 = Γ?, and combining these with Proposi-
tion 3.3 we conclude that Xm = {2,3}.

Before proving (3.9), we claim that

Γ(η,1) < Γ? for all η ∈ X \ {1,2,3}. (3.10)

To prove the claim, we fix η ∈ X \{1,2,3}. Starting from η, we find another configuration
η1 with lower energy such that an optimal path from η to η1 realizes the stability level Vη.
Repeating this algorithm, since X is finite and X s = {1}, we can take a finite sequence
η = η0, η1, . . . , ηm = 1 of configurations such that H(ηi) > H(ηi+1) and Vηi = Γ(ηi, ηi+1)

for all 0 ≤ i ≤ m− 1. Then, we estimate

Γ(η,1) = Φ(η,1)−H(η) ≤ max
0≤i≤m−1

Φ(ηi, ηi+1)−H(η),

where the inequality holds by concatenating the m− 1 optimal paths from ηi to ηi+1. By
construction, the last term equals

max
0≤i≤m−1

[Vηi +H(ηi)]−H(η).

By Theorem 3.2 and Proposition 3.3, Vσ ≤ Γ? for all σ 6= 1. Thus, the last display is
bounded by

Γ? +H(η0)−H(η) = Γ?.

This concludes the proof of (3.10).
Finally, we prove V2 = Γ?. Theorem 3.2 readily implies that V2 ≤ Γ?. If, on the

contrary to the desired result, V2 < Γ? then by definition, there exists σ ∈ X with
H(σ) < H(2) such that Φ(2, σ) < Γ? +H(2), where clearly σ 6= 1,2,3. Furthermore, by
the claim (3.10), we have Φ(σ,1) < Γ? +H(σ). Thus,

Φ(2,1) ≤ max{Φ(2, σ),Φ(σ,1)} < Γ? +H(2),

which contradicts Theorem 3.2. This conclude the proof of Theorem 3.5.
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We have another important consequence of Proposition 3.3, which is called the
recurrence property. With probability tending to one in the limit β →∞, starting from
any configuration in X , the process visits X s∪Xm within a time of order e[2(`?−1)(γ23+γ1)]β

which is much smaller than the metastable timescale eΓ?β .
Given a non-empty subset A ⊆ X and a configuration σ ∈ X , we define

τσA := inf{t > 0 : Xβ
t ∈ A} (3.11)

which is the first hitting time of the subset A for the Markov chain {Xβ
t }t∈N starting

from σ.

Theorem 3.6 (Recurrence property). For any σ ∈ X and for any ε > 0, there exists κ > 0

such that for β sufficiently large, we have

P
[
τσ{1,2,3} > eβ[2(`?−1)(γ23+γ1)+ε]

]
≤ e−e

κβ

.

Proof. We apply [57, Theorem 3.1] for the level set with respect to 2(`?−1)(γ23+γ1). This
concludes the proof since X s = {1} by Proposition 3.1, V2 = V3 = Γ? > 2(`?−1)(γ23 +γ1)

by Theorem 3.5 and Vη ≤ 2(`?−1)(γ23 +γ1) for all η ∈ X \{1,2,3} by Proposition 3.3.

3.2 Metastable transition time, mixing time and spectral gap

Our next goal is to study the first hitting time of the stable configuration 1 starting
from a metastable configuration m ∈ Xm = {2,3}, as well as the mixing time and
spectral gap of the stochastic dynamics. For every ε ∈ (0, 1) we define the mixing time
tmixβ (ε) by

tmixβ (ε) := min
{
n ≥ 0 : max

σ∈X
‖Pnβ (σ, ·)− µβ‖TV ≤ ε

}
, (3.12)

where ‖ν − ν′‖TV := 1
2

∑
σ∈X |ν(σ) − ν′(σ)| is the total variation distance between two

probability distributions ν, ν′ on X . Furthermore, we define the spectral gap of the
dynamics as

ρβ := 1− λ(2)
β , (3.13)

where 1 = λ
(1)
β > λ

(2)
β ≥ · · · ≥ λ

(|X |)
β ≥ −1 are the eigenvalues of the matrix Pβ .

Theorem 3.7 (Metastable transition time, mixing time and spectral gap). For any m ∈
{2,3} the following statements hold.

(a) For every ε > 0, limβ→∞P(eβ(Γ?−ε) < τm1 < eβ(Γ?+ε)) = 1.

(b) limβ→∞
1
β logE[τm1 ] = Γ?.

(c) For every ε ∈ (0, 1), limβ→∞
1
β log tmixβ (ε) = Γ? and there exist two constants 0 <

c1 ≤ c2 <∞ independent of β such that for any β > 0, c1e−βΓ? ≤ ρβ ≤ c2e−βΓ? .

Proof. Item (a) follows by [57, Theorem 4.1], while item (b) follows by [57, Theorem 4.9].
In both cases we applied the model-independent results with η0 = m and Γ = Γ∗. To
prove item (c), by [61, Proposition 3.24], it suffices to demonstrate in our model that
Γ̃(X \ {1}) = Γ? (see equation (21) in [61] for the definition of Γ̃). Indeed, by [61, Lemma
3.6] we know that

Γ̃(X \ {1}) = max
η∈X\{1}

Γ(η,1).

By Theorem 3.2, Γ(2,1) = Γ(3,1) = Γ?. Moreover, by the claim (3.10) we have that
Γ(η,1) < Γ? for all η 6= 1,2,3. This concludes the proof.
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(a) (b) (c) (d)

Figure 2: Examples of configurations on a grid graph 12× 9 belonging to (a) B4
1,K(r, s) ⊂

H4(r, s), (b) R2,K−1(r, s) ⊂ Q(r, s), (c) BK−1
1,K (r, s) ⊂P(r, s) and (d) B5

8,K(r, s) ⊂ W 5
8 (r, s).

Spins r and s are represented by colors white and gray, respectively.

...

H1(2,3) HK−4(2,3) HK−3(2,3) Q(2,3) P(2,3) R2,K(2,3)

...

...

Initial
cycle

of 2

Figure 3: Local geometry of the configurations belonging to P(2,3), Q(2,3) and Hi(2,3),
1 ≤ i ≤ K − 3, where K = 8 and L = 10. We refer to (6.11) for the definition of initial
cycles.

3.3 Minimal gates

Next we are interested in identifying the set of minimal gates for the metastable
transitions. First, we need a few more model-independent definitions.

The set

S(A,B) :=
{
ξ ∈ X : ∃ω ∈ ΩoptA,B, ξ ∈ argmaxωH

}
. (3.14)

is known as the set of minimal saddles between A,B ⊆ X . In particular, any ξ ∈ S(A,B)

is called an essential saddle if there exists ω ∈ ΩoptA,B such that ξ ∈ argmaxωH and

argmaxω′H * argmaxωH \ {ξ} for all ω′ ∈ ΩoptA,B \ {ω}

A saddle ξ ∈ S(A,B) which does not satisfy the condition is said to be unessential. One
can easily check that this definition coincides with the classical one [57] but is simpler.

A collection W of configurations is a gate for the transition between A,B ∈ X if
W ⊆ S(A,B) and ω ∩W 6= ∅ for all ω ∈ ΩoptA,B. Moreover,W is said to be a minimal gate

for the transition A → B if it is a gate and for anyW ′ ⊂ W there exists ω′ ∈ ΩoptA,B such
that ω′ ∩ W ′ = ∅. The set G = G(A,B) denotes the union of all minimal gates for the
transition A → B.

Let us now focus on some model-dependent definitions concerning our setting. We
refer to Figs. 2 and 3 for illustrations.

• We say that R ⊆ V is a rectangle of shape a× b if the sites in R form a rectangle
with a columns and b rows. It is a strip if it wraps around Λ, i.e., if a = L or b = K.

• For r, s ∈ S, we denote by Ra,b(r, s) the collection of configurations in which all
vertices have spins r, except for those in a rectangle a× b, which have spins s. Note
that Ra,b(r, s) 6= Rb,a(r, s) if a 6= b. Moreover, we write Bla,b(r, s) (resp. B̂la,b(r, s))
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the collection of configurations in which all vertices have spins r, except for those
which have spins s, in a rectangle a× b with a bar of length l adjacent to one of the
sides of length b (resp. a), with 1 ≤ l ≤ b− 1 (resp. 1 ≤ l ≤ a− 1).

• We set

P(r, s) :=

{
BK−1

1,K (r, s), if K < L,

BK−1
1,K (r, s) ∪ B̂K−1

K,1 (r, s), if K = L.

• We define

Q(r, s) :=

{
R2,K−1(r, s) ∪BK−2

1,K (r, s), if K < L,

R2,K−1(r, s) ∪BK−2
1,K (r, s) ∪RK−1,2(r, s) ∪ B̂K−2

K,1 (r, s), if K = L.

• For 1 ≤ i ≤ K − 3, we define Hi(r, s) as{
Bi1,K(r, s) ∪

⋃K−2
j=i+1B

j
1,K−1(r, s), if K < L,

Bi1,K(r, s) ∪
⋃K−2
j=i+1B

j
1,K−1(r, s) ∪ B̂iK,1(r, s) ∪

⋃K−2
j=i+1 B̂

j
K−1,1(r, s), if K = L.

• Finally, for 2 ≤ j ≤ L− 3 and 1 ≤ h ≤ K − 1 we set

W h
j (r, s) :=

{
Bhj,K(r, s), if K < L,

Bhj,K(r, s) ∪ B̂hK,j(r, s), if K = L.

Using the sets defined above, we now formulate all the possible minimal gates for
the metastable transitions. For m ∈ {2, 3}, we write

W(m,1) := B1
`?−1,`?(m, 1) ∪ B̂1

`?,`?−1(m, 1). (3.15)

Moreover, we abbreviate

W(2,3) :=

K−3⋃
i=1

Hi(2,3) ∪Q(2,3) ∪P(2,3)

∪
L−3⋃
j=2

K−1⋃
h=1

W h
j (2,3) ∪P(3,2) ∪Q(3,2) ∪

K−3⋃
i=1

Hi(3,2). (3.16)

Finally, we consider the following collection C of sets of configurations:

C :=
{
W h
j (2,3)

}
j,h
∪
{
Q(2,3),P(2,3),P(3,2),Q(3,2)

}
∪
{
Hi(2,3)

}
i
∪
{
Hi(3,2)

}
i
,

(3.17)

where the collections in the right-hand side are over all 2 ≤ j ≤ L− 3, 1 ≤ h ≤ K − 1 and
1 ≤ i ≤ K − 3.

First, we address the metastable transition from m ∈ {2,3} to 1. We refer to Fig. 4
for a viewpoint from above the energy landscape.

Theorem 3.8 (Minimal gates for 2 → 1 and 3 → 1). Fix m ∈ {2,3} and consider the
metastable transition from m to 1. Take any set A ∈ C , where C is defined in (3.17).
Then,

(a) W(2,1) ∪W(3,1) is a minimal gate;

(b) W(m,1) ∪A is a minimal gate;

(c) moreover, these are all the minimal gates in the sense that

G(2,1) = G(3,1) =W(2,1) ∪W(3,1) ∪W(2,3).
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W(2,3)

⋃
i Hi(2, 3)

Q(2, 3)

P(2, 3)⋃
j,hWh

j (2, 3) ⋃
i Hi(3, 2)

Q(3, 2)

P(3, 2)

1
C1

3
C3

2
C2

W(3,1)W(2,1)

Figure 4: Viewpoint from above of the energy landscape cut at the energy level Φ(2,1) =

Φ(3,1) = Φ(2,3) = Γ? +H(2), which explains Fig. 1(e) in more detail. Here, Cr denotes
the initial cycle of r; see (6.11) for the exact definition. The gates W(m,1) between
m ∈ {2,3} and 1 consist of singletons, whereas the gate W(2,3) between 2 and 3 is a
complex union of essential saddles.

Next, we state a theorem regarding the minimal gates for the transition between 2

and 3.

Theorem 3.9 (Minimal gates for 2→ 3). Consider the transition from 2 to 3. Take any
set A ∈ C , where C is defined in (3.17). Then,

(a) W(2,1) ∪A is a minimal gate;

(b) W(3,1) ∪A is a minimal gate;

(c) these are all the minimal gates in the sense that

G(2,3) =W(2,1) ∪W(3,1) ∪W(2,3).

We prove Theorems 3.8 and 3.9 in Sect. 6.4.
Finally, in the last result of this section we show that during the metastable transition,

the process typically visits the corresponding gates identified in Theorems 3.8 and 3.9.

Corollary 3.10. Take any set A ∈ C , where C is defined in (3.17).

(a) For the transition from m ∈ {2,3} to 1,

lim
β→∞

Pβ [τmW(2,1)∪W(3,1) < τm1 ] = 1 and lim
β→∞

Pβ [τmW(m,1)∪A < τm1 ] = 1.

(b) For the transition 2→ 3,

lim
β→∞

Pβ [τ2W(2,1)∪A < τ23 ] = 1 and lim
β→∞

Pβ [τ2W(3,1)∪A < τ23 ] = 1.

Proof. By Theorems 3.8 and 3.9, the four sets in the subscripts are gates for the corre-
sponding transitions. Thus, [57, Theorem 5.4] implies the desired equations.

4 Projection operator

In this section, we introduce the notion of projection operators which act on the
configuration space X . These operators are extremely useful for analyzing the energy
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landscape, especially when we want to focus only on two given spin values. First, we
introduce some notation which will be useful in this section and following ones. For each
σ ∈ X and i, j ∈ S, we define the number of spins i in σ as

Ni(σ) :=
∣∣{v ∈ V : σ(v) = i}

∣∣. (4.1)

Then we define, for n ≥ 0, the set of configurations which have exactly n spins i:

V i
n := {η ∈ X : Ni(η) = n}. (4.2)

Moreover, for an edge e ∈ E, we say that e is an ij-edge of σ if the corresponding two
spins are i and j in σ. We write

nij(σ) :=
∣∣{e ∈ E : e is an ij-edge of σ}

∣∣. (4.3)

Using these definitions, we can rewrite the Hamiltonian as in Sect. A.1. Finally, for spin
values r, s ∈ S, we define the projection operator Prs : X → X as

(Prsσ)(x) =

{
s, if σ(x) = r,

σ(x), if σ(x) 6= r.
(4.4)

The operator Prs projects all spins r to s and preserves all the other spins. Intuitively,
one would expect the projected configuration to have lower energy than the original
configuration, since all disagreeing edges between r and s disappear. This is in fact the
case, unless the spin value r is more stable than s (for example, if r = 1 and s = 2), in
which case the projected configuration may still have higher energy than the original
configuration.

Two projections which are important for us are P32 and P12. We begin by an-
alyzing P32. The analysis is simpler because spins 2 and 3 have the same level of
stability.

Lemma 4.1 (Projection 3→ 2). For any σ ∈ X , we have

H(P32σ) ≤ H(σ). (4.5)

Moreover, equality holds if and only if n23(σ) = 0.

Proof. By the definition of P32, it is easy to check that n11(P32σ) = n11(σ), n12(P32σ) =

n12(σ) + n13(σ), n13(P32σ) = 0, n22(P32σ) = n22(σ) + n23(σ) + n33(σ) and n23(P32σ) =

n33(P32σ) = 0. Thus, using the interpretation (A.2) we may write

H(P32σ) = H(2)− γ1n11(σ) + γ12[n12(σ) + n13(σ)]

and
H(σ) = H(2)− γ1n11(σ) + γ12n12(σ) + γ13n13(σ) + γ23n23(σ).

Recalling that γ12 = γ13 from (2.2) and (2.3), we deduce

H(P32σ)−H(σ) = −γ23n23(σ) ≤ 0.

This proves the first statement. Moreover, from (2.3) it follows that the equality holds if
and only if n23(σ) = 0. This concludes the proof.

For a configuration σ ∈ X , we say that a row (resp. column) in Λ is a horizontal
bridge (resp. vertical bridge) of σ if all spins on it have the same value. If there exist
both a horizontal bridge and a vertical bridge simultaneously (in which case the spin
value must be the same), we call the union a cross.
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Given a configuration σ ∈ X and a spin r ∈ S, we say that A ⊆ V is an r-cluster of σ
if it is a maximal connected subset of V on which all spins are r; i.e., if A is connected,
σ(v) = r for all v ∈ A and σ(v) 6= r for all v ∈ ∂A, where ∂A is the outer boundary of A:

∂A :=
{
w ∈ V \A : ∃w′ ∈ A, {w,w′} ∈ E

}
. (4.6)

Next we deal with the projection P12. In this case, as we mentioned in the beginning
of this section, the statement becomes much more restrictive because spin 1 is more
stable than spin 2. Indeed, the next lemma shows that the projection P12 lowers the
energy of a configuration only when this has a low number of spins 1.

Lemma 4.2 (Projection 1 → 2). Suppose that σ ∈ X satisfies H(σ) − H(2) ≤ Γ? and
N1(σ) ≤ `?2. Then, we have

H(P12σ) ≤ H(σ). (4.7)

Moreover, equality holds if and only if N1(σ) = 0.

Proof. Abbreviate σ̃ := P12σ and σ̄ := P32σ. Clearly, we have N1(σ̄) = N1(σ). We divide
into three cases according to the type of 1-bridges of σ.

• If σ has an 1-cross, then we can regard σ̄ as a configuration of spins 2 in the sea of
spins 1. Applying the well-known isoperimetric inequality (e.g. [1, Corollary 2.5])
to the 2-clusters, the perimeter is at least

4
√
N2(σ̄) = 4

√
KL−N1(σ̄) ≥ 4

√
KL− `?2.

Since the perimeter is exactly n12(σ), we have

n12(σ̄) ≥ 4
√
KL− `?2.

Next, since N1(σ̄) ≤ `?2 and each vertex with spin 1 is contained in at most four
11-edges, we have that

n11(σ̄) ≤ 1

2
× 4×N1(σ̄) ≤ 2`?2, (4.8)

where the factor 1
2 appears because there are two spins 1 in a single 11-edge.

Therefore, by (A.2) we deduce that

H(σ̄)−H(2) = −γ1n11(σ̄) + γ12n12(σ̄) ≥ 4
√
KL− `?2γ12 − 2`?2γ1.

This is strictly bigger than Γ? = 4`?γ12 − (2`?2 − 4`? + 2)γ1 (cf. (3.8)). Indeed, we
have to verify that

[2
√
KL− `?2 − 2`?]γ12 > (2`? − 1)γ1.

This holds since by Assumption 2.1-C we have γ12 > γ1, and since the lattice size
K and L are assumed to be sufficiently larger than the critical length `? we have
that 2

√
KL− `?2 − 2`? ≥ 2`? − 1. Therefore, in this case, by Lemma 4.1 we always

have H(σ)−H(2) ≥ H(σ̄)−H(2) > Γ?, which contradicts the assumption.

• If σ has an 1-bridge but no 1-cross, then there are at least K rows or L columns in
σ̄ which are not bridges. In each non-bridge of σ̄, there are at least two 12-edges.
Moreover, by the same logic as in (4.8) there are at most 2`?2 11-edges. Therefore,
we have

H(σ̄)−H(2) ≥ 2 min{K,L}γ12 − 2`?2γ1 = 2Kγ12 − 2`?2γ1.

Similarly, this is strictly bigger than Γ? due to Assumption 2.1-C, so that we get a
contradiction.
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• If σ does not have an 1-bridge, then all 1-clusters of σ do not wrap around the peri-
odic lattice, and thus we may apply the isoperimetric inequality. By the projection
σ 7→ σ̃ = P12σ, only the 11-, 12- and 13-edges of σ are affected. Thus, by (A.2) we
may write

H(σ̃)−H(σ) = γ1n11(σ)− γ12n12(σ) + (γ23 − γ13)n13(σ).

Since γ12 = γ13 > 0 and γ23 > 0 by (2.3),

H(σ̃)−H(σ) ≤ γ1n11(σ)− [n12(σ) + n13(σ)]× (γ12 − γ23).

By (A.3), it holds that 2n11(σ) + n12(σ) + n13(σ) = 4N1(σ). Again by the isoperimet-
ric inequality, n12(σ) + n13(σ) ≥ 4

√
N1(σ) and thus the last-displayed formula is

bounded above by

2
[
N1(σ)−

√
N1(σ)

]
γ1 − 4

√
N1(σ)(γ12 − γ23).

Thus to prove H(σ̃) ≤ H(σ), it suffices to verify that

2(γ12 − γ23) > (
√

N1(σ)− 1)γ1.

Since N1(σ) ≤ `?2 and `? = d 2γ12+γ1
2γ1

e < 2γ12+γ1
2γ1

+ 1 (cf. (3.7)), we have

(
√
N1(σ)− 1)γ1 <

2γ12 + γ1

2γ1
× γ1 = γ12 +

γ1

2
≤ 2(γ12 − γ23). (4.9)

The last inequality follows from Assumption 2.1-C. Therefore, we conclude the
proof of the first statement.

Finally, we investigate the equality condition. Carefully inspecting the proof above, the
equality holds if and only if σ does not have an 1-bridge, n12(σ) = 0 and N1(σ) = 0. This
is equivalent to saying that N1(σ) = 0, in which case σ̃ = σ and thus the equality is
obvious.

Remark 4.3. The last inequality in (4.9) is where the exact condition C is required.
Indeed,

γ12 +
γ1

2
≤ 2(γ12 − γ23) if and only if 2γ12 ≥ 4γ23 + γ1.

5 Comparison with the original Ising path

In this section, we prove that if a path is restricted to only two spins, then it is
equivalent, in the sense of communication height and gates, to the original Ising path
with positive external field (if the spins are {1, 2} or {1, 3}) or the original Ising path with
zero external field (if the spins are {2, 3}).

We say that a path ω is an ij-path if it involves spins i and j only, i.e., ωn(v) ∈ {i, j}
for all n and v ∈ V . According to the notation (A.5), this is equivalent to ω ⊆ X ij .
Proposition 5.1 (Gate property 1). Suppose that ω = (ωn)Nn=0 is an 1r-path from r to 1

for some r ∈ {2, 3}.

(a) Φω ≥ H(2) + Γ?.

(b) If Φω = H(2) + Γ?, then ω ∩W(r,1) 6= ∅ (cf. (3.15)).

Remark 5.2. Item (a) in Proposition 5.1, along with the reference path constructed in
Sect. A.4, corresponds to the communication height. Moreover, item (b) implies that
W(r,1) works as a gate.
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Proof of Proposition 5.1. For σ ∈ X 1r, we have by (A.2) and (A.3) that

H(σ) = H(2)− γ1n11(σ) + γ1rn1r(σ) = H(2)− 2γ1N1(σ) +
(1

2
γ1 + γ1r

)
n1r(σ).

Therefore, X 1r is isomorphic to the original Ising configuration space {+1,−1}V via
correspondence of spins 1↔ +1 and r ↔ −1, and moreover the Hamiltonian is the same
as the original Ising Hamiltonian with coupling constant J := 1

2γ1 + γ1r and external field
h := 2γ1, translated by a fixed real number H(2). Therefore, provided that the Glauber
transitions happen inside the restricted set X 1r, we may refer to the previous well-known
results. Item (a) is equivalent to the lower bound of the communication height, which is
provided in [62, Theorem 3]. Moreover, item (b) is equivalent to saying that the collection
of critical configurations in the Ising model is a gate for the metastable transition. This
is also a very classic result which was first proved in [57, Theorem 5.10].

Similarly, we argue that a 23-path behaves in the same way as the original Ising path
with zero external field. Recall the sets defined in Sect. 3.3.

Proposition 5.3 (Gate property 2). Suppose that ω = (ωn)Nn=0 is a 23-path from 2 to 3.

(a) Φω ≥ H(2) + Γ?.

(b) Suppose that Φω = H(2) + Γ?. Take A ∈ C where C is defined in (3.17). Then,

ω ∩A 6= ∅.

Proof. We may use the same argument as in the proof of Proposition 5.1, with the
modification that here we identify X 23 with the Ising model with zero external field
[12, 50, 51, 60]. This is possible since we have an alternative expression of energy for
σ ∈ X 23, which is

H(σ) = H(2) + γ23n23(σ).

Thus, item (a) is equivalent to [60, Proposition 2.6] and item (b) is proved in [12, Theorem
3.3].

6 Proofs

6.1 Communication height

In this subsection we prove Theorem 3.2. We divide the proof into three propositions.
Specifically, Proposition 6.1 establishes the upper bound Γ?+H(2) for the communication
heights, and Propositions 6.2 and 6.4 establish the matching lower bound.

Proposition 6.1. It holds that Γ(2,1) ≤ Γ?, Γ(3,1) ≤ Γ? and Γ(2,3) ≤ Γ?.

Proof. The reference paths constructed in Sect. A.4 have height Γ? +H(2). From this,
the upper bounds immediately follow.

Proposition 6.2. We have Γ(2,1) = Γ(3,1) ≥ Γ?.

Proof. By the model symmetry between spins 2 and 3, it suffices to prove that Γ(2,1) ≥
Γ?. To this end, take an arbitrary path ω = (ωn)Nn=0 so that ω0 = 2 and ωN = 1. Then,
define (cf. (4.4))

ω̄n := P32ωn for each 0 ≤ n ≤ N.

It holds automatically that ω̄0 = 2, ω̄N = 1 and ω̄n ∈ X 12 (cf. (A.5)). Since ωn and ωn+1

differ in exactly one site, ω̄n and ω̄n+1 differ in at most one site. These observations
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imply that ω̄ = (ω̄n)Nn=0 is an 12-path (possibly with non-updating instances) from 2 to 1.
Therefore, Proposition 5.1-(a) implies that

Φω̄ ≥ H(2) + Γ?.

Then, Lemma 4.1 implies that H(ωn) ≥ H(ω̄n) for all n and thus

Φω ≥ Φω̄ ≥ H(2) + Γ?.

Since our choice of ω was arbitrary, we deduce that Γ(2,1) ≥ Γ?.

All it remains is to provide a lower bound for Γ(2,3). Before this, we state a lemma.
Recall the notion of V i

n defined in (4.2). Moreover, for m ∈ {2, 3} we define

W ′(m,1) := B̂1
`?−1,`?(m, 1) ∪B1

`?,`?−1(m, 1).

Intuitively,W ′(m,1) is the collection of configurations that have a protuberance of spin
1 on a wrong side of the rectangular 1-cluster, in the sense that we cannot proceed
further to reach 1 without returning to a protocritical configuration in R`?−1,`?(m, 1) ∪
R`?,`?−1(m, 1).

Lemma 6.3. Suppose that η ∈ V 1
`?(`?−1)+1.

(a) It holds that H(η)−H(2) ≥ Γ?.

(b) Equality in (a) holds if and only if η ∈
⋃3
m=2[W(m,1) ∪W ′(m,1)].

Proof. (a) We abbreviate η̄ := P32η ∈ X 12, where clearly η̄ ∈ V 1
`?(`?−1)+1. We divide into

three cases as we did in the proof of Lemma 4.2.

• If η̄ has an 1-cross, then we may regard η̄ as a configuration of spins 2 in the sea of
spins 1. Recalling (4.1) and (4.3) and applying the isoperimetric inequality (cf. [1,
Corollary 2.5]), we have

n12(η̄) ≥ 4
√
N2(η̄) = 4

√
KL−N1(η̄) = 4

√
KL− `?(`? − 1)− 1. (6.1)

Using the same argument as in (4.8), it holds that n11(η̄) ≤ 2N1(η̄) = 2`?(`?− 1) + 2.
Thus, by (A.2) we have

H(η̄)−H(2) = −γ1n11(η̄)+γ12n12(η̄)≥4
√
KL− `?2 + `? − 1γ12 − (2`?2 − 2`? + 2)γ1.

By Assumption 2.1-C, it can be shown that this is strictly larger than Γ? = 4`?γ12 −
(2`?2−4`?+2)γ1 via a similar argument as in the first case in the proof of Lemma 4.2.
Therefore, by Lemma 4.1 we obtain

H(η) ≥ H(η̄) > H(2) + Γ?.

• If η̄ has an 1-bridge but no 1-cross, then proceeding similarly to the second case in
proof of Lemma 4.2, we obtain

H(η)−H(2) ≥ H(η̄)−H(2) ≥ 2Kγ12 − (2`?2 − 2`? + 2)γ1 > Γ?.

• If η̄ does not have an 1-bridge, then all 1-clusters of η̄ are in the sea of spins 2.
By (A.3) and since n13(η̄) = 0 and N1(η̄) = `?(`? − 1) + 1, we have

2n11(η̄) + n12(η̄) = 4`?(`? − 1) + 4.
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Then by (A.2),

H(η̄)−H(2) = γ12n12(η̄)− γ1n11(η̄) = (4`?2 − 4`? + 4)γ12 − n11(η̄)(γ1 + 2γ12).

Since N1(η̄) = `?(`? − 1) + 1, by the isoperimetric inequality, the perimeter of the
1-clusters is at least 4`?. This is equivalent to n12(η̄) ≥ 4`? and thus equivalent to
n11(η̄) ≤ 2`?2 − 4`? + 2. Hence,

H(η̄)−H(2) ≥ (4`?2 − 4`? + 4)γ12 − (2`?2 − 4`? + 2)(γ1 + 2γ12) = Γ?,

which concludes the proof of item (a) since, by Lemma 4.1, we have H(η) ≥ H(η̄).

(b) By the proof above, the equality holds if and only if η̄ does not have an 1-bridge, the
equality in the isoperimetric inequality holds and H(η) = H(η̄). By Lemma 4.1, this is
equivalent to

η = η̄ ∈
3⋃

m=2

[W(m,1) ∪W ′(m,1)],

which proves item (b).

Now we are ready to prove the lower bound of Γ(2,3).

Proposition 6.4. It holds that Γ(2,3) ≥ Γ?.

Proof. Assume by contradiction that there exists a path (ωn)Nn=0 from 2 to 3 such that
H(ωn)−H(2) < Γ? for all n. Recall P12 from (4.4) and define

ω̃n := P12ωn.

It is clear that ω̃0 = 2 and ω̃N = 3. Thus, (ω̃n)Nn=0 is a 23-path (possibly with some
non-updating instances) from 2 to 3. Then, Proposition 5.3-(a) indicates that

max
0≤n≤N

H(ω̃n) ≥ H(2) + Γ?.

To conclude the proof, it is enough to show that N1(ωn) ≤ `?2 for all n. Indeed, if the
claim holds then we may apply Lemma 4.2 to each ωn, so that along with the last display
we have

max
0≤n≤N

H(ωn) ≥ max
0≤n≤N

H(ω̃n) ≥ H(2) + Γ?.

This contradicts the original assumption.
It remains to prove the claim. We prove that N1(ωn) ≤ `?(`? − 1) for all n, which is

clearly sufficient. If not, N1(ωM ) ≥ `?(`? − 1) + 1 for some M . Since N1(ω0) = 0 and
|N1(ωn+1) − N1(ωn)| ≤ 1 for any n, there exists n0 such that N1(ωn0

) = `?(`? − 1) + 1.
Then by Lemma 6.3-(a), H(ωn0) ≥ H(2) + Γ? which contradicts our assumption. Thus,
we conclude the proof of the claim.

Proof of Theorem 3.2. The statement now follows directly from Propositions 6.1, 6.2
and 6.4.

6.2 Stability level

In this subsection we prove Proposition 3.3, i.e., we estimate the stability level of
configurations other than 1, 2 and 3. First we introduce some notation.

• For σ ∈ X and v ∈ V , we denote by tile centered at v, or v-tile, the collection of five
vertices consisting of v and its four nearest neighbors.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1

1 1
r r r r r r r r r r r r r r r r r r r r r
r r r r r r r

r r r r
s

s

s s s s s s s

Figure 5: All possible stable tiles for r, s ∈ {2, 3}, r 6= s. The tiles are depicted up to
rotations and reflections.

• A v-tile is stable for σ if any spin flip on v from σ(v) to any other spin does not
decrease the energy.

• Moreover, we say that a stable v-tile is strictly stable if any spin flip on v from σ(v)

to any other spin strictly increases the energy.

First, we can characterize all the stable and strictly stable tiles. Since the following
lemma can be proved by simple algebra, we omit the proof.

Lemma 6.5 (Stable and strictly stable tiles). Let σ ∈ X and v ∈ V . Then, v-tile is strictly
stable for σ if and only if the following statements hold.

• If σ(v) = 1, then v has at least two neighbors with spin 1, as in Fig. 5-(a)(c)(f)(g)(i)(j).

• If σ(v) = r ∈ {2, 3}, then v has either at least three neighbors with spin r, or exactly
two neighbors with spin r and one neighbor with spin 1, as in Fig. 5-(b)(d)(e)(h)(k).

Moreover, v-tile is stable but not strictly stable for σ if and only if σ(v) = r ∈ {2, 3} and v
has exactly two neighbors with spin r and no neighbor with spin 1, as in Fig. 5-(l)(m).

Given a spin configuration σ, an edge e = {x, y} ∈ E is called an interface of σ if
σ(x) 6= σ(y). Moreover, two different clusters C1 and C2 of σ are said to interact with
each other if there exists v /∈ C1 ∪ C2 such that v is connected to both C1 and C2, i.e.,

∃w1 ∈ C1 and ∃w2 ∈ C2 such that {v, w1} ∈ E and {v, w2} ∈ E. (6.2)

Moreover, we define the set of local minima M as

M :=
{
σ ∈ X : H(σ) < H(σ′) for all σ′ 6= σ with Pβ(σ, σ′) > 0

}
, (6.3)

and the set of plateaux M̄ as

M̄ :=
⋃

D stable plateaux

D. (6.4)

Here, a subset D ⊂ X is a stable pleateau if it is a maximal connected subset of equal
energy, so that for any σ ∈ D and σ′ ∈ ∂D it holds that H(σ) < H(σ′). It is obvious by
definition that

σ ∈M ⇔ every tile is strictly stable for σ. (6.5)

and

σ ∈M ∪ M̄ ⇒ every tile is stable for σ. (6.6)

First, we prove that all the 1-clusters of the configurations in M ∪ M̄ must be
rectangles.

Lemma 6.6. Suppose that σ ∈M ∪ M̄ . Then, each 1-cluster of σ is a rectangle.

Proof. We fix σ ∈M ∪ M̄ so that by (6.6), all tiles of σ must be of the form in Fig. 5. We
fix an 1-cluster C of σ. Consider the border of C, which is defined as{

{v, w} ∈ E : v ∈ C and w ∈ ∂C
}
.
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Λ

C

Border of C

(a)

w1
w2

v

C

Λ

(b)

Figure 6: Illustrations regarding the proof of Lemma 6.6.

We refer to Fig. 6-(a) for an illustration. If C is not a rectangle, then there exists at least
one internal angle of 3

2π in the border, as one can see in Fig. 6-(b) where w1, w2 ∈ C and
v /∈ C. This implies that σ(w1) = σ(w2) = 1 whereas σ(v) 6= 1. Then by Lemma 6.5, v-tile
is not stable for σ. This contradicts the fact that σ ∈M ∪ M̄ due to (6.6). Therefore, we
conclude that C is a rectangle.

Remark 6.7. It would possible to investigate further the equivalent conditions on the
1-clusters for a configuration to belong to M ∪ M̄ . However, we do not pursue this
further because it is not required for proving main results.

Now, we are ready to prove Proposition 3.3.

Proof of Proposition 3.3. To calculate the stability level of η ∈ X \ {1,2,3}, suppose first
that η /∈M ∪ M̄ . Then by definition (cf. (6.3) and (6.4)), there exists η′ ∈ X such that
H(η′) < H(η) and Pβ(η, η′) > 0. Thus, clearly Vη = 0. Therefore, we may assume that
η ∈ (M ∪ M̄ ) \ {1,2,3}. It suffices to prove that

Vη ≤ max
{

2γ12 − γ1, 2(`? − 1)(γ23 + γ1), 2γ23

}
since clearly the maximum among the constants in the right-hand side is 2(`?−1)(γ23+γ1).
We divide into two cases.

(Case 1: η has an 1-cluster) In this case, by Lemma 6.6 η has an 1-cluster C which is
a rectangle. Since η 6= 1, we have C ( V .

• (If C has a side of length ` ≥ `?) Since C ( V , we can define a path ω =

(ω0, . . . , ω`), where ω0 = η and ω` = η̄, that flips consecutively those spins adjacent
to a side of C of length ` to spin 1. Then, a simple computation shows that

H(ω1)−H(η) ≤ 2γ12 − γ1 and H(ωi)−H(ωi−1) ≤ −2γ1 for any 2 ≤ i ≤ `.
(6.7)

Thanks to (6.7), we have that

H(η̄)−H(η) ≤ 2γ12 − (2`? − 1)γ1 < 0.

The last inequality holds since `? = d 2γ12+γ1
2γ1

e > 2γ12+γ1
2γ1

by Assumption 2.1-A.
Moreover, the height of ω is attained by either ω0 = η or ω1, which has energy at
most H(η) + (2γ12 − γ1). Therefore, we deduce in this case that Vη ≤ 2γ12 − γ1.

• (If all sides of C have lengths smaller than `?) Suppose that C is a rectangle
p×q. Since |∂C| = 2(p+q) and all spins on ∂C are either 2 or 3, N2(∂C)+N3(∂C) =

2(p+ q). Without loss of generality, we assume that

N2(∂C) ≥ p+ q and N3(∂C) ≤ p+ q. (6.8)
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. . . . . .

Figure 7: The 4 × 3 rectangle represents the 1-cluster whose spins are sequentially
flipped to 2.

We define a path ω = (ωn)pqn=0 from ω0 = η to ωpq =: η′ as follows: starting from
the upper-left corner of C, we update each spin 1 in C to spin 2 consecutively in a
clockwise manner, until all the spins 1 in C are updated to spins 2, see Fig. 7.

First, we calculate H(η′) − H(η). To this end, note that the edges contained in
V \ C are not affected by the pq spin updates. Thus,

H(η′)−H(η) = (2pq − p− q)γ1

[
−N2(∂C)γ12 + N3(∂C)(γ23 − γ13)

]
.

Here, 2pq − p− q is the number of internal edges in C. Hence, along with (6.8),

H(η′)−H(η) ≤ (2pq − p− q)γ1 + (p+ q)γ23 − 2(p+ q)γ12

= 2pqγ1 − (p+ q)(2γ12 − γ23 + γ1).

Subjected to the condition 1 ≤ p, q < `?, a simple algebraic computation reveals
that the maximum of the last term is attained on (p, q) = (1, 1) or (`? − 1, `? − 1). If
(p, q) = (1, 1) then the value equals −4γ12 + 2γ23 < 0 by Assumption 2.1-C, whereas
if (p, q) = (`? − 1, `? − 1) then the value becomes

2(`? − 1)[(`? − 1)γ1 − 2γ12 + γ23 − γ1] < 2(`? − 1)
(
− γ12 + γ23 −

γ1

2

)
< 0,

where we used `? < 2γ12+γ1
2γ1

+ 1 in the first inequality and Assumption 2.1-C in the
second inequality. Thus, we deduce that

H(η′)−H(η) < 0.

Therefore, to estimate the stability level of η we may focus on the maximal energy
attained along the path ω : η → η′. By (A.2), for each 1 ≤ n ≤ pq it holds that

H(ωn)−H(η) = −γ1[n11(ωn)− n11(η)] +
∑
i<j

γij [nij(ωn)− nij(η)].

Note that the edges contained in V \ C are unchanged along the path. Thus, we
may write

H(ωn)−H(η) = g1(n) + g2(n),

where

g1(n) :=− γ1

[ ∑
{x,y}∈E: {x,y}∩C 6=∅

1{ωn(x)=ωn(y)=1} − (2pq − p− q)
]

+ γ12

[ 3∑
j=2

∑
{x,y}∈E: {x,y}∩C 6=∅

1{{ωn(x),ωn(y)}={1,j}} − 2(p+ q)
]

(6.9)

and

g2(n) := γ23

∑
{x,y}∈E: {x,y}∩C 6=∅

1{{ωn(x),ωn(y)}={2,3}}. (6.10)
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First, note that g1 records precisely the energy of the (reversed) reference path
from 2 to a configuration with a single 1-cluster C, translated by a fixed real number
which is (2pq − p− q)γ1 − 2(p+ q)γ12 +H(2). Since p, q ≤ `? − 1, it can be inferred
from Definition A.2 that

max
0≤n≤pq

g1(n) = g1(p− 1) = 2(p− 1)γ1.

Next, note that g2 is monotone increasing. Hence, we apply a crude bound via
assumption (6.8) by

max
0≤n≤pq

g2(n) = g2(pq) = γ23 ×N3(∂C) ≤ (p+ q)γ23.

Therefore, we estimate

max
n
{H(ωn)−H(η)} ≤ max

n
g1(n) + max

n
g2(n) ≤ 2(p− 1)γ1 + (p+ q)γ23.

Since p, q ≤ `? − 1, this is bounded above by

2(`? − 2)γ1 + 2(`? − 1)γ23 < 2(`? − 1)(γ23 + γ1).

Hence, we deduce that

Vη ≤ max
0≤n≤pq

{H(ωn)−H(η)} < 2(`? − 1)(γ23 + γ1)

and this concludes the proof of Case 1.

(Case 2: η does not have an 1-cluster) In this case, η ∈ X 23 (cf. (A.5)). We claim that

Vη ≤ 2γ23.

To this end, we take a 2-cluster C ′ of η which is possible since η 6= 3. If there is an internal
angle of 3

2π in the border of C ′, as in the proof of Lemma 6.6 we can find w1, w2 ∈ C ′ and
v ∈ ∂C ′ such that η(v) = 3, η(w1) = η(w2) = 2 and w1 ∼ v ∼ w2. Thus, by updating the
spin 3 at site v to spin 2, the energy difference is at most 2γ23 − 2γ23 = 0, which means
that the energy does not increase. Moreover, the number of spins 2 increases. If we
repeat this procedure as long as there remains an internal angle of 3

2π in the border
of some 2-cluster, we either obtain 2 (then there is nothing to prove since in this case
Vη = 0), or obtain a configuration η̂ where all internal angles of 2-clusters are at most π.
We may assume the latter case.

All that remains to be proved is that Vη̂ ≤ 2γ23. There are two subcases depending on
the internal angles of the 2-clusters of η̂.

• (If the internal angles are all π) In this subcase, all the 2-clusters are strips and
in turn all the 3-clusters are also strips. Thus, taking any 3-bridge in η̂ which is
adjacent to a 2-cluster, we can update consecutively the spins 3 to spins 2, so that
the maximal energy along the updates are H(η̂) + 2γ23, which can be attained only
at the first step. Repeating this, we eventually obtain 2. Therefore, we have proved
that Vη̂ ≤ 2γ23.

• (If an internal angle is 1
2π) By simple inspection, there always exists a collection

of spin dispositions which have the form as in Fig. 8.

Thus, by updating consecutively the indicated light-gray (spin 2) colors to dark-gray
(spin 3) colors, the energy does not increase along the path and at the last step
the energy decreases by at least 2γ23. Thus, we deduce that Vη̂ = 0 in this case.
Therefore, we are done.
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Figure 8: Light-gray and dark-gray colors represent spins 2 and 3, respectively.

6.3 Initial cycle and restricted gate

In this subsection we define the initial cycle for each metastable and stable configu-
rations. Then, we prove some key lemmas regarding restricted gates, which are crucial
to prove the main results in Sect. 3.3 regarding the minimal gates.

For each r ∈ S, we define the initial cycle of r as

Cr := {σ ∈ X : Φ(r, σ) < H(2) + Γ?}. (6.11)

By Theorem 3.2, 1, 2 and 3 are mutually separated by the energy barrier H(2) + Γ?.
Therefore, it follows that C1, C2 and C3 are mutually disjoint.

First, we show that the domains of attraction are stable under projections.

Lemma 6.8. It holds that

(a) P32C1 ⊂ C1 and P32C2 ⊂ C2.

(b) P12C2 ⊂ C2 and P12C3 ⊂ C3.

Proof. (a) Suppose that σ ∈ Cr for some r ∈ {1, 2}. Then, there exists a path ω : σ → r

whose height is strictly less than H(2) + Γ?. Then by Lemma 4.1, the projected path
P32ω : P32σ → r has height also strictly less than H(2)+Γ?. This proves that P32σ ∈ Cr.
(b) First, we claim that for any η ∈ X ,

η ∈ C2 ∪ C3 implies N1(η) ≤ `?(`? − 1). (6.12)

To this end, assume by contradiction that N1(η) > `?(`?−1) and, without loss of generality,
assume that η ∈ C2. Take a path ω0 : η → 2 whose height is strictly less than H(2) + Γ?.
Then since N1(2) = 0, there exists ζ ∈ ω0 such that N1(ζ) = `?(`? − 1) + 1. Then by
Lemma 6.3, H(ζ) ≥ H(2) + Γ? and we obtain a contradiction.

Now, assume σ ∈ Cs for some s ∈ {2, 3}. Then, there exists a path ω : σ → s

whose height is less than H(2) + Γ?. By the claim above, the number of spins 1 of
every configuration in ω does not exceed `?(`? − 1). Thus by Lemma 4.2, the projected
path P12ω : P12σ → s also has height less than H(2) + Γ? and we conclude that
P12σ ∈ Cs.

Now, the first result in this subsection analyzes the optimal paths from m ∈ {2,3} to
1 which do not visit Cm′ , where {m,m′} = {2, 3}. Such paths are called restricted-paths
in [12].

Proposition 6.9. Suppose that ω = (ωn)Nn=0 is an optimal path from m to 1 which does
not visit Cm′ where {m,m′} = {2, 3}. Then, we have

ω ∩W(m,1) 6= ∅.

Proof. Without loss of generality, assume that m = 2. As ω0 = 2 /∈ C1 and ωN = 1 ∈ C1,
we can define

N ′ := min{1 ≤ n ≤ N : ωn ∈ C1}.

Then, ωN ′ ∈ C1 and

ω0, . . . , ωN ′−1 /∈ C1 ∪ C3. (6.13)
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Define ω̄n := P32ωn for each 0 ≤ n ≤ N ′. Then, ω̄0 = 2 and by Lemma 6.8-(a),
ω̄N ′ ∈ C1, so that ω̄ = (ω̄n)N

′

n=0 is an 12-path from 2 to C1. As the height of (ωn)N
′

n=0

is at most H(2) + Γ?, Lemma 4.1 implies that the height of ω̄ is at most H(2) + Γ?.
Thus by Proposition 5.1-(a), the height of ω̄ must be exactly H(2) + Γ? and in turn by
Proposition 5.1-(b),

ω̄ ∩W(2,1) 6= ∅.

Hence, there exists 0 ≤ m ≤ N ′ so that ω̄m ∈ W(2,1). It readily holds that H(ω̄m) =

H(2) + Γ?. Moreover, by Lemma 4.1, H(ωm) ≥ H(ω̄m). Thus,

H(2) + Γ? ≥ H(ωm) ≥ H(ω̄m) = H(2) + Γ?,

so that equalities must hold in all places. Then, Lemma 4.1 again implies that

ωm ∈ W(2,1) or ωm ∈ W(3,1).

We conclude the proof of this lemma by showing that the latter is impossible. To this
end, suppose on the contrary that ωm ∈ W(3,1). Then since Pβ(ωm, ωm−1) > 0 and
H(ωm) = H(2) + Γ?, we readily deduce that

ωm−1 ∈ R`?−1,`?(3, 1) ∪R`?,`?−1(3, 1) (6.14)

or

ωm−1 ∈ B2
`?−1,`?(3, 1) ∪ B̂2

`?,`?−1(3, 1), (6.15)

since any other possibility implies that H(ωm−1) > H(ωm) = H(2) + Γ?, which is im-
possible. If (6.14) holds, then a part of the reference path 3 → 1 with respect to ωm
guarantees that ωm−1 ∈ C3 which contradicts the condition (6.13). If (6.15) holds then
the other side of the reference path guarantees that ωm−1 ∈ C1, and we again obtain a
contradiction with (6.13).

Next, we deal with the optimal paths from 2 to 3 which do not visit C1.

Proposition 6.10. Suppose that ω = (ωn)Nn=0 is an optimal path from 2 to 3 which does
not visit C1. Choose any set A ∈ C , where C is defined in (3.17). Then, we have

ω ∩A 6= ∅.

Proof. First, we claim that

N1(ωn) ≤ `?2 − 1 for all 0 ≤ n ≤ N.

To prove the claim, suppose the contrary that there exists M such that N1(ωM ) ≥
`?2. Then since N1(ω0) = N1(2) = 0, we can take the largest n0 ∈ [0,M ] such that
N1(ωn0

) = `?2 − `? + 1. Then, N1(ωn) ≥ `?2 − `? + 2 for n0 < n ≤M . Then by Lemma 6.3,
H(ωn0

) = H(2) + Γ? and

ωn0 ∈
3⋃

m=2

[W(m,1) ∪W ′(m,1)].

If ωn0
∈ W(m,1) for some m ∈ {2, 3} then since N1(ωn0+1) = N1(ωn0

) + 1, the only
possible option (so that H(ωn0+1) ≤ H(2) + Γ?) is

ωn0+1 ∈ B2
`?−1,`?(m, 1) ∪ B̂2

`?,`?−1(m, 1).
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Then, a suitable reference path from ωn0+1 to 1 guarantees that ωn0+1 ∈ C1, which
contradicts the assumption of the proposition. Hence, we may assume that

ωn0
∈

3⋃
m=2

W ′(m,1).

We denote by R0 the rectangle of side lengths `? − 1 and `? + 1, which is the smallest
rectangle containing the 1-cluster of ωn0 . We will demonstrate that

{v ∈ V : ωn(v) = 1} ⊆ R0 for all n0 ≤ n ≤M,

which contradicts N1(ωM ) ≥ `?2 and thus proves the first claim. Let us suppose the
contrary. Then, there exists m0 ∈ (n0,M ] such that {v ∈ V : ωn(v) = 1} ⊆ R0 for all
n0 ≤ n < m0 and {v ∈ V : ωm0

(v) = 1} * R0. As usual, we write ω̄n := P32ωn.

• (Step 1) H(ω̄n)−H(2) ≥ 4`?γ12 − 2γ1(`?2 − `? − 1) for all n0 ≤ n < m0.

Since N1(ω̄n) ≥ `?2 − `? + 1 for n0 ≤ n < m0, every row and column of R0 must
have at least one spin 1. Indeed, if not then we would have

N1(ω̄n) ≤ max{(`? − 1)(`? + 1− 1), (`? + 1)(`? − 1− 1)} = `?2 − `?,

which contradicts N1(ω̄n) ≥ `?(`? − 1) + 1. Thus, in each corresponding row and
column there exists at least two 12-edges in ω̄n, so that we have

n12(ω̄n) ≥ 2(`? − 1) + 2(`? + 1) = 4`?. (6.16)

Moreover, clearly the maximum of n11(ω̄n) is attained when the box R0 is full of
spins 1:

n11(ω̄n) ≤ (`? − 1)`? + (`? + 1)(`? − 2) = 2`?2 − 2`? − 2. (6.17)

Thus, by (6.16), (6.17) and (A.2) we deduce

H(ω̄n)−H(2) = n12(ω̄n)γ12 − n11(ω̄n)γ1 ≥ 4`?γ12 − 2γ1(`?2 − `? − 1).

• (Step 2) H(ωm0
) > H(2) + Γ?, which yields a contradiction.

Consider the spin flip from ω̄m0−1 to ω̄m0
. Since this spin flip happens outside R0,

the energy difference is at least 2γ12 − γ1 and at most 4γ12. Therefore, by Step 1,
we deduce that

H(ω̄m0
)−H(2) ≥ H(ω̄m0−1)−H(2)+(2γ12−γ1) ≥ (4`?+2)γ12−γ1(2`?2−2`?−1) > Γ?.

Indeed, the last inequality is equivalent to (cf. (3.8)) 2γ12 > (2`? − 3)γ1, which can
be rearranged as

2γ12 + γ1

2γ1
> `? − 1.

This is obvious by (3.7). Hence, by Lemma 4.1 we have H(ωm0) ≥ H(ω̄m0)) >

H(2) + Γ?.

Now, we return to the proof of Proposition 6.10. The idea is similar to the proof of
Proposition 6.9. As ω0 = 2 /∈ C3 and ωN = 3 ∈ C3, we may define

N ′ := min{1 ≤ n ≤ N : ωn ∈ C3},
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so that ωN ′ ∈ C3 and

ω0, . . . , ωN ′−1 /∈ C1 ∪ C3. (6.18)

Define ω̃n := P12ωn for each 0 ≤ n ≤ N ′. Then, ω̃0 = 2 and by Lemma 6.8-(b) ω̃N ′ ∈ C3,
so that ω̃ = (ω̃n)N

′

n=0 is an 23-path from 2 to C3. As the height of (ωn)N
′

n=0 is at most
H(2) + Γ?, Lemma 4.2, which is applicable by the first claim, implies that the height of ω̃
is also at most H(2) + Γ?. Thus by Proposition 5.3-(a), the height of ω̃ must be exactly
H(2) + Γ? and thus by Proposition 5.3-(b),

ω̃ ∩A 6= ∅.

Hence, there exists 0 ≤ m ≤ N ′ so that ω̃m ∈ A . It holds that H(ω̃m) = H(2) + Γ?.
Moreover, by Lemma 4.2, H(ωm) ≥ H(ω̃m). Thus,

H(2) + Γ? ≥ H(ωm) ≥ H(ω̃m) = H(2) + Γ?,

so that equalities must hold in all places. Then Lemma 4.2 again implies that

ωm = ω̃m ∈ A ,

which concludes the proof.

6.4 Minimal gates for the metastable transition

In this final subsection, we prove the results stated in Sect. 3.3. Referring to the
landscape given in Fig. 4 shall be helpful to understand the gist of the ideas given here.

First, we focus on Theorem 3.8. Since the situation is totally symmetric between
spins 2 and 3, we prove Theorem 3.8 for m = 2.

Proof of Theorem 3.8-(a). We prove that W(2,1) ∪ W(3,1) is a minimal gate for the
transition 2 → 1. First, suppose that ω = (ωn)Nn=0 is an optimal path 2 → 1. Consider
the last visit of ω to C2 ∪ C3, which is possible because ω starts at 2 ∈ C2 ∪ C3. If the last
visit is to C2, so that after then it does not visit C3, then by Proposition 6.9 we deduce
that ω ∩W(2,1) 6= ∅. If the last visit is to C3, then similarly by Proposition 6.9, we have
ω ∩W(3,1) 6= ∅. This proves thatW(2,1) ∪W(3,1) is a gate.

To show that it is minimal, take any σ ∈ W(2,1) ∪W(3,1). It suffices to show that
[W(2,1)∪W(3,1)] \ {σ} is not a gate. If σ ∈ W(2,1), then the reference path 2→ 1 with
respect to σ defined in Definition A.2 does not visitW(2,1)∪W(3,1) except at σ, and thus
we are done. If σ ∈ W(3,1), we can concatenate any reference path from 2 to 3 (given in
Definition A.3) and the reference path 3→ 1 with respect to σ (given in Definition A.2)
to obtain an optimal path from 2 to 1. This path does not visitW(2,1) ∪W(3,1) except
at σ. In these two cases we proved thatW(2,1) ∪W(3,1) is indeed a minimal gate.

Proof of Theorem 3.8-(b). As stated in the theorem, we fix a set A ∈ C . We prove that
W(2,1) ∪A is a minimal gate. First, we demonstrate that it is a gate. Take an arbitrary
optimal path ω = (ωn)Nn=0 from 2 to 1. As we did in the proof of part (a), we divide
into two cases, but in this case we consider the first visit to C1 ∪ C3 which is possible
since 1 ∈ C1 ∪ C3. If the first visit to C1 ∪ C3 is to C1, then by Proposition 6.9 it holds that
ω ∩W(2,1) 6= ∅. If the first visit to C1 ∪ C3 is to C3, then by Proposition 6.10 it holds that
ω ∩A 6= ∅.

Finally, we prove thatW(2,1)∪A is minimal. Take any σ ∈ W(2,1)∪A . If σ ∈ W(2,1),
then the reference path 2→ 1 with respect to σ defined in Definition A.2 does not visit
W(2,1) ∪ A except at σ, and thus we are done. If σ ∈ A , we can concatenate the
reference path from 2 to 3 with respect to σ (given in Definition A.3) and any reference
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path from 3 to 1 (given in Definition A.2) to obtain an optimal path from 2 to 1. This
path does not visitW(2,1) ∪A except at σ. Therefore, we conclude thatW(2,1) ∪A is
minimal.

Next, we prove that there are no configurations, other than the ones characterized
above, that form another minimal gate. This is exactly the content of item (c).

Proof of Theorem 3.8-(c). By the equivalent characterization of unessential saddles
given in [57, Theorem 5.1], it suffices to prove that every σ /∈ W(2,1)∪W(3,1)∪W(2,3)

is unessential, i.e., for any ω ∈ Ωopt2,1 with σ ∈ ω, there exists another ω′ ∈ Ωopt2,1 such that
argmaxω′H ⊆ argmaxωH \ {σ}.

The idea is nearly the same as the one presented in [12, Proof of Theorem 3.2], so
we will briefly sketch the proof. We fix such σ and ω ∈ Ωopt2,1. Then, as we demonstrated
above,W(2,1) ∪W(3,1) is a gate for 2→ 1, and thus

ω ∩ [W(2,1) ∪W(3,1)] 6= ∅.

If there exists ζ ∈ ω ∩W(2,1), then we may construct ω′ as the reference path 2 → 1

with respect to ζ, so that

argmaxω′H = {ζ} ⊆ argmaxωH \ {σ}.

If ω∩W(2,1) = ∅, then ω must visit C3 before C1; otherwise, there is a subpath of ω from
2 to C1 which does not visit C3, and then Proposition 6.9 implies that ω ∩W(2,1) 6= ∅
which yields a contradiction. Thus by Proposition 6.10, ω ∩ A 6= ∅ where A is any
collection chosen as in Proposition 6.10. Therefore, we can apply the argument given
in [12, Proof of Theorem 3.2], where we record the last visit to H1(2,3) and then the
first visit to H1(3,2). Then, we can record all the gate configurations visited by ω during
this period, and then glue them together to construct a reference path ω′1 from 2 to 3.
Next, since ω ∩W(2,1) = ∅ it holds that ω ∩W(3,1) 6= ∅. Thus, there exists a reference
path ω′2 : 3→ 1 which visits the configuration belonging to ω ∩W(3,1). Concatenating
ω′1 and ω′2, we obtain a new optimal path ω′ so that

argmaxω′H ⊆ argmaxωH.

Moreover, argmaxω′H is clearly a subset of W(2,3) ∪ W(3,1), so that σ /∈ argmaxω′H.
Therefore, we conclude that

argmaxω′H ⊆ argmaxωH \ {σ}.

This concludes the proof. For a more detailed explanation of the construction of ω′1, we
refer to [12, Proof of Theorem 3.2].

Proof of Theorem 3.9. The proof follows the same steps as the previous one; the main
ingredients are Propositions 6.9 and 6.10. We omit the details of the proof to avoid
unnecessary repetitions of the technical details.

A Appendix

A.1 Alternative form of the Hamiltonian

Recall the definition (2.1) of the Hamiltonian function H : X → R, which is

H(σ) = −
∑
i∈S

Jii
∑

{v,w}∈E

1{σ(v)=σ(w)=i} +
∑

i,j∈S: i<j

Jij
∑

{v,w}∈E

1{{σ(v),σ(w)}={i,j}}. (A.1)
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Recall the definitions (4.3), (4.1). Since the total number of edges is 2KL, it is clear that∑
i∈S

nii(σ) +
∑
i<j

nij(σ) = 2KL.

Then, we may rewrite (A.1) as

H(σ) = −
∑
i∈S

Jiinii(σ)+
∑
i<j

Jijnij(σ) = −2KLJ22−
∑
i∈S

(Jii−J22)nii(σ)+
∑
i<j

(Jij+J22)nij(σ).

Note that by (2.2), J22 = J33. By (2.3) and since H(2) = −2KLJ22, we deduce that

H(σ) = H(2)− γ1n11(σ) +
∑
i<j

γijnij(σ). (A.2)

For a final remark, fix a configuration σ ∈ X and a spin i ∈ S. Consider the number
of ij-edges in σ for all j ∈ S. If we count according to the fixed spin i, since each spin
has exactly four neighboring spins, this is simply four times Ni(σ). Alternatively, using
the definition (4.3), this equals 2nii(σ) +

∑
j 6=i nij(σ) where the factor 2 appears in front

of nii(σ) since each ii-edge must be counted twice. Therefore, we conclude that

4Ni(σ) = 2nii(σ) +
∑
j: j 6=i

nij(σ) for all σ ∈ X and i ∈ S. (A.3)

A.2 Auxiliary function

In this subsection we prove some useful properties of the auxiliary function fh(x)

which is defined in (2.4). Recall that the formula is given as

fh(x) := 4
(
x+

h

2

)⌈x+ h
2

h

⌉
− 2h

(⌈x+ h
2

h

⌉2

−
⌈x+ h

2

h

⌉
+ 1
)
. (A.4)

Lemma A.1. The following statements hold for h > 0.

(a) The function fh is continuous, piece-wise linear and strictly increasing on (0,∞).

(b) We have fh(h2 ) = 2h and limx→∞ fh(x) =∞.

(c) For all x ∈ (0,∞),

0 ≤ fh(x)−
(2x2

h
+ 4x− h

2

)
≤ h

2
.

The left (resp. right) equality holds if and only if (x+ h
2 )/h ∈ N (resp. x/h ∈ N).

Proof. For each integer m ≥ 0, if x ∈ ((m− 1
2 )h, (m+ 1

2 )h] then dx+h
2

h e = m+ 1 and thus

fh(x) = 4(m+ 1)
(
x+

h

2

)
− 2h(m2 +m+ 1) = 4(m+ 1)x− 2hm2.

In turn, we have for each m ≥ 1 that

lim
x→(m− 1

2 )h+
fh(x) = 4(m+ 1)

(
m− 1

2

)
h− 2hm2 = fh

((
m− 1

2

)
h
)
.

These formulas verify both (a) and (b) of the lemma. Finally, to prove (c) notice that if
x ∈ ((m− 1

2 )h, (m+ 1
2 )h], we have

fh(x)−
(2x2

h
+ 4x− h

2

)
= − 2

h
(x−mh)2 +

h

2
.

This concludes the proof of (c).
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A.3 Heuristics behind Assumption 2.1

Here, we provide a brief explanation which justifies each condition given in Assump-
tion 2.1. We introduce a notation for convenience. For spins i, j ∈ S,

X ij :=
{
η ∈ X : η(v) ∈ {i, j} for all v ∈ V

}
. (A.5)

In other words, X ij is the collection of configurations in which all spins are either i or j.

A. First, we focus on the (potentially metastable) transition from 2 to 1. If σ(v) ∈ {1, 2}
for all v ∈ V , formula (A.2) can be rewritten as

H(σ) = H(2)− γ1n11(σ) + γ12n12(σ).

By (A.3) and since n13(σ) = 0, we have 2n11(σ) + n12(σ) = 4N1(σ). Thus,

H(σ) = H(2) +
(1

2
γ1 + γ12

)
n12(σ)− 2γ1N1(σ).

The right-hand side is, modulo translation by a real number, equivalent to the
Hamiltonian of the original Ising model (where spin 1 corresponds to +1 and spin
2 corresponds to −1), with interaction constant J := 1

2γ1 + γ12 and external field
h := 2γ1. To avoid technical difficulties it is standard to assume that 2J

h is not an
integer (e.g., [62, standard case]). In our context, this is equivalent to

2γ12 + γ1

2γ1
is not an integer,

which is exactly condition A.

B. In the original Ising metastable transition, the energy barrier is known to be
4Jd 2J

h e − h(d 2J
h e

2 − d 2J
h e+ 1) (cf. [62]). In our context, this becomes

(4γ12 + 2γ1)
⌈2γ12 + γ1

2γ1

⌉
− 2γ1

(⌈2γ12 + γ1

2γ1

⌉2

−
⌈2γ12 + γ1

2γ1

⌉
+ 1
)

= fγ1(γ12). (A.6)

The last equality follows from the definition (A.4).

Next, we consider the (potentially metastable) transition from 2 to 3. If σ(v) ∈ {2, 3}
for all v ∈ V , the representation (A.2) becomes

H(σ) = H(2) + γ23n23(σ).

The right-hand side is, modulo translation by a real number, equivalent to the
Hamiltonian of the original Ising model with interaction constant J := γ23 and zero
external field. The energy barrier in this setting is known to be 2J(K + 1) (cf. [60]).
In our context, this equals

2(K + 1)γ23. (A.7)

Gathering (A.6) and (A.7), to have the same energy barrier between 2 → 1 and
2→ 3, we obtain the condition

fγ1(γ12) = 2(K + 1)γ23,

which is condition B.
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C. First, the size of the protocritical droplet d 2γ12+γ1
2γ1

e (cf. (A.6)) is assumed to be large
enough:

γ12

γ1
is sufficiently large. (A.8)

Next, we start from condition B. By Lemma A.1-(c), we obtain that

2(K + 1)γ23 = fγ1(γ12) ≤ 2γ2
12

γ1
+ 4γ12 <

2(γ12 + γ1)2

γ1
.

The above display implies

(K + 1)γ1

γ12 + γ1
<
γ12 + γ1

γ23
.

The lattice size is large enough compared to the fixed coefficients, and thus (K+1)γ1
γ12+γ1

can be assumed sufficiently large. This also implies that

γ12 + γ1

γ23
is sufficiently large. (A.9)

Conditions (A.8) and (A.9) imply the desired condition C.

A.4 Reference paths

Reference paths in our new model are defined in the same manner as in the original
Ising model. Since the reference paths for Ising/Potts models with both non-zero [13,
Definition 5.1] or zero [60, Proposition 2.4] external fields are very well known, we will
give our definitions in a concise manner.

Definition A.2 (Reference path between m ∈ {2,3} and 1). Recall from (3.15) that

W(m,1) = B1
`?−1,`?(m, 1) ∪ B̂1

`?,`?−1(m, 1).

For any η ∈ W(m,1), we construct a reference path ω : m→ 1 satisfying argmaxωH =

{η} as follows. Denote by Rη the rectangle of side lengths `? and `? − 1 contained in the
1-cluster of η. Starting from ω0 = m, we consecutively update spins m in Rη to spins 1 to
form ω`?(`?−1) = η0, where

η0(v) =

{
1, if v ∈ Rη,
m, if v /∈ Rη.

Next, from η0 we create the corresponding protuberance to obtain ω`?(`?−1)+1 = η. Then,
we resume to enlarge the 1-cluster in the usual consecutive manner to obtain ωKL = 1.
By the isomorphism argument given in Sect. A.3-A, it is standard to observe that the
height of ω is obtained uniquely at ω`?(`?−1)+1 = η, and that the corresponding height is

H(η) = H(2) + 4`?
(
γ12 +

γ1

2

)
− 2γ1(`?2 − `? + 1) = H(2) + Γ?.

Definition A.3 (Reference path between 2 and 3). First, we choose an arbitrary column c.
Starting from 2, we update spins 2 in c to 3 in a consecutive manner. Then, we choose
one of its neighboring column and repeat the process. Iterating this procedure, we
obtain 3. Similarly, by the isomorphism argument given in Sect. A.3-B, we observe that
the height of this path is obtained multiple times and that the height is

H(2) + (2K + 2)γ23 = H(2) + Γ?.
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For the reference path, we are able to select any order of columns, as long as the
consecutive ones are neighboring, and also we may select any order of updates in each
column, as long as the updates are consecutive. Thus, one can see that there are a huge
number of possible reference paths from 2 to 3.

Consider any selection A from the collection C defined in (3.17). By the diagram
illustrated in Fig. 3 and by the freedom to choose an arbitrary order of spin updates, it is
clear that for any σ ∈ A we can construct a reference path 2→ 3 so that it visits A only
at σ.

Finally, we remark that in the case K = L, we may also choose an arbitrary row and
proceed as described above, which also gives the height (2L+ 2)γ23 = (2K + 2)γ23 = Γ?.
Thus in this case, there are exactly two times more reference paths compared to the case
K < L. This fact is not taken into account in the qualitative analysis of metastability via
pathwise approach done in this paper; however, this will be crucial in the quantitative
analysis, when one intends to investigate the exact prefactor of the mean metastable
transition time [13, 21, 50, 51]. This serves as a fruitful future research topic.
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