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High-dimensional limit of one-pass SGD on least squares

Elizabeth Collins-Woodfin* Elliot Paquette’

Abstract

We give a description of the high-dimensional limit of one-pass single-batch stochastic
gradient descent (SGD) on a least squares problem. This limit is taken with non-
vanishing step-size, and with proportionally related number of samples to problem-
dimensionality. The limit is described in terms of a stochastic differential equation
in high dimensions, which is shown to approximate the state evolution of SGD. As
a corollary, the statistical risk is shown to be approximated by the solution of a
convolution-type Volterra equation with vanishing errors as dimensionality tends to
infinity. The sense of convergence is the weakest that shows that statistical risks of
the two processes coincide. This is distinguished from existing analyses by the type of
high-dimensional limit given as well as generality of the covariance structure of the
samples.
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1 Introduction

Stochastic optimization methods are the modern day standard for many large-scale
computational tasks, especially those that arise in machine learning. There is a long
history of analyses of these algorithms, beginning with the seminal work of [RM51],
which focused on long-time behavior in a fixed dimensional space. However, modern ap-
plications of stochastic optimization have motivated a different regime of analysis, where
the problem dimensionality grows proportionally with the run-time of the algorithm.

In this article, we derive the exact scaling behavior of stochastic gradient descent
(SGD) on a least squares problem, in the one-pass setting (see below) when dimension
tends to infinity. We further draw a comparison to the recent work [Pag+22, Pag+21], in
which the multi-pass version of this problem was considered.

Stochastic gradient descent for empirical risk minimization Most versions of
(minibatch) SGD can be formulated in the context of finite-sum problems:

min, {7(0) = iiﬂ(@}. (L.1)
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One-pass SGD on least squares

Empirical risk minimization fits in this context by supposing that there are n indepen-
dent samples from some data distribution, and each f; represents the loss of how the
parameters  in some model fit the ¢-th datapoint. In this article we will exclusively
consider the case of linear regression with ¢2-regularizer. So we suppose that there are
n iid samples ((a;,b;) : 1 < i < n) from some distrbution D, with some assumptions to be
specified. We arrange this data into a design matrix A and label vector b, whose i-th row
is given by a,. Finally, we specify the functions f; in (1.1) by setting

filz) = 3(ai-x —b)* + gl

The parameter § > 0 is fixed and is the strength of the regularizer and throughout || - ||
will be the Euclidean norm.
Minibatch stochastic gradient descent in this context can be described as

Tpi1 = Tk — WV fi, (Tk) 1.2)
=@y — A e €], (Azy, — b) — Vb '

where {~;} are stepsize parameters, e; is the i-th standard basis vector, and {i;} is a
sequence of choices data. In this article we consider the one-pass case, in which iy, = k
but the algorithm is terminated after n steps. In practice, the order of the data points
might be shuffled once before, but in the setting we have posed, with iid data, there is
no point to including this additional randomization. There are other choices for how to
pick ik, and we highlight three of them, all of which are multi-pass variants.

In random (with replacement) sample SGD, each i is chosen uniformly at random
from {1,2,...,n}. This is the setting considered in [Paq+22], and we shall refer simply
to this flavor of SGD simply as multi-pass SGD in the bulk of the paper. But for context,
we also mention single shuffle SGD, in which one takes i = k mod n, and so only differs
from one-pass SGD in that the algorithm performs the same operations every epoch.! In
random shuffle SGD, one modifies the above strategy by randomly permuting the data
between each epoch.

All of these strategies are extensively studied in the optimization literature: it is
generally thought that the single shuffle and random shuffle strategies are faster than
the random sample strategy [YS]21] (see also [RR12, GOP21, SS20, AYS20]). We also
note that there is a closely related story for the Kaczmarz class of iterative algorithms,
which in the language above is like a single-shuffle SGD but with a adapted, non-uniform
stepsize vy; randomized Kaczmarz [SV09, NeelO, NWS14], whose properties are better
understood, is closely related to random sample SGD.

The one-pass case is the fundamental point of comparison for all of these methods,
being both simpler phenomenologically and also representing an idealization of SGD,
in which the run-time of the algorithm is the amount data. Appropriately, running for
longer (meaning increasing n) can only improve the statistical performance of the SGD
estimator x,,, in which context this is usually referred to as streaming SGD.

The performance of SGD is measured through the population risk P and sometimes
through an /s>-regularized risk R, which are given by

P(z) == LEqp) (a -z —b)? (a,b) ~ D, (1.3)
R(z) = jE@p)(a-z —b)*+ §|? (a,b) ~D. (1.4)

This regularized risk appears naturally as the mean behavior of one-pass SGD, in that

Zpr1 = T — W(VR(Zr) + Ert1)s

1We take epoch to mean n steps of the algorithm in all these contexts (including the with-replacement case).
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for martingale increments (£ : 1 < k < n). Another natural statistical setting to consider
is out-of-distributional regression, in which case we would measure the performance of
SGD trained on D but tested, as in (1.3) after replacing D with another distribution D’.
We shall not pursue this case in detail, but we note that all of the above examples are
some quadratic functionals of the SGD state x.

Data and stepsize assumptions The goal of this analysis is to allow the number of
samples n to be large and proportional to the dimension of the problem, here d. This
means that the data must be normalized to be nearly dimension independent. Further,
we shall need good tail properties of some of the random variables involved, and so we
recall the Orlicz norms || - ||y, for p > 1 which are given by

X ||, = inf{t : EelXI"/*" < 2},

We refer the reader to [Ver18] for further exposition, properties and equivalent formula-
tions.

We shall suppose throughout that under D, the labels are given by an underlying
linear model with noise. Formally, we suppose that:

Assumption 1.1. For (a,b) sampled from D, conditionally on a, the distribution of b is
given by a- &+ w where w is mean 0, variance n? > 0 and is subgaussian with ||w||y, < d°.
The ground truth x is assumed to have norm at most d°.

The constant € will be small and fixed throughout. Anything less than % will do, and
we make no attempt to optimize this constant.

The data covariance is assumed to be normalized in such a way that it is bounded in
norm, which is to say:

Assumption 1.2. The covariance matrix K = E[aa’] has operator norm bounded
independent of d.

Note that while we do not explicitly assume that a is centered, the mean would have
to be small in some sense to achieve the assumption above.
Finally, we suppose that a has good tail properties, namely that

Assumption 1.3. The data vector a satisfies that, for any deterministic « of norm less
thanl, ||a - x|y, < d°, and the data vector a satisfies the Hanson-Wright inequality: for
allt > 0 and for any deterministic matrix B

2 ¢
P (|a” Ba — EaT Ba| > t) < 2exp (— min { , }) .
( 21) d*||B|}s" d*| Bl

We remark that these assumptions hold for two important settings:

(a) when a = v Ku where K is some deterministic matrix of bounded operator norm
and wu is a vector of iid subgaussian random variables or

(b) when a is a vector with the convex concentration property, see [Adal5] for details.

There are natural examples of the second case, such as random features models [RR08]
with Lipschitz activation functions (see also [Pag+22, Proposition 6.2] for specifics in
the case of random features). We note that by truncation, it is also possible to work in
the setting (a) above but solely under a uniform bound on a sufficiently high but finite
moment, but we do not pursue this.

Finally, the step-size parameters ~; must be normalized approporiately:

Assumption 1.4. The stepsize v, = 2 for all k and fixed v > 0.
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We note that we may also pick v, = v(k/d)/d for a bounded continuous function
v :[0,00) — [0,00), and this leads to no change anywhere in the arguments.

In light of all these assumptions, we note that SGD finally reduces to the following
stochastic recurrence

xp—x=(I(1- %5) — kamg)(mk,l —)— %5:% + ymyny, (1.5)

where 7, = wk/\/a and m; = ak/\/g.

Homogenized SGD Our theorem is most easily formulated as showing that the state
of SGD can be compared to a certain diffusion model in high dimensions. Homogenized
SGD is defined to be a continuous time process with initial condition Xy = x( that solves
the stochastic differential equation

dX; = —yVR(X;)dt + 71/ 2P(X,) KdB; (1.6)

where B; is standard Brownian motion in dimension d, and R and P are the regularized
and unregularized risks, respectively (recall (1.3) and (1.4)).

Our main theorem shows that for quadratic statistics (in particular the risks (1.3)
and (1.4)), homogenized SGD and SGD are interchangeable to leading order. We use the
probabilistic modifier with overwhelming probability to mean a statement holds except
on an event of probability at most e~“(°4) where w(log d) tends to co faster than logd
as d — co. We further introduce a norm || - ||¢> on quadratic functions ¢ : R — C

lallcz = 1IV2qll + Va(0)[l + lq(0)I,

with the norms on the right hand side being given by the operator and Euclidean norm
respectively.
Theorem 1.5. For any quadratic q : R — R, and for any deterministic initialization x

with ||xo|| < 1, there is a constant C (|| K||) so that the processes {x}}}_, and {X; ;;/‘g

satisfy for any n satisfying n < dlogd/(8C (|| K||))

sup (g(@1) — a(Xpya)| < llgllcz - eUKDE - g2+ (1.7)
0<k<n
with overwhelming probability.

The processes x; and X; are independent, and hence this is also a statement about
concentration. In particular, the statement is also true if we replace ¢(X},q) by Eq(Xy/q4).

Explicit risk curves Using existing theory (see [Paq+22, Theorem 1.1]), (P(Xk/d) and
R(Xy/q) can be seen to concentrate around their means, which solve a convolution
Volterra equation. Specifically, EP(X;) = ¥(t) and ER(X;) = §2(t) where

w(t)\ _ (PG, [ (K= s VP(s) K(t; M) = tr(K Me~2HK+0D),
(rz(t))‘(ﬂz(xm)*/o (K(t—s;vmws)) o {dxw — VR, To= X
(1.8)

Note the equation for ¥ is autonomous, and the solution of {2 is then solvable in terms of
it. The process X, is gradient flow and is explicitly solvable. For example, in the special
case that § = n = 0, this gradient flow is exactly

Xyt — @ = exp(—7tK)(xo — ).
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Similar, more complicated formulas can also be stated for the general §,7 > 0 case.
Hence for example in the case K > p > 0 for some dimension independent constant p,
this converges like R(X,;) < Ce*7*. With assumptions on the spectral distribution on
K and xy — &, more precise statements can be made, including cases of power-law rates
and non-zero limiting risks.

This Volterra equation is non-negative and of convolution type, and it is therefore an
instance of the renewal equation, which appears throughout probability. From general
theory on convolution Volterra equations (see especially [Asm03, Section 7]), we can
derive many simple conclusions. For example, the boundedness of the risk curve occurs
exactly when the LY-norm of the convolution kernel is less than 1, i.e.?

1> / K(t; V*P)dt = 3 tr(K*(K +6I)7).
0

One can also derive exact dimension-independent limiting risk curves, under assump-
tions on the convergence as d — oo of some of the parameters in the setup. In particular,
assuming that the empirical spectral distribution of K converges as d — oo, and the
initialization x(y and target & are taken independent, mean 0, isotropic, and having norm
converging as d — oo, there is a dimension independent Volterra equation limit. This
“average-case” setting is taken in [Paq+21], where more details of the limit are discussed,
including rates and limitings losses. Note that in particular, in this setting, we note that
to achieve risk ¢, there is a dimension-independent length of time 7'(¢) needed to achieve
risk € under the Volterra curve. From Theorem 1.5, SGD on the same problem would
require d(7'(e) + o(1)) many steps with probability tending to 1 in d.

Comparison to the multi-pass case In [Paq+22], the analog of Theorem 1.5 was

proven for the (random sample) multi-pass case. In that case, the diffusion is different.
1

Introduce the empirical risk £(x) = 5-| Az — b||* and the regularized empirical risk

f(z) = L(x) + §||z||*>. Then the homogenized SGD for the multi-pass case becomes

dX, = 7V F(X)dt + 71/ 26(X,)(L AT A)dB,. (1.9)

Hence the difference between the multi-pass and one-pass cases is that the population
risks are traded for the empirical risk and the data covariance matrix K is traded
for the empirical data covariance matrix (%ATA). Note that if one conditions on the
data (A, b), then multi-pass SGD in fact is streaming SGD, but with a finitely supported
data distribution (specifically the empirical distribution of data); however the empirical
distribution of data is very far from satisfying Assumption 1.3.

From (1.9) it follows there is a convolution Volterra equation that describes the
evolution of the empirical risk £ up to vanishing factors in dimension (replacing R by £
and K by (%ATA) in (1.8)). Moreover the population risk can be given a deterministic
equivalent in the same fashion as was done for ¥ and (2. By comparing these risk curves,
this allows one to give a precise dimension-independent characterization of the value of
reusing data in SGD (see Figure 1).

On a technical level, the multi-pass is more complicated than one-pass. The arguments
share some fundamental common components, in particular they are based on analysis
of the same function class @,, introduced in (2.4), and at a high-level both proofs follow
the analysis in Section 2. The central difference is that, due to limited randomness in the
martingale updates, in the multipass case, one must show the state vector x; remains in
a good a subset of the state space in which the martingales are well-behaved. Indeed this

2The critical case of norm 1 is not clearly resolvable, but when the norm is greater than 1, the Volterra
solution will diverge.
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Figure 1: Risk curves for a simple linear regression problem in d = 2000. Multi-pass &
streaming SGD, and the expected risks (“Volterra”) of homogenized SGD are plotted.
Risk levels for streaming SGD at various data level n given as “O-P Risk”. Note at smaller
dataset sizes, multi-pass SGD improves greatly over one-pass SGD. At higher dataset
sizes, multi-pass SGD always underperforms.

requires an additional hypothesis that the inital conditions are good, and the argument
proceeds by showing the state cannot exit the good set over O(d) steps. In contrast, in
the one-pass case this argument is extraneous owing to the higher degree of isotropy of
the SGD updates.

Discussion We have presented an approach to taking the high-dimensional limit of
one-pass SGD on a least squares problem in which the number of steps is proportional
to the dimension of the problem. The limit object is described in terms of a Langevin
type diffusion, which can be directly compared to the same object in the multi-pass case.

The literature on scaling limits of one-pass SGD training is large, and so we mention
just some of the closest literature. [AGJ22] is perhaps the closest high-dimensional
diffusion approximation, and it applies in cases where there is a hidden finite dimensional
structure; it covers the case studied here when K = I as well as cases in which K has
boundedly many eigenvalues. See also [AG]21].

There are other scaling limits that pursue a different formulation than the one
here. [WL19, WML17] give a PDE limit for the state for a generalized linear model,
with identity covariance. [BGH23] give a scaling limit of the SGD under smoothness
assumptions on the covariance K, when interpreted geometrically; they further describe
fluctuations of SGD in a certain sense. Note that Theorem 1.5 essentially gives the law
of large numbers for the risks and not the fluctuations.

[Ger+22] uses dynamical field theory to give closely related results for shallow neural
networks with minibatch SGD of large batch-size; dynamical mean field theory provides
an implicit characterization of the autocorrelation of the minibatch noise and a few
other processes. See also the related work of [CCM21]. We comment that in the case of
proportional batch sizes, there is also a discrete Volterra description in [Lee+22].

Organization In Section 2 we give an overview of the main proof, reducing it to its
main technicalities. In Section 3, we bound the stochastic error terms, representing the
main technical contribution of the paper.
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2 Main argument of proof

In order to compare the SGD and homogenized SGD, we use a version of the mar-
tingale method in diffusion approximations (see [EK09]). In effect we show that g(xy)
nearly satisfies the conclusion of It6’s lemma. Further, we show the martingale terms in
both of the Doob decompositions are small, and hence it suffices to show the predictable
parts of ¢(xy) and ¢(X;) are close.

To advance the discussion, we compute this Doob decomposition. To take advantage
of the simpler structure afforded by removing &, introduce

v, =xp—x and V, = X; — 2. (2.1)

We shall extend the first integer indexed function to real-valued indices by setting
vy = v|;). We also let (F; : t > 0) be the filtration generated by (v; : ¢ > 0) and
(Vt/d :t > 0). Hence for all k£ € IN, v, is measurable with respect to ;. Recalling the
recurrence (1.5) for a quadratic ¢

q(vr) — q(vr-1) = =7 (Va(ve-1))" (yx) + T i (V2q)ys, where
Y = up_1 + Ay, Ay =myu(mive_ —n) and wp_y = (ve_1 + Z).
(2.2)

The equation above can each be decomposed as a predictable part and two martingale
increments

q(vr) — q(ve—1) = — ¥(Vawr—))" (3T + L K)vj_q + 22) + AM®
+ L tr(AK (V) (Jol Kvp_ 1 + E[n}]) + Ag8 4 Apmaved,
where AM™ =ATV2qA;, — BIATV2qA, | Fil.
(2.3)

The remainder of the martingale increments are given by AM}" and are all linear in Ay.
The predictable parts have been further decomposed into the leading order terms and
an error term Agguad. For convenience, we have displayed these below:

AM}cin = ('wkT—1mk) (mf’vk—l - 77k> - éwkT_lKvk_h

a 2
Agmd = 3 (E[ykT(VQQ)yk | Froi] — tr(AK(V2q)) (Jol_ Kvp_1 + E[ng}))
where wy_1 = —yVq(vi_;)+ V726(1),:_1 + ).

These predictable parts, in turn, depend on different statistics ¢;(vi—1). In finite
dimensional settings, we would be able to relate this (or some suitably large finite set of
summary statistics ¢, q, ..., ¢.) to itself through a closed system of recurrences. In this
setting, this is not possible. On the other hand, for the problem at hand, we show there
is a manifold of functions which approximately closes. Specifically, we let

Qu(a) = Qula, K) ={a(x), (Va(@)"R(z K)z, 2" R(y; K)(Vq)R( K)a,
(Va(@) R(= K)&, a”R(y; K)(VQR(= K)&, Vzyel}.
(2.4)

Here R(z;K) = (K — 2I)7! is the resolvent matrix, and I" is a circle of radius
max{1, 3| K||}. In order to control the martingales, it is convenient to impose a stopping
time

7 =1inf {k: |og|| > YU {td : |Vi|| > d°}, (2.5)
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and we introduce the corresponding stopped processes
v, = Vkars VY = Vin(r/a)- (2.6)

We prove a version of our theorem for the stopped processes and then show that the
stopping time is greater than n with overwhelming probability.
Our key tool for comparing v;y and V; is the following lemma.

Lemma 2.1. Given a quadratic q with ||q||cz < 1, with Q = Q,.(q) U Q. (P)UQ.(] - ||?) as
above, for any g € Q

lin, d, d, HSGD,
ma [g(vf) — g(Vi7)| < masg (M| + MO+ €807 |+ M50 7))
0<t<g 0<t<y

» 2.7)
LK) / sup |h(vT,) — h(V77)|ds.
0 heQ

Here MfISGD’T is the martingale part in the semimartingale decomposition of (V7).

Sketch of Proof. Owing to the similarities of this claim with the proof in [Pagq+22, Propo-
sition 4.1], we just illustrate the main idea. The idea is that if we take a g € ), and we
apply (2.3), then in the predictable part of g(v;) we have

t t t
I = / Vg(vsd)T((SI + K)vggds, I ::/ Vg(vsd)T:ids, I3 ::/ v;deKvsdds.
0 0 0

These also appear with coefficients that can be bounded solely using ||g||c2 and || K]|.
We get the same, applying It6’s lemma to g(V;), albeit with the replacement v, — V;.
We wish to bound for example I; (v;) — I1(V;). We do this by expressing its integrand as
p(v:) — p(V;) for polynomial p. If g is linear (the final row of (2.4)), then p is again linear.
For example, if it is g(x) = Vq(z)T R(z; K)&, then p is again linear and is given by

p(x) =27 (6 + K)R(z; K)& = 62" R(2; K)& + " R(2; K)& — 2a” &,

where we have used the resolvent identity (K — z)R(z; K) = I. Note the function
T R(z; K)Z is contained in @ by virtue of being in Q, (] - ||?). Moreover, by Cauchy’s
integral formula, we can represent 7 & by averaging ;—TrlinR(y; K)& over y € I'. Hence

p(vea) —p(Ve)| < (6 +1+ 3||K||)I§ug |h(vea) — h(V3)].
[S
The same manipulations lead finally to showing every term included in ) can be con-

trolled in a similar manner, using the other elements of the class Q. O

The second important idea is to discretize the set Q.

Lemma 2.2. There exists Q C Q with |Q| < C(|| K||)d*™ such that, for every q € Q, there
is some q € Q satisfying ||q — qllc> < d7*™.

Proof. On the spectral curve I', we can bound the norm of the resolvent. Since

d
il . — — )2
dzR(z,K) (K —=2I)"%,

we have it is norm bounded by an absolute constant. The arc length of the curve is at

most C(]|K||), and so by choosing a minimal d~2™-net of the manifold I" x I', the lemma
follows. O
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Now the main technical part of the argument is to control the martingales and
errors. As we work with the stopped process v;, we introduce the stopped proccesses
MERT puadT gamadT which are defined analogously to (2.6).

lin, d, d,
m T’Mgua 'r’g]jua T

Lemma 2.3. For any quadratic q with |q||c2= < 1, the terms M,
satisfy the following bounds with overwhelming probability (with a bound which is
uniform in q) forn < dlogd

. lin, _ 1.k
(i) sup;<pen MV < d72T0F,

g d 1
(i) Sup;<j<y, [MPET] < dm2 10,

(iii) sup;<p<, |8,§uad’7| < d—19e,

Combining Lemmas 2.1 and 2.2, along with the above (see also Lemma 3.2 in which
the homogenized SGD martingales are bounded), we conclude that, for any § € Q with

lalle> =1,
t
-1 T T
lg(v]y) — (V)| < 4d—279° + C(IIKII)/ sup l9(vq) — g(Vi)lds. (2.8)
09
Hence by Lemma 2.2 and by bounding ||g||c2 over all @,

t
sup|g<vzd>—g<VJ><C<||K||>(d2+dz+96+ / supg(v;d>—g<‘f;>|ds). 2.9)

9€Q 9€Q
By Gronwall’s inequality, this gives us that with overwhelming probability
sup max|g(vf,) — g(Vi)| < C(IK|)(d~? + dd~3+9) LUK/, (2.10)
geQ 0<t<n/d

Hence this is small provided n/d is controlled by a sufficiently small multiple of log d. Now
we note that the norm function = — ||z||? is one of the quadratics included in ). Hence
if we let G be the event in the above display, and we let & = {maxg<s<p/a ||Vs|| < d/?},
then we have

Gnen{r <n/d} C {|v;|| = lvr—1] = d*} n {7 < n/d}.

This is because on the event {7 < n/d} N £ we must have had ||v.|| > d°, but in the step
before 7, we had v,_; could be compared to V,_; (due to G, and we had the norm of
V,_1 was small). Now with overwhelming probability, no increment of SGD between time
0 and n/d can increase the norm by a power of d. So to complete the proof it suffices to
show &£ holds with overwhelming probability.

Thus the proof is completed by the following:

Lemma 2.4. For any § > 0 and any t > 0 with overwhelming probability

max || X,||? < eCUED g,
0<s<t

Proof. We apply Itd’s formula to ¢(X;) := log(1 + || X¢||?), from which we have

[2
Xy 5P(X)KdB,

dp(Xy) = —2y XT3 dt + X

1+ X

P(X:) 242 292 P(X)XT KX,
(P 2o () = 255 )dt

The drift terms and the quadratic variation terms can be bounded by some C(||K]|).
Hence with this constant, for all » > 0,

P(max ¢(X,) > C(|K[)(t + V1)) < 2exp(—17/2).

0<s<t
Taking r = +/log dloglog d, we conclude that with overwhelming probability
Jnax d(Xs) < C(|IK|)(t+ +/tlogdloglogd). O
<s<t
ECP 29 (2024), paper 3. https://www.imstat.org/ecp
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3 Controlling the errors

The main goal of this section is to control the martingale terms and error terms;
in particular we prove Lemma 2.3. In order to obtain these bounds, we will need the
following concentration lemma, which is standard (c.f. [Ver18, Theorem 2.8.1], where
the nonmartingale bound is proven. The adaptation to the martingale case is a small
extension):

Lemma 3.1 (Martingale Bernstein inequality). If (M,,)Y is a martingale on the filtered
probability space (£2, (F,)Y,P)) and we define

Oy = Hinf{t >0:E (e'M"_M"*l‘p/tp\]—'n,l) < Q}H (3.1)

L=P)’

then there is an absolute constant C' > 0 so that, for allt > 0,

t 12
P su M, —EMy| >t) <2exp | —min , . (3.2)
<1<nI<)N| n 0| > p < {CmaXUnJ C’Ziv 0%1}>

We will also record for future use an estimate on Vg that follows from || - ||¢2 control.

IVa(@)ll < [V2q]l - |zl + [IVg(O)]l < llglle= - (=] + 1) (3.3)

3.1 Martingale for gradient part of recurrence

Proof of Lemma 2.3 part (i). Comparing (2.2) and (2.3), we see that for k < 7
lin, T T T linl,7 lin 2,7
AMT = [(wg_lmk) (’mfv,,c_1 — k) — éwg_lK'uk_l =: [AM,, Lr_ AM,, 27,
where wy_1 = —yVq(v]_;) + %(vg_l + ). (3.4)

Note for k£ > 7, the stopped martingale increment is 0. Using (3.3), [[wi_1] < C(y,d)d".
We will separately bound the contributions from AM,™"" and AM}">7 in terms of
their Orlicz norms. For the first part, for any fixed k, conditionally on Fj_; and using
Assumption 1.3, we conclude

IAMGEEE [y, < [y, [ mdviy = i), < Cdm2¥2e a2+ (3.5)
where C' is some absolute constant. For the second part, we have
AMP?T| = L] Kol | < Cd™ . (3.6)
Combining these, we see that, for every k,
o1 = inf{t > 0: Blexp([AM™ YT — AMI 27| /1) Frq] < 2} < Cd—1F4e (3.7)

and, by the martingale Bernstein inequality, for some other constants C, ¢ > 0

. . t t2
P|( sup MET o paqling > t) < 2exp | —min , ,
(1§k§n| k o'l Cmaxoy, CY 0 07, (3.8)

< 2exp (—min {ctdl_‘le, ct2d2_85n_1}) .

As we assume that n < dlogd then this gives us

sup [MEMT| < dmEte (3.9)

1<k<n
with overwhelming probability. O
ECP 29 (2024), paper 3. https://www.imstat.org/ecp
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3.2 Martingale for Hessian part of recurrence

Proof of Lemma 2.3 parts (ii) and (iii). Next we consider the contribution from the Hes-
sian part of the recurrence. We write
2
L (memfvp_ — myn)” (V) (mgmifvp ) — myny) (3.10)
2 d .
= %(mkmgvg_l —myne) T (V2q) (mypmTv]_ | — mknk)|]:k_1} + AMPE.

Since we will be conditioning on Fj_; extensively throughout this section, we use the

shorthand Ey[ - | := E[ - |Fx_1]. Rearranging the terms of (3.10), we get
AMP™ = Ay By, — By[AyBy) (3.11)
where
Ay = ml (Vi)my, By := (miv]_; —m)>. (3.12)

This can be expanded as

AMZuad = (A — Ex[Ar])(Br, — E[Bi]) + Ex[A]Eg [By] — Er[Ar By]

(3.13)
+ (Ax — Ex[Ag])Ex [Bi] + (Br, — Ex[Bi])Ex[Ax],

so we focus first on obtaining subexponential bounds for the quantities Ay — Ex[Ax] and
By, — E[By] using the Hanson-Wright inequality. For Ay, we have

t? t
P(|Ay —E A >t) <2 —cmi
(A = Bl = 0) = 2exp [ o (d—2+4f||v2q||%{s’ d—1+26|v2q|>} (3.14)
< 2exp|—¢ min(t2d' %, td' )] < 2exp[—ctd> %]
and thus we have the subexponential bound
| Ax — By Ag]lly, < Cd™2+2. (3.15)

Next we obtain a subexponential bound for Bj. For the part of By not involving 7, we
use Hanson-Wright to get

P (|mfv£_1(vzi_1)ka - Ekmz"’g—ﬂ”Z—l)de 2 t)

2 t
< 2exp [cmin < — p= — , —— — — >} (3.16)
d=2e|lop_ (vp )T |l3rs " d7 22 lof g (v )T

< 2exp[—cmin(t?d? %, td' ~19))].
For the terms involving 7, we use the Orlicz bounds from the assumptions in the set-up
to obtain

_1 _1
lmi vl _melloy < llmivl sl - lmlly, = d742d7=+F

_ g (3.17)
Since also ||n?]|y, = d~'T2¢ combining the bounds (3.16) and (3.17), we have
| By — Ex[By] ||y, < Cd™14e, (3.18)
Furthermore, we have
En[Ax] = O(1), Ei[By] =0(d™"), (3.19)

uniformly for all k£ based on the assumptions on 7, and mj. We now use (3.15), (3.18),
(3.19) to bound each term of (3.13) in turn.

ECP 29 (2024), paper 3. https://www.imstat.org/ecp
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To bound the contribution from (Ay — Ex[Ak])(Br — Ex[Bg]), we observe that, for each
k, with overwhelming probability, | Ay, — Ej[Ag]| < d~213¢ an Ex[Bi]| < d=175%¢, so
we can conclude that, with overwhelming probability,

NE

‘(Ak ~ By [A])(By — Ek[Bk])‘ < nd= 8 < matOe, (3.20)

b
Il

1

For the second term of (3.13) we have
Ex[ALEr[By] — Ek[AkBk]’ - ’Ek [(Ax — By Ay)(By — By By)] ‘
< Ek’(Ak —E,A) (B — EkBk)‘

< Ek’(Ak — By Ag) (B — EkBk)lé," + Ek‘(Ak — EpAr) (B — EkBk)lgc‘
(3.21)
where £ is the event

= {\Ak — EpAy| < d—%+36} N {|B — B By| < d-1+5} |

which holds with overwhelming probability. Thus, using this event and Cauchy-Schwartz,
the right hand side of (3.21) can be bounded by

d=3%% 4 /B (A — ExAy)?(By, — B By,)? P(€)

where P(£¢) < d~P for arbitrarily large D. Using this and the moment bounds on
subexponential random variables, we can conclude

\Ek [Ak]Ex[B] — Ek[AkBk]‘ = O(d~378¢)

uniformly in k£ and thus
3 ‘Ek[Ak]]Ek[Bk] - Ek[AkBk]‘ = O(nd—3+8), (3.22)

Finally, we note that the remaining terms of (3.13), namely (A; — Ex[Ax])Ex[Bx] and
(B, — Eg[By])Ex[Ak], are martingale increments with

(A — Ex[A)Er[Billy, < Cd™37%,  [|(By — Ex[Br))Ex[Ax]lly, < Cd™1H. (3.23)

Applying the Martingale Bernstein inequality, we conclude for some other constants
C,e>0

k
sup | (A — B [A;)E; [B)] + (B; — By [B,)E,[A;]| > ¢
1<k<n |

J
" 2 (3.24)
~min Cmaxoy1’ Czk 10k1

< 2exp (—min {ctd' ™%, ct?d* ¥ n7'}) .

Thus, for n < dlogd, we get

k

sup D (A — B [A)ER[B] + (B; — B, [B)E,[A;]| < d™ 777 (3.25)
SRS j=1
ECP 29 (2024), paper 3. https://www.imstat.org/ecp
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with overwhelming probability. Finally, combining the bounds from (3.20), (3.22), (3.25),
we conclude that, for n < dlogd,

sup |MIRET| < gmatee (3.26)
1<k<n

with overwhelming probability. This completes the proof of part (ii) of the lemma.

For part (iii), we observe that AE,?“ad’T = E[ArBy] — Ex[AL])E[Bi] + O(d—214¢), the
error terms arising from wuy, cross terms, so that the bound of 5,?uad’7 follows immediately
from (3.22). O

3.3 Martingale for HSGD
Recall that the HSGD process {V;} satisfies the differential equation

AV, = —yVR(V, + &)dt + 71/ 2P(V; + &) KdB, (3.27)

where
P(x)=(z—2)"K*(x — )+ (3.28)

Using It6’s Lemma, this gives us

t
qﬂf):«wmfvjkvamwfvmwg+jms
0 t (3.29)
+ 3 [ P07+ D) nGR (V) + ISP

0

t
MtHSG’D,T:,y/ (Vq(VST))T\/mdBS. (3.30)
0

Lemma 3.2. For any quadratic g with ||q||c2 < 1, after imposing the stopping time 7, the
resulting martingale /\/lf[ SGD.T satisfies

where

sup  [MISPT] < cade, (3.31)
0<t<n/d

provided n < dlogd.

Proof. This martingale has quadratic variation
2t
[mirooP ] = T [PV 4 ) (Va(V) TRV 4 ) (Va(VE s (3.3)

and, for all s, we have the bound

[PV +a)| < [VTIPIK? | + 9 < Crd™, (3.33)
Thus, we have
sup [MtHSGDvT} < C(log d)d~1+1¢ (3.34)
0<t<n/d
almost surely. By the Gaussian tail bound for continuous martingales of bounded
quadratic varation, P(sup,[MIT5P7] > 4) < exp(—a2/(2C(logd)d—'+%)). Taking a =
d—373¢, we conclude that
sup [M{’SGD”} < Od-i+se (3.35)
0<t<n/d
with overwhelming probability. O
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