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Abstract

We introduce a new diffusion process which arises as the n → ∞ limit of a Bessel
process of dimension d ≥ 2 conditioned upon remaining bounded below one until
time n. In addition to being interesting in its own right, we argue that the resulting
diffusion process is a natural hard edge counterpart to the Ferrari-Spohn diffusion
of [9]. In particular, we show that the generator of our new diffusion has the same
relation to the Sturm-Liouville problem for the Bessel operator that the Ferrari-Spohn
diffusion does to the corresponding problem for the Airy operator.
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1 Introduction

The Ferrari-Spohn diffusion is a diffusion process on the positive real line with
infinitesimal generator

1

2

d2

dx2
+

(
d

dx
log Ai(x− ω1)

)
d

dx
,

where Ai(x) denotes the Airy function and −ωi is the i-th largest real root of Ai(x). While
Ferrari-Spohn diffusions have far-reaching connections to the Ising and SOS models
[13, 14, 12, 10], the original motivation for studying them came from an approximation to
multilayer polynuclear growth given by Brownian bridges [9]. In particular, the authors
of [9] looked at a collection of n Brownian bridges Bi : [0, T ]→ R, Bi(0) = Bi(T ) = −i,
1 ≤ i ≤ n conditioned on non-intersection. Under proper re-scaling as n → ∞, the
top-most Brownian bridges asymptotically approach a semicircle and their behavior at a
fixed time is given by the Airy kernel. The idea of [9] was to observe how this process
changes if one replaces the lower n− 1 probabilistic curves with a single deterministic
one, that is, a Brownian bridge conditioned to stay above a semicircle. While many
large scale properties remain unchanged, at the local level this new process instead
evolves according to the Ferrari-Spohn diffusion. This connection between Ferrari-Spohn
diffusions and the Airy kernel has since been expounded on even further as recent papers
[10, 6] have shown that if one conditions n Ferrari-Spohn diffusions on non-intersection
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Bounded Bessel processes and Ferrari-Spohn diffusions

(the so-called Dyson Ferrari-Spohn diffusion), then the n→∞ behavior of the top lines
is given by the Airy line ensemble of [5].

In this paper, we introduce a new diffusion process, which we argue is the natural
analogue of the Ferrari-Spohn diffusion for the Bessel kernel. Like the Airy kernel,
the Bessel kernel is a limiting correlation kernel that often emerges when studying
edge limits of determinantal point processes. Typically, these kernels arise under
similar conditions with the caveat that one expects the Airy kernel where the support is
unbounded and the Bessel kernel where the support is constrained. A classical example
of this is given by the singular values of a random square Gaussian matrix. As the
dimension of the matrix goes to infinity, the limiting correlation kernel near the largest
eigenvalues is the Airy kernel, whereas near the smallest eigenvalues, which are bounded
below by 0, the same limit reveals the Bessel kernel (see e.g. [8, Ch. 7]).

To determine such a diffusion we looked towards a non-intersecting line ensemble
presented in [15]. Here, one studies n Bessel bridges Yi : [0, T ]→ R≥0 of dimension d

satisfying Yi(0) = a, Yi(T ) = 0, 1 ≤ i ≤ n and again conditioned on non-intersection. For
integer d, Bessel processes are equal to the magnitude of a d dimensional Brownian
motion, so this is a natural extension of the Brownian bridge model. As before, under
appropriate re-scaling as n → ∞, the bottom and top curves asymptotically approach
deterministic curves. For some critical time t∗, the fixed time t behavior of the bottom
curves is described by the Airy kernel if t < t∗ and the Bessel kernel if t > t∗. Near
the top curve, the fixed time behavior is given by the Airy kernel for any t ∈ (0, T ).
While they do not prove this formally, the authors of [9] explain that local convergence
to the Ferrari-Spohn diffusion should hold for a Brownian bridge conditioned to stay
above any concave curve g : [0, T ] → R. It is then reasonable to expect that if one
performs the same procedure of conditioning a Bessel bridge above (resp. below for
t < t∗) the limiting deterministic curve near the top (resp. bottom) of the ensemble, the
Ferrari-Spohn diffusion will emerge.

Unfortunately, for t > t∗, the bottom deterministic curve becomes a flat line at zero,
so it is meaningless to constrain a Bessel process below it. However, since the average
distance of the bottom-most Bessel bridge from zero is constant and of order n−1, a
natural alternative is to condition a Bessel process on remaining below n−1 over some
fixed time interval. Scaling this up, one gets a Bessel process conditioned on staying
below 1 until time of order n. The main result of this paper is that this remarkably simple
process converges to a diffusion whose generator bears a strong connection to that of
the Ferrari-Spohn diffusion.

Theorem 1.1. Let Y be a Bessel process of dimension d ≥ 2 with Y0 ∈ (0, 1) fixed. Set
τ = inf{t > 0 : Yt = 1} and define X(n) to be a stochastic process distributed according
to Y |τ > n for n ≥ 0. Then, in the sense of finite dimensional distributions, as n→∞ the
process X(n) converges to a Feller process X with state space [0, 1] and generator

L =
1

2

d2

dx2
+

(
d

dx
log(x1/2Jα(j1,αx))

)
d

dx
. (1.1)

Here α = d−2
2 , Jα(x) denotes the Bessel function of the first kind of order α, and

0 < j1,α < j2,α < · · · are the positive real zeros of Jα(x).

While we were not able to determine the domain of L, we will show in our proof of
this theorem that the set of C2[0, 1] functions f satisfying f ′(0) = f ′(1) = 0 forms a core
for L. The function Jα(j1,αx) is a natural counterpart to Ai(x − ω1). Indeed, these are
solutions to the eigenvalue (equiv. Sturm-Liouville) problem Dy = λy corresponding to
differential operators defining the Bessel, Airy functions respectively. The presence of
x1/2 can be explained by orthogonality relations satisfied by solutions to these problems.
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Bounded Bessel processes and Ferrari-Spohn diffusions

The functions {Jα(ji,αx)}∞i=1 are orthogonal with respect to the measure xdx on [0, 1],
whereas {Ai(x − ωi)}∞i=1 are orthogonal with respect to dx on [0,∞). Interestingly,
these same functions appear when studying the classical random matrix ensembles at
zero temperature. At the soft edge [1, 11], the limiting behavior of the eigenvalues is
described by Gaussians whose covariances are expressible in terms of Ai(x − ωi). At
the hard edge [2, 16], one instead obtains functions of Jα(ji,αx) again re-scaled to have
orthogonality measure dx.

The proof of our main result will be spread across two sections. In Section 2, we will
derive explicit forms for the limiting distribution of X(n)

t as n→∞. In Section 3, we will
then prove that this limiting distribution defines a Feller semigroup with the desired
generator. Between this and a brief argument showing X(n) becomes Markovian in the
limit, the result will follow. In both sections, our primary tools will be Dynkin’s theorem
and a Fourier-like expansion involving the functions {Jα(ji,αx)}∞i=1. To our knowledge,
such expansions are the only way of gaining access to an explicit formula for the joint
density of a Bessel process and the time it takes it to reach 1.

2 Transition probabilities

We begin by introducing Bessel processes, Bessel functions, and the aforementioned
Fourier-like expansion more formally. The Bessel process of dimension d is a diffusion on
[0,∞) given by the solution to the SDE

dYt = dBt +
d− 1

2Yt
dt, (2.1)

where B is a one-dimensional Brownian motion. In the relevant case d ≥ 2, Yt is Feller
and has generator

L0 :=
1

2

d2

dx2
+
d− 1

2x

d

dx
(2.2)

whose domain contains all bounded C2[0,∞) functions. For facts about Bessel processes
pertaining to the generator see [3]; for all other properties see [17, Ch. XI].

The Bessel function of the first kind Jα(x) is a solution to the differential equation

d2y

dx2
+

1

x

dy

dx
+

(
1− α2

x2

)
y = 0 (2.3)

that satisfies

Jα(x) =

∞∑
k=0

(−1)k
(x/2)2k+α

k!Γ(k + α+ 1)
. (2.4)

For α > −1, Jα(x) has an infinite number of positive real zeros j1,α < j2,α < · · · all of
which are simple. These zeros play an important role as one can obtain Fourier-like
expansions of a large class of functions in terms of the basis {Jα(ji,αx)}∞i=1. Indeed, it is
a classical result of Sturm-Liouville theory that for any f(x) with x1/2f(x) integrable on
(0, 1) and for any α > − 1

2 the equality

f(x) = 2

∞∑
i=1

Jα(ji,αx)

Jα+1(ji,α)2

∫ 1

0

f(y)Jα(ji,αy)ydy (2.5)

holds under the same convergence criteria as the usual Fourier expansion. This expan-
sion is often referred to as the Fourier-Bessel series for f(x) and it will hold the key
to proving the following proposition regarding the limiting transition probabilities of a
bounded Bessel processes. For a comprehensive introduction to Bessel functions, their
zeros, and Fourier-Bessel series we refer the reader to [18].
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Bounded Bessel processes and Ferrari-Spohn diffusions

Proposition 2.1. Let Y be stochastic process and let (Px)x∈(0,1) be a collection of
probability measures such that under Px, Y is a Bessel process of dimension d with
Y0 = x almost surely. Additionally, define X(n), τ, α as in Theorem 1.1. Then, for any
t > 0,

lim
n→∞

Px(X
(n)
t ∈ dy) = Px(Yt ∈ dy, τ > t) exp

(
j21,α

2
t

)
y−αJα(j1,αy)

x−αJα(j1,αx)
, (2.6)

where the right-hand side may be further decomposed via the identity

Px(Yt ∈ dy, τ > t) = 2
yα+1

xα

∞∑
i=1

Jα(ji,αx)Jα(ji,αy)

Jα+1(ji,α)2
exp

(
−
j2i,α
2
t

)
dy. (2.7)

Proof. We begin by proving the latter identity. Let hi(x) = x−αJα(ji,αx). By (2.4),
hi ∈ C2[0,∞) and thus we may apply Dynkin’s formula using the generator L0 for Yt:

Ex[hi(Yt∧τ )] = hi(x) + Ex
[∫ t∧τ

0

(L0hi)(Ys)ds

]
.

From the differential equation (2.3) defining Jα(x), we obtain L0hi = − j
2
i,α

2 hi. Hence

Ex[hi(Yt∧τ )] = hi(x)−
j2i,α
2
Ex
[∫ t∧τ

0

hi(Ys)ds

]
= hi(x)−

j2i,α
2
Ex
[∫ t

0

hi(Ys∧τ )ds

]
= hi(x)−

j2i,α
2

∫ t

0

Ex [hi(Ys∧τ )] ds,

where we use hi(1) = 0 in the second line and swap the the integral using the bounded-
ness of hi(x) on [0, 1] in the third line. Solving this yields∫ 1

0

hi(y)Px(Yt ∈ dy, τ > t) = Ex[hi(Yt∧τ )] = exp

(
−
j2i,α
2
t

)
hi(x). (2.8)

Finally, by applying the Fourier-Bessel expansion (2.5) to

f(y)dy = y−α−1Px(Yt ∈ dy, τ > t)

we obtain (2.7). The function y1/2f(y) can be seen to be integrable via the upper bound

y−α−
1
2Px(Yt ∈ dy) =

y
1
2

txα
exp

(
−x

2 + y2

2t

)
Iα

(xy
t

)
dy,

holding for α ≥ 0. Here Iα(x) = i−αJα(ix) is the modified Bessel function of the first
kind. Additionally, the right-hand side of (2.7) converges absolutely because ji,α ∼ πi as
i→∞ [18, p. 497], Jα(x) is upper bounded by a polynomial in x, and |Jα+1(ji,α)| can be
satisfactorily lower bounded via the identity

1

2
Jα+1(ji,α)2 =

∫ 1

0

Jα(ji,αx)2xdx

following from the Fourier-Bessel expansion (2.5).
To prove (2.6), we begin with Bayes’ rule:

Px(Yt ∈ dy|τ > n) =
Px(Yt ∈ dy)Px(τ > n|Yt = y)

Px(τ > n)
.
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By the Strong Markov property

Px(τ > n|Yt = y) = Px(τ > t|Yt = y)Py(τ > n− t)

whenever n > t. Plugging this back into Bayes’ rule yields

Px(Yt ∈ dy|τ > n) = Px(τ > t, Yt ∈ dy)
Py(τ > n− t)
Px(τ > n)

(2.9)

To compute this we use the following identity, which may be found in [3] or can be
derived from (2.7) by integrating over y from 0 to 1:

Px(τ > t) = 2x−α
∞∑
k=1

Jα(jk,αx)

jk,αJα+1(jk,α)
exp

(
−
j2k,α

2
t

)
. (2.10)

Indeed,

lim
n→∞

Py(τ > n− t)
Px(τ > n)

= lim
n→∞

2y−α
∑∞
k=1

Jα(jk,αy)
jk,αJα+1(jk,α)

exp
(
− j

2
k,α

2 (n− t)
)

2x−α
∑∞
k=1

Jα(jk,αx)
jk,αJα+1(jk,α)

exp
(
− j

2
k,α

2 n
)

In the limit n → ∞, the k = 1 term will dominate the numerator and denominator
yielding:

lim
n→∞

Py(τ > n− t)
Px(τ > n)

=
y−αJα(j1,αy)

x−αJα(j1,αx)
exp

(
j21,α

2
t

)
Combining this with our application of Bayes’ rule (2.9) completes the proof.

3 Feller property and generator

Define hi(x), τ as in Proposition 2.1 and set Zt to be the process Yt killed at time τ .
The density of the limiting transition probabilities (2.6) has a simple interpretation as
the Doob’s h-transform of Zt by h = h1 rescaled by an exponential factor. This factor is
present as h1 is an eigenvalue of L0 instead being harmonic with respect to it. As the
Doob’s h-transform of a generator G is given by f(x) 7→ h(x)−1(Ghf)(x), one would then
expect that (2.6) defines a semigroup with generator

(Lf)(x) =
1

h(x)

(
L0 +

j21,α
2

)
h(x)f(x) (3.1)

and indeed this L equals the one from the statement of Theorem 1.1. The majority of the
following proof will devoted to showing this idea more formally and confirming that (2.6)
does indeed define a Feller semigroup.

Proof of Theorem 1.1. Set Qt(x, y)dy to be the right-hand side of (2.6) and

Rt(x, y)dy = Px(Yt ∈ dy, τ > t).

Our argument will be separated into three parts: First, we will check that Qt indeed
defines a Feller semigroup; following that, we will show Qt has generator L; and then
finally we complete the proof by showing convergence in the sense of finite dimensional
distributions.

Before we even can confirm the Feller properties, however, we need to define Qt(x, y)

for x = 0, 1. Combining our two equations from Proposition 2.1, we get

Qt(x, y) = 2yJα(j1,αy)

∞∑
i=1

Jα(ji,αy)

Jα+1(ji,α)2
hi(x)

h1(x)
exp

(
j21,α − j2i,α

2
t

)
. (3.2)
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Recall that hi(x) is continuous on the interval [0, 1] and polynomially bounded in i. As
hi(0) 6= 0 and 1 is a simple root of hi for all i, hi(x)

h1(x)
can be extended to a continuous

function on [0, 1] bounded polynomially in i. Thus we can extend Qt(x, y) to x = 0, 1 by
continuity. In fact, the absolute convergence of (3.2) shows the map (t, x, y) 7→ Qt(x, y)

is continuous on (0,∞)× [0, 1]× [0, 1]. This argument also has the side effect of proving
the first Feller property Qt : C[0, 1]→ C[0, 1].

Next, it is immediate from (2.8) applied with i = 1 that Qt(x, y)dy integrates to 1 and
thus is a probability measure. Furthermore for x, y 6∈ {0, 1}, the following computation
shows Qt satisfies the Chapman-Kolmogorov equation:

(QtQs)(x, y)dy = exp

(
j21,α

2
(t+ s)

)
h1(y)

h1(x)

∫ 1

0

Rt(x, z)Rs(z, y)dzdy

= exp

(
j21,α

2
(t+ s)

)
h1(y)

h1(x)

∫ 1

0

Px(Yt+s ∈ dy, Yt ∈ dz, τ > t+ s)

= exp

(
j21,α

2
(t+ s)

)
h1(y)

h1(x)
Rt+s(x, y)dy

= Qt+s(x, y)dy,

where we applied the Strong Markov property in the second line. Extending this
argument to x, y ∈ {0, 1} via continuity shows that {Qt}t≥0 defines a transition semigroup.
To prove this transition semigroup is Feller it now suffices to show ||Qtf − f || → 0 as
t→ 0 for all f ∈ C[0, 1]. Note

Qtf(x) =
1

h1(x)
Ex[h1(Yt∧τ )f(Yt∧τ )] exp

(
j1,α2

2
t

)
. (3.3)

The contribution from the exponential term to ||Qtf − f || is negligible as t→ 0 so we will
omit it in the following computations. To deal with the remaining terms, it is convenient
to work with a subset of C[0, 1] to start. Define

A := {f ∈ C2[0, 1] : f ′(0) = f ′(1) = 0}.

The condition f ′(1) = 0 is not necessary for the following argument, but we will also
employ A when showing Qt has generator L where it will prove useful. For f ∈ A
Dynkin’s formula implies

1

h1(x)
Ex[h1(Yt∧τ )f(Yt∧τ )] = f(x) +

1

h1(x)
Ex
[∫ t∧τ

0

L0(h1f)(Ys)ds

]
. (3.4)

Note

L0(h1f)(x) =
1

2
h1(x)f ′′(x) +

(
h1(x)

2x
+ j1,αx

−αJ ′α(j1,αx)

)
f ′(x)−

j1,α2

2
h1(x)f(x) (3.5)

is bounded on [0, 1] and thus there exists a constant C such that∣∣∣∣ 1

h1(x)
Ex[h1(Yt∧τ )f(Yt∧τ )]− f(x)

∣∣∣∣ ≤ C

h1(x)
Ex[τ ∧ t]. (3.6)

For any ε > 0, crudely bounding the expectation by t is enough to deduce Qtf(x)→ f(x)

uniformly for x ∈ [0, 1− ε]. To improve this bound near x = 1, observe that the SDE (2.1)
defining a Bessel process allows one to couple a Brownian motion Bt with our Bessel
process Yt in such a way that B0 = Y0 = x and Yt ≥ Bt. If T1−x is the time it takes Bt
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to hit 1, then T1−x ≥ τ . The random variable T1−x is well-studied and has density (see
e.g. [3])

1− x√
2πs3

exp

(
− (1− x)2

2s

)
from which one gets

C

h1(x)
Ex[τ ∧ t] ≤ C

h1(x)
Ex[T1−x ∧ t] =

C

h1(x)
O((1− x)

√
t),

where the bound holds uniformly as t → 0, x → 1. As h1(x) has a simple root at x = 1,
||Qtf−f || → 0 follows for f ∈ A from (3.6). For general g ∈ C[0, 1], the Stone-Weierstrass
theorem implies that A is dense in C[0, 1]. Therefore, for ε > 0, we can select f ∈ A with
||f − g|| < ε. One then gets

||Qtg − g|| ≤ ||Qtf − f ||+ ||f − g||+ |||Qtf −Qtg|| ≤ ||Qtf − f ||+ 2ε,

where we use the fact that Qt is contractive. Taking ε→ 0 completes the proof that Qt is
Feller.

We now move on to showing that Qt has generator L. Take f ∈ A as before. Substi-
tuting our formulas (3.1), (3.3) for L and Qtf into Dynkin’s formula (3.4):

Qtf(x) = exp

(
j21,α

2

)(
f(x) +

1

h1(x)
Ex

[∫ t∧τ

0

h1(Ys)

(
Lf(Ys)−

j21,α
2
f(Ys)

)
ds

])
.

Applying f ′(0) = f ′(1) = 0 to the formula for L0 (3.5), one sees that the integrand is
bounded and equal to zero at time τ . Hence,

Qtf(x) = exp

(
j21,α

2
t

)(
f(x) +

∫ t

0

1

h1(x)
Ex

[
h1(Ys∧τ )

(
Lf(Ys∧τ )−

j21,α
2
f(Ys∧τ )

)]
ds

)

= exp

(
j21,α

2
t

)(
f(x) +

∫ t

0

(
QsLf(x)−

j21,α
2
Qsf(x)

)
ds

)
from which we get

lim
t→0

Qtf(x)− f(x)

t
= Lf(x),

as desired.
The set A used thus far as an aid in our proofs has an additional nice property: it

forms a core for L. To see this, define fi(x) = hi(x)
h1(x)

. We claim for all i, fi(x) ∈ A. As

1 is a simple root of both hi(x), h1(x) we have fi(x) ∈ C2[0, 1]. As the series expansion
for hi(x) arising from (2.4) lacks linear terms, one gets f ′i(0) = 0. To see f ′i(1) = 0, we
employ a Mittag-Leffler expansion [18, p. 498] for Bessel functions:

h′i(x)

hi(x)
= −2x

∞∑
n=1

j2i,α
j2i,α − j2n,αx2

= − 2x

1− x2
− 2x

∑
n 6=i

j2i,α
j2i,α − j2n,αx2

.

One then gets

lim
x→1

(
h′i(x)

hi(x)
+

2x

1− x2

)
= −2

∑
n 6=i

j2i,α
j2i,α − j2n,α

= −1− α,

where we used a known formula proven in [4] for the summation on the right-hand side.
Thus

lim
x→1

f ′i(x)

fi(x)
= lim
x→1

(
h′i(x)

hi(x)
− h′1(x)

h1(x)

)
= 0.
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As fi(1) 6= 0, it follows that f ′i(1) = 0. The functions fi(x) are signficant in that, by (3.1),
they are eigenvectors of L. Hence, for any λ > 0, fi ∈ R(λ− L|A). Due to the existence
of the Fourier-Bessel expansions (2.5), R(λ − L|A) is then dense in C[0, 1]. Since A is
also dense in C[0, 1], Proposition 3.1 from [7, Ch. 1] allows us to conclude that A is a
core of L.

Between Proposition 2.1 and our work thus far in this proof, we have shown that
X

(n)
t converges in distribution to Xt. Extending this to convergence in the sense of

finite dimensional distributions is relatively straightforward and essentially amounts to
showing X(n) becomes Markovian in the limit. Indeed, let t0 = 0 < t1 < t2 < · · · < tk = t.
Then

Px(X
(n)
t ∈ dy|X(n)

ti = yi ∀i ≤ k − 1) = Px(Yt ∈ dy|τ > n, Yti = yi ∀i ≤ k − 1)

=
Px(Yt ∈ dy, τ > n|τ > tk−1, Yti = yi ∀i ≤ k − 1)

Px(τ > n|τ > tk−1, Yti = yi ∀i ≤ k − 1)

Applying the Strong Markov property,

Px(X
(n)
t ∈ dy|X(n)

ti = yi ∀i ≤ k − 1) =
Pyk−1(Yt−tk−1

∈ dy, τ > n− tk−1)

Pyk−1(τ > n− tk−1)

= Pyk−1(Yt−tk−1
∈ dy|τ > n− tk−1)

→ Qt−tk−1
(yk−1, y).

from which convergence in the sense of finite dimensional distribution follows.
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