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Abstract

Let BH be a fractional Brownian motion on R with Hurst parameter H ∈ (0, 1) and
let F be its pathwise antiderivative (so F is a differentiable random function such
that F ′(x) = BH

x ) with F (0) = 0. Let B be a standard Brownian motion, independent
of BH . We show that the zero energy part At = F (Bt) −

∫ t

0
F ′(Bs)dBs of F (B) has

positive and finite p-th variation in a special sense for p0 = 2
1+H

. We also present
some simulation results about the zero energy part of a certain median process which
suggest that its 4/3-th variation is positive and finite.
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1 Introduction

In a recent paper ([5]) we showed that a certain median process lacks the semimartin-
gale property. This median process has a decomposition into a sum of a martingale and a
process with zero quadratic variation. Such a process is called a Dirichlet process in [3],
and a process with zero quadratic variation is said to have zero energy. Since the median
process above is not a semimartingale, the zero energy part of the decompostion can
not be of finite total variation. The proof provided in [5] is indirect, it does not compute
the total variation of the zero energy part. This paper tries to make the first steps for
this computation. We consider a simpler case where the computation can be carried out
and we also present some simulation result for the above median process. These results
suggest that if we compute the 4/3-th variation along a specially selected sequence of
partitions, then it has a finite limit. The exponent 4/3 is the same as in [9]. They consider
a process X obtained from a Brownian motion B with the formula Xt =

∫ t
0
1(Bs≤Bt)ds,

that is X is the amount of time spent so far below the current value of B.
Without going into too much details, short term increments of these processes are

obtained roughly by substituting a Brownian motion B into a continuously differentiable
random function F whose first derivative f has non-zero and finite quadratic variation.
The increment of the zero energy part of F (B) during an upcrossing of the interval (0, δ)

is F (δ)− F (0)−
∫ τ

0
f(Bs)dBs where τ is the exit time of (−δ, δ) and B is conditioned to
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Example of a Dirichlet process whose zero energy part has finite p-th variation

Bτ = δ. By the mean value theorem there is a ξ ∈ (0, δ) such that F (δ) − F (0) = f(ξ)δ

and we get that the increment is roughly δ(f(ξ)− f(0)). Here the stochastic integral is
simply approximated with f(0)(Bτ −B0) = f(0)δ.

Similarly, the increment of the zero energy part during a downcrossing of (0, δ) is
roughly δ(f(δ)−f(ξ)). Since the number of down and upcrossing up to time t differs only
by one and is proportional to 1/δ, we get that the contribution of crossings of (0, δ) is
roughly proportional to 1

δ |δ(f(δ)− f(0))|p. Similar computation can be done for intervals
of form (rδ, (r + 1)δ). The fact that the quadratic variation of f is finite roughly means
that for most of the increments f((r + 1)δ)− f(rδ) is of order δ1/2 so finally we arrive at
the conclusion that in order to have finite p-th variation it is needed that 1

δ δ
3/2p = δ, that

is p = 4/3.
This argument is far from being rigorous. The aim of this paper to make this argument

precise for the simplest case when f is a fractional Brownian motion. The increments of
a fractional Brownian motion with Hurst index H over an interval of length δ is of size δH ,
so the last step of the above heuristic computation is 1

δ δ
(1+H)p = δ, that is p = 2/(1 +H).

Theorem 1.1. Let BH be a fractional Brownian motion (fBM) on R with Hurst parameter
H and let B be a standard Brownian motion (BM), independent of BH . Denote F the
pathwise antiderivative of BH with F (0) = 0 and

At = F (Bt)−
∫ t

0

F ′(Bs)dBs.

For p0 = 2
1+H the p0-th variation of A on any [0, t] exists and equals to ct with c =

E(|A1|p0).
Especially, for p < p0 the p-th variation is infinite almost surely on any non degenerate

interval, while for p > p0 it is identically zero.

In the previous claim the p-th variation (V
(p)
t )t≥0 is definied similarly to the quadratic

variation, that is, for any t and any (deterministic) sequence of subdivisions (t
(n)
i ) of [0, t]

whose mesh goes to zero we have that∑
i

∣∣∣At(n)
i+1
−A

t
(n)
i

∣∣∣p → V
(p)
t in probability.

We start with a somewhat simpler claim.

Theorem 1.2. Using the assumptions and the notation of Theorem 1.1, for δ > 0 let

τ δ0 = 0, τ δk+1 = inf{t > τ δk :
∣∣∣Bt −Bτδk ∣∣∣ ≥ δ}.

Then with c = E
(
|Aτ1

1
|p0
)

we have∑
k:τδk<t

∣∣∣Aτδk+1
−Aτδk

∣∣∣p0 → ct in probability as δ → 0.

2 Proof of Theorem 1.2

Using the scaling property of the (fractional) Brownian motion we have that∑
k:τδk<t

∣∣∣Aτδk+1
−Aτδk

∣∣∣p0 d
= δ2

∑
k:τ1

k<t/δ
2

∣∣∣Aτ1
k+1
−Aτ1

k

∣∣∣p0 . (2.1)

For details see Lemma 2.4 below. Since E
(
τ1
1

)
= 1, we have by the law of large numbers

that lim
τ1
k

k = 1 a.s. This implies that we can replace the right hand side of (2.1) with

δ2
∑

k<t/δ2

∣∣∣Aτ1
k+1
−Aτ1

k

∣∣∣p0
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Example of a Dirichlet process whose zero energy part has finite p-th variation

and investigate its limiting behavior as δ → 0. The difference is that now the number of
summands is deterministic, therefore the summands are identically distributed by their
definition, although not independent. It is also clear that we can further simplify the
expression; to prove Theorem 1.2 it is enough to show that

1

n

∑
k<n

∣∣∣Aτ1
k+1
−Aτ1

k

∣∣∣p0 → E
(∣∣∣Aτ1

1

∣∣∣p0) in probability. (2.2)

As δ is now fixed to 1, we drop it from the notation. In this form it is a weak law of
large numbers and we prove it by showing that the variance of this sum is o(n2). For
this we use the strong mixing property of the increments of the fractional Brownian
motion which follows easily from the decay of the correlation (see [4]). We formulate it
in Lemma 2.2 below.

We finish the proof of Theorem 1.2 by showing the next proposition.

Proposition 2.1. Let BH be a fBM on R with Hurst parameter H and let B be a
standard BM, independent of BH . With B

(k)
t = Bτk+t − Bτk , t ≥ 0 and B(H,k)(x) =

BH(x+Bτk)−BH(Bτk), x ∈ R, let ξk = (B(k), B(H,k)). Then (ξk)k≥0 is strictly stationary
and strong mixing in the sense that

cov(g(ξ0), g(ξk))→ 0 as k →∞

for any measurable g : C[0,∞) × C(R) → R functional for which g(ξ0) is a square
integrable random variable.

From Proposition 2.1 we have the weak law of large numbers for square integrable
functionals g(ξk). Indeed, using the stationarity we can estimate the variance

Var

(
1

n

n−1∑
k=0

g(ξk)

)
≤ 2

n

n−1∑
k=0

|cov(g(ξ0), g(ξk))|.

Here |cov(g(ξ0), g(ξk))| → 0, hence its arithmetic mean sequence does the same.
It is possible to show that |Aτ1 |

p0 is square integrable, but we do not need this result.
Indeed, if we know the L2 and hence the L1 convergence of the averages 1

n

∑n−1
k=0 g(ξk)

for bounded g, then we have the same limiting relation for integrable functionals as well.
So to finish the proof it is enough to show that Aτ1 is square integrable,

Aτ1 = F (Bτ1)−
∫ τ1

0

F ′(Bs)dBs.

Here F (Bτ1) has the same law as
∫ 1

0
BHx dx which has a normal law, so this part is

obviously square intagrable. For the Itô integral part we can use the isometry combined
with the occupation time formula ([8, Chapter VI., Corollary (1.6)]) to obtain that

E

((∫ τ1

0

F ′(Bs)dBs

)2
)

= E

(∫ ∞
0

(F ′(Bs))
21(s≤τ1)ds

)
=

∫
R

E
(

(F ′(x))
2
)
E
(
Lxτ1
)
dx

≤ sup
|x|≤1

E
((
BHx
)2)

E

(∫
R

Lxτ1dx

)
= sup
|x|≤1

E
((
BHx
)2)

E
(
B2
τ1

)
= 1.

It remains to check that Proposition 2.1 holds. We do this using the next lemma
whose proof involves only elementary computation, hence it is left for the reader.

Lemma 2.2. There is a constant depending only on H, such that for x, x′, y ∈ R and for
a fractional Brownian motion BH with Hurst index H

cov
(
(TyB

H)x, B
H
x′
)
≤ C

(
|x||x′|
|y|2(1−H)

)
, if

max(|x|, |x′|)
|y|

≤ 1

2
,

where Ty is the translation with y, that is (TyB
H)x = BHy+x −BHy .
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This lemma extends easily with the monotone class argument to a much wider set of
functionals involving scaling as well. In what follows we need it in the following form

Corollary 2.3. Let BH be a fractional Brownian motion with Hurst index H. For c > 0

let (ScB
H)x = |c|−HBHcx. Then for a measurable functional g : C(R)→ R,

cov
(
g(ScnTynB

H), g(Sc′nTy′nB
H)
)
→ 0,

provided that g(BH) is square integrable and cnc′n = o((yn − y′n)2).

Proof. Using the monotone class argument it is enough to prove for functionals of the
form g(BH) = g(BHx1

, . . . , BHxk) = g(BHx ), where g is a bounded continuous function on

Rk. For this case it is enough to show that the (ScnTynB
H)x and (Sc′nTy′nB

H)x are
asymptotically independent, so eventually it is enough to check that the covariances
cov((ScnTynB

H)xi , (Sc′nTy′nB
H)xj ) 1 ≤ i, j ≤ k are vanishing in the limit.

Note that cov
(
(ScnTynB

H)xi , (Sc′nTy′nB
H)xj

)
= (cnc

′
n)−H cov

(
Tyn−y′nB

H
cnxi , B

H
c′nxj

)
and

|cnxi|, |c′nxj | < 1
2 |yn − y

′
n| for n large enough. Then, from Lemma 2.2

cov((ScnTynB
H)xi , (Sc′nTy′nB

H)xj ) = (cnc
′
n)−H cov(Tyn−y′nB

H
cnxi , B

H
c′nxj

)

≤ C(cnc
′
n)−H ·

(
cn|xi|c′n|xj |
|yn − y′n|2(1−H)

)
≤ C · |xi||xj | ·

(
cnc
′
n

(yn − y′n)2

)1−H

,

which tends to zero by the assumption. The proof is complete.

Proof of Proposition 2.1. For the strict stationarity we need to show that (ξk)k≥0 and
(ξk+`)k≥0 have the same law for each ` ≥ 0. By the special structure of the sequence
(ξk)k≥0 is obtained from ξ0 in the same way as (ξk+`)k≥0 is obtained from ξ`. So it is to
show that ξ0 and ξ` has the same law. It follows easily from the strong Markov property of
the Brownian motion B that (τ`, Bτ`) is independent of B(`) and BH . By the stationarity
of the increments of fractional Brownian motion BH , (BHx+y − BHy )x∈R has the same

law as BH for any y. Now using the value of Bτ` as y yields that B(`) and B(H,`) are
independent, and has the same joint law as B and BH .

For the strong mixing property it is enough to consider functionals of the form
g(B,BH) = g1(B)g2(BH) with g1, g2 bounded and then use monotone class argument.
For this special case it is enough to show that

E
(
g1(B)g1(B(k))

)
→ E2(g1(B)) and E

(
g2(BH)g2(B(H,k))

∣∣∣ σ(B)
)
p→E2

(
g2(BH)

)
,

as k tends to infinity. Then using the boundedness of g1, g2 the result easily follows.
Using the translation notation from Lemma 2.2, E

(
g2(BH)g2(B(H,k))

∣∣ σ(B)
)

is easy
to express,

E
(
g2(BH)g2(B(H,k))

∣∣∣ σ(B)
)

= E
(
g2(BH)g2(TxB

H)
)∣∣
x=Bτk

.

So this part follows from Corollary 2.3 and the fact that |Bτk |
p→∞.

Concerning g1(B), we can consider bounded functionals of the form g1(Bt), where
t ∈ [0,∞)d and Bt is the vector variable obtained from B by sampling the values at the

time points t = (t1, . . . , td). Let t ∧ τk = (t1 ∧ τk, . . . , td ∧ τk), then g1(Bt∧τk)
p→ g1(Bt) so

E
(
g1(Bt)g1(B

(k)
t )
)
− E

(
g1(Bt∧τk)g1(B

(k)
t )
)
→ 0

and as g1(Bt∧τk) is independent of g1(B
(k)
t ) we also have that

E
(
g1(Bt∧τk)g1(B

(k)
t )
)

= E
(
g1(Bt∧τk)

)
E
(
g1(B

(k)
t )
)
→ E2(g1(Bt))
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Lemma 2.4. Let BH be a fBM on R with Hurst parameter H and let B be a standard
BM, independent of BH . For δ > 0 let B(δ)

t = 1
δBtδ2 and B(H,δ)

x = δ−HBHxδ. Then

1. (B,BH)
d
= (B(δ), B(H,δ)),

2. τ δk (B) = δ2τ1
k (B(δ)) and

3. At(B,BH) = δ1+HAt/δ2(B(δ), B(H,δ)).

Proof. The first two point follows from the scaling invariance of the (fractional) Brownian
motion and from the definition of the stopping time sequence.

For the last point

At = F (Bt)−
∫ t

0

F ′(Bu)dBu.

Here F is the pathwise antiderivative of BH such that F (0) = 0. Then Bt = δB
(δ)
t/δ2 . If

F (δ) denotes the pathwise antiderivative of B(H,δ) with F (δ)(0) = 0, then for positive x

F (x) =

∫ x

0

BHy dy =

∫ x

0

δHB
(H,δ)
y/δ dy = δH+1F (δ)(x/δ),

and similarly for negative x. From these computations F (Bt) = δ1+HF (δ)(B
(δ)
t/δ2)

For the stochastic integral note that F ′(x) = BHx = δHB
(H,δ)
x/δ = δH(F (δ))′(x/δ), so∫ t

0

F ′(Bu)dBu = δH
∫ t

0

(F (δ))′(B
(δ)
u/δ2)δdB

(δ)
u/δ2 = δ1+H

∫ t/δ2

0

(F (δ))′(B(δ)
u )dB(δ)

u .

3 Proof of Theorem 1.1

The proof of Theorem 1.1 goes along similar lines as that of Theorem 1.2. For a given
interval I = [a, b] ⊂ [0,∞) let’s define

B
(I)
t =

B(b−a)t+a −Ba
(b− a)1/2

, B(H,I)
x =

BH
(b−a)1/2x+Ba

−BHBa
(b− a)H/2

(3.1)

The key point here is again the scaling property of the (fractional) Brownian motion: for
0 ≤ s < t, I = [s, t]

At −As = F (Bt)− F (Bs)−
∫ t

s

F ′(Bu)dBu.

If F (I) is the random function with B(H,I) as its derivative and F (I)(0) = 0, then for x > 0

F (I)(x) =

∫ x

0

B(H,I)
y dy =

∫ x

0

BH
(t−s)1/2y+Bs

−BHBs
(t− s)H/2

dy

= (t− s)−(H+1)/2(F (Bs + x
√
t− s)− F (Bs))− x(t− s)−H/2F ′(Bs)

and similarly for x < 0. So if we write B(I)
1 in place of x we get

F (I)(B
(I)
1 ) = (t− s)−(H+1)/2(F (Bt)− F (Bs)− (Bt −Bs)F ′(Bs)).

Similary for the stochastic integral∫ 1

0

(F (I))′(B(I)
u )dB(I)

u =

∫ t

s

F ′(Bu)− F ′(Bs)
(t− s)H/2

dBu
(t− s)1/2

= (t− s)−(H+1)/2

(∫ t

s

F ′(Bu)dBu − F ′(Bs)(Bt −Bs)
)
,

so |At −As|2/(H+1) = (t− s)g(B([s,t]), B(H,[s,t])) with a suitable functional g.
The proof of Theorem 1.2 is based on the next two claims which we prove below.
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Proposition 3.1. For a non-degenerated interval I ⊂ [0,∞) denote ξI = (B(I), B(H,I)).
Then the law of ξI does not depends on I and

cov(g(ξIn), g(ξJn))→ 0 if max(|In|, |Jn|)→ 0 and lim inf
n

dist(In, Jn) > 0,

provided that g(ξ[0,1]) is square integrable.

Corollary 3.2. Suppose that (πn) is a sequence of subdivisions of [0, t], such that the
mesh maxI∈πn |I| → 0 and g is a functional such that g(ξ[0,1]) is integrable. Then∑

I∈πn

|I|g(ξI)→ tE
(
g(ξ[0,1])

)
in L1.

Theorem 1.2 follows from Corollary 3.2 if we apply it to

g(ξ[0,1]) =

∣∣∣∣F (B1)−
∫ 1

0

F ′(Bs)dBs

∣∣∣∣p0 , F ′(x) = BHx , F (0) = 0.

We check that g(ξ) is integrable by showing that g(ξ[0,1]) ∈ L2/p0 . Note that 2/p0 < 2 so
it is enough to show that the next random variable is square integrable

F (B1)−
∫ 1

0

F ′(Bs)dBs, F ′(x) = BHx , F (0) = 0.

Since by trivial estimations E
(
F (x)2

)
< x4 we obviously have that F (B1) ∈ L2. For the

second term we apply again Itô isometry followed by the occupation time formula, and

E

((∫ 1

0

F ′(Bs)dBs

)2
)

=

∫
R

E
(
(BHx )2

)
E(Lx1)dx =

∫
R

|x|2HE(Lx1)dx

≤
∫
R

(x2 + 1)E(Lx1)dx = E

(∫ 1

0

(
B2
s + 1

)
ds

)
= 3/2.

Proof of Proposition 3.1. We start with the law of ξI . Since the increments of the frac-
tional Brownian motion BH are stationary, (BHx+y − BHy )x∈R has the same law as BH

for any deterministic y. Then by the independence of B and BH the conditional law of
(BHx+Ba

−BHBa)x∈R given B does not depend on B, that is (BHx+Ba
−BBa)x∈R is indepen-

dent of B with the same law as BH . But then by the scaling invariance of BH the same
is true for B(H,I). Finally, by the Markov property and scaling invariance of B we get
that B(I) is also a Brownian motion which is obviously independent of B(H,I). So ξI has
the same law as (B,BH) which is ξ[0,1] by definition.

To show the asymptotics of the covariance it is enough to consider again functionals
of the form g(B,BH) = g1(B)g2(BH) where g1, g2 are bounded. As in the proof of

Proposition 2.1 it is enough to show that E
(
g2(B(H,In))g2(B(H,Jn))

∣∣ σ(B)
) p→E2

(
g2(BH)

)
and that E

(
g1(B(In)g1(B(Jn))

)
→ E2(g1(B)) whenever (In = [an, bn], Jn = [cn, dn])n≥1 is a

sequence such that max(|In|, |Jn|)→ 0 and infn dist(In, Jn) > 0.
Using the independence of B and BH we get that

E
(
g2(B(H,In))g2(B(H,Jn))

∣∣∣ σ(B)
)

= E
(
g2(S|In|1/2TxB

H)g2(S|Jn|1/2TyB
H)
)∣∣
x=Ban ,y=Bcn

where we used the notation of Corollary 2.3. By assumption |In|
1/2|Jn|1/2

(Bcn−Ban )2
p→ 0 as n→∞.

Then Corollary 2.3 shows that E
(
g2(B(H,In))g2(B(H,Jn))

∣∣ σ(B)
) p→E2

(
g2(BH)

)
.

For E
(
g1(B(In))g1(B(Jn))

)
= E

(
g1(S|In|TanB))g1(S|Jn|TcnB)

)
we can also use Corol-

lary 2.3 with H = 1/2.
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Proof of Corollary 3.2. First assume that g(ξ[0,1]) is square integrable, and for a sequence
of partitions πn of [0, t] let fn =

∑
I,J∈πn 1I×J cov(g(ξI), g(ξJ)). Then

Var
(∑

I∈πn
|I|g(ξI)

)
=

∫
[0,t]2

fn → 0, if max
I∈πn
|In| → 0,

since the sequence of function (fn) is dominated by Var g(ξ[0,1]) and tends to zero
everywhere but the diagonal of [0, t]2 by Proposition 3.1. Also by Proposition 3.1 the
expectation E

(∑
I∈πn |I|g(ξI)

)
= tE

(
g(ξ[0,1])

)
does not depend on n, hence we have the

claim for g provided that g(ξ[0,1]) ∈ L2.
For general g, when g(ξ[0,1]) is integrable, we can use truncation.

4 The zero energy part of the median process

Let B be a Brownian motion and suppose that (Dt(x))t≥0,x∈[0,1] satisfies

dDt(x) = σ(Dt(x))dBt, σ(x) = x ∧ (1− x), D0(x) = x, x ∈ [0, 1]. (4.1)

This two parameter process was analyzed in [6] in detail. It was shown that the solu-
tion Dt(x) can be viewed as a conditional distribution function, and this justifies the
(conditional) quantile name for the process qt = D−1

t (α), α ∈ (0, 1), and particularly
the (conditional) median name for the process mt = D−1

t (1/2). In [5] it was proved
that qs+t = D−1

s (qs,t) with qs,t = D−1
s,t (α), where Ds,t(x) is the solution of (4.1) with B

replaced by Bs,t = Bs+t − Bs “a Brownian motion that starts evolving at time s”, and
(D−1

s )′(x) is a random function with infinite total variation in its space variable on [0, 1].
In [5] it was also proved that the quantile process qt is not a semimartingale, so

neither the median process mt is it. The following decomposition formula holds for qt (cf.
Subsection 5.2 in [5])

Āt = qt +

∫ t

0

(
D−1
s

)′
(α)σ(α)dBs.

This Ā is a process of zero energy, that is, the quadratic variation of Ā exists and [Ā] ≡ 0.
If Ā would have finite total variation, then qt would be a semimartingale, so Ā should
have infinite total variation.

We will refer to the process Ā as the zero energy part of the quantile process. In the
following we prove that the local martingale part in the previous decomposition of qt is
a true martingale and we will investigate the following main question: whenever the
total variation of Ā is infinite, and the quadratic variation is identically 0, is there any
p ∈ (1, 2) for which the p-th variation of Ā is positive and finite? We are not able to give a
mathematically rigorous answer to this latter question, but we formulate some heuristic
arguments which are supported by some simulation results.

4.1 Space inverse of a stochastic flow

In this subsection we revise a method for obtaining the space inverse of a stochastic
flow (which is given by an Itô diffusion) at a given time point. We will use this in the next
subsection (in the proof of the martingale property of the local martingale part of qt). We
prove only for the case of the unit diffusion coefficient but with suitable transformations
this result can be extended.

Let B be a Brownian motion and let (Gt(x))t≥0,x∈R be a stochastic flow which satisfies
the following equation

dGt(x) = µ(Gt(x))dt+ dBt, G0(x) = x, x ∈ R, (4.2)

where µ is a bounded measurable function. Suppose that on an almost sure event the
mapping (t, x) 7→ Gt(x) is continuous and the mappings x 7→ Gt(x) are homeomorphisms
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of R for all t. We now define a process which produces as its terminal value on an almost
sure event the space inverse of x 7→ GT (x) for a certain T > 0. For this we will use the
time reversion of the Brownian motion.

For a fixed time horizon T > 0 let B̃Tu = BT−u −BT be the time reversed Brownian
motion on [0, T ]. Let (HT

t (x))t∈[0,T ],x∈R be the solution of the following equation

dHT
t (x) = −µ(HT

t (x))dt+ dB̃Tt , HT
0 (x) = x, x ∈ R. (4.3)

Suppose again that on an almost sure event the mapping (t, x) 7→ HT
t (x) is continuous

and the mappings x 7→ HT
t (x) are homeomorphisms of R for all t.

Recall the following result from [1] (see also in [2]; a different approach and a
generalization of this result can be found in [10] and [11])

Theorem 4.1 (Davie (2007), Theorem 1.1). Consider the following equation

Xt = X0 +Bt +

∫ t

0

f(s,Xs)ds, t ≥ 0, (4.4)

where Xt ∈ Rd, B is a standard d-dimensional Brownian motion and f is a bounded Borel
function from [0,∞)×Rd to Rd.

For a.e. Brownian path B, there is a unique continuous X : [0,∞) → Rd satisfy-
ing (4.4).

It will be pointed out in the next proof the role of this theorem. From this we know
that on an almost sure event there are unique continuous functions Ĝ(x0) : [0,∞)→ R

and Ĥ(x0) : [0,∞) → R satisfying dĜt(x0) = µ(Ĝt(x0))dt + dBt, Ĝ0(x0) = x0 and
dĤt(x0) = −µ(Ĥt(x0))dt+ dBt, Ĥ0(x0) = x0. Taking into account all rational x0 and then
using the continuity of Gt(x) and HT

t (x), we obtain that on an almost sure event Ω′ ⊂ Ω

the mappings (t, x) 7→ Gt(x) and (t, x) 7→ Ht(x) are unique. Then we have the following

Proposition 4.2. On an almost sure event, for all u ∈ [0, T ] and for all x ∈ R we have
the following: GT−u(x) = HT

u (GT (x)) and HT
T−u(x) = Gu(HT

T (x)).
Especially, we have HT

T (GT (x)) = x and GT (HT
T (x)) = x, so G−1

T = HT
T .

Proof. We restrict ourselves to Ω′. Let 0 ≤ s < t ≤ T . For u ∈ [0, T ] let G̃Tu (x) = GT−u(x)

be the time reversed process of (G(x))t∈[0,T ]. Using (4.2) we obtain

G̃Tt (x)− G̃Ts (x) = −(GT−s(x)−GT−t(x)) = −
∫ T−s

T−t
µ(Gu(x))du− (BT−s −BT−t) =

−
∫ t

s

µ(GT−u(x))du+ (BT−t −BT − (BT−s −BT )) = −
∫ t

s

µ
(
G̃Tu (x)

)
du+

(
B̃Tt − B̃Ts

)
.

Substituting G−1
T (x) in place of x yields

G̃Tt (G−1
T (x))− G̃Ts (G−1

T (x)) = −
∫ t

s

µ
(
G̃Tu (G−1

T (x))
)
du+

(
B̃Tt − B̃Ts

)
.

As G̃T0
(
G−1
T (x)

)
= GT

(
G−1
T (x)

)
= x, we have obtained that G̃Tu

(
G−1
T (x)

)
solves the

equation (4.3) of HT (x). However, from [12] we know that (4.3) has a unique strong

solution, but it is not obvious that
(
G̃Tu
(
G−1
T (x)

))
u∈[0,T ]

is adapted to the filtration

generated by B̃T , hence we need the previously cited uniqueness result, Theorem 4.1. It
follows that on Ω′ we have HT

u (x) = G̃Tu
(
G−1
T (x)

)
, so HT

u (GT (x)) = GT−u(x).
A similar argument for HT yields Gu

(
HT
T (x)

)
= HT

T−u(x).
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4.2 The local martingale part of the quantile process is a true martingale

Now we turn to the case of the quantile process. Using the previous results we derive
a process which produces a transformed version of D−1

T as its terminal value and we
prove that the local martingale part of the quantile process is a true martingale.

Proposition 4.3. Let B be a Brownian motion and suppose that (Dt(x))t≥0,x∈[0,1] satis-

fies (4.1). Then
∫ ·

0

(
D−1
s

)′
(α)σ(α)dBs is a true martingale.

Proof. In the proof we do not use the exact form of σ from the equation (4.1) of D(x),
but we only use that it is a Lipschitz continuous function with Lipschitz constant L and it
is bounded on C = (0, 1). We also provide the particular results for that special case.

As the first step, consider the Lamperti transform of D(x), so let ψ : C → R be such
that ψ′ = 1/σ, where C is a connected component of R \ {σ = 0}. In the special case of
σ(x) = x ∧ (1− x) and C = (0, 1) we can use ψ(x) = sign(1− 2x) ln(1− |1− 2x|).

LetGt(x) = ψ◦Dt◦ψ−1(x), so dGt(x) = − 1
2 (σ′◦ψ−1)(Gt(x))dt+dBt, G0(x) = x, x ∈ R,

and letHT
t (x) be the solution of dHT

t (x) = 1
2 (σ′◦ψ−1)

(
HT
t (x)

)
dt+dB̃Tt , H

T
0 (x) = x, x ∈ R.

In the special case we have dGt(x) = 1
2 sign(Gt(x))dt + dBt, G0(x) = x, x ∈ R and

dHT
t (x) = − 1

2 sign(HT
t (x))dt+ dB̃Tt , H

T
0 (x) = x, x ∈ R.

In order to be able to calculate
(
D−1
T

)′
, let s be a scale function (or Zvonkin transform,

[13]) for HT (x). This removes the drift, and s satisfies s′(x)(σ′ ◦ ψ−1)(x) + s′′(x) = 0.
For such a function we have s′ = c

σ◦ψ−1 with some c ∈ R, and the transformed process(
FTt (x) = s ◦HT

t (x)
)
t≥0,x∈R satisfies

dFTt (x) =
c

σ ◦ (s ◦ ψ)−1

(
FTt (x)

)
dB̃Tt , FT0 (x) = x, x ∈ R. (4.5)

In the special case a possible s can be s(x) = sign(x)(exp{|x|} − 1), and with this choice

dFTt (x) =
(
1 +

∣∣FTt (x)
∣∣)dB̃Tt , FT0 (x) = x, x ∈ R. (4.5′)

For (FTT )′ = fTT we use Lemma 16 from [6]. Since
(

c
σ◦(s◦ψ)−1

)′
= −σ′ ◦ (s ◦ ψ)−1, we

know that c
σ◦(s◦ψ)−1 is a Lipschitz continuous function (with the same Lipschitz constant

L as σ), so FTt is differentiable in its space variable, and the space derivative fTt satisfies
dfTt (x) = −σ′ ◦ (s ◦ ψ)−1(FTt (x))fTt (x)dB̃Tt , f

T
0 (x) = 1, x ∈ R. From this we obtain that

fTt (x) = exp
{
NT
t (x)− 1

2 [NT (x)]t
}

with NT
t (x) = −

∫ t
0
σ′ ◦ (s ◦ ψ)−1(FTu (x))dB̃Tu , and this

yields E
(∣∣fTt ∣∣p) ≤ exp

{
L2p

(
p− 1

2

)
t
}

, where L is the Lipschitz constant for σ.
To be able to apply Proposition 4.2, we need to guarantee that on an almost sure

event (t, x) 7→ Gt(x) and (t, x) 7→ HT
t (x) are continuous, Gt(x) and HT

t (x) are homeomor-
phisms of R for all t and theirs drifts are bounded. The latter property follows from
the Lipschitz continuity of σ. Moreover, since also c

σ◦(s◦ψ)−1 is a Lipschitz continuous
function, we know that (Theorems 37 and 46 from Chapter V in [7]) the above proper-
ties hold for (Dt(x))t≥0,x∈R and

(
FTt (x)

)
t≥0,x∈R, and hence hold for (Gt(x))t≥0,x∈R and(

HT
t (x)

)
t≥0,x∈R (as they are transformations). So by Proposition 4.2 we know that almost

surely HT
T = G−1

T = ψ ◦D−1
T ◦ ψ−1, so D−1

T = (s ◦ ψ)
−1 ◦ FTT ◦ ψ, and hence(

D−1
T

)′
=
c · σ2 ◦ (s ◦ ψ)−1 ◦ FTT ◦ ψ · fTT ◦ ψ

σ
.

Now suppose that |σ| ≤ K on C. Then

E

(((
D−1
u

)′
(α)σ(α)

)2
)

= c2E
(
σ4 ◦ (s ◦ ψ)−1 ◦ Fuu ◦ ψ(α) · fuu ◦ ψ(α)

)
≤ c2

(
E
(
σ8 ◦ (s ◦ ψ)−1 ◦ Fuu ◦ ψ(α)

))1/2(
E
(

(fuu )
2 ◦ ψ(α)

))1/2

≤ c2K4 exp

{
3

2
L2u

}
,
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and hence sup0≤u≤tE
((
D−1
u

)′
(α)
)2

≤ c2K4

σ2(α) exp
{

3
2L

2t
}
< ∞, so in the case of σ(x) =

x ∧ (1− x) and C = (0, 1) it follows that the local martingale part of the quantile process,∫ ·
0

(
D−1
s

)′
(α)σ(α)dBs, is a true martingale.

4.3 Simulation framework and results

In this subsection we restrict ourselves to the case α = 1/2, so qt = mt is the median
process, and with ψ(x) = sign(1− 2x) ln(1− |1− 2x|) and FT (x) satisfying (4.5′) we have

mT = (s ◦ ψ)−1
(
FTT (0)

)
. (4.6)

Now we present the simulation framework and the results which supports the following

Conjecture 4.4. With the above notations, for p = 4/3, the stochastic limit of

n−1∑
k=0

∣∣Ātk+1
− Ātk

∣∣p, n→∞ (4.7)

is positive and finite (where 0 = t0 < t1 < · · · < tn = T denotes, with simplified indices, a
sequence of partitions of [0, T ] which have grid size tending to 0).

Instead of the sum in the above conjecture, we investigate the following sum

n−1∑
k=0

∣∣E(Ātk+1
− Ātk

∣∣ Ftk)∣∣p, (4.8)

where F is the natural filtration of the Brownian motion B. If for p > 1 the p-th
variation (4.7) tends to 0 in expectation, then so does the conditional version (4.8), so
if the conditional version has a positive and finite limit, then (4.7) can not tend to 0.
Moreover, using the Proposition 4.3, the martingale term in the definition of Ā can be
eliminated

E
(
Ātk+1

− Ātk
∣∣ Ftk) = E

(
mtk+1

−mtk

∣∣ Ftk) = E
(
mtk+1

∣∣ Ftk)−mtk .

4.3.1 Calculating the median and calculating the conditional expectation

For calculating the value of the median we can use (4.6), since for mT it is enough
to calculate FTT (0) (and transform its value). In order to do this, we want to use the
discretised version of the equation (4.5′)

FTti+1
= FTti +

(
1 +

∣∣FTti ∣∣)∆B̃Tti , Ft0 = 0, (4.9)

where 0 = t0 < t1 < · · · < tk = T is an equidistant grid of [0, T ] with mesh size
∆t = T

k , and ∆B̃Tti are correspondingly rescaled independent Rademacher variables

(with expectation 0 and variance ∆t, so P
(

∆B̃Tti =
√

∆t
)

= P
(

∆B̃Tti = −
√

∆t
)

= 1
2 ). We

restrict ourselves to the interval [0, 1], so T ∈ [0, 1]. For the calculation of the median we
use the sequence (ti = i

n )i=0,...,k for some suitable values of n (typically powers of 10).
Between the time reversed Brownian motions we have the following relationship: for

T1 < T2 and u ∈ [0, T2], we have

B̃T2
u = B̃T1

(u−(T2−T1))∨0 + B̃T2

u∧(T2−T1), (4.10)

which easily follows from the definition of B̃T . Since B̃T1

(u−(T2−T1))∨0 can be calculated

from the increments of B in the interval [0, T1], and B̃T2

u∧(T2−T1) is an increment of B in

[T1, T2], they are independent.
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Suppose that we want to calculate the values of the median in two consecutive time
points, in T1 and T2 = T1 + ∆t, on the same trajectory (until T1). Suppose that we
use a sequence (∆B̃T1) for mT1

; in order to calculate mT2
, we append one independent

rescaled Rademacher variable to the beginning of the sequence (∆B̃T1), and we calculate
mT2

along this extended sequence. In this way we can guarantee that we remain on the
same trajectory.

Now we describe how to estimate the conditional expectation of m. Let T1 and
T2 = T1 + ∆t be again two consecutive time points. We want to calculate one realization
of E(mT1+∆t | FT1

) on the same trajectory as we did in the case of mT1
. Since for

T1 < T2 and t ∈ [T2 − T1, T2] we have FT2
t (x) = FT1

t−(T2−T1)

(
FT2

T2−T1
(x)
)

, we obtain that

FT2

T2
(0) = FT1

T1

(
FT2

∆t(0)
)

, and from (4.10) we know that FT2

∆t(0) is independent of FT1

T1
(x).

Suppose that mT1
is calculated using the sequence (∆B̃T1). To calculate the condi-

tional expectation E(mT1+∆t | FT1
) along this trajectory, we can do the following. We

use the discretised equation (4.9) of F with the same driving sequence ∆B̃T1 , but with
different initial values: we approximate the distribution of FT2

∆t(0) using a finer grid of
[0,∆t] (using (4.9) with independent random increments), and we calculate the values of
FT1

T1
from these points as initial values. Finally, we take the average of FT1

T1
’s.

4.3.2 One single increment and p-th variation for some values of p

Next we summarize the simulation results. We present the results regarding one single
increment on the time interval [1, 1 + ∆τ ] for different values of p, so we investigate∣∣E(Ā1+∆τ − Ā1

∣∣ F1

)∣∣p = |E(m1+∆τ | F1)−m1|p.

The values of ∆τ range from 10−2 to 10−7. To approximate the values of m1 and
E(m1+∆τ | F1) we set the grid mesh to 10−6 (n = 106 gridpoints).

We have simulated 103 realizations, and the results can be seen on the figure below.
This is a log-log (base 10) plot. On the x-axis we indicated ∆τ , while on the y-axis we
marked the average of the above mentioned increments. Around the mean we can
also see the 95% confidence interval of the expected value. We also give the slope and
intercept values for the fitted lines, and the sum of squared residuals (SSR).

This figure (Figure 1) and the fitted lines (Table 1) suggest the following: there is a
linear relationship between the logarithm of ∆τ and the logarithm of the expected value
of one single increment:

log
(
E
(∣∣E(Ā1+∆τ − Ā1

∣∣ F1

)∣∣p))=c0 + c1 log(∆τ), so E
(∣∣E(Ā1+∆τ − Ā1

∣∣ F1

)∣∣p)= c̃0(∆τ)
c1

By a scaling argument we can suppose that this relationship is valid not only on the
interval [1, 1 + ∆τ ] but also on other intervals. The slope of the thick line is c1 = 1, and is
very close to the points which belong to the case p = 4/3. As the number of intervals in
[0, 1] with length ∆τ is roughly 1

∆τ , this has the following consequences:

• for p = 4/3, the sum
∑n−1
k=0 E

(∣∣E(Ātk+1
− Ātk

∣∣ Ftk)∣∣p) has a positive and finite limit;

• for p < 4/3, the above sum is unbounded from above;

• for p > 4/3, the above sum tends to 0.
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Figure 1: One single increment

p slope intercept SSR

1.00 0.7455 −1.3994 0.0002
1.20 0.8935 −1.6443 0.0002
1.33 0.9920 −1.8034 0.0003
1.50 1.1149 −1.9980 0.0004
2.00 1.4820 −2.5593 0.0008

Table 1: Fitted lines
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