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1 Introduction

We investigate the existence of weak solutions to stochastic Volterra equation (SVEs)

Xt = x0(t) +

∫ t

0

Kµ(s, t)µ(s,Xs) ds+

∫ t

0

Kσ(s, t)σ(s,Xs) dBs, t ∈ [0, T ], (1.1)

where x0 is a continuous function, B is a Brownian motion, and the kernels Kµ,Kσ are
measurable functions. The time-inhomogeneous coefficients µ, σ are only supposed to
be continuous in space uniformly in time. In case of ordinary stochastic differential
equations (SDEs), i.e. Kσ = Kµ = 1, the existence of weak solutions was first proven
by Skorokhod [16] and can, nowadays, be found in different generality in standard
textbooks like [17, 10].

A comprehensive study of weak solutions to stochastic Volterra equations was recently
initiated by Abi Jaber, Cuchiero, Larsson and Pulido [2], see also [12]. The extension
of the theory of weak solutions from ordinary stochastic differential equations to SVEs
constitutes a natural generalization of the classical theory and is motivated by successful
applications of SVEs with non-Lipschitz coefficients as volatility models in mathematical
finance, see e.g. [6, 3]. Assuming that the kernels in the SVE (1.1) are of convolution
type, i.e. Kµ(s, t) = Kσ(s, t) = K(t − s) for some function K : R → R, and that the
coefficients µ, σ are continuous jointly in space-time, the existence of weak solutions
was derived in [2], see also [12, 4, 1]. To that end, Abi Jaber et al. [2] introduces a local
martingale problem associated to SVEs of convolutional type.
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Weak solutions to stochastic Volterra equations

In the present work we establish a local martingale problem associated to general
stochastic Volterra equations, see Definition 2.4, and show that its solvability is equivalent
to the existence of a weak solution to the associated SVE, see Lemma 2.7. Using this
newly formulated Volterra local martingale problem, we obtain the existence of weak
solutions to stochastic Volterra equations with time-inhomogeneous coefficients, that
are not necessarily continuous in t, and allowing for general kernels in the drift and
convolutional kernels as well as bounded general kernels in the diffusion term, see
Theorem 3.3. The presented approach can be considered, roughly speaking, as a
generalization of Skorokhod’s original construction to the more general case of SVEs,
and is developed in a one-dimensional setting to keep the presentation fairly short without
cumbersome notation. However, as for ordinary SDEs and for SVEs of convolutional
type, all concepts and results are expected to extend to a multi-dimensional setting in a
straightforward manner.

Organization of the paper In Section 2 we introduce a local martingale problem
associated to SVEs. The existence of weak solutions to SVEs is provided in Section 3.

2 Weak solutions and the Volterra local martingale problem

For T ∈ (0,∞) we consider the one-dimensional stochastic Volterra equation

Xt = x0(t) +

∫ t

0

Kµ(s, t)µ(s,Xs) ds+

∫ t

0

Kσ(s, t)σ(s,Xs) dBs, t ∈ [0, T ], (2.1)

where x0 : [0, T ] → R is a continuous function, (Bt)t∈[0,T ] is a Brownian motion on a
probability space (Ω,F ,P), and the coefficients µ, σ : [0, T ] × R → R and the kernels
Kµ,Kσ : ∆T → R are measurable functions, using the notation ∆T := {(s, t) ∈ [0, T ] ×
[0, T ] : 0 ≤ s ≤ t ≤ T}. The integral

∫ t
0
Kµ(s, t)µ(s,Xs) ds is defined as a Riemann–

Stieltjes integral and
∫ t
0
Kσ(s, t)σ(s,Xs) dBs as an Itô integral. Moreover, for p ∈ [1,∞)

we write Lp(Ω× [0, T ]) and Lp([0, T ]) for the space of p-integrable functions on Ω× [0, T ]

and on [0, T ], respectively.
Analogous to the notion of weak solutions to ordinary stochastic differential equations

(see e.g. [10, Chapter 5.3, Definition 3.1], we make the following definition.

Definition 2.1. A weak solution to (2.1) is a triple (X,B), (Ω,F ,P), (Ft)t∈[0,T ] such that

(i) (Ω,F ,P) is a probability space, (Ft)t∈[0,T ] is a filtration of sub-σ-algebras of F
satisfying the usual conditions,

(ii) X = (Xt)t∈[0,T ] ∈ L1(Ω × [0, T ]) is an (Ft)-progressively measurable process,
B = (Bt)t∈[0,T ] is a Brownian motion w.r.t. (Ft)t∈[0,T ],

(iii)
∫ t
0

(
|Kµ(s, t)µ(s,Xs)|+ |Kσ(s, t)σ(s,Xs)|2

)
ds <∞ P-a.s. for any t ∈ [0, T ], and

(iv) (2.1) holds for (X,B) on (Ω,F ,P), P-a.s.

Under suitable assumptions on the coefficients and kernels, the existence of weak
solutions to the stochastic Volterra equation (2.1) can be equivalently formulated in
terms of solutions to an associated local martingale problem, see Definition 2.4 below.
To that end, we make the following assumption.

Assumption 2.2. LetKµ,Kσ : ∆T → R be measurable functions withKµ(·, t) ∈ L1([0, T ])

and Kσ(·, t) ∈ L2([0, T ]) for every t ∈ [0, T ], and let µ, σ : [0, T ] ×R → R be measurable
functions fulfilling the linear growth condition

|µ(t, x)|+ |σ(t, x)| ≤ Cµ,σ(1 + |x|), t ∈ [0, T ], x ∈ R,

for some constant Cµ,σ > 0.
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Weak solutions to stochastic Volterra equations

Let C2(R) be the space of twice continuously differentiable functions f : R→ R and
C2

0 (R) be the space of all f ∈ C2(R) with compact support. For two stochastic processes
X = (Xt)t∈[0,T ] and Z = (Zt)t∈[0,T ] on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P)

satisfying the usual conditions, such that X ∈ L1(Ω× [0, T ]) is (Ft)-progressively mea-
surable and Z is (Ft)-adapted and continuous, we introduce the process (Mf

t )t∈[0,T ]

by

Mf
t := f(Zt)−

∫ t

0

Af (s,Xs, Zs) ds, t ∈ [0, T ], (2.2)

for f ∈ C2(R), where

Af : [0, T ]×R×R→ R with Af (t, x, z) := µ(t, x)f ′(z) +
1

2
σ(t, x)2f ′′(z). (2.3)

As we shall see in the next proposition, assuming that (Mf
t )t∈[0,T ] is a local martingale

for all f ∈ C2
0 (R) implies that the stochastic process Z is a semimartingale.

Proposition 2.3. Suppose Assumption 2.2. Let (Xt)t∈[0,T ] be an (Ft)-progressively
measurable process in L1(Ω× [0, T ]) and (Zt)t∈[0,T ] be an (Ft)-adapted and continuous
process on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) satisfying the usual conditions.

If (Mf
t )t∈[0,T ] is a local martingale for every f ∈ C2

0 (R), then we have:

(i) (Zt)t∈[0,T ] is a semimartingale with characteristics
( ∫ ·

0
µ(s,Xs) ds,

∫ ·
0
σ(s,Xs)

2 ds, 0
)
.

(ii) There exists a filtered probability space (Ω̃, F̃ , (F̃t)t∈[0,T ], P̃) satisfying the usual

conditions such that (Zt)t∈[0,T ] is a semimartingale on (Ω̃, F̃ , (F̃t)t∈[0,T ], P̃) and

Zt =

∫ t

0

µ(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs, t ∈ [0, T ],

holds P̃-a.s., for some Brownian motion (Bt)t∈[0,T ] on (Ω̃, F̃ , (F̃t)t∈[0,T ], P̃).

Proof. (i) By [8, Theorem II.2.42], in order to prove the assertion, it is sufficient to
show that (Mf

t )t∈[0,T ], defined in (2.2), is a local martingale for every bounded function
f ∈ C2(R).

Let f ∈ C2(R) be bounded and define the hitting times

τn := inf
t∈[0,T ]

{max(|Xt|, |Zt|) ≥ n}, n ∈ N.

Note that τn → T a.s. as n → ∞ since X ∈ L1(Ω × [0, T ]) and Z is continuous. Since
the underlying filtered probability space satisfies the usual conditions, by the Début
theorem (see [14, Chapter I, (4.15) Theorem]), the hitting times (τn)n∈N are stopping
times. It remains to show that (τn)n∈N is a localizing sequence for (Mf

t )t∈[0,T ]. To that
end, we approximate f by the functions (fn)n∈N ⊂ C2

0 (R) given by fn := φnf for some
φn ∈ C2

0 (R) taking values in [0, 1] and being identical to 1 on [−n, n]. Hence, (Mfn
t )t∈[0,T ]

is a local martingale for every n ∈ N and, thus, the stopped process (Mfn
t∧τn)t∈[0,T ], given

by

Mfn
t∧τn = (fn)(Zt∧τn)−

∫ t∧τn

0

Afn(s,Xs, Zs) ds, t ∈ [0, T ],

is a martingale as
|Mfn

t∧τn | ≤ sup
x∈R
|f(x)|+ Cσ,µ,nn

2 <∞,

for some constant Cσ,µ,n > 0, using the definition of τn and the linear growth condition
on µ and σ. SinceMfn

t∧τn =Mf
t∧τn for t ∈ [0, T ], (Mf

t∧τn)t∈[0,T ] is a martingale for every

n ∈ N and, hence, (τn)n∈N a localizing sequence for (Mf
t )t∈[0,T ].

(ii) Since the process (Zt)t∈[0,T ] is a semimartingale with absolutely continuous charac-
teristics

( ∫ ·
0
µ(s,Xs) ds,

∫ ·
0
σ2(s,Xs) ds, 0

)
, the assertion follow by [7, Theorem 2.1.2].
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Weak solutions to stochastic Volterra equations

Keeping these preliminary considerations and the classical martingale problem (see
e.g. [9, Definition 7.1.1]) in mind, we formulate a local martingale problem associated to
the stochastic Volterra equation (2.1).

Definition 2.4. A solution to the Volterra local martingale problem given (x0, µ, σ,Kµ,

Kσ) is a triple (X,Z), (Ω,F ,P), (Ft)t∈[0,T ] such that

(i) (Ω,F ,P) is a probability space, (Ft)t∈[0,T ] is a filtration of sub-σ-algebras of F
satisfying the usual conditions,

(ii) X = (Xt)t∈[0,T ] ∈ L1(Ω× [0, T ]) is an (Ft)-progressively measurable process,

(iii) (Zt)t∈[0,T ] is a continuous semimartingale with Z0 = 0 and decomposition Z =

A+M for some process (At)t∈[0,T ] of bounded variation and some local martingale
(Mt)t∈[0,T ],

(iv) the process (Mf
t )t∈[0,T ], given by

Mf
t := f(Zt)−

∫ t

0

Af (s,Xs, Zs) ds, t ∈ [0, T ], (2.4)

is a local martingale for every f ∈ C2
0 (R), where Af is defined as in (2.3), and

(v) the following equality holds:

Xt = x0(t) +

∫ t

0

Kµ(s, t) dAs +

∫ t

0

Kσ(s, t) dMs, t ∈ [0, T ], P-a.s. (2.5)

Remark 2.5. The first Volterra local martingale problem was formulated in [2] for
stochastic Volterra equations of convolution type, that is, the kernels Kµ,Kσ are sup-
posed to be of the form K(t − s) for a deterministic function K : [0, T ] → R, see [2,
Definition 3.1]. However, [2, Definition 3.1] fundamentally relies on the convolutional
structure to ensure that a weak solution to the SVE leads to a solution of the Volterra
local martingale problem. The latter conclusion is based on a substitution and stochastic
Fubini argument, which is not applicable for general kernels. Compared to [2, Defini-
tion 3.1], the essential difference is that we reformulated [2, (3.3)] to the condition (2.5).
While both conditions are equivalent for kernels of convolutional type, the advantage of
(2.5) is that it allows for general kernels.

Moreover, notice that the Volterra local martingale problem as presented in Defi-
nition 2.4 reduces to the local martingale problem for ordinary stochastic differential
equations in the case Kµ = Kσ = 1. Indeed, in this case conditions (i) and (iv) imply
conditions (iii) and (v) on a possibly extended probability space, see Proposition 2.3.

Remark 2.6. Condition (iii) of Definition 2.4 can be relaxed to the condition “(Zt)t∈[0,T ]

is an (Ft)-adapted and continuous process” since this together with (iv) of Definition 2.4
already implies the semimartingale property of (Zt)t∈[0,T ], see Proposition 2.3. However,
we decided to directly postulate the semimartingale property of (Zt)t∈[0,T ] in the formu-
lation of the Volterra local martingale problem to ensure that condition (v) is obviously
well-defined.

As for ordinary stochastic differential equations, the existence of weak solutions to
SVEs is equivalent to the solvability of the associated Volterra local martingale problem,
like in the case of convolutional SVEs as shown in [2, Lemma 3.3].

Lemma 2.7. Suppose Assumption 2.2. There exists a weak solution to the SVE (2.1)
if and only if there exists a solution to the Volterra local martingale problem given
(x0, µ, σ,Kµ,Kσ).
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Weak solutions to stochastic Volterra equations

Proof. Let (X,B) be a (weak) solution to (2.1) on a probability space (Ω,F ,P). Setting

Zt := At +Mt :=

∫ t

0

µ(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs, t ∈ [0, T ],

Itô’s formula applied to f(Zt) for f ∈ C2
0 (R) yields that

Mf
t = f(Zt)−

∫ t

0

f ′(Zs)µ(s,Xs) ds− 1

2

∫ t

0

f ′′(Zs)σ(s,Xs)
2 ds

= f(Z0) +

∫ t

0

f ′(Zs)σ(s,Xs) dBs,

which is a local martingale and, by its definition, Z is a semimartingale satisfying (2.5).
Conversely, if there exists a solution to the Volterra local martingale problem, we ob-

tain a weak solution to the SVE (2.1) by using (2.5) and Proposition 2.3, which yields that
At =

∫ t
0
µ(s,Xs) ds and Mt =

∫ t
0
σ(s,Xs) dBs for some Brownian motion (Bt)t∈[0,T ].

3 Existence of weak solutions

In this section we establish the existence of a weak solution to the SVE (2.1) and,
equivalently, of a solution to the associated Volterra local martingale problem, under
suitable assumptions on the initial condition, coefficients and kernels, which we state in
the following.

Assumption 3.1. There is some p ∈ (4,∞) and some γ ∈ ( 2
p ,

1
2 ) such that:

(i) There is a constant Cp > 0 such that, for all (t, t′) ∈ ∆T ,∫ t

0

|Kµ(s, t′)−Kµ(s, t)|
p
p−1 ds+

∫ t′

t

|Kµ(s, t′)|
p
p−1 ds ≤ Cp|t′ − t|

γp
p−1 ,∫ t

0

|Kσ(s, t′)−Kσ(s, t)|
2p
p−2 ds+

∫ t′

t

|Kσ(s, t′)|
2p
p−2 ds ≤ Cp|t′ − t|

2γp
p−2 .

(3.1)

(ii) The coefficients µ, σ : [0, T ]×R→ R are measurable functions such that for every
compact set K ⊂ R and every ε > 0 there exists a δ > 0 such that

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ ε, t ∈ [0, T ], x, y ∈ K with |x− y| ≤ δ,

and µ, σ fulfill the linear growth condition

|µ(t, x)|+ |σ(t, x)| ≤ Cµ,σ(1 + |x|), t ∈ [0, T ], x ∈ R, (3.2)

for a constant Cµ,σ > 0

(iii) The initial condition x0 : [0, T ]→ R is β-Hölder continuous for every β ∈ (0, γ−1/p).

Note that Assumption 3.1 directly implies [13, (3.1)] with the choice ε = 2p
p−2 − 2,

and vice versa [13, (3.1)] implies Assumption 3.1 (i) with p = 4/ε+ 2 (and if necessary
rescaling the exponent using Hölder’s inequality if ε ≥ 2 to secure p > 4).

To formulate our second assumption, for a measurable function K : ∆T → R, we say
K(·, t) is absolutely continuous for every t ∈ [0, T ] if there exists an integrable function
∂1K : ∆T → R such that K(s, t)−K(0, t) =

∫ s
0
∂1K(u, t) du for (s, t) ∈ ∆T .

Assumption 3.2. The kernel Kµ is measurable and bounded in L1([0, T ]) uniformly in
the second variable, i.e.

sup
t∈[0,T ]

∫ t

0

|Kµ(s, t)|ds ≤ C

for some constant C > 0. The kernel Kσ is measurable and satisfies at least one of the
following conditions:
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Weak solutions to stochastic Volterra equations

(i) Kσ is a bounded function and Kσ(·, t) is absolutely continuous for every t ∈ [0, T ]

such that ∂1Kσ fulfills

sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

|∂1Kσ(s, t)|p ds

∣∣∣∣ 1p ≤ C
for some p > 1 and some constant C > 0.

(ii) Kσ(s, t) = K̃(t− s) for all (s, t) ∈ ∆T for a function K̃ ∈ L2([0, T ]).

Note, that Assumption 3.2 is satisfied by every convolutional kernel Kµ(s, t) = K̃(t−s)
for all (s, t) ∈ ∆T for a function K̃ ∈ L1([0, T ]), and in case of Assumption 3.2 (i), the
bound on the second summand in (3.1) is trivially fulfilled. With these assumptions at
hand we are ready to state our main result.

Theorem 3.3. Suppose Assumptions 3.1 and 3.2. Then, there exists a weak solution (in
the sense of Definition 2.1) such that (Xt)t∈[0,T ] ∈ C([0, T ];R) to the stochastic Volterra
equation (2.1).

Before proving the aforementioned existence result, let us briefly discuss some
properties of weak solutions to the SVE (2.1) and some exemplary kernels.

Remark 3.4. Suppose Assumption 3.1. Due to [13, Lemma 3.4 and Corollary 3.5],
any continuous weak solution to the SVE (2.1) satisfies supt∈[0,T ]E[|Xt|q] < ∞ for any
q ∈ [1,∞) and possesses a β-Hölder continuous modification for any β ∈ (0, γ − 1/p).

Remark 3.5. Assumptions 3.1 and 3.2 are satisfied, e.g., by the following type of
diffusion kernels:

(i) Kσ(s, t) := (t− s)−α for α ∈ (0, 12 ) for any p ∈ ( 6
1−2α ,∞) with γ = 1

2 − α−
1
p ,

(ii) Kσ(s, t) := K̃(t− s) for a Lipschitz continuous function K̃ : [0, T ]→ R,

(iii) kernels fulfilling [13, Assumption 2.1], and

(iv) weakly differentiable kernels such that ∂1Kσ(s, t) ≤ C(t− s)−α for α ∈ (0, 12 ).

The remainder of the paper is devoted to implement the proof of Theorem 3.3
based on several auxiliary lemmas. Generally speaking, the presented proof follows the
classical approach of approximation the coefficients by Lipschitz continuous coefficients,
in combination with a tightness argument. In contrast, [4] uses an approximation of
the driving noise by pure jump processes with finite activity, which allows to treat
convolutional SVEs with jumps.

Note that Lemma 3.9 implies Theorem 3.3 due to Lemma 2.7. Note further that
the continuity of (Xt)t∈[0,T ] in Theorem 3.3 follows by the convergence X̂k → X in
C([0, T ];R) in Lemma 3.8.

Assuming the coefficients µ, σ satisfy Assumption 3.1, the next lemma provides a way
to approximate µ, σ locally uniformly by Lipschitz continuous coefficients.

Lemma 3.6. Let f : [0, T ]×R→ R be a measurable function such that for every compact
set K ⊂ R and every ε > 0 there exists δ > 0 such that

|f(t, x)− f(t, y)| ≤ ε, t ∈ [0, T ], x, y ∈ K with |x− y| ≤ δ,

and such that f fulfills the linear growth condition

|f(t, x)| ≤ Cf (1 + |x|), t ∈ [0, T ], x ∈ R, (3.3)

for some constant Cf > 0. Then, there is a sequence (fn)n∈N of measurable functions
fn : [0, T ]×R→ R, which satisfies:

ECP 28 (2023), paper 52.
Page 6/12

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP554
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Weak solutions to stochastic Volterra equations

(i) linear growth: for Cf > 0 as in (3.3), we have

|fn(t, x)| ≤ 2Cf (1 + |x|), t ∈ [0, T ], x ∈ R;

(ii) Lipschitz continuity: for each n ∈ N there is a Cn > 0 such that

|fn(t, x)− fn(t, y)| ≤ Cn|x− y|, t ∈ [0, T ], x, y ∈ R;

(iii) locally uniform convergence: for all r ∈ (0,∞) we have

sup
t∈[0,T ],x∈[−r,r]

|f(t, x)− fn(t, x)| → 0, as n→∞.

Proof. We explicitly choose the sequence (fn)n∈N by

fn(t, x) := φn(x)

∫
R

f(t, x− y)δn(y) dy, n ∈ N,

for some φn ∈ C2
0 (R) with support in [−(n + 1), n + 1], taking values in [0, 1] and being

identical to 1 on [−n, n], where δn(y) := 1
cn

(1− y2)n1[−1,1](y) with cn :=
∫
[−1,1](1− y

2)n dy.

(i) For t ∈ [0, T ] and x ∈ R, using the linear growth condition on f , we get

|fn(t, x)| ≤ Cf
∫
[−1,1]

(1 + |x− y|)δn(y) dy ≤ Cf
∫
[−1,1]

(2 + |x|)δn(y) dy ≤ 2Cf (1 + |x|).

(ii) Let t ∈ [0, T ], x, y ∈ R and n ∈ N. Using the compact support of fn and the fact,
that every δn is Lipschitz continuous as a smooth function with compact support, we get

∣∣fn(t, x)− fn(t, y)
∣∣ ≤ Cfcn|x− y|∫ n+2

−(n+2)

(1 + |z|) dz ≤ Cn|x− y|

for some constant Cn.

(iii) Due to the continuity property of f , we can find for every r > 0 and for every
ε > 0 some δ > 0 such that for all x, y ∈ [−r, r] with |x − y| ≤ δ and all t ∈ [0, T ] holds
|f(t, x)− f(t, y)| ≤ ε. Assuming n ∈ N to be large enough that φn ≡ 1 on [−r, r], we get
for any x ∈ [−r, r],

|f(t, x)− fn(t, x)|

=

∫
[−δ,δ]

δn(y)
∣∣f(t, x)− f(t, x− y)

∣∣dy +

∫
[−1,1]\[−δ,δ]

δn(y)
∣∣f(t, x)− f(t, x− y)

∣∣dy.
Let now N(ε, r) > 0 be big enough, such that

∫
[−1,1]\[−δ,δ] δn(y) dy < ε and φn ≡ 1 on

[−r, r] for all n ≥ N(ε, r). Then, setting r̃ := r + 1 for all n ≥ N(ε, r)

|f(t, x)− fn(t, x)| ≤
∫
[−δ,δ]

δn(y)εdy + 2ε sup
s∈[0,T ],
x̃∈[−r̃,r̃]

|f(s, x̃)| ≤ ε
(

1 + 2 sup
s∈[0,T ],
x̃∈[−r̃,r̃]

|f(s, x̃)|
)
,

which tends to zero as ε→ 0.

A suitable approximation, like the one provided in Lemma 3.6, ensures the conver-
gence of associated Riemann–Stieltjes integrals. We denote by C([0, T ];R) the space of
all continuous functions g : [0, T ]→ R, which is equipped with the supremum norm ‖ · ‖∞.
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Weak solutions to stochastic Volterra equations

Lemma 3.7. Let f : [0, T ]×R→ R be a function such that for every compact set K ⊂ R
and every ε > 0 there exists δ > 0 such that

|f(t, x)− f(t, y)| ≤ ε, t ∈ [0, T ], x, y ∈ K with |x− y| ≤ δ, (3.4)

and (fk)k∈N be a sequence of functions such that fk : [0, T ] × R → R and |f(t, x)| +
|fk(t, x)| ≤ C(1 + |x|2), t ∈ [0, T ], x ∈ R, for all k ∈ N and for some C > 0, and fk → f

locally uniformly. Let K : ∆T → R be measurable and bounded in L1([0, T ]) uniformly
in the second variable, i.e. supt∈[0,T ]

∫ t
0
|K(s, t)|ds ≤M for some M > 0. If (Xk)k∈N is a

sequence of continuous stochastic processes such that Xk → X in C([0, T ];R) as k →∞
P-a.s, then(∫ ·

0

K(s, ·)fk(s,Xk
s ) ds

)
t∈[0,T ]

P→
(∫ ·

0

K(s, ·)f(s,Xs) ds
)
t∈[0,T ]

w.r.t. ‖ · ‖∞, k →∞,

where
P→ denotes convergence in probability.

Proof. First, note that due to the continuity condition (3.4), for every n ∈ N there exists
some continuous non-decreasing function gn : [0,∞)→ [0,∞) with gn(0) = 0, such that
for all x, y ∈ [−n, n],

|f(t, x)− f(t, y)| ≤ gn(|x− y|), t ∈ [0, T ].

Let ε > 0 and δ > 0 be fixed but arbitrary. Choose N ∈ N and K ∈ N big enough such
that

P
(
‖X‖∞ ≥ n/2

)
≤ δ/4 and P

(
‖Xk −X‖∞ ≥ n/2

)
≤ δ/4,

for all n ≥ N and k ≥ K. Then,

P
(
‖X‖∞ ∨ ‖Xk‖∞ ≥ n

)
≤ P

(
{‖X‖∞ ≥ n} ∪ {‖Xk −X‖∞ + ‖X‖∞ ≥ n}

)
≤ P

(
‖X‖∞ ≥ n/2

)
+ P

(
‖Xk −X‖∞ ≥ n/2

)
≤ δ/4 + δ/4 = δ/2.

For every n, k ∈ N, on {‖X‖∞ ∨ ‖Xk‖∞ ≤ n} we can bound for t ∈ [0, T ],

Akt −At :=

∫ t

0

K(s, t)fk(s,Xk
s ) ds−

∫ t

0

K(s, t)f(s,Xs) ds

≤
∫ t

0

|K(s, t)|
∣∣fk(s,Xk

s )− f(s,Xk
s )
∣∣ds+

∫ t

0

|K(s, t)|
∣∣f(s,Xk

s )− f(s,Xs)
∣∣ds

≤M
(

sup
t∈[0,T ], x∈[−n,n]

|fk(t, x)− f(t, x)|+ gn
(
‖Xk −X‖∞

))
, (3.5)

with supt∈[0,T ]

∫ t
0
|K(s, t)|ds ≤M . For every n ∈ N we choose Kn

εδ ∈ N sufficiently large
such that

P

(
sup

t∈[0,T ], x∈[−n,n]
|fk(t, x)− f(t, x)|+ gn(‖Xk −X‖∞) ≥ ε/M

)
≤ δ/2, k ≥ Kn

εδ.

Setting Kεδ := max{KN
εδ ,K}, we get

P
(
‖Ak −A‖∞ ≥ ε

)
≤ P

(
{‖Ak −A‖∞ ≥ ε} ∩ {‖X‖∞ ∨ ‖Xk‖∞ < N}

)
+ P

(
‖X‖∞ ∨ ‖Xk‖∞ ≥ N

)
≤ P

(
sup

t∈[0,T ], x∈[−N,N ]

|fk(t, x)− f(t, x)|+ gN (‖Xk −X‖∞) ≥ ε/M
)

+ δ/2 ≤ δ,

for all k ≥ Kεδ, which shows the desired convergence.
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Weak solutions to stochastic Volterra equations

Given coefficients µ, σ satisfying Assumption 3.1, we fix, relying on Lemma 3.6, two
sequences (µn)n∈N and (σn)n∈N with

µn : [0, T ]×R→ R and σn : [0, T ]×R→ R,

that fulfill properties (i)-(iii) of Lemma 3.6. For every n ∈ N, we define (Xn
t )t∈[0,T ] as the

unique (strong) solution (see e.g. the text before [13, Theorem 2.3] for the definition of
unique strong solutions to SVEs) to the stochastic Volterra equation

Xn
t = x0(t) +

∫ t

0

Kµ(s, t)µn(s,Xn
s ) ds+

∫ t

0

Kσ(s, t)σn(s,Xn
s ) dBs, t ∈ [0, T ], (3.6)

given a Brownian motion (Bt)t∈[0,T ] on some probability space (Ω,F ,P). Note that
(Xn

t )t∈[0,T ] exists by [19, Theorem 1.1] due to the Lipschitz continuity of µn and σn.
Furthermore, we introduce the sequences (An)n∈N and (Mn)n∈N by

Ant :=

∫ t

0

µn(s,Xn
s ) ds and Mn

t :=

∫ t

0

σn(s,Xn
s ) dBs, t ∈ [0, T ]. (3.7)

In the following, we denote X
D∼ Y for equality in law of stochastic processes X and Y .

Lemma 3.8. Suppose Assumption 3.1 and let (Xn)n∈N, (An)n∈N and (Mn)n∈N be given
by (3.6) and (3.7). Then, there exist continuous stochastic processes (X̂k)k∈N, (Âk)k∈N,
(M̂k)k∈N, X, A, M and a Brownian motion (B̃t)t∈[0,T ] on a common probability space

(Ω̃, F̃ , P̃) such that (X̂k, Âk, M̂k) → (X,A,M) in C([0, T ];R3) as k → ∞ P̃-a.s.,

(X̂k, Âk, M̂k)
D∼ (Xnk , Ank ,Mnk) and M is a local martingale with the representation

Mt =

∫ t

0

σ(s,Xs) dB̃s, t ∈ [0, T ],

where (Xnk , Ank ,Mnk)k∈N denotes some subsequence of (Xn, An,Mn)n∈N.

Proof. First we want to apply Kolmogorov’s tightness criterion (see [10, Problem 2.4.11])
to the probability measures (P(Xn,An,Mn,B))n∈N associated to the four-dimensional
stochastic processes (Xn, An,Mn, B)n∈N. By Lemma 3.6 (i) we know, that the coef-
ficients µn and σn fulfill the linear growth condition (3.2) with uniformly bounded con-
stants, i.e. Cµn,σn ≤ 2Cµ,σ for all n ∈ N. Hence, using p ∈ (4,∞) from Assumption 3.1,
we deduce, by [13, Lemma 3.4], that

sup
n∈N

sup
s∈[0,T ]

E[|Xn
s |p] ≤ C

(
1 + sup

s∈[0,T ]

|x0(s)|
)p

<∞,

and, by [13, Lemma 3.1 and Remark 3.3], that

E[|Xn
t′ − x0(t′)−Xn

t − x0(t)|p] ≤ C|t′ − t|βp, n ∈ N,

for every β ∈ (0, γ − 1/p), where the constant C > 0 depends only on p, T , Kµ, Kσ and
Cµ,σ. Moreover, it is straightforward to show that

E[|Ant′ −Ant |p] ≤ C|t′ − t|
p
2 and E[|Mn

t′ −Mn
t |p] ≤ C|t′ − t|

p
2

for all 0 ≤ t ≤ t′ ≤ T and some constant C > 0, by Hölder’s inequality and Burkholder–
Davis–Gundy’s inequality, respectively. Choosing β sufficiently close to γ − 1/p so that
βp > 1, which is possible due to γ > 2/p in Assumption 3.1, and noting that the initial
distributions (Xn

0 , A
n
0 ,M

n
0 , B0)n∈N are independent of n, we can apply Kolmogorov’s

tightness criterion to obtain the tightness of the sequence (P(Xn,An,Mn,B))n∈N. Hence,
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Weak solutions to stochastic Volterra equations

by Prohorov’s theorem ([10, Theorem 2.4.7]) we get relative compactness ([10, Defini-
tion 2.4.6]) of the sequence of measures (P(Xn,An,Mn,B))n∈N inM1(C([0, T ];R4)), which
denotes the space of all probability measures on C([0, T ];R4). Consequently, there exists
a converging subsequence (P(Xnk ,Ank ,Mnk ,B))k∈N such that

P(Xnk ,Ank ,Mnk ,B) → P(X,A,M,B) weakly as k →∞,

for some measure P(X,A,M,B) inM1(C([0, T ];R4)).
The Skorokhod representation theorem (see e.g. [5, Theorem 11.7.2]) yields the

existence of some probability space (Ω̂, F̂ , P̂) with continuous stochastic processes
(X̂k)k∈N, (Âk)k∈N, (M̂k)k∈N, (B̂k)k∈N and X, A, M , B̂ on it such that

(Xnk , Ank ,Mnk , B̂)
D∼ (X̂k, Âk, M̂k, B̂k), k ∈ N,

and
(X̂k, Âk, M̂k, B̂k)→ (X,A,M, B̂) in C([0, T ];R4) as k →∞, P̂-a.s.

From a general version of the Yamada–Watanabe result, see [11, Theorem 1.5], we can
deduce that M̂k

t =
∫ t
0
σnk(s, X̂k

s ) dB̂ks , for t ∈ [0, T ] and for all k ∈ N, and the stochastic

processes (Bk)k∈N are Brownian motions as B̂k
D∼ B. Thus, M̂k is a local P̂-martingale

with quadratic variation 〈M̂k〉t =
∫ t
0
σnk(s, X̂k

s )2 ds.

Due to the P̂-a.s. convergence of (M̂k)k∈N to M , [8, Proposition IX.1.17] implies that
M is also a local P̂-martingale, and the convergence of

∫ t
0
σnk(s,Xnk

s )2 ds in probability,
see Lemma 3.7, together with [8, Corollary VI.6.29] implies that the quadratic variation of
M is 〈M〉t =

∫ t
0
σ(s,Xs)

2 ds. Therefore, the representation theorem for local martingales
with absolutely continuous quadratic variations (see e.g. [10, Theorem 3.4.2]) yields the
existence of some probability space (Ω̃, F̃ , P̃), which is an extension of (Ω̂, F̂ , P̂ ), and a
Brownian motion (B̃t)t∈[0,T ] on it, such that Mt =

∫ t
0
σ(s,Xs) dB̃s for t ∈ [0, T ].

Using the stochastic processes X, A and M from Lemma 3.8, we can construct a
solution to the Volterra local martingale problem in the sense of Definition 2.4.

Lemma 3.9. Suppose Assumptions 3.1 and 3.2. There exists a solution to the Volterra
local martingale problem given (x0, µ, σ,Kµ,Kσ).

Proof. Recall, the stochastic processes (Xn)n∈N, (An)n∈N and (Mn)n∈N on (Ω,F ,P) are
given in (3.7) and (X̂k)k∈N, (Âk)k∈N, (M̂k)k∈N, X, A and M on (Ω̃, F̃ , P̃) are given by
Lemma 3.8. We introduce the stochastic processes (Zn)n∈N, (Ẑk)k∈N and Z by

Znt := Ant +Mn
t , Ẑkt := Âkt + M̂k

t and Zt := At +Mt, t ∈ [0, T ].

We shall show that the triple (X,Z), (Ω̃, F̃ , P̃), (FXt )t∈[0,T ], where (FXt )t∈[0,T ] denotes the
augmented natural filtration of X (cf. [10, Definition 2.7.2]), solves the Volterra local
martingale problem given (x0, µ, σ,Kµ,Kσ). Since the properties (i)-(iii) of Definition 2.4
are fairly easy to check, we verify here that

(iv) the process (Mf
t )t∈[0,T ] defined by (2.4) is a local P̃-martingale for every f ∈ C2

0 (R),

(v) the equality (2.5) holds P̃-a.s.

(iv) For k ∈ N and f ∈ C2
0 (R), the stochastic process (Mf,k

t )t∈[0,T ] is defined by

Mf,k
t := f(Ẑkt )−

∫ t

0

Af,k(s, X̂k
s , Ẑ

k
s ) ds, t ∈ [0, T ],

where Af,k(t, x, z) := µnk(t, x)f ′(z) + 1
2σnk(t, x)2f ′′(z). Due to (X̂k, Ẑk)

D∼ (Xnk , Znk) and
since (Xnk , Znk) solves the Volterra local martingale problem given (x0, µnk , σnk ,Kµ,Kσ)
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on (Ω,F ,P) by construction and Lemma 2.7, it follows that (Mf,k
t )t∈[0,T ] is a local

martingale on (Ω̃, F̃ , P̃) for every k ∈ N. Moreover, Lemma 3.7 implies thatMf,k →Mf

weakly as k →∞ and, thus, by [8, Proposition IX.1.17], the limiting process (Mf
t )t∈[0,T ]

is a local martingale on (Ω̃, F̃ , P̃).

(v) Since (X̂k, M̂k)
D∼ (Xnk ,Mnk) for every k ∈ N and pathwise uniqueness holds for

SVEs with Lipschitz continuous coefficients (see e.g. [19, Theorem 1.1]), the general
version of the Yamada–Watanabe result ([11, Theorem 1.5]) yields that X̂k can be
represented as the stochastic output of the Volterra equation (2.1) from the stochastic
input M̂k in the same way as Xnk from Mnk , hence, we get that

X̂k
t = x0(t) +

∫ t

0

Kµ(s, t)µnk(s, X̂k
s ) ds+

∫ t

0

Kσ(s, t) dM̂k
s , t ∈ [0, T ], P̃-a.s., (3.8)

holds. To continue the proof of (v), we need to distinguish between (a) bounded kernels
and (b) kernels of convolutional type.

(a) We start with the bounded kernels as in Assumption 3.2 (i). Due to the absolute
continuity of Kσ in the first variable, we can apply the integration by part formula for
semimartingales (see [15, Theorem (VI).38.3]) to rewrite (3.8) to

X̂k
t = x0(t) +

∫ t

0

Kµ(s, t)µnk(s, X̂k
s ) ds+Kσ(t, t)M̂k

t +

∫ t

0

M̂k
s ∂1Kσ(s, t) ds. (3.9)

Since (X̂k, M̂k) → (X,M) in C([0, T ];R2) as k → ∞, P̃-a.s., and Kσ is bounded, we
obtain by Lemma 3.7 that X̂k → X and KσM̂

k → KσM in C([0, T ];R) as k →∞, P̃-a.s.,
and

∫ ·
0
Kµ(s, ·)µnk(s, X̂k

s ) ds →
∫ t
0
Kµ(s, ·) dAs in C([0, T ];R) in probability as k → ∞.

Furthermore, applying Hölder’s inequality with p > 4 (see Assumption 3.2) and denoting
q = p/(p− 1), we get by the integrability of ∂1Kσ that∥∥∥∥ ∫ ·

0

(M̂k
s −Ms)∂1Kσ(s, ·) ds

∥∥∥∥
∞
≤
(∫ T

0

|M̂k
s −Ms|q ds

) 1
q
∥∥∥∥∫ ·

0

|∂1Kσ(s, ·)|p ds

∥∥∥∥ 1
p

∞

≤ C‖M̂k −M‖∞.

Hence, the P̃-a.s. convergence (M̂k)k∈N toM implies
∫ ·
0
M̂k
sKσ(s, ·) ds→

∫ ·
0
MsKσ(s, ·) ds

as k →∞ P̃-a.s., and we can take the limit in probability in (3.9) or the P̃-a.s. limit for
some subsequence, to obtain that (2.5) holds P̃-a.s.

(b) For convolution kernels as in Assumption 3.2 (ii), we integrate both sides of (3.8)
and use the stochastic Fubini theorem (see e.g. [18, Theorem 2.2]) twice to obtain∫ t

0

X̂k
s ds =

∫ t

0

x0(s) ds+

∫ t

0

∫ s

0

Kµ(s, u) dÂku ds+

∫ t

0

∫ s

0

Kσ(s− u) dM̂k
u ds

=

∫ t

0

x0(s) ds+

∫ t

0

∫ s

0

Kµ(s, u) dÂku ds+

∫ t

0

∫ t

u

Kσ(s− u) dsdM̂k
u

=

∫ t

0

x0(s) ds+

∫ t

0

∫ s

0

Kµ(s, u) dÂku ds+

∫ t

0

∫ t−u

0

Kσ(s) dsdM̂k
u

=

∫ t

0

x0(s) ds+

∫ t

0

∫ s

0

Kµ(s, u) dÂku ds+

∫ t

0

Kσ(s)

∫ t−s

0

dM̂k
u ds

=

∫ t

0

x0(s) ds+

∫ t

0

∫ s

0

Kµ(s, u) dÂku ds+

∫ t

0

Kσ(t− s)M̂k
s ds. (3.10)

Since∥∥∥∥∫ ·
0

Kσ(· − s)(M̂k
s −Ms) ds

∥∥∥∥
∞
≤ ‖M̂k −M‖∞

∫ T

0

|Kσ(T − s)|ds ≤ C‖M̂k −M‖∞
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and M̂k → M as k → ∞, P̃-a.s, we obtain
∫ ·
0
Kσ(t − s)M̂k

s ds →
∫ ·
0
Kσ(t − s)Ms ds as

k → ∞, P̃-a.s. The convergence of
∫ t
0

∫ s
0
Kµ(s, u) dÂku ds follows as in (a). Thus, taking

the P̃-a.s. limit of both sides of (3.10) and then taking the derivative yields that (2.5)
holds for (X,Z), P̃-a.s.
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