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Abstract

We find uniform lower bounds on the drift for a large family of random walks on
graph products, of the form P(|Zn| ≤ κn) ≤ e−κn for κ > 0. This includes the simple
random walk for a right-angled Artin group with a sparse defining graph. This is
done by extending an argument of Gouëzel, along with the combinatorial notion
of a piling introduced by Crisp, Godelle, and Wiest. We do not use any moment
conditions, instead considering random walks which alternate between one measure
uniformly distributed on vertex groups, and another measure over which we make no
assumptions.
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1 Introduction

Suppose that G is a group acting on a metric space X, and that G is equipped with a
probability measure µ. If g1, g2, . . . are i.i.d. G-valued random variables with distribution
µ, one can construct a random walk on X by picking a basepoint o ∈ X and letting

Zn · o = g1 . . . gn · o.

Often considered in the literature is qualitative long-term behaviour of Zn. Furstenberg
showed that random walks on semi-simple Lie groups converge almost surely to a point
on a natural boundary at infinity [Fur63]. Kaimanovich identified the Poisson boundary
for a general class of groups with hyperbolic properties [Kai00]. Karlsson and Margulis
showed that certain random walks on Busemann non-positively curved spaces sublinearly
track a geodesic [KM99], and Tiozzo exhibited a general condition to ensure sublinear
tracking [Tio15]. Benoist and Quint [BQ16] exhibited a central limit theorem for random
walks with finite variance on Gromov hyperbolic groups. Maher and Tiozzo showed
that a non-elementary random walk on a (not necessarily proper) hyperbolic space
converges to the boundary [MT18]. Nevo and Sageev identified the Poisson boundary for
groups acting on CAT(0) cube complexes [NS13]. Most of these results rely on geometric
assumptions about the group, usually some sort of negative curvature condition, as well
as moment or entropy assumptions on µ.
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Effective drift estimates for random walks on graph products

In the recent literature are inquiries into large deviations principles for random
walks on hyperbolic spaces. Let X be a Gromov hyperbolic G-space with a basepoint
o. Maher and Tiozzo showed that if µ has finite support, then P(d(Zno, o) ≤ κn) decays
exponentially for some κ. This was upgraded to an exponential moment condition by
[Sun20]. Later, in [BMSS20] it was shown that this statement holds for all κ up to the
rate of escape

` := lim
n→∞

E [d(Zno, o)]

n
.

Recently, Gouëzel [Gou23] has shown, with a clever geometric argument, that all
moment assumptions can be removed. This argument does not rely on boundary theory,
and is entirely quantitative. The idea is that one can decompose a sample path into
segments which go in one direction, and ‘pivots’ where the random walk might travel
in one of many directions. By hyperbolicity, in most directions the sample path will
move further away from the basepoint. One can bound the number of pivotal points
from below by a sum of i.i.d. random variables with positive expectation, and deduce
linear progress with exponential decay. This type of argument has recently been used to
explore genericity of pseudo-Anosovs [Cho21b], prove limit laws [Cho22], and identify
the Poisson boundary for groups with WPD actions on hyperbolic spaces [CFFT22].
Similar arguments have appeared in the literature before (e.g. [BMSS20] or the notion
of “persistent segments” in [MT18]). Essentially, this argument allows one to show that
many statistics of random walk behave like a sum of i.i.d. random variables. Aoun
and Sert show in [AS22], among other results, that the distance traveled by random
walks on hyperbolic spaces admit subgaussian concentration bounds. In addition, Corso
has recently [Cor21a, Cor21b] exhibited large deviations principles for free products of
finitely generated groups and for relatively hyperbolic groups.

We apply this technique to give effective estimates for the drift of certain random
walks on graph products. Furstenberg exhibited an integral formula for the drift,
however this is requires knowledge about the harmonic measure and so is not amenable
to computation. Furstenberg also used non-amenability to show positivity of drift, which
follows by examining the spectrum of the averaging operator. This approach can be
modified to get lower bounds for the drift in terms of spectral analysis of the averaging
operator (see [Vir80, Nev03] or [AS22, Proposition 6.8]). In this paper, we consider a
class of random walks on graph products of groups acting on their Cayley graphs, which
are not usually hyperbolic. Let Γ be a graph, with vertex set V and edge set E. To
each vertex v ∈ V we associate a group Gv with the (not necessarily finite) presentation
Gv = 〈Sv|Rv〉. Here Sv is a generating set for Gv, and Rv is a collection of relations. The
graph product, denoted by G = G(Γ), is the group defined by

G(Γ) = 〈tv∈V Sv| tv∈V Rv t(v,w)∈E [Sv, Sw]〉.

In other words, two vertex groups Gv and Gw commute if and only if v and w are
adjacent. For example, if the graph is a clique, then G is the direct product G1× · · ·×Gn.
If the graph has no edges, then G is the free product G1 ∗ · · · ∗ Gn. If the graph is a
path with 3 vertices and G1 = G2 = G3 = Z, then G = F2 ×Z, as shown in the following
schematic:

Z Z Z

Figure 1: A representation of F2 ×Z as a graph product of three copies of Z.

Graph products need not be finitely generated or hyperbolic, for example if each
vertex group is an infinite direct sum of copies of Z. If each Gi is a copy of Z, then G
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Effective drift estimates for random walks on graph products

is the right-angled Artin group (RAAG) on the graph in question. The graph product
interpolates between the direct product and free product, where a sparse graph means
that G is closer to a free product. Graph products were introduced by Green and are
simple examples of non-hyperbolic groups with certain hyperbolic properites, as well as
nice algorithmic properties [Gre90].

Given a graph Γ, let D be the number of vertices and B the maximum size of a
1-neighbourhood of a clique. For example, if Γ is a sufficiently long cycle, then B = 4.
We say that Γ has small cliques if D > 5B. Moreover, we say that a probability measure
on a graph product G is alternating if it is of the form µ ∗ ν where µ(Gv \ {e}) = 1/D

for any v ∈ V , and ν is any probability measure on G. For example, if µ is the measure
driving the simple random walk on a right-angled Artin group, then µ ∗ δe is alternating,
where e is the identity element. This is because each vertex group has the same number
of generators. The significance of picking an alternating measure is explained in our
proof sketch below.

Also, given an element g ∈ G, let the syllable length |g| be the minimum length of a
representation g = g1 · · · gn where gi, gi+1 are elements of distinct vertex groups for all
1 ≤ i < n.

In this article, we prove the following:

Theorem 1.1. Let Γ be a graph with small cliques and let G(Γ) be a graph product with
vertex groups G1, . . . , GD. Then there exists an effective constant κ = κ(Γ) > 0 such that
for any random walk (Zn) driven by an alternating measure, we have

P(|Zn| ≤ κn) ≤ e−κn for any n ∈ N.

We will see in Lemma 4.1 that κ can be effectively computed in terms of B and D.
For example, if Γ is a D-cycle for D > 20 then B = 4, and κ ≥ 0.3. In this example, we
will see in proposition 4.3 that κ→ 1 as D →∞. This is asymptotically sharp, as seen by
examining the simple random walk on a right-angled Artin group.

In the case where G is a Right-angled Artin group, this theorem gives a quantitative
sense in which these RAAGs are closer to being a free group than a free abelian group.
Indeed, if d : G × G → N is a word distance induced by a generating set where each
generator lies inside a vertex group, then d(e, g) ≥ |g|, so we can draw conclusions about
the drift of a random walk on a RAAG. The use of an alternating random walk µ ∗ ν is
notable because the measure ν is allowed to have arbitrarily fat tails. All of the regularity
comes from the µ. This choice of κ is then uniform over a large class of random walks.
Instead of relying on moment conditions to control backtracking, we combine some ideas
from Gouëzel’s argument with a combinatorial tool. In particular, we extend the notion
of a ‘piling’ from [CGW08] to define pivotal points in the graph product setting.

Proof Sketch. To prove our main theorem, we write gi = siwi where si ∼ µ and wi ∼ ν.
We condition on the wi’s and keep the randomness coming from the si’s. To each pair
wn−1, wn ending and starting in words coming from certain vertex groups, we can find a
sn from a vertex far away on the graph, so that |Zn| > |Zn−1|. As the graph is sparse,
there are many such choices for sn uniformly over any realization of wn’s. If wn+1 causes
large cancellations in Znwn+1, we argue there are many other choices for sn for which
wn+1 does not cause cancellations. Hence we can bound the syllable length |Zn| from
below by a sum of n i.i.d. copies of some random variable U with positive expectation.

The paper is organized as follows: in Section 2 we define pilings and introduce the
notion of a terminal and initial clique for elements of graph products. In Section 3 we
describe the notion of pivotal points, inspired by Gouëzel. Finally, in Section 4, we prove
our main theorem and state a formula for our drift estimate.
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2 Pilings

The notion of a piling was introduced by Crisp, Godelle, and Wiest in [CGW08] to give
a normal form for right-angled Artin groups. They used pilings to solve the conjugacy
problem in this setting.

Since right-angled Artin groups interpolate between free groups and free abelian
groups, one looks for a way to quantify how close a RAAG is to either extreme. One
way to do this is to explore when a word in a RAAG locally looks like a word in a free
product. Consider for example the group Z2 ∗ Z = 〈a, b, c|[a, b]〉. Then the word aba−1

can be shortened, whereas aca−1 cannot. Now consider a word of the form acbscba−1

for some s chosen randomly from {a±, b±, c±}. We want to estimate the probability with
which the word can be shortened. This is the role of pilings in our argument.

We start off by extending the definition of pilings to graph products. We explain how
to produce a piling for a word in tni=1Gi, then show that this is independent of the choice
of word representative. This will produce a well-defined piling for an element of G.

Let A = tDi=1Gi \ {e}, and let B = At {0}. Let A? (resp. B?) the set of finite words in
the alphabet A (resp. B). We denote as ε the empty word. We now define a piling map
Π : A∗ → (B∗)D.

Definition 2.1. Let G be a graph product with vertex groups G1, . . . , GD. A piling Π(h)

for a word h ∈ A? is an ordered list of D words in the alphabet B, defined inductively as
follows:

• The piling Π(ε) for the empty word is (ε, . . . , ε).

• If h = h′gi, where gi ∈ Gi \ {e}, then

1. If the ith word of Π(h′) is empty or ends in a 0, then the ith word of Π(h) is
given by appending gi to the ith word of Π(h′), and a 0 to the jth word for
every j such that vertices vi and vj are not adjacent.

2. If the ith word of Π(h′) ends in an element g′i of Gi, compute g = g′igi. If g is a
nontrivial element of Gi, then the ith word of Π(h) is given by replacing the
last letter g′i with g. If g′igi is the identity, then the ith word of Π(h) is given by
erasing g′i from the ith word of Π(h′), and all other words of Π(h) are given by
removing the final 0 on the jth words, where vi and vj are not adjacent.

Example 1. Consider the group Z2 ∗Z = 〈a, b, c|[a, b]〉. Then

• The piling for a is (a, ε, 0).

• The piling for ac is (a0, 0, 0c).

• The piling for acb is (a0, 0b, 0c0).

• The piling for acba is (a0a, 0b, 0c00).

• The piling for acbaa−1 is (a0, 0b, 0c0).

• Meanwhile, the piling for acbaca−1 is (a00a−1, 0b0, 0c00c−10).

Observe that the piling for acbaa−1 is equal to that of acb.
One can see that the last occurence of a c presents as a barrier to the cancellation

aa−1 → e. In the context of random walks, we will use pilings to argue that there are
many such barriers with high probability. To make this rigorous, we must verify that the
choice of piling of a group element does not depend on its word representation.

Proposition 2.2. The piling map Π : A? → (B?)D induces a well-defined map G →
(B?)D.

Proof. We need to show that for any two words h1, h2 ∈ A∗ that represent the same
group element, the pilings Π(h1) and Π(h2) are equal. Observe that for any h, h′ ∈ A∗
the following holds:
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Figure 2: A piling for acba.

1. If si and sj are elements of the adjacent groups Gi and Gj , then Π(hsisjh
′) =

Π(hsjsih
′).

2. For any si ∈ Gi, we have Π(hsis
−1
i h′) = Π(hh′).

3. If si and s′i are element of the same vertex group, with sis
′
i = s′′i nontrivial, then

Π(hsis
′
ih
′) = Π(hs′′i h

′). If s′′i is trivial, then Π(hsis
′
ih
′) = Π(hh′).

Now let h1 = g1g2...gm and h2 = g′1...g
′
n be two words in A∗ which represent the same

group element in G. Since both words represent the same group element, then we can
obtain h2 from h1 by some sequence of the following moves:

1. If gi and gi+1 are elements of adjacent vertex groups, replace ...gigi+1... with
...gi+1gi....

2. If gi, gi+1 are from the same vertex group, then compute g′′i = gigi+1. If g′′i is trivial,
replace ...gigi+1... with ...ε... If g′′i is nontrivial, replace ...gigi+1... with ...g′′i ....

3. If gi = g′g′′ for two nontrivial elements in the vertex group Gi, then replace ...gi...
with ...g′g′′....

All these moves leave the piling unchanged.

From now on, when we refer to a piling, we are referring to the induced map
G→ (B∗)D. In an abuse of notation, we also denote this map by Π.

Remark 2.3. The notion of piling resembles that of a “pruning” in [HM95]. A pruning
of an element g in a graph product is a representation of g as a product of elements in
vertex groups, which is minimal with respect to syllable length and with respect to a
ShortLex ordering induced by an ordering of the vertices. Like pilings, it can be used
to produce a normal form for an element of a graph product [HM95, Proposition 3.1],
and the proof of this is essentially the same as Proposition 2.2. However, a piling is a
collection of words indexed by the vertices of a graph, while a pruning is one word.

Remark 2.4. Observe that the piling for Π(g−1) is given by reversing all words in Π(g)

and swapping each gi with g−1i . This can be proven by induction on the syllable length
of g.

Definition 2.5. Given an element g ∈ G, the terminal clique term(g) is the set of vertices
vi in the graph such that the ith word in the piling Π(g) ends in a nontrivial element
of Gi.
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We define the initial clique init(g) to be the set of vertices vi such that the ith word of
Π(g) starts with a nontrivial element of gi. The terminal and initial cliques of the trivial
element are the empty set. Observe that init(g) = term(g−1), which we leverage in the
proof of the following lemma:

Lemma 2.6. Let g, h be elements in the graph product G such that term(g)∩ init(h) = ∅.
Then Π(gh) = Π(g)Π(h).

Proof. We induct on the syllable length of h.
In our base case, h is just an element from one vertex group Gi, so that init(h) = {vi}.

As this set is disjoint from term(g), we know that the piling for g ends with a 0 in the ith
word, or the ith word is empty. In either case, the piling Π(gh) is given by concatenating
Π(g),Π(h).

Now suppose that the syllable length for h is equal to n > 1, and let h = w1 . . . wn be
a representation of minimal syllable length. Let v be the vertex corresponding to w1.

We claim that the initial clique of w−11 h is disjoint from {v}. If w1 is the only letter
wi lying in the vertex group Gv, the claim holds. Now suppose that w1 and wk lie in the
same vertex group, then we can find some i strictly between 1 and k such that v and vi
are not adjacent. If such an i did not exist, we could apply our commutation relations
to see that w1w2...wk...wn = (w1wk)w2...wk−1wk+1...wn as group elements, contradicting
minimality of our representation. Thus the piling for h, in some coordinate, begins with
w10. As a result, the piling for w−11 h begins with a 0 in the coordinate corresponding to
w1, so that the initial clique of w−11 h is disjoint from {v}.

Applying our induction hypothesis, since the syllable length of w−11 h is smaller than
that of h, we have

Π(g)Π(h) = Π(g)Π(w1w
−1
1 h)

= Π(g)Π(w1)Π(w−11 h)

= Π(gw1)Π(w−11 h)

= Π(gh)

As a result of this lemma, we can read off the syllable length of an element g ∈ G
from its piling.

Lemma 2.7. Let g ∈ G. The syllable length of g is equal to the number of nonzero
characters in the piling Π(g).

In other terms, for each of the D words in Π(g), we count the length of the word
minus the number of occurences of the character 0, and add this up over all D words.

Proof. Like before, we induct on the syllable length of g. When |g| = 1, then g ∈ Gvi , so
that the piling Π(g) consists of the character g in the ith string, along with some number
of 0’s. Now let |g| = n, and let g′ ∈ Gv for some vertex group Gv, such that |gg′| = n+ 1.
Let g = g1...gn be a representation of g where each gi, gi+1 lie in different vertex groups.
Every group element h of syllable length n + 1 can be obtained in this fashion: write
h = h1...hn+1 where hi, hi+1 are elements of distinct vertex groups, then pick g = h1...hn
and g′ = hn+1.

Since gg′ = g1...gng
′ has syllable length n + 1, then this representation of gg′ must

be of minimal length. Then it must be the case that term(g) ∩ init(g′) = ∅, because
otherwise we could apply our commutation relations to get a representation of shorter
length. Therefore Π(gg′) = Π(g)Π(g′) and so the number of nonzero characters in Π(gg′)

is equal to n+ 1.
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3 Pivotal times

Our plan is to control the behaviour of a sample path by considering times where it
goes in independent directions. In the free group, there are points where the sample
path lies in some subtree forever after some time n. Intuitively, we should be able to
pivot a sample path about such a point, and get another sample path with the same drift.
We plan to show that there are many such points, and that for each point there are many
directions in which the sample path moves further away from the identity.

Recall that the paths for our walks are of the form Zn = s1w1 . . . snwn where si ∼ µ
and wi ∼ ν for i = 1, . . . , n.

Definition 3.1. Given a finite sequence (s1, w1, . . . , sn, wn) of length 2n with all si’s
nontrivial elements of some vertex groups, and a set of times P ⊂ {1, . . . , n}, the
sequence is pivotal with respect to P if

• For all k ∈ P , the vertex init(sk) is not adjacent to term(Zk−1)

• If k < k′ are subsequent elements of P and wk...wk′−1 is nontrivial, then the vertex
term(sk) is not adjacent to init(wk...wk′−1). If wk...wk′−1 is trivial, then term(sk) is
not adjacent to init(sk′).

• If k is the greatest element of P , then the terminal clique of sk is not adjacent to
init(wk...wn).

By “adjacent” we mean “adjacent to or contained in”. Observe that there may be
multiple choices of P with respect to which the sequence is pivotal. For any such choice
P , letting k1, . . . , k#P be our collection of pivotal times, these three conditions along tell
us that term(Zk−1sk) = term(sk), so applying Lemma 2.7 allows us to deduce

0 ≤ |Zk1−1| < |Zk1+1sk1 | ≤ |Zk2−1| < |Zk2−1sk2 | ≤ · · · ≤ |Zk#P−1| < |Zk#P−1
sk#P

| ≤ |Zn|.

We summarize this in the following:

Lemma 3.2. If (s1, w1, . . . , sn, wn) is pivotal with respect to P ⊂ {1, . . . , n}, then the
syllable length |Zn| is at least #P .

To estimate the distance travelled by our random walk, it suffices to estimate the
maximal size of a set of pivotal times. To do this, we argue that pivotal times are in a
quantitative sense persistent: once the time k is pivotal for the random walk at the kth
step, is it very likely to remain pivotal up to time n.

In the proof of the main theorem, we will condition on the group elements w1, . . . , wn
coming from the measure ν, and keep the randomness from the group elements s1, . . . , sn.
Hence to understand our random walk, we should consider the sequence (s1, . . . , sn)

associated to some sample path.
For a fixed sequence (w1, . . . , wn) and a subset P ⊂ {1, . . . , n}, denote by E(P ) the

collection of sequences (s1, . . . , sn) such that (s1, w1, . . . , sn, wn) is pivotal with respect
to P . We argue that for any P , these collections are large.

Lemma 3.3. Fix (w1, . . . , wn) and P ⊂ {1, . . . , n}, and suppose that (s1, . . . , sn) ∈ E(P ).
Then for any k ∈ P , there exist cliques C1, C2 ⊂ Γ such that if sk is replaced by any
nontrivial s′k with init(s′k) not adjacent to C1 ∪ C2, then (s1, . . . , s

′
k, . . . , sn) ∈ E(P ).

Proof. We set C1 = term(Zk−1). If k is not the last pivotal time, choose C2 =

init(wk...wk′−1) if wk...wk′−1 is not trivial, else C2 = init(sk′) where k′ is the next pivotal
time. If k is the last pivotal time, pick C2 = init(wk...wn). We claim that these choices
work.

Say for some k ∈ P , we replace sk with some nontrivial s′k satisfying init(s′k) /∈ C1∪C2.
By construction, s′k still satisfies the conditions imposed on sk for k to be a pivotal

time.
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If j ∈ P is a pivotal time strictly before k, we have init(sj) is not adjacent to term(Zj−1).
Let j′ ∈ P be the pivotal time immediately after j. If the intermediate word wj ...wj′−1
is not trivial or j′ 6= k, then sj still satisfies the same conditions imposed for j to be
a pivotal time. If the intermediate word is trivial and j′ = k, then since term(Zk−1) =

term(Zj−1sj) = term(sj), so by our choice of s′k we know that term(sj) is not adjacent to
init(s′k).

If j > k, then the second and third conditions in Definition 3.1 are immediately met,
so it remains to check the first condition for any pivotal times j > k. First suppose
that j is the pivotal time immediately after k. If the intermediate word wk...wj−1 is
trivial, we have Zj−1 = Zk−1s

′
k, so that init(sj) is not adjacent to term(Zj−1) = term(s′k).

If the intermediate word is not trivial, then the fact that term(Zk−1s
′
k) = term(s′k) and

term(s′k)∩init(wk...wj−1) = ∅ implies term(Zk−1s
′
k...wj−1) = term(wk...wj−1) and likewise

for term(Zj−1). Since init(sj) is not adjacent to term(Zj−1), we deduce that it is also not
adjacent to term(Zk−1s

′
k...wj−1).

Since this argument only used the facts that init(s′k) is not adjacent to term(Zk−1) or
the appropriate choice of init(sk′), init(wk...wk′−1), init(wk...wn), then the same argument
shows that every pivotal time j > k remains pivotal.

4 Main argument

In this Section we prove Theorem 1.1. First we recall some notation. Let G be a
graph product with D vertices and vertex groups G1, . . . , GD. Let B be the maximum
size of the 1-neighbourhood N1(K) where K ⊂ Γ ranges through all cliques. Let µ be a
probability measure on G such that µ(Gi \ {e}) = 1

D . In other words, µ is equally likely
to pick out a nontrivial element of any group. Let ν be an arbitrary probability measure
on G and consider the random walk driven by µ ∗ ν.

We want to show that there exists some κ > 0 such that

P(|Zn| ≤ κn) ≤ e−κn,

where |Zn| denotes the syllable length of Zn. Write Zn = s1w1...snwn where si ∼ µ and
wi ∼ ν. We will condition on the wn’s and keep the randomness coming from the sn’s.
Then we will find a working κ that is independent of our conditioning. To this end, we
will use our assumptions on the graph to show that the drift is bounded from below by a
sum of i.i.d. variables with positive expectation.

For any n ∈ N, a sequence (w1, . . . , wn), and a random choice of s1, . . . , sn drawn i.i.d.
according to µ, let An be the random variable that is the maximum cardinality of a subset
P ⊂ {1, . . . , n} with respect to which (s1, . . . , wn) is pivotal. In the following lemma we
argue that the small cliques assumption implies that there are many pivotal times.

Lemma 4.1. Suppose that D > 5B. Fix {wi}1≤i≤n+1. Also let U be an integer-valued
random variable, independent of (s1, . . . , sn+1) and with distribution

P(U = 1) =
D − 2B

D
,

and

P(U ≤ −j) =
2B

D
·
(

B

D − 2B

)j
for all j ≥ 0. Then An+1 stochastically dominates An + U in the sense that

P(An+1 ≥ i) ≥ P(An + U ≥ i) for all i.

Proof. Fix a subset P = (k1, . . . , kq) ⊂ {1, . . . , n} and condition on the event that
(s1, . . . , sn) ∈ E(P ).
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For any (s1, . . . , sn) ∈ E(P ), there are at least D − B vertices vi which are not in or
adjacent to term(Zn). Likewise, we know that there are at most B vertices contained in
or adjacent to init(wn+1), therefore there are at least D −B choices for Gin+1

such that
sn+1 is not in a vertex group adjacent to that of wn+1. Hence there are at least D − 2B

choices for Gin+1
such that (s1, . . . , wn+1) is pivotal with respect to P ∪ {n+ 1}. As our

probability distribution µ is uniform over our set of groups then

P(An+1 ≥ An + 1|E(P )) ≥ D − 2B

D
.

Now fix j > 0 and consider the event that An+1 ≤ An − j. This first requires that
sn+1 is not disjoint from one of term(Zn) or is adjacent to init(wn+1), which happens with
probability at most 2B

D . For kq to no longer be pivotal, this requires that term skq is now
adjacent to the initial clique of wkq . . . sn+1wn+1, which happens with probability at most
B

D−2B . Conditional on the event that (s1, . . . , sn) ∈ E(P ), the group elements sn+1 and
skq are independent. We remark that the conditioning is only necessary because we
make reference to the final pivotal time kq, and independence is because kq 6= n+ 1 by
definition. Hence

P(An+1 ≤ An − 1|E(P )) ≤ 2B

D
· B

D − 2B
.

For kq−1 to no longer be pivotal, this requires that term
(
s′kq−1

)
is now adjacent to

init(wkq−1
...sn+1wn+1). Conditional on the event that (s1, . . . , sn) ∈ E(P ), and a choice of

skq , sn+1 such that (s1, . . . , wn+1) fails to be pivotal with respect to P , this has probability
at most B

D−2B . For any choice of skq such that the sequence (s1, . . . , wn+1) is pivotal with
respect to P , this has probability 0. Hence we have

P(An+1 ≤ An − 2|E(P )) ≤ 2B

D
·
(

B

D − 2B

)2

Continuing in this fashion, we have

P(An+1 ≤ An − j|E(P )) ≤ 2B

D
·
(

B

D − 2B

)j
for all j > 0.

As this bound is uniform over conditioning on E(P ), we have the conclusion of the
lemma.

We also make use of the following probabilistic lemma.

Lemma 4.2. Let U1, . . . , Un be i.i.d. copies of a random variable U and let t > 0 be such

that E[e−tU ] < 1. Then for κ < − lnE[e−tU ]
1+t we have

P(U1 + · · ·+ Un ≤ κn) ≤ e−κn.

Proof. By Markov’s inequality and independence we have, for any κ > 0,

P(U1 + · · ·+ Un ≤ κn) ≤ etκn
(
E
[
e−tU

])n
.

If we pick

κ <
− lnE[e−tU ]

1 + t
,

then the right hand side is less than e−κn.

Now we are ready to prove our main theorem.
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Proof. We have

E[U ] =
D − 2B

D
− 2B

D

(
D − 2B

D − 3B

)
.

If D > 5B, then E[U ] > 0. Then d
dt |t=0+E[e−tU ] < 0, so there exists some t > 0 such

that E[e−tU ] < 1. Then there exists some positive κ with

κ <
− lnE[e−tU ]

1 + t
.

Now let U1, . . . , Un be n i.i.d. copies of U . Condition on all of the steps {wi}i≥1. Iterat-
ing Lemma 4.1 we get that the random variable An, defined conditionally on {wi}i≥1,
stochastically dominates U1 + · · ·+ Un. Hence by our large deviations bound we have

P(|Zn| ≤ κn|{wi}i≥1) ≤ P(An ≤ κn|{wi}i≥1) ≤ P(U1 + · · ·+ Un ≤ κn) ≤ e−κn.

As this bound is uniform over conditioning, we are done.

To conclude, we discuss asymptotic sharpness of our results in a certain family of
graph products. Given a graph product of groups, one can estimate the drift for a random
walk induced by an alternating measure as follows:

1. Verify that D > 5B.

2. Maximize the quantity
− lnE[e−tU ]

1 + t

with the constraints t > 0, E[e−tU ] < 1.

For an example, we consider the family of graphs which are cycles of length D. In this
case we have B = 4, so that the theorem applies for D > 20. We numerically compute
the lower bound on the drift afforded from Theorem 1.1 for 20 < D ≤ 12000, shown in
Figure 2.

In the case where our alternating measure is µ ∗ δe, where µ is the simple random
walk on a RAAG, the drift is at most 1. With further assumptions on B and D we can
derive sharp asymptotics for our drift estimate.

Proposition 4.3. Suppose that B ≤ o(D) as D →∞. Let T be the set of positive t such
that E[e−tU ] < 1. Then

sup
t∈T

− lnE
[
e−tU

]
1 + t

→ 1

as D →∞.

Proof. Since − ln is convex, by Jensen’s inequality we have

− lnE
[
e−tU

]
1 + t

≤
E
[
− ln e−tU

]
1 + t

=
tEU

1 + t
.

Since EU > 0, then this final term is increasing in t and goes to EU as t → ∞. Since
B ≤ o(D) then EU → 1 as D →∞. Therefore

lim
D→∞

sup
t∈T

− lnE
[
e−tU

]
1 + t

≤ 1.

Pick tD = ln
(
D−2B
2B

)
, so that tD satisfies E

[
e−tDU

]
< 1 for large enough D.

Then

E
[
e−tDU

]
= e−tD

D − 2B

D
+

2B

D

D − 3B

D − 2B − etDB
.
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Figure 3: Our drift estimate for an alternating random walk on a graph product given by
a D-cycle.

Therefore

− lnE
[
e−tDU

]
1 + tD

=
− ln

(
2B

D−2B
D−2B
D + 2B

D
D−3B
D/2−B

)
1 + ln (D/B))

∼ ln (D/B))

1 + ln (D/B))

→ 1,

as D → ∞, where “f(D) ∼ g(D) means f(D)/g(D) → 1”, and the second line comes
from the fact that B ≤ o(D).
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