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Abstract

We construct an example of a subperiodic tree whose intermediate branching number
is strictly less than the lower intermediate growth rate. This answers a question of
Amir and Yang (2022) in the negative.
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1 Introduction and main result

There are several ways to measure the branching structure of an infinite locally finite
tree. An important and successful one is the branching number introduced by Lyons [5].
For instance the branching number is the critical parameter for Bernoulli percolation
and homesick random walk on trees. However the branching number is not so effective
for trees with sub-exponential growth. Later Collevecchio, Kious and Sidoravicius [3]
introduced a branching-ruin number which works well for trees with polynomial growth.
Inspired by these previous work, recently Amir and Yang [1] introduced the intermediate
branching number and showed that it is crucial for several probability models on trees
with intermediate growth rate.

Our focus here is a special family of infinite locally finite trees—the subperiodic trees.
For a subperiodic tree, the branching number actually equals the exponential growth
rate—this result is due to Furstenberg [4]; see Theorem 3.8 in [6] for a proof. Amir
and Yang [1] then asked whether the corresponding equality holds for the intermediate
branching number and the lower intermediate growth rate on subperiodic trees. In
the present note we construct an example of a subperiodic tree whose intermediate
branching number is strictly less than its lower intermediate growth rate, answering
their question in the negative.

1.1 Various branching numbers and growth rates of infinite trees

Suppose T = (V,E) is an infinite locally finite tree with a distinguished vertex o,
which will be called the root of T . We imagine the tree T as growing upward from the
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A subperiodic tree example

root o. For x, y ∈ V , we write x ≤ y if x is on the shortest path from o to y; and T x

for the subtree of T containing all the vertices y with y ≥ x. For a vertex x ∈ V we
denote by |x| the graph distance from o to x. For an edge e ∈ E, we write e = (e−, e+)

where |e+| = |e−| + 1 and define |e| = |e+|. Write Tn := {e ∈ E : |e| = n}. Write
B(n) = {x : x ∈ V, |x| ≤ n} for the ball of radius n centered at o.

A cutset π separating o and infinity is a set of edges such that every infinite path
starting from o must include an edge in π. For instance Tn is a cutset separating o and
infinity for every n ≥ 1. We write Π(T ) for the collection of cutsets separating o and
infinity. The branching number of T is defined as

br(T ) := sup

{
λ > 0: inf

π∈Π(T )

∑
e∈π

λ−|e| > 0

}
. (1.1)

We recommend the readers Chap. 3 of [6] for backgrounds on branching numbers. The
lower exponential growth rate of T is defined as

gr(T ) := lim inf
n→∞

|Tn|1/n. (1.2)

The upper exponential growth rate of T is defined as gr(T ) := lim supn→∞ |Tn|1/n
similarly. Note that gr(T ) can be rewritten in a similar form as (1.1):

gr(T ) = sup

{
λ > 0: lim inf

n→∞

∑
e∈Tn

λ−|e| > 0

}

and in particular
1 ≤ br(T ) ≤ gr(T ).

The branching-ruin number introduced by Collevecchio, Kious and Sidoravicius
[3] is defined as

brr(T ) := sup

{
λ > 0: inf

π∈Π(T )

∑
e∈π
|e|−λ > 0

}
, (1.3)

where we use the convention of sup ∅ = 0. This branching-ruin number is a natural way
to measure trees with polynomial growth rate and turned out be the critical parameter
of some random processes [2] (in particular the once-reinforced random walk [3]). One
can define corresponding lower (upper) polynomial growth rates by

grr(T ) := lim inf
n→∞

log |Tn|
log n

and grr(T ) := lim sup
n→∞

log |Tn|
log n

. (1.4)

Note that

grr(T ) = sup

{
λ > 0: lim inf

n→∞

∑
e∈Tn

|e|−λ > 0

}
.

and in particular brr(T ) ≤ grr(T ).
Recently Amir and Yang [1] introduced the intermediate branching number

Ibr(T ) := sup

{
λ > 0: inf

π∈Π(T )

∑
e∈π

exp
(
− |e|λ

)
> 0

}
(1.5)

and the lower (upper) intermediate growth rates

Igr(T ) := lim inf
n→∞

log log |Tn|
log n

and Igr(T ) := lim sup
n→∞

log log |Tn|
log n

. (1.6)
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Similarly,

Ibr(T ) ≤ Igr(T ) = sup

{
λ > 0: lim inf

n→∞

∑
e∈Tn

exp
(
− |e|λ

)
> 0

}
.

Amir and Yang [1] proved that the intermediate branching number is the critical pa-
rameter for certain random walk, percolation and firefighting problems on trees with
intermediate growth, where a tree T was said to be of intermediate (stretched expo-
nential) growth if 0 < Igr(T ) ≤ Igr(T ) < 1.

We remark that these numbers br(T ), gr(T ), gr(T ),brr(T ), grr(T ), grr(T ), Ibr(T ), Igr(T )

and Igr(T ) do not depend on the choice of the root of T .

1.2 Subperiodic trees

We first recall the definition of subperiodic trees from p 82 of [6]; see Example 3.6
and 3.7 there for some examples of subperiodic trees.

Definition 1.1. Let N ∈ {0, 1, 2, 3, . . .}. An infinite tree T is called N-periodic (resp., N-
subperiodic) if ∀x ∈ T there exists an adjacency-preserving bijection (resp. injection)
f : T x → T f(x) with |f(x)| ≤ N . A tree is periodic (resp. subperiodic) if there is some
N for which it is N -periodic (resp., N -subperiodic).

As mentioned earlier br(T ) = gr(T ) = gr(T ) for any subperiodic tree T ([6, Theorem

3.8]). Amir and Yang noticed that there exist subperiodic trees such that Igr(T ) < Igr(T )

(see Sect. 4.1 of [1]) and asked1 whether Ibr(T ) = Igr(T ) for subperiodic trees with
intermediate growth rate. Our main result gives a negative answer to their question.

Theorem 1.2. There exists a subperiodic tree T with intermediate growth rate and

Ibr(T ) < Igr(T ).

2 Proof of the main result

We will prove Theorem 1.2 via a concrete example (see Example 2.4).

2.1 Coding by trees

Our example will be a subtree of the 3-ary tree T3 and we view T3 as a labelled tree
with the root labelled as ∅, the three children of the root labelled 0, 1, 2 respectively from
left to right, and so on. Write D(T3) for the set of infinite labelled subtrees of T3 which
contain the root and have no leaf and write R(T3) for the set of labelled rays starting
from the root. In particular R(T3) ⊂ D(T3).

For each element a = (a1, a2, a3, . . .) ∈ {0, 1, 2}N, we associate it with a ray Φ(a) ∈
R(T3) with the (n+ 1)-th vertex on the ray labelled as a1a2 · · · an. (The first vertex is just
the root labelled as ∅.) Obviously Φ is a bijection between {0, 1, 2}N and R(T3). We now
extend Φ as a mapping from all nonempty subsets of {0, 1, 2}N to D(T3).

Definition 2.1 (Coding by trees). For a nonempty subset E of {0, 1, 2}N, the tree Φ(E) ∈
D(T3) is defined as the union of the rays (each ray is viewed as a labelled subtree of
T3) Φ(E) =

⋃
x∈E Φ(x), where the union means the vertex set of Φ(E) is the union of the

vertex set of Φ(x) and the same for the edge set.

Remark 2.2. One can define a natural metric d on {0, 1, 2}N: the distance between two
elements x = (x1, x2, . . .) and y = (y1, y2, . . .) ∈ {0, 1, 2}N is given by

d(x, y) :=
1

ek
, where k = k(x, y) = inf{i : xi 6= yi}.

1See (2.12) on page 4 of version 3 of the paper [1] on arXiv.
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The coding by trees in Definition 2.1 comes from the canonical coding of closed
subsets of the interval [0, 1] by trees; see Sect. 1.10 and 15.2 of [6] for background. We
simply replace [0, 1] by the metric space

(
{0, 1, 2}N, d

)
for convenience.

It is straightforward to verify that

• For each nonempty subset E ⊂ {0, 1, 2}N and its closure E in the metric space(
{0, 1, 2}N, d

)
, one has that Φ(E) = Φ

(
E
)
.

• Moreover the map Φ is a bijection if its domain is restricted to the collection of all
nonempty closed subsets of {0, 1, 2}N.

We also define the shift map S : {0, 1, 2}N → {0, 1, 2}N by

S
(
(a1, a2, a3, . . .)

)
= (a2, a3, a4, . . .).

The following observation is a rephrasing of Example 3.7 in [6] in the case b = 3 and
it is crucial for our construction later.

Observation 2.3. If a nonempty closed subset E ⊂ {0, 1, 2}N is invariant under the shift
map in the sense that S(E) ⊂ E, then the tree Φ(E) is 0-subperiodic.

2.2 The construction of our example

We first review the 1-3 tree T1,3 [6, Example 1.2]: the root has two children; and
|Tn| = 2n; and for each n ≥ 1, the left half vertices at distance n from the root will
each have only 1 child, the right half will each have 3 children. We view T1,3 as a
labelled subtree of T3 according to the following labeling rule: the root is labelled as ∅
and if a vertex with label a1a2 · · · an has k children, then its k children are labelled as
a1a2 · · · an0, . . . , a1a2 · · · an(k − 1) respectively from left to right. See Fig. 1 for T1,3 and
its labeling.

∅

0 1

00 10 11 12

000 100 110 111 112 120 121 122

Figure 1: The 1-3 tree T1,3 and its labeling.
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Example 2.4. Let T0 be the tree obtained by replacing each edge e of the 1-3 tree T1,3

by a path of length |e| and view it as a subtree of T3 labelled according to the labeling
rule we used for T1,3 (see Fig. 2). As already noted by Amir and Yang [1], the tree T0

satisfies

Ibr(T0) = 0 and Igr(T0) =
1

2
. (2.1)

However T0 is not subperiodic.
Let E0 be the closed subset of {0, 1, 2}N such that Φ(E) = T0. Define Ej = S(Ej−1)

for j ≥ 1 and let Ẽ =
⋃∞
j=0Ej . Our example is just the tree T̃ := Φ

(
Ẽ
)
.

∅

0 1

00 10 11 12

000 100 110 120

0000

00000

1000 1100 1102 1200 1202

12020

000000 120200

Figure 2: The tree T0 and its labeling.

Recall that D(T3) denotes the set of infinite labelled subtrees of T3 which contain
the root and have no leaf. For a vertex v ∈ V (T0) labelled as a1a2 · · · an, we will view the
subtree T v0 as a labelled subtree of T3 rooted at ∅, i.e., view it as the tree

Φ
(
S◦n{x = (x1, x2, x3, . . .) : x ∈ E0, xi = ai for i = 1, . . . , n}

)
∈ D(T3).

Since En =
⋃
v∈V (T0),|v|=n S◦n{x = (x1, x2, x3, . . .) : x ∈ E0, v is labelled as x1x2 · · ·xn},

we have the following equivalent description of T̃ :

Observation 2.5. As labelled subtrees of T3, the tree T̃ is just the union of T v0 over all
v ∈ V (T0).

2.3 The intermediate branching number and the intermediate growth rate of
our example

By construction the set Ẽ is invariant under the shift map. Thus by Observation 2.3
the tree T̃ = Φ

(
Ẽ
)

is subperiodic. We will show that 0 = Ibr
(
T̃
)
< Igr

(
T̃
)

= 1
2 which

then proves Theorem 1.2.

Proposition 2.6. For the tree T̃ = Φ
(
Ẽ
)

constructed in Example 2.4, one has that

Igr
(
T̃
)

= Igr
(
T̃
)

=
1

2
and Ibr

(
T̃
)

= 0.
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Proof. First of all since T0 = Φ(E0) is a subtree of T̃ = Φ
(
Ẽ
)
, one has that

Igr
(
T̃
)
≥ Igr

(
T̃
)
≥ Igr(T0)

(2.1)
=

1

2
.

On the other hand, note that
∣∣T̃n∣∣ equals the cardinality of the set {(x1, . . . , xn) : x =

(x1, x2, . . .) ∈ Ẽ}—the first n-bits of Ẽ. Also observe that a ray γ in T1,3 coding the
sequence (a1, a2, a3, . . .) becomes a ray γ′ in T0 coding the sequence

(a1, a2, 0, a3, 0, 0, a4, 0, 0, 0, a5, 0, 0, 0, 0, a6, 0, . . .).

Hence by our construction an element a ∈ Ẽ always has the form

a =
(

0, . . . , 0︸ ︷︷ ︸
m

, aj , 0, . . . , 0︸ ︷︷ ︸
=j−1

, aj+1, 0, . . . , 0︸ ︷︷ ︸
=j

, aj+2, 0, . . .
)
, (2.2)

where (a1, a2, a3, . . .) ∈ Φ−1(T1,3) and m ≤ max(j−2, 0). Note that there exists a constant
c > 0 such that there are at most c

√
n + 1 nontrivial entries aj , aj+1, . . . , aj+c

√
n in the

first n-bits of a. If j ≥ n+ 1, then there is at most one nonzero entry in the first n-bits
and this would contribute at most 2n + 1 to the set {(x1, . . . , xn) : x = (x1, x2, . . .) ∈ Ẽ}.
If j ≤ n, then there are at most max(n− 2, 0) ≤ n choices for m—the number of zeroes
before aj ; once m and j are fixed, the positions of aj , aj+1, . . . , aj+c

√
n are fixed and each

element of {aj , aj+1, . . . , aj+c
√
n} has at most 3 choices, hence this contributes at most

n2 ∗ 3c
√
n+1 to the set {(x1, . . . , xn) : x = (x1, x2, . . .) ∈ Ẽ}. In sum we have

∣∣T̃n∣∣ ≤ 3C
√
n

for some constant C > 0. Therefore one has the other direction

Igr
(
T̃
)
≤ Igr

(
T̃
)
≤ 1

2
.

Next we proceed to show that Ibr
(
T̃
)

= 0. Fixing an arbitrary λ > 0, we will show

that for any ε > 0 there exists a cutset π of T̃ such that∑
e∈π

exp
(
− |e|λ

)
≤ 2ε. (2.3)

Since Ibr(T0)
(2.1)
= 0, one has Ibr(T v0 ) = 0 for any v ∈ V (T0). In particular one can

choose cutsets πv for T v0 (viewed as a subtree of T3 rooted at ∅) such that∑
v∈V (T0)

∑
e∈πv

exp
(
− |e|λ

)
≤ ε.

Since T̃ is the union of T v0 over v ∈ V (T0) (Observation 2.5), one might hope the set⋃
v∈V (T0) πv is a cutset of T̃ . But it might not be the case since there might exist a ray

γ in T̃ such that its edges come from T vi0 for infinitely many different vi’s and γ is not
blocked from infinity by

⋃
v∈V (T0) πv. To rescue this, we add some additional edges in

the following way. Choose N = N(λ, ε) large enough so that 9N exp(−Nλ) ≤ ε. Let β be
the collection of all edges in T̃N+1 with the form

(v, vj) : v = (v1v2 · · · vN ) with at most one nonzero entry and j = 0, 1, 2.

In particular ∑
e∈β

exp
(
− |e|λ

)
≤ 9N exp(−Nλ) ≤ ε.

Now we set
π =

( ⋃
v∈V (T0)

πv

)
∪ β.
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and claim that π is a cutset of T̃ . In fact since T̃ is just the union of T v0 over all v ∈ V (T0),
we can choose M ≥ 100N2 large enough so that all the edges e of T̃ with |e| ≤ N

appear in some T v0 with |v| ≤ M . Now if a ray γ of T̃ does not use any edge outside⋃
v∈V (T0),|v|≤M T v0 , then there must exist some v ∈ V (T0) with |v| ≤M such that γ is just

a ray in T v0 . Hence in this case γ has a nonempty intersection with πv. Otherwise γ must
use some edge e′ of T̃ which is not in the union

⋃
v∈V (T0),|v|≤M T v0 . By our choice of M ,

one must have |e′| > N and e′ is coming from some T v0 with |v| > M ≥ 100N2. For such
a vertex v, in the first N levels of T v0 there is at most one vertex with three children
because of the long pieces of zeroes (see (2.2) and Fig. 2). Therefore the edge e′ must
be a descendant of some edge from the set β and so γ has a nonempty intersection with
β. Hence π is a cutset of T̃ .

By our choice of πv and β the cutset π satisfies (2.3). By (2.3) one obtains that
Ibr
(
T̃
)
≤ λ. Since this is true for any λ > 0 one has that Ibr

(
T̃
)

= 0.

3 Concluding remarks

In the construction of T0 we replace an edge e by a path of length f(|e|) where the
function f : N→ N is given by f(x) = x. If we use some other increasing functions, say
f(x) = dxse with s ∈ (0,∞), then we can obtain a family of subperiodic trees using the
procedure in Example 2.4 so that for each α ∈ (0, 1) there are some trees T in the family
with the property that 0 = Ibr(T ) < Igr(T ) = α.

We also note that there exist periodic trees T with polynomial growth that satisfy
brr(T ) < grr(T ). For instance consider the following lexicographically minimal span-
ning tree of Z2 illustrated in Fig. 3; see Sect. 3.4 in [6] for definitions of Cayley graphs
and their lexicographically minimal spanning trees. We don’t know whether there exists
a Cayley graph G of a finitely generated countable group with intermediate growth and
a lexicographically minimal spanning tree T of G such that Ibr(T ) < Igr(T ).

Figure 3: A lexicographically minimal spanning tree of Z2.

However there are no periodic trees with intermediate growth rate.

Proposition 3.1. Suppose T is an infinite periodic tree. Then either br(T ) > 1 or there
exists an integer d ≥ 1 such that

∣∣B(n)
∣∣ = Θ(nd). Here

∣∣B(n)
∣∣ = Θ(nd) means that the

ratio
∣∣B(n)

∣∣/nd is bounded away from zero and infinity.

Proof. We give a sketch here and leave the details to interested readers.
First of all, the periodic tree T is the directed cover of some finite directed graph

G = (V,E) based at some vertex x0 ∈ V ; see p 82-83 in [6] for a proof of this fact.
Let C1, . . . , Cm be the strongly connected components of G (if for a vertex v there is

no directed path from v to itself, then we say v does not belong to any strongly connected
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component). If there exist some Ci and some v ∈ V (Ci) such that v has at least two
out-going edges in Ci, then it is easy to see br(T ) > 1. Otherwise, each Ci is either
a single vertex with a self-loop, or it is a directed cycle. In this case one can prove∣∣B(n)

∣∣ = Θ(nd) by induction on the size of V (G) (Exercise 3.30 in [6] would be a good
warm-up). We omit the details of the induction and just point out that in this case

d = max{C(γ) : γ is a self-avoiding directed path in G starting from x0},

where C(γ) is the number of strongly connected components visited by γ.
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