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Abstract

In this work, we prove the well-posedness and propagation of chaos for a stochastic
particle system in mean-field interaction under the assumption that the interacting
kernel belongs to a suitable Lq

t − Lp
x space. Contrary to the large deviation principle

approach recently proposed in [2], the main ingredient of the proof here are the
Partial Girsanov transformations introduced in [3] and developed in a general setting
in this work.
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1 Introduction

The goal of this paper is to study the well-posedness and the convergence as N →∞
of the following particle system taking values in Rd{

dXi,N
t = 1

N

∑N
j=1 b(t,X

i,N
t , Xj,N

t ) dt+ dW i
t , t > 0, i ≤ N

Xi,N
0 i.i.d. and independent of W := (W i, 1 ≤ i ≤ N),

(1.1)

towards the non-linear stochastic differential equation{
dXt =

∫
b(t,Xt, y)ρt(y) dy dt+ dWt, t > 0,

ρt(y)dy := L(Xt), X0 ∼ ρ0(x)dx,
(1.2)

under the following assumption

Assumption 1.1. For x, y ∈ Rd and t > 0, one has |b(t, x, y)| ≤ ht(x − y) for some
h ∈ Lqloc(R+;Lp(Rd)), where p, q ∈ (2,∞) satisfy d

p + 2
q < 1.

In (1.1) and (1.2) W i’s and W are independent standard d-dimensional Brownian
motions defined on a probability space (Ω,F ,P).

Assumption 1.1 is the so-called Lqt − Lpx assumption on the drift and it goes back to
Krylov-Röckner [5] in the framework of linear and non-interacting SDEs. When it comes
to non-linear stochastic processes (1.2), it has been studied in Röckner and Zhang [6].
There, the authors conjecture the propagation of chaos of (1.1) towards (1.2) under
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Propagation of chaos under Lq − Lp assumption

an Lqt − Lpx type assumption on the interaction kernel. This has been very recently
established in the literature as a consequence of the large deviation principle for such
particle system proved in Hoeksama et al. [2].

In this work, we propose a completely different approach relying on the new tech-
niques introduced by Jabir et al. [3] to prove the propagation of chaos for the particle
system with both non-Markovian and singular interaction related to the parabolic-
parabolic one-dimensional Keller-Segel model. The main difference w.r.t. [2] is that we
get the propagation of chaos directly working on the martingale problem on the level of
the particle system. In addition, we extend a technique developed in a very specific case
to the general setting of (1.1).

The plan of the paper is the following. In Section 1.1 we state the main results of this
work. Then, weak well-posedness is established for (1.1) inspired by the approach in [5]
in this setting (Section 2). Namely, by means of Girsanov transform, the interaction is
added to a driftless system of N independent Brownian motions. The latter is justified
by controlling the exponential martingale arising from the transform through a Novikov
condition.

Then in Section 3, to prove the propagation of chaos property, we first obtain the
tightness w.r.t. N ≥ 1 of the laws ΠN of µN . Then, we show that all the limit points of ΠN

are concentrated around the law Q of the weak solution to (1.2). Informally speaking,
we show the convergence of the martingale problem on the level of the particle system
towards the non-linear martingale problem at the limit. This is a well established tactic
(see e.g. [7]) and it is successfully applied in case of discontinuous interaction in [1]. In
this framework due to the singular nature of the drift, this is the most delicate part of
the proof for which we need to go beyond the approach of [5].

Namely, the Girsanov transform used to define the particle system should be the main
tool to prove the above tightness and convergence properties. However, the control
on the exponential martingale related to this full Girsanov transform explodes with
N → ∞ and as such is of no use. As noticed in [7, p. 180], what one needs to control
when passing to the limit are functionals of finite number of particles (usually at most 4)
as the particle system is exchangeable. Hence, removing the drift of all the particles
when exhibiting the above controls is unnecessarily expensive. To circumvent this
inconvenience, following [3] we introduce Partial Girsanov Transforms that remove drifts
of a finite number k < N of particles and their dependence of the rest N − k particles. It
turns out that such transforms are especially suitable for our multi-dimensional setting
and lead to non-divergent estimates on the corresponding exponential martingales.

To finish this part, let us discuss here an alternative hypothesis to Assumption 1.1 on
which our technique also applies. In fact, we can ask less than Lp condition on the whole
space for the dominating function h. For instance, in [6] the authors work with localised
Lq −Lp spaces and a typical example of a singular interaction treated is bt(x, y) = at(x,y)

|x−y|α

for |at(x, y)| ≤ κ|x− y| where α ∈ [1, 2) and κ > 0. In the framework of this paper, such
kernels are also admissible even if they do not satisfy Assumption 1.1. In fact, it is
enough to suppose the following alternative.

Assumption 1.2. For x, y ∈ Rd and t > 0, we suppose that |b(t, x, y)| ≤ ht(x − y) for
some h ∈ Lqloc(R+;Lploc(R

d)), where p, q ∈ (2,∞) satisfy d
p + 2

q < 1 and the function

H(T ) :=
∫ T
0

sup|x|>1 |ht(x)|2dt is an increasing function from R+ to R+.

In this case, the key lemma (Lemma 2.2) in our computation is easily adapted and from
there on it is straightforward to adapt the rest of the proofs (see the end of Section 2).
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Propagation of chaos under Lq − Lp assumption

1.1 Main Results

Let t > 0. As the interaction kernel b(t, ·, ·) has only integrability properties w.r.t. the
second or third variable, it may be unbounded or not well defined in certain points. Let
us denote by Nb(t) the following set:

Nb(t) =
{

(x, y) ∈ Rd ×Rd : lim
(x′,y′)→(x,y)

|b(t, x′, y′)| =∞

or lim
(x′,y′)→(x,y)

|b(t, x′, y′)| does not exist
}
.

However, as |b(t, x, y)| ≤ ht(x−y) and ht ∈ Lp(Rd), the setNb(t) is of Lebesgue’s measure
zero in Rd ×Rd. Then, in order to ensure that the drift term makes sense, for N ≥ 1, the
particle system reads{

dXi,N
t = 1

N

∑N
j=1,j 6=i b(t,X

i,N
t , Xj,N

t )1{(Xi,Nt ,Xj,Nt )/∈Nb(t)} dt+
√

2dW i
t ,

Xi,N
0 i.i.d. and independent of W := (W i, 1 ≤ i ≤ N).

(1.3)

Notice here that we assume that a particle does not interact with itself and that we
set an interaction to zero every time the set Nb(t) is visited. As we will construct the
particle system by means of a Girsanov transformation, the law of (XN ) will be absolutely
continuous w. r. t. Wiener measure. Lebesgue measure of the set {t > 0, (Xi,N

t , Xj,N
t ) ∈

Nb(t)} will thus be zero. Hence, the dynamics (1.1) and (1.3) are essentially the same.
In practical examples, ht explodes (or it is not well defined) only in one point (zero)

and thus, b(t, ·, ·) may explode (or not be well defined) on the line x = y. In order to
keep the result as general as possible, we will rather work with the sets (Nb(t))t≥0.
However, the reader should have in mind that this is just a technicality and that, in
practice 1{(Xi,Nt ,Xj,Nt )/∈Nb(t)} becomes 1{Xi,Nt 6=Xj,Nt } (as in [3]).

Our first main result is the weak well-posedness of (1.3).

Theorem 1.3. Let Assumption 1.1 hold. Given 0 < T < ∞ and N ∈ N, there ex-
ists a weak solution (Ω,F , (Ft; 0 ≤ t ≤ T ),QN ,W,XN ) to the N -interacting particle
system (1.3) that satisfies, for any 1 ≤ i ≤ N ,

QN

∫ T

0

 1

N

N∑
j=1,j 6=i

b(t,Xi,N
t , Xj,N

t )1{(Xi,Nt ,Xj,Nt )/∈Nb(t)}

2

dt <∞

 = 1. (1.4)

In view of Karatzas and Shreve [4, Chapter 5, Proposition 3.10], one has that weak
uniqueness holds in the class of weak solutions satisfying (1.4).

Before we state the propagation of chaos result, we formulate the martingale problem
associated to (1.2). It is classical that a suitable notion of weak solution to (1.2) is
equivalent to the notion of solution to (MP) (see e.g. [4]).

Definition 1.4. Q ∈ P(C[0, T ];Rd) is a solution to (MP) if:

(i) Q0 = µ0;

(ii) For any t ∈ (0, T ] and any r > 1, the one dimensional time marginal Qt of Q has a
density ρt w.r.t. Lebesgue measure on Rd which belongs to Lr(Rd) and satisfies

∃CT , ∀ 0 < t ≤ T, ‖ρt‖Lr(Rd) ≤
CT

t
d
2 (1−

1
r )

;

(iii) Denoting by (x(t); t ≤ T ) the canonical process of C([0, T ];Rd), we have: For any
f ∈ C2

b (Rd), the process defined by

Mt := f(x(t))− f(x(0))−
∫ t

0

(
∇f(x(s)) ·

(∫
b(s, x(s), y)ρs(y)dy

)
+4f(x(s))

)
ds
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is a Q-martingale w.r.t. the canonical filtration.

Remark 1.5. Under Assumption 1.1 and supposing that the measure µ0 has a finite
β-order moment for some β > 2, the martingale problem (MP) admits a unique solution
according to [6, Thm. 1.1]. There the authors prove the Gaussian estimates punctually
on the marginal densities. In the martingale formulation it is enough to impose such
estimates in Lr-norms as, along with Assumption 1.1, this will ensure that all the terms
in the definition of the process (M) are well defined.

We are ready to state our second main result, the propagation of chaos of (1.3). In
practice one deals with interaction kernels in the form of convolutions, that are well
defined and continuos almost everywhere (like ± x

|x|r ). Hence, it is reasonable to assume

that b(t, ·, ·) is continuous outside of Nb(t).
Theorem 1.6. In addition to Assumption 1.1, assume that for any t > 0, b(t, ·, ·) is
continuous outside of the set Nb(t). Assume that the Xi,N

0 ’s are i.i.d. and that the initial
distribution of X1,N

0 is the measure µ0 that for some β > 2 has finite β-order moment.
Then, the empirical measure µN = 1

N

∑N
i=1 δXi,N of (1.3) converges in the weak sense,

when N →∞, to the unique weak solution of (1.2).

Remark 1.7. Replacing everywhere in this section Assumption 1.1 by Assumption 1.2,
all the results still hold.

2 Proof of Theorem 1.3

We start from a probability space (Ω,F , (Ft; 0 ≤ t ≤ T ),W) on which d – dimensional
Brownian motions (W 1, . . . ,WN ) and the random variables Xi,N

0 (see (1.3)) are defined.
Set X̄i,N

t := Xi,N
0 + W i

t (t ≤ T ) and X̄ := (X̄i,N , 1 ≤ i ≤ N). Denote the drift terms
in (1.3) by bi,Nt (x), x ∈ C([0, T ];Rd)N , and the vector of all the drifts as BNt (x) =

(b1,Nt (x), . . . , bN,Nt (x)). For a fixed N ∈ N, consider

ZNT := exp

{∫ T

0

BNt (X̄) · dWt −
1

2

∫ T

0

∣∣BNt (X̄)
∣∣2 dt} .

To prove Theorem 1.3, it suffices to prove the following Novikov condition holds true
(see e.g. [4, Chapter 3, Proposition 5.13]): For any T > 0, N ≥ 1, κ > 0, there exists
C(T,N, κ) such that

EW

(
exp

{
κ

∫ T

0

|BNt (X̄)|2dt

})
≤ C(T,N, κ). (2.1)

Drop the index N for simplicity. Using the definition of (BNt ) and Jensen’s inequality one
has

EW exp

{
κ

∫ T

0

∣∣BNt (X̄)
∣∣2 dt} ≤ EW exp

 1

N

N∑
i=1

1

N

N∑
j=1,j 6=i

∫ T

0

κN |b(t, X̄t
i
, X̄t

j
)|2 dt

 ,

from which we deduce

EW exp

{
κ

∫ T

0

∣∣BNt (X̄)
∣∣2 dt} ≤ 1

N

N∑
i=1

1

N

N∑
j=1,j 6=i

EW exp

{
κN

∫ T

0

|b(t, X̄t
i
, X̄t

j
)|2 dt

}
.

Assume for a moment that for i, j ≤ N such that j 6= i one has

EW

[
exp

{
κN

∫ T

0

|b(t, X̄t
i
, X̄t

j
)|2 dt

}]
≤ C(T,N). (2.2)
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Then (2.1) is satisfied and the proof is finished.

The rest of the proof will be devoted to establishing (2.2). Actually, we will prove the
following more general statement:

Proposition 2.1. Let T > 0 and let Assumption 1.1 hold. Let w := (wt) be a (Gt)-
Brownian motion with an arbitrary initial distribution µ0 on some probability space
equipped with a probability measure P and a filtration (Gt). Suppose that the filtered
probability space is rich enough to support a continuous process Y independent of (wt).
For any α > 0, one has

EP

[
exp

{
α

∫ T

0

|b(t, wt, Yt)|2dt

}]
≤ C(T, α),

where C(T, α) depends only on T and α, but does neither depend on the law L(Y ) nor of
µ0.

To prove Proposition 2.1, we need some preparation in form of two auxiliary Lemmas.

First, for (t, x) ∈ [0, T ]×Rd, denote by gt(x) := 1
(2πt)d/2

e−
|x|2
2t . Note that for any t > 0 and

any p ≥ 1, one has

‖gt‖p =
Cp

t
d
2 (1−

1
p )
. (2.3)

From now on, when we work on a probability space equipped with a probability measure
P and a filtration (Gt)t≥0, for any t > 0, we will denote by EGtP the conditional expectation
w.r.t. Gt, i.e. EGtP (·) := EP(·|Gt).
Lemma 2.2. Let Assumption 1.1 hold. Let w := (wt) be a (Gt)-Brownian motion with an
arbitrary initial distribution µ0 on some probability space equipped with a probability
measure P and a filtration (Gt). There exists a universal real number C0 > 0 such that

∀x ∈ C([0, T ];R), ∀0 ≤ t1 ≤ t2 ≤ T,
∫ t2

t1

E
Gt1
P |b(t, wt, xt)|

2dt ≤ C0(T )(t2 − t1)
q−2
q −

d
p .

Proof. Using Assumption 1.1 one has

I :=

∫ t2

t1

E
Gt1
P |b(t, wt, xt)|

2dt ≤
∫ t2

t1

∫
h2t (y + wt1 − xt)gt−t1(y)dy dt.

Applying Hölder inequality in space with p
2 > 1 and afterwards in time with q

2 > 1, one
has

I ≤
∫ t2

t1

‖ht‖2Lp(Rd)‖gt−t1‖L
p
p−2 (Rd)

dt

≤ ‖h‖Lq((0,T );Lp(Rd))

(∫ t2

t1

(
‖gt−t1‖L

p
p−2 (Rd)

) q
q−2

dt
) q−2

q

.

According to (2.3), we have

I ≤ C0(T )
(∫ t2

t1

1

(t− t1)
d
p

q
q−2

dt
) q−2

q

.

For the last integral to be finite, one needs to have d
p <

q−2
q = 1− 2

q . This is exactly the
constraint in Assumption 1.1. Hence the desired result.
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Lemma 2.3. Same assumptions as in Lemma 2.2. Let C0(T ) be as in Lemma 2.2. For
any κ > 0, there exists C(T, κ) independent of µ0 such that, for any 0 ≤ T1 ≤ T2 ≤ T

satisfying T2 − T1 < (C0(T )κ)
− 1
q−2
q
− d
p ,

∀x ∈ C([0, T ];R), E
GT1
P

[
exp

{
κ

∫ T2

T1

|b(t, wt, xt)|2dt

}]
≤ C(T, κ).

Proof. Admit for a while we have shown that there exists a constant C(κ, T ) such that
for any M ∈ N

M∑
k=1

κk

k!
E
GT1
P

(∫ T2

T1

|b(t, wt, xt)|2 dt

)k
≤ C(T, κ), (2.4)

provided that T2 − T1 < (C0(T )κ)
− 1
q−2
q
− d
p . The desired result then follows from Fatou’s

lemma.
We now prove (2.4).
By the tower property of conditional expectation,

E
GT1
P

(∫ T2

T1

|b(t, wt, xt)|2dt

)k = k!

∫ T2

T1

∫ T2

t1

∫ T2

t2

· · ·
∫ T2

tk−2

∫ T2

tk−1

E
GT1
P

[
|b(t1, wt1 , xt1)|2

× · · · × |b(tk−1, wtk−1
, xtk−1

)|2
(
E
Gtk−1

P |b(tk, wtk , xtk)|2
) ]

dtk dtk−1 · · · dt2 dt1.

In view of Lemma 2.2,∫ T2

tk−1

E
Gtk−1

P |b(tk, wtk , xtk)|2 dtk ≤ C0(T )(T2 − tk−1)
q−2
q −

d
p ≤ C0(T )(T2 − T1)

q−2
q −

d
p .

Therefore, by Fubini’s theorem,

E
GT1
P

(∫ T2

T1

|b(t, wt, xt)|2dt

)k ≤ k!C0(T )(T2 − T1)
q−2
q −

d
p

∫ T2

T1

∫ T2

t1

∫ T2

t2

· · ·
∫ T2

tk−2

× EGT1P

[
|b(t1, wt1 , xt1)|2|b(t2, wt2 , xt2)|2 × · · · × |b(tk−1, wtk−1

, xtk−1
)|2
]
dtk−1 · · · dt2 dt1.

Now we repeatedly condition with respect to Gtk−i (i ≥ 2) and combine Lemma 2.2 with
Fubini’s theorem. It comes:

E
GT1
P

(∫ T2

T1

|b(t, wt, xt)|2dt

)k
≤ k!(C0(T )(T2 − T1)

q−2
q −

d
p )k−1

×
∫ T2

T1

E
GT1
P |b(t1, wt1 , xt1)|2dt1 ≤ k!(C0(T )(T2 − T1)

q−2
q −

d
p )k.

Thus, (2.4) is satisfied provided that T2 − T1 < (C0(T )κ)
− 1
q−2
q
− d
p .

Proof of Proposition 2.1. Observe that

EP exp

{
α

∫ T

0

|b(t, wt, Yt)|2dt

}
=

∫
C([0,T ];Rd)

EP exp

{
α

∫ T

0

|b(t, wt, xt)|2dt

}
PY (dx).

(2.5)
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Set δ := 1
2C2

0Tα
2 ∧ T , where C0 is as in Lemma 2.2. Set n :=

[
T
δ

]
. Then,

exp

{
α

∫ T

0

|b(t, wt, xt)|2dt

}
=

n∏
m=0

exp

{
α

∫ T−mδ

(T−(m+1)δ)∨0
|b(t, wt, xt)|2 dt

}
,

where x is a fixed path. Condition the right-hand side by G(T−δ)∨0. Notice that δ is small
enough to be in the setting of Lemma 2.3. Thus,

EP exp

{
α

∫ T

0

|b(t, wt, xt)|2dt

}
≤ C(T, α)EP

n∏
m=1

exp

{
κN

∫ T−mδ

(T−(m+1)δ)∨0
|b(t, wt, xt)|2 dt

}
.

Successively, conditioning by G(T−(m+1))∨0 for m = 1, 2, . . . n and using Lemma 2.3,

EP exp

{
α

∫ T

0

|b(t, wt, xt)|2dt

}
≤ Cn(T, α)EP exp

{∫ (T−nδ)∨0

0

b(t, wt, xt)dt

}
≤ C(T, α).

The proof is completed by plugging the preceding estimate into (2.5).

Sketch of the proof under Assumption 1.2. The main point is to adapt Lemma 2.2.
The rest is then straightforward. Starting as in the proof of Lemma 2.2, we have, in view
of Assumption 1.2,

I :=

∫ t2

t1

E
Gt1
P |b(t, wt, xt)|

2dt ≤
∫ t2

t1

∫
h2t (y + wt1 − xt)gt−t1(y)dy dt

=

∫ t2

t1

(∫
B(0,1)

h2t (y)gt−t1(y − wt1 + xt)dy +

∫
Bc

(0,1)

h2t (y)gt−t1(y − wt1 + xt)dy

)
dt

Applying twice Hölder’s inequality as before and bounding any integral of g that is not
on the whole space with the one on the whole space, we obtain

I ≤ C‖h‖Lq((0,T );Lploc(R
d))

(∫ t2

t1

1

(t− t1)
d
p

q
q−2

dt
) q−2

q

+H(T )(t2 − t1).

Which leads to the same conclusion as the one of Lemma 2.2 with the following constant

C0(T ) = ‖h‖Lq((0,T );Lploc(R
d)) + T

2
q+

d
p .

3 Propagation of chaos

In this section we prove the propagation of chaos by showing tightness in N of the
empirical measure and then identifying all its limit points to be the solution to Martingale
problem (MP). The crucial tool are the Partial Girsanov transforms introduced below.

3.1 Partial Girsanov transform for fixed number of particles

For any integer 1 ≤ r < N , proceeding as in the proof of Theorem 1.3 one gets the
existence of a weak solution on [0, T ] to

dX̂ l,N
t = dW l

t , 1 ≤ l ≤ r,
dX̂i,N

t =
{

1
N

∑N
j=r+1 b(t, X̂

i,N
t , X̂j,N

t )
}
dt+ dW i

t , r + 1 ≤ i ≤ N,

X̂i,N
0 i.i.d. and independent of (W ) := (W i, 1 ≤ i ≤ N).

(3.1)

Below we set X̂ := (X̂i,N , 1 ≤ i ≤ N) and we denote by Qr,N the probability measure
under which X̂ is well defined. Notice that (X̂ l,N , 1 ≤ l ≤ r) is independent of (X̂i,N , r +
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1 ≤ i ≤ N). We now study the exponential local martingale associated to the change of
drift between (1.3) and (3.1). For x ∈ C([0, T ];Rd)N set

β
(r)
t (x) :=

(
b1,Nt (x), . . . , br,Nt (x),

1

N

r∑
i=1

b(t, xr+1
t , xit), . . . ,

1

N

r∑
i=1

b(t, xNt , x
i
t)
)
.

In the sequel we will need uniform w.r.t N bounds for moments of

Z
(r)
T := exp

{
−
∫ T

0

β
(r)
t (X̂) · dWt −

1

2

∫ T

0

|β(r)
t (X̂)|2dt

}
. (3.2)

Proposition 3.1. For any T > 0, γ > 0 and r ≥ 1 there exists N0 ≥ r and C(T, γ, r) s.t.

∀N ≥ N0, EQr,N exp

{
γ

∫ T

0

|β(r)
t (X̂)|2dt

}
≤ C(T, γ, r).

Proof. For x ∈ C([0, T ];Rd)N , one has

|β(r)
t (x)|2 =

r∑
i=1

 1

N

N∑
j=1

b(t, xit, x
j
t )

2

+
1

N2

N−r∑
j=1

(
r∑
i=1

b(t, xr+jt , xit)

)2

.

By Jensen’s inequality,

|β(r)
t |2 ≤

1

N

r∑
i=1

N∑
j=1

|b(t, xit, x
j
t )|2 +

r

N2

N−r∑
j=1

r∑
i=1

|b(t, xr+jt , xit)|2.

For simplicity we below write E (respectively, X̂i) instead of EQr,N (respectively, X̂i,N ).
Observe that

E exp
{
γ

∫ T

0

|β(r)
t (X̂)|2dt

}
≤
(
E exp

{ r∑
i=1

2γ

N

N∑
j=1

∫ T

0

|b(t, X̂i
t , X̂

j
t )|2dt

})1/2
×
(
E exp

{2γr

N2

N−r∑
j=1

r∑
i=1

∫ T

0

|b(t, X̂r+j
t , X̂i

t)|2dt
})1/2

≤
( r∏
i=1

1

N

N∑
j=1

E exp
{

2γr

∫ T

0

|b(t, X̂i
t , X̂

j
t )|2dt

}) 1
2r

×
(N−r∏
j=1

1

r

r∑
i=1

E exp
{2γr2

N

∫ T

0

|b(t, X̂r+j
t , X̂i

t)dt
}) 1

2(N−r)
.

In view of Proposition 2.1, the proof is finished.

3.2 Tightness

We start with showing the tightness of {µN} and of an auxiliary empirical measure
which is needed in the sequel.

Lemma 3.2. Let QN be as above. The sequence {µN} is tight under QN . In addition, let
νN := 1

N4

∑N
i,j,k,l=1 δXi,N. ,Xj,N. ,Xk,N. ,Xl,N.

. The sequence {νN} is tight under QN .

Proof. The tightness of {µN}, respectively {νN}, results from the tightness of the inten-
sity measure {EQNµN (·)}, respectively {EQN νN (·)}: See Sznitman [7, Prop. 2.2-ii]. By
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symmetry, in both cases it suffices to check the tightness of {Law(X1,N )}. We aim to
prove

∃C > 0,∀N ≥ N0, EQN [|X1,N
t −X1,N

s |4] ≤ CT |t− s|2, 0 ≤ s, t ≤ T, (3.3)

where N0 is as in Proposition 3.1. Let Z(1)
T be as in (3.2). One has

EQN [|X1,N
t −X1,N

s |4] = EQ1,N [(Z
(1)
T )−1|X̂1,N

t − X̂1,N
s |4].

As X̂1,N is a Brownian motion under Q1,N ,

EQN [|X1,N
t −X1,N

s |4]

≤ (EQ1,N [(Z
(1)
T )−2])1/2(EQ1,N [|X̂1,N

t − X̂1,N
s |8])1/2 ≤ (EQ1,N [(Z

(1)
T )−2])1/2C|t− s|2.

Observe that, for a Brownian motion (W ]) under Q1,N ,

EQ1,N [(Z
(1)
T )−2] = EQ1,N exp

{
2

∫ T

0

β
(1)
t (X̂) · dW ]

t −
∫ T

0

|β(1)
t (X̂)|2dt

}
.

Adding and subtracting 3
∫ T
0
|β(1)
t |2dt and applying again the Cauchy-Schwarz inequality,

EQ1,N [(Z
(1)
T )−2] ≤

(
EQ1,N exp

{
6

∫ T

0

|β(1)
t (X̂)|2dt

})1/2

.

Applying Proposition 3.1 with k = 1 and γ = 6, we obtain the desired result.

3.3 Convergence

To prove Theorem 1.6 we have to show that any limit point of {Law(µN )} is δQ, where
Q is the unique solution to (MP).

Let φ ∈ Cb(Rad), f ∈ C2
b (Rd), 0 < t1 < · · · < ta ≤ s < t ≤ T and m ∈ P(C[0, T ];Rd).

Set

G(m) :=

∫
(C[0,T ];Rd)2

φ(x1t1 , . . . , x
1
ta)
(
f(x1t )− f(x1s)

− 1

2

∫ t

s

4f(x1u)du−
∫ t

s

∇f(x1u) · b(u, x1u, x2u)du
)
dm(x1)⊗ dm(x2).

We start with showing that

lim
N→∞

E[
(
G(µN )

)2
] = 0. (3.4)

Observe that

G(µN ) =
1

N

N∑
i=1

φ(Xi,N
t1 , . . . , Xi,N

ta )
(
f(Xi,N

t )− f(Xi,N
s )− 1

2

∫ t

s

4f(Xi,N
u )du

− 1

N

N∑
j=1

∫ t

s

∇f(Xi,N
u ) · b(u,Xi,N

u , Xj,N
u ) du

)
.

Apply Itô’s formula to 1
N

∑N
i=1(f(Xi,N

t )− f(Xi,N
s )), it is easy to verify that E[

(
G(µN )

)2
] ≤

C
N . Thus, (3.4) holds true.

Suppose for a while we have proven the following lemma:
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Lemma 3.3. Let Π∞ ∈ P(P(C([0, T ];Rd)4)) be a limit point of {law(νN )}. Then

lim
N→∞

E[
(
G(µN )

)2
] =

∫
P(C([0,T ];Rd)4)

{∫
C([0,T ];Rd)4

[
f(x1t )− f(x1s)−

1

2

∫ t

s

4f(x1u)du

−
∫ t

s

∇f(x1u) · b(u, x1u, x2u)du
]
×
[
f(x3t )− f(x3s)−

1

2

∫ t

s

4f(x3u)du

−
∫ t

s

∇f(x3u) · b(u, x3u, x4u)du
]
× φ(x1t1 , . . . , x

1
ta)φ(x3t1 , . . . , x

3
ta)dν(x1, . . . , x4)

}
dΠ∞(ν),

(3.5)

and

i) Any ν ∈ P(C([0, T ];Rd)4) belonging to the support of Π∞ is a product measure:
ν = ν1 ⊗ ν1 ⊗ ν1 ⊗ ν1.

ii) For any t ∈ (0, T ], the time marginal ν1t of ν1 has a density ρ1t which satisfies for any
r > 1

∃CT , ∀0 < t ≤ T, ‖ρ1t‖Lr(Rd) ≤
CT

t
d
2 (1−

1
r )
.

Then, combining (3.4) with the above result, we get∫
C([0,T ];Rd)

φ(x1t1 , . . . , x
1
ta)
[
f(x1t )− f(x1s)

− 1

2

∫ t

s

4f(xu)du−
∫ t

s

∇f(x1u) · b(u, x1u − y)ρ1u(y)dydu
]
dν1(x1) = 0.

We deduce that ν1 solves (MP) and thus that ν1 = Q. As by definition Π∞ is a limit point
of Law(νN ), it follows that any limit point of Law(µN ) is δQ, which ends the proof.

3.3.1 Proof of Lemma 3.3

Proof of (3.5): Step 1. Notice that

E[
(
G(µN )

)2
] =

1

N2
E

N∑
i,k=1

Φ2(Xi,N , Xk,N ) +
1

N3
E

N∑
i,k,l=1

Φ3(Xi,N , Xk,N , X l,N )

+
1

N3
E

N∑
i,j,k=1

Φ3(Xk,N , Xi,N , Xj,N ) +
1

N4
E

N∑
i,j,k,l=1

Φ4(Xi,N , Xj,N , Xk,N , X l,N ), (3.6)

where

Φ2(Xi,N , Xk,N ) := φ(Xi,N
t1 , . . . , Xi,N

ta ) φ(Xk,N
t1 , . . . , Xk,N

ta )

×
(
f(Xi,N

t )− f(Xi,N
s )− 1

2

∫ t

s

4f(Xi,N
u )du

)(
f(Xk,N

t )− f(Xk,N
s )− 1

2

∫ t

s

4f(Xk,N
u )du

)
,

Φ3(Xi,N , Xk,N , X l,N ) := −φ(Xi,N
t1 , . . . , Xi,N

ta ) φ(Xk,N
t1 , . . . , Xk,N

ta )

×
(
f(Xi,N

t )− f(Xi,N
s )− 1

2

∫ t

s

4f(Xi,N
u1

)du1

)
×
∫ t

s

∇f(Xk,N
u ) · b(u,Xk,N

u , X l,N
u )1{(Xk,Nu ,Xl,Nu )/∈Nb(u)} du,

Φ4(Xi,N , Xj,N , Xk,N , X l,N ) := φ(Xi,N
t1 , . . . , Xi,N

ta )φ(Xk,N
t1 , . . . , Xk,N

ta )
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×
∫ t

s

∫ t

s

∇f(Xi,N
u1

) · b(u1, Xi,N
u1

, Xj,N
u1

)1{(Xi,Nu1 ,Xj,Nu1 )/∈Nb(u1)}

×∇f(Xk,N
u2

) · b(u2, Xk,N
u2

, X l,N
u2

)1{(Xi,Nu2 ,Xj,Nu2 )/∈Nb(u2)} du1 du2.

Let CN be the last term in the r.h.s. of (3.6). In Steps 2-4 below we prove that CN
converges, as N →∞, and we identify its limit. Define the function F on R(2p+4)d as

F (x1, . . . , x2p+4) := φ(x5, . . . , xp+4) φ(xp+5, . . . , x2p+4)

×∇f(x1) · b(u1, x1, x2)∇f(x3) · b(u2, x3, x4)× 1{(x1,x2)/∈Nb(u1)}1{(x3,x4)/∈Nb(u2)}. (3.7)

We set CN =
∫ t
s

∫ t
s
AN du1 du2 with

AN :=
1

N4

N∑
i,j,k,l=1

E(F (Xi,N
u1

, Xj,N
u1

, Xk,N
u2

, X l,N
u2

, Xi,N
t1 , . . . , Xi,N

ta , Xk,N
t1 , . . . , Xk,N

ta )).

We now aim to show that AN converges pointwise (Step 2), that |AN | is bounded from
above by an integrable function w.r.t. dθ1 dθ2 du1 du2 (Step 3), and finally to identify the
limit of CN (Step 4).

Proof of (3.5): Step 2. Fix u1, u2 ∈ [s, t]. Define τN as

τN :=
1

N4

N∑
i,j,k,l=1

δXi,Nu1 ,Xj,Nu1 ,Xk,Nu2 ,Xl,Nu2 ,Xi,Nt1
,...,Xi,Nta ,Xk,Nt1

,...,Xk,Nta
.

Define the measure QNu1,θ1,u2,θ2,t1,...,ta
on (R2a+4)d as QNu1,u2,t1,...,ta(A) = E(τN (A)). The

convergence of {law(νN )} implies the weak convergence of QNu1,θ1,u2,θ2,t1,...,ta
to the

measure on (R2a+4)d defined by

Qu1,u2,t1,...,ta(A) :=

∫
P(C([0,T ];Rd)4)

∫
C([0,T ];Rd)4

1A(x1u1
, x2u1

, x3u2
, x4u2

, x1t1 , . . . ,

x1ta , x
3
t1 , . . . , x

3
ta)dν(x1, x2, x3, x4)dΠ∞(ν).

Let us show that this probability measure has an L2-density w.r.t. the Lebesgue mea-
sure on (R2a+4)×d (L2 could be replaced with any Lr). Let h ∈ Cc(R(2a+4)d). By weak
convergence,

|< Qu1,u2,t1,...,ta , h >|

=

∣∣∣∣∣∣ lim
N→∞

1

N4

N∑
i,j,k,l=1

Eh(Xi,N
u1

, Xj,N
u1

, Xk,N
u2

, X l,N
u2

, Xi,N
t1 , . . . , Xi,N

ta , Xk,N
t1 , . . . , Xk,N

ta )

∣∣∣∣∣∣ .
When, in the preceding sum, at least two indices are equal, we bound the expectation
by ‖h‖∞. When i 6= j 6= k 6= l, we apply Girsanov’s transform in Section 3.1 with four
particles and Proposition 3.1. This procedure leads to

|< Qu1,θ1,u2,θ2,t1,...,ta , h >| ≤ lim
N→∞

(
‖h‖∞

C

N

+
CT
N4

∑
i 6=j 6=k 6=l

(
Eh2(X̂i,N

u1
, X̂j,N

u1
, X̂k,N

u2
, X̂ l,N

u2
, X̂i,N

t1 , . . . , X̂i,N
ta , X̂k,N

t1 , . . . , X̂k,N
ta )

)1/2 )
.

All the processes X̂i,N , . . . , X̂ l,N being independent Brownian motions we deduce that

|< Qu1,u2,t1,...,ta , h >| ≤ Cu1,u2,θ1,θ2,t1,...,ta‖h‖L2(R2p+6).
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It follows from Riesz’s representation theorem that Qu1,u2,t1,...,ta has a density w.r.t.
Lebesgue’s measure in L2(R(2a+4)d). Therefore, the functional F is Qu1,u2,t1,...,ta - a.e.
continuous. Since for any fixed u1, u2 ∈ [s, t] F is also bounded Qu1,u2,t1,...,ta – a.e. we
have

lim
N→∞

AN =< Qu1,u2,t1,...,ta , F > .

Proof of (3.5): Step 3. In view of the definition (3.7) of F we may restrict ourselves
to the case i 6= j and k 6= l. Use the Girsanov transforms from Section 3.1 with ri,j,k,l ∈
{2, 3, 4} according to the respective cases (i = k, j = l), (i = k, j 6= l), (i 6= k, j 6= l), etc.
Below we write r instead of ri,j,k,l. By exchangeability it comes:

AN =
∣∣∣ 1

N4

∑
i6=j,k 6=l

EQr,N (Z
(r)
T F (· · · ))

∣∣∣
≤ 1

N4

∑
i 6=j,k 6=l

(
EQr,N (Z

(r)
T )2

)1/2 (
EQr,N (F 2(· · · ))

)1/2
.

By Proposition 3.1, EQr,N (Z
(r)
T )2 can be bounded uniformly w.r.t. N . As the functions f

and φ are bounded we deduce√
EQr,N (F 2(· · · )) ≤ C

(
EQr,N (h2u1

(W i
u1
−W j

u1
)h2u2

(W k
u2
−W l

u2
))
)1/2

,

for i 6= j, k 6= l and r ≡ ri,j,k,l. We consider the three cases:

Case 1 i 6= k, j 6= l: As all 4 Brownian motions are independent, one can separate
this into a product of expectations and using the same computations as in Lemma 2.2,
one has

(
EQr,N (h2u1

(W i
u1
−W j

u1
)h2u2

(W k
u2
−W l

u2
))
)1/2

≤
√
‖hu1
‖2
Lp(Rd)

‖gu1
‖
L

p
p−2 (Rd)

‖hu2
‖2
Lp(Rd)

‖gu2
‖
L

p
p−2 (Rd)

Case 2 i = k, j = l: As we ony have two independent Brownian motions, we condition by
the smaller time index and by one of the two independent Brownian motions. It comes

(
EQr,N (h2u1

(W i
u1
−W j

u1
)h2u2

(W i
u2
−W j

u2
))
)1/2

≤ 1{u1<u2}

(
‖hu1‖2Lp(Rd)‖gu1‖L

p
p−2 (Rd)

× ‖hu2
‖2Lp(Rd)‖gu2−u1

‖
L

p
p−2 (Rd)

) 1
2

+ 1{u2<u1}

(
‖hu1‖2Lp(Rd)‖gu1−u2‖L

p
p−2 (Rd)

× ‖hu2‖2Lp(Rd)‖gu2‖L
p
p−2 (Rd)

) 1
2

Case 3 i = k, j 6= l: Same bound as above is obtained by conditioning by the smaller
time index and W j and W l. In any of the above cases, in view of the assumption (Hb), the
bounds are integrable in L1((0, T )2). We thus have obtained: AN ≤ CH(u1, u2), where
H belongs to L1((0, T )2).

Proof of (3.5): Step 4. Steps 2 and 3 allow us to conclude that

lim
N→∞

CN =

∫ t

s

∫ t

s

< Qu1,u2,t1,...,ta , F > du1du2.
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By definition of Qu1,u2,t1,...,ta and F we thus have obtained that

lim
N→∞

CN =

∫
P (C([0,T ];R)4)

∫ t

s

∫ t

s

∫
C([0,T ];Rd)4

φ(x1t1 , . . . , x
1
ta)φ(x3t1 , . . . , x

3
ta)

×∇f(x1u1
) · b(u1, x1u1

, x2u1
)∇f(x3u2

) · b(u2, x3u2
, x4u2

)

1{(x1
u1
,x2
u1

)/∈Nb(u1)}1{(x3
u2
,x4
u2

)/∈Nb(u2)} dν(x1, x2, x3, x4) dθ1 dθ2 du1 du2 dΠ∞(ν).

A similar procedure is applied to the three other terms in the r.h.s. of (3.6). Together
with the preceding, we obtain (3.5)

Proof of i) and ii). Now, we prove the claims i) and ii) of Lemma 3.3.

i) For any measure ν ∈ P(C([0, T ];R)4), denote its first marginal by ν1. One easily gets
Π∞ a.e., ν = ν1 ⊗ ν1 ⊗ ν1 ⊗ ν1 (see [1, Lemma 3.3]).

ii) Take ϕ ∈ Cc(Rd) and fix r > 1. Let α ∈ (1, r′) where r′ is the conjugate of r. Using
similar arguments as in the above Step 1, for any 0 < t ≤ T one has Π∞(dν) a.e.,

< ν1t , ϕ > = lim
N→∞

EQN < µNt , h >

= lim
N→∞

EQN (ϕ(X1,N
t )) = lim

N→∞
EQ1,N (Z

(1)
T ϕ(W 1,N

t ))

≤ C
(
EQ1,N (Z

(1)
T )α

′
) 1
α′
(
EQ1,N (ϕ(X1,N

t ))α
) 1
α

≤ C‖ϕ‖Lr′ (Rd)‖gt‖
1
α

L(r
′/α)′

≤ C‖ϕ‖Lr′ (Rd)
1

t
d
2

1
r′

Thus, one has

< ν1t , ϕ >≤ C‖ϕ‖Lr′ (Rd)
1

t
d
2 (1−

1
r )
.

Apply the Riesz representation theorem to conclude the proof.
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