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Abstract

In this note, we extend some recent results on systems of backward stochastic differen-
tial equations (BSDEs) with quadratic growth to the case of coupled forward-backward
stochastic differential equations (FBSDEs). We work in a Markovian setting, and use
results from the quadratic BSDE literature together with PDE techniques to obtain
a-priori estimates which lead to an existence result. We also identify a general class
of stochastic differential games whose corresponding FBSDE systems are covered by
our main existence result. This leads to the existence of Markovian Nash equilibria
for such games.
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1 Introduction

Recent years have witnessed much activity and progress in the area of quadratic
BSDE systems, i.e. systems of backward stochastic differential equations (BSDEs) whose
driver f has quadratic growth in the control variable, typically denoted z. In the Marko-
vian case, the most general global existence results appear in [XŽ18], while in the
non-Markovian case global existence is obtained under various structural conditions in
[HT16], [Nam19], and [JŽ21]. Fewer efforts have been made to understand quadratic sys-
tems of forward-backward stochastic differential equations (FBSDEs), possibly because
existence for general FBSDEs is a very challenging problem even when all coefficients
are Lipschitz. The works we are aware of which consider quadratic FBSDE systems are
[AH06], [FI13], [KLT18] and [LT17], which all require either smallness or some type of
monotonicity condition.

In this note, we consider the FBSDE{
dXt = b(t,Xt, Yt, Zt)dt+ σ(t,Xt)dBt,

dYt = −f(t,Xt, Yt, Zt)dt+ ZtdBt, YT = g(XT ).
(1.1)

We are particularly interested in the case that Y is multidimensional and the driver
f = f(t, x, y, z) exhibits quadratic growth in the variable z. In particular, the first
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Quadratic FBSDEs and games

objective of this note is to extend the global existence results for quadratic BSDE
systems obtained in [XŽ18] to the quadratic FBSDE (1.1). The FBSDE (1.1) is related, at
least formally, to two other analytical objects: the BSDE{

dXt = σ(t,Xt)dBt,

dY it = −F i(t,Xt, Yt, Zt)dt+ ZitdBt, YT = g(XT )
(1.2)

where here an throughout the paper we use the convention

F i(t, x, y, z) :=
(
f i(t, x, y, z) + zi · σ−1(t, x)b(t, x, y, z)

)
(1.3)

and, setting a = 1
2σσ

T , the partial differential equation (PDE)

∂tu
i + tr(a(t, x)D2ui) + f i(t, x, u,Duσ) +Dui · b(t, x, u,Duσ) = 0, ui(T, x) = gi(x).

(1.4)

1.1 Main results

The first contribution of this note is an existence result (Theorem 2.5) for (1.1) when
f exhibits quadratic growth in z but satisfies the structural conditions (HAB) and (HBF ),
and the data σ, b, and g satisfy some minimal regularity conditions. The proof relies on
a sequence of a-priori estimates. Together with a somewhat standard approximation
procedure, these a-priori estimates allow us to produce a solution to (1.1) through a
compactness argument. The first a-priori estimate is Lemma 2.1, which shows that the
structural condition (HAB) leads to L∞ estimates on the decoupling field (see Defini-
tion 1.1) of (1.1). We emphasize that (HAB) is only a convenient condition to guarantee
a-priori estimates in L∞; if such a-priori estimates are established through another
method the rest of the analysis goes through unchanged. The second important estimate
is Proposition 2.2, a Hölder estimate which follows more or less directly from a result of
[XŽ18], thanks to the fact that if the driver f satisfies the structural condition (HBF ),
then so does the driver F given in (1.3). The final estimate is Proposition 2.3, which
shows that an estimate on the Hölder regularity of a solution to (1.4) yields an inte-
rior C1,α estimate. This estimate allows us to construct a Markovian solution to the
BSDE (1.2) which is regular enough to also be a decoupling field for the FBSDE (1.1). We
emphasize that we require very little regularity of the driver f to obtain our estimates
and existence result, in partiular f need not be even locally Lipschitz in (y, z).

The second contribution is to apply our results to a class of stochastic differential
games. Typically, quadratic BSDE systems arise when stochastic differential games
(with uncontrolled drift and quadratic costs) are treated through the popular weak
formulation. But if the same games are treated in strong formulation, then a quadratic
FBSDE arises in place of the quadratic BSDE – roughly speaking, in order to find a
Markovian Nash equilibrium, one must solve (1.1) in place of (1.2). We emphasize
that in this approach the FBSDE involved is not the one obtained from the stochastic
maximum principle, but the one which represents the value of the game. We make this
connection between Markovian Nash equilibria and FBSDEs precise under fairly general
conditions in Proposition 3.2. Then, we identify a general class of stochastic differential
games whose corresponding FBSDEs have a structure covered by Theorem 2.5. These
games are characterized by a diagonal cost structure (player i’s control does not enter
player j’s running cost, when i 6= j) and a drift b = b(t, x, a1, ..., an) which decomposes
additively as b(t, x, a1, ..., an) =

∑n
j=1 bj(t, x, aj) (see Section 4.1 for notation). This

leads to an existence result for Markovian Nash equilibria, which is stated precisely in
Proposition 3.3.
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Quadratic FBSDEs and games

1.2 Preliminaries and notations

The dimensions n and d are fixed throughout the paper, as is the terminal time
T ∈ (0,∞). We also fix throughout the paper a probability space (Ω,F ,P) hosting
a d-dimensional Brownian motion B, whose augmented filtration is denoted by F =

(Ft)0≤t≤T . We use the usual notation Lp, 1 ≤ p ≤ ∞ for the space of p-integrable FT -
measurable random variables with norm ‖·‖Lp . For a continuous and adapted process
Y taking values in some Euclidean space, we define ‖Y ‖Sp =

∥∥sup0≤t≤T |Yt|
∥∥
Lp

, and we

write bmo for the set of all adapted processes Z such that ‖Z‖bmo = supτ Eτ [
∫ T
τ
|Zs|2ds] <

∞, the supremum being taken over all stopping times 0 ≤ τ ≤ T and Eτ [·] denoting
condition expectaition with respect to Fτ . Finally, we mention that all the spaces and
norms here can be extended in natural ways to include processes defined only on [t, T ],
for some t ∈ [0, T ].

Let us mention that we will write Dv for the spatial gradient of a map v : [0, T ]×Rd →
R, and for u = (u1, ..., un) : [0, T ]×Rd → R, Du will denote (Du1, ..., Dun), viewed as an
element of (Rd)n. We will also view the unknown Z appearing in (1.1) (and (1.2)) as
taking values in (Rd)n. We will manipulate elements of (Rd)n in a natural “element-wise
way” as in [JŽ21], e.g. if p ∈ (Rd)n and q ∈ Rd×d, then pq denotes an element of (Rd)n

whose ith entry is qpi. Likewise if p ∈ (Rd)n and q ∈ Rd, then pq ∈ Rn and (pq)i = pi · q.
This philosophy will in particular be used when interpreting the stochastic differential
ZtdBt and expressions like Ztσ(t,Xt).

We will be working with certain parabolic Hölder spaces, defined as follows. Fix
α ∈ (0, 1). For a function v = v(t, x) : [0, T ] × Rd → E, E being some Euclidean space
with norm | · |, we define the Hölder seminorm

[v]Cα = [v]Cα([0,T ]×Rd) = sup
t6=t′,x 6=x′

|v(t, x)− v(t′, x′)|
|t− t′|α/2 + |x− x′|α

.

Next, we define ‖u‖Cα = ‖u‖L∞ + [u]Cα , and ‖u‖C1,α = ‖u‖Cα + ‖Du‖Cα . Given an
open sut U ⊂ [0, T ] × Rd, we define ‖u‖Cα(U) and ‖u‖C1+α(U) similarly. We define

the Hölder spaces of functions defined on Rd in the same way, i.e. for g : Rd → E,

‖g‖Cα = supx 6=x′
|g(x)−g(x′)|
|x−x′| .

At this point, we need to make precise the notions of solutions we will be working
with.

Definition 1.1. A pair of measurable functions u : [0, T ] × Rd → Rn, v : [0, T ] × Rd →
(Rd)n with u bounded and continuous is called a decoupling field for (1.1) if for each
t ∈ [0, T ] and x ∈ Rd, the SDE

Xt,x
t′ = x+

∫ t′

t

b(s,Xt,x
s , u(s,Xt,x

s ), v(s,Xt,x
s ))ds+ σ(s,Xt,x

s )dBs (1.5)

has a unique strong solution on [t, T ], and with (Y t,x, Zt,x) defined by (Y t,x, Zt,x) =(
u(·, Xt,x), v(·, Xt,x)

)
, the triple (Xt,x, Y t,x, Zt,x) solves the equation{

Xt,x
t′ = x+

∫ t′
t
b(s,Xt,x

s , Y t,xs , Zt,xs )ds+
∫ t′
t
σ(s,Xt,x

s )dBs,

Y t,xt′ = g(Xt,x
T ) +

∫ T
t′
f(s,Xt,x

s , Y t,xs , Zt,xs )ds−
∫ T
t′
Zt,xs dBs

(1.6)

on the interval [t, T ]. We call (u, v) a bmo decoupling field if Zt,x ∈ bmo, for each
(t, x) ∈ [0, T ]×Rd.

A pair of measurable functions u : [0, T ] × Rd → Rn, v : [0, T ] × Rd → (Rd)n with u

bounded and continuous is called a Markovian solution to (1.2) if for each t ∈ [0, T ]

and x ∈ Rd, the pair (Y t,x, Zt,x) defined by (Y t,xt′ , Zt,xt′ ) :=
(
u(t′, Xt,x

t′ ), v(t′, Xt,x
t′ )
)

solves
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the BSDE

Y t,xt′ = g(Xt,x
T ) +

∫ T

t′
F (s,Xt,x

s , Y t,xs , Zt,xs )ds−
∫ T

t′
Zt,xs dBs (1.7)

on the interval [t, T ], where Xt,x is the unique strong solution of

Xt,x
t′ = x+

∫ t′

t

σ(s,Xt,x
s )dBs.

We call (u, v) a bmo Markovian solution if Zt,x ∈ bmo for each (t, x) ∈ [0, T ]×Rd.
Remark 1.2. We note that our definition of decoupling field differs from the usual one
in that we include the function v as part of the decoupling field. This is to make the
relationship between the decoupling field for (1.1) and the Markovian solution of (1.2)
easier to state. Moreover, we note that the existence of a decoupling field for (1.1)
implies the existence, for any x ∈ Rd, of a strong solution to the equation{

Xt = x+
∫ t
0
b(s,Xs, Ys, Zs)ds+

∫ t
0
σ(s,Xs)dBs,

Yt = g(XT ) +
∫ T
t
f(s,Xs, Ys, Zs)ds−

∫ T
t
ZsdBs,

(1.8)

i.e. a pair of adapted processes (Y,Z) satisfying (1.8) path-wise a.s.

The following is a consequence of Itô’s formula and the Girsanov transform.

Proposition 1.3. Suppose that H0 and HQ hold, and that (u, v) is a bmo Markovian
solution to (1.2) such v is bounded on [0, t]×Rd for any t < T . Then (u, v) is also a bmo
decoupling field for (1.1). Conversely, any bmo decoupling field is also a bmo Markovian
solution of (1.2).

Proof. Let us first assume that (u, v) is a bmo decoupling field for (1.1). For fixed t and x,
let Xt,x be defined by (1.5) and set (Y t,x, Zt,x) =

(
u(·, Xt,x), v(·, Xt,x)

)
. By the definition

of decoupling field, we have the relationship

Y t,xt′ = g(Xt,x
T ) +

∫ T

t′
f(s,Xt,x

s , Y t,xs , Zt,xs )ds−
∫ T

t′
Zt,xs dBs

= g(Xt,x
T ) +

∫ T

t′
F (s,Xt,x

s , Y t,xs , Zt,xs )ds−
∫ T

t′
Zt,xs

(
σ−1(s,Xt,x

s )dXt,x
s

)
.

Recalling the definitions of Y t,x and Zt,x, we find that

u(t′, Xt,x
t′ )

= g(Xt,x
T ) +

∫ T

t′
F (s,Xt,x

s , u(s,Xt,x
s ), v(s,Xt,x

s ))ds−
∫ T

t′
v(s,Xt,x

s )
(
σ−1(s,Xt,x

s )dXt,x
s

)
.

Now, if X̃t,x denotes the solution of X̃t,x
t′ = x+

∫ t′
t
σ(s, X̃t,x

s )dBs, then since Zt,x ∈ bmo,
and |b(t, x, y, z)| ≤ C0(1 + |z|), Girsanov’s Theorem yields a probability measure Q such
that the law of X̃t,x under Q is the same as the law of Xt,x under P. Thus the relationship

u(t′, X̃t,x
t′ ) = g(X̃t,x

T ) +

∫ T

t′
F (s, X̃t,x

s , u(s, X̃t,x
s ), v(s, X̃t,x

s ))ds

−
∫ T

t′
v(s, X̃t,x

s )
(
σ−1(s, X̃t,x

s )dX̃t,x
s

)
= g(X̃t,x

T ) +

∫ T

t′
F (s, X̃t,x

s , u(s, X̃t,x
s ), v(s, X̃t,x

s ))ds−
∫ T

t′
v(s, X̃t,x

s )dBs
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holds under the measure Q, hence also under P. Thus (u, v) is a Markovian solution
to (1.2).

Now suppose that (u, v) is a bmo Markovian solution to (1.2), with v bounded on
[0, T − ε] for any ε > 0. Then for any (t, x) and ε > 0, the SDE (1.5) has a unique strong
solution on [t, T ), thanks to a classical result which can be traced to Veretennikov (see
[Zha05] and the references therein for more information about the solvability of SDEs
with irregular drift). The fact that v is a bmo-decoupling field implies a bound on the
process b̃s := b(s,Xt,x

s , u(s,Xt,x
s ), v(s,Xt,x

s )) in, say, L2(Ω × [t, T )). Together with the
boundedness of σ, this implies easily that a.s., Xt,x

s has a limit as s → ∞, which lets
us extend Xt,x uniquely to all of [t, T ]. Now we set (Y t,x, Zt,x) = (u(·, Xt,x), v(·, Xt,x)).
Checking that (Y t,x, Zt,x) solves (1.6) amounts to running the above change-of-measure
argument in reverse.

1.3 Assumptions

We now describe some conditions on the data, which consists of measurable maps

b = b(t, x, y, z) : [0, T ]×Rd ×Rn × (Rd)n → Rd, σ = σ(t, x) : [0, T ]×Rd → Rd×d,

f = f(t, x, y, z) : [0, T ]×Rd ×Rn × (Rd)n → Rn, g = g(x) : Rd → Rn

which we will later impose in various combinations in order to get estimates and existence
results. We start with the conditions on σ and b which will be used throughout the paper.

There exists a constant C0 such that σ and b satisfy

1) 1
C0
|w|2 ≤ |σ(t, x)w|2 ≤ C0|w|2,

2) |σ(t, x)− σ(t, x′)| ≤ C0|x− x′|,
3) |b(t, x, y, z)| ≤ C0(1 + |z|)

for all t ∈ [0, T ], x, x′, w ∈ Rd, z ∈ (Rd)n

(H0)

The next condition will be used to guarantee an a-priori estimate on ‖Y ‖S∞ for the
equation (1.1), provided that the terminal condition is bounded (see Lemma 2.1).

There exists a constant ρ and a finite collection {am} = (a1, . . . , aM )

of vectors in Rn such that a1, . . . , aM positively span Rn, and

aTmf(t, x, y, z) ≤ ρ+ 1
2

∣∣aTmz∣∣2 for each m, for all (t, x, y, z) ∈ [0, T ]×Rd ×Rn × (Rd)n.
(HAB)

The next condition states that the driver f has quadratic growth in z.
There exists a constant CQ such that the estimate

|f i(t, x, y, z)| ≤ CQ(1 + |z|2)

holds for each (t, x, y, z) ∈ [0, T ]×Rd ×Rn × (Rd)n, i = 1, ..., n.

(HQ)

It is well-known that a quadratic growth assumption like HQ is not enough to obtain
regularity estimates on the PDE system (1.4), so we will impose the following structural
condition. The condition can be traced back to [BF02], and a similar condition appeared
in [XŽ18], where it was termed the Bensoussan-Frehse condition.

There exists a constant CQ and a sub-quadratic function κ : R+ → R+ such that

|f i(t, x, y, z)| ≤ CQ
(
1 + |zi||z|+

∑
j<i |zj |2 + κ(|p|)

)
for all (t, x, y, z) ∈ [0, T ]×Rd ×Rn × (Rd)n, i = 1, ..., n.

(HBF )
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2 A-priori estimates and existence

Lemma 2.1. Let (u, v) be a Markovian solution of (1.2), and suppose that HAB holds.
Then we have

‖u‖L∞ ≤ C, C = C(‖g‖L∞ , ρ, {am}).

Proof. Dropping the superscripts, we define X to be the solution of the equation Xt =∫ t
0
σ(s,Xs)dBs. We then set (Y, Z) = (u(·, X), v(·, X)). Since (u, v) is a Markovian solution

to (1.2), we have

dY it = −f i(t,Xt, Yt, Zt)dt+ Zit · dB̃t,

where B̃ = B −
∫
σ−1(·, X)b(·, X, Y, Z)dt. Since σ−1 is bounded, |b(t, x, y, z)| ≤ C0(1 +

|z|), and Z ∈ bmo, we deduce that B̃ is a Brownian motion under the measure P̃,
where dP̃ = E

( ∫
σ−1(·, X)b(·, X, Y, Z) · dB

)
dP. Now we consider the process Rt :=

exp(2aTmY +
∫ ·
0

2ρtdt). We compute

dRt = Rt
(
− 2aTmf + 2|aTmZt|2 + 2ρt)dt+ 2Rta

T
mZtdB̃t.

Since f ∈ A(ρ, {am}), aTmf(t, x, y, z) ≤ ρ+ |aTmz|2, and so −aTmf(t, x, y, z) + |aTmz|2 + ρ ≥ 0.

In particular, R is a submartingale with terminal elementRT =exp(2aTmg(XT )+2
∫ T
0
ρsds),

which satisfies ‖RT ‖L∞ ≤ C, C = C(am, ‖g‖L∞ , ‖ρ‖L1,∞). From the definition of R, we
see that for each m we have

sup
0≤t≤T

aTmYt ≤ C, C = C(‖g‖L∞ , ‖ρ‖L1,∞ , {am}).

Since {am} positively spans Rn, this gives us an estimate ‖Y ‖S∞ , which transfers to the
desired estimate on ‖u‖L∞ .

The following is a consequence of Theorem 2.5 of [XŽ18].

Proposition 2.2. Suppose that (HBF ) holds, g ∈ Cα for some α ∈ (0, 1), and that (u, v)

is a Markovian solution of (1.2), with u bounded. Then for some β ∈ (0, 1) depending on
α, ‖g‖Cα , C0, and ‖u‖L∞ , we have

‖u‖Cβ ≤ C, C = C(‖g‖Cα , C0, ‖u‖L∞). (2.1)

Proof. The only thing to check is that if (HBF ) holds, then F has a decomposition as in
(2.8) of [XŽ18], so that Proposition 2.11 of [XŽ18] implies the existence of an appropriate
Lyapunov function. For this, we set

li(t, x, y, z) =
f i(t, x, y, z)(

1 + |zi||z|+
∑
j<i |zj |2 + κ(|z|)

) zi|z|
|zi|

1|zi|6=0 + σ−1(t, x)b(t, x, y, z),

qi(t, x, y, z) =
f i(t, x, y, z)(

1 + |zi||z|+
∑
j<i |zj |2 + κ(|z|)

) (1 +
∑
j<i

|zj |2), ,

si(t, x, y, z) =
f i(t, x, y, z)(

1 + |zi||z|+
∑
j<i |zj |2 + κ(|z|)

)κ(|z|) (2.2)

Then some algebra shows that we have F i(t, x, y, z) = zi · li(t, x, y, z) + qi(t, x, y, z) +

si(t, x, y, z), and l, q and s satisfy the estimates appearing in Proposition 2.11 in [XŽ18].
Thus we can apply Theorem 2.5 of [XŽ18] to complete the proof.
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Proposition 2.3. Suppose that (HQ) holds and that u is a classical solution of (1.4) such
that u ∈ Cα for some α ∈ (0, 1), and Du is bounded. Then for each β ∈ (0, 1) there is a
constant C depending on β, α, ‖u‖Cα , C0 and CQ such that

‖u‖C1+β([0,t0]×Rd) ≤
C

T − t0
, t0 ∈ (0, T ), (2.3)

Moreover, if g is Lipschitz with Lipschitz constant L, then

‖Du‖L∞([0,T ]×Rd) ≤ C,C = C(α, ‖u‖Cα , C0, CQ, L). (2.4)

Proof. Fix p ∈ (1,∞). Throughout this proof, C denotes a constant which can change
from line to line but depends only on p, α, ‖u‖Cα , and CQ. We will introduce below
parameters R > 0 and t0 ∈ [0, T ), and it is important that C does not depend on R or t0.
For constants which can depend on R (but not t0) in addition to the constants p, α, Cα

and CQ we use CR.

We now fix a function ρ ∈ C∞c (Rd) such that 0 ≤ ρ ≤ 1, ρ(x) = 1 for |x| ≤ 1, ρ(x) = 0

for |x| > 2. Then we define for each x0 ∈ Rd and R > 0, the function ρR,x0(x) = ρ(x−x0

R ),
and note that ρR,x0(x) = 1 for x ∈ BR(x0) and ρR,x0(x) = 0 for x ∈ B2R(x0)c. Next, we
fix a smooth function κ = κ(t) : [0, T ] → [0, 1] with κ(t) = 1 for 0 ≤ t ≤ t0 and κ(t) = 0

for t > (t0 + T )/2. We can choose κ so that |κ′(t)| ≤ 3
T−t0 . Next, we find the equation

satisfied by ũi(t, x) = κ(t)ρR,x0(x)ui(t, x). Some computations show that

∂tũ
i + tr(aD2ũi) + κ(t)ρR,x0(x)F i(t, x, u, σDu) = κ′(t)ρR,x0(x)ui(t, x)

+
∑
j,k

ajk
(
κDkρ

R,x0Dju
i + κDkjρ

R,x0ui + κDjρDku
i
)
. (2.5)

We use Young’s inequality to estimate the right-hand side of (2.5), and then deduce from
the theory of linear parabolic equations the existence of constants C and CR such that∫ T

0

∫
B2r(x0)

(
|∂tũi(t, x)|p + |Dũi(t, x)|p + |D2ũi(t, x)|p

)
dxdt

≤ C
∫ T

0

∫
B2R

(
|κ(t)||Du|2 +

CR
T − t0

)p
dxdt

≤ 2pC

∫ T

0

∫
B2R

|κ(t)|p|Du|2pdxdt+ 2pC
( CR
T − t0

)p
= C

∫ T

0

∫
B2R

|κ(t)|p|Du|2pdxdt+
CR

|T − t0|p
(2.6)

holds for all R ≤ 1 and all x0 ∈ Rd, t0 ∈ [0, T ), and where in the last line we increased C
and CR (and we recall that C and CR may depend on p). Since ∂tũi = κ′(t)ui + κ(t)∂tu

i

and Dkũi = κ(t)Dku on [0, T ]×BR(x0), we can infer∫ T

0

∫
BR(x0)

|κ(t)|p
(
|∂tu|p + |Du|p + |D2u|p

)
dxdt ≤ C

∫ T

0

∫
B2R

|κ(t)|p|Du|2pdxdt+
CR

|T − t0|p
(2.7)

The next step is to set

cR,x0,i(t) =
1

2

(
max

Q4R(x0)
ui + min

Q4R(x0)

ui
)
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and then follow a computation from [BF02], integrating by parts in space to find∫ T

0

∫
Rd
|κ(t)|p|ρ2R,x0Du|2pdxdt

= −
∫ T

0

∫
Rd
|κ(t)|p|ρ2R,x0 |2p|Du|2p−2

∑
i

∆ui(ui − cR,x0,i(t))dxdt

− 2p

∫ T

0

∫
Rd
|κ(t)|p|ρ2R,x0 |2p−1

∑
i,j

Djρ
2R,x0 |Du|2p−2Dju

i(ui − cR,x0,i(t))dxdt

− 2(p− 1)

∫ T

0

∫
Rd
|κ(t)|p|ρ2R,x0 |2p|Du|2p−4

∑
i,l,j,k

Djku
iDju

iDku
l(ul − cR,x0,l(t))dxdt.

Applying Young’s inequality to the right hand side of the the estimate above, we get∫ T

0

∫
Rd
|κ(t)|p|ρ2R,x0Du|2pdxdt ≤ C

(∫ T

0

∫
Rd
|κ(t)|p|ρ2R,x0 |2p|D2u|p|u− cR,x0 |dxdt

+

∫ T

0

∫
Rd
|κ(t)|p|ρ2R,x0 |2p|Du|2p|u− cR,x0 |dxdt+

∫ T

0

∫
Rd
|κ(t)|p|Dρ2R,x0 |2p|u− cR,x0 |dxdt

)
≤ CRα

( ∫ T

0

∫
Rd
|κ(t)|p|ρ2R,x0 |2p||D2u|pdxdt+

∫ T

0

∫
Rd
|κ(t)|p|ρ2R,x0 |2p||Du|2pdxdt

)
+ CR

and so in particular∫ T

0

∫
B2R(x0)

|κ(t)|p|Du|2pdxdt

≤ CRα
(∫ T

0

∫
B4R(x0)

|κ(t)|p|D2u|pdxdt+

∫ T

0

∫
B4R(x0)

|κ(t)|p|Du|2pdxdt
)

+ CR.

We can combine this with (2.7) to find that

sup
x0

∫ T

0

∫
BR(x0)

|κ(t)|p
(
|∂tu|p + |Du|p + |D2u|p

)
dxdt

≤ CRα
(

sup
x0

∫ T

0

∫
B4R(x0)

|κ(t)|p|D2u|pdxdt+ sup
x0

∫ T

0

∫
B4R(x0)

|κ(t)|p|Du|2pdxdt
)

+
CR

|T − t0|p

≤ CRα
(

sup
x0

∫ T

0

∫
BR(x0)

|κ(t)|p|D2u|pdxdt+ sup
x0

∫ T

0

∫
BR(x0)

|κ(t)|p|Du|2pdxdt
)

+
CR

|T − t0|p
(2.8)

and so taking R sufficiently small, we conclude

sup
x0

∫ T

0

∫
BR(x0)

|κ(t)|p
(
|∂tu|p + |Du|p + |D2u|p

)
dxdt ≤ CR

|T − t0|p
, (2.9)

The estimate (2.3) now follows from the Sobolev embedding. The proof that (2.4)
holds when g is Lipschitz is entirely similar, so we provide only a brief description
of the argument. First, we set vi to be the unique solution to the linear equation
∂tv

i + tr(a(t, x)D2vi) = 0, with terminal condition vi(T, x) = gi(x). Then it is standard
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that vi is smooth on [0, T ) × Rd, with ‖Dv‖L∞([0,T ]×Rd) ≤ C, C = C(C0, L). Moreover,
ũ := u− v satisfies

∂tũ
i + tr(aD2ũi) + F̃ i(t, x, ũ, σDũ) = 0, u(T, x) = 0,

where F̃ i(t, x, y, z) = F i(t, x, y + v(t, x), z + σDv(t, x)) satisfies (HQ) with a new constant
C ′Q depending on CQ and ‖v‖L∞ , ‖Dv‖L∞ . Now we can repeat the same computations
as above, but without multiplying by κ, to get an estimate on ‖Dũ‖Cβ([0,T ]×Rd), which
implies the estimate (2.4).

Corollary 2.4. Under the same hypotheses as Proposition 2.3, for each ε > 0 there is a
constant C there is a constant C depending on ε, β, α, ‖u‖Cα , C0 and CQ such that

‖u(t, ·)‖C1+β(Rd) ≤
C

(T − t)(1+β)/2+ε
.

In particular, we have for each ε > 0 a constant C such that

|Du(t, x)| ≤ C

(T − t)1/2+ε
.

Proof. Combine Proposition 2.3 with Exercise 3.2.6 of [Kry96].

Now we come to the main existence result.

Theorem 2.5. Suppose that f , b, and σ are continuous and in additionH0,HBF , andHAB

hold. Suppose further that g ∈ Cβ for some β ∈ (0, 1). Then there exists a bmo decoupling
field (u, v) for (1.1) such that for some α ∈ (0, 1) u ∈ Cα([0, T ]×Rd) and for each ε > 0

there is a C > 0 such that v satisfies

|v(t, x)| ≤ C

(T − t0)1/2+ε
(2.10)

Moreover, Du ∈ Cα([0, t] × Rd) for each t < T , and v = σDu. Finally, if g is Lipschitz,
then Du is bounded on [0, T ]×Rd.

Proof. First, we truncate in z – in particular, we define πk : (Rd)n → (Rd)n by πk(z) = z

for |z| ≤ k, πk(z) = kz
|z| for |z| > k. Then we set f (k),i(t, x, y, z) = f i(t, x, y, πk(z)),

b(k)(t, x, y, z) = b(t, x, y, πk(z)). Then for ε > 0, we define f (k),ε,i and b(k),ε through
mollification in the variables (t, x, y, z). More precisely, we let (ρε)0≤ε≤1 be a standard
mollifier on R×Rd ×Rn × (Rd)n and we set

f (k),ε,i(t, x, y, z)

=

∫
R×Rd×Rn×(Rd)n

f (k),i(t′, x′, y′, z′)ρε(t− t′, x− x′, y − y′, z − z′)dt′dx′dy′dz′,

where we have extended f (k),i to all of R×Rd ×Rn × (Rd)n by l(k),i(t, x, y, z) = lk,i((0 ∨
t) ∧ T, x, y, z). We define b(k),ε similarly. Finally, set gε to be a standard mollification of g.
Since bε, f (k),ε, gε are all smooth with bounded derivatives of all orders, there is a unique
classical solution u(k),ε to the PDE

∂tu
(k),ε,i

+
1

2
tr(aD2u(k),ε,i + f (k),ε,i(t, x, u(k),ε, Du(k),ε) +Du(k),ε,i · b(k),i(t, x, u(k),ε, Duk,ε) = 0.

Some computations show that the data (b(k),ε, f (k),ε, gε) satisfy the conditions (H0), (HAB),
and (HBF ) uniformly in the parameters k and ε. Applying Propositions 2.2 and 2.3 we
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obtain a constant C > 0 such that the estimates
∥∥u(k),ε∥∥

Cα
≤ C,

∥∥Du(k),ε∥∥
Cα([0,t0]×Rd)

≤
C

T−t0 hold for each t0 < T and each k, ε. A standard compactness argument gives us

a function u ∈ Cα([0, T ]×Rd) ∩ C1+α
loc ([0, T )×Rd) satisfying the same estimates as the

u(k),ε, and such that for some kj ↑ ∞, εj ↓ 0, we have u(kj),εj → u locally uniformly on
[0, T ]×Rd and Du(kj),εj → Du locally uniformly on [0, T )×Rd. Fix (t, x) ∈ [0, T ]×Rd and
define X = Xt,x by (1.5). By passing to the limit in the equation

u(kj),εj (t′, Xt′) = u(kj),εj (T,XT ) +

∫ T

t′
F (kj),εj (s,Xs, u

(kj),εj (s,Xs), σDu
(kj),εj (s,Xs))ds

−
∫ T

t′
σDu(kj),εj (s,Xs)dBs

we confirm that the pair (u, σDu) is a Markovian solution for (1.2). The boundedness of
u and the fact that F admits a Lyapunov function can be used to verify that (u, σDu) is a
bmo decoupling field, and hence by Proposition 1.3 a decoupling field (1.1). It is clear
that if g is Lipschitz, then by Proposition 2.3 the u(k),ε,i are Lipschitz in space, uniformly
in k and ε, from which it follows that Du (and hence v) is bounded.

Remark 2.6. Let (u, v) be the decoupling field produced by the above compactness
argument. The convergence we obtain is strong enough to guarantee that u is in fact a
weak solution of the PDE (1.4) in the sense of integration by parts, see e.g. Definition 4.1
in [FWZ18]. Verifying that any decoupling field of (1.1) corresponds to a weak solution
of (1.4) and vice-versa is much more subtle, and relates to a line of research on the
connection between BSDEs and weak solutions of PDEs (rather than viscosity solutions)
that dates back to [BL97].

3 Application to stochastic differential games

3.1 Set-up and definition of Markovian Nash equilibrium

We consider a game in which players i = 1, ..., n choose controls α1, ..., αn which take
values in measurable sets Ai ⊂ Rk, and influence the d-dimensional state process X
through the dynamics

dXt = b(t,Xt, ~α(t,Xt))ds+ σ(t,Xt)ḋBt.

Here ~α denotes (α1, ..., αk). The goal of player i is to maximize the payoff functional

J i(~α) = E[gi(XT ) +
∫ T
0
ri(t,Xt, ~α(t,Xt))ds]. More precisely, the game is specified by the

following data:

• for each i, a number ki ∈ N and a set Ai ⊂ Rki which represents the set of possible
actions of player i (we could take Ai to be an arbitrary metric space, but we will
use subsets of Euclidean space for simplicity of notation),

• a measurable function b : [0, T ]×Rd ×A→ Rd, where we set A =
∏n
i=1A

i,

• a measurable function σ : [0, T ]×Rd → Rd×d

• for each i, a measurable function ri : [0, T ]×Rd ×A→ R,

• for each i, a measurable function gi : Rd → R.

We define Ai to be the set of bounded measurable functions [0, T ] × Rd → Ai, and
A =

∏n
i=1Ai. We assume for the moment that we have for each t ∈ [0, T ] and x ∈ Rd a

unique strong solution to the SDE

dXt,x
s = b(s,Xt,x

s , ~α(s,Xt,x
s ))ds+ σ(s,Xt,x

s )dBs, X
t,x
t = x. (3.1)
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For each (t, x) ∈ [0, T ]×Rd, player i has a payoff functional J it,x : A → R, defined by

J it,x(~α) = E[gi(Xt,x
T ) +

∫ T

t

ri(s,Xt,x
s , ~α(s,Xt,x

s ))ds].

We also assume for the moment that the integrals appearing in the definition of J it,x are
well-defined for each ~α ∈ A.

Definition 3.1. We say that ~α = (α1, ..., αn) ∈ A is a Markovian Nash equilibrium
(MNE) for the game with data (Ai, b, σ, r, g) if for each i ∈ {1, ..., n}, β ∈ Ai and each
(t, x) ∈ [0, T ]×Rd, we have

J it,x(~α) ≥ J it,x(~α−i, β),

where (~α−i, β) := (α1, ...αi−1, β, αi+1, ..., αn) ∈ A.

Our approach to producing Nash equilibria will be through an appropriate FBSDE
system, which we describe here. We define for each i the (reduced) Hamiltonian
Hi : [0, T ]×Rd ×Rd ×A→ R by

Hi(t, x, pi, a1, ..., an) = b(t, x, a1, ..., an) · pi + ri(t, x, a1, ..., an).

We assume that the generalized Isaacs condition holds, i.e. there exist measurable
functions âi : [0, T ]×Rd × (Rd)n → Ai such that for each x, p ∈ Rd,

Hi(t, x, pi, â(t, x, p)) = sup
a∈Ai

Hi(t, x, pi, (â−i(t, x, p), a)), (3.2)

where we write p = (p1, ..., pn) ∈ (Rd)n, â(t, x, p) = (â1, ..., ân)(t, x, p) and (â−i, a) =

(â1, ..., âi−1, a, âi+1, ..., ân). Then, we pose the following FBSDE{
dXt = b(t,Xt, â(t,Xt, Ztσ

−1(t,Xt)))dt+ σ(t,Xt)dBt,

dYt = −r(t,Xt, â(t,Xt, Ztσ
−1(t,Xt)))dt+ ZtdBt, YT = g(XT ),

(3.3)

along with the HJB PDE system

∂tu
i + tr(aD2ui) +Hi(t, x,Dui, â(t, x,Du)) = 0, u(T, x) = g(x). (3.4)

Because of the connection between the HJB system (3.4) and the FBSDE (3.3), and the
well known connection between (3.4) and Markovian Nash equilibria (see e.g. Section
6.3 of [CD18]), we expect that if (u, v) is a decoupling field of (3.3), then α∗(t, x) :=

â(t, x, σ−1(t, x)v(t, x)) is a MNE for the game. In particular, if u is a classical solution
to (1.4), then we expect that â(t, x) := â(t, x,Du(t, x)) is a MNE. To make this precise,
we impose some mild conditions on the data.



The generalized Isaacs condition holds with optimizer â,

the map σ satisfies the conditions appearing in H0, g is bounded and the estimates

1) |r(t, x, a)| ≤ CG(1 + |a|2),

2) |â(t, x, p)| ≤ CG(1 + |p|)
3) |b(t, x, a)| ≤ CG(1 + |a|)

hold for all (t, x, a) ∈ [0, T ]×Rd ×A, p ∈ (Rd)n.
(HG)

The following is a verification result, stated in terms of the FBSDE (3.3) instead of
the PDE (3.4).
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Proposition 3.2. Suppose that HG holds, and that (3.3) has a decoupling field (u, v)

with v bounded. Then ~α(t, x) := â(t, x, v(t, x)σ−1(t, x)) is a MNE for the game with data
(Ai, b, σ, r, g).

Proof. We will show that ~α is a closed loop Nash equilibrium in three steps.

Step 1: We first establish that ui(t, x) = J it,x(~α). Indeed, notice that if X solves

dX̃s = b(s, X̃s, ~α(s, X̃s))ds+ σ(s, X̃s)dBs, X̃t = x

on [t, T ], and (Ỹ , Z̃) = (u(·, X̃), v(·, X̃)), then we have

Ỹs = g(X̃T ) +

∫ T

s

r(r, X̃r, ~α(r, X̃r))dr −
∫ T

s

Z̃rdBr,

and in particular ui(t, x) = Ỹ it = J it,x(~α).

Step 2: Fix (t, x) ∈ [0, T ] × Rd, and choose β ∈ A such that (~α−i, β) ∈ A. The second
step is to construct a BSDE representation of Jt,x(~α−i, β). Denote by X the solution on
[t, T ] to the equation dXs = b(s,Xs, (~α

−i, β)(s,Xs))ds+ σ(s,Xs)dBs with initial condition
Xt = x. We now introduce the BSDE

Y ′s = g(XT ) +

∫ T

s

r(u,Xu, (~α
−i, β)(u,Xu))du−

∫ T

s

Z ′udBu. (3.5)

Under HG, r(·, X, (~α−i, β)(·, X)) ∈ L2([0, T ]× Ω), so (3.5) has a unique solution (Y ′, Z ′),
which clearly satisfies Y ′ it = J it,x(~α−i, β).

Step 3: Having established the identities J it,x(~α) = ui(t, x), J it,x(~α−i, β) = Y ′ it , we now
complete the proof by showing that ui(t, x) ≥ Y ′t . To do this, we define Y = u(·, X),
Z = v(·, X). Under HG, we see that we can write dXs = σ(s,Xs)dB̃s, where B̃ =

B −
∫
b(·, X, (~α−i, β)(·, X))σ−1(·, X)ds and B̃ is a Brownian motion under an equivalent

probability measure. By virtue of the fact that (u, v) is a decoupling field for (3.3), we
get that (following the computations in the proof of Proposition 1.3, and writing â as a
shortcut for â(·, X, Zσ−1(·, X)) for brevity),

Y is = gi(XT ) +

∫ T

s

Hi(u,Xu, σ
−1(u,Xu)Ziu, â)dr −

∫ T

s

Ziu ·
(
σ−1(u,Xu)dXu

)
= gi(XT ) +

∫ T

s

(
Hi(u,Xu, σ

−1(u,Xu)Ziu, â)

− (σ−1(u,Xu)Ziu) · b(u,Xu, (~α
−i, β)(u,Xu))

)
ds−

∫ T

s

ZiudBu.

Thus, setting ∆Y = Y − Y ′, ∆Z = Z − Z ′, we have

∆Y is =

∫ T

s

(
Hi(u,Xu, σ

−1(u,Xu)Ziu, â)

−Hi(u,Xu, σ
−1(u,Xu)Ziu, (~α

−i, β)(u,Xu)
)
dr −

∫ T

s

∆ZiudBu

Since Hi(u,Xu, σ
−1(u,Xu)Ziu, â) −Hi(u,Xu, σ

−1(u,Xu)Zir, (~α
−i, β)(u,Xu)) ≥ 0, we con-

clude that J it,x(~α) = ui(t, x) = Y it ≥ Y ′ it = J it,x(~α−i, β).
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3.2 Games with diagonal cost structures and additive drift

We now describe a general class of games to which our results on FBSDEs can be
applied. We assume that the dynamics take the form

dXt =
( n∑
j=1

bj(t,Xt, α
j
t )
)
dt+ σ(t,Xt)dBt

while the payoff for player i takes the form

J it,x(~α) = E[gi(Xt,x
T ) +

∫ T

t

ri(s,Xt,x
s , αi(s,Xt,x

s ))dt].

Player i’s Hamiltonian in this case is given by

Hi(t, x, pi, a1, ..., an) =
(∑

j

bj(t, x, aj)
)
· pi + ri(t, x, ai).

In particular, the Isaacs condition holds as soon as there exists for each i a measurable
map âi = âi(t, x, pi) : [0, T ]×Rd ×Rd → Ai such that

bi(t, x, âi(t, x, pi)) · pi + ri(t, x, ai) = sup
a

(
bi(t, x, âi(t, x, pi)) · pi + ri(t, x, ai)

)
(3.6)

for each (t, x, ai). We note that in terms of the notation introduced in the previous
subsection, we have b(t, x, a) =

∑
j b
j(t, x, aj), ri(t, x, a) = ri(t, x, aj). Let us list the

necessary assumptions on the data.

The functions bi, σ, ri, gi are all continuous, σ satisfies the conditions in H0

and there is a constant Cdiag such that the estimates

1)|bi(t, x, ai)| ≤ Cdiag(1 + |ai|)
2)|gi(x)| ≤ Cdiag, |gi(x)− gi(x′)| ≤ Cdiag|x− x′|
3)|ri(t, x, ai)| ≤ Cdiag(1 + |ai|2)

hold for all x, x′ ∈ Rd, t ∈ [0, T ], ai ∈ Ai. Moreover there exist continuous functions

âi satisfying (3.6), and such that

4)|âi(t, x, pi)| ≤ Cdiag(1 + |pi|).
(Hdiag)

Note that if Hdiag holds, the FBSDE (3.3) becomes{
dXt =

(∑
j b
j(t,Xt, â

j(t,Xt, σ
−1(t,Xt)Z

j))
)
dt+ σ(t,Xt)dBt,

dY it = −
(
ri(t,Xt, â

i(t,Xt, σ
−1(t,Xt)Z

i))
)
dt+ Zit · dBit, YT = g(XT ).

(3.7)

Theorem 3.3. Suppose that Hdiag holds. Then the FBSDE (3.7) has a decoupling field
(u, v) with v bounded. Consequently, ~a(t, x) = â(t, x, σ−1(t, x)v(t, x)) is a MNE for the
game with data (Ai, b, σ, r, g).

Remark 3.4. It is natural to ask whether the equilibrium we produce is unique. If we
only impose HG, we cannot expect uniqueness, in short because we cannot guarantee
uniqueness of the FBSDE (3.7) (or of the corresponding PDE) without additional regular-
ity conditions. Nevertheless, under appropriate technical conditions one can guarantee
a one-to-one correspondence between Markovan Nash equilibria and certain generalized
solutions of the HJB system by following the arguments in Proposition 6.27 in [CD18].
This gives one way to check that if (u, v) is a decoupling field for (3.7) with v bounded,
then u must in fact solve the corresponding PDE in an appropriate sense. To make this
rigorous requires a discussion of weak solutions for the PDE system (1.4), regularity
properties of scalar Hamilton-Jacobi equations with irregular Hamiltonians and the Itô
Krylov formula. We do not pursue this analysis for the sake of brevity.
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Proof. This is a matter of checking that if Hdiag holds, then the functions b, σ, f, g with

b(t, x, z) =
∑
j

bj(t, x, âj(t, x, σ−1(t, x)zj), f i(t, x, z) = ri(t, x, âi(t, x, σ−1(t, x)zi))

satisfy the conditions of Theorem 2.5. The only thing which is not obvious is HAB. For
this, we note that we can easily check |f i(t, x, z)| ≤C 1 + |zi|2, which implies that the
condition (AB) is satisfied, with {am} = {±λem}nm=1, ρ = λ, where λ is a large enough
positive constant and em is the mth standard basis vector in Rn.
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