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Abstract

First, we prove the following sharp upper bound for the number of high degree differ-
ences in bipartite graphs. Let (U, V,E) be a bipartite graph with U = {u1, u2, . . . , un}
and V = {v1, v2, . . . , vn}. For n ≥ k > n

2
we show that∑

1≤i,j≤n

1
{
|deg(ui)− deg(vj)| ≥ k

}
≤ 2k(n− k).

Second, as a corollary, we confirm the Burdzy–Pitman conjecture about the maximal
spread of coherent and independent vectors: for δ ∈ ( 1

2
, 1] we prove that

P(|X − Y | ≥ δ) ≤ 2δ(1− δ)

for all random vectors (X,Y ) satisfying X = P(A|G) and Y = P(A|H) for some event
A and independent σ-fields G and H.
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1 Introduction

Let (Ω,F ,P) be a probability space. We say that a random vector (X,Y ) defined on
this probability space is coherent if there exist sub σ-fields G,H ⊂ F and an event A ∈ F ,
such that

X = E(1A|G), Y = E(1A|H).

We will also say that the joint distribution of such (X,Y ) is coherent on [0, 1]2. Hereinafter,
we write (X,Y ) ∈ C or µ ∈ C to indicate that the vector (X,Y ) or a distribution µ is
coherent. By abuse of notation, C will be used to denote a family of vectors and a family
of distributions

As suggested in [6], a coherent vector can be interpreted as objective opinions of
two autonomous experts about the odds of some random event A. In this context, we
interpret G and H as different information sources that are available to the experts.
Motivated by this application, it is natural to ask about the maximal possible spread of
coherent opinions. Accordingly, Burdzy and Pal [1] proved that for any δ ∈ ( 1

2 , 1] and
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(X,Y ) ∈ C the probability P(|X − Y | ≥ δ) that the difference between coherent random
variables exceeds a given threshold δ is bounded above by 2(1−δ)

2−δ . They go on to show
that this bound is sharp and it is attained by a random vector (X,Y ) with X and Y being
dependent random variables. We will write

CI = {(X,Y ) ∈ C : X ⊥ Y },

to denote the family of those coherent vectors whose components are independent. In
this paper we prove the following claim stated as a conjecture by Burdzy and Pitman in
[2].

Theorem 1.1. If δ ∈ ( 1
2 , 1] and (X,Y ) ∈ CI then

P(|X − Y | ≥ δ) ≤ 2δ(1− δ). (1.1)

Moreover, the bound 2δ(1− δ) is optimal.

In other words, Theorem 1.1 provides a sharp upper bound on the maximal spread of
coherent opinions in the special case of two experts with access to independent sources
of information. Let us point out that restricting δ to ( 1

2 , 1] does not diminish generality of
the result. Consider X ′ = 1A and Y ′ = P(A) for an arbitrary event A with P(A) = 1

2 . It
is easy to see that (X ′, Y ′) ∈ C. In this case, P(|X ′−Y ′| ≥ 1

2 ) = 1. Hence, for all δ ∈ [0, 12 ]

the problem is trivial.
Let us briefly describe our approach and the organization of the paper. Although

there are known alternative characterizations of coherent distributions [6, 7, 9], let us
quote [2]:

For reasons we do not understand well, these general characterizations seem to be of
little help in establishing the evaluations of ε(δ) [i.e. P(|X − Y | ≥ δ)] discussed above, or

in settling a number of related problems about coherent distributions [...].

It is our belief that this is indeed so because of the underlying combinatorial nature
of these problems. Discretization and combinatorial techniques appeared already in
[1, 5]. Moreover, it is a remarkable fact that the properties of two-dimensional coherent
vectors are closely related to the properties of degree sequences of bipartite graphs. An
intriguing example of this phenomenon can be found in [12]. Therefore, in order to take
advantage of the combinatorial nature of the claim made in Theorem 1.1, we start by
discussing its graph-theoretic version. More precisely, we prove the following theorem.

Theorem 1.2. Let G = (U, V,E) be a bipartite graph with an equal bipartition, i.e.

U = {u1, u2, . . . , un}, V = {v1, v2, . . . , vn},

for some n ∈ Z+. For n ≥ k > n
2 we have∑

1≤i,j≤n

1
{
|deg(ui)− deg(vj)| ≥ k

}
≤ 2k(n− k). (1.2)

Note that the trivial upper bound n2 is the best possible upper bound in the case
k ≤ n

2 . The proof of Theorem 1.2, given in Section 2, is based on an idea similar to the
spread bounding theorem of Erdős, Chen, Rousseau and Schelp – see [8, 3]. Later in the
same section we provide an elementary example showing that the bound (1.2) is sharp.
In Section 3 we show how to transform the Theorem 1.1 to Theorem 1.2. To this end, we
make use of an appropriate sampling construction, similar in spirit to [11]. The key idea
is to approximate a fixed coherent distribution with a randomly generated sequence of
graphs. We then apply Theorem 1.2 to each of the graphs in the sequence and obtain
(1.1) by passing to the limit.
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Proof of the Burdzy–Pitman conjecture

2 Number of high degree differences in bipartite graphs

Let G = (U, V,E) be a bipartite graph with an equal bipartition, that is a triplet

U = {u1, u2, . . . , un}, V = {v1, v2, . . . , vn},

and

E ⊂ U × V,

for some fixed n ∈ Z+. Let us fix a natural number k satisfying n ≥ k > n
2 . Hereinafter,

we denote the degree sequences of G as (αi)
n
i=1 and (βj)

n
j=1, i.e., αi = deg(ui) and

βj = deg(vj) for all 1 ≤ i, j ≤ n. Without loss of generality we also assume that

α1 ≥ α2 ≥ · · · ≥ αn,

β1 ≥ β2 ≥ · · · ≥ βn.

We start with an observation similar to the spread bounding theorem of Erdős et al. –
see [8].

Lemma 2.1. There exist s, t ∈ {1, 2, . . . , n − k + 1} such that αs ≤ βs+k−1 + k − 1 and
βt ≤ αt+k−1 + k − 1.

Proof. We will prove only the existence of s, as the case of t is analogous. Assume for
the sake of contradiction that such a number s does not exists. Therefore, the total
number of edges incident to u1, u2, . . . , un−k+1 is at least βk+βk+1 + · · ·+βn+k(n−k+1).
Observe that at least k(n − k + 1) of these edges go to vertices v1, v2, . . . , vk−1. Let us
denote

Ẽ := E ∩
(
{u1, u2, . . . , un−k+1} × {v1, v2, . . . , vk−1}

)
.

We have just shown that |Ẽ| ≥ k(n− k + 1). On the other hand, we clearly have

|Ẽ| ≤ (k − 1)(n− k + 1),

which is a contradiction.

Proof of Theorem 1.2. For 1 ≤ i, j ≤ n, let us call (i, j) an A-pair if αi ≥ βj + k. Anal-
ogously, let us call (i, j) a B-pair if βj ≥ αi + k. Since k > n

2 , we have αi >
n
2 for

all A-pairs (i, j) and αi <
n
2 for all B-pairs (i, j). As a consequence, there exists an

i0 ∈ {1, 2, . . . , n+ 1} such that:

1. i ≤ i0 − 1 for any A-pair (i, j),

2. i ≥ i0 for any B-pair (i, j).

Analogously, there exists j0 ∈ {1, 2, . . . , n+ 1} such that:

3. j ≤ j0 − 1 for any B-pair (i, j),

4. j ≥ j0 for any A-pair (i, j).

Observe that by Lemma 2.1,

5. for any A-pair (i, j) either i < s or j > s+ k − 1,

6. for any B-pair pair (i, j) either j < t or i > t+ k − 1.
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We will now show that conditions 1–6 imply that the total number of A-pairs and
B-pairs is at most 2k(n− k). Let us fix i0, j0 ∈ {1, 2, . . . , n+ 1}. First, we will show that it
is sufficient to consider only s and t such that s, t ∈ {1, n− k + 1} because these values
of s and t are optimal in the sense that they maximize the total number of pairs (i, j)
fulfilling all conditions 1–6.

Note that the variable s appears only in the 5-th condition and thus the value of s is
not relevant for bounding the number of B-pairs. Moreover, observe that if i0 ≤ n− k+ 1,
then for s = n− k + 1 condition 5 is automatically fulfilled and thus s = n− k + 1 is an
optimal value. Similarly, if j0 ≥ k + 1, then for s = 1 condition 5 is also automatically
fulfilled and s = 1 is an optimal value. Finally, let us assume that i0 ≥ n−k+2 and j0 ≤ k.
In this case, the restrictions imposed by condition 5 remove exactly (i0 − s)(s+ k − j0)

additional pairs. Therefore, as the last expression is a concave function of s ∈ [1, n−k+1],
it is minimized in one of the endpoints. Hence we may assume that s = 1 or s = n− k+ 1,
as desired. Analogously, we show that t = 1 or t = n− k + 1 is optimal. There are four
possible cases now:

a. s = 1, t = n− k + 1. We have j ≥ k + 1 for all A-pairs and j ≤ n− k for all B-pairs
(i, j). Thus any i participates in at most n − k of A-pairs and in at most n − k of
B-pairs. Therefore, since a fixed vertex can not participate in both types of pairs,
every i participates overall in at most n − k pairs. As a consequence, the total
number of pairs does not exceed n(n− k) < 2k(n− k).

b. s = n− k + 1, t = 1. This case is symmetric to the previous one.

c. s = 1, t = 1. We have j ≥ k + 1 for all A-pairs and i ≥ k + 1 for all B-pairs (i, j).
Let us denote a := max(k + 1, j0) and b := max(k + 1, i0). Then the total number
of A-pairs is bounded by (n− a+ 1)(b− 1), while the total number of B-pairs is at
most (n− b+ 1)(a− 1). Notice, that for a, b ∈ [k + 1, n+ 1] the sum

S := (n− a+ 1)(b− 1) + (n− b+ 1)(a− 1),

is bilinear and it is maximized at one of four corners. For a = b = k + 1, we get
S = 2k(n− k). For, say a = n+ 1, we get S = n(n− b+ 1) 6 n(n− k) < 2k(n− k).

d. s = n− k + 1, t = n− k + 1. This case is analogous to c.

Hence we have shown that Theorem 1.2 holds in all cases. This ends the proof.

We end this section with an example showing that the upper bound 2k(n− k) in (1.2)
cannot be improved. Note that a straightforward modification of this example shows
that 2δ(1− δ) in (1.1) is also sharp.

Example 2.2. Consider n, k ∈ Z+, with n ≥ k > n
2 . Let Gn,k = (U, V,E), where

U = V = {1, 2, . . . , n} and

E = {(u, v) ∈ U × V : max(u, v) ≤ k}.

We clearly have ∑
1≤i,j≤n

1
{
|deg(ui)− deg(vj)| ≥ k

}
= 2k(n− k).

Moreover, one can check that inequality (1.2) becomes an equality exactly for those
graphs G that are isomorphic to Gn,k or to its complement Gn,k. This follows easily from
the proof of Theorem 1.2 and we leave the details to interested reader.
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3 Proof of the Burdzy–Pitman conjecture

By CI(m) we denote the set of (X,Y ) ∈ CI such that both X and Y take at most m
different values.

Proposition 3.1. Let (X,Y ) be coherent and independent, and let m be a positive
integer. Then there exists (Xm, Ym) ∈ CI(m), such that |X −Xm| ≤ 1

m and |Y − Ym| ≤ 1
m ,

almost surely.

The proof of the above Proposition can be found in [4, 1]. In what follows, fix any
δ ∈ ( 1

2 , 1].

Proposition 3.2. To prove Theorem 1.1 it is enough to verify it for all (X,Y ) ∈ CI(m),
m ≥ 1.

Proof. Fix (X,Y ) ∈ CI and choose (Xm, Ym) as in Proposition 3.1. By the triangle
inequality we get

P(|X − Y | ≥ δ) ≤ P(|Xm − Ym| ≥ δ − 2/m).

Thus, assuming that Theorem 1.1 is true for all (X,Y ) ∈ ∪∞m=1CI(m), for m large enough
so that δ − 2/m > 1/2, we obtain

P(|X − Y | ≥ δ) ≤ 2(δ − 2/m)(1− δ + 2/m).

Letting m→∞ completes the proof.

We are now able to prove our main result.

Proof of Theorem 1.1. Fix (X,Y )∈
⋃∞
m=1 CI(m). There exists a probability space (Ω,F ,P),

independent sub σ-fields G,H ⊂ F and an event A ∈ F , such that X = E(1A|G) and
Y = E(1A|H). Furthermore, for some N,M ∈ Z+, we may suppose that X takes
values x1, x2, . . . , xN on sets G1, G2, . . . , GN and Y takes values y1, y2, . . . , yM on sets
H1, H2, . . . ,HM . We can also assume without loss of generality that

G = σ
(
G1, G2, . . . , GN

)
,

H = σ
(
H1, H2, . . . ,HM

)
.

For 1 ≤ i ≤ N and 1 ≤ j ≤M , let pi = P(Gi), qj = P(Hj) and

ρi,j =
P(Gi ∩Hj ∩A)

P(Gi ∩Hj)
.

Then by independence we have P(Gi ∩Hj) = piqj and

xi =

M∑
j=1

qjρi,j , 1 ≤ i ≤ N, (3.1)

yj =

N∑
i=1

piρi,j , 1 ≤ j ≤M. (3.2)

First, we show how to construct a sequence of bipartite graphs Gn = (Un, Vn, En)

with |Un| = |Vn| = n, such that:

(C1) there are pin+O(n3/4) vertices in Un of degree xin+O(n3/4), i = 1, 2, . . . , N ,

(C2) there are qjn+O(n3/4) vertices in Vn of degree yjn+O(n3/4), j = 1, 2, . . . ,M ,
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where by O(n3/4) we denote any quantity bounded in magnitude by Cn3/4 for some
constant C <∞ independent of n,N,M, i and j.

Fix n ≥ 1 and choose n independent points u1, u2, . . . , un in the initial space Ω

(distributed according to P) and for 1 ≤ i ≤ n denote αi = s if ui ∈ Gs. In other words,
(α1, α2, . . . , αn) is an i.i.d. sample from the set {1, 2, . . . , N} with weights p1, p2, . . . , pN ,
respectively. We can think about this sample as a randomly generated sequence of labels.
Let As =

∑n
i=1 1{αi=s} be the number of labels equal to s, 1 ≤ s ≤ N . Observe that As is

the sum of n independent Bernoulli random variables. Hence, by Hoeffding’s inequality
[10], we have

P(|As − nps| ≥ nr) ≤ 2 · e−2nr
2

,

for all positive r. Consequently, setting r = n−1/4 we get

P(|As − nps| ≥ n3/4) ≤ 2 · e−2
√
n.

Thus, for large n, with high probability we have |As − nps| < n3/4 simultaneously for all
1 ≤ s ≤ N .

Analogously, we choose points v1, v2, . . . , vn and generate an i.i.d. sample (β1, β2, . . . ,

βn) from the set {1, 2, . . . ,M} with weights q1, q2, . . . , qM . If Bt =
∑n
j=1 1{βj=t} for

1 ≤ t ≤M then, for large n, with high probability |Bt−nqt| < n3/4 for all t simultaneously.
Given the points (ui)

n
i=1 and (vj)

n
j=1 and the corresponding labels (αi)

n
i=1 and (βj)

n
j=1,

we will generate independently edges of a random bipartite graph (Un, Vn, En), where
Un = {u1, u2, . . . , un} and Vn = {v1, v2, . . . , vn}. The subscripts on Pα,β and Eα,β will
denote conditioning on (αi)

n
i=1 and (βj)

n
j=1.

1. Generate independent indicator random variables Zi,j for 1 ≤ i, j ≤ n satisfying

Pα,β(Zi,j = 1) = 1− Pα,β(Zi,j = 0) = ραi,βj
,

2. for 1 ≤ i, j ≤ n, set (ui, vj) ∈ En iff Zi,j = 1.

Hence, Zi,j = 1{(ui,vj)∈En}. For 1 ≤ i ≤ n,

Eα,β deg(ui) = Eα,β

(
n∑
j=1

Zi,j

)
=

M∑
t=1

Btραi,t =

M∑
t=1

(
nqt +O(n3/4)

)
ραi,t,

and hence, by (3.1),
Eα,β deg(ui) = nxαi +O(n3/4). (3.3)

Similarly, for 1 ≤ j ≤ n, by (3.2) we get

Eα,β deg(vj) = nyβj
+O(n3/4). (3.4)

We apply Hoeffdings’s inequality again to obtain

Pα,β

(
|deg(ui)− Eα,β deg(ui)| ≥ n3/4

)
≤ 2 · e−2

√
n, (3.5)

and
Pα,β

(
|deg(vj)− Eα,β deg(vj)| ≥ n3/4

)
≤ 2 · e−2

√
n, (3.6)

for all i, j ∈ {1, 2, . . . , n}. Note that the concentration rates (3.5) and (3.6) are ex-
ponential in

√
n. Thus, since n is large, with high probability all these inequalities

hold simultaneously. Then, by (3.3) and (3.4), we have deg(ui) = nxαi
+ O(n3/4) and

deg(vj) = nyβj
+ O(n3/4) for all i, j ∈ {1, 2, . . . , n} with high probability. This, together
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with bounds on (As)
N
s=1 and (Bt)

M
t=1, proves that (deterministic)Gn’s satisfying conditions

(C1)-(C2) exist for large n.
In what follows, we add additional subscripts and write u

(n)
i and v

(n)
j for generic

elements of Un and Vn, respectively. We can now write

P(|X − Y | ≥ δ) =
∑

1≤i≤N
1≤j≤M

1{|xi−yj |≥δ} · piqj

= lim
n→∞

1

n2

∑
1≤i≤N
1≤j≤M

1{|nxi−nyj |≥nδ} ·
(
pin+O(n3/4)

)(
qjn+O(n3/4)

)
. (3.7)

By the triangle inequality

|nxαi
− nyβj

| ≤ |deg(u
(n)
i )− deg(v

(n)
j )|+ 2 ·O(n3/4),

for all i, j ∈ {1, 2, . . . , n}. This and (C1)-(C2) imply that we can bound the right hand side
of (3.7) by

≤ lim sup
n→∞

1

n2

∑
1≤i,j≤n

1
{
|deg(u

(n)
i )− deg(v

(n)
j )| ≥ nδ − 2O(n3/4)

}
.

Finally, applying Theorem 1.2 to bipartite graphs Gn, we obtain

≤ lim sup
n→∞

1

n2
· 2
(
nδ − 2O(n3/4)

)(
n− nδ + 2O(n3/4)

)
= 2δ(1− δ),

which ends the proof.
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