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Inducing High Spatial Correlation with
Randomly Edge-Weighted Neighborhood

Graphs∗

Danna L. Cruz-Reyes†, Renato M. Assunção‡ and Rosangela H. Loschi§

Abstract. Traditional models for areal data assume a hierarchical structure where
one of the components is the random effects that spatially correlate the areas. The
conditional autoregressive (CAR) model is the most popular distribution to jointly
model the prior uncertainty about these spatial random effects. A limitation of
the CAR distribution is its inability to accommodate high correlations between
neighboring areas. We propose a new model for areal data that alleviates this
problem. We represent the map by an undirected graph where the nodes are the
areas, and randomly-weighted edges connect nodes that are neighbors. The model
is based on a spatially-structured, multivariate Normal/Independent(NI) distri-
bution, in which the precision matrix is indirectly built assuming a multivariate
distribution for the random edge effects. The joint distribution for the edge effects
is a spatial multivariate NI distribution that induces another NI distribution for
the areas’ spatial effects, which inherit its capacity to accommodate outliers and
heavy-tailed behavior. Most important, it can produce a higher marginal correla-
tion between the spatial effects than the CAR model overcoming one of the main
limitations of this model. We fit the proposed model to analyze real cancer maps
and compared its performance with several state-of-art competitors. Our proposed
model provides better fitting in almost all cases.
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1 Introduction
The conditional autoregressive (CAR) model introduced by Besag (1974) has been one
of the main drivers of spatial models for areal or lattice data. It appeared again in
Besag et al. (1991) in its intrinsic version (ICAR), gaining visibility and importance
as the main framework to specify joint distributions through the set of the conditional
distribution of each area given its neighbors (Martínez-Beneito and Botella-Rocamora,
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2019). The spatially motivated Markov property enjoyed by this model, coupled with
its computational ease for Bayesian analysis and the availability of fast computation, is
responsible for its great appeal (Gelfand and Vounatsou, 2003).

Typically, the CAR and ICAR models are used to describe the joint behavior of
random effects θ = (θ1, . . . , θn), where θi is the spatial effect associated with area i
on a map. Such effects are latent factors representing the spatial dependence beyond
the small area geographical boundary. A common application is the disease mapping
problem where death or disease counts are modeled using a Poisson distribution with a
log-link specification. The latent random effect θi is an additive term to the linear part
of the model. A key point regarding the construction of CAR or ICAR models is the
specification of an appropriate neighborhood structure. Usually, we take as neighbors
any pair of areas sharing boundaries. The adjacency information is included in the model
through a n× n neighborhood matrix A with binary entries aik = 1 if area units i and
k share a common border (denoted k ∼ i), and aik = 0, otherwise. Usually, aii = 0.
This approach is popular because it can be easily calculated using GIS (Geographic
Information System) routines. Denote by Nn(a,B) the n-variate normal distribution
with mean a and covariance matrix B (n is omitted in the univariate case). The CAR
model is specified considering the n univariate full conditional distributions given by

θi|θ−i ∼ N

(
ς

mi

∑
k∼i

θk,
τ2
θ

mi

)
, (1.1)

where θ−i = (θ1, ..., θi−1, θi+1, ..., θn), mi =
∑

k aik is the number of neighbors of region
i, and ς is a spatial autocorrelation parameter. This conditional distribution depends on
the neighbors of area i only, which defines the Markovian property. The joint distribution
of θ is the n-variate normal distribution with mean 0 and covariance matrix τ2

θ (M −
ςA)−1 denoted by

θ ∼ Nn(0, τ2
θ (M − ςA)−1), (1.2)

where M = diag{m1, . . . ,mn}. The covariance matrix τ2
θ (M−ςA)−1 is positive-definite

if 1/λ1 < ς < 1/λp, where λ1 and λp denote the smallest and the largest eigenvalues of
the matrix M−1/2AM−1/2. The Markov property defined in terms of this neighbor-
hood structure induces a sparse precision matrix facilitating the Bayesian computational
approaches.

Spatial statisticians extended the CAR and ICAR models in many different direc-
tions. Classes of space-time generalized linear models are proposed by Knorr-Held and
Best (2001), MacNab and Dean (2000), Martínez-Beneito et al. (2008), and Silva et al.
(2008). Carlin and Banerjee (2003) and Jin and Carlin (2005) extend the idea to model
spatial survival data. Spatially-varying parameters models are introduced by Assunção
(2003), Assunção et al. (2002), and Gelfand et al. (2003). Generalized additive models
can be found in Fahrmeir and Lang (2001). Extensions incorporating two correlated
sets of spatial effects are proposed by Jin and Carlin (2005), Gelfand and Vounatsou
(2003), and Knorr-Held et al. (2006).

Despite their popularity, the CAR and ICAR models have several critical issues
(Martínez-Beneito and Botella-Rocamora, 2019, p. 134). In one line of criticism, Wall
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(2004) showed that there are many puzzling results involving the CAR model. For ex-
ample, the correlation between any pair of neighboring areas is negatively associated
with the number of neighbors of each region but this is not sufficient to explain the
dependence structure. In addition, sites with equal numbers of neighbors have differ-
ent variances. Even more puzzling, the spatial structure depends on the CAR spatial
parameter ς in an unexpected way: a pair of areas more correlated than another one
for ς > 0.5, for instance, may become less correlated for some other value of ς. The
ICAR model may exacerbate these problems. Wall (2004) concluded that the spatial
correlation induced by the CAR model is not intuitive and does not follow a practi-
cal scheme. All these counterintuitive results were explained by Assunção and Krainski
(2009). They showed that the correlation structure between two areas depends on the
entire neighborhood graph structure and not only on their immediate neighborhood.
The second-largest eigenvalue modulus of the neighborhood matrix used in the CAR or
ICAR models heavily influences these puzzling results. A more serious concern is the
lack of ability of CAR or ICAR spatial effects models to produce high pairwise spatial
correlation even when the parameter ς is near or equal to 1, as in the ICAR (Carlin and
Banerjee, 2003; Gelfand and Vounatsou, 2003).

The CAR model assumes that the random spatial effects share a common global level
of spatial autocorrelation, ranging from independence to strong spatial smoothing, which
depends on a single parameter ς. A uniform level of spatial smoothness for the entire
region may be an unrealistic assumption. Brewer and Nolan (2007) proposed replacing
the single ς parameter in (1.1) with a pairwise ςik that varies according to the pair i and k
of adjacent regions. Rather than proposing a direct probability distribution for the large
number of ςik pairwise parameters, they impose a substantial dimensionality reduction
by assuming ςik = λiλk/(λi + λk) where λi and λk are the random effects associated
with areas i and k, respectively. Lu et al. (2007) proposed another modification in
the classical CAR model. They replaced the fixed, deterministic, and known adjacency
matrix A in (1.2) with a random thinned version. The aik binary random variables
of adjacent regions are defined by conditionally independent Bernoulli outcomes whose
success probabilities are modeled with a logistic regression based on known features of
the pair. Hence, its final matrix is the adjacency matrix A with some elements flipped
to 0. Similar approaches have been proposed by Ma and Carlin (2007) and Ma et al.
(2010), which replace the logistic regression with a prior second-stage Bernoulli intrinsic
autoregression (or Ising) model. Lee and Mitchell (2012) modified Lu et al. (2007) by
changing the logistic regression to create the thinned adjacency matrix, and Lee et al.
(2014) by adopting a uniform distribution on the set of the reduced binary adjacency
matrix.

Langford et al. (1999) considered a multilevel approach to model the spatial random
effects. The random effect θi for each area i is a sum of a set of independent random
effects θ∗j weighted by a measure of proximity Zij between the areas. The effects θ∗j
measure the effect of area j on other areas, and they are the same for all neighboring
areas of j. They are also independent (spatially unstructured). In contrast, in the model
we propose in this paper, each neighboring area of i has a different random effect, the
one associated with the edge [ij], and they are spatially structured. In Langford et al.
(1999), the proximity measure Zij is defined in terms of the adjacency matrix in which
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entry ωij in the i-th row and j-th column is an exponential function of the Euclidean
distance between the centroids of areas i and j. Leyland et al. (2000) extended this
previous model to the multivariate response setting. Congdon (2004) used a model with
random effects for space, time, and age. For the spatial component, he considered the
same model as Langford et al. (1999).

Another approach to modeling areal data can be found in Leroux et al. (2000) and
MacNab and Dean (2000). These models assume that the precision matrix is a linear
combination of a diagonal matrix and the precision matrix of the ICAR model. They
accommodate over-dispersion but inherit the lack of interpretability issue of the CAR
model. More recent developments in this topic include Prates et al. (2012), Rodrigues
and Assunção (2012), and Datta et al. (2019). The CAR structure may not be appropri-
ate to describe the spatial correlation if some areas experience atypical spatial effects.
In Prates et al. (2012), the normal distribution involved in the CAR model is replaced
by distributions in the generalized skew-normal/independent class, a robust class of
distributions that is able to simultaneously accommodate heavy-tail and asymmetry.
Rodrigues and Assunção (2012) proposes a spatial model in which the neighborhood
structure is a parameter that must be estimated. This model preserves the Markov
property as it assumes that, given the neighborhood graph, the areal parameters follow
a conditional autoregressive model. The directed acyclic graph autoregressive model
(DAGAR) (Datta et al., 2019) constructs the spatial precision matrix considering a di-
rected acyclic graph (with a defined order) derived from the original undirected graph
associated with the map. Although DAGAR is an order-dependent model, the authors
show that the ordering choice does not substantially affect the results. Compared to
CAR, the DAGAR model better estimates the latent spatial surface if the spatial cor-
relation is weak or moderate. They have similar performances when the data have a
stronger spatial correlation. An order-free version of the DAGAR model is obtained by
averaging over all the possible orderings resulting in a special case of the model proposed
by Datta et al. (2016). The DAGAR model provides a different approach to model mul-
tivariate Gaussian data always providing a positive definite covariance matrix. Its use
is particularly appealing to analyze large spatial datasets due to its induced sparsity.

We will focus on spatial data that may be represented by an undirected graph.
Our goal is to build a model described in Section 3 that is able to alleviate one of the
main constraints of CAR-based models: its incapacity to generate high marginal cor-
relations. As usual, we represent the map with a graph where the nodes stand for the
small areas, and edges link geographically neighboring areas. The novelty in our ap-
proach is that we assign spatial random effects to the edges of this neighborhood graph.
The spatial random effect of each area is the sum of effects of its incident edges. The
joint distribution for the incident edge effects is a multivariate Normal/Independent(NI)
distribution where the spatial covariance matrix has a CAR-like structure. The NI dis-
tribution class, widely used to build more robust models (Lange and Sinsheimer, 1993),
is obtained as a scale mixture of the normal distribution and contains the Student-t and
Normal distributions as particular cases. The resulting spatial model for the area effects
is a multivariate NI distribution inheriting the heavy-tailed behavior and robustness to
outliers. Our model is called RENeGe, standing for a randomly edge-weighted neigh-
borhood graph model. In the graph theory literature, these edge effects are called edge
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weights. This is the sense in which we use the expression edge-weighted neighborhood
graph.

The paper is organized in the following way. In Section 2 we provide the main
definitions and notations. We introduce our new RENeGe model and study its properties
in Section 3. An important RENeGe property is the induction of a higher marginal
correlation than the CAR model, overcoming one of the main limitations of the CAR
and ICAR models. We study the marginal and conditional correlation properties of
this model in Section 3.3. In Section 4, we explore the eigenstructure features of the
RENeGe covariance matrix and illustrate its use to analyze the spatial patterns of five
types of cancer rates. We also show empirically the RENeGe capacity to recover the
spatial random latent effects. We end up with conclusions in Section 5. Besides this
main text, we provide an extensive additional analysis of RENeGein the Supplementary
Material (Cruz et al., 2023), as described at the end of this paper.

2 Preliminary definitions
Consider a map with n contiguous geographical regions. The map is identified with an
undirected graph G = (V, E), where V = {v1, . . . , vn} is the set of vertices or nodes
representing the areas, and E is the set of p edges connecting unordered pairs of distinct
vertices and representing the adjacency relationship among regions. The edge connecting
vi ∈ V and vj ∈ V is alternatively represented by [ij] or (vi, vj). We assume that the
edges are undirected, implying that [ij] = [ji]. If two nodes vi and vj ∈ V are connected,
this will be denoted by vi ∼ vj . When vi ∈ V is a node in the edge [ij] ∈ E , we say
that the edge is incident on vi. Usually, the graph is visualized by plotting each vertex
on a typical spatial location inside the corresponding area, such as its geographical
centroid. The spatial neighborhood structure is represented by the set E of edges. These
edges will determine the stochastic dependence between the areas. The most common
choice is to have an edge [ij] = (vi, vj) when areas i and j share boundaries but other
neighborhood structures may be assumed. A simple path from node v1 to node vm is
a set of nodes v1, v2, . . . , vm in V which are connected by edges (v1, v2), . . . , (vm−1, vm)
such that v1 and vm may be the same (in this special case, it is called a circuit), and
for each i from 1 to m − 1, there exists an edge between vi and vi+1, and no vertex
appears more than once in the sequence, except possibly for v1 and vm. A graph is said
to be connected if, for any pair of nodes vi and vj , there is at least one path connecting
them. Although it is not strictly necessary, we assume the graph is connected. We also
assume the most common situation in practice, that the number p of edges is larger
than the number n of nodes. The adjacency matrix Av of G is an n× n binary matrix
representing the neighborhood structure. That is, Av(i, j) = aij = 1, if vi ∼ vj (or,
equivalently, if [ij] ∈ E), and it is 0, otherwise. We assume that aii = 0 for all i ∈ V.

Associated with the original graph G, we define the graph of edges L(G), a fundamen-
tal tool for our purposes. The graph of edges represents the adjacency relations among
the edges of the original graph G. The nodes in L(G) are the edges [ij] ∈ E connecting
the nodes vi and vj , with i �= j. The edges in L(G) are also determined by the topology
of G. Two nodes [ij] and [kl] in L(G) are adjacent if, and only if, the edges [ij] and [kl]
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are incident on a common vertex, which means the pair of neighboring edges must be
of the form [ij] and [jk] for some vj ∈ V. Let Ii = {[ik] ∈ E , vk ∈ V} be the set of edges
incident on area i. The adjacency matrix Ae associated with the graph of edges L(G)
is a p× p matrix defined based on the edges’ neighborhood structure in L(G). That is,
Ae([ij], [jk]) = a[ij][jk] = 1, if [ij] and [jk] belong to Ij . Otherwise, Ae([ij], [jk]) = 0.
Finally, the incidence matrix C associated with G is an n× p binary matrix such that
cie = 1 if edge e is incident on node i, and cie = 0 otherwise. Figures 1-3 present a toy
example of the graph of edges L(G).

Figure 1: G. Figure 2: E . Figure 3: L(G) edges.

3 Randomly edge-weighted neighborhood graphs model
RENeGe for spatial random effects

In a map partitioned into n contiguous regions, let θ = (θ1, . . . , θn) be a random vector
where θi is a random variable associated with the i-th region. Assume that the coor-
dinates in θ are spatially correlated. The vector θ may represent the spatial effects in
a hierarchical model. The goal is to model the uncertainty about θ accounting for this
spatial correlation. Differently from the CAR-related models, we build the prior distri-
bution for θ in such a way that their correlation is induced by the prior correlation in
spatial effects assigned to the neighborhood graph edges. The novelty of our approach is
the use of a distribution over the pairs of neighboring areas to induce a distribution over
individual areas. We look for a model able to generate a stronger marginal correlation
between neighboring areas, overcoming one of the main limitations of the CAR model.

3.1 Modeling the edge random effects ρ

Assume that our map is represented by the connected graph G. Each component of θ is
a node in G. There are p undirected edges connecting pairs of neighboring nodes in G.
Let ρ[ij] ∈ R be a random variable or edge effect associated with the edge [ij] connecting
nodes θi and θj . The vector of such edge effects is ρ ∈ R

p.

Spatial effects observed in areal data are surrogates for unknown or unobserved
factors that vary on a scale extending beyond the geographical boundaries of the small
areas. As these effects spread throughout the surrounding neighborhood of an area, they
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act on the edges that connect neighbouring areas. Instead of directly modeling the θi
effects in each small area, we can obtain them as a result of a random effects model for
the neighborhood graph edges. The [ij] edge contributes to θi and θj , both connected
by this edge. If the edge effect ρ[ij] is large and positive (or large and negative), then θi
and θj will tend to be large and positive (or large and negative). A second mechanism
that induces a spatial correlation in θ is the assumed distribution for the edge effects
ρ. Two edges, [ij] and [ik], incident on node i, must be correlated due to hidden factors
that extrapolate the boundaries of the areas. For example, environmental factors may
influence the spatial pattern to a geographical extent that is much larger than an area
and its immediate neighbors. Hence, we can expect to observe similar values in the
map on a geographical scale that goes beyond spatial local effects. Unlike CAR, the
proposed model will allow neighboring areas i and j to be more strongly correlated
than in the CAR or ICAR models due to the presence of these two mechanisms. This
stronger correlation will also affect pairs of areas that are not directly connected in G.

We represent the dependence structure of the components in ρ through the graph of
edges L(G) and its associated p×p adjacency matrix Ae. Denote by m[ij] the number of
edges in L(G) that are neighbors of the edge [ij] or, equivalently, the sum of the [ij]-th
row elements of Ae. Define the p × p diagonal matrix M e which diagonal entries are
the p elements m[ij].

Our goal is to build a flexible model for the spatial random effects θ from the prior
knowledge about the edge effects ρ. To this end, consider a latent non-negative random
variable U with pdf f(.|�), where � is a vector of hyperparameters. Assume that the edge
effects vector ρ ∈ R

p has a centered p-variate Normal/independent (NI) distribution
(Lange and Sinsheimer, 1993) with probability density function (pdf) given by

f(ρ|σ2
θ, 	) =

∫ ∞

0

(
u

2πσ2
θ

)p/2

|(Me − γAe))|1/2 exp
{
− u

2σ2
θ

ρt(M e − γAe)ρ
}
f(u|�)du,

(3.1)
which, in a hierarchical representation, becomes

ρ|U, σ2
θ, γ ∼ Np(0, σ2

θU
−1(M e − γAe)−1) (3.2)

U |� ∼ f(u|�),

where � > 0 is the shape parameter, σ2
θ > 0 is the precision parameter, (M e − γAe)−1

is a p × p scale matrix representing the correlation among the edges’ random effects,
and γ is a constant assuming values in the interval (1/λp, 1/λ1), where λ1 and λp

are, respectively, the minimum and the maximum eigenvalues of M−1/2
e AeM

−1/2
e . The

matrix (Me − γAe) is a sparse matrix that induces conditional independence between
unlinked edges. The constraint over γ guarantees that the matrix is a positive-definite
matrix.

Different models for ρ are obtained if we assume different prior distributions for U
(Lange and Sinsheimer, 1993). In (3.2), if the distribution of U is degenerate with P (U =
1) = 1, the joint distribution for the edge random effects is the Normal distribution

ρ | σ2
θ, γ ∼ Np

(
0, σ2

θ(Me − γAe)−1) . (3.3)
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Given σ2
θ and γ, the distribution in (3.3) implies a CAR correlation structure for the

edge effects ρ.

Alternatively, we obtain a heavy-tailed model for ρ if U | 	 ∼ Gamma(	/2, 	/2) in
(3.2), with E(U | 	) = 1 and V (U | 	) = 2/	. This implies that the edge effects vector ρ
follows the centered p-variate Student-t distribution with scale matrix σ2

θ(Me−γAe)−1

and 	 > 0 degree of freedom:

ρ | σ2
θ, γ ∼ Tp

(
0, σ2

θ(Me − γAe)−1, 	
)
, (3.4)

with density function

p(ρ | σ2
θ, γ, 	) =

Γ
(

�+p
2

)
Γ
(
�
2
)
πp/2(	)p/2

∣∣∣∣ (Me − γAe)
σ2
θ

∣∣∣∣
1/2 [

1 + ρt (M e − γAe)
σ2
θ

ρ

]−(�+p)/2
.

The covariance matrix for the edge effects is given by

Cov[ρ | σ2
θ, γ, 	] = 	

	− 2σ
2
θ(M e − γAe)−1, (3.5)

if 	 > 2. The same CAR structure in (3.3) appears also if we adopt an asymptotic
argument by letting 	 → ∞ in (3.5) as, in this case, we have 	/(	 − 2) → 1. Another
way to obtain the same CAR structure as in (3.3) is to replace the scale matrix in (3.4)
with (M e − γAe)−1(	− 2)/	.

A non-centered approach of the proposed model can be easily obtained considering
in (3.2) the linear transformation ρ + μ, μ ∈ R

p. If ρ|U, σ2
θ, γ ∼ Np(0, σ2

θU
−1(Me −

γAe)−1) then, considering properties of the normal distribution, it follows that ρ+μ |
U, σ2

θ, γ ∼ Np(μ, σ2
θU

−1(M e − γAe)−1). However, for the disease mapping applications
in which we are interested, the centered formulations in expressions (3.3) and (3.4) are
more appropriate.

3.2 The induced distribution for the areas’ random effects θ

The proposed model assumes that the random effect θi associated with area i is a linear
combination of the effects of edges incident on area i, that is,

θi =
∑

[ik]∈Ii

ρ[ik] ⇒ θ = C ρ. (3.6)

where C is the n × p incidence matrix and Ii is the set of edges incident on area i.
Assuming that ρ has the NI distribution given in (3.2), we obtain that θ also has a NI
distribution which is hierarchically represented as

θ|U, σ2
θ, γ ∼ Np(0, σ2

θU
−1C(Me − γAe)−1Ct)

U |� ∼ f(u|�). (3.7)

The scale matrix C(M e − γAe)−1Ct is definite-positive. As γ ∈ (1/λp, 1/λ1), this
can be proved by assuming Theorem 4.2.1 in Golub and Van Loan (1996). In this proof,
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we invoke Lemma 2.17 in Bapat (2014), which guarantees that, as G is not a bipartite
graph, the rank of C is n.

As a consequence, if we assume the model in (3.3) for ρ by considering that P (U =
1) = 1, we prove that the linear transformation in (3.6) has the following n-variate
normal distribution

θ | σ2
θ, γ ∼ Nn(0, σ2

θC(Me − γAe)−1Ct). (3.8)

We name the model in (3.8) RENeGe-N. The covariance structure in (3.8) results from
the transformation of the CAR covariance structure assumed for ρ in (3.3) by the
incidence matrix C. That is,

Cov[θ | σ2
θ, γ] = C Cov(ρ | σ2

θ, γ) Ct. (3.9)

Another model, called RENeGe-T, is obtained if we assume the heavy-tailed behavior
for the edge random effects in (3.4). Taking U ∼ Gamma(	/2, 	/2) in (3.7), then θ has
the following n-variate Student-t distribution

θ | σ2
θ, γ, 	 ∼ Tn(0, σ2

θC(Me − γAe)−1Ct, 	) (3.10)

with covariance structure given by

Cov[θ | σ2
θ, γ, 	] = C Cov(ρ | σ2

θ, γ) Ct = 	

	− 2σ
2
θC(M e − γAe)−1Ct. (3.11)

Model (3.10) can also be obtained without making use of the hierarchical structure
in (3.7). Starting directly from the t-distribution in expression (3.4), Kotz and Nadara-
jah (2004) show that θ has the distribution given in (3.10). However, the hierarchical
representation in (3.7) is more general, giving the option to build other heavy-tailed
models for θ spatial effects, and it is computationally more efficient.

The distribution in (3.10) is a special case of the generalized n-variate Student-t
distribution (Arellano-Valle and Bolfarine, 1995) with location 0, dispersion matrix
σ2
θC(Me − γAe)−1Ct, scale parameter and degree of freedom both equal to 	, which

is denoted by θ | σ2
θ, γ, 	 ∼ Tn

(
0, σ2

θC(M e − γAe)−1Ct, 	, 	
)
. Let K = C(M e −

γAe)−1Ct. Consequently, it follows from results in Arellano-Valle and Bolfarine (1995)
and Kotz and Nadarajah (2004) that

(i) The marginal distribution of each component θi of θ is the univariate Student-t
distribution θi | σ2

θ, γ, 	 ∼ T (0, σ2
θKii, 	), a univariate centered t distribution

where Kii is an entry that lies in the ith row and ith column of matrix K.

(ii) Let the column vectors θA and θB define a partition of θ where θA and θB have
dimensions nA and nB = n− nA, respectively. Let the matrices KAA, KBB and
KAB, of order nA × nA, nB × nB and nA × nB , respectively, be the partition
of K induced by θA and θB . The conditional distribution of θA given θB is the
generalized nA-variate Student-t distribution

θA | θB , σ
2
θ, γ, 	 ∼ TnA

(μ�,Σ�, φ�, 	 + n− nA) ,
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where the location is μ� = KABK
−1
BBθB , the dispersion matrix is Σ� = σ2

θ [KAA−
KABK

−1
BBKBA], and the scale parameter is φ� = 	 + θt

BK
−1
BBθB/σ

2
θ .

The choice of 	 in (3.10) may inflate or deflate the variance of θi, being handy to
establish more or less informative prior distributions for θ. It is a challenging task to
define an appropriate value for 	 since no prior information about 	 is usually available.
Different approaches to building objective priors for 	 have been discussed in the litera-
ture (see discussion and references in Villa and Walker (2014)). Although non-objective,
the Gamma prior distribution suggested by Juárez and Steel (2010) is proper, easy to
implement and has a performance similar to the independent Jeffreys’ prior introduced
by Fonseca et al. (2008) for 	 < 50. In our analysis, following Juárez and Steel (2010),
we choose a priori 	 ∼ Gamma(2, 1/10) with density

f(	) = 	

100 exp{−	/10}. (3.12)

There is another way to build a heavy-tailed Student-t model for the spatial effects θ
of the areas through a spatial model defined on the edge effects ρ. In (3.2), the precision
structure for ρ mixes a CAR-sparse matrix Me − γAe with a random positive scalar
factor U . RENeGe-T and RENeGe-N are special cases obtained with different prior
specifications for U . In Section 1 in the Supplementary Material (Cruz et al., 2023), we
present a third model (RENeGe-TS) in which the randomness in the precision structure
of ρ is not determined by a single scalar random variable and it is not sparse. Rather,
the covariance structure of ρ will depend on an inverse-Wishart matrix S centered in a
sparse CAR-type matrix.

3.3 The covariance structure of θ

By assuming a CAR-type structure for ρ, the correlation among the edge effects inher-
its the counterintuitive results pointed out by Wall (2004) and Assunção and Krainski
(2009). As Cov(θ) = C Cov(ρ) Ct, these results are passed on to the covariance struc-
ture of θ. Our goal in this section is to investigate the impact of the covariance of ρ in
the marginal Cov(θi, θj). To simplify, in this section, we set 	(	− 2)−1σ2

θ = 1 in expres-
sion (3.11) and σ2

θ = 1 in expression (3.9). Results obtained here and in next section are
also valid for RENeGe-TS presented in Section 1 in the Supplementary Material (Cruz
et al., 2023). It is not possible to obtain the exact value for Cov(θi, θj) as it requires the
calculation of the inverse matrix (Me − γAe)−1. To investigate the Cov(ρ) impact, we
consider the relationship

(Me − γAe)−1 = (I − γW e)−1M−1
e , (3.13)

where W e is a p× p matrix with entries given by W e[ik][jl] = a[ik][jl]/m[ik]. The binary
variable a[ik][kj] is equal to 1 if, and only if, [ik] and [kj] are incident edges on a same
node k, a[ik][ik] = 0 for all edges [ik], and m[ik] denotes the total number of edges in
L(G) that are neighbors of edge [ik]. The element m[ik] is the [ik]-th coordinate of the
diagonal matrix Me.
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The matrix W e is a transition matrix of a random walk defined on the graph of
edges L(G). Its elements are non-negative, its rows sum to 1, and the diagonal elements
are equal to zero. A particle sitting on an edge [ij] at time t moves to a different
edge randomly selected among those in Ii, the neighbors of [ij] in L(G), with equal
probability. The power matrix W s

e represents the transition probabilities in s steps for
this Markov chain. The non-zero elements in the [ij]-th row of W s

e indicate the other
edges to which one may visit s steps ahead. That is, W s

e[ik][jl] > 0 if there is at least
one path composed of s edges in L(G) linking the initial edge [ik] to the final edge [jl].

For the matrix W e to be ergodic and aperiodic, L(G) must be a connected graph.
As we assume that G is a connected graph, the graph of edges L(G) is also connected.
Furthermore, W e and M−1/2

e AeM
−1/2
e are similar matrices and, therefore, they share

the same eigenvalues. Thus, for γ ∈ (1/λp, 1/λ1), the matrix (I − γW e) is non-singular
and, from results in Assunção and Krainski (2009), its inverse is given by

(I − γW e)−1 = I + γW e + γ2W 2
e + γ3W 3

e + · · · . (3.14)

Substituting the right hand side of (3.14) into expressions (3.11) and (3.9), we have that

Cov[θ] = C(I + γW e + γ2W 2
e + γ3W 3

e + · · · )M−1
e Ct. (3.15)

For i ∼ j, the element Cov(θi, θj) in the matrix in (3.15) is given by

1
m[ij]

+γ
∑

[jl]∈Ij

1
m[jl]

⎛
⎜⎜⎝ ∑

[ik]∈Ii

[ik]∼[jl]

1
m[ik]

⎞
⎟⎟⎠+γ2

∑
[jl]∈Ij

1
m[jl]

⎛
⎜⎜⎝ ∑

[ik]∈Ii

1
m[ik]

∑
[lr]∼[ik]
[lr]∼[jl]

1
m[lr]

⎞
⎟⎟⎠+ . . .

(3.16)
while, if i = j, we have Cov(θi, θi) = Var(θi) given by

∑
[ij]∈Ii

1
m[ij]

+γ
∑

[ij]∈Ii

1
m[ij]

⎛
⎜⎜⎝ ∑

[ik]∈Ii

[ik]∼[ij]

1
m[ik]

⎞
⎟⎟⎠+γ2

∑
[ij]∈Ii

1
m[ij]

⎛
⎜⎜⎝ ∑

[ik]∈Ii

1
m[ik]

∑
[lr]∼[ik]
[lr]∼[ij]

1
m[lr]

⎞
⎟⎟⎠+. . .

For pairs of areas that are not adjacent, the formula is more convoluted, summing
over all the paths connecting the two areas. The proof can be found in Supplementary
Material?? S1.

The expansion in expression (3.16) shows that the correlation structure between θi
and θj cannot be explained considering only the interaction between first-order neigh-
bors. The covariance Cov(θi, θj) is a polynomial in γ where the m-th order coefficient
is a weighted sum of all paths of order m connecting edges [ik] and [jl]. If we con-
sider only a first order approximation, Cov(θi, θj) ≈ m−1

[ij], inversely proportional to
the number m[ij] of edges in L(G) that are neighbors of edge [ij]. Consequently, it is
inversely proportional to the total number of neighbors in G of nodes θi and θj since
m[ij] = mi +mj −2 where ms is the number of neighbors of node θs, s = i, j. Including,
for instance, the third term, the product a[ik][uv]a[uv][jl] is equal to 1 only if the edges
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[ik] and [jl] are 2nd-order neighbors in L(G). That implies that the edge [uv] connects
nodes i and j in G, establishing a more complex dependence structure between the
related nodes in the original graph G by imposing that (i) nodes k and j are 1st-order
neighbor, (ii) nodes k and l and nodes i and j are 2nd-order neighbors and (iii) and
nodes i and l are 3rd-order neighbors.

3.3.1 The regular lattice case

We obtain additional theoretical properties of our model by considering that the graph
G is a regular square lattice with D2 vertices symmetrically wrapped into a torus. In this
simpler structure, the number of first-order neighbors of each node θi is constant and
equal to four. To simplify the expressions, we take σ2

θ = 1. Denote by Cov(ρ[i∗]
D∼ ρ[j∗]),

for all [i∗] ∈ Ii and [j∗] ∈ Ij , the covariance between the edge effects ρ[i∗] and ρ[j∗]
whenever the edges [i∗] and [j∗] are Dth-order neighbors in L(G). The index D is
omitted from the notation for the first-order neighbor case.

If G is a regular lattice, then the graph of edges L(G) is also a regular lattice. The
covariance between any pair of nodes θi and θj in G depends on the effects related to
the edges belonging to Ii and Ij :

Cov(θi, θj)=
{

Var(ρ[ij]) + 6 Cov(ρ[i∗] ∼ ρ[j∗]) + 9 Cov(ρ[i∗]
2∼ ρ[j∗]), if i ∼ j,

Cov(ρ[i∗]
D∼ρ[j∗])+6Cov(ρ[i∗]

D+1∼ ρ[j∗])+9Cov(ρ[i∗]
D+2∼ ρ[j∗]), if iD∼j,D>1.

(3.17)

As Cov(ρ) is proportional to the CAR-type matrix (M e − γAe)−1 for all RE-
NeGe models, then Cov(ρ[i∗]

D∼ ρ[j∗]) decreases with the neighboring order n. Hence,
Cov(θi, θj) decreases in our model. As a direct consequence of (3.17), the marginal
correlation between the first-order neighbors θi and θj is given by

Corr(θi, θj) =
Var(ρ[ij]) + 6Cov(ρ[i∗] ∼ ρ[j∗]) + 9Cov(ρ[i∗]

2∼ ρ[j∗])
4Var(ρ[ij]) + 12Cov(ρ[i∗] ∼ ρ[j∗])

. (3.18)

The RENeGe marginal and conditional correlations differ from that produced by
the CAR model. The red arcs connecting nodes in Figures 4 (a), (b) and (c) show
the first, second, and third-order (θi, θj) pairs of neighbors taking an inner row in a
regular lattice with 400 nodes. The correlations are obtained assuming the RENeGe
covariance matrix C(Me−γAe)−1Ct with γ = 0.8. Under the CAR model, we assume
(Mv − ςAv)−1 with ς = 0.8. Figures 4 (d), (e) and (f) show the values of Corr(θi, θj)
under the RENeGe (blue dashed line) and the CAR (red solid line) models. Figures 4 (g),
(h) and (i) show the conditional (or partial) correlation Corr(θi, θj |θ−(ij)), where θ−(ij)
is the (n−2)-dimensional vector obtained by deleting the i-th and j-th coordinates from
the n-dimensional vector θ. These conditional correlations were obtained numerically.

The grid analyzed in this example is not wrapped into a torus, so nodes belonging to
the border of the lattice have a smaller number of neighbors. This produces a boundary
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Figure 4: Marginal (plots (d), (e), and (f)) and conditional correlations (plots (g), (h),
(i)) of first (d,g), second (e,h) and third (f,i) neighbor order for nodes i = 1 to 20, in a
regular grid of order 20 × 20, under RENeGe (blue dashed line) and CAR (red solid
line) models. The neighbor order is as indicated in the graphics on the first line.

effect indicating a higher conditional correlations near the boundaries when considering
the first (Figures 4 (d) and (g)) and third (Figures 4 (f) and (i)) neighbor orders. The
RENeGe model produces higher (in absolute value) marginal and conditional correla-
tions between θi and θj than the CAR model, irrespective of their neighbor order. For
first-order neighbors, the RENeGe marginal correlation in Figure 4 (d) is around 0.75,
while under the CAR model, it is below 0.25. As expected, under both models, the
marginal correlation is high for nodes near each other and decreases as the distance
between the nodes increases. For instance, for 3rd-order neighbors in Figure 4 (f), the
CAR model produces correlation approximately null while the RENeGe correlation is
above 0.25.
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Figure 5: (a) Conditional correlations for different neighboring order of the RE-
NeGe model in the 20 × 20 grid example. (b) RENeGe-based generated time series.
The conditional expectations (black ×) and the generated values (dashed lines) remov-
ing observations that are neighbors of first (c), second (d) and third (e) orders.

The conditional correlations Corr(θi, θj |θ−(ij)) in Figures 4 (g), (h), and (i) have
a more intricate pattern. The CAR model shows the expected Markovian behavior.
The low (smaller than 0.25) partial correlations of the first-order neighbors in Figure 4
(g) turn to zero in Figures 4 (h) and (i). The conditional correlations of the RENeGe
model are more complex and seem puzzling. RENeGe produces a conditional correlation
structure between θi and θj that is negative if these nodes are neighbors of even order
(Figure 5 (a)). To understand this behavior, we simulated the RENeGe model in a
one-dimensional situation, as we explain next.

Figure 5 (b) show a typical realization of a simulated RENeGe time series. Each
θi is the sum of the antecedent and the subsequent edge effects: θi = ρ[i−1,i] + ρ[i,i+1].
We assumed the parameter values γ = 0.8 and σ2

θ = 1. We considered three different
scenarios. In each of them, we deleted a pair (θi, θj) from the particular realization in
Figure 5 (b) and kept all the other values fixed. Then we simulated a large number
of (θi, θj) values conditioned on all the other values θ−(ij) in this time series. The
three scenarios differ by the neighboring order of i and j. We used i = 860 and j =
861, 862, and 863. The bottom plots in Figure 5 show the simulated time series in
each scenario considering only a small time window around the deleted (i, j) pair. The
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Figure 6: Cumulative summation
∑k

j=1 γ
jCW j

eM
−1
e Ct (left) and the values of

CγkW k
eM

−1
e Ct (right) as a function of the neighboring order k and path types (∼, →,

and ¬), for γ = 0.9 (top) and γ = 0.4 (bottom). (i ∼ j: blue dotted line, → j: red solid
line, and i¬j: green dot-dashed line).

black dots represent the conditional expectation of (θi, θj). Each line is a simulated
series, and the values θ−(ij) are the same as in the original times series due to the
conditioning. The randomness is associated only with the removed (θi, θj). Time series
in which the generated θi is higher than the E(θi|θ−(ij)) are shown as red lines, and
the others are shown in blue lines. Figure 5 (c) clearly shows the positive conditional
correlation between the first-order neighbors θi and θi+1. The blue lines determined
by θi < E(θi|θ−(i,i+1)) typically are followed by θi+1 < E(θi+1|θ−(i,i+1)). This same
pattern is observed for the third-order neighbors in Figure 5 (e). The negative correlation
is evident between the second-order neighbors in Figure 5 (d). Indeed, typically, the blue
lines determined by θi < E(θi|θ−(i,i+2)) are followed by θi+2 > E(θi+2|θ−(i,i+2)).

Another interesting characteristic of the proposed model given by expression (3.16)
is that, as γ is positive, the correlation increases monotonically with γ. The increasing
rate differs depending on the paths connecting the nodes. Let i → j denote that nodes
i and j are separated by a common neighbor and are in the same horizontal or vertical
straight line in the grid. Denote by i¬j a pair of nodes separated by a single common
neighbor but with a connecting path that is not a straight line.

Figure 6 shows the dependence on k of the terms γkCW k
eM

−1
e Ct in expression

(3.15) and its cumulative sums
∑k

j=1 γ
jCW j

eM
−1
e Ct, where k is the path order taking

γ equal to 0.4 or γ = 0.9.

As this is a convergent series, the first terms in (3.16) are more relevant to obtain
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Figure 7: Correlation between first order (left), second order (middle), and third order
(right) neighbors under the proposed (blue dashed line) and CAR (red solid line) models
for different values of spatial correlation parameters γ and ς.

a good approximation for Cov(θi, θj). This relevance depends on the type of paths
connecting the nodes. The higher-order neighbors terms in the Cov(θi, θj) expansion
decay more slowly, requiring more of them in (3.16) to better approximate the true
covariance. Hence, their influence increases with γ.

Figure 7 shows how the correlation between θi and θj changes for different values
for γ and compares it with the CAR(ς) model for different values for ς and differ-
ent neighboring structures. In both models, the correlation increases with the γ and ς
parameters. However, under RENeGe, the correlation between first-order neighbors is
higher for any value of γ. This difference decreases as the neighboring order increases.
Additional discussion of the correlation structure of the RENeGe model can be found
in Section 2 in the Supplementary Material (Cruz et al., 2023).

4 Modeling spatial data using RENeGe
In this section, we empirically explore different features of the RENeGe model. First,
we analyze its ability to induce a higher marginal correlation between neighboring areas
than CAR models (Section 4.1). The eigenstructures of RENeGe and CAR models are
explored in Section 4.2 following Hughes and Haran (2013) and Reich et al. (2006).
In Section 4.3, we make a comparative analysis of five types of cancer mortality data
using different versions of our RENeGe model and a set of spatial models previously
proposed in the literature. The point estimates are the posterior mean in the case of
Bayesian models. We also evaluate the performance of RENeGe, comparing it to some
usual models considering simulated data and its capacity of recovering random effects
(Section 4.4). In all our analysis, we fixed 	 as the number of edges p plus 2 for RENeGe-
TS model. A sensitivity analysis to the prior specification for the precision parameter σ2

θ

and a toy example using RENeGe for image reconstruction can be found, respectively,
in Sections 4 and 6 in the Supplementary Material (Cruz et al., 2023).

Under the RENeGe models, the posterior full conditional distributions have known
closed forms for all parameters except for γ. To sample from the posterior distributions
we propose a Gibbs sampler with a Metropolis step. The posterior full conditional
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distributions are available in the Supplementary Material, Section 3, and the code is
available on GitHub: https://github.com/DannaCruz/RENeGe-Code.

4.1 Inducing correlation between neighbors

One great limitation of the CAR model and its many variations is the small correlation
this model induces between neighboring areas, even when a high value for the spatial
parameter ς is assumed (Ver Hoef et al., 2017). To compare the marginal correlation
induced by RENeGe and CAR models, we consider simulated datasets assuming that
the areas are organized in a regular square lattice with n = 15 × 15 nodes. The 225
nodes can be broken down into 169 nodes with four neighbors, 52 nodes with three
neighbors, and 4 nodes with two neighbors, with a total of 420 edges.

Data are generated assuming that Yi | θ, σ2
y

ind.∼ N(θi, σ2
y), where σ2

y ∈ R+ is the
variance parameter and θ = (θ1, . . . , θn) ∈ R

n. For RENeGe-N and RENeGe-T, we
respectively generate the data assuming that θ ∼ Nn(0;K) and θ ∼ Tn (0;K; 	),
where K = C(Me − γAe)−1Ct. For the CAR model, we generate the data using
θ ∼ Nn

(
0, σ2

θ(DG − ςAG)−1). We consider σ2
θ = 1 and choose two values for σ2

y (0.1
and 1.0). We select three high values for the spatial parameters γ and ς of the two
models: 0.800, 0.900, and 0.999.

We fit the models using the true values for the parameters σ2
y, σ2

θ, γ and ς. The
RENeGe-T model is fitted fixing two values for 	. The first one is 	 = 2.1 to as-
sume a heavy-tailed distribution for θ, and the second one is 	 = 420, the number
of edges, which is a much larger value for this parameter in this model and pro-
vides an approximation to RENeGe-N. For RENeGe-TS, we assume 	 = 420 + 2,
close to the minimum possible value for this parameter in this model, assuming that
the degree of freedom is 	 − n + 1 = 168. We calculated the Moran’s index I =
[
∑n

i=1
∑n

j=1 aij(yi − ȳ)(yj − ȳ)]/[s2
y

∑n
i=1

∑n
j=1 aij ], in each simulated map, where sy

the sample standard deviation and aij is the element of the adjacency matrix defined
by the torus-wrapped regular square lattice.

Table 1 shows the average value of the Moran’s index calculated in each of 100
simulated datasets {y(k)

i , i = 1, . . . , n, and k = 1, . . . , 100} for the four fitted models
and shows the theoretical bounds limiting the possible values of this index. Table 1
presents also a different average. We randomly selected 100 pairs of neighboring areas.
For each of those 100 pairs, we calculated the Pearson correlation index considering the
100 values generated. That is, for a pair composed of areas i and j, we calculated the
Pearson correlation using the 100 values (y(k)

i , y
(k)
j ), k = 1, . . . , 100. After this, we took

the average of the Pearson correlation indexes for the selected 100 pairs of areas. For
almost any value of the spatial parameters, RENeGe-N, RENeGe-T and RENeGe-ST
induce a much higher correlation (Moran and Pearson) between the Y ’s of neighboring
areas than the CAR model. If σ2

θ = σ2
y = 1, taking γ = 0.9 in RENeGe-N (respectively,

RENeGe-T with 	 = 2.1), we have I = 0.510 (respectively, 0.550) while, in the CAR
model, I = 0.20 even taking ς = 0.999. If we take σ2

θ = 1 and σ2
y = 0.1, the Moran’s I

have higher values, but the previous conclusion is the same: RENeGe produces a higher

https://github.com/DannaCruz/RENeGe-Code
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Moran’s Index
Parameter CAR RENeGe-N RENeGe-T RENeGe-T RENeGe-TS Theoretical
γ or ς 	 = 2.1 	 = 422 Bounds

σ2
θ = 1, σ2

y = 1
0.8 0.07 0.260 0.290 0.269 0.270 (−1.03, 1.02)
0.9 0.06 0.510 0.550 0.510 0.557 (−1.03, 1.02)

0.999 0.20 0.590 0.620 0.590 0.584 (−1.03, 1.02)
σ2
θ = 1, σ2

y = 0.1
0.80 0.250 0.430 0.430 0.420 0.410 (−1.03, 1.02)
0.90 0.310 0.670 0.680 0.670 0.670 (−1.03, 1.02)
0.999 0.580 0.720 0.690 0.720 0.770 (−1.03, 1.02)

Pearson Correlation
σ2
θ = 1, σ2

y = 1
0.8 0.103 0.252 0.273 0.352 0.340
0.9 0.135 0.603 0.586 0.623 0.535

0.999 0.542 0.845 0.810 0.840 0.803
σ2
θ = 1, σ2

y = 0.1
0.8 0.240 0.440 0.460 0.450 0.50
0.9 0.340 0.730 0.710 0.730 0.730

0.999 0.830 0.900 0.850 0.900 0.891
Table 1: Average Moran’s index and the average Pearson correlation index between pairs
of areas under the CAR and RENeGe models for different values of γ and ς.

correlation than CAR. In general, the correlations induced by RENeGe-N, RENeGe-TS
and RENeGe-T are comparable if we adopt 	 = 422 in RENeGe-T.

Although it is clear that RENeGe induces higher values for Moran’s index than
CAR, it is disappointing that the index does not come close to its maximum value even
when the spatial parameter γ has a value very close to 1. The Moran’s index reaches
only 0.384 when γ = 0.999. A possible explanation for this behavior is that Moran’s
index I is a combination of a spatially smooth surface and the random noise. It is
possible that conditionally specified spatial models may have some intrinsic limitation
making it impossible to reach very high values for this marginal correlation. While the
global Moran’s I measures the overall clustering of the spatial data based on the entire
map, the behavior of the pairwise correlation between neighboring areas given by the
Pearson index shows a very similar pattern. In this case, maps generated by RENeGe
show a much higher similarity of values between neighboring areas than those generated
by CAR.

4.2 Comparison of RENeGe and CAR eigenstructure
Inspired by the eigenstructure analysis of spatial models in Hughes and Haran (2013)
and Reich et al. (2006), we compare CAR, RENeGe-N, RENeGe-T and RENeGe-TS
with respect to the covariance eigenstructure of the spatial effects θ given, respectively,
in (1.2), (3.8), (3.10) and in expression (1.8) in the Supplementary Material (Cruz
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Figure 8: Eigenvalues for CAR and RENeGe models taking γ = ς and using γ = 0.1
and 0.9 for São Paulo State map (two graphics on the left) and a regular 15× 15 lattice
(two graphics on the right).

et al., 2023), and the respective eigenvalues assuming σθ = τθ = 1. Two different spatial
structures are considered: The São Paulo State map divided into 63 micro-regions and
a regular square lattice with n = 15 × 15 nodes. We assume γ = ς = 0.1 and 0.9. For
RENeGe-T, we consider two values for the degree of freedom: 	 = 2.1 and 	 equal to
the number of edges in the neighborhood graphs (157 for São Paulo State map and 420
for the regular lattice).

Figure 8 shows that, for both spatial structures analyzed, the eigenvalues associated
with all models are positive but the first ones are much higher than the corresponding
eigenvalues associated with the CAR model, under all RENeGe models.

The eigenvalues increase with γ, but this growth is much larger in the case of RE-
NeGe than in the CAR model. Thus, compared to the CAR model, the fit for any RE-
NeGe model depends on the first eigenvectors more strongly. This dependence is stronger
if 	 is small. As a reviewer pointed out, that may help explain why the neighbor-pair
correlations are higher for RENeGe. Comparing the RENeGe models, the eigenvalues
for RENeGe-N, RENeGe-TS and RENeGe-T with high value for 	 are comparable and
smaller than the eigenvalues for the heavy-tailed RENeGe-T which assumes 	 = 2.1.
This behavior is expected since RENeGe-N is a limiting case of RENeGe-T when 	 → ∞.
This different eigenstructure between the models explains the behavior of the Moran’s
and Pearson correlation indexes shown in the previous section.

Figure 9 shows some eigenvectors related to the covariance matrix of RENeGe-N,
RENeGe-T with 	 = 2.1 and CAR models assuming γ = ς = 0.9 for São Paulo State
map. The 1st (respectively, 2nd) and 4th (respectively, 5th) rows show, respectively, the
first and last five eigenvectors maps for RENeGe-T model with 	 = 2.1 (respectively,
RENeGe-N) while 3rd and 6th rows show the corresponding maps for the CAR model.
Section 4 in the Supplementary Material (Cruz et al., 2023) shows the results when
γ = ς = 0.1 (Figure 2). It also shows (Figure 3) the eigenvector structures for a regular
square lattice 15 × 15 by fitting RENeGe-T with 	 = 2.1 and CAR models also taking
γ = ς = 0.9 and 0.1.
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Figure 9: Eigenvectors for RENeGe-N, RENeGe-T with 	 = 2.1, and CAR models taking
the spatial parameters equal to each other γ = ς = 0.9 for São Paulo State map.

The eigenvector for RENeGe-N (2nd row) and RENeGe-T (1st row) with 	 = 2.1
are identical, which is expected since the covariance matrices for these models are pro-
portional. Comparing RENeGe-T (1st row), RENeGe-N (2nd row) and CAR (3rd row)
eigenvectors, there is a similar spatial pattern between the models, but there are also
clear differences. Fixing γ = ς = 0.9, the CAR patterns are much smoother than the
RENeGe ones, especially in the first eigenvector. The spatial patterns in the last eigen-
vectors are more diffuse and do not show similarity. This is expected since these last
eigenvectors are not relevant to explain the covariance matrix. Figure 2, Section 4 in the
Supplementary Material (Cruz et al., 2023)) shows the spatial patterns in the eigenvec-
tors using γ = 0.1. It shows that there is less spatial structure in the eigenvectors maps
in all models if compared with the γ = 0.9 case, but this is more pronounced in the
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CAR model. We do not show the last eigenvectors for γ = 0.1 because their eigenvalues
are very close to zero but they have a similar spatial pattern as in the γ = 0.9.

The regular lattice removes the irregularities of the real map and displays the un-
derlying spatial pattern in the eigenvectors more clearly (Figure 3, Section 4 in the
Supplementary Material (Cruz et al., 2023)). The first five eigenvectors spatial patterns
of RENeGe and CAR for γ = ς = 0.9 are generally very similar. The largest difference
is on the first eigenvector, where CAR has a more pronounced valley in the center while
RENeGe has tiny clusters of small values in the four corners. The other four eigenvectors
also show small differences due to border effects in RENeGe. Moving to the γ = ς = 0.1
case, the spatial pattern is flatter, especially in the CAR model. The five last eigenvector
maps show Scottish-like textures with alternating small clumps of different colors.

4.3 Case study: cancer maps
We analyze the spatial pattern of deaths caused by five types of cancer: Lung/Bronchial,
Colon/Rectal, Stomach, female Breast cancer, and male Prostate cancer. They are se-
lected because they are the most important causes of death by cancer. We collect the
total number of deaths that occurred in the 2008–2019 periods in areas from four states
located in the south of Brazil: Rio Grande do Sul, Santa Catarina, Paraná, and São
Paulo. This region has 73 million inhabitants (around 35% of the Brazilian population),
and it is partitioned into n = 159 administrative areas or micro-regions. In this re-
gion, data has good quality, having little underreporting or cause of death misreporting
problems. Cancer and population data were collected from the DATASUS (http://
datasus.saude.gov.br/), the official Brazilian Health Department data repository.

As a covariate, we consider the Municipal Human Development Index (MHDI), a
composite index measuring social deprivation calculated by the United Nations. These
data were obtained from https://www.br.undp.org/. MHDI is a combination of three
indicators capturing different dimensions of human development: longevity, education,
and economic well-being. The index varies from 0 to 1. The closer to 1, the greater the
human development. The MHDI in the southern region of Brazil has a clustered spatial
pattern, as shown in Figure 4, Section 4 in the Supplementary Material (Cruz et al.,
2023).

Let Yi and Ei denote the observed and the expected counts of death by cancer at
micro-region i, respectively. The expected value Ei is calculated using the age-gender
population distribution and assuming that the age-specific risk is constant in the entire
map. The data are analyzed assuming that

Yi|MHDIi, θi, β0, β
ind∼ Poisson(Eiλi), i = 1, . . . , 159. (4.1)

The λi follows the log-linear regression structure such that log(Eiλi) = β0+βMHDIi+
θi + log(Ei), where θi is the spatial random effects at area i.

To fit RENeGe-N, RENeGe-T, and RENeGe-TS models, we used the following vague
prior distributions: β D= β0∼N(0, 102); γ ∼ U(0, 1) and σ2

θ ∼ IG(0.001, 0.001). Addi-
tionally, for RENeGe-T, we choose 	 ∼ Gamma(2, 1/10), and for RENeGe-TS, we fixed
	 = p + 2 = 424 and the number of degrees of freedom is 266.

http://datasus.saude.gov.br/
http://datasus.saude.gov.br/
https://www.br.undp.org/
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We compare these proposed models with the plain CAR model (Besag et al., 1995),
the generalized skew-normal (GSN) model (Prates et al., 2012), the Leroux model (Ler-
oux et al., 2000), the BYM model (Besag et al., 1991), the model introduced by (Ro-
drigues and Assunção, 2012) that extends the BYM and Leroux models by consider-
ing a higher-neighborhood dependence (HND) and the DAGAR model (Datta et al.,
2019). CAR and Leroux models use a Gaussian Markov random field (GMRF) assuming
θ ∼ N(0, σ2

θQ(ς)−1) where the precision matrix Q(ς) is a function of the spatial corre-
lation parameter ς specific for each model. We choose a prior ς ∼ U(0, 1). For BYM, the
spatial component was an ICAR model with an additional unstructured iid component.
The two variance components are IG(1, 0.01), as recommended in the CARBayes R
package. For the HND model, we consider the particular model of three components
Q−1 = σ2

θ(λ1I + λ2W 1 + λ3W 2). We adopt a gamma distribution with parameters
equal to 0.01 for all inverse variance parameters and a uniform distribution in the two-
dimensional simplex for the weights (λ1, λ2, λ3). The prior distributions of parameters
β0, β, and σ2

θ in these four models are the same as those considered in RENeGe. In the
DAGAR model, the Q(ς) corresponds to an autoregressive model induced by a directed
acyclic graph. We used the order based on the sum of the coordinates of the vertex
assignments to define the directed graph. Additionally, we choose β

D= β0∼N(0, 102),
ς ∼ U(0, 1), and σ2

θ ∼ IG(2, 1). We use the Nimble R-package (de Valpine et al., 2021)
to fit the model. For the GSN model, the random vector θ follows the generalized
skew-Gaussian spatial field (GSGSF) θ ∼ GSNIn(

√
2/πκλ1n,Σ, γI, Hn(·; 	)) with a

CAR structure for Σ, κ = E[U−1/2] and U is a positive random variable with dis-
tribution H(·; 	). Different specifications of H(·; 	) define different GSGSF (see Prates
et al. (2012) for discussion). In our applications, Hn(·; 	)) ≡ Gamma(	/2, 	/2) where
	 = 0.1, λ ∼ N(0, 10), σ2

θ ∼ IG(0.001, 0.001), and the spatial dependence parameter
ς ∼ U(−1, 1). We also use the Nimble package from R to fit this last model (de Valpine
et al. (2021)).

To compare the models, we consider the following model selection criteria: the De-
viance Information Criteria (DIC, Spiegelhalter et al. (2002)), the Extended Bayesian
Information Criterion (EBIC, Brooks et al. (2002)), the extended Akaike information
criterion (EAIC, Carlin and Louis (1996)), and the Watanabe-Akaike information cri-
terion(WAIC, Watanabe (2010)). Small values for the DIC, EBIC, EAIC, and WAIC
imply a better fit of the model. DIC, EAIC and EBIC are given, respectively, by

ˆDIC = D̄ + ρ̄D, ˆEBIC = D̄ + p log(n), and ˆEAIC = D̄ + 2p,

where D̄ = E(D(Ψ)|y), D(Ψ) = −2
∑n

i=1 log(f(yi|Ψ)) is the deviance, f(yi|Ψ) is the
conditional distribution of yi given Ψ, p is the number of parameters in the model, n
is the total number of observations, and Ψ denotes all model parameters. The effective
number of parameters ρD (Spiegelhalter et al., 2002) is given by ρD = E(D(Ψ)|y) −
D(E(Ψ|y)). Estimates for D(E(Ψ|y)) and D̄ are easily obtained using the MCMC
iterations. The WAIC is an extension of AIC and is given by−2(lppd−pWAIC), where
lppd is the log point-wise predictive density and pWAIC is the effective number of
parameters (see Gelman et al., 2004, for details).

To assess the predictive accuracy of the models, we removed n∗ = 31 adjacent micro-
regions from the map to obtain a connected graph representing the remaining areas.
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RENeGe
TS T N CAR GSN Leroux BYM HND∗ DAGAR∗

Lung/Bronchial
Cancer

470.54 26.81 12.21 13.34 142.52 12.21 9.85 5.33 5.48

Breast cancer 470.42 28.12 13.91 14.06 142.23 12.51 10.18 5.11 5.11
Colon/rectal
cancer

496.90 26.41 13.51 13.30 141.62 11.8 9.802 9.82 4.5

Stomach cancer 470.70 27.83 12.82 13.77 141.79 11.97 10.41 5.24 5.91
Prostate cancer 470.46 26.95 12.92 13.59 142.16 12.64 9.92 4.94 5.72

Table 2: Computational time (in seconds) for all fitted models. The asterisk symbol
indicates a model implemented in the NIMBLE language.

We considered 5 sets of removed areas, varying their location in the map to account
for the different spatial features in the risk structure. The removed areas in each of the
5 sets are shown in Figure 5, Section 4, in the Supplementary Material (Cruz et al.,
2023). The RENeGe and the other models are fitted to each set of fully observed data.
Next, we generated m = 50 values Ŷ from the posterior predictive distribution for the
omitted Y values and compared Y and Ŷ using the following BIAS and Root Mean
Squared Error (RMSE) metrics:

BIAS =
5∑

j=1

n∗∑
i=1

m∑
k=1

(Ŷijk − Yi)/5mn∗ RMSE =

√√√√ 5∑
j=1

n∗∑
i=1

m∑
k=1

(Ŷijk − Yi)2/5mn∗,

where Yi is the observed count in area i and Ŷijk is a random value from the posterior
predictive distribution at area i in replication k for j-th set of removed areas.

Table 2 shows the computational time needed to obtain the posterior samples under
all fitted models. It shows that the times to run RENeGe-T and RENeGe-N are close
to that of the competitor models. However, the RENeGe-TS model does not come
without a cost. The more complex model structure requires more computing time. In
part, this extra computational time is due to our non-optimized implementation of
RENeGe model. We should also emphasize that the comparison with HND and DAGAR
is not fair, as they were implemented in NIMBLE.

Although no model is unanimously indicated as the best by the adopted selection
criteria, the RENeGe class of models out performs the competitor models (Table 3).
Only RENeGe-TS is selected, by some criterion, as the best model for all types of
cancers. RENeGe-TS fits the data better of all kinds of cancers according to EBIC and
EAIC, except for Stomach cancer, where EBIC and EAIC select the RENeGe-N model.
DIC also chooses a RENeGe model to fit the data, except for Lung/Bronchial cancer
where the BYM model is selected as the best. WAIC is the only criterion that never
selected a RENeGe model as the best. It is also important to mention that, for most of
the cancers, the RENeGe-TS model produces the most biased predictions. In general,
DAGAR and GSN are the models with the poorest performance if we use DIC, EBIC
and EAIC criteria.
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Figures 10 and 11 respectively show the relative risk (λi) and spatial random effect
(θi) estimates for area i, i = 1, . . . , n = 159, of the two most prevalent types of cancers,
female Breast cancer (bottom) and Lung/Bronchial cancer (top), under all fitted models.
Results for other cancers can be found in Section 4 of the Supplementary Material (Cruz
et al., 2023).

Although Table 3 shows differences among the models, these differences cannot be
clearly seen in Figure 10. CAR, GSN, Leroux, BYM, HND, DAGAR, and the RE-
NeGe models provide very similar maps for the relative risk of Lung/Bronchial cancer
mortality, and the estimates are comparable to the naive SMR estimate. Lung cancer
is the most prevalent cancer, and its large numbers allow for stable rates that are not
much different from the Bayesian smoothed rates for this cancer. The relative risks (λi)
are grouped in relatively large clusters indicating that neighboring areas tend to have
similar risk. All these models, except for the GLM, indicate a very clear North-South
gradient, with lung cancer risk increasing as we move toward the south. This gradient
is the most distinctive spatial pattern in this map, with small differences across the
East-West direction. A similar clustering structure was identified in lung cancer data in
the South region of Brazil by applying the Bayesian model for spatio-temporal cluster
detection introduced by Teixeira et al. (2019). Disturbing the smooth trend along the
North-South gradient in this map, we have three high-risk spatial clusters in the South.
Two of them are on the border between Brazil and Uruguay, while the third contains
Porto Alegre, the largest city in the South region. The relative risks in these clusters are
around 2, meaning that they have a risk twice as large as the average risk in the entire
region. The two clusters on the border are also detected by RENeGe-TS, but the esti-
mates for the relative risks in these areas are smaller than in the other RENeGe models.
Another aspect is that the spatial pattern in the spatial effect θ̂i is very similar to that
found in the relative risk λ̂i for the majority of the models. The smooth North-South
gradient is almost the same in both maps, being the spatial effect positively (negatively)
high for regions experiencing the highest (smallest) mortality risk.

The estimates for the relative mortality risk of breast cancer are spatially more het-
erogeneous than the lung cancer risk. Except for the GLM, all other models provide
visually similar estimates for the mortality risk. The maps do not show any striking
differences between the spatial models. In fact, they look identical, and differences be-
tween the models must be ascertained through the model selection metrics from Table 3.
Returning to the breast cancer maps, they point to the same four spatially unconnected
areas with the highest relative risk, around twice the average risk. The maps of θ̂i and
λ̂i for breast cancer have practically the same spatial pattern.

This similarity between the spatial patterns of the relative risks and the spatial effects
for both type of cancers is an indication that the quality-of-life index, as measured by
MHDI, has little correlation with Lung/Bronchial and Breast cancers mortality risks.
In fact, this is reinforced by the results in Table 4, which shows the posterior means and
the 95% highest posterior density (HPD) intervals. Using a non-spatial GLM Poisson
regression model, we find that the effect of the covariate MHDI is significant for both
cancers (Table 4). It is positive for breast cancer but negative for lung cancer. There is a
possible explanation for this. Lung cancer occurs mainly due to cigarette consumption,
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Model DIC EBIC EAIC WAIC RMSE BIAS
Lung/Bronchial Cancer

RENeGe-TS 1625.51 1346.7 1331.15 2021.68 6.40 0.15
RENeGe-T 1635.92 1367.15 1351.59 2023.13 6.21 0.02
RENeGe-N 1623.91 1356.95 1341.39 2021.92 6.34 0.16
CAR 1514.37 2204.80 1684.06 1457.24 6.36 0.01
GSN 1663.19 2542.00 1879.18 1563.84 6.86 0.05
Leroux 1509.94 2208.67 1681.66 1540.59 8.69 0.05
BYM 1508.60 2173.84 1672.09 1457.52 8.63 0.02
HND 1561.27 2440.08 1777.25 1461.92 8.31 0.05
DAGAR 1599.71 2212.58 1750.34 1558.77 8.68 0.04

Breast cancer
RENeGe-TS 1381.52 1105.27 1089.71 1508.79 2.86 −0.03
RENeGe-T 1380.98 1120.66 1105.10 1523.73 4.14 0.07
RENeGe-N 1382.21 1115.07 1099.51 1523.26 3.06 −0.08
CAR 1388.86 2042.80 1549.58 1335.89 2.91 0.02
GSN 1492.47 2146.58 1653.22 1442.46 2.89 0.02
Leroux 1390.25 2025.94 1546.48 1344.21 2.40 0.03
BYM 1390.10 2053.67 1553.18 1335.38 2.92 −0.03
HND 1390.54 2044.65 1551.30 1340.53 3.98 -0.02
DAGAR 1483.81 2117.22 1639.48 1437.95 3.40 0.02

Colon/Rectal cancer
RENeGe-TS 1533.92 1248.96 1233.41 1819.81 2.84 0.06
RENeGe-T 1532.73 1276.29 1260.73 1829.38 8.99 0.00
RENeGe-N 1525.79 1267.29 1251.74 1829.08 7.39 −0.06
CAR 1535.04 2181.42 1693.90 1481.71 6.84 0.05
GSN 1644.51 2279.93 1800.68 1606.46 7.48 0.05
Leroux 1609.60 2459.86 1818.57 1529.40 7.41 0.01
BYM 1540.23 2207.45 1704.21 1482.29 7.02 0.07
HND 1542.59 2178.01 1698.75 1504.54 6.93 0.07
DAGAR 1711.52 2561.79 1920.49 1631.33 6.92 0.05

Stomach cancer
RENeGe-TS 1496.10 1217.30 1201.74 1783.44 2.39 0.23
RENeGe-T 1508.02 1215.21 1199.65 1783.45 2.49 0.01
RENeGe-N 1498.87 1214.78 1199.23 1783.69 2.39 0.17
CAR 1514.37 2204.80 1684.06 1457.24 4.25 0.18
GSN 1663.19 2542.00 1879.18 1563.84 5.27 −0.04
Leroux 1509.94 2208.67 1681.66 1440.59 5.16 0.11
BYM 1508.60 2173.84 1672.09 1457.52 3.85 0.01
HND 1561.27 2440.08 1777.25 1461.92 3.88 −0.11
DAGAR 1711.52 2561.79 1920.49 1631.33 3.88 −0.03

Prostate cancer
RENeGe-TS 1523.99 1236.51 1220.96 1792.16 2.15 0.04
RENeGe-T 1514.66 1243.14 1227.58 1790.56 2.53 −0.03
RENeGe-N 1520.39 1238.92 1223.36 1792.64 2.42 −0.04
CAR 2411.65 2216.26 1696.49 1468.43 5.20 −0.01
GSN 2511.65 1329.18 3548.18 1725.84 4.95 −0.01
Leroux 1530.53 2296.37 1718.75 1431.95 4.08 0.02
BYM 1526.38 2200.23 1691.99 1476.42 4.01 −0.01
HND 2409.72 1327.26 3446.25 1623.92 4.58 0.03
DAGAR 1632.45 2398.29 1820.67 1533.88 4.05 −0.01

Table 3: Model selection criteria for all fitted models.
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Figure 10: Posterior means for the relative risk λ of Lung/Bronchial (left) and Breast
(right) cancer mortality in the southern region of Brazil under all fitted models.

which used to be higher in Brazil in those areas with higher income levels and therefore,
higher MHDI. Breast cancer mortality may be related to the lack of preventive exams, a
shortage that is more intense in poorer areas. However, the HPD intervals related to the
covariate coefficients include zero for most spatial models. The exceptions occur for the
RENeGe-T, GSN and HND models when analyzing Lung/Bronchial cancer data. That
is, as soon as we allow for random spatial effects, the covariate is no longer relevant.
This puzzling result may be caused by the confounding between the strongly spatially
patterned covariate and the unobserved random spatial effects. Several recent papers
have been dedicated to this thorny issue in spatial statistics (Hodges and Reich, 2010;
Hughes and Haran, 2013; Hanks et al., 2015; Prates et al., 2019; Nobre et al., 2021).
Although we do not pursue this issue further in this paper, some kind of controlling for
spatial confounding may be necessary to analyze these cancers in Brazil if the MHDI
covariate is used.

In Section 4 in the Supplementary Material (Cruz et al., 2023), we present the
posterior means and the 95% HPD intervals for the spatial random effects of 32 areas
selected as follows: 10 areas with the lowest SMR (bottom), 11 areas with intermediate
SMR, and 11 areas with the highest SMR (top). For both types of cancers, the higher the
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Mean 95% HPD Mean 95% HPD Mean 95% HPD Mean 95% HPD Mean 95% HPD
Lung/Brochial Cancer

Coefficients RENeGe-TS RENeGe-T RENeGe-N CAR GSN
Intercept 0.13 (0.08,0.27) 0.51 ( 0.42, 0.57) 0.12 (−0.04,0.29) 0.17 ( 0.03,0.30) 0.61 ( 0.45, 0.76)

MHDI 0.16 (−0.10,0.40)) 0.17 (0.01,0.24) 0.16 (−0.10,0.40) 0.10 (−0.11,0.31) −0.62 (−0.85,-0.37)
σ2
θ 0.07 (0.03,0.12) 0.01 ( 0.00, 0.01) 0.07 (0.03,0.12) 0.10 (0.08,0.12) 0.00 (0.00,0.01)

γ/ ς 0.51 (0.04,0.96) 0.51 (0.04,0.96) 0.51 (0.04,0.96) 1.00 (0.98,1.00) 0.06 (0.06,0.06)
	 148.66 (145.20,153.80)

Leroux BYM HND DAGAR GLM
Intercept 0.10 (−0.04,0.29) 0.17 (−0.07,0.35) 0.61 (0.45, 0.76) 0.17 (−0.07,0.35) 0.53 (0.43,0.63)

MHDI 0.19 (−0.09,0.42) 0.10 (−0.18,0.47) −0.62 (−0.85,-0.37) 0.10 (−0.18,0.47) −0.35 (−0.45 ,-0.25)
σ2
θ 0.10 (0.07,0.12) 0.09 (0.07,0.12) 0.00 (0.00,0.01) 0.09 (0.07,0.12)

γ/ ς 0.97 (0.91,1.00) 0.00 (0.00,0.01) 0.06 (0.06,0.06) 0.00 (0.00,0.01)
Breast cancer

Coefficients RENeGe-TS RENeGe-T RENeGe-N CAR GSN
Intercept −0.48 (−0.91,-0.18) −0.49 (−0.75,-0.16) −0.47 (−0.91,-0.18) −0.68 (−1.34,-0.26) −0.29 (−0.49,-0.08)

MHDI 0.24 (−0.20, 0.91) 0.27 (−0.22,0.69) 0.24 (−0.20,0.91) 0.60 (−0.05, 1.60) −0.03 (−0.36,0.28)
σ2
θ 0.44 (0.32,0.59) 0.40 (0.28,0.60) 0.44 (0.32,0.59) 1.39 (1.10,1.77) 0.00 (0.00,0.00)

γ/ ς 0.39 (0.02,0.95) 0.39 (0.02,0.95) 0.39 (0.02,0.95) 0.28 (0.03,0.66) 0.06 (0.06,0.06)
	 113.91 (101.05,145.26)

Leroux BYM HND DAGAR GLM
Intercept −0.45 (−1.06,0.23) −0.52 (−0.94,-0.13) −0.29 (−0.49,-0.08) −0.52 (−0.94,-0.13) −0.60 ( −0.70 , −0.50 )

MHDI 0.23 (−0.81,1.18) 0.34 (−0.25,1.01) −0.03 (−0.36,0.28) 0.34 (−0.25, 1.01) 1.04 (0.94,1.14 )
σ2
θ 0.41 (0.27,0.71) 0.16 (0.05,0.35) 0.00 (0.00,0.00) 0.16 (0.05,0.35)

γ/ ς 0.13 (0.02,0.38) 0.21 (0.14,0.28) 0.06 (0.06,0.06) 0.21 (0.14,0.28)
Table 4: Posterior means and 95% HPD intervals for some model parameters under all models, Lung/Bronchial and Breast
cancers.
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Figure 11: Posterior means for the spatial effects θ in Lung/Bronchial (left) and Breast
(right) data in the southern region of Brazil under all fitted models.

SMR, the higher the spatial effect. Areas with the intermediate and low values for the
SMR tend to experience negative spatial effects. These areal effects approach zero for
areas with intermediate SMR in both types of cancers. In general, the uncertainty about
the random effects is higher in areas with small SMR. This is more clearly perceived
for Breast cancer data. There is little difference between the methods and no clear
pattern for interval lengths between the methods. For instance, RENeGe-T has the
largest length for Rio Negro and Auriflama, but it is the CAR model that provides the
largest length for São Paulo and Cascavel. If we compare RENeGe models, RENeGe-
T generates intervals with a greater range than RENeGe-N, but for Cerro Azul, the
opposite occurs.

4.4 Analyzing simulated data

Do RENeGe models recover the spatial effects θ? To investigate this question,
we simulate a data set using the map of São Paulo State in Brazil. This map is com-
posed of 63 micro-regions (nodes in the neighborhood graph) and a total of 157 edges
connecting the adjacent micro-regions. For this graph structure, we generate a vector
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Figure 12: Posterior means (circles) and 95% HPD intervals for θ̂ under RENeGe-
N(blue), RENeGe-T(black), and RENeGe-TS(red). The purple circles are the true val-
ues θ.

θ with dimension n = 63 using RENeGe-N and RENeGe-T, respectively, using the dis-
tributions: Nn(0;K) and Tn (0;K; 	), where K = C(M e − γAe)−1Ct with γ = 0.5,
σ2
θ = 0.05 and 	 = 159. For RENeGe-TS, we generate a vector ρ, with dimension

p = 157 as follows. A matrix S is generated from the Inverse-Wishart distribution
S ∼ IWp(	, (Me − γAe)−1), with γ = 0.5. The vector ρ is thus generated from the
multivariate normal distribution ρ|S ∼ N(0, (	−p−1)σ2

θS) with 	 = 159 and σ2
θ = 0.05.

Each coordinate of vector θ is obtained as a linear combination of the incident edges in
that node, as defined in Section 3.1. The response Yi is generated from a Poisson dis-
tribution with mean exp{0.1Xi + θi}, and the Xi covariate is independently generated
from a N(0, 1) distribution.

To analyze the data, we fit all the RENeGe models assuming β∼N(0, 102), γ ∼
Uniform(0, 1), and σ2

θ ∼ IG(0.001, 0.001). For RENeGe-T and RENeGe-TS, the pa-
rameter 	 is fixed in the true value. A total of 10000 MCMC iterations are generated,
and the first 1000 are discarded as burn-in.

The posterior means (respectively, the 95% HPD intervals) for σ2
θ and γ are, re-

spectively, 0.04 ([0.01, 0.1]) and 0.40 ([0.05, 0.65]) under the RENeGe-N model, 0.05
([0.04, 0.27]) and 0.62 ([0.10, 0.72]) under the RENeGe-T model, and 0.04 ([0.01, 0.08])
and 0.52 ([0.03, 0.86]) under the RENeGe-TS model. Such posterior summaries for
the spatial effects θ are given in Figure 12. This simple example shows that all RE-
NeGe models provide reasonable estimates for all parameters and recover the true spa-
tial effects in almost all microregions.

Comparing the models: To evaluate the performance of the RENeGe models
and compare them with the performance of the models considered in Section 4.3, we
simulate 12 scenarios with different spatial complexity and variability among the spatial
effects θ. To define the spatial structure of the simulated data (coordinates, shapes, and
spatial adjacency), we consider the geographical neighborhood structures of the southern
Brazilian regions presented in Section 4.3. Considering this map, our neighboring graph
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is composed of n = 159 nodes connected by p = 422 edges. We considered four different
spatial patterns or scenarios.

The models considered were: RENeGe-TS, RENeGe-T, RENeGe-N, CAR, GSN,
Leroux, BYM, HND, and DAGAR. The scenarios as well as additional information on
the models specification and detailed results are presented in Section 5 in the Supple-
mentary Material (Cruz et al., 2023). Based on the results shown in this Supplementary
Material, we conclude that no model is unanimously chosen as the best by the criteria
used. However, the RENeGe model is deemed the best by at least one criterion in all
scenarios.

5 Conclusions
The CAR model, the most popular approach to handling spatially correlated data, is un-
able to generate a high spatial correlation between neighboring areas even when we take
extreme values for its spatial correlation parameter. We propose a new spatial model
that alleviates this limitation of the CAR model. We consider a Normal/Independent
(NI) class of distributions for the random effects generating a wide class of spatial mod-
els. The NI class includes the Normal family and heavy-tailed distributions such as the
Student-t distribution. Another approach to building a heavy-tailed Student-t spatial
model (RENeGe-TS) was also introduced assuming a conditional normal distribution
for the random effects where the random covariance matrix has an Inverse-Wishart dis-
tribution. Independently of the model used for the spatial random effects, the novelty
in our approach is the way the spatial correlation is induced. We assign spatial ran-
dom effects to the edges of this neighborhood graph. The spatial random effect of each
area is a linear combination of incident edge effects. For the incident edge effects, we
assigned a multivariate NI (or the Student-t for RENeGe-TS) distribution where the
spatial covariance matrix has a CAR-like structure inducing a heavy-tailed behavior for
the spatial random effects. We prove that the proposed RENeGe model induces a higher
marginal correlation than the CAR model, alleviating one of the main limitations of the
CAR and ICAR models.

The proposed model, compared to the CAR model, better accounts for heterogeneity,
providing a better reconstruction of the image. For the cancer datasets, the proposed
model outperforms many other spatial models previously introduced in the literature
showing that it is a competitive model to account for spatial correlation.

Supplementary Material
Supplementary Material for “Inducing High Spatial Correlation with Randomly Edge-
Weighted Neighborhood Graphs” (DOI: 10.1214/23-BA1390SUPP; .pdf). In Supple-
mentary Material, we present (i) another heavy-tailed RENeGe model (called RENeGe-
TS model). We also provide (ii) further results related to the correlation structure of
RENeGe ; (iii) the full conditional distributions for Normal and Poisson spatial models
under the RENeGe structure; (iv) a sensitivity analysis to the prior specification for σ2

θ ;

https://doi.org/10.1214/23-BA1390SUPP


D. L. Cruz-Reyes, R. M. Assunção, and R. H. Loschi 1277

(v) additional results related to the analysis of Cancer and simulated data and, (vi) an
application of RENeGe for image reconstruction, (vii) and details, figures, and results
associated with the simulated data analysis under four spatial scenarios.
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