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Approximate Bayesian Inference Based on
Expected Evaluation

Hugo L. Hammer∗,†, Michael A. Riegler†,§, and Håkon Tjelmeland‡

Abstract. Approximate Bayesian computing (ABC) and Bayesian Synthetic like-
lihood (BSL) are two popular families of methods to evaluate the posterior dis-
tribution when the likelihood function is not available or tractable. For existing
variants of ABC and BSL, the focus is usually first put on the simulation algo-
rithm, and after that the form of the resulting approximate posterior distribution
comes as a consequence of the algorithm. In this paper we turn this around and
firstly define a reasonable approximate posterior distribution by studying the dis-
tributional properties of the expected discrepancy, or more generally an expected
evaluation, with respect to generated samples from the model. The resulting ap-
proximate posterior distribution will be on a simple and interpretable form com-
pared to ABC and BSL.

Secondly a Markov chain Monte Carlo (MCMC) algorithm is developed to
simulate from the resulting approximate posterior distribution. The algorithm
was evaluated on a synthetic data example and on the Stepping Stone population
genetics model, demonstrating that the proposed scheme has real world applicabil-
ity. The algorithm demonstrates competitive results with the BSL and sequential
Monte Carlo ABC algorithms, but is outperformed by the ABC MCMC.

Keywords: approximate Bayesian inference, expected evaluation, Markov chain
Monte Carlo.

1 Introduction
In Bayesian inference the aim is typically the posterior distribution

f(θ|x) ∝ f(θ)f(x|θ) (1)

where x represents observations, f(x|θ) the likelihood function and f(θ) the prior dis-
tribution representing the prior belief about θ before x was observed. Usually the like-
lihood function is available and tractable and most techniques to evaluate the posterior
distribution relies on this.

Approximate Bayesian computation (ABC) and Bayesian synthetic likelihood (BSL)
are two families of methods that generate samples from an approximation to the pos-
terior distribution f(θ|x) even when the likelihood function f(x|θ) is not available or
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computationally tractable, it is only required that one is able to generate samples from
f(x|θ) for any value of θ. ABC and BSL are typically applied when the likelihood repre-
sents complex simulation models and thus is intractable, such as in evolutionary biology
(Csilléry et al., 2010), population genetics (Beaumont et al., 2002; Blum and François,
2010; Overcast et al., 2019; Bratsberg, 2020), econometrics (Creel, 2017), astronomy
(Ishida et al., 2015) and cloud computing (Hammer et al., 2018).

The first ABC method was proposed in Pritchard et al. (1999). Marin et al. (2012)
provides a nice overview of the various variants of ABC procedures that have been
introduced. Since the likelihood function is intractable, ABC methods use discrepancy
functions ρ(x, x̃) to measure the difference between the observations x and samples x̃
generated from the likelihood model f(x̃|θ). Intuitively, if the discrepancy is small, the
θ used to generate x̃ should represent a reasonable sample from the posterior distribu-
tion. Usually discrepancy is measured as the distance between a statistic s(x) of the
observations and the same statistic of a sample x̃ from f(x̃|θ), for example

ρ(x, x̃) = |s(x) − s(x̃)|, (2)

but more advanced alternatives for the discrepancy function have also been suggested,
such as using kernel functions (Blum et al., 2013), comparing the parameter estimates
of an auxiliary model (Drovandi et al., 2015) or results of a classification procedure
(Gutmann et al., 2018).

In the first ABC method that was introduced in Pritchard et al. (1999), possible
parameter vectors are generated from the prior, θ ∼ f(θ) together with corresponding
samples x̃ ∼ f(x̃|θ) from the likelihood model. If ρ(x, x̃) ≤ ε, the proposed θ is accepted
and is a sample from an approximation to the posterior distribution,

f̃ε(θ|x) ∝ f(θ)
∫

f(x̃|θ)I(ρ(x, x̃) ≤ ε)dx̃, (3)

where I(A) is the indicator function returning 1 if A is true and 0 otherwise. If x is a
discrete variable, one may in principle use s(x) = x and ε = 0 and the algorithm will
produce exact samples from the posterior. However, the probability for acceptance is
then extremely small, so in practice ε > 0 is used. To get a more efficient algorithm than
this rejection sampling procedure, Marjoram et al. (2003) use a Metropolis–Hastings
algorithm for sampling from the approximate joint posterior distribution

f̃ε(θ, x̃|x) ∝ f(θ)f(x̃|θ)I(ρ(x, x̃) ≤ ε), (4)

from which (3) results by marginalising out x̃. To avoid the need to evaluate the in-
tractable likelihood function, potential new values for θ and x̃ must be generated jointly.
First, a potential new value for θ, θ′, is generated from some proposal distribution given
the current values of the parameter vector, and thereafter a potential new value for x̃
must be generated from the likelihood model f(x̃|θ′).

Wilkinson (2013) generalises (4) by replacing the zero-one indicator function with a
kernel function Kε(·), where ε is the bandwidth of the kernel. One can again construct
a rejection sampling algorithm to sample from the resulting approximate joint posterior
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distribution, but a better alternative is to use importance sampling (Blum et al., 2013).
More efficient algorithms have also been developed to sample from this distribution,
including Metropolis–Hastings algorithms corresponding to the one discussed above
(Wegmann et al., 2009), and sequential Monte Carlo procedures (Drovandi and Pettitt,
2011; Del Moral et al., 2012).

BSL methods were introduced in Reeves and Pettitt (2005) and Gallant and McCul-
loch (2009). The x̃ generated from f(x|θ) is in this setup used to estimate the parameter
values φ of some parametric auxiliary model fA(x|φ). The parameter estimate φ̂(x̃) is
thereafter inserted into the auxiliary likelihood of the observations to form the resulting
approximate likelihood function

f̃(x|θ) =
∫

fA(x|φ̂(x̃))f(x̃|θ)dx̃ = E
[
fA(x|φ̂(x̃))

∣∣∣x, θ] , (5)

where the expectation is with respect to x̃ ∼ f(x̃|θ). The approximate posterior distri-
bution is thereby

f̃A(θ|x) ∝ f(θ)E
[
fA(x|φ̂(x̃))

∣∣∣x, θ)] . (6)

The φ̂(x̃) is referred to as the binding or mapping function in the indirect inference
literature (Gourieroux et al., 1993; Heggland and Frigessi, 2004). The resulting models
are, in addition to Bayesian synthetic likelihood, also known as synthetic likelihood and
Bayesian indirect likelihood (Wood, 2010; Drovandi et al., 2015; Price et al., 2018). To
generate samples from the approximate posterior distribution various Bayesian simula-
tion algorithms can be used. Drovandi et al. (2015) pointed out that BSL algorithms are
fundamentally different from ABC in the sense that they do not rely on thresholding in
any way.

Both ABC and BSL algorithms are arguably the easiest ones to understand from
all sampling algorithms. When ABC was first introduced in Pritchard et al. (1999) and
when Gallant and McCulloch (2009) formulated BSL, the focus was indeed on specifying
sampling algorithms. The form of the resulting approximate posterior distributions in
(3) and (6) were identified at a later point. For other variants of ABC and BSL the focus
also lies in the simulation algorithm, and the approximate posterior distribution is then
emerging as a result of the algorithm. See also the discussion in Wilkinson (2013).

In the present article we formulate an alternative strategy for defining an approxi-
mate likelihood. What we propose has naturally similarities with both ABC and BSL,
but does not fall within any of these two setups. In our setup the focus is first on defining
a reasonable approximate likelihood function. Only after this has been done, we begin
to discuss simulation procedures for the resulting approximate posterior distribution.

The first step in our strategy is to define an evaluation function s(x, x̃), which in some
sense evaluates the relation between x and x̃. The question is then how this evaluation
function should be used to define an approximate likelihood function, since s(x, x̃) is
not only a function of the observations x, but also a function of the generated data
x̃. Indirectly s(x, x̃) is also a function of θ since x̃ ∼ f(x̃|θ). Actually, there are two
θ’s involved in s(x, x̃), the unknown true θ that we assume nature to have used when
generating the observations x, and the θ that we have used to generate x̃.
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Likelihood functions are defined for observed data, or for functions of observed data.
Except in simulation studies, it is not common to define likelihood functions for values
we have generated ourselves. Instead of defining a likelihood function for s(x, x̃) directly,
we should therefore first use s(x, x̃) to define a quantity that is only a function of x.
The perhaps most natural alternative for this is the expected evaluation,

r(x, θ) = E[s(x, x̃)|x, θ] =
∫

s(x, x̃)f(x̃|θ)dx̃, (7)

where we let θ have the same unknown value as what nature used when generating the
observed values in x. We should then define (an approximate) likelihood function for
the expected evaluation r(x, θ).

In Section 2 we consider various evaluation functions, for all of which the expected
evaluation becomes a sum of several stochastic terms. The central limit theorem can
thereby be used to argue that r(x, θ) has approximately a normal distribution. There
may be situations in which other limiting theorems can be used to argue for other
approximate distributions. In any case, for the central limit theorem or some other
limiting result to apply, the observed x must be part of an ergodic process. We note in
passing that to be able to define a reasonable binding function φ̂(x̃) in the BSL setup,
the same limitation applies. Combining such an approximate likelihood function with
a prior for θ we get a corresponding approximate posterior distribution, that is our
distribution of interest.

Just like BSL, the proposed strategy differs from ABC in that it does not rely on
thresholding in any way. Like BSL, our setup includes taking an expected value with
respect to the generated variable x̃. However, in BSL the expectation is of an auxiliary
likelihood function and the expected value is used directly as the approximate likelihood,
whereas in our setup the expectation is of a more freely chosen evaluation function and
the expected value is just a new stochastic variable for which an approximate likelihood
function can be defined.

The remainder of this article is organised as follows. In Section 2 we detail our strat-
egy for defining an approximate likelihood and discuss several examples of evaluation
functions and corresponding expected evaluation functions. In Section 3 we propose a
simulation procedure that can be used to estimate properties of the resulting approxi-
mate posterior distribution. The estimation scheme we propose requires that unbiased
estimates of the approximate likelihood function is available, so in Section 4 we discuss
how this can be obtained in our setup. In Section 5 we present two examples, one toy
example where analytical results are available and one real data example. Finally, we
provide some closing remarks in Section 6.

2 Approximate likelihood
In this section we define the setting within which we are operating in this article and
formulate a novel framework for constructing an approximate likelihood to be used in
an approximate Bayesian inference setting.
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We consider the situation outlined in Section 1. Thus, we have observed an x, which
we assume to be a realisation from some distribution f(x|θ) where θ is a vector of
unknown model parameters. Adopting the Bayesian setup we assign a prior f(θ) for the
model parameters, so that the posterior distribution of interest becomes as given in (1).
However, we assume the likelihood function f(x|θ) to be computationally intractable so
that standard techniques, like the basic Metropolis–Hastings algorithm, can not be used
to sample from f(θ|x). As in ABC and BSL methods we instead assume that we are able
to generate independent samples from f(x|θ) for any value of θ. For a sample x̃ ∼ f(x|θ)
we define an evaluation function s(x, x̃), which evaluates the relation between x and x̃
in some way. We discuss several possible choices of the evaluation function at the end
of this section.

Given an evaluation function s(x, x̃) and the corresponding expected evaluation in
(7), we proceed by defining an approximate likelihood for the expected evaluation,

r(x, θ)|θ ∼ g(r|θ). (8)

This means that for any fixed value of θ, the distribution of r = r(x, θ) is g(r|θ). We
then propose to construct an approximate posterior distribution by replacing the exact
likelihood f(x|θ) in (1) with g(r(x, θ)|θ). The approximate posterior thus becomes

g(θ|x) ∝ f(θ)g(r(x, θ)|θ). (9)

One should note that when using g(θ|x) instead of f(θ|x) we have performed two ap-
proximations. Firstly, unless r(x, θ) is a sufficient statistic for θ in f(x|θ), it is an ap-
proximation to condition on r(x, θ) instead of x. Secondly, when the likelihood f(x|θ)
is defined and an evaluation function s(x, x̃) is chosen, the corresponding likelihood for
r(x, θ) is also defined and can in principle be found. However, for the situations we
are considering here, this likelihood function is not available, neither analytically nor
numerically. The approximate likelihood g(r|θ) must therefore be chosen based on our
general understanding of the situation, and for mathematical convenience.

To use the approximate Bayesian inference procedure we propose, one needs to
specify an evaluation function s(x, x̃) and a corresponding approximate distribution
g(r|θ) for the resulting expected evaluation. As previously discussed in Section 1, the
need to specify the approximate likelihood puts restrictions on what evaluation functions
we can use. For example, if we select the evaluation function as s(x, x̃) = I(ρ(x, x̃) ≤ ε)
then the expected evaluation becomes r(x, θ) = P (ρ(x, x̃) ≤ ε|x, θ). Further, if we choose
g(r|θ) ∝ r one formally gets the same approximate posterior distribution as in the ABC
setup. However, there is no reason why this g(r|θ) is a good approximation to the true
distribution for r(x, θ). Choosing some simple distribution for x, f(x|θ), a discrepancy
function ρ(x, x̃) and a value for ε, it is of course possible to use Monte Carlo simulation
to estimate the distribution for r(x, θ). We have done this Monte Carlo exercise for
some cases and the distribution for r(x, θ) was then far from being proportional to
r(x, θ). In general it is difficult to find an approximate distribution for r(x, θ) for such
an evaluation function.

We get the same situation if we, inspired from the BSL scheme, choose s(x, x̃) =
fA(x|φ̂(x̃)). Then the resulting expected evaluation becomes r(x, θ) = f̃(x|θ), where
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f̃(x|θ) is as defined in (5). By choosing g(r|θ) ∝ r one formally gets the same approxi-
mate model as in the BSL setup, but there is no reason why this choice should be a good
approximation to the true distribution for r(x, θ). Therefore again for this evaluation
function, it is difficult to find a suitable approximate distribution for r(x, θ).

Having discussed how one should not choose the evaluation function, we will in the
following present four examples of how one can define an evaluation function so that
an approximate distribution for the expected evaluation is available. We start with a
very simple example where the components of x are assumed to be independent and
identically distributed.

Example 1. Let x = (x1, . . . , xn) and x̃ = (x̃1, . . . , x̃n), and assume the elements of
x and x̃ to be scalar and independent and identically distributed. Let the evaluation
function s(x, x̃) be given as

s(x, x̃) = 1
n

n∑
i=1

xi −
1
n

n∑
i=1

x̃i. (10)

The expected evaluation then becomes

r(x, θ) = 1
n

n∑
i=1

xi − μ, (11)

where μ is the common mean of the xi’s and x̃i’s. Unless n is very small the central
limit theorem then gives that r(x, θ) has an approximate normal distribution. As we have
assumed that x and x̃ both are samples from the same distribution and with the same
parameter value θ, we clearly have E[r(x, θ)|θ] = 0. The variance of r(x, θ) is

Var[r(x, θ)] = 1
n

Var[xi] (12)

and the natural estimate for Var[xi] is

σ̂2 = 1
n− 1

n∑
i=1

(xi − x̄)2, (13)

where x̄ = (1/n)
∑n

i=1 xi. For g(r|θ) we can thereby use

g(r|θ) = 1√
2π

√
n

σ̂
exp

{
−nr2

2σ̂2

}
. (14)

In the next example we consider a situation where the x and x̃ vectors are assumed
to be parts of a stationary and ergodic process.

Example 2. Let x = (x1, . . . , xn) and x̃ = (x̃1, . . . , x̃n) be part of a stationary and
ergodic process so that a central limit theorem applies for the empirical covariance at
lag h,

ch(x) = 1
n

n−h∑
i=1

(xi − x̄)(xi+h − x̄), (15)
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where x̄ = (1/n)
∑n

i=1 xi. Let the evaluation function be

s(x, x̃) = ch(x) − ch(x̃). (16)

Assuming n−h to be sufficient large for the empirical covariance ch(x̃) to be an approx-
imately unbiased estimator for the h lag covariance, the expected evaluation becomes

r(x, θ) ≈ ch(x) − cov(h), (17)

where cov(h) = Cov[xi, xi+h] is the true covariance at lag h. The central limit theorem
then gives that r(x, θ) is approximately normal. As in Example 1, x and x̃ are assumed
to be samples from the same distribution and with the same parameter, so we clearly
have E[r(x, θ)|θ] = 0. Moreover, we can again estimate the variance of r(x, θ) from the
observed x, for example using one of the bootstrap techniques discussed in Bühlmann
(2002).

Gutmann et al. (2018) suggest to use classification in the ABC setting. In the follow-
ing example we demonstrate how classification can also be implemented in our frame-
work.

Example 3. Let x = (x1, . . . , xn) and x̃ = (x̃1, . . . , x̃n), where the elements xi and
x̃i can be scalars or vectors. We assume the elements of x and x̃ to be independent
and identically distributed, and let η(z;x, x̃) denote the result of classifying z to come
from the same distribution as the elements in x or to come from the same distribution
as the elements of x̃. The elements of x and x̃ (or parts of these) are used to train the
classifier, so as indicated in the notation the classification result is a function of x and x̃
in addition to being a function of z. We assume η(z;x, x̃) to return one if z is classified
to belong to the x sample, and zero otherwise.

Applying the classification procedure on each element in x and x̃ in turn, we let the
evaluation function return the resulting number of correctly classified elements, i.e.

s(x, x̃) = 1
2n

n∑
i=1

η(xi;x, x̃) + 1
2n

n∑
i=1

(1 − η(x̃i;x, x̃)) (18)

The expected evaluation then becomes

r(x, θ) = 1
2n

n∑
i=1

E[η(xi;x, x̃)|x, θ] + 1
2n

n∑
i=1

(1 − E[η(x̃i;x, x̃)|x, θ]) . (19)

Since the terms of r(x, θ) are distributed on the [0, 1] interval, a natural option is to let
g(r|θ) be a Beta distribution. However, if n is sufficiently large, it is again natural to
let g(r|θ) be a normal density due to the central limit theorem. As we have assumed that
x and x̃ are samples from the same distribution, any reasonable classifier will perform
equivalent to random guessing, so E[η(xi;x, x̃)|θ] = E[η(x̃i;x, x̃)|θ] = 1/2 for all i, which
gives that

E[r(x, θ)] = E[E[s(x, x̃)|x, θ]|θ] = E[s(x, x̃)|θ] = 1
4 + 1

4 = 1
2 . (20)
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In this case it is harder to estimate the variance of r(x, θ). As a first crude estimate
one may use an estimate of the variance of s(x, x̃) in stead, and thereafter refine the
estimate of the variance as we discuss in Remark 3 below. To estimate the variance of
s(x, x̃) we can repeatedly split the elements of x randomly into two parts, each time use
the two parts in a classification setup as above and compute the resulting evaluation
value, and finally find the sample variance of these evaluation values. Letting σ̂2 denote
this sample variance it is natural to let g(r|θ) be a normal density with mean equal to a
half and the variance equal to σ̂2.

In our final example we base our evaluation function on the expression for the p-value
of the two sample permutation test.

Example 4. Let x = (x1, . . . , xn) and x̃ = (x̃1, . . . , x̃n), assume the elements of x and
x̃ to be independent and identically distributed, and let T (x, x̃) be some test statistic that
we want to use to measure the discrepancy between the elements of x and x̃. Having n
elements in each of x and x̃, there are N = (2n)!/((n!)2) ways to redistribute the 2n
elements in x and x̃ into two new vectors of size n. We let zk and z̃k, k = 1, . . . , N
denote the vectors we can construct in this way. Then let the evaluation function be
equal to the p-value of the two sample permutation test,

s(x, x̃) = 1
N

N∑
k=1

I(T (zk, z̃k) ≥ T (x, x̃)). (21)

The expected evaluation then becomes

r(x, θ) = 1
N

N∑
k=1

P (T (zk, z̃k) ≥ T (x, x̃)|x, θ), (22)

where the probability is with respect to the distribution of x̃, and where we should re-
member that zk and z̃k are functions of x̃. Since r(x, θ) is given as an average it is again
reasonable to assume g(r|θ) to be a normal density, and as we assume the elements of x
and x̃ to be samples from the same distribution, we can as in Example 3 use the rule of
double expectation to get E[r(x, θ)] = 0.5. To estimate the variance of r(x, θ) is harder
also in this situation, but one may also here adopt the strategy discussed in Example 3.

We end this section with three remarks regarding the approximation framework
proposed above.

Remark 1. In the proposed framework the approximate likelihood g(r|θ) is allowed to
be a function of θ. In the models where the setup are to be used, however, we think the
situation is so complex that it is in practice very difficult to specify a reasonable g(r|θ)
that is a function of θ. In particular, non of the g(r|θ) we consider in this article depend
on θ, including the ones used in the examples discussed above. One should note that the
approximate likelihood will depend on θ even if g(r|θ) is not a function of θ, since r(x, θ)
is a function of θ.

Remark 2. One should note that in the above framework the evaluation function s(x, x̃)
may be a scalar or a vector. If s(x, x̃) is a vector, also r(x, θ) becomes a vector of the same
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dimension and g(r|θ) becomes a multivariate distribution. To simplify the specification
of a multivariate g(r|θ) one may assume the components of r(x, θ) to be independent so
that g(r|θ) becomes a product of univariate distributions.

Remark 3. In Examples 1 and 2 good estimates of the variance of r(x, θ) are available,
whereas in Examples 3 and 4 we must start with just a very crude estimate of the
variance. In any case, one should note that after having explored the resulting posterior
distribution one may use the simulation output to find a possibly improved estimate of
the variance. To do this one should first use the simulation output to estimate a typical
posterior value of the parameter vector θ. Using this value of θ one can then generate
samples of x and use these to estimate the variance of r(x, θ). In Examples 1 and 2 one
can simply evaluate r(x, θ) for each of the simulated x vectors and estimate the variance
of r(x, θ) by the sample variance of these values. In Examples 3 and 4 one must for
each generated x value also generate a set of x̃ values to estimate E[η(xi;x, x̃)|x, θ] and
E[η(x̃i;x, x̃)|x, θ] in Example 3 and P (T (zk, z̃k) ≥ T (x, x̃)|x, θ) in Example 4.

Remark 4. A fundamental part of finding a good approximate likelihood g(r(x, θ)|θ) is
the choice of the evaluation function. In the ABC literature several methods have been
suggested to find statistics that results in a good estimate of the likelihood function. Often
effective (nearly sufficient) statistics can be found based on domain knowledge (Bharti
et al., 2022). Other popular approaches are based on firstly finding many potentially
effective statistics followed by performing dimension/statistics reduction (Blum et al.,
2013). Another popular approach is to use an auxiliary model, and utilize for instance
maximum likelihood estimators as statistics (Drovandi et al., 2015). These techniques
can usually also be applied within our framework resulting in evaluation functions on
the form in Examples 1 and 2. Effective ABC discrepancy functions suggested in the
literature that are not based on statistics of the data can also in some cases be used
within our framework. For instance, in Example 4 we demonstrated that the classification
approach (Gutmann et al., 2018) can be used within our framework.

3 Posterior estimation
In the previous section we proposed a framework for specifying an approximate likeli-
hood. This framework is of course of no value unless we are able to find or estimate the
properties of the resulting approximate posterior distribution. In this Section we specify
an MCMC procedure that can be used to produce unbiased estimates of any property
of the approximate posterior.

Assume we have the situation defined in Section 2 and that we want the poste-
rior expectation of some function ψ(θ). We take the expectation with respect to the
approximate posterior defined in (9), thus our interest is in

E(ψ) = E[ψ(θ)|r(x, θ)] =
∫

ψ(θ)g(θ|x)dθ

=
∫
ψ(θ)f(θ)g(r(x, θ)|θ)dθ∫
f(θ)g(r(x, θ)|θ)dθ . (23)
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If we had been able to sample from the approximate posterior g(θ|x) we could have
estimated E(ψ) by a simple empirical mean of ψ(θ) for θs sampled from g(θ|x). However,
as the definition of g(θ|x) includes the expected evaluation r(x, θ) = E[s(x, x̃)|x, θ]
we have no simple way to generate samples from g(θ|x), not even using an MCMC
procedure. In the following we adopt ideas introduced in Lyne et al. (2015) to obtain
an estimate of E(ψ).

Assume that we for any value of θ are able to generate an unbiased estimate of
g(r(x, θ)|θ). To produce such an unbiased estimate we need to use a collection of random
numbers which we denote by u. The distribution used to generate u may depend on θ
and we denote the distribution by h(u|θ). Letting ĝ(r(x, θ)|θ, u) denote our unbiased
estimate of the approximate likelihood we thereby have

g(r(x, θ)|θ) =
∫

ĝ(r(x, θ)|θ, u)h(u|θ)du. (24)

A procedure for constructing such an unbiased estimate ĝ(r(x, θ)|θ, u) is discussed in
Lyne et al. (2015), and in Section 4 we develop the procedure in detail when g(r|θ) is
a normal distribution. One should note, however, that the ĝ(r(x, θ)|θ, u) obtained by
this procedure is not necessarily non-negative, so even if it is an unbiased estimate of a
density function it is not necessarily itself a density function.

Combining (23) and (24) we have

E(ψ) =
∫ ∫

ψ(θ)f(θ)ĝ(r(x, θ)|θ, u)h(u|θ)du dθ∫ ∫
f(θ)ĝ(r(x, θ)|θ, u)h(u|θ)du dθ

. (25)

To avoid the potential problem of a possible negative ĝ(r(x, θ)|θ, u) we define a new
joint distribution for θ and u by

ǧ(θ, u|x) = c(x) · f(θ) · |ĝ(r(x, θ)|θ, u)| · h(u|θ), (26)

where
c(x) = 1∫ ∫

f(θ) · |ĝ(r(x, θ)|θ, u)| · h(u|θ)dudθ
(27)

is a normalising constant. Noting that we clearly have

ĝ(r(x, θ)|θ, u) = |ĝ(r(x, θ)|θ, u)| · sign(ĝ(r(x, θ)|θ, u)) , (28)

we can combine (25) and (26) to get

E(ψ) =
∫ ∫

ψ(θ)f(θ) |ĝ(r(x, θ)|θ, u)| sign (ĝ(r(x, θ)|θ, u))h(u|θ)du dθ∫ ∫
f(θ) |ĝ(r(x, θ)|θ, u)| sign (ĝ(r(x, θ)|θ, u))h(u|θ)du dθ

=
∫ ∫

ψ(θ)sign (ĝ(r(x, θ)|θ, u)) · c(x)f(θ) |ĝ(r(x, θ)|θ, u)|h(u|θ)du dθ∫ ∫
sign (ĝ(r(x, θ)|θ, u)) · c(x)f(θ) |ĝ(r(x, θ)|θ, u)|h(u|θ)du dθ

=
∫ ∫

ψ(θ)sign (ĝ(r(x, θ)|θ, u)) ǧ(θ, u|x)du dθ∫ ∫
sign (ĝ(r(x, θ)|θ, u)) ǧ(θ, u|x)du dθ
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= Eǧ[ψ(θ)sign (ĝ(r(x, θ)|θ, u)) |x]
Eǧ[sign (ĝ(r(x, θ)|θ, u)) |x] , (29)

where the two expectations in the last expression are with respect to (θ, u) ∼ ǧ(θ, u|x).
Thus, if we have samples (θ1, u1), . . . , (θm, um) from ǧ(θ, u|x) a natural estimator for
E(ψ) becomes

Ê(ψ) =
∑m

k=1 ψ(θk)sign (ĝ(r(x, θk)|θk, u))∑m
k=1 sign (ĝ(r(x, θk)|θk, u))

. (30)

To generate the samples from ǧ(θ, u|x) we can use a Metropolis–Hastings algorithm.
Letting θ and u denote the current values, and letting θ′ and u′ be corresponding
potential new values, we can generate the potential new values by first generating θ′ from
some proposal distribution q(θ′|θ) and thereafter generate u′ ∼ h(u′|θ′). The acceptance
probability then becomes

α(θ′, u′|θ, u) = min
{

1, c(x)f(θ′)|ĝ(r(x, θ′)|θ′, u′)|h(u′|θ′)
c(x)f(θ)|ĝ(r(x, θ)|θ, u)|h(u|θ) · q(θ|θ′)h(u|θ)

q(θ′|θ)h(u′|θ′)

}

= min
{

1, f(θ′)|ĝ(r(x, θ′)|θ′, u′)|q(θ|θ′)
f(θ)|ĝ(r(x, θ)|θ, u)|q(θ′|θ)

}
. (31)

4 Unbiased estimate for the approximate normal
likelihood

The posterior estimation procedure described in Section 3 is based on the assump-
tion that we are able to generate unbiased estimates for the approximate likelihood
g(r(x, θ)|θ) for any value of θ. To produce such unbiased estimates we again need to
use ideas discussed in Lyne et al. (2015). In Lyne et al. (2015) the idea is described for
an exponential distribution, whereas in this section we detail how it can be performed
when the approximate likelihood g(r|θ) is a (scalar) normal distribution. The strategy is
feasible for any (scalar) distribution for which we have available a closed form expression
for the derivative of any order of the density of the distribution.

In the normal case the task is, for any value of θ, to generate independent unbiased
estimates for

g(r(x, θ)|θ) = 1
σ
√

2π
exp

{
− 1

2σ2 (r(x, θ) − μ)2
}
, (32)

where μ and σ2 have known values and x ∼ f(x|θ).
We start by considering the Taylor series expansion around t = v for the standard

normal density,

ϕ(t) = 1√
2π

exp
{
− t2

2

}
=

∞∑
n=0

ϕ(n)(v)
n! (t− v)n. (33)

Introducing the Hermite polynomial of order n, which can be expressed as

Hn(t) = (−1)nϕ
(n)(t)
ϕ(t) ⇔ ϕ(n)(t) = (−1)nϕ(t)Hn(t), (34)
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we get

ϕ(t) =
∞∑

n=0

(−1)n

n! ϕ(v)Hn(v)(t− v)n. (35)

Setting t = (r(x, θ) − μ)/σ and v = (r� − μ)/σ for some real value r� in the last
expression, and dividing by σ we get

g(r(x, θ)|θ) = 1
σ
ϕ

(
r� − μ

σ

) ∞∑
n=0

(−1)n

n! Hn

(
r� − μ

σ

)(
r(x, θ) − r�

σ

)n

. (36)

To obtain a fast convergence of the series in the expression above, the value of r� should
be chosen close to r(x, θ). As r(x, θ) is an unknown quantity we can not set r� equal to
r(x, θ), but we can set r� equal to an estimate of r(x, θ). In the numerical simulations
we have used

r� = 1
ν

ν∑
i=1

s(x, x̃i), (37)

where x̃1, . . . , x̃ν are samples from f(x|θ), independent of each other and independent
of everything else.

The sum in (36) can not be numerically evaluated since the number of terms in the
sum is infinite. We can obtain an unbiased finite sum estimate of this infinite sum by
truncating the infinite sum at a random stopping time τ and weighting the remaining
terms appropriately. More precisely, let τ be a discrete stochastic variable with some
probability mass function

p(τ), τ = 0, 1, 2, . . . (38)

and define an estimator for g(r(x, θ)|θ) by

g̃(r(x, θ)|θ) = 1
σ
ϕ

(
r� − μ

σ

) τ∑
n=0

(−1)n

n!P (τ ≥ n)Hn

(
r� − μ

σ

)(
r(x, θ) − r�

σ

)n

. (39)

To see why this estimator is unbiased we can first note that we can write

g̃(r(x, θ)|θ) = 1
σ
ϕ

(
r� − μ

σ

) ∞∑
n=0

(−1)nI(τ ≥ n)
n!P (τ ≥ n) Hn

(
r� − μ

σ

)(
r(x, θ) − r�

σ

)n

. (40)

We can then find the expectation of the estimator by taking the expectation for each
term in the sum, and using that E[I(τ ≥ n)] = P (τ ≥ n) we get

E[g̃(r(x, θ)|θ)|x, θ] = g(r(x, θ)|θ). (41)

The next step in the process of constructing an unbiased estimator for g(r(x, θ)|θ) that
can be numerically computed, is to replace each of the (r(x, θ) − r�)/σ) factors in (39)
by independent and unbiased estimators.

For a given value of θ we can generate independent samples x̃ ∼ f(x|θ). As r(x|θ)
is defined by an expectation with respect to a generated x̃ we can easily generate many
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independent and unbiased estimators for (r(x, θ) − r�)/σ. More precisely, let x̃nij for
n = 1, . . . , τ, i = 1, . . . , n and j = 1, . . . ,m for some m ≥ 1 be independent samples
from f(x|θ), and define

r̃nistd(x, θ) = 1
m

m∑
j=1

s(x, x̃nij) − r�

σ
(42)

for n = 1, . . . , τ and i = 1, . . . , n. The different r̃nistd(x, θ) are clearly independent and
from (7) we get

E
[
r̃nistd(x, θ)

∣∣x, θ] = r(x, θ) − r�

σ
(43)

for each n and i. Replacing each of the (r(x, θ) − r�)/σ factors in the expression for
g̃(r(x, θ)|θ) in (39) by one of the unbiased estimators we have now constructed, we get
a new estimator for g(r(x, θ)|θ),

ĝ(r(x, θ)|θ) = 1
σ
ϕ

(
r� − μ

σ

) τ∑
n=0

(−1)n

n!P (τ ≥ n)Hn

(
r� − μ

σ

) n∏
i=1

r̂nistd(x, θ). (44)

This estimator can be computed for any value of x and θ and by construction we clearly
have

E[ ĝ(r(x, θ)|θ)|x, θ] = g(r(x, θ)|θ). (45)

Thus, we can use ĝ(r(x, θ)|θ) as our unbiased estimator for g(r(x, θ)|θ) in the setup
discussed in Section 3.

To complete the specification of the estimator ĝ(r(x, θ)|θ) it remains to specify the
values of ν, m, and the distribution for the stopping time, p(τ). The proposed proce-
dure works in principle for any choices for these quantities, but the choices may severely
influence the computational efficiency of the procedure. To obtain computational effi-
ciency, the estimator ĝ(r(x, θ)|θ) should have a low variance at the same time as the
computational resources necessary to evaluate an estimate ĝ(r(x, θ)|θ) is low. We have
experimented with different choices for ν, m and p(τ) to find quantities that give a
reasonable compromise between these conflicting requirements. In the simulation ex-
periments we used ν = 20. For the distribution of the stopping time τ we use

p(τ) =
{

0 for τ = 0, 1, . . . , τ0,
p (1 − p)τ−τ0−1 for τ = τ0 + 1, τ0 + 2, . . ., (46)

We used different values for m, τ0 ≥ 0 and p ∈ (0, 1) in the various simulation experi-
ments, and therefore we specify what values we have used when discussing each of the
examples. We end this section by noting that the variable u introduced in Section 3,
which should include all random numbers used to define the estimator ĝ(r(x, θ)|θ) be-
comes u = (τ, {x̃i, i = 1, . . . , ν}, {x̃nij , n = 1, . . . , τ, i = 1, . . . , n, j = 1, . . . ,m}).

The algorithm based on the theory in Sections 3 and 4, is shown in Algorithm 1. By
comparing the algorithm with the BSL MCMC algorithm (Price et al. (2018), Appendix
B), we see that the overall structures of the algorithms are the same. Both algorithms
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make approximations to the likelihood by generating samples from the likelihood under
the current value of the parameters θ. Both algorithms use the samples to obtain un-
biased estimates of the approximate likelihood. However, the procedures to obtain the
unbiased estimates are different since the approximate likelihood is different in the two
models, as discussed at the end of the introduction.

Algorithm 1 Metropolis–Hastings algorithm
1: Input: m, τ0, p, θ0, ν,K, μ, σ // See Section 2 for examples on how to find a suitable

value for σ, e.g. using bootstrap techniques
2: Initialize:
3: τ ← p(τ)
4: x̃i ← f(x|θ0) for i = 1, . . . , ν
5: r� ← 1

ν

∑ν
i=1 s(x, x̃i)

6: x̃nij ← f(x|θ0) for n = 1, . . . , τ, i = 1, . . . , n, j = 1, . . . ,m
7: u0 ← (τ, {x̃i, i = 1, . . . , ν}, {x̃nij , n = 1, . . . , τ, i = 1, . . . , n, j = 1, . . . ,m})
8: χ0 ← sign(ĝ(r(x, θ0)|θ0, u0)) // ĝ(r(x, θ)|θ, u) is computed using Equation (44)
9: Iterations:

10: for k ∈ 1, 2, . . . ,K do
11: θ′ ← q(θ′|θk−1)
12: τ ′ ← p(τ ′)
13: x̃′ i ← f(x|θk−1) for i = 1, . . . , ν
14: r� ← 1

ν

∑ν
i=1 s(x, x̃′ i)

15: x̃′nij ← f(x|θk−1) for n = 1, . . . , τ, i = 1, . . . , n, j = 1, . . . ,m
16: u′ ← (τ ′, {x̃′ i, i = 1, . . . , ν}, {x̃′nij , n = 1, . . . , τ, i = 1, . . . , n, j = 1, . . . ,m})
17: α(θ′, u′|θk−1, uk−1) ← min

{
1, f(θ′)|ĝ(r(x, θ′)|θ′, u′)|q(θk−1|θ′)

f(θk−1)|ĝ(r(x, θk−1)|θk−1, uk−1)|q(θ′|θk−1)

}
18: ν ← U [0, 1] // Random number uniform on the interval [0, 1]
19: if ν < α(θ′, u′|θk−1, uk−1) then
20: θk ← θ′

21: uk ← u′

22: χk ← sign(ĝ(r(x, θ′)|θ′, u′))
23: else
24: θk ← θk−1
25: uk ← uk−1
26: χk ← χk−1
27: end if
28: end for
29: Return: (θ0, u0, χ0), . . . , (θK , uK , χK)

5 Simulation examples
In this section we first consider how the proposed procedure can be used in a toy
example. Thereafter we use our scheme for the stepping stone model and compare the
results with what one gets with other popular ABC and BSL algorithms.
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5.1 Toy example
In the first experiment we verified convergence of the simulation algorithm to the correct
posterior distribution. We let f(x|θ) in (1) be a normal distribution with unknown
expectation μ and known standard deviation σ = 2. We generated n = 250 observations
using μ = 0 and used the evaluation function in Example 2 so that the likelihood
function became exact. We chose a Gaussian prior with zero expectation and standard
deviation equal to 5 for the unknown expectation. We ran the algorithm for a total of
5 · 106 iterations. The first 5 000 realisations were discarded and the remaining were
used to estimate posterior expectations using (30) for different choices of ψ. The true
posterior expectations were computed using numerical integration. The differences were
minimal confirming that the algorithm simulated from the correct posterior distribution.

In the second experiment we evaluated computational efficiency. We let f(x|θ) be
a normal distribution with unknown expectation μ and unknown standard deviation
σ. We assumed μ and σ2 to be apriori independent. The prior for μ was set to a
normal distribution with zero expectation and standard deviation equal to 5. The prior
distribution for σ was set to the uniform distribution on the interval [0, 10].

We used the discrepancy function in Examples 1 and in Example 2 for lag h = 0 for
mean and empirical variance, respectively. The evaluation function s(x, x̃) in Example
1 will be normally distributed, while the evaluation function in Example 2 will only be
approximately normal which means that our algorithm will simulate from an approx-
imate posterior distribution for this example. The independence assumption between
mean and empirical variance is however correct.

We compared the performance of our algorithm against popular and state-of-the-art
algorithms in the literature, namely rejection ABC (Pritchard et al., 1999), sequential
Monte Carlo (Beaumont et al., 2009; Drovandi and Pettitt, 2011; Del Moral et al., 2012),
ABC MCMC (Marjoram et al., 2003; Wegmann et al., 2009), BSL and unbiased BSL
(uBSL) (Price et al., 2018). All the algorithms, except BSL and uBSL, were run using
the EasyABC package in R (R Core Team, 2021; Jabot et al., 2015). The BSL and
uBSL algorithm, we implemented ourselves in R.1

Mean and empirical variance were used as summary statistics, and in the BSL and
uBSL algorithms, the distribution of the two statistics was approximated with a bi-
variate normal distribution. For the other algorithms, a discrepancy function based
on Euclidean distance ρ(x, x̃) =

√
s1(x, x̃)2 + s2(x, x̃)2 was used, where s1(x, x̃) and

s2(x, x̃) refer to the evaluation functions in Examples 1 and 2, respectively

Usually for such algorithms, running the generator is the computationally most
demanding part of the procedure. Thus to evaluate computational efficiency, the al-
gorithms were run until the generator was called a total of 105 times. We used the
generated realisations to compute posterior probabilities on the grid [1.0, 1.2, . . . , 3.0]×
[1.0, 1.2, . . . , 3.0]. The true posterior probabilities were computed using numerical inte-
gration and estimation error were computed as the sum of the absolute values of the
differences between the estimated and true probabilities.

1The algorithms are implemented in the R package BSL, but the package was not available.
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Method Error
ABC MCMC 0.09
BSL 0.10
Drovandi and Pettitt (2011) 0.10
Del Moral et al. (2012) 0.19
Suggested algorithm 0.25
uBSL 0.26
Beaumont et al. (2009) 0.32
Rejection ABC 0.45

Table 1: Error in absolute value estimating posterior probabilities.

For our algorithm the posterior probabilities were estimated using (30) were ψ is set
to the indicator function for being inside the grid cell. We also considered a simplified
estimator of (30), by setting all signs equal to 1 resulting in an ordinary empirical mean.
The estimator will be biased, but with less variance, and may perform better for such
short simulations.

We used μ = σ = 2 as the true parameters and repeatedly generated datasets of
size n = 250 to remove Monte Carlo error in the performance measures. We ran each of
the algorithms for a wide range of values for the tuning parameters, to compare fairly
optimal performance of the algorithms. We can imagine that pre-runs have been used
to tune the parameters (Wegmann et al., 2009).

Our algorithm was run for 155 iterations (within the restriction of 105 calls to
the generator). Table 1 shows the results. Our algorithm outperformed some of the
algorithms, but Drovandi and Pettitt (2011), ABC MCMC and BSL document higher
efficiency.

5.2 Stepping stone model
In this example, we evaluated the performance of our algorithm for the stepping stone
population genetics model. The stepping stone model analyzes the genetic effects of mi-
gration between spatially separated subpopulations. For example, migration may limit
the development of local adaption (Tufto et al., 1996).

The model studies the genetic development at L different loci for n subpopulations.
In each locus we assumed two alleles, the dominant and the recessive. Let pi,j,t represent
the portion of subpopulation i where the dominant allele at locus j is expressed at time
t. This is referred to as gene frequencies below. We assumed linkage equilibrium which
means that the gene frequencies in different loci changed independently of each other.
The gene frequencies at locus j for each subpopulation were updated as follows in each
time step

p̆1,j,t+1 = (1 − u)((1 −m/2)p1,j,t + m/2p2,j,t) + uq (47)
p̆i,j,t+1 = (1 − u)(m/2pi−1,j,t + (1 −m)pi,j,t + m/2pi+1,j,t) + uq,

i = 2, . . . , n− 1
(48)
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p̆n,j,t+1 = (1 − u)(m/2pn−1,j,t + (1 −m/2)pn,j,t) + uq (49)

where 0 < u < 1, 0 < m < 1 and q is a common equilibrium gene frequency for example
due to migration from a large outside world. The gene frequencies were further changed
by genetic drift (mutations) according to the Wright-Fisher model (Felsenstein, 2019)

pi,j,t+1 = 1
2Nic

Xi,j,t+1 (50)

where Ni is the size of subpopulation i, Nic ∈ (0, N) the effective population size
and Xi,j,t+1 ∼ Bin(�2Nic�, p̆i,j,t+1) where Bin(n, p) is the binomial distribution with
parameter n and p and �a� represents the integer closest to a with a value less than or
equal to a.

We considered the problem of doing inference on the model parameters u,m and c.
We assume that the observations are one random outcome of the gene frequencies after
the model (47) − (50) had reached equilibrium. Unfortunately, the resulting likelihood
function is not analytically available or tractable and Tufto et al. (1996) suggested a
multivariate normally distributed approximate likelihood function. Since it is possible
to generate samples from the model, Bratsberg (2020) suggested to use ABC. We will
demonstrate how the algorithm in this paper can be used to do inference on the unknown
parameters, and compare the performance with other algorithms.

The equilibrium gene frequency q is a nuisance parameter. The mean gene frequency
after the model reached equilibrium 1

nL

∑n
i=1

∑L
j=1 pi,j,t is approximately sufficient for

q (Tufto et al., 1996). Bratsberg (2020) suggested to run the population model until the
simulated mean gene frequency was equal to the observed mean gene frequency (the
difference between the mean gene frequencies shifted sign). Then the generated sample
should not depend on the unknown q (approximately). We followed the same procedure
here.

We assumed Ni = 250 in each subpopulation, n = 30 subpopulations and L = 30
loci. We used uniformly distributed prior distributions on the intervals [0.005, 1], [0, 1]
and [0.1, 0.5] for the variables u,m and c, respectively. Data was generated running the
model to equilibrium with u = 0.1, m = 0.5, c = 0.4 and q = 0.5. The same values were
used in Bratsberg (2020).

We used spatial autocovariance up to lag three, averaged over the different loci, as
evaluation functions since they depend on the three parameters of interest, u,m and c
(Bratsberg, 2020),

sh(p, p̃) = 1
Ln

L∑
j=1

n−h∑
i=1

(pi,j − pj)(pi+h,j − pj)

− 1
Ln

L∑
j=1

n−h∑
i=1

(p̃i,j − p̃j)(p̃i+h,j − p̃j), h = 1, 2, 3

(51)

where pj = 1
n

∑n
i=1 pi,j and p and p̃ refer to the observed and generated gene frequencies,

respectively. The time subscript is omitted since the evaluation function was used after
the model had reached equilibrium.
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Figure 1: Trace plots of the first 500 iterations of the algorithm. The algorithm was
started with small initial values, u = 0.05,m = 0.1, c = 0.2, and large initial values,
u = 0.5,m = 0.7, c = 0.45, shown as gray and black curves, respectively.

In our algorithm, the expected evaluations r(x, θ) for each lag were approximated
with normal distributions. We further assumed independence between the expected
evaluations for different lags. The normal approximation is probably good, since the au-
tocovariances are estimated averaging over both subpopulations and loci. However, the
independence assumption is more questionable. How to estimate the variance in general
is discussed in Example 2 in Section 2. However in this example, since the autocovari-
ance function can be estimated independently for each loci, we used the independent
estimates to estimate the variances.

In the suggested algorithm, we sat the standard deviations of the expected evalua-
tions equal to 0.1 for each lag estimated as described above. For each of the unknown
parameters m,u and c, we used normally distributed proposal distributions with stan-
dard deviation equal to 0.06 found by trial and error. We used τ0 = 5 and p = 0.5 in
the stopping time distribution in (46).

Figure 1 shows trace plots of the first 500 iterations of the algorithm for each pa-
rameter. We see that the algorithm converges fast and mixes well.

Next we evaluated the consequences of the approximations of the distribution of the
expected evaluation. We ran the rejection ABC algorithm with the autocovariances up
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c ≤ 0.4 c > 0.4
m ≤ 0.5 m > 0.5 m ≤ 0.5 m > 0.5

u ≤ 0.1 0.0172 0.3299 0.0422 0.0969
u < 0.1 0.0143 0.3906 0.0355 0.0733

Table 2: Estimated posterior probabilities using the suggested algorithm.

c ≤ 0.4 c > 0.4
m ≤ 0.5 m > 0.5 m ≤ 0.5 m > 0.5

u ≤ 0.1 0.0125 0.3724 0.0956 0.1584
u > 0.1 0.0098 0.2961 0.0262 0.0290

Table 3: Estimated posterior probabilities using rejection sampling with ε = 0.005.

Method Error
Del Moral et al. (2012) 0.08
ABC MCMC 0.09
Suggested algorithm 0.16
BSL 0.19
Drovandi and Pettitt (2011) 0.19
Rejection ABC 0.19
uBSL 0.24
Beaumont et al. (2009) 0.29

Table 4: Error in absolute value estimating the posterior probabilities conditioned on
the statistic given in Table 2.

to lag three as statistics in (2) for a range of different values of the tolerance ε. Using a
tolerance less than ε = 0.005 resulted in minimal changes in the distribution of the sam-
ples. Thus the samples from the rejection ABC algorithm with ε = 0.005 can in practice
be seen as samples from the posterior distribution conditioning on the autocovariance
statistics. The suggested algorithm in this paper will not simulate from this distribution
since it uses an approximate distribution for the expected evaluation. Tables 2 and 3
show posterior probabilities for the different quadrants around the true values of the
parameters. Our algorithm was run for 3100 iterations resulting in minimal Monte Carlo
error in the results. Overall the posterior probabilities from the two algorithms agree
fairly well. As commented above, probably the main explanation for the differences is
the assumption of independence between the expected evaluation for different lags.

We further evaluated the computation efficiency of the different algorithms using the
same approach as in the toy example. We measured how well the different algorithms
were able to estimate the posterior probabilities conditioned on the statistics given in
Table 3 using a total of 105 runs of the generator. The true posterior distribution is
infeasible to compute for this model, and thus we compared to the posterior distribution
conditioned on the statistics. The same statistics were used by all the algorithms. The
results are shown in Table 4. We see that the suggested method outperforms most of the
methods in the literature, but is outperformed by the sequential Monte Carlo method
by Del Moral et al. (2012) and the ABC MCMC method.
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6 Closing remarks
Previously developed ABC and BSL methods first focus on the simulation algorithm
and the approximate posterior distribution is coming as a result of the algorithm. A
consequence is that the distribution of the approximate likelihood function used in the
posterior distribution involves an integral over the true (and complex) likelihood func-
tion, and the distribution of the approximate likelihood function used in the posterior
distribution will be unknown. In this paper we suggest to rather start by first modeling
a reasonable approximate likelihood function, and thereby a reasonable approximate
posterior distribution. The resulting approximate likelihood function is both intuitive
and comes with a known distribution.

We have further developed a MCMC algorithm to simulate from the approximate
posterior distribution. The experiments document that the simulation algorithm has
competitive computational efficiency compared BSL, uBSL and sequential Monte Carlo,
but is outperformed by ABC MCMC.
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