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The expected Euler characteristic (EEC) of excursion sets of a smooth
Gaussian-related random field over a compact manifold approximates the dis-
tribution of its supremum for high thresholds. Viewed as a function of the
excursion threshold, the EEC of a Gaussian-related field is expressed by the
Gaussian kinematic formula (GKF) as a finite sum of known functions multi-
plied by the Lipschitz–Killing curvatures (LKCs) of the generating Gaussian
field. This paper proposes consistent estimators of the LKCs as linear projec-
tions of “pinned” Euler characteristic (EC) curves obtained from realizations
of zero-mean, unit variance Gaussian processes. As observed, data seldom is
Gaussian and the exact mean and variance is unknown, yet the statistic of in-
terest often satisfies a CLT with a Gaussian limit process; we adapt our LKC
estimators to this scenario using a Gaussian multiplier bootstrap approach.
This yields consistent estimates of the LKCs of the possibly nonstationary
Gaussian limiting field that have low variance and are computationally effi-
cient for complex underlying manifolds. For the EEC of the limiting field,
a parametric plug-in estimator is presented, which is more efficient than the
nonparametric average of EC curves. The proposed methods are evaluated
using simulations of 2D fields, and illustrated on cosmological observations
and simulations on the 2-sphere and 3D fMRI volumes.

1. Introduction.

1.1. The expected Euler characteristic curve. The expected Euler characteristic curve
(EEC) is a function of a real valued parameter—the excursion threshold. The EEC summa-
rizes the topology of the excursion sets of a random field above the excursion threshold in
terms of its expected Euler characteristic. For large thresholds, the EEC is an excellent ap-
proximation of the tail distribution of the supremum of a zero-mean, unit-variance, smooth
Gaussian field defined over a compact domain [33]. Therefore, it has been used to set the
significance threshold for control of the familywise error rate (FWER), particularly in neu-
roimaging studies [27, 41, 42]. More recently, it has been shown to give close to nominal cov-
erage for simultaneous confidence bands for functional data with sufficiently regular sample
paths, even for small sample sizes [24, 38, 39] and simultaneous spatial inclusion of spa-
tial excursion sets [32]. The EEC has also been utilized to test Gaussianity of a sample of
stationary and isotropic processes [7, 14, 37].

The strength of the EEC lays in the fact that it can be written explicitly for Gaussian fields
(and Gaussian-related fields) by means of the Gaussian kinematic formula (GKF) [5, 34].
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This formula ingeniously connects geometric and probabilistic properties of a smooth zero-
mean, unit-variance, Gaussian field f defined over a compact D-dimensional manifold S

with or without boundary. It states that the EEC of the excursion set Af (u) = {s ∈ S : f (s) ≥
u} can be written as

(1) EEC(u) = E
[
χ
(
Af (u)

)]= L0�
+(u) +

D∑
d=1

Ldρd(u),

which remarkably is a finite linear combination of the so-called EC-densities

(2) ρd(u) = (2π)−(d+1)/2Hd−1(u)e−u2/2, d ∈ {1, . . . ,D},
where Hd is the dth probabilistic Hermite polynomial and �+(u) = P(N (0,1) ≥ u). The
linear coefficients L0, . . . ,LD are called Lipschitz–Killing curvatures (LKCs) of S and are
intrinsic volumes of S considered as a Riemannian manifold endowed with a Riemannian
metric induced by f ; compare [5], Chapter 12. In applications, except for L0 = χ(S), which
is simply the EC of S, the LKCs L1, . . . ,LD need to be estimated since they depend on the
unknown correlation function of f .

1.2. Previous work on estimation of LKCs. Estimation of LKCs was first studied in the
neuroimaging community assuming that the random field is stationary isotropic [22, 40, 41].
These estimators use the fact that for isotropic fields the LKCs are simple functions of the
covariance matrix of first-order partial derivatives of f [5], Corollary 11.7.3. Thus, sophis-
ticated discrete derivatives based on i.i.d. observations f1, . . . , fN ∼ f and averaging across
S gives accurate estimates of the LKCs. The simplifying stationary isotropic assumption has
been recently called into question in neuroimaging studies, claiming that it has led to too
many false positive findings and lack of reproducibility [15].

A major complication in removing this strong assumption is that even knowing the func-
tional form of a nonstationary covariance function exactly is generally not helpful. While the
LKCs can be written as integrals of covariances of partial derivatives of the field [5], Theo-
rem 12.4.2, these integrals are hard to evaluate analytically or numerically for manifolds S of
dimension D > 1.

Currently, there are two approaches in the literature that relax this strong assumption on f .
In [35], an estimator was introduced based on triangulating S and warping the mesh of ver-
tices using a diffeomorphism ψ : S → S such that the random field f ◦ ψ on the triangulated
domain becomes approximately locally isotropic. This combined with smart computation of
intrinsic volumes for simplicial complexes yields an LKC estimator, called the warping es-
timator hereafter. It does not require stationarity, and since it can be based on normalized
residuals, it can be applied to fields f with unknown mean and variance. Moreover, if the
triangulation of S gets infinitely dense and the field f is Gaussian, the warping estimator is
unbiased. An apparent downside of the warping estimator is its conceptual complexity and
being difficult to implement in software, especially for complex domains such as subsets of
spheres.

A more recent still unpublished approach, which inspired our work, is based on regression
[4]. Following the form of (1), they proposed to perform a linear regression of the average of
empirically observed EC curves of a sample f1, . . . , fN ∼ f on the EC-densities. Choosing
a set u1, . . . , uP ∈ R of exceedance levels transforms estimation of the LKCs into a gen-
eral linear model with known covariates ρd(up). The regression coefficients L1, . . . ,LD are
estimated by weighted least squares.

This approach, which they call LKC regression, has several problems. First, there are
no clear guidelines on how to choose the locations u1, . . . , uP on the real line, and the
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authors only compare heuristics for their placement. Second, the covariance function of
the error vector of the regression needs to be estimated, which is equivalent to estimating
Cov[χ(Aup),χ(Aup′ )] for p,p′ ∈ {1, . . . ,P }. Unfortunately, not much is known about this
quantity for general Gaussian random fields yet, including under which conditions it is guar-
anteed to even exist. Third, no theoretical analysis of LKC regression is given providing,
for example, unbiasedness or consistency. And fourth, most importantly, it relies heavily on
observing zero-mean, unit-variance Gaussian samples. As we show in simulations, the empir-
ical mean of the observed EC curves is not a consistent estimator of the EEC of a mean-zero,
unit-variance Gaussian process, if the sample is not itself sampled from such a process be-
cause the empirical EEC obtained from such a sample, which is used as the input data in
the regression, is not centered at an EEC of a Gaussian field. Hence for non-Gaussian ob-
servations or if it is unknown whether the generating Gaussian random field is zero-mean
and unit-variance, LKC regression is always biased. This renders LKC regression, as given,
inapplicable in most practical situations.

1.3. Our proposed Hermite projection estimator. Inspired by the regression approach,
our proposed estimator solves all its problems. The key observation is that the EC densities
(2), appropriately scaled, form an orthonormal system for a weighted L2 space. Thus, the dth
LKC coefficient can be obtained by an appropriate orthogonal projection of the EEC onto the
dth EC density. We call this the Hermite projection estimator (HPE) of the LKCs. In Theo-
rem 1, we show that the HPE for zero-mean, unit-variance Gaussian fields can be efficiently
computed without numerically solving the indefinite integral that defines the projection. Un-
der slightly stronger conditions than those required by the GKF, we prove in Theorem 2 that
the estimator is unbiased, and under an additional mild assumption, has finite variance. These
results allow us, by using the strong law of large numbers and the standard multivariate CLT,
to draw power for estimating the LKCs from a sample f1, . . . , fN , proving consistency and
under further conditions that the HPE satisfies a CLT. A byproduct of the proof of Theo-
rem 2 is the property that Cov[χ(u),χ(u′)] decays faster than any polynomial in u,u′; see
Corollary 1. This result has value on its own, since it gives a partial answer to the conjec-
tured property that the variance Var[χ(u)] decays exponentially in u (Robert Adler, private
communication).

The HPE still requires zero-mean, unit-variance Gaussian fields to work properly, as il-
lustrated in our simulations. To solve this problem, we prove in Theorem 3 that, under ap-
propriate conditions on an estimator of derivatives of the correlation function of the random
field, the LKCs can be consistently estimated. Implementing this estimator is complicated in
practice for complex domains S. We circumvent this problem by an unusual use of the Gaus-
sian multiplier bootstrap, which allows us to estimate the LKCs of a Gaussian limiting field
f from non-Gaussian observations f1, . . . , fN . The Gaussian multiplier bootstrap simulates
sample paths from a Gaussian field, which for a given observed sample, are zero-mean, unit-
variance with correlation function being the sample correlation. The obtained fields from the
Gaussian multiplier bootstrap can be fed into the HPE to obtain consistent LKC estimates of
the Gaussian limiting field f . We call this estimator the bootstrapped HPE (bHPE), which
removes the dependency on Gaussian observations and has a lower variance than the HPE
even for Gaussian observations.

As proposed in [4], the EEC of a Gaussian field can be estimated by plugging an LKC
estimate into the right-hand side of (1). For a Gaussian-related field, its EEC can be estimated
similarly by using its GKF. If based on a single observed field, we refer to the corresponding
EC curve as smoothed EC curve. This is illustrated for an isotropic field in Figure 1. Using
the HPE/bHPE for the LKCs and averaging the smoothed EC curves for multiple realizations
leads to a linear and smooth parametric estimator of the EEC, which we also call HPE/bHPE.
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FIG. 1. (left) Realization of the Gaussian random field equation (28) over a 49 × 49 grid. (middle) EC curves
(gray) for N = 10 realizations of the field and their average (blue). (right) Corresponding smoothed EC curves
(gray) and their pointwise average (blue). Dashed blue lines are pointwise 95% confidence bands for the true
EEC (red).

This estimator satisfies a functional central limit theorem (fCLT) (see Proposition 2) from
which we can get confidence bands. Alternatively, a nonparametric estimate may be obtained
by pointwise averaging the observed EC curves; compare Figure 1 (middle). Simulations
show that the HPE has a lower variance. This can be explained by the fact that the HPE is
an orthogonal projection of the nonparametric estimator onto the EC densities. Additionally,
for applications in FWER inference, Theorem 4 shows that our EEC estimator leads to a
consistent estimator of the detection threshold and derives confidence intervals for it.

1.4. Simulations and data applications. The simulations in Section 5 study the finite
sample performance of the HPE and bHPE for Gaussian, non-Gaussian and nonstationary
fields on a 2D rectangular domain. Performances are compared to a method (IsotE) [22] tai-
lored to stationary isotropic fields and the warping estimator (WarpE) [35], which applies to
nonisotropic fields. In all cases, the bHPE gives comparable or better results than its com-
petitors.

In Section 6, we estimate EECs of the cosmic microwave background (CMB) radiation
field on a complex, nontrivial subset of the 2-sphere using cosmological simulations [2] in
order to compare the physical model with actual observed CMB data from the Planck satellite
[6]. A second data application for FWER inference on voxelwise activation in a single-subject
fMRI study [26] is available in the Supplementary Material [36]. Matlab code reproducing
the simulation results and data analysis is available under https://github.com/ftelschow/HPE.
The most recent implementation of the HPE and bHPE and other LKC estimators can be
found in the RFTtoolbox https://github.com/sjdavenport/RFTtoolbox.

2. Estimation of the LKCs for Gaussian fields.

2.1. Setting and assumptions. Let S be a D-dimensional, compact, orientable C2-
manifold with or without boundary. If S does not have a boundary, let S̃ = S; otherwise
let S̃ be a D-dimensional, C3-manifold without boundary such that S ⊂ S̃ is a compact,
C2-submanifold and its boundary ∂S is a (D − 1)-dimensional C2-submanifold. Recall that
(U,φ) is a C2-chart around s ∈ S̃ if U ⊂ S̃ is open and contains s, and φ ∈ C2(U,V ) is a
diffeomorphism onto an open set V ⊂ R

D . By the compactness of S, there is a finite at-
las (Uα,φα)α∈{1,...,P } of S, P ∈ N, derived from charts (Ũα, φ̃α)α∈{1,...,P } of S̃ such that
Uα = Ũα ∩ S and φα : Uα → Vα = φ̃α(Ũα ∩ S) is the restriction of φ̃α to Uα . Denote with
fα = f ◦ φ−1

α the coordinate representation of f in the chart Uα and denote with ∇fα the
gradient and with ∇2fα the Hessian of fα . Furthermore, define the number of critical points

https://github.com/ftelschow/HPE
https://github.com/sjdavenport/RFTtoolbox
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Nf of f and Nf,v the number of critical points of f with critical values larger than v ∈ R>0
by

Nf = #
{
s ∈ S : ∇fα

(
φα(s)

)= 0 for an α ∈ {1, . . . ,P }},
Nf,v = #

{
s ∈ S : ∇fα

(
φα(s)

)= 0 for an α ∈ {1, . . . ,P } and
∣∣f (s)

∣∣> v
}

We introduce the following abbreviations u0 = mins∈S f (s) for the global minimum and
uM = maxs∈S f (s) for the global maximum of f . Finally, let vech(A) denotes the half-
vectorization of a symmetric matrix A ∈R

D×D , that is,

vech(A) = (A11, . . . ,AD1,A22, . . . ,AD2, . . . ,AD−1D−1,ADD−1,ADD).

The assumptions required to prove our main results of this section are:

(G1) f is a zero-mean, unit-variance Gaussian field on S̃ with a.s. C2-sample paths.
(G2) For all α ∈ {1, . . . ,P }, the covariance matrices of the Gaussian vector(

fα(x),∇fα(x),vech
(∇2fα(x)

))
is nondegenerate for all x ∈ Vα .

(G3) For all α ∈ {1, . . . ,P }, there exist constants K > 0 and γ > 0 such that

E

[(
∂2fα

∂xd∂xd ′
(x) − ∂2fα

∂xd∂xd ′
(y)

)2]
≤ K‖x − y‖2γ

for all x, y ∈ Vα and all d, d ′ ∈ {1, . . . ,D}.
(G4) Assume there exists some v > 0 (possibly very large) such that

(a) E[Nf,v1{u0<u≤uM }] = O
(
u−D−2).

(b) E
[
N2

f

]
< ∞,E[Nf,vNf 1{u0<u≤uM }] = O

(
(u)−D−2),

E
[
N2

f,v1{u0<u≤uM }1{u0<u′≤uM }
]= O

((
uu′)−D−2)

as |u|, |u′| → ∞.

REMARK 1. The conditions (G1)–(G3) are required for the GKF [5], Theorem 12.4.1,
Theorem 12.4.2, and only conditions (G3) is only slightly stronger for simplicity than what
is needed; compare [5], Corollary 11.3.2. In particular, they imply that the paths of f are
almost surely Morse functions [5], Chapter 11.3.

REMARK 2. Condition (G4a) is required to show that the HPE is unbiased and Condition
(G4b) implies that the covariance matrix of the HPE exists. In particular, the bootstrapped
HPE only requires (G4a) for the Gaussian multiplier field to obtain a consistent estimator of
the LKCs; compare Section 3. Finite variance and a CLT for the bHPE depend on properties
of the estimate of the Riemmanian metric induced by f on S and can be established using
the delta method; see Section 3.1.

REMARK 3. In Appendix A.4, we show using Borel TIS inequality [5], Theorem 2.1.1.,
and Hölder’s inequality that (G4a) and (G4b) are satisfied if high enough moments of the
number of critical points of f exists.

In particular, (G4a) follows from E[N1+ε
f,v ] < ∞ for some ε > 0. The latter is a mild

assumption because Lemma 3 from [28] can be used to show E[N2
f,v] < ∞ under conditions

very similar to (G1)–(G3). Moreover, replacing (G2) by a slightly stronger assumption [12]
established that E[N2

f ] < ∞ and, therefore, (G4a) is satisfied for many processes satisfying
the GKF, that is, (G1)–(G3).
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Recently, it even has been proven that E[Np
f ] < ∞, if the sample paths of f are almost

surely Cp+1 and a nondegeneracy condition similar to (G2) holds true, which includes p +1-
derivatives; compare [17], Theorem 1.2 and Theorem 1.5. Therefore, (G4b) follows imme-
diately from Appendix A.4. if f has C4 sample paths and (G2) is replaced by their slightly
stronger nondegeneracy condition.

2.2. LKCs as projections of the EC curve. Consider the Hilbert space with inner product

(3) 〈g,h〉 =
∫ ∞
−∞

g(u)h(u)eu2/2 du,

consisting of all functions g, h such that |g|2 = 〈g,g〉 < ∞ and |h|2 = 〈h,h〉 < ∞. The key
observation for estimation of LKCs is that the EC densities (2) are orthogonal, that is,

(4) 〈ρd,ρd ′ 〉 =
∫ ∞
−∞

ρd(u)ρd ′(u)eu2/2 du = (2π)−(d+1/2)(d − 1)!δdd ′,

where δdd ′ is the Kronecker delta. This follows from the orthogonality of the Hermite poly-
nomials in the L2 space with weights e−u2/2, that is,

(5)
∫ ∞
−∞

Hd−1(u)Hd ′−1(u)e−u2/2 du = √
2π(d − 1)!δdd ′, d, d ′ ∈ {1, . . . ,D}.

Thus, (1) implies that the LKCs can be obtained from the EEC as projection coefficients,

(6) Ld = 〈EEC◦, ρd〉
|ρd |2 = (2π)d/2

(d − 1)!
∫ ∞
−∞

Hd−1(u)EEC◦(u) du,

where EEC◦ = EEC−L0�
+ is the “pinned” EEC with L0 = χ(S). It is pinned in the

sense that it tends to 0 for both small and large u, since limu→∞ EEC(u) = 0 and
limu→−∞ EEC(u) = L0.

2.3. Estimation of the LKCs from a single observation. Because L0 is the EC of the
domain S of the Gaussian random field f , it is known and need not be estimated. Given a
realization of f and its empirical EC curve u �→ χf (u), which is formed by the EC of the
excursion sets Af (u) of f above u, we define the corresponding “pinned” EC curve as

(7) χ◦
f :R→R, u �→ χf (u) −L0�

+(u),

which satisfies limu→∞ χf (u) = 0 and limu→−∞ χf (u) = L0. Applying the projection from
(6) to χ◦

f yields the estimator

(8) L̂d = (2π)d/2

(d − 1)!
∫ ∞
−∞

Hd−1(u)χ◦
f (u) du,

which we call the Hermite projection estimator (HPE) of the LKC Ld . The integral in (8) is
well defined, since χ◦

f is exponentially decaying outside the interval [u0, uM ] and is bounded

on it. Comparing with (6), the estimator L̂d plays the role of the “observed” LKC of order d

of the field f . In some sense, the HPE can be seen as a continuous version of Adler’s LKC
regression; compare the supplementary material Appendix A.1.
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2.4. An alternative representation. Morse functions play a central role in the computa-
tion of the EC of a set. This is due to Morse’s theorem, which computes the EC from Morse
indices at critical points of a Morse function. The most general version of this result is due to
Goresky and MacPherson and allows S to be a regular stratified manifold [5], Chapter 9.2.3
and Theorem 9.3.2. For regular stratified manifolds, the notion of a critical point needs to be
slightly extended. A point s ∈ S lying in the d-dimensional stratum ∂dS, d ≤ D is called a
critical point of f if the gradient of f with respect to S̃ at s is orthogonal to the tangent space
of ∂dS at s, that is, it is a critical point of the restriction of f to ∂dS. Note that manifolds
with boundaries, which we consider in this work for S, are a special case of locally convex,
regular stratified manifolds which have only two strata ∂DS, the interior of S and ∂D−1S the
boundary of S. A short self-contained discussion elaborating on this definition and the set of
critical points of stratified manifolds can be found in [12]; a more comprehensive one in [18].

Under the assumption that the sample paths of f are almost surely Morse functions (e.g.,
under (G1)–(G3)), we have by Corollary 9.3.5 from [5] that the empirical EC curve, if the
critical values are ordered by height, is constant between consecutive critical values. Hence,
we can rewrite the empirical EC curve u �→ χf (u) as a step function, if we extend it to
critical values by its left limit. The actual value of χf at a critical value is irrelevant as
we are only interested in integrals of the empirical EC curve and f has only finitely many
critical points on the compact set S [18], Remark p. 52, and, therefore, finitely many critical
values. Therefore, the estimator (8) can be equivalently written as a polynomial function of
the critical levels.

THEOREM 1. Let the paths of f be almost surely Morse functions with random critical
values minf = u0 < · · · < uM = maxf . Then almost surely

(9) χf (u) = L01(−∞,u0](u) +
M∑

m=1

am1(um−1,um](u)

with random M and random am = χf (um) ∈ Z, and hence

L̂d = (2π)d/2

d!
M∑

m=0

(am − am+1)Hd(um) with a0 = L0 and aM+1 = 0.

The above representation is useful especially for numerical implementation, since it does
not involve the indefinite integral (8). It reduces the estimation of LKCs to finding critical
values um of the sample functions and the coefficient am. Both can be efficiently estimated;
compare supplementary material Appendix A.2. In particular, this connects our estimator to
works on spectral moment estimation such as [3] and [9], which derived consistent estimators
from extrema of the process. Note that spectral moments and LKCs are essentially the same
for stationary processes; compare [5], Section 12.5.

2.5. Properties of the Hermite projection estimator. Heuristically, from equations (6) and
(8) by interchanging integration and expectation we obtain that L̂d is unbiased. Moreover, let
L̂ = (L̂1, . . . , L̂D)T be the vector of observed LKCs and denote its covariance matrix by
� = Cov[L̂]. Again changing order of integration and expectation yields that the (d, d ′)-
entry σdd ′ of the covariance matrix � can be expressed as

(10) σdd ′ = (2π)d/2(2π)d
′/2

(d − 1)!(d ′ − 1)!
∫∫

Hd−1(u)Hd ′−1(v)Cov
[
χf (u),χf (v)

]
dudv

using equation (8). The next theorem justifies that Fubini’s theorem can be applied under the
condition (G4).
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THEOREM 2. Assume that f satisfies (G1)–(G3).

(i) Assume (G4a), then the HPEs are unbiased, that is, E[L̂d ] = Ld for all d ∈ {1, . . . ,D}.
(ii) Assume (G4b), then σdd ′ = Cov[L̂d, L̂d ′ ] is finite for all d, d ′ ∈ {1, . . . ,D}. In partic-

ular, this implies that (10) holds and is finite.

A slight variation of the proof of Theorem 2(ii) allows to shed some light on the behavior
of the covariance function of the EC of excursion sets of Gaussian random fields. The basic
observation is that the same proof, which shows that (10) is finite for d, d ′ ≤ D can also
be utilized to establish that (10) is finite even if d, d ′ > D if we strengthen (G4) slightly
such that the condition hold for all D ∈ N. The latter is easily satisfied under certain moment
conditions as explained in Remark 3 and Appendix A.4.

COROLLARY 1. Under the assumptions of Theorem 2(ii), if we assume that (G4) holds
for all D ∈ N, then we have that |Cov[χf (u),χf (u′)]| decays faster than any polynomial in
u,u′ as u,u′ → ±∞.

2.6. Estimation of the LKCs from repeated observations. Let f1, . . . , fN ∼ f be i.i.d.
random fields over the domain S with unknown covariance function satisfying (G1)–(G3)
and let L = (L1, . . . ,LD)T be the vector of true LKCs. Then each EC curve χfn yields a
vector of LKC estimates L̂n = (L̂1n, . . . , L̂Dn)

T. The average estimator is defined by

(11) L̂(N) =
(
L̂(N)

1 , . . . , L̂(N)
D

)T = 1

N

N∑
n=1

L̂n.

Applying the strong law of large numbers (SLLN) and the standard multivariate central limit
theorem (CLT), an immediate consequence of Theorem 2 is that the HPEs are unbiased and
consistent estimators, which also fulfill a CLT.

COROLLARY 2. Assume that f satisfies (G1)–(G3).

(i) Assume (G4a), then L̂(N)
is unbiased and L̂(N) a.s.−−→ L, as N → ∞.

(ii) Assume (G4b), then
√

N(L̂(N) −L)
D−→ N (0,�) with � given in (10).

With repeated observations, the covariance matrix � can be estimated unbiasedly and
consistently from the sample f1, . . . , fN ∼ f , if N ≥ 2, via

(12) �̂
(N) = 1

N − 1

N∑
n=1

[
L̂n − L̂(N)][L̂n − L̂(N)]T

.

3. LKC estimation from non-Gaussian fields. The previously developed theory relies
heavily on the assumption that f is zero-mean, unit-variance and Gaussian. In applications,
these assumptions usually are satisfied for a zero-mean, unit-variance limiting field G with
covariance function r from a fCLT, yet not for the observed fields. This is, for example, often
the case in neuroimaging data; compare Appendix C.

Furthermore, our simulations in Section 5 show that even for an i.i.d. sample f1, . . . , fN ∼
f with f Gaussian, the LKC estimation of the unit-variance process f/

√
Var[f ] with co-

variance function r using the HPE is biased for finite N if the mean and variance of f are
unknown. This occurs because we need to use the standardized residuals

(13) Rn = fn − f̄√
N−1∑N

n=1
(
fn − f̄

)2 , n ∈ {1, . . . ,N}, N ≥ 2,
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in the HPE (8) instead of the Gaussian observations f1, . . . , fN . Since the fields Rn, n ∈
{1, . . . ,N} are non-Gaussian, the HPE is often biased.

These examples demonstrate that the HPE is only useful if we modify it so that the LKCs
of a zero-mean, unit-variance Gaussian field G with covariance function r can be estimated
from non-Gaussian observations. To achieve this, we introduce the bootstrapped Hermite
Projection Estimator (bHPE). Here, the key observation is that the LKCs of G depend solely
on the derivatives of r, compare [5], Definition 10.7.2 and equation (12.2.4). From now on,
L(q) will denote the vector of the LKCs of a random field having correlation q.

Assume R1, . . . ,RN is a sample of possible non-Gaussian fields (e.g., the standardized
residuals) such that their sample covariance function r̂(N) converges to r. The idea of the
bHPE is to use the Gaussian multiplier bootstrap to generate from the zero-mean Gaussian
field having the covariance function r̂(N) and apply the HPE to this sample. Since for fixed
observations R1, . . . ,RN , the sample generated by the multiplier bootstrap is drawn from
a zero-mean, unit-variance Gaussian field, Corollary 2 implies that the resulting estimator
converges almost surely to L(r̂(N)) if the number of bootstrap replicates converges to infinity.
To justify this approximation, we prove in Theorem 3 that L(r̂(N)) is a consistent estimator of
L(r) under mild assumptions about the estimator r̂(N). Our proof also shows that although we
know r̂(N) it is difficult to compute L(r̂(N)) for manifolds of dimensions D > 2 directly from
the definition of the LKCs. The bHPE circumvents this issue elegantly, because it computes
L(r̂(N)) from the easy to compute and implement HPE.

3.1. Estimation of LKCs from a covariance estimator. Assume that the Gaussian process
f having the covariance function r : S̃ × S̃ →R fulfills Assumptions (G1)--(G3). Define for
a function h : S̃ × S̃ → R its coordinate representation hα(x, y) = h(φ−1

α (x),φ−1
α (y)) in a

chart φα : Uα → Vα and ∂x
βhα(u, v) = ∂Khα

∂xβ1 ...∂xβK
|(x,y)=(u,v) for a multiindex β ∈ N

K and all

u, v ∈ Vα . For an estimator r̂(N) : S̃ × S̃ →R, we require the following property:

(R) For each chart (Uα,φα) in an atlas of S̃ the estimator r̂(N) : S̃ × S̃ → R satisfies

∂x
β1

∂
y
β2
r̂(N),α(x, x)

N→∞−−−−→ ∂x
β1

∂
y
β2
rα(x, x) uniformly almost surely (or uniformly in probabil-

ity) for all x ∈ Vα and all β1, β2 ∈ N
K with K ∈ I for some I ⊆N.

REMARK 4. The estimator r̂(N) does not need to be a well-behaved estimator of r on
all of S × S to satisfy (R). It only needs to be a good estimate of r around the diagonal in
Vα × Vα .

THEOREM 3. Let S ⊆ S̃ be a compact, orientable manifold with or without boundary.
Let r̂(N) : S̃ × S̃ →R be a sequence of estimators satisfying (R) for I = {1,2} in all charts of
a finite atlas of S. Then L(r̂(N)) →L(r) almost surely (in probability) as N → ∞.

Under slightly stronger conditions than required for Theorem 3, the asymptotic variance
and covariance of LD−1(r̂

(N)) and LD(r̂(N)) can be obtained from the Delta method. The
induced Riemannian metric g on S by a random field f expressed in the charts of the atlas
from (R) is the D × D matrix gα(x), x ∈ Vα , with entries

gα
dd ′(x) = ∂x

d ∂
y

d ′rα(x, x), d, d ′ ∈ {1, . . . ,D}.
Recall that by the definition of charts of manifolds with boundaries for all x ∈ ∂S there is a
chart (Uα,φα) such that gα(x) with the dth row and column removed is the restriction of g

to ∂S in local coordinates. We require the following assumption:
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(C) Assume that the estimator ĝ(N) of the Riemannian metric of g, given in local coordi-
nates by the matrix ĝ(N),α(x) with d-d ′-entry ∂x

d ∂
y

d ′ r̂(N),α(x, x), satisfies

√
N
(
vech

(
ĝ(N),α)− vech

(
gα))� vech

(
Gα)

weakly in C(K)
D(D+1)

2 for all charts (Uα,φα), all compact K ⊆ Vα and zero-mean Gaussian

processes vech(Gα) with sample paths in C(K)
D(D+1)

2 .

REMARK 5. If ĝ(N),α is derived from the sample covariance matrix of the gradient in
local coordinates of f1, . . . , fN ∼ f , then assuming, for example, Lipschitz continuity of the
partial derivatives of f in local coordinates such that the Lipschitz constants have finite fourth
moment is enough to ensure (R); compare [39].

REMARK 6. Assumption (C) together with the continuous mapping Theorem and the
observation that ĝ(N) and g are a symmetric, covariant 2-tensor field on S̃ implies that for
any two charts (Uφ,φ), (Uψ,ψ) and any s ∈ S with s = φ−1(x) = ψ−1(x̃) ∈ Uφ ∩ Uψ and
x ∈ Vφ , x̃ ∈ Vψ there exists an invertible matrix Dφ,ψ,x such that

ĝ(N),φ(x) = DT
φ,ψ,xĝ

(N),ψ(x̃)Dφ,ψ,x, gφ(x) = DT
φ,ψ,xg

ψ(x̃)Dφ,ψ,x,

Gφ(x) = DT
φ,ψ,xG

ψ(x̃)Dφ,ψ,x.

PROPOSITION 1. Let S be an orientable, compact manifold with our without boundary,
Hg

D−1(ds) denote the volume form of ∂S with respect to g and assume that the estimator
ĝ(N) satisfies (C), then

√
N
((LD−1

(
ĝ(N))

LD

(
ĝ(N))

)
−
(LD−1(g)

LD(g)

))
�

⎛⎜⎜⎜⎝
∫
∂S

1

4
tr
[
g−1

s Gs

]
Hg

D−1(ds)∫
S

1

2
tr
[
g−1

s Gs

]
Hg

D(ds)

⎞⎟⎟⎟⎠ .

Recall that for manifolds without boundary LD−1 = 0 (see [5], Theorem 12.4.1) such that
only the second component of the above vector is used in this case and that the integral on
manifolds is defined by using local coordinates and a partition of unity. The latter is explicitly
carried out in the proof of this result.

From the above result, we obtain the asymptotic covariances of the estimators of the highest
two LKCs:

Var
[
LD−1

(
ĝ(N))]= 1

16

∫
∂S

∫
∂S

E
[
tr
[
g−1

s Gs

]
tr
[
g−1

t Gt

]]
Hg

D−1(ds)Hg
D−1(dt),

Cov
[
LD−1

(
ĝ(N)),LD

(
ĝ(N))]= 1

8

∫
S

∫
∂S

E
[
tr
[
g−1

s Gs

]
tr
[
g−1

t Gt

]]
Hg

D−1(ds)Hg
D(dt),

Var
[
LD

(
ĝ(N))]= 1

4

∫
S

∫
S
E
[
tr
[
g−1

s Gs

]
tr
[
g−1

t Gt

]]
Hg

D(ds)Hg
D(dt).

Interchanging the integral and expectation is justified as G is a Gaussian process with contin-
uous sample paths and, therefore, the above integrals with absolute values inside the expec-
tations exist and are integrable as ∂S and S are compact and, therefore, the involved partition
of unity is finite. Unfortunately, these expressions are in general hard to evaluate explicitly.
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3.2. Bootstrapped Hermite projection estimator. Let R1,R2, . . . ,RN be random fields
over S̃ with almost surely C2-sample paths and (�,P) be the underlying probability space.
The empirical covariance function is

r̂(N)(s, s′)= N−1
N∑

n=1

Rn(s)Rn

(
s′) for s, s′ ∈ S̃.

We denote with Rnω and r̂
(N)
ω realizations of Rn and r̂(N) for ω ∈ �. In order to calculate

L(r̂
(N)
ω ) using the HPE, we define the Gaussian multiplier field.

DEFINITION 1 (Gaussian multiplier field). For each ω ∈ �, define the Gaussian multi-
plier field (GMF) by

(14) R(N)
gω = 1√

N

N∑
n=1

gnRnω,

where g = (g1, . . . , gN) with g1, . . . , gN ∼ N (0,1) i.i.d. defined over a probability space
(�̃, P̃).

For each ω ∈ � and N ∈N, the GMF is a Gaussian field over S̃ with mean and covariance
function

E
[
R(N)

gω (s)
]= 0, E

[
R(N)

gω (s)R(N)
gω

(
s′)]= r̂(N)

ω

(
s, s′), s, s′ ∈ S̃.

Moreover, for large enough N the GMF satisfies (G1)--(G3) for almost all ω ∈ � assuming
(R) with I = {0,1,2} and the following condition:

(H) For the charts from (R), the sample paths ∂βRα
n , |β| = 2, are almost surely γ -Hölder

continuous for γ ∈ (0,1) and all n ∈ {1, . . . ,N}.
The proof can be found in Lemma 6 in the supplementary material. Hence, if the GMF sat-
isfies (G4a), then the conditions of Corollary 2(i) are satisfiedm which means that the HPE
L̂(R

(N)
gω ) is an unbiased estimate of L(r̂(N)). Thus, we define the bootstrapped Hermite pro-

jection estimator (bHPE) for fixed ω ∈ � as

(15) L̂(N)

Bω = lim
M→∞

1

M

M∑
m=1

L̂
(
R(N)

gmω

)
,

where R
(N)
g1ω, ,R

(N)
g2ω . . . ∼ R

(N)
gω is an i.i.d. sequence of the GMF. By the SLLN, this estimator

is �̃-almost surely identical to L(r̂
(N)
ω ). Therefore, a Monte Carlo simulation based on the

HPE for given residuals R1ω, . . . ,RNω can be used to approximate the otherwise hard to
compute L(r̂

(N)
ω ).

REMARK 7. In the setting that f1, . . . , fN ∼ f are i.i.d. with correlation function r, sim-
ple conditions, such that

√
N(f̄ −E[f ])/√Var[f ] converges weakly in C(S) to a zero-mean

Gaussian field G with covariance function r and that the GMF obtained from the standardized
residuals defined in (13) fulfills (R) with I = {0,1,2} and (H), are given in Appendix A.7.

4. Estimation of the EEC and applications. We only present the results of EEC esti-
mation for Gaussian fields. Nevertheless, most of the following results can be easily extended
to Gaussian-related fields as introduced in [34].
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4.1. Plug-in estimation of the EEC. In this section, we assume that L̂(N) is an arbitrary
estimator of the LKCs L. Given these estimates [4] suggested the plug-in estimator into the
GKF, that is,

(16) ÊEC(N)(u) = L0�
+(u) +

D∑
d=1

L̂(N)
d ρd(u),

to obtain a smooth estimate of the EEC. By linearity, this plug-in estimator is unbiased for
the EEC if L̂(N) is unbiased, and its covariance function is

(17) C(u, v) =
D∑

d=1

D∑
d ′=1

σ
(N)
dd ′ ρd(u)ρd ′(v),

where σ
(N)
dd ′ is the (d, d ′) entry of the covariance matrix �(N) of the vector L̂(N). The latter

is well defined only if �(N) exists. Consistency and a fCLT for the ÊEC(N) can be derived
from corresponding properties of the estimator L̂(N).

PROPOSITION 2. The plug-in estimate of the EEC has the following properties:

(i) Assume that L̂(N) is consistent. Then ÊEC(N) and dk

duk ÊEC(N), k ≥ 1, are uniformly

consistent estimators of the EEC and dk

duk EEC, respectively.

(ii) Assume that
√

N(L̂(N) −L)
D−→ N (0,�). Then the estimator ÊEC(N) satisfies a fCLT

in Cb(R), the Banach space of bounded and continuous functions over R, that is,

(18)
√

N
[
ÊEC(N)(u) − EEC(u)

]
D−→ G(u) =

D∑
d=1

Zdρd(u), N → ∞.

Here, (Z1, . . . ,ZD) is a Gaussian random vector with zero-mean and covariance �.

REMARK 8. The above theorem can be generalized to the expected Euler characteristic
curves of Gaussian related fields as they satisfy a Gaussian kinematic formula; see [34].

The fCLT (18) for ÊEC(N) allows constructing confidence bands for the EEC. In particular,
asymptotic two-sided (1 − α)-pointwise confidence bands can be built as

(19) ÊEC(N)(u) ± tN−1,1−α/2

√
Ĉ(u,u)/N,

where the estimate of the variance function Ĉ(u,u) is obtained as a plug-in estimator substi-

tuting the sample covariance �̂
(N)

given in (12) into (17). Here, tN−1,1−α/2 is the 1 − α/2
quantile of Student’s t-distribution with N − 1 degrees of freedom. In the simulations in Sec-
tion 5, it is shown that the confidence bands (19) are tighter and have better coverage than the
pointwise confidence bands based on the pointwise CLT for the sample average χ̄ (N), that is,

(20) χ̄ (N)(u) ± tN−1,1−α/2

√
V̂ar
[
χf (u)

]
/N,

where V̂ar[χf (u)] is the sample variance of χf1(u), . . . , χfN
(u).

Proposition 2 even allows constructing simultaneous confidence bands. Assume that � is
positive definite. Then the process G(u)/

√
C(u,u) has sample paths in Cb(R) because for all

u ∈R we have that ∣∣∣∣ G(u)√
C(u,u)

∣∣∣∣≤ ‖(Z1, . . . ,ZD)‖
λmin

,
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where Zd , G, C and � are defined in Proposition 2 and λmin being the smallest eigenvalue
of �. This can also be derived from noting that

(21) lim
u→±∞

ρk(u)√∑D
d=1

∑D
d ′=1 σdd ′ρd(u)ρd ′(u)

=
⎧⎪⎨⎪⎩

(±1)D√
σDD

for k = D,

0 else.

Thus, a standard argument using Slutzky’s lemma, for example, [13, 38], yields that the
intervals with endpoints

(22) ÊEC(N)(u) ± q1−α

√
Ĉ(u,u)

N
,

form a simultaneous (1 − α)-confidence band for the EEC if

P

[
max
u∈R

∣∣∣∣ G(u)√
C(u,u)

∣∣∣∣> q1−α

]
≥ 1 − α.

A simple estimate of q1−α leading to conservative, simultaneous (1 − α)-confidence bands
can be obtained from a Monte Carlo simulation using zero-mean Gaussian random vectors

(Ẑ1, . . . , ẐD) with covariance �̂
(N)

by finding the 1 − α quantile of ‖(Z1, . . . ,ZD)‖/λ̂min,

where λ̂min denotes the smallest eigenvalue of �̂
(N)

.
However, (21) suggests that the above estimate can be improved, although the maximum

is over R. In fact, for D ∈ {1,2} we can analytically compute the critical quantile. For D = 1,
it holds for all u ∈ R that

max
u∈R

G(u)√
C(u,u)

= max
u∈R

Z1ρ1(u)√
ρ2

1(u)σ11

= Z1√
σ11

∼N (0,1),

which implies that the confidence band (19) is a simultaneous confidence band. Similarly, the
global maximum of |G(u)/

√
C(u,u)| over R can be analytically derived for D = 2 as shown

in the next proposition.

PROPOSITION 3. Let D = 2 and � given in (10) be positive definite and let Z =
(Z1,Z2)

T ∼N (0,�). Then

max
u∈R

∣∣∣∣ G(u)√
C(u,u)

∣∣∣∣=√
ZT �−1Z1{σ22Z1−σ12Z2 �=0} + |Z1|√

σ11
1{σ22Z1−σ12Z2=0}.

Here, 1A denotes the characteristic function of the set A.

The main importance of Proposition 3 is that the asymptotical correct quantile q1−α in
(22) for D = 2 is the 1 − α quantile of the χ -distribution with two degrees of freedom since
P[σ22Z1 = σ12Z2] = 0. As before, however, the variance C(u,u) is usually unknown and we
therefore replaced it by the estimate Ĉ(u,u). Thus, a better choice of the quantile q1−α for
practical purposes is the square root of the 1 − α/2 quantile of the Hotelling’s T 2

2,N−1 distri-

bution because ZT �̂
−1

Z is approximately Hotelling’s T 2
2,N−1 distributed. The performance

of these simultaneous confidence bands for the HPE and bHPE are demonstrated in Section 5.

4.2. Hermite projection estimator of the EEC. Consider the EEC plug-in estimator (16)
using the HPE (or bHPE) of the LKCs from Section 2.6. With some abuse of nomenclature,
we call this the (bootstrapped) Hermite projection estimator of the EEC since they are pro-
jections onto the subspace spanned by the EC densities ρ1, . . . , ρD with respect to the Hilbert
space structure introduced in Section 2.2.
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Let f1, . . . , fN ∼ f be i.i.d. zero-mean, unit-variance Gaussian fields satisfying (G1)–
(G4). Thus, the HPE of the EEC satisfies Proposition 2. Moreover, each HPE (L̂1n, . . . , L̂Dn)

of LKCs from an observation fn yields a smooth estimate of the EEC as a linear combination
of the EC densities via

χ̂fn(u) = L0�
+(u) +

D∑
d=1

L̂dnρd(u).

By linearity, we can write the plug-in EEC estimator using the HPE of the LKCs as the
average of these smoothed EC curves, that is,

(23) ÊEC(N)(u) = L0�
+(u) +

D∑
d=1

L̂(N)
d ρd(u) = 1

N

N∑
n=1

χ̂fn(u).

An alternative estimate of the EEC is the sample average of the observed EC curves,

χ̄ (N)(u) = 1

N

N∑
n=1

χfn(u).

This is an unbiased and consistent estimator satisfying pointwise a CLT, since the observed
EC curves are i.i.d. and have finite variance by (G4). Using linearity of (8), the HPE of LKCs
(11) can also be obtained from the average EC curve via

(24) L̂(N)
d = (2π)d/2

(d − 1)!
∫ ∞
−∞

Hd−1(u)
(
χ̄ (N)(u) −L0�

+(u)
)
du.

Plugging this into (23) and using (8) yields

(25) ÊEC(N)(u) = L0�
+(u) +

D∑
d=1

〈χ̄ (N)(u) −L0�
+(u), ρd〉

|ρd |2 ρd(u).

Thus, ÊEC(N) is the orthogonal projection of χ̄ (N)(u) onto the vector space spanned by the
EC densities according to the inner product (3), explaining the name HPE.

4.3. Inference based on the estimated EEC. The estimated EEC can be used for statis-
tical inference by finding a threshold u such that ÊEC(u) is less or equal to a prespecified
value α. Because minima and maxima of Morse functions locally behave like quadrics [25],
Lemma 2.2, and have no accumulation points if their domain is compact [25], Corollary 2.3,
it follows that the Euler characteristic of the excursion set for large enough u is essentially
counting simply connected components above u. If there is just one connected component
or no connected component, then the EC is either 0 or 1, respectively. Thus, this heuristic
suggests that for large enough u the EEC should approximate the FWER of voxelwise given
test statistics T (s), s ∈ S, on an image S. This was the pioneering approach taken by Keith
Worsley in the analysis of brain images, for example, [41, 42]. This approach is called the
Euler characteristic heuristic. More precisely, it states that for Gaussian related fields T and
high enough threshold u the probability of the maximum of T being larger than u is well
approximated by the EEC of the excursions set above u, that is,

FWER(u) = P

{
sup
s∈S

T (s) > u
}

≈ EEC(u).

This approximation typically works well, if uα satisfies EEC(uα) = α with α ≤ 0.05. In the
case of T being a zero-mean, unit-variance Gaussian field, the quality of this approximation
has been studied in [33] where it has been shown that the difference between the EEC and
the FWER decreases exponentially in u2.
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Another interpretation of thresholding the EEC at level α is the following. For high but
somewhat lower thresholds u than for FWER control, the Euler characteristic of the excursion
set is essentially the number of connected components (or clusters) above u. This suggests
that the EEC approximates the cluster error rate (CER), defined as the expected number of
connected components in the excursion set AT (u), that is,

(26) CER(u) = E
[
#connected components of AT (u)

]≈ EEC(u).

Hence, finding cα such that EEC(cα) = α controls the CER to be approximately α. Although
uncommon, this approach has been used in neuroimaging with α = 1, meaning the excursion
set contains on average approximately one false connected component; see [8].

Suppose the EEC is estimated via (25) and a significance threshold û
(N)
α is found satisfying

ÊEC(N)(û
(N)
α ) = α. The following theorem gives the asymptotic properties of the estimated

threshold, especially how variable it is. The results are valid for any EEC estimator for which
the results of Proposition 2 hold, in particular the HPE. Let EEC′(u) denote the derivative of
the EEC, that is,

EEC′(u) =
D∑

d=0

Ldρ′
d(u) = −√

2π

D∑
d=0

Ldρd+1(u).

THEOREM 4. Assume that the results of Proposition 2 are satisfied. Then the random
threshold û

(N)
α has the following properties:

(i) û
(N)
α is a consistent estimator of uα .

(ii) Let α be small enough such that EEC′(uα) �= 0. Then
√

N(û
(N)
α − uα) converges in

distribution to G(uα)/EEC′(uα), where G(u) is the Gaussian process in (18).

A consequence of Theorem 4 is that, for large N , û
(N)
α is approximately Gaussian with

mean uα and variance

(27) Var
[
û(N)

α

]= C(uα,uα)

N [EEC′(uα)]2 ,

where C(u,u) is given by (17). In practice, we estimate this variance by substituting estima-
tors for uα , C(u,u) and the LKCs as described above.

5. Simulation studies.

5.1. Design of the simulations. We compare the Hermite projection estimator (HPE)
given by (11), the bootstrapped Hermite projection estimator (bHPE) from (15) using 5,000
bootstrap replicates, the warping estimator (WarpE) [35] and an estimator (IsotE) tailored to
isotropic fields with the square exponential covariance function [22]. The latter is part of the
software package SPM12 and frequently used in the neuroimaging community. We always
use 1,000 Monte Carlo runs and consider two different scenarios for estimation of the LKCs.
The theoretical scenario assumes that the mean and variance are known and equal to zero
and one, respectively, as required for the theory presented in Section 2. The experimental
scenario assumes that the mean and variance are unknown. Thus, standardized residuals are
used as input for the estimators as discussed in Sections 3 instead of using the generated
samples directly.
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FIG. 2. Three sample paths of the nonstationary Gaussian process given by (31) for L = 10.5, A = B = 2.5 and
a = −b = 0.05.

5.2. Isotropic Gaussian and non-Gaussian fields. A common example of an isotropic
Gaussian random field is

(28) f (s) =
√

π

ν

∫∫
e
−‖s−t‖2

2ν2 dWt for s ∈ S = [1,L]2,

where W is a Wiener field on R
2 and the integral is interpreted as an Itô integral. Its covari-

ance function is C(s) = e−‖s‖2/(4ν2). For an isotropic field on a compact domain S ⊂ R
2,

the LKCs can be derived by L0 = L0(S), L1 = λ
1/2
2 L1(S) and L2 = λ2L2(S), where L0(S),

L1(S) and L2(S) are the LKCs of the domain S with respect to the standard metric and λ2 is
the second spectral moment, equal to the variance of any directional derivative of f [5]. For
(28), this yields L0 = 1, L1 = √

2/ν(L − 1) and L2 = (2/ν)−1(L − 1)2. Setting ν = 5 and
L = 50 gives L1 = 13.86 and L2 = 48.02, which are used in this simulation.

To generate an i.i.d. sample f1(s), . . . , fN(s) from (28), we approximate it by

(29) fn(s) =
∑L

k,l=1 e
−‖s−(k,l)‖2

2ν2 Wkl;n∑L
k,l=1 e

−‖s−(k,l)‖2

ν2

,

where Wkl;n, k, l ∈ {1, . . . ,L}, n ∈ {1, . . . ,N} are i.i.d. zero-mean, unit-variance random vari-
ables. We consider a Gaussian case, where the Wkl;n are N (0,1) and a non-Gaussian case
where they are (χ2

3 − 3)/
√

6. Neither the covariance function nor the LKCs depend on the
distribution of Wkl;n. Hence, the LKCs of the field (29) approximate the LKCs of the field
(28) for any choice of the Wkl;n, if ν is large enough. This is further elaborated below.

5.3. Nonstationary Gaussian and non-Gaussian fields. In this section, we explain the
nonstationary, Gaussian and the non-Gaussian random field f defined over [0,1]2, which we
use in our simulations. The Gaussian version is defined by the following Itô integral:

(30) f (s) =
√

π

λ1(s1)λ2(s2)

∫∫
e
− 1

2 (
s1−τ1
λ1(s1)

)2

e
− 1

2 (
s2−τ2
λ2(s2)

)2

dWτ ,

for s = (s1, s2) ∈ S = [−L,L]2, W is a Wiener field on R
2 and λi , i = 1,2, being strictly

positive functions on S. Three sample paths of this field can be found in Figure 2. In order
to get a non-Gaussian process, we replace the Gaussian i.i.d. random variables in simulating
the process (30) by i.i.d. Student’s t3-distributed random variables.

Using a basic computation or the Itô isometry and the integral identity,∫ ∞
−∞

ϕ(x)ϕ(a + bx), dx = 2√
1 + b2

ϕ

(
a√

1 + b2

)
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for the standard normal density ϕ and a, b ∈ R, we obtain for all s, t ∈ [−L,L]2 that

(31) Cov
[
f (s), f (t)

]= 2
√

λ1(s1)λ1(t1)λ2(s2)λ2(t2)√
λ2

1(s1) + λ2
1(t1)

√
λ2

2(s2) + λ2
2(t2)

e
− 1

2
(s1−t1)2

λ2
1(s1)+λ2

1(t1) e
− 1

2
(s2−t2)2

λ2
2(s2)+λ2

2(t2) .

Choosing λ1(s) = Aeas and λ2(s) = Bebs , a, b ∈ R, yields

2
√

λ1(s1)λ1(t1)λ2(s2)λ2(t2)√
λ2

1(s1) + λ2
1(t1)

√
λ2

2(s2) + λ2
2(t2)

= 1√
cosh(a(s1 − t1))

√
cosh(b(s2 − t2))

.

Using this, we can compute the induced Riemannian metric by f on [0,1]2 by taking partial
derivatives of (31) (compare [5], Section 12.2), which yields

g(s) = 1

2

(
a2 + A−2e−2as 0

0 b2 + B−2e−2bs

)
.

Thus, we obtain (compare [39], Section 3.2.)

L1 = 1√
2

∫ L

−L

√
a2 + A−2e−2ax dx + 1√

2

∫ L

−L

√
b2 + B−2e−2bx dx,

L2 = 1

2

(∫ L

−L

√
a2 + A−2e−2ax dx

)(∫ L

−L

√
b2 + B−2e−2bx dx

)
,

which yields L1 ≈ 12.53 and L2 ≈ 39.25 for L = 10.5, A = B = 2.5 and a = −b = 0.05.

5.4. LKC estimation. In the isotropic Gaussian case, Figure 3 confirms the theoretical
results that the HPE and the bHPE are consistent in the theoretical scenario. For every N , the
HPE is almost unbiased in the theoretical scenario, as predicted by Theorem 2(i). For small
N , the residuals are not Gaussian processes in the experimental scenario causing the HPE to
have a bias. The bHPE, however, is almost unbiased in the theoretical and the experimental
scenario. The bHPE has a similar variance as the WarpE, which turns out to be smaller than
the variance of the HPE. Unbiasedness for the WarpE is expected for standardized residuals
[35]. For a fair comparison, we implemented the WarpE assuming zero-mean, unit-variance
observations as described on page 917, bottom left of [35]. In this case, the WarpE seems
to have a bias for small sample sizes. A keen eye will also notice a small downward bias,
which seems to prevail for all compared estimators even for large N . This discrepancy is due
to the fact that the simulated field (29), which is a discretized version of the theoretical field
(28), has slightly different LKCs. Table 1 shows that the relative difference between the HPE
and the theoretical LKCs of (28) vanishes as ν increases. This is because the number of data
points inside the kernel domain makes the field less wiggly, and hence the integral in (28) is
approximated better by the discretized version (29).

For isotropic non-Gaussian data, Figure 4 shows that the bHPE is still unbiased. Only the
HPE cannot handle this scenario, since the EC curves are not derived from a Gaussian field.
WarpE and IsotE are based on estimation of the covariance of the derivative of the random
field and, therefore, are expected to still work for this particular non-Gaussian field.

The simulation results of estimation of LKCs of the nonstationary Gaussian and non-
Gaussian data are shown in the Figures 5 and 6. There are only little differences between
these simulations and our previous observations. The bHPE performs still well in all scenar-
ios, while the HPE and the WarpE requires the experimental setup to be unbiased. Unlike
before, the HPE and IsotE do not perform well in these simulations as they are tailored to
Gaussianity and stationarity, respectively.
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FIG. 3. Isotropic Gaussian field (ν = 5 and L = 50): comparison of mean and standard deviation of different
LKC estimators. Black lines represent the theoretical LKCs.

TABLE 1
Comparison of relative bias E[L̂d −Ld ]/Ld for the HPE

ν 2 3 5 6 7

L̂1, N = 10 −0.0195 −0.0179 −0.0075 −0.0025 0.0011
L̂2, N = 10 −0.0169 −0.0090 −0.0097 −0.0069 0.0045
L̂1, N = 75 −0.0240 −0.0121 −0.0075 −0.0047 0.0012
L̂2, N = 75 −0.0138 −0.0076 −0.0065 −0.0065 0.0006

FIG. 4. Isotropic non-Gaussian field (ν = 5 and L = 50): comparison of mean and standard deviation of differ-
ent LKC estimators. Black lines represent the theoretical LKCs.
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FIG. 5. Nonstationary Gaussian field given by (31) for L = 10.5, A = B = 2.5 and a = −b = 0.05: comparison
of mean and standard deviation of different LKC estimators. Black lines represent the theoretical LKCs.

5.5. HPE of the EEC. Moving on to HPE estimation of the EEC, the covariance function
(17) of ÊEC and χ̄ (100) for a sample size of N = 100 are shown in Figures 7 and 8. Taking
the diagonal entries gives their variance functions, which are used to construct pointwise con-
fidence bands. The HPE of the EEC has substantially lower variance than the nonparametric
sample average estimator, Figures 7 and 8 (right panels). Figures 9 and 10 show simulation
results for the pointwise coverage of the true EEC when constructing pointwise 95% con-
fidence bands via (19) and (20). In the top row, the CIs use the “true” variance of the EC
curves, estimated by Monte Carlo simulation for a large sample size of 10,000, while in the
bottom row, the CIs use the variance estimates corresponding to the given sample size. The
coverage function is smoother for the HPE (red) and it guarantees coverage for extreme val-
ues of u especially when the variance is estimated from the data. The latter is not the case

FIG. 6. Nonstationary non-Gaussian field given by (31) for L = 10.5, A = B = 2.5 and a = −b = 0.05 and
using i.i.d. t3 distributed random variables for generation of the samples: comparison of mean and standard
deviation of different LKC estimators. Black lines represent the theoretical LKCs.
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FIG. 7. Isotropic Gaussian field: Covariance functions of the sample average EC curve (left) and the HPE
of the EEC (middle) from 100 samples. Right panel shows their standard deviation functions in red and blue,
respectively.

for the coverage of the CIs from the EC sample average, because large values of u are rarely
observed.

In Table 2, we additionally report the coverage of the SCBs discussed in Section 4.2. Here,
we again provide Monte Carlo simulations with the asymptotic correct quantile obtained
from a χ2-distribution (compare Proposition 3) assuming the variance to be known and its
approximation by the square root of a Hotelling T 2

2,N−1, if the variance is assumed unknown.
In both scenarios, our simulations yield for the isotropic and the nonstationary Gaussian field
close to nominal coverage even for sample sizes as small as N = 10.

6. Cosmic microwave background radiation. The CMB radiation is the earliest ob-
servable radiation and the most important observational probe into the primordial universe.
The standard cosmological paradigm, together with inflationary theories, predict the temper-
ature fluctuations in the CMB to be realizations of an isotropic Gaussian random field on the
2-sphere. Comparing the observed CMB map to this theoretical model probes the validity of
today’s standard cosmological paradigm [1]. There is a long history of anomalous behavior
detected in the CMB data with respect to the base model, and their interpretation is a subject
of ongoing debate. Some known anomalies that have been confirmed across various data re-
leases from both the WMAP and Planck satellite include the hemispherical power asymmetry
[11, 16], the unusual alignment of low multipoles [31], parity violation [11, 23], as well as
the slightly unusual behavior of the EEC and the associated Betti numbers [16, 29, 30].

We focus here on the EEC as one commonly used representation of the topological struc-
ture of the universe [21]. Our goal is to compare the EC of the observed CMB map to the
EEC of simulated maps of the CMB.

FIG. 8. Nonstationary Gaussian field: Covariance functions of the sample average EC curve (left) and the HPE
of the EEC (middle) from 100 samples. Right panel shows their standard deviation functions in red and blue,
respectively.
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FIG. 9. Isotropic Gaussian field: pointwise coverage of the EEC under respectively “true” variance of the EC
curves (top row) and estimated variance (bottom row) for different sample sizes. The dashed lines represent the
target confidence level 95%.

FIG. 10. Nonstationary Gaussian field: pointwise coverage of the EEC under respectively “true” variance of
the EC curves (top row) and estimated variance (bottom row) for different sample sizes. The dashed lines represent
the target confidence level 95%.

TABLE 2
Simulation results of the coverage of the simultaneous 95% confidence bands proposed in (22) using the HPE.

The coverage is obtained from 1,000 Monte Carlo simulations

Type Quantile Variance N = 10 N = 50 N = 100

Isotropic Gaussian χ2,0.95 true 94.0 94.8 94.7√
T 2

2,N−1,0.95 estimated 94.9 94.7 93.9
Nonstationary Gaussian χ2,0.95 true 95.3 94.6 94.9√

T 2
2,N−1,0.95 estimated 95.1 93.6 94.4
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FIG. 11. CMB example: (top) cleaned and smoothed observed CMB field. (left/right) EC curves, raw/ smoothed,
simulated CMB fields (gray) and nonparametric EEC estimate/HPE, with pointwise 2/3-σ -prediction bands
(blue/light blue). The EC curve corresponding to the Planck data is shown in red.

The observed and simulated maps used here belong to the second public data release (PR2)
by the Planck team [2], and are available at https://pla.esac.esa.int/. The simulated maps com-
prise N = 1000 i.i.d. instances of Full Focal Plane 8 (FFP8) simulations. These realistic
simulations are realizations of the stationary Gaussian random field having the spatial auto-
correlation function and the power spectral density from the observed CMB maps, which are
modified according to a model of the measurement process that replicates noise contamina-
tion, satellite systematics and the effects of the intervening matter distribution on the CMB
light characteristics [6]. As preprocessing, the observed and simulated maps were smoothed
with an isotropic Gaussian kernel with a bandwidth of 180 arcmin. The resulting maps are
not necessarily samples of a stationary field. Furthermore, the CMB measurement is not reli-
able in certain parts of the sky, because of contamination by the Milky Way and other bright
foreground sources. To exclude these regions from analysis, portions of the sky were masked
using the most conservative UT78 mask released by the Planck team [1]. Hence, the simu-
lation and the observed fields are only compared on the subset of the 2-sphere given by the
UT78 mask. Figure 11 shows the observed CMB field rendered over a HealPix grid with
2048 nodes [19].

The observed and simulated fields were thresholded at a sequence of thresholds ranging
from -5 to 5 in steps of 0.01 and the EC of the resulting excursion sets were computed.
Figure 11 shows the observed EC curves and their smoothed versions, together with the
nonparametric estimate and the HPE of the EEC. We decided to use the HPE instead of the
bHPE here, since the simulated data is in fact Gaussian and we can provide estimates of
the standard errors (the bHPE is used in the fMRI data analysis) more easily. The estimated
LKCs from the FFP8 simulations were L̂1 = 426.8±54.2 and L̂2 = 1528.9±346.4, yielding
respective standard errors of 1.7 and 11.0 for the mean LKCs. In contrast, the estimated LKCs
from the actual observed field were L̂o

1 = 480.3 and L̂o
2 = 2545.0.

These results have two uses in astronomy. First, the EEC could be used to detect celestial
objects against the CMB background [10]. In this case, we obtain uFWER = 4.279 ± 0.002
and uCER = 3.456 ± 0.002. Second, in Figure 11, the observed CMB EC curve (red) is at

https://pla.esac.esa.int/
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the edge of the distribution of simulated curves. In fact, the observed L̂o
2 is 2.93 standard

deviations away from L̂2. This may be evidence that the observed CMB field does not match
the theoretical model that generated the simulations. However, it is unclear whether the mis-
match is due to the parts of the model related to the physics of the early universe or the parts
related to the measurement process. A more detailed investigation, as well as an analysis of
the latest data releases by the Planck team, which will be undertaken in future works, will
serve to substantiate the veracity of our claims.

7. Discussion. This article studied estimation of LKC and thereby EECs for Gaussian
and non-Gaussian fields. In particular, it introduced an alternative to the WarpE to estimate
the LKCs of a limiting process from observed nonstationary random fields. Our simulations
showed that the bHPE has a similar variance as the WarpE, which computes a discrete version
of L(r̂(N)). Hence, for a fixed sample, although being completely differently computed, the
WarpE and the bHPE are numerically similar. This distinguishes the bHPE from the HPE,
since the source of variability in the latter is the variability in the observed EC curves, while in
the former variability is due to the variability of the covariance estimate r̂(N). Understanding
why the former is lower requires a deeper study of the probabilistic theory of excursion sets.

The main advantage of the HPE/bHPE compared to the WarpE is that it is conceptually and
computationally simpler. It allows the fields to be defined over nontrivial domains, like sub-
domains of the sphere, the highly curved cortical surface of the brain or any D-dimensional
manifold and the estimation procedure only depends on an algorithm to compute the EC of
excursion sets, for which general and efficient algorithms exist, for example, [20]. Therefore,
it is a good alternative in situations like the CMB observations in astronomy, where the EC
curves are efficiently computed, while a triangulation and computation of the involved geo-
metric quantities in the embedding space, required for the WarpE, are usually not accessible.
A further advantage of the HPE/bHPE is that we were able to study theoretical properties
such as unbiasedness, finite variance and consistency, and derive CLTs and confidence bands
for the EEC. Similar theoretical analyses were only partially feasible for the WarpE; see [35].
Last but not least, we believe that all presented results generalize to S being a compact, reg-
ular, stratified manifold. The latter is immediately clear for Theorems 1 and 2 as the normal
Morse indices are bounded from above and below by ±C for some C > 0. The latter follows
from the definition of the normal Morse index and the fact that any regular, stratified manifold
is a union of finitely many (path-connected) manifolds without boundary. The only techni-
cal difficulty in generalizing Theorem 3 lies in proving a.s. convergence (or convergence in
probability) of the normal Morse index which under Assumption (R) should hold.

Acknowledgments. We want to thank Robert Adler for providing many helpful discus-
sions in the early stages of the manuscript. We also thank an anonymous reviewer from JASA
who by his careful reading and thoughtful comments helped to improve our article immensely
although it was unfortunately rejected for publication in JASA. F.T. also thanks the WIAS
Berlin, where parts of this work were performed, for providing a guest researcher status and
especially the hospitality of K. Tabelow and Jörg Polzehl.

Funding. F.T. is funded by the Deutsche Forschungsgemeinschaft (DFG) under Excel-
lence Strategy The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project
ID:390685689). D.C. was partially supported by NSF Grant DMS-2220523 and Simons
Foundation Collaboration Grant 854127. P.P. acknowledges support from ERC advanced
grant 740021-ARTHUS (PI: T. Buchert). F.T., D.C. and A.S. were partially supported by
NIH grant R01EB026859.



ESTIMATION OF EEC CURVES 2295

SUPPLEMENTARY MATERIAL

Supplement to “Estimation of Expected Euler Characteristic Curves of Nonstation-
ary Smooth Random Fields” (DOI: 10.1214/23-AOS2337SUPP; .pdf). Appendix A: Ad-
ditional material on theory, among others, describing the connection of the HPE to LKC
regression, efficient computation of EC curves, sufficient conditions for (G4) and a general
example such that the GMF satisfies the GKF. Appendix B: Additional simulations showing
the dependence on resolution, the connectivity criterion, the choice of the bootstrap multi-
pliers and the number of bootstrap replicates. It also contains another nonstationary (non-
Gaussian) LKC estimation example. Appendix C: LKC estimation for general linear models
and a data analysis application to fMRI data. Appendix D: Proofs of all theorems from the
main manuscript.
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