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In clinical trials and other applications, we often see regions of the
feature space that appear to exhibit interesting behaviour, but it is unclear
whether these observed phenomena are reflected at the population level. Fo-
cusing on a regression setting, we consider the subgroup selection challenge
of identifying a region of the feature space on which the regression func-
tion exceeds a pre-determined threshold. We formulate the problem as one of
constrained optimisation, where we seek a low-complexity, data-dependent
selection set on which, with a guaranteed probability, the regression func-
tion is uniformly at least as large as the threshold; subject to this constraint,
we would like the region to contain as much mass under the marginal fea-
ture distribution as possible. This leads to a natural notion of regret, and our
main contribution is to determine the minimax optimal rate for this regret
in both the sample size and the Type I error probability. The rate involves a
delicate interplay between parameters that control the smoothness of the re-
gression function, as well as exponents that quantify the extent to which the
optimal selection set at the population level can be approximated by families
of well-behaved subsets. Finally, we expand the scope of our previous results
by illustrating how they may be generalised to a treatment and control setting,
where interest lies in the heterogeneous treatment effect.

1. Introduction. Consider a clinical trial that assesses the effectiveness of a drug or vac-
cine. It will typically be the case that efficacy is heterogeneous across the population, in the
sense that the probability of a successful outcome depends on several recorded covariates.
As a consequence, we may be unable to recommend the treatment for all individuals; nev-
ertheless, it may be too conservative to reject it entirely. It is very tempting to trawl through
the data to identify a subset of the population for which the treatment appears to perform
well, but statisticians are well versed in the dangers of this type of data snooping (Altman
(2015), Feinstein (1998), Gabler et al. (2016), Kaufman and MacLehose (2013), Lipkovich,
Dmitrienko and D’Agostino (2017), Rothwell (2005), Senn and Harrell (1997), Wang et al.
(2007), Zhang et al. (2015)).

The aim of this paper is to study a subgroup selection problem, where we seek to identify a
subset of the population for which a regression function exceeds a pre-determined threshold.
In the clinical trial example above, this threshold would represent the level at which the
treatment is deemed effective. Subgroup selection forms an important component of the more
general field of subgroup analysis (Herrera et al. (2011), Ting et al. (2020), Wang et al.
(2007)), which refers to the problem of understanding the association between a response
and subgroups of subjects under study, as defined by one or more subgrouping variables. The
main challenge is to provide valid inference, given that the subgroup will be chosen after
seeing the data (Lagakos (2006)).
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Our first contribution is to formulate subgroup selection as a constrained optimisation
problem. Given independent covariate-response pairs and a family A of subsets of our feature
space, we seek a data-dependent selection set Â taking values in A with the Type I error
control property that, with probability at least 1 − α, the regression function is uniformly no
smaller than the level τ on Â; subject to this constraint, we would like the proportion of the
population belonging to Â to be as large as possible. In practice, A would typically be chosen
to be of relatively low complexity, so as to lead to an interpretable decision rule.

After introducing this new framework, our first result (Proposition 1 in Section 2) reveals
the extent of the challenge. We show that if our regression function belongs to a Hölder
class, but the corresponding Hölder constant is unknown, then there is a sense in which no
algorithm that respects the Type I error guarantee can do better in terms of power than one
that ignores the data. We therefore work initially over Hölder classes of known smoothness
β , and with a known upper bound λ on the Hölder constant; see Definition 1. This enables
us to define a data-dependent selection set that satisfies our Type I error guarantee. The idea
is to construct, for each hyper-cube B in a suitable collection within our feature space Rd ,
a p-value for testing the null hypothesis that the regression function is not uniformly above
the level τ on B . The p-values are then combined via Holm’s procedure (Holm (1979)) to
identify a finite union of hyper-cubes that satisfy our Type I error control property. Our final
selection set ÂOSS maximises the empirical measure among all elements of A that lie within
this finite union of hyper-cubes.

Next, we define a notion of regret Rτ (Â) that quantifies the power discrepancy between a
particular algorithm Â and an oracle choice. Our aim is to study the optimal regret that can
be attained while maintaining Type I error control. We find that the minimax optimal regret
is determined by a combination of the smoothness β (initially assumed to lie in (0,1]) and
two further exponents κ, γ > 0 that quantify the extent to which the oracle selection set can
be approximated by families of well-behaved subsets in A. In particular, κ and γ control
respectively the degree of concentration of the marginal measure, and the separation between
the regression function and the critical level τ on these well-behaved subsets. See Definition 2
for a formal description.

Our main contribution in Section 2 is to establish in Theorem 2, that with a sample size of
n, the minimax optimal rate of convergence of the regret over these distributional classes and
over all algorithms that respect the Type I error guarantee at significance level α ∈ (0,1/2) is
of order1

min
{(

log+(n/α)

n

) βκγ
κ(2β+d)+βγ + 1

n1/2 ,1
}
.(1)

The second term in the sum reflects the parametric rate, which corresponds to the difficulty of
uniformly estimating the population measure of sets in a Vapnik–Chervonenkis class A. The
primary interest, however, is in the first term in the sum, which reveals an intricate interplay
between the distributional parameters, the sample size and the significance level.

As mentioned above, the algorithm that achieves the upper bound in Theorem 2 takes λ and
β as inputs. In Section 3, therefore, we describe how these parameters can be chosen in a data-
driven manner. Since Proposition 1 reveals the impossibility of adaptation in full generality,
in Section 3.1, we impose mild additional regularity conditions on our classes, and show that
under a sample size condition, we can with high probability estimate the Hölder constant of
the regression function to within a factor of 2. Moreover, in Section 3.2, we show that under

1Here, log+ x := logx when x ≥ e and log+ x := 1 otherwise. To be fully precise, the upper bound holds when
A is a Vapnik–Chervonenkis class; the lower bound holds when βγ (κ − 1) < dκ and the class A consists of
convex sets and contains all axis-aligned hyper-rectangles.
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a self-similarity condition, we can also estimate β accurately, so that under a sample size
condition, our fully data-driven algorithm maintains Type I error control, and has the same
regret as the original algorithm up to a sub-logarithmic factor.

A limitation of our constructions for the upper bounds in Sections 2 and 3 are that they are
unable to take advantage of higher orders of smoothness beyond β = 1. To overcome this,
in Section 4, we introduce a modified algorithm based on a local polynomial approximation
of the regression function, and prove in Theorem 11 that this new construction both respects
the Type I error at significance level α and has a regret of optimal order (1) for general
smoothness β ∈ (0,∞). The price we pay for this is a stronger assumption on the marginal
feature distribution: we now ask for it to have a well-behaved density with respect to Lebesgue
measure (though we do not require this density to be bounded away from zero on its support).

The lower bound constructions for Theorems 2 and 11 are addressed in Section 5. They
involve three different finite collections of distributions within our classes, each designed to
highlight different aspects of the challenge. The first is a two-point construction, with both
distributions having regression functions that are close to τ on disconnected regions, but with
each such function only being uniformly above τ on one of these regions; this identifies
the dependence of the lower bound on α. The second extends this construction to many
distributions, each having its own region where the regression function is uniformly above
τ , which underlines the necessity of the logarithmic factor in n in (1). Finally, the third
family, which identifies the parametric rate, is another two-point construction with a shared
regression function, but whose marginal feature distributions assign slightly different masses
to the different connected components of the τ -super level set of this regression function.

Finally, in Section 6, we consider the more general setting where individuals may belong
to either a treatment or control group, and where interest lies in the heterogeneous treatment
effect. We show that this heterogeneous treatment effect plays a very similar role to that of
the regression function in earlier sections, so that our results generalise almost immediately.
Proofs of all of our results, as well as auxiliary results and their proofs, are deferred to the
Supplementary Material (Reeve, Cannings and Samworth (2023)).

One of the interesting messages of our work from an applied perspective is that, when care-
fully formulated, it is possible to make formally-justified, post-hoc observations concerning
subgroup analyses from clinical studies. When attempted without due care, such observations
have been rightly criticised in the medical literature; for example:

Analyses must be predefined, carefully justified, and limited to a few clinically important questions, and
post-hoc observations should be treated with scepticism irrespective of their statistical significance. (Rothwell
(2005))

The statisticians are right in denouncing subgroups that are formed post hoc from exercises in pure data
dredging. (Feinstein (1998))

A standard approach to handle subgroup analysis is via statistical tests of interaction (2001
(2001, 2004), Kehl and Ulm (2006)). Zhang et al. (2017) propose a procedure to select a
subgroup defined by a half-space that seeks to maximise the expected difference in treatment
effect in the context of an adaptive signature design trial. Several other methods have been
proposed for studying subgroups defined through heterogeneous treatment effects. For in-
stance, Foster, Taylor and Ruberg (2011) propose an approach to identify subgroups having
enhanced treatment effect via the construction of ‘virtual twins’, while Ballarini et al. (2018)
consider maximum likelihood and Lasso-type approaches for estimating a difference in treat-
ment effect in a parametric linear model setting. Su et al. (2009), Dusseldorp, Conversano
and Van Os (2010), Lipkovich et al. (2011) and Seibold, Zeileis and Hothorn (2016) pro-
pose tree-based procedures to explore the heterogeneity structure of a treatment effect across
subgroups that are defined after seeing the data; Huber, Benda and Friede (2019) provide
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a simulation comparison of the relative performance of these methods, as well as the algo-
rithm for adaptive refinement by directed peeling proposed by Patel et al. (2016), Crump et
al. (2008) and Watson and Holmes (2020) introduce tests of the global null hypothesis of no
treatment effect heterogeneity (no subgroups).

One can think of subgroup selection in our context as a super-level set estimation problem,
with a key feature being the asymmetry of the way in which we handle cases where Â contains
regions where the regression function is below τ , and where it misses regions where the
regression function is at least at level τ . This is motivated by applications such as clinical
trials, where the primary concern is the retention of Type I error control despite the post-
selection inference. In this respect, our framework has some similarities with that of Neyman–
Pearson classification (Cannon et al. (2002), Scott and Nowak (2005), Tong, Feng and Zhao
(2016), Xia et al. (2021)). There, our covariate-response pairs (X,Y ) take values in Rd ×
{0,1}, and we seek a classifier C : Rd → {0,1} that minimises P(C(X) = 0|Y = 1) subject
to an upper bound on P(C(X) = 1|Y = 0). Thus, as in our setting, the way in which the two
types of error are handled is asymmetric. On the other hand, as well as allowing continuous
responses, our notions of loss are very different. In particular, in our context, we incur a Type
I error whenever our selected set Â contains a single point that does not belong to the τ -
super-level set of the regression function. In other words, our framework provides guarantees
at an individual level, instead of on average over sub-populations. This may well be ethically
and practically advantageous, for example, in medical contexts, as discussed above.

Related work on the estimation of super-level sets of a regression function includes
Cavalier (1997), Scott and Davenport (2007), Willett and Nowak (2007), Gotovos et al.
(2013), Laloë and Servien (2013), Zanette, Zhang and Kochenderfer (2018) and Dau, Laloë
and Servien (2020); likewise, in a density estimation context, there is a large literature on
highest density region estimation (Chen, Genovese and Wasserman (2017), Doss and Weng
(2018), Hyndman (1996), Mason and Polonik (2009), Polonik (1995), Qiao (2020), Qiao and
Polonik (2019), Rodríguez-Casal and Saavedra-Nieves (2019), Samworth and Wand (2010),
Tsybakov (1997)). The formulations of the problems studied in these works are rather dif-
ferent from ours, tending to focus on measures of the set difference or Hausdorff distance
between the estimated and true sets of interest. Mammen and Polonik (2013) study bootstrap
confidence regions for level sets of nonparametric functions, with a particular emphasis on
kernel estimation of density level sets.

We conclude this Introduction with some notation used throughout the paper. We adopt the
convention that inf∅ := ∞, and write [n] := {1, . . . , n} for n ∈ N∪{0}, with [0] := ∅. Given
a set S, we denote its power set by Pow(S) and its cardinality and complement by |S| and Sc,
respectively. If S has a strict total ordering, and g : S → R is a function that attains its maxi-
mum, then we write sargmax{g(s) : s ∈ S} for the smallest element of argmax{g(s) : s ∈ S}.
The σ -algebra of Borel measurable subsets of Rd is denoted by B(Rd). We write dimVC(A)

for the Vapnik–Chervonenkis dimension of a class of sets A (e.g., Vershynin (2018), Chap-
ter 2). We also let Ahpr and Aconv denote the class of compact axis-aligned hyper-rectangles
in Rd (i.e., sets of the form

∏d
j=1[aj , bj ] for some aj ≤ bj and j ∈ [d]), and the set of convex

subsets of Rd , respectively.
Given x ∈ R, we write x+ := max(x,0) and log+ x := logx when x ≥ e and log+ x := 1

otherwise. Let ‖ · ‖∞ and ‖ · ‖2 denote the supremum and Euclidean norms on Rd , respec-
tively. We denote the d-dimensional Lebesgue on Rd by Ld , and let Vd := Ld({x ∈ Rd :
‖x‖2 ≤ 1}) = πd/2/
(1 + d/2). Given a set S ⊆ Rd , we denote its �∞-norm diameter by
diam∞(S) := supx,y∈S ‖x − y‖∞ and write dist∞(x, S) := infy∈S ‖x − y‖∞. For r > 0, let
Br(x) and B̄r (x) denote the open and closed �∞ balls of radius r about x ∈ Rd , respectively.
For a function f : Rd → R, and for ξ ∈ R, we also let Xξ (f ) := {x ∈ Rd : f (x) ≥ ξ} denote
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its super-level set at level ξ . Given a symmetric matrix A ∈ Rq×q , we write A+ for its Moore–
Penrose pseudo-inverse and λmin(A) and λmax(A) for its minimal and maximal eigenvalues,
respectively.

For p ∈ [0,1], we let Bern(p) denote the Bernoulli distribution on {0,1} with mean p.
Given a Borel probability measure μ on Rd , we write supp(μ) for its support, that is, the
intersection of all closed sets C ⊆ Rd with μ(C) = 1. Given Borel subsets B0, B1 ⊆ Rd and
a measure μ on Rd , we write B0 ⊆ B1 if μ(B0 \ B1) = 0 and B0 � B1 if μ(B0 \ B1) > 0;
the dependence on μ in our notation here is left implicit since it will be clear from con-
text, and we are thus equating sets whose symmetric difference has μ-measure zero. For
probability measures P,Q on a measurable space (,F), we denote their total variation dis-
tance by TV(P,Q) := supB∈F |P(B) − Q(B)|. If these measures are absolutely continuous
with respect to a σ -finite measure μ, with Radon–Nikodym derivatives f and g, respec-
tively, then we write H(P,Q) := {∫(f 1/2 − g1/2)2 dμ}1/2 for their Hellinger distance, and
χ2(P,Q) := ∫

 f 2/g dμ − 1 for their χ2-divergence. For a ∈ [0,1], b ∈ (0,1), we define
kl(a, b) to be the Kullback–Leibler divergence between the Bern(a) and Bern(b) distribu-
tions, that is, for a ∈ (0,1),

kl(a, b) := a log
(

a

b

)
+ (1 − a) log

(
1 − a

1 − b

)
,

with kl(0, b) := − log(1 − b) and kl(1, b) := − logb.

2. Subset selection framework and minimax rates. Suppose that the covariate-
response pair (X,Y ) has joint Borel probability distribution P on Rd × [0,1]. Let μ ≡ μP

denote the marginal distribution of X. We say that η ≡ ηP :Rd → [0,1] is a regression func-
tion for P if η is a version of the conditional expectation E(Y |X). In other words, η : Rd →
[0,1] is a Borel measurable function such that

∫
B η(x) dμ(x) = ∫

B×[0,1] y dP (x, y) for all
B ∈ B(Rd). We let A ⊆ B(Rd) denote our class of candidate selection sets, and assume that
∅ ∈ A. Given a threshold τ ∈ (0,1), and recalling the notation Xτ (η) := {x ∈Rd : η(x) ≥ τ }
for the τ -super level set of η, an ideal output set in our class would have measure

Mτ ≡ Mτ(P,A) := sup
{
μ(A) : A ∈A∩ Pow

(
Xτ (η)

)}
.

Since P is unknown, it will typically not be possible to output such an ideal subset. Instead,
we will assume that the practitioner has access to a sample D ≡ ((X1, Y1), . . . , (Xn,Yn)) of
independent copies of (X,Y ). We define the class of data-dependent selection sets, denoted
Ân, to be the set of functions Â : (Rd ×[0,1])n → A such that (x,D) �→ 1

Â(D)
(x) is a Borel

measurable function on Rd × (Rd ×[0,1])n. Given a family P of distributions on Rd ×[0,1]
and a significance level α ∈ (0,1), we relax the hard requirement that our output set should
be a subset of Xτ (η) by seeking a data-dependent selection set Â ∈ Ân, with

inf
P∈P PP

(
Â(D) ⊆Xτ (η)

) ≥ 1 − α.(2)

Note that the condition A ⊆ Xτ (η) is independent of our choice of regression function
(Lemma S35). When (2) holds, we will say that Â controls the Type I error at level α over
the class P , and denote the set of data-dependent selection sets that satisfy this requirement
as Ân(α,P). For Â ∈ Ân(α,P), we would also like that for each P ∈ P , the random quantity
μ(Â(D)) should be close to Mτ , that is, we will seek upper bounds for the regret

Rτ (Â) ≡ Rτ (Â,P,A) := Mτ −EP

{
μ

(
Â(D)

)|Â(D) ⊆ Xτ (η)
}
.

In several places below, we abbreviate Â(D) as Â where the argument is clear from context.



OPTIMAL SUBGROUP SELECTION 2347

Our first result reveals that even Lipschitz restrictions on the regression function in our
class P do not suffice to obtain a data-dependent selection set Â that satisfies both (2) and
PP (μ(Â) > 0) > α for some P ∈ P . The negative implication is that, regardless of smooth-
ness properties of the true regression function, the regret of any Â satisfying (2) can be no
smaller than the infimum of the regrets of all selection sets that ignore the data while still
controlling the Type I error over our Lipschitz class.

Given a probability measure μ on Rd , we let PLip(μ) denote the set of all Borel proba-
bility distributions on Rd × [0,1] with marginal μ on Rd , and for which the corresponding
regression function η is Lipschitz. We say that Ā ∈ Ân is data independent if 1{Ā(D)=A} and

D are independent for all A ∈ A, and write Ā for the set of data-independent selection sets.

PROPOSITION 1. Let μ be a distribution on Rd without atoms and take A ⊆ B(Rd) with
dimVC(A) < ∞. Further, let Â ∈ Ân(α,PLip(μ)). Then for all P ∈ PLip(μ), we have

PP

(
μ(Â) = 0|Â ⊆ Xτ (η)

) ≥ PP

({
μ(Â) = 0

} ∩ {
Â ⊆ Xτ (η)

}) ≥ 1 − α.(3)

Hence,

Rτ (Â) ≥ Mτ · (1 − α) = inf
{
Rτ (Ā) : Ā ∈ Ā∩ Ân

(
α,PLip(μ)

)}
.(4)

In the light of Proposition 1, we will assume initially that our regression function belongs
to a Hölder class for which both the Hölder exponent and the associated constant are known.
In this section, we will work with smoothness exponents that are at most 1.

DEFINITION 1 (Hölder class). Given β ∈ (0,1], λ ∈ (0,∞) and A ⊆ Rd , we let
FHöl(β,λ,A) denote the set of all continuous functions η :Rd → [0,1] such that∣∣η(

x′) − η(x)
∣∣ ≤ λ · ∥∥x′ − x

∥∥β
∞,

for all x, x′ ∈ A. We then let PHöl(β,λ, τ ) denote the class of all distributions P on Rd ×
[0,1] with a regression function η ∈ FHöl(β,λ,Xτ (η)).

Observe that in this definition, the Hölder smoothness condition is only required to hold
on the restriction of η to Xτ (η). While our algorithms will control the Type I error over
Hölder classes, we will see that the optimal regret for a data-dependent selection set depends
on further aspects of the underlying data generating mechanism. To describe the relevant
classes, we first define a function ω ≡ ωμ,d :Rd → [0,1] by

ω(x) := inf
r∈(0,1)

μ(B̄r(x))

rd
.

Borrowing the terminology of Reeve, Cannings and Samworth (2021), we will refer to ω as
a lower density, even though our definition is slightly different as we work with an �∞-ball
instead of a Euclidean ball. A nice feature of this definition is that it allows us to avoid assum-
ing that μ is absolutely continuous with respect to Lebesgue measure; see Reeve, Cannings
and Samworth (2021) for several basic properties of lower density functions.

We are now in a position to define what we refer to as an approximable class of distribu-
tions; these are ones for which we can approximate Mτ well by μ(A), where A ∈ A is both
such that the lower density on A is not too small and such that the regression function on A

is bounded away from the critical threshold τ .
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DEFINITION 2 (Approximable class). Given A ⊆ B(Rd), κ, γ > 0, τ ∈ (0,1) and
CApp ≥ 1, let PApp(A, κ, γ, τ,CApp) denote the class of all distributions P on Rd × [0,1]
with marginal μ on Rd and a regression function η :Rd → [0,1] such that

sup
{
μ(A) : A ∈ A∩ Pow

(
Xξ (ω) ∩Xτ+�(η)

)} ≥ Mτ − CApp · (
ξκ + �γ )

,

for all ξ,� > 0.

We now provide several examples of distributions belonging to appropriate approximable
classes. The proofs of the claims in these examples are given in Section S3.

EXAMPLE 1. Let P(Y = 0) = P(Y = 1) = 1/2, and X|Y = r ∼ N((−1)r−1ν,1) for r ∈
{0,1} and some ν > 0. Fix some τ ∈ (0,1), and let Aint denote the set of all closed intervals
in R. Then the distribution P of (X,Y ) belongs to PApp(Aint, κ, γ, τ,CApp) with κ = γ = 1,
for a suitably large choice of CApp, depending only on ν and τ .

EXAMPLE 2. Let μ denote the uniform distribution on [0,1]d and fix τ ∈ (0,1). Suppose
that η : Rd → [0,1] is coordinate-wise increasing, that Sτ := {x ∈ [0,1]d : η(x) = τ } �= ∅,
and that there exist δ, ε ∈ (0,1] and γ > 0 such that η(x) − τ ≥ ε · dist∞(x,Sτ )

1/γ , for
every x ∈ Xτ (η) ∩ [0,1]d with dist∞(x,Sτ ) ≤ δ. If P denotes a distribution on Rd × [0,1]
with marginal μ on Rd and regression function η, then P ∈ PApp(Ahpr, κ, γ, τ,CApp) for
arbitrarily large κ > 0, provided that CApp ≥ 2d/(εγ δ).

EXAMPLE 3. Consider the family of distributions {μκ : κ ∈ (0,∞)} on Rd with densities
of the form x �→ gκ(‖x‖∞), where gκ : [0,∞) → [0,∞) is given by

gκ(y) :=

⎧⎪⎪⎨
⎪⎪⎩

(
κ/2d) · {

1 + (1 − κ)yd}−1/(1−κ) if κ ∈ (0,1),(
1/2d) · e−yd

if κ = 1,(
κ/2d) · {

1 − (κ − 1)yd}1/(κ−1)1{y≤1/(κ−1)1/d } if κ ∈ (1,∞).

Now, for γ > 0 and τ ∈ (0,1), define the regression function ηγ :Rd → [0,1] by

ηγ (x) := 0 ∨ {
τ + λ · sgn(x1)|x1|1/γ } ∧ 1.

Writing Pκ,γ for the distribution on Rd × {0,1} with marginal μκ on Rd and regression
function ηγ , we have that Pκ,γ ∈ PApp(Ahpr, κ, γ, τ,CApp) for CApp ≡ CApp(d, κ, γ, λ) > 0
sufficiently large.

Example 1 is designed to be a simple setting of our problem, where we can take γ = κ = 1.
Example 2 illustrates the way that the growth of η as we move away from η−1(τ ) af-
fects the parameter γ of our class, while Example 3 shows the effect of the tail behaviour
of the marginal density on Rd on the parameter κ . Proposition S6 in the Supplemen-
tary Material provides general conditions under which our joint distribution belongs to
PApp(A, κ, γ, τ,CApp) with γ = 1. In essence, the γ = 1 setting occurs when the gradient of
the regression function never vanishes on the boundary η−1(τ ) of Xτ (η).

We can now state the main theorem of this section, which reveals the minimax optimal
rate of convergence for the regret over PHöl(β,λ, τ ) ∩ PApp(A, κ, γ, τ,CApp) for a data-
dependent selection set in Ân(α,PHöl(β,λ, τ )).

THEOREM 2. Take β ∈ (0,1], λ ≥ 1, κ, γ > 0, τ ∈ (0,1) and CApp ≥ 1.
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(i) Upper bound: Let A ⊆ B(Rd) satisfy dimVC(A) < ∞ and ∅ ∈ A. Then there exists
C ≥ 1, depending only on d , κ , γ , τ , CApp and dimVC(A), such that for all n ∈ N and
α ∈ (0,1/2], we have

inf
Â

sup
P

Rτ (Â) ≤ C · min
{(

λd/β · log+(n/α)

n

) βκγ
κ(2β+d)+βγ + 1

n1/2 ,1
}
,(5)

where the infimum in (5) is taken over Ân(τ,α,PHöl(β,λ, τ )) and the supremum is taken
over PHöl(β,λ, τ ) ∩PApp(A, κ, γ, τ,CApp).

(ii) Lower bound: Now suppose that βγ (κ − 1) < dκ , ε0 ∈ (0,1/2), τ ∈ (ε0,1 − ε0) and
α ∈ (0,1/2 − ε0]. Then there exists c > 0, depending only on d , β , κ , γ , CApp and ε0, such
that for any A ⊆ B(Rd) satisfying Ahpr ⊆A ⊆ Aconv and any n ∈ N, we have

inf
Â

sup
P

Rτ (Â) ≥ c · min
{(

λd/β · log+(n/(λd/βα))

n

) βκγ
κ(2β+d)+βγ + 1

n1/2 ,1
}
,(6)

where, again, the infimum in (6) is taken over Ân(τ,α,PHöl(β,λ, τ )) and the supremum is
taken over PHöl(β,λ, τ ) ∩PApp(A, κ, γ, τ,CApp).

Since dimVC(Ahpr) < ∞ (e.g., Shalev-Shwartz and Ben-David (2014), Exercise 5 in Sec-
tion 6.8), the choice A= Ahpr provides a natural example satisfying both the lower and upper
bounds in Theorem 2.

In order to introduce the algorithm that achieves the upper bound, we define the empirical
marginal distribution μ̂n and empirical regression function η̂n, for B ⊆ Rd , by

μ̂n(B) := 1

n

n∑
i=1

1{Xi∈B},(7)

η̂n(B) := 1

n · μ̂n(B)

n∑
i=1

Yi · 1{Xi∈B}(8)

whenever μ̂n(B) > 0, and η̂n(B) := 1/2 otherwise. The main idea is to associate, to each
B ⊆ Rd , a p-value for a test of the hypothesis that the regression function is uniformly above
the level τ on B . More precisely, for B ⊆ Rd , we define

p̂n(B) ≡ p̂n,β,λ(B) := exp
{−n · μ̂n(B) · kl

(
η̂n(B), τ + λ · diam∞(B)β

)}
,(9)

whenever η̂n(B) > τ + λ · diam∞(B)β , and p̂n(B) := 1 otherwise. Lemma 3 below confirms
that p̂n(B) is indeed a p-value (even conditionally on DX ≡ (Xi)i∈[n]).

LEMMA 3. Fix β ∈ (0,1], λ ∈ [1,∞) and P ∈ PHöl(β,λ, τ ) with a regression function
η ∈FHöl(β,λ,Xτ (η)). Then given B ∈ B(Rd) with B �Xτ (η), and any α ∈ (0,1), we have

PP

(
p̂n(B) ≤ α|DX

) ≤ α.

We now exploit these p-values to specify a data-dependent selection set Â that controls
the Type I error over PHöl(β,λ, τ ). First, define a set of hyper-cubes

H :=
{

2−q
d∏

j=1

[2aj − 1,2aj + 3) : (a1, . . . , ad) ∈ Zd, q ∈ N

}
.

Now, given n ∈ N and x1:n = (xi)i∈[n] ∈ (Rd)n, we define

H(x1:n) := {
B ∈ H : {x1, . . . , xn} ∩ B �= ∅ and diam∞(B) ≥ 1/n

}
,
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Algorithm 1: The data-dependent selection set ÂOSS

1 Input: Data D = ((X1, Y1), . . . , (Xn,Yn)) ∈ (Rd × [0,1])n, an ordered set A of subsets
of Rd with ∅ ∈ A, (τ,α) ∈ (0,1)2, Hölder parameters (β,λ) ∈ (0,1] × [1,∞);

2 Compute p̂n(B) for each B ∈H(DX) using (9) and let L̂ := |H(DX)|;
3 Enumerate H(DX) as (B(�))�∈[L̂], in such a way that p̂n(B(�)) ≤ p̂n(B(�′)) for � ≤ �′;
4 if L̂ · p̂n(B(1)) ≤ α then
5 Compute �α := max{� ∈ [L̂] : (L̂ + 1 − �′) · p̂n(B(�′)) ≤ α ∀�′ ≤ �};
6 Choose ÂOSS(D) := sargmax{μ̂n(A) : A ∈A∩ Pow(

⋃
�∈[�α] B(�))};

7 else
8 Set ÂOSS(D) = ∅;
9 end

Result: The selected set ÂOSS(D).

so that |H(x1:n)| ≤ 2dn(2 + log2 n). The overall algorithm, which applies Holm’s proce-
dure (Holm (1979)) to the p-values in (9) and is denoted by ÂOSS ∈ Ân, is given in Al-
gorithm 1. Note that in this algorithm, there is no loss of generality in assuming that A
is ordered, by the well-ordering theorem, which is equivalent to the axiom of choice. Of
course, in most practical settings, there would be a natural ordering on A induced by an
injective map from A to a Euclidean space with lexicographic ordering; for example, if
A is the set of hyper-rectangles in Rd , then this map could take a given hyper-rectangle
A = ∏d

j=1[aj , bj ] to (a1, b1, . . . , ad, bd) ∈ R2d . We remark also that in Algorithm 1, it may
be the case that there exist B1,B2 ∈ H(DX) with B1 ⊆ B2 and B2 ∈ {B(1), . . . ,B(�α)}, while
B1 /∈ {B(1), . . . ,B(�α)}. This causes no difficulties for our theory.

Proposition 4 below provides part of the proof of the upper bound in Theorem 2.

PROPOSITION 4. Let α ∈ (0,1) and (β,λ) ∈ (0,1] × [1,∞). Then the data-dependent
selection set ÂOSS controls the Type I error at level α over PHöl(β,λ, τ ); in other words,
ÂOSS ∈ Ân(τ,α,PHöl(β,λ, τ )).

Proposition 5 complements Proposition 4 by bounding the regret Rτ (ÂOSS), and together
these results prove the upper bound in Theorem 2. In fact, we provide a high-probability
bound as well as an expectation bound.

PROPOSITION 5. Take τ,α ∈ (0,1), β ∈ (0,1], λ ≥ 1, κ, γ > 0, CApp ≥ 1 and A ⊆
B(Rd) with dimVC(A) < ∞ and ∅ ∈ A. There exists C̃ ≥ 1, depending only on d , κ , γ , τ ,
CApp and dimVC(A), such that for all P ∈ PHöl(β,λ, τ )∩PApp(A, κ, γ, τ,CApp), n ∈ N and
δ ∈ (0,1), we have

PP

[
Mτ − μ(ÂOSS) > C̃

{(
λd/β

n
· log+

(
n

α ∧ δ

)) βκγ
κ(2β+d)+βγ +

(
log+(1/δ)

n

)1/2}]
≤ δ.

As a consequence, for α ∈ (0,1/2],

Rτ (ÂOSS) ≤ C

{(
λd/β

n
· log+

(
n

α

)) βκγ
κ(2β+d)+βγ + 1

n1/2

}
,

where C > 0 depends only on C̃.
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In the lower bound part of Theorem 2, we have the condition βγ (κ −1) < dκ . A constraint
of this form is natural in light of the tension between β , κ and γ . In particular, large values
of κ and γ mean that little μ-mass in Xτ (η) is lost by restricting to sets A ∈ A for which
the lower density of A is not too small, and the regression function on A is uniformly well
above τ ; but the smoothness of the regression function constrains the rate of change of η

and, therefore, the extent to which this is possible. This intuition is formalised in Lemma
S33, where we prove that βγ (κ − 1) ≤ dκ provided there exists a distribution in our class
for which the pre-image of τ under η is nonempty, and μ is sufficiently well behaved. Since
the lower bound construction for the proof of Theorem 2(ii) is common to both the setting
of this section and that of the upcoming Section 4 on higher-order smoothness, we will defer
discussion of this construction until Section 5.

3. Choice of λ and β . Our original algorithm for computing ÂOSS takes λ and β as
inputs. In cases where a practitioner is unable to make informed default choices, it is natu-
ral to seek to understand the effect of overspecification and underspecification of these pa-
rameters, as well as to seek data-driven estimators. To study the first of these questions, fix
β ∈ (0,1] and λ ≥ 1, as well as β ′ ∈ (0, β] and λ′ ≥ λ. Since PHöl(β

′, λ′, τ ) ⊇ PHöl(β,λ, τ ),
if we apply Algorithm 1 with inputs β ′ and λ′, then ÂOSS ∈ Ân(τ,α,PHöl(β

′, λ′, τ )) ⊆
Ân(τ,α,PHöl(β,λ, τ )); in other words, if we underspecify the smoothness, then we continue
to control the Type I error. On the other hand, we may pay a price in terms of a suboptimal
rate of convergence for the regret: in the bounds in Proposition 5, we would need to replace
λ and β with λ′ and β ′, respectively. Conversely, if we over-specify the smoothness, then we
no longer have guaranteed Type I error control.

In the remainder of this section, we tackle in turn the problems of estimating λ and β from
the data.

3.1. Choice of λ. In view of Proposition 1, we will need to impose some additional
(mild) restrictions on our classes of distributions, as well as a sample size condition, in order
to estimate λ effectively. First, however, we describe our algorithm to estimate λ for fixed β ,
and demonstrate a sense in which it provides a slightly conservative estimate (Corollary 7).
It is convenient, for u ∈ R \ {0}, to define u/0 := ∞ if u > 0 and u/0 := −∞ if u < 0. For
each i, k ∈ [n] we let ri,k ≡ ri,k(DX) := inf{r ∈ (0,∞) : |{Xj }j∈[n] ∩ B̄r (Xi)| ≥ k} denote the
kth nearest neighbour distance from Xi within DX . Recalling the definition of the empirical
regression function η̂n from (8), given β ∈ (0,1], δ ∈ (0,1) and i, j, k, � ∈ [n], we define

φ̂n,β,δ(i, j, k, �) := η̂n(B̄ri,k (Xi)) − η̂n(B̄rj,�(Xj )) −
√

2 log(4n2/δ)/(k ∧ �)

‖Xi − Xj‖β∞ + r
β
i,k + r

β
j,�

,

ψ̂n,β,δ(i, k) := 1

(2ri,k)β
· {

η̂n

(
B̄ri,k (Xi)

) − τ −
√

log
(
4n2/δ

)
/(2k)

}
.

We then set

λ̂n,β,δ ≡ λ̂n,β,δ(D) := 1 ∨ max
(i,j,k,�)∈[n]4

min
{
φ̂n,β,δ(i, j, k, �), ψ̂n,β,δ(i, k), ψ̂n,β,δ(j, �)

}
.

To explain the idea behind this construction, suppose that P has continuous regression func-
tion η with Hölder constant λ on Xτ (η), and marginal distribution μ on Rd . Note that
η̂n(B̄ri,k (Xi)) is the k-nearest neighbour regression estimate of η(Xi) when the nearest neigh-

bour distances of Xi are distinct. Thus, η̂n(B̄ri,k (Xi))−
√

log(4n2/δ)/(2k)−λ · rβ
i,k is a lower

confidence bound for η(Xi) and η̂n(B̄rj,�(Xj ))+
√

log(4n2/δ)/(2�)+λ · rβ
j,� is an upper con-

fidence bound for η(Xj ). It follows that when Xi,Xj ∈ Xτ (η), we have with high probability
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that φ̂n,β,δ(i, j, k, �) does not exceed λ for any k, � ∈ [n]. On the other hand, if Xi /∈ Xτ (η),
then with high probability, ψ̂n,β,δ(i, k) ≤ λ, and similarly with j, � in place of i, k. Thus, with
high probability λ̂n,β,δ ≤ λ.

Now suppose that there exist well-separated points x0, x1 ∈ Xτ (η) such that μ is well
behaved near both x0 and x1, and η(x0) − η(x1) = λ̃ · ‖x0 − x1‖β∞ for some λ̃ ≤ λ, then with
high probability, for a sufficiently large sample size, there will also exist data points Xi near
x0 and Xj near x1, along with k, � ∈ [n] for which φ̂n,β,δ(i, j, k, �) is not too much less than
λ̃. If, in addition, η(x0) is not too close to τ then with high probability, ψ̂n,β,δ(i, k) will also
not be much less than λ̃ for an appropriately chosen k ∈ [n], and similarly for x1, Xj and �

in place of x0, Xi and k, respectively. Overall, this ensures that λ̂n,β,δ will be nearly as large
as λ̃ with high probability, for a sufficiently large sample size.

THEOREM 6. Let (β,λ) ∈ (0,1] × [1,∞) and P ∈ PHöl(β,λ, τ ). Then, for δ ∈ (0,1),

PP

(
sup

x0,x1∈Xτ (η−�n)

{ |η(x0) − η(x1)| − �n(x0) ∨ �n(x1)

‖x0 − x1‖β∞

}
≤ λ̂n,β,δ ≤ λ

)
≥ 1 − δ,

where �n ≡ �n,β,λ :Rd → [0,∞] is defined by

�n(x) := 192 · λd/(2β+d) ·
(

log(2n/δ)

n · ω(x)

)β/(2β+d)

,(10)

with the convention that �n(x) := ∞ if ω(x) = 0.

An attraction of Theorem 6 is that it makes no assumptions on P apart from the corre-
sponding regression function satisfying the Hölder condition of Definition 1. We now show
that, under further conditions on our class, it is possible to control the lower confidence bound
for λ̂n,β,δ to guarantee that with high probability it is within a factor of 2 of the appropriate
Hölder constant. More precisely, for a distribution P on Rd × [0,1] having marginal dis-
tribution μ on Rd and continuous regression function η, and for β ∈ (0,1], we define the
β-Hölder constant of P to be

λβ(P ) := sup
{ |η(x0) − η(x1)|

‖x0 − x1‖β∞
: x0, x1 ∈ supp(μ) ∩Xτ (η), x0 �= x1

}
∨ 1.

We write P ∈ PReg(τ ) if η is continuous and satisfies η−1([τ, τ + ε)) ⊆ supp(μ) for some
ε > 0. Further, for λ ∈ [1,∞) and ε = (ε0, ε1, ε2) ∈ (0,1]3, we write P ∈ P+

Höl(β,λ, τ, ε) if
λβ(P ) ≤ λ and either λβ(P ) = 1, or there exist x0, x1 ∈ Xτ+ε0(η) with ‖x0 − x1‖∞ ≥ ε1, as
well as min{ω(x0),ω(x1)} ≥ ε2 and

∣∣η(x0) − η(x1)
∣∣ ≥ 3

4
· λβ(P ) · ‖x0 − x1‖β∞.

The idea here is that if P ∈ P+
Höl(β,λ, τ, ε) and λβ(P ) > 1, then we can find a well-separated

pair of points that nearly attains the supremum in the definition of λβ(P ), as well as belong-
ing comfortably to the τ -super level set of η and having μ assign sufficient mass in small
neighbourhoods of each of the points. In Lemma S11, we show that

PReg(τ ) ∩PHöl(β,λ, τ ) ⊆ ⋃
ε∈(0,∞)3

P+
Höl(β,λ, τ, ε),

so that, under the mild condition that P ∈ PReg(τ ), the additional restriction enforced by
P ∈ P+

Höl(β,λ, τ, ε) for small ε0, ε1, ε2 > 0 amounts to very little more than asking for P to
satisfy the Hölder condition of Definition 1 for some λ ≥ 1.
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COROLLARY 7. Fix β ∈ (0,1], λ ∈ [1,∞), ε = (ε0, ε1, ε2) ∈ (0,1]3 and take P ∈
PReg(τ ) ∩P+

Höl(β,λ, τ, ε). Let n ∈ N and δ ∈ (0,1) be such that

n

log(2n/δ)
≥ 1

ε2
· max

{(
192

ε0

)(2β+d)/β

λd/β,

(
768

ε1

)(2β+d)/β}
.(11)

Then

PP

(
λβ(P )

2
≤ λ̂n,β,δ ≤ λβ(P )

)
≥ 1 − δ.

Corollary 7 reveals that when P ∈ PReg(τ ) ∩ P+
Höl(β,λ, τ, ε), the estimator λ̂n,β,δ is reli-

able in the sense that with high probability, it is within a factor of 2 of the desired λβ(P ) for
a sufficiently large sample size. However, in order to control Type I error we will in fact use
the estimator 2λ̂n,β,δ , which has the benefit of being slightly conservative, that is, it tends to
overestimate λβ(P ), while still being within a factor of 2 of the desired λβ(P ). Theorem 8
summarises our overall guarantees when applying Algorithm 1 in this context.

THEOREM 8. Fix α ∈ (0,1), d ∈ N, β ∈ (0,1], λ ∈ [1,∞) and ε = (ε0, ε1, ε2) ∈ (0,1]3.
Suppose that n ∈ N satisfies (11) with αn := (α/2)∧ (1/n) in place of δ. Let Â′

OSS denote the
output of Algorithm 1 with inputs D, A, τ , αn, β and 2λ̂n,β,αn . Then:

(i) Type I error: Â′
OSS ∈ Ân(τ,α,PReg(τ ) ∩P+

Höl(β,λ, τ, ε)).
(ii) Regret: Now suppose further that A satisfies dimVC(A) < ∞ and ∅ ∈ A, that α ∈

(0,1/2], and fix κ , γ and CApp. There exists C ≥ 1, depending only on d , κ , γ , τ , CApp

and dimVC(A), such that for any P ∈ PReg(τ ) ∩ P+
Höl(β,λ, τ, ε) ∩ PApp(A, κ, γ, τ,CApp),

we have

Rτ

(
Â′

OSS
) ≤ C

{(
λβ(P )d/β

n
· log+

(
n

α

)) βκγ
κ(2β+d)+βγ + 1

n1/2

}
.(12)

The main message of Theorem 8 is that replacing λ with 2λ̂n,β,α/2 in Algorithm 1 re-
tains both the Type I error validity and the regret guarantees when the sample size is suffi-
ciently large and provided that we make the slight restrictions to our classes of distributions
mentioned above. An immediate consequence of this result together with Lemma S11 is
that for any P ∈ PReg(τ ) ∩ ⋃

λ∈[1,∞)PHöl(β,λ, τ ), there exists Nα(P ) ∈ N such that for all

n ≥ Nα(P ) we have both Type I error control, that is, PP (Â(D) ⊆ Xτ (η)) ≥ 1 − α, and the
regret guarantee (12). An attraction of this approach to choosing the input λ is that we avoid
sample splitting.

3.2. Choice of β . Since the algorithm described in Section 3.1 takes β ∈ (0,1] as an
input, we now describe a data-driven algorithm for estimating this parameter. In contrast to
identifying the Hölder constant, identifying the Hölder exponent requires an analysis of the
behaviour of the regression function at multiple scales. This motivates the introduction of
distributional classes for which the corresponding regression functions exhibit ‘self-similar’
behaviour; see Definition 3 below. Related ideas have appeared in the adaptive confidence
band literature (Bull (2012), Giné and Nickl (2010), Gur, Momeni and Wager (2022), Picard
and Tribouley (2000)). First, given a Borel measure μ on Rd and c0 ∈ (0,∞), we let

R◦(μ, c0) := ⋂
r∈(0,1)

{
x ∈ Rd : μ(

B̄r (x)
) ≥ c0 · rd}

.

Thus, R◦(μ, c0) denotes the set of points x for which the μ-measure of small balls centred
at x can be bounded below by their volumes, up to constants.
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DEFINITION 3 (Self-similar Hölder class). Given β ∈ (0,1], λ ∈ [1,∞), λ0 ∈ (0,∞),
c0, r0 ∈ (0,1], we let P†

Höl(β,λ,λ0, c0, r0) denote the class of all distributions P on Rd ×
[0,1] with regression function η ∈ FHöl(β,λ,Rd) such that for all r ∈ (0, r0] there exist
x0, x1 ∈ R◦(μ, c0) such that ‖x0 − x1‖∞ ≤ r and |η(x0) − η(x1)| ≥ λ0 · rβ .

We view the regression functions η of distributions P ∈ P†
Höl(β,λ,λ0, c0, r0) as self-

similar since the fluctuations permitted by the β-Hölder constraint are exhibited at every
sufficiently small scale. For δ ∈ (0,1), we aim to define estimators (β̂n,δ, λ̂n,β̂n,δ,δ

) of (β,λ).
To this end, for i, j, k, � ∈ [n], let

ε̂
†
n,β,δ(i, j, k, �) := − log

(‖Xi − Xj‖∞ + ri,k + rj,�
)
,

ϕ̂
†
n,β,δ(i, j, k, �) := − log

(∣∣η̂n

(
B̄ri,k (Xi)

) − η̂n

(
B̄rj,�(Xj )

)∣∣ −
√

2 log
(
4n2/δ

)
/(k ∧ �)

)
,

with the convention that − log z := ∞ for z ≤ 0. We then define


̂
†
n,δ := {(

ε̂
†
n,β,δ(i, j, k, �), ϕ̂

†
n,β,δ(i, j, k, �)

) : (i, j, k, �) ∈ [n]4, ϕ̂
†
n,β,δ(i, j, k, �) < ∞}

.

Finally, letting f : N→ [1,∞) denote any increasing function satisfying f (n) → ∞ as n →
∞, we define

β̂n,δ ≡ β̂n,δ(D) := 0 ∨ max
(u0,v0)∈
̂

†
n,δ :u0≤ logn

6+2d

min
(u1,v1)∈
̂

†
n,δ :u1≥2u0

v1 − v0 − logf (n)

u1 − u0
,

with the conventions that max∅ := −∞ and min∅ := ∞. Theorem 9 below provides a high-
probability guarantee on the performance of β̂n,δ .

THEOREM 9. Fix β ∈ (0,1], d ∈ N, λ ∈ [1,∞) as well as λ0 ∈ (0, λ], c0, r0 ∈ (0,1] and
P ∈ P†

Höl(β,λ,λ0, c0, r0). Then for n ∈ N such that f (n) ≥ 14λ/λ0 and

(13) n ≥ max
{

1

r
(7+2d)
0

,
8(16λ)d/β log(4n2/δ)

27d/2βc0
,

(
21072β+d(16λ/λ0)

d/β log(4n2/δ)

c0 · λ2
0

)3+d}
,

we have

PP

(
β − 2(7 + 2d) logf (n)

logn
≤ β̂n,δ ≤ β

)
≥ 1 − δ.

Theorem 9 ensures that β̂n,δ is a uniformly consistent estimator over each of our self-
similar classes. Moreover, analogously to Corollary 7, it tends to slightly underestimate the
true Hölder exponent, which is again advantageous for establishing our overall guarantees on
the performance of Algorithm 1 with this data-driven choice of β .

THEOREM 10. Fix α ∈ (0,1), β ∈ (0,1], d ∈ N, λ ∈ [1,∞), λ0 ∈ (0, λ], c0, r0 ∈ (0,1]
and ε = (ε0, ε1, ε2) ∈ (0,1]3. Let α̃n := (α/3)∧(1/n). Suppose that n ∈ N satisfies 14λ/λ0 ≤
f (n) ≤ n

log(9/7)
2(7+2d) log(1/ε2) and

n ≥ max
{

1

r
(7+2d)
0

,
8(16λ)d/β log(12n3/α)

27d/2βc0
,

(
21072β+d(16λ/λ0)

d/β log(12n3/α)

c0 · λ2
0

)3+d

,

log(6n2/α)

ε2
·

[
f (n)2(7+2d) ·

(
192 · max

{
λ

ε0
,

12

ε1

})2+d]1/β}
.
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Let Â′′
OSS denote the output of Algorithm 1 with input α̃n in place of α, β̂n,α̃n

in place of β

and 2λ̂
n,β̂n,α̃n ,α̃n

in place of λ. Then:

(i) Type I error: Â′′
OSS ∈ Ân(τ,α,PReg(τ ) ∩P+

Höl(β,λ, τ, ε) ∩P†
Höl(β,λ,λ0, c0, r0)).

(ii) Regret: Now suppose further that A satisfies dimVC(A) < ∞ and ∅ ∈ A, that
α ∈ (0,1/2], and fix κ , γ and CApp. There exists C ≥ 1, depending only on d , κ , γ , τ ,

CApp and dimVC(A), such that for P ∈ PReg(τ ) ∩ P+
Höl(β,λ, τ, ε) ∩ P†

Höl(β,λ,λ0, c0, r0) ∩
PApp(A, κ, γ, τ,CApp), we have

Rτ

(
Â′′

OSS
) ≤ C

{
f (n)4γ (7+2d)/d

(
λβ(P )d/β

n
· log+

(
n

α

)) βκγ
κ(2β+d)+βγ + 1

n1/2

}
.(14)

Theorem 10 confirms that when applying Algorithm 1 with our data-driven choices of β

and λ, we maintain large-sample Type I error control over appropriate classes, and only lose
a sub-logarithmic factor in n in terms of regret.

4. Higher-order smoothness. In this section, we explain how the procedure and analy-
sis of Section 2 can be modified and extended to cover a general smoothness level β > 0
for the regression function. Given ν = (ν1, . . . , νd)� ∈ Nd

0 and x = (x1, . . . , xd)� ∈ Rd ,
we define ‖ν‖1 := ∑d

j=1 νj , ν! := ∏d
j=1 νj ! and xν := ∏d

j=1 x
νj

j . For an ‖ν‖1-times dif-

ferentiable function g : Rd → R, define ∂ν
x (g) := ∂‖ν‖1g

∂x
ν1
1 ...∂x

νd
d

(x). Given β ∈ (0,∞), we let

V(β) := {ν ∈ Nd
0 : ‖ν‖1 ≤ �β� − 1}, so that |V(β)| =

(�β� + d − 1
d

)
, and for a (�β� − 1)-

times differentiable function g : Rd → R, let T β
x [g] : Rd → R denote the associated Taylor

polynomial at x ∈ Rd , defined by

T β
x [g](x′) := ∑

ν∈V(β)

(x′ − x)ν

ν! · ∂ν
x (g),

for x′ ∈ Rd .

DEFINITION 4 (General Hölder class). Given (β,λ) ∈ (0,∞) × [1,∞), let P̃Höl(β,λ)

denote the class of all distributions P on Rd × [0,1] such that the associated regression
function η :Rd → [0,1] is (�β� − 1)-differentiable and satisfies∣∣η(

x′) − T β
x [η](x′)∣∣ ≤ λ · ∥∥x′ − x

∥∥β
∞,

for all x, x′ ∈ Rd . Moreover, we let PHöl(β,λ) := ⋂
β ′∈(0,β] P̃Höl(β

′, λ).

Throughout this section, and in contrast to Section 2, we will require that the marginal
distribution μ is absolutely continuous with respect to Lebesgue measure, and write fμ for
its density. Given a probability measure μ on Rd and some υ ∈ (0,1), we define

Rυ(μ) := ⋂
r∈(0,1)

{
x ∈Rd : μ(

Br(x)
) ≥ υ · rd · sup

x′∈B(1+υ)r (x)

fμ

(
x′)}

.(15)

To provide some intuition about Rυ(μ), consider first a simple example where μ denotes
the N(0, σ 2) distribution. In that case, the point x = 0 belongs to Rυ(μ) if and only if
υ ≤ √

2πσ {2�(1/σ) − 1}. In particular, we must have υ ≤ √
2πσ , and (since we only

consider υ < 1), it suffices that υ ≤ 2σ . More generally, if S ⊆ supp(μ) is a (c0, r0)-
regular set ((Audibert and Tsybakov (2007)), equation (2.1)) and if μ is absolutely contin-
uous with respect to Ld with corresponding density fμ satisfying the condition that Kμ :=
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supx∈supp(μ) fμ(x)/ infx∈S fμ(x) < ∞, then S ⊆ Rυ(μ) for υ ≤ c0 · Vd · (r0 ∧ 1)d · K−1
μ .

Moreover, we can still have Rυ(μ) = supp(μ) even when μ is not compactly supported and
there is no uniform positive lower bound for fμ on its support. For instance, the family of
probability measures {μκ : κ ∈ (0,1)} on Rd considered in Example 3 satisfies Rυ(μκ) = Rd

for υ ≤ 2d · {1+3d(1−κ)}−1/(1−κ). Finally, if logfμ if L-Lipschitz with respect to the supre-
mum norm, then Rυ(μ) =Rd provided that υ ≤ 2de−3L.

We are now in a position to define an appropriate definition of approximable classes for
regression functions with higher-order smoothness.

DEFINITION 5 (Approximable classes for higher-order smoothness). Given A ⊆ B(Rd)

and (κ, γ,υ,CApp) ∈ (0,∞)2 × (0,1) × [1,∞), we let P+
App(A, κ, γ,υ, τ,CApp) denote the

class of all distributions P on Rd ×[0,1] with marginal μ on Rd and a continuous regression
function η :Rd → [0,1] such that

sup
{
μ(A) : A ∈ A∩ Pow

(
Rυ(μ) ∩Xξ (fμ) ∩Xτ+�(η)

)} ≥ Mτ − CApp · (
ξκ + �γ )

,

(16)

for all (ξ,�) ∈ (0,∞)2.

Finally, then we can state the main theorem of this section.

THEOREM 11. Take (τ,α) ∈ (0,1)2, (β,λ) ∈ (0,∞) × [1,∞) and (κ, γ,υ,CApp) ∈
(0,∞)2 × (0,1) × [1,∞).

(i) Upper bound: Let A ⊆ B(Rd) satisfy dimVC(A) < ∞ and ∅ ∈ A. Then there exists
C ≥ 1, depending only on d , β , κ , γ , υ , CApp and dimVC(A), such that for all n ∈ N and
α ∈ (0,1/2], we have

inf
Â

sup
P

Rτ (Â) ≤ C · min
{(

λd/β · log+(n/α)

n

) βκγ
κ(2β+d)+βγ + 1

n1/2 ,1
}
,(17)

where the infimum in (17) is taken over Ân(τ,α,PHöl(β,λ)) and the supremum is taken over
PHöl(β,λ) ∩P+

App(A, κ, γ,υ, τ,CApp).
(ii) Lower bound: Now suppose that βγ (κ − 1) < dκ , ε0 ∈ (0,1/2), τ ∈ (ε0,1 − ε0),

α ∈ (0,1/2 − ε0] and υ ∈ (0, (4d1/2)−d ]. Then there exists c > 0, depending only on d , β , κ ,
γ , CApp and ε0, such that for any A ⊆ B(Rd) satisfying Ahpr ⊆ A ⊆ Aconv and any n ∈ N,
we have

inf
Â

sup
P

Rτ (Â) ≥ c · min
{(

λd/β · log+{n/(λd/βα)}
n

) βκγ
κ(2β+d)+βγ + 1

n1/2 ,1
}
,(18)

where, again, the infimum in (18) is taken over Ân(τ,α,PHöl(β,λ)) and the supremum is
taken over PHöl(β,λ) ∩P+

App(A, κ, γ,υ, τ,CApp).

In order to prove the upper bound in Theorem 11, we will introduce a modified algorithm.
The key alteration is a different choice of p-values that now makes use of data points outside
(as well as within) our hyper-cube of interest to test whether or not the regression function
is uniformly above τ on the hyper-cube. Given β ∈ (0,∞), x, x′ ∈ Rd , h ∈ (0,1] and P ∈
PHöl(β,λ) with regression function η, we let

�
β
x,h

(
x′) :=

((
x′ − x

h

)ν)
ν∈V(β)

∈ RV(β) and w
β
x,h :=

(
h‖ν‖1

ν! · ∂ν
x (η)

)
ν∈V(β)

∈RV(β),
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so that T β
x [g](x′) = 〈wβ

x,h,�
β
x,h(x

′)〉 for all x, x′ ∈ Rd and h ∈ (0,1], where 〈·, ·〉 denotes
the Euclidean inner product. Moreover, if we let e0 := (1{ν=(0,...,0)�})ν∈V(β) ∈ RV(β), then

η(x) = 〈e0,w
β
x,h〉. A natural estimator of w

β
x,h is the local polynomial estimator obtained by

taking Nx,h := {i ∈ [n] : Xi ∈ B̄h(x)} and letting

ŵ
β
x,h ∈ argmin

w∈RV(β)

∑
i∈Nx,h

(
Yi − 〈

w,�
β
x,h(Xi)

〉)2
.

In fact, it will be convenient to choose a particular element of this argmin: if we define

V
β
x,h := ∑

i∈Nx,h

Yi · �β
x,h(Xi) ∈ RV(β),

Q
β
x,h := ∑

i∈Nx,h

�
β
x,h(Xi)�

β
x,h(Xi)

� ∈RV(β)×V(β),

then we will take ŵ
β
x,h := (Q

β
x,h)

+V
β
x,h. Thus, η̂(x) := 0 ∨ (1 ∧ 〈e0, ŵ

β
x,h〉) is an estimator

of η(x). Next, we associate a p-value to closed hyper-cubes B ⊆ Rd with diam∞(B) ≤ 1 as
follows. Let x ∈Rd and r ∈ [0,1/2] denote the centre and �∞-radius of B , so that B = B̄r (x).

Let h := (2r)
1∧ 1

β ∈ [0,1], and define

p̂+
n (B) ≡ p̂+

n,β,λ(B)

:= exp
{
− 2

e�
0 (Q

β
x,h)

−1e0

×
(
η̂(x) − τ − λ

(
1 + 2

√
e�

0

(
Q

β
x,h

)−1
e0 · |Nx,h|

)
rβ∧1

)2
}
,

(19)

whenever Q
β
x,h is invertible and η̂(x) ≥ τ + λ(1 + 2

√
e�

0 (Q
β
x,h)

−1e0 · |Nx,h|)rβ∧1, and
p̂+

n (B) := 1 otherwise. Lemma S17 in Section S5 shows that these are indeed p-values.
We will also make use of an alternative set of hyper-cubes

H+ :=
{

2−q
d∏

j=1

[aj , aj + 1] : (a1, . . . , ad) ∈ Zd, q ∈ N

}
.

Now, given n ∈ N, x1:n = (xi)i∈[n] ∈ (Rd)n, we define

H+(x1:n) := {
B ∈ H+ : {x1, . . . , xn} ∩ B �=∅ and diam∞(B) ≥ 1/n

}
,(20)

so that |H+(x1:n)| ≤ 2dn log2 n, and |H+(DX)| ≤ n log2 n with probability 1 when μ is ab-
solutely continuous with respect to Lebesgue measure. We denote our modified procedure
for general smoothness, obtained by applying Algorithm 1 with the p-values (19) and the
hyper-cubes given by (20), as Â+

OSS.
Propositions 12 and 13 are the analogues of Propositions 4 and 5 for Â+

OSS and, in combi-
nation, prove the upper bound in Theorem 11.

PROPOSITION 12. Let τ ∈ (0,1), α ∈ (0,1) and (β,λ) ∈ (0,∞)×[1,∞). Then Â+
OSS ∈

Ân(τ,α,PHöl(β,λ)).

PROPOSITION 13. Take α ∈ (0,1), (β,λ) ∈ (0,∞) × [1,∞), (κ, γ,υ,CApp) ∈ (0,

∞)2 × (0,1) × [1,∞) and A ⊆ B(Rd) with dimVC(A) < ∞ and ∅ ∈ A. There exists
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C̃ ≥ 1, depending only on d , β , κ , γ , υ , CApp and dimVC(A), such that for all P ∈
PHöl(β,λ) ∩P+

App(A, κ, γ,υ, τ,CApp), n ∈N and δ ∈ (0,1), we have

PP

[
Mτ − μ

(
Â+

OSS

)
> C̃

{(
λd/β

n
· log+

(
n

α ∧ δ

)) βκγ
κ(2β+d)+βγ +

(
log+(1/δ)

n

)1/2}]
≤ δ.

As a consequence, for α ∈ (0,1/2],

Rτ

(
Â+

OSS

) ≤ C

{(
λd/β

n
· log+

(
n

α

)) βκγ
κ(2β+d)+βγ + 1

n1/2

}
,

where C > 0 depends only on C̃.

5. Lower bound constructions. As mentioned at the end of Section 2, our lower bound
constructions are common to both Theorem 2 and Theorem 11. In fact, both lower bounds
will follow from Propositions 14 and 15 below. As shorthand, given A ⊆ B(Rd), τ ∈ (0,1),
(β, κ, γ ) ∈ (0,∞)3, υ ∈ (0,1) and (λ,CApp) ∈ [1,∞)2, we write

P†(A, β, κ, γ,υ,λ, τ,CApp)

:= PHöl(β,λ) ∩PApp(A, κ, γ, τ,CApp) ∩P+
App(A, κ, γ,υ, τ,CApp).

PROPOSITION 14. Take ε0 ∈ (0,1/2), τ ∈ (ε0,1 − ε0), β > 0, λ ≥ 1, κ, γ > 0, CApp ≥ 1
with βγ (κ −1) < dκ , and υ ∈ (0, (4d1/2)−d ]. Suppose that A ⊆ B(Rd) satisfies Ahpr ⊆A ⊆
Aconv.

(i) There exists c0 > 0, depending only on d,β, γ, κ,CApp and ε0, such that, for ev-

ery α ∈ (0,1/8], n ∈ N and Â ∈ Ân(τ,α,P†(A, β, κ, γ,υ,λ, τ,CApp)), we can find P ∈
P†(A, β, κ, γ,υ,λ, τ,CApp) with regression function η : Rd → [τ − ε0/2, τ + ε0/2] and
marginal distribution μ on Rd , satisfying

EP

[{
Mτ(P,A) − μ(Â)

} · 1{Â⊆Xτ (η)}
] ≥ c0 ·

(
λd/β log(1/(4α))

n
∧ 1

) βκγ
κ(2β+d)+βγ

.

(ii) There exists c1 > 0, depending only on d,β, κ, γ,CApp and ε0, such that, given

α ∈ (0, 1
2 − ε0], n ∈ N and Â ∈ Ân(τ,α,P†(A, β, κ, γ,υ,λ, τ,CApp)), we can find P ∈

P†(A, β, κ, γ,υ,λ, τ,CApp) with regression function η : Rd → [τ − ε0/2, τ + ε0/2] and
marginal distribution μ on Rd , satisfying

EP

[{
Mτ(P,A) − μ(Â)

} · 1{Â⊆Xτ (η)}
] ≥ c1 ·

(
λd/β log+(n/λd/β)

n
∧ 1

) βκγ
κ(2β+d)+βγ

.

Two remarks are in order. First, note that for any Â ∈ Ân, we have

Rτ (Â) = EP [{Mτ(P,A) − μ(Â)} · 1{Â⊆Xτ (η)}]
PP (Â ⊆ Xτ (η))

≥ EP

[{
Mτ(P,A) − μ(Â)

} · 1{Â⊆Xτ (η)}
]
,

so Proposition 14 does indeed yield lower bounds on the worst-case regret. Second,

Ân

(
τ,α,P†(A, β, κ, γ,υ,λ, τ,CApp)

) ⊇ Ân

(
τ,α,PHöl(β,λ)

)
,

so it suffices to provide a lower bound for the regret when Â belongs to the larger set; note
also that PHöl(β,λ) ⊆ PHöl(β,λ, τ ) for β ∈ (0,1].
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To lay the groundwork for the proof of Proposition 14, let L ∈ N, r ∈ (0,∞), w ∈
(0, (2r)−d ∧ 1), s ∈ (0,1 ∧ (r/2)] and θ ∈ (0, ε0/2]. Our goal is to define a collection of
probability distributions {P � ≡ P �

L,r,w,s,θ : � ∈ [L]} on Rd × [0,1] as illustrated in Fig-
ure 1; we will show that these distributions belong to P†(A, β, κ, γ,υ,λ, τ,CApp) for ap-
propriate choices of L, r , w, s and θ , and are such that any data-dependent selection
set Â ∈ Ân(τ,α,P†(A, β, κ, γ,υ,λ, τ,CApp)) must satisfy the lower bound in Proposi-
tion 14. To this end, let r�(w) := 1

2({(4√
d)d − 2d}rd + w−1)1/d and choose {z1, . . . , zL} ⊆

Rd such that ‖z� − z�′‖∞ > 2(r�(w) + 1) for all distinct �, �′ ∈ [L]. We introduce sets
K0

r (1), . . . ,K0
r (L) ⊆ Rd , K1

r (1), . . . ,K1
r (L) ⊆Rd defined by K0

r (�) := B̄r (z�) and K1
r (�) :=

B̄r�(w)(z�) \ B2d1/2r (z�) for � ∈ [L]. We also define the probability measure μL,r,w on Rd to

be the uniform distribution on JL,r,w := ⋃
(�,j)∈[L]×{0,1} K

j
r (�); since Ld(K0

r (�) ∪ K1
r (�)) =

(2r)d + (2r�(w))d − (4d1/2r)d = w−1 for all � ∈ [L], it follows that the density of μL,r,w

with respect to Ld takes the constant value w/L on JL,r,w .
Now define a function h : [0,1] → [0,1] by h(z) := e−z2/(1−z2) for z ∈ [0,1) and h(1) :=

0, so that h(0) = 1, maxk∈N maxz∈{0,1} |h(k)(z)| = 0 and

Am := max
k∈[m] sup

z∈[0,1]
∣∣h(k)(z)

∣∣ ∈ (0,∞)(21)

for each m ∈ N. This allows us to define regression functions η�
L,r,w,s,θ : Rd → [0,1] for

� ∈ [L] by

η�
L,r,w,s,θ (x)

(22)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ + θ if ‖x − z�‖2 ≤ d1/2r,

τ − θ if ‖x − z�′‖2 ≤ s with �′ ∈ [L] \ {�},
τ + θ − 2θh

(‖x − z�′‖2

s
− 1

)
if s < ‖x − z�′‖2 ≤ 2s with �′ ∈ [L] \ {�},

τ + θ if 2s < ‖x − z�′‖2 ≤ d1/2r with �′ ∈ [L] \ {�},
τ − θ + 2θh

(‖x − z�′‖2

d1/2r
− 1

)
if d1/2r < ‖x − z�′‖2 < 2d1/2r with �′ ∈ [L],

τ − θ otherwise.

Thus, η�
L,r,w,s,θ is infinitely differentiable and uniformly above the level τ on K0

r (�), but
both takes a value below τ at the centre z�′ of each K0

r (�′) with �′ ∈ [L]\{�}, and is uniformly
below the level τ on each K1

r (�′) with �′ ∈ [L]. Finally, then for � ∈ [L], we can let P �
L,r,w,s,θ

denote the unique Borel probability distribution on Rd × {0,1} with marginal μL,r,w on Rd

and regression function η�
L,r,w,s,θ . Figure 1 provides an illustration of the regression functions

used in this construction.
Lemmas S28 and S30 verify that {P �

L,r,w,s,θ : � ∈ [L]} ⊆ P†(A, β, κ, γ,υ,λ, τ,CApp) for
appropriate choices of r , w, s and θ . Moreover, Proposition S32 reveals both that the chi-
squared divergences between pairs of distributions in our construction are small, and yet
that the distributions are sufficiently different that any set A ∈ A ∩ Pow(Xτ (η

�
L,r,w,s,θ ) ∩

Xτ (η
�′
L,r,w,s,θ )) for distinct �, �′ ∈ [L] must have much smaller μ-measure than Mτ . To con-

clude, we apply a constrained risk inequality due to Brown and Low (1996) in the proof of
Proposition 14(i) and a version of Fano’s lemma in the proof of Proposition 14(ii).

Proposition 15 provides the final (parametric) part of the lower bounds in Theorems 2 and
11.

PROPOSITION 15. Take ε0 ∈ (0,1/2], τ ∈ (ε0,1 − ε0) (β,λ) ∈ (0,∞) × [1,∞),
(κ, γ,υ,CApp) ∈ (0,∞)2 × (0,1) × [1,∞) with βγ (κ − 1) < dκ and υ ∈ (0,4−d ]. Sup-
pose that A ⊆ B(Rd) satisfies Ahpr ⊆ A ⊆ Aconv. Then there exists c2 > 0, depending
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FIG. 1. Illustration of the lower bound construction of P�
L,r,w,s,θ in the proof of Proposition 14. Blue and

red regions correspond to the regression function η�
L,r,w,s,θ being above and below τ , respectively. Note the

different behaviour in the �th region K0
r (�) from the others. The marginal measure μ�

L,r,w,s,θ on Rd is uniformly

distributed on
⋃

�∈[L](K0
r (�) ∪ K1

r (�)); the boundaries of these regions are denoted with black lines.

only on ε0, d , β , κ , γ , λ and CApp, such that for any n ∈ N, α ∈ (0,1/2 − ε0] and

Â ∈ Ân(τ,α,P†(A, β, κ, γ,υ,λ, τ,CApp)), we can find P ∈ P†(A, β, κ, γ,υ,λ, τ,CApp)

with regression function η : Rd → [τ − ε0/2, τ + ε0/2] and marginal distribution μ on Rd

that satisfies

EP

[{
Mτ(P,A) − μ(Â)

} · 1{Â⊆Xτ (η)}
] ≥ c2√

n
.

The construction for the proof of Proposition 15 is somewhat different from those in the

proof of Proposition 14 and is illustrated in Figure 2: it hinges on the difficulty of estimating

μ(A) for A ∈ A. To formalise this idea, given t ∈ [1,∞), θ ∈ (0, ε0/2], s ∈ (0,1] and ζ ∈
[0, sd

2{(2t)d+2sd } ], we first define a pair of distributions {P �
t,θ,s,ζ }�∈{−1,1} on Rd ×[0,1]. Define
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FIG. 2. Illustration of the lower bound construction of P 1
ζ ≡ P 1

t,θ,s,ζ in the proof of Proposition 15. Blue and
red regions correspond to the regression function ηt,θ,s being above and below τ , respectively. The density of dots

is greatest on A1 and smallest on A−1, reflecting the greater marginal density of μ1
ζ on A1; for P−1

ζ , the density
of dots would be reversed.

η ≡ ηt,θ,s :Rd → [0,1] by

η(x) ≡ ηt,θ,s(x1, . . . , xd) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ + θ for x1 ≤ −t − s,

τ + θ

{
1 − 2h

(−x1 − t

s

)}
for − t − s < x1 ≤ −t,

τ − θ for − t < x1 ≤ t,

τ + θ

{
1 − 2h

(
x1 − t

s

)}
for t < x1 ≤ t + s,

τ + θ for x1 ≥ t + s.

Define A0 := [−t, t]d , A−1 := [−t − 2s,−t − s] × [− s
2 , s

2 ]d−1 and A1 := [t + s, t + 2s] ×
[− s

2 , s
2 ]d−1. For � ∈ {−1,1}, let μ�

ζ ≡ μ�
t,s,ζ be the Lebesgue absolutely continuous measure

supported on A−1 ∪A0 ∪A1 ⊆Rd with piecewise constant density fμ�
ζ
:Rd → [0,∞) given

by

fμ�
ζ
(x) :=

⎧⎪⎨
⎪⎩

1

(2t)d + 2sd
+ ζ · j · �

sd
for x ∈ Aj with j ∈ {−1,0,1},

0 for x /∈ A−1 ∪ A0 ∪ A1.

Now for � ∈ {−1,1}, let P �
ζ ≡ P �

t,θ,s,ζ denote the unique distribution on Rd × {0,1} with

marginal μ�
ζ on Rd and regression function η. Figure 2 illustrates this construction.

In the proof of Proposition 15, we will show that {P �
t,θ,s,ζ : � ∈ {−1,1}} ⊆ P†(A, β, κ, γ,

υ,λ, τ,CApp) for suitable t , θ , s and ζ . Moreover, P −1
t,θ,s,ζ and P 1

t,θ,s,ζ are close in chi-squared

divergence, but nevertheless we cannot have both μ−1
ζ (A) and μ1

ζ (A) close to Mτ(P
−1
ζ ,A) =

Mτ(P
1
ζ ,A) for A ∈ A∩Pow(Xτ (η)). Hence, any data-dependent selection set Â that satisfies

our Type I error guarantee must incur large regret for at least one of these distributions.

6. Application to study of heterogeneous treatment effects. The aim of this section
is to show how our previous results may be applied to the two-arm setting with a treatment
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and control, where we are interested in regions of substantial treatment effect. To this end, let
P̃ denote the distribution of a random triple (X,T , Ỹ ) taking values in Rd × {0,1} × [0,1],
where X represents covariates, T is a treatment indicator and Ỹ denotes the correspond-
ing response. Assume that X ∼ μ, and that the function π : Rd → [0,1] given by π(x) :=
P(T = 1|X = x) is known. For � ∈ {0,1}, let η̃�(x) := E(Ỹ |X = x,T = �). The heteroge-
neous treatment effect is the function ϕ : Rd → [−1,1] defined by ϕ(x) := η̃1(x) − η̃0(x)

for x ∈ Rd . Given t ∈ [−1,1] and a class of sets A ⊆ B(Rd), our primary interest is in
identifying subsets A ∈ A that are contained in Xt (ϕ) := {x ∈ Rd : ϕ(x) ≥ t} based on data
D̃ := ((X1, T1, Ỹ1), . . . , (Xn,Tn, Ỹn)) ∼ P̃ ⊗n.

Given a family P of distributions on Rd ×{0,1}×[0,1] and a significance level α ∈ (0,1),
we let ÂHTE

n (t, α,P) denote the set of functions Â : (Rd × {0,1} × [0,1])n → A such that
(x, D̃) �→ 1

Â(D̃)
(x) is a Borel measurable function on Rd × (Rd × {0,1} × [0,1])n and we

have the Type I error guarantee that

inf
P̃∈P

P
P̃

(
Â(D̃) ⊆Xt (ϕ)

) ≥ 1 − α.

Similar to our formulation in Section 2, we seek Â ∈ ÂHTE
n (t, α,P) with low regret

R
ϕ
t (Â) := sup

{
μ(A) : A ∈ A∩ Pow

(
Xt (ϕ)

)} −E
P̃

{
μ

(
Â(D̃)

)|Â(D̃) ⊆ Xt (ϕ)
}
.

Given (β,λ) ∈ (0,∞) × [1,∞) and a Borel measurable function π : Rd → [0,1], we let
PHTE

Höl (β,λ,π) denote the class of distributions P̃ on Rd × {0,1} × [0,1] such that ϕ is
(β,λ)-Hölder (see Definition 4), and such that π(x) = P

P̃
(T = 1|X = x) for all x ∈ Rd .

Similarly, given (κ, γ,υ,CApp) ∈ (0,∞)2 × (0,1)×[1,∞), we let PHTE
App (A, t, κ, γ,υ,CApp)

denote the class of all distributions P̃ such that μ is absolutely continuous, with Lebesgue
density fμ, and such that (16) holds with ϕ in place of η, with t in place of τ , and with
sup{μ(A) : A ∈ A∩ Pow(Xt (ϕ))} in place of Mτ .

The following result on the minimax rate of regret in this heterogeneous treatment effect
context is an almost immediate corollary of Theorem 11.

COROLLARY 16. Take ζ0 ∈ (0,1/2), t ∈ [−(1 − ζ0),1 − ζ0], (β,λ) ∈ (0,∞) × [1,∞),
(κ, γ,υ,CApp) ∈ (0,∞)2 × (0,1) × [1,∞) with βγ (κ − 1) < dκ and υ ∈ (0, (4d1/2)−d ],
and let π :Rd → [ζ0,1−ζ0] be Borel measurable. Let A ⊆ B(Rd) satisfy Ahpr ⊆ A ⊆ Aconv,
dimVC(A) < ∞ and ∅ ∈ A. Given n ∈N and α ∈ (0,1/2 − ζ0], we have

inf
Â

sup
P̃

R
ϕ
t (Â) � min

{(
log+(n/α)

n

) βκγ
κ(2β+d)+βγ + 1

n1/2 ,1
}
,(23)

where the infimum in (23) is taken over ÂHTE
n (t, α,PHTE

Höl (β,λ,π)), the supremum is taken
over PHTE

Höl (β,λ,π)∩PHTE
App (A, t, κ, γ,υ,CApp). In (23), � indicates that the ratio of the left-

and right-hand sides is bounded above and below by positive quantities depending only on
d , β , λ, κ , γ , υ , CApp, ζ0 and dimVC(A).

To establish the upper bound in Corollary 16, we reduce the problem to the setting of Sec-
tion 4 by letting ρmin := min{infx∈Rd π(x),1 − supx∈Rd π(x)} and introducing proxy labels

Y := 1

2

{
1 + ρmin

π(X)(1 − π(X))
· (

T − π(X)
)
Ỹ

}
,

so that Y takes values in [0,1] and satisfies both η(x) := E(Y |X = x) = 1
2(1+ρmin ·ϕ(x)) and

Xt (ϕ) = Xτ (η) with τ := 1
2(1 + ρmin · t). The upper bound then follows from Theorem 11(i).
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To deduce the lower bound, we convert distributions P of random pairs (X,Y ) into dis-
tributions P̃ of random triples (X,T , Ỹ ) for which P

P̃
(T = 1|X = x,Y = y) = π(x) and

Ỹ := T · Y + (1 − T ) · (1 − Y), so that the corresponding heterogeneous treatment effect
satisfies ϕ(x) = 2η(x) − 1. We may therefore deduce the lower bound in Corollary 16 from
Theorem 11(ii), applied with τ := (1 + t)/2.
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