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We extend extreme value statistics to independent data with possibly very
different distributions. In particular, we present novel asymptotic normality
results for the Hill estimator, which now estimates the extreme value index
of the average distribution. Due to the heterogeneity, the asymptotic variance
can be substantially smaller than that in the i.i.d. case. As a special case,
we consider a heterogeneous scales model where the asymptotic variance
can be calculated explicitly. The primary tool for the proofs is the functional
central limit theorem for a weighted tail empirical process. We also present
asymptotic normality results for the extreme quantile estimator. A simulation
study shows the good finite-sample behavior of our limit theorems. We also
present applications to assess the tail heaviness of earthquake energies and of
cross-sectional stock market losses.

1. Introduction. Consider independent and identically distributed random variables
X1, . . . ,Xp , p ∈ N, from some common distribution function F . For this case, the statistical
theory of extreme values has been developed comprehensively in the literature, for example,
the monographs Beirlant et al. (2004) and de Haan and Ferreira (2006). In this setting, well-
known estimators of the extreme value index γ have been introduced in, among others, Hill
(1975), Smith (1987) and Dekkers, Einmahl and de Haan (1989). The results for the i.i.d.
case are important but might be too restrictive for various applications.

Univariate samples can deviate from the i.i.d. assumption by being dependent and/or by
being nonidentically distributed. Statistics of extremes for identically distributed but (weakly,
serially) dependent data has been studied extensively in the literature; see, for example,
Hsing (1991), Drees (2000), Drees and Rootzén (2010) and the monograph Kulik and Soulier
(2020).

In this paper, we focus on independent, but nonidentically distributed data. In early work
for this case, a trend in the parameters of generalized Pareto distributions was considered,
without providing asymptotic theory: in Davison and Smith (1990), a linear trend in both
shape and scale parameters was studied, whereas in Coles (2001) a log-linear trend in the
scale parameter was explored. In a general, nonparametric setting the most relevant (and
recent) references are Einmahl, de Haan and Zhou (2016) and de Haan and Zhou (2021), but
see also both papers for various other references for the non-i.i.d. case. The first paper allows
for different distributions that are not too different in the sense that all observations have the
same extreme value index γ , whereas in the second paper a gradually changing γ is allowed.
Just like in these two papers we consider the case where γ is positive, the heavy-tailed case,
but the scope of the present paper is quite different since it allows large heterogeneity of the
observations, leading to novel limit theorems for the Hill estimator, and thus considerably
extending Einmahl, de Haan and Zhou (2016). Like in de Haan and Zhou (2021), we allow
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FIG. 1. Seismic energy of significant global earthquakes from 1981 to 2021 from the NOAA database and total
number of citations from 1975 to 2015 for statisticians in Ji et al. (2022)’s database.

different extreme value indices for different observations, but we do not require a smooth
change of the distribution in i (i = 1, . . . , p): neighboring observations (Xi and Xi+1) may
have (very) different distributions.

Often power laws are discovered and discussed in the applied scientific literature and be-
yond. In many of these applications, the data are nonidentically distributed. Hence, the ex-
isting statistical theory has to be extended to the non-i.i.d. case as indicated above. Settings
where this can be relevant are when computing the Hill estimator for natural hazards data
across different locations, for a cross-section (on the same day) of daily loss returns of many
stocks, for population sizes of cities in a large country or for numbers of citations of scien-
tific articles. In particular, on the top in Figure 1, log-log plots are shown for the top 100
data points in: (1) a seismic energy data set of global significant earthquakes that will be
investigated further in Section 6, and (2) a data set of statisticians’ total number of citations
(excluding self-citations). We observe a linear pattern in these plots that identifies empirical
power laws, with Hill estimates of 0.98 and 0.55, respectively. Next, for each data set, we
pair the nearest observations on the geographic map (with a minimum time gap of 1 year)
in Figure 9 below and on the research map in Figure 1 of Ji et al. (2022), respectively, and
then randomly assign one to fold 1 and the other one to fold 2. Within each fold, we label the
largest 20% data as class 1, the next 20%–40% as class 2, and so on. The quintile transition
matrices at the bottom in Figure 1 count the number of data pairs that occur in the corre-
sponding quintile classes: the sums of relative self-transition frequencies are 1.66 and 1.42,
respectively, showing a statistically significant degree of heterogeneity.

As a consequence of our setup, we are not interested in the average (or local) γ but in
the γ of the average distribution. Our results reveal that the asymptotic variance of the Hill
estimator can be smaller than that in the i.i.d. case, depending on a spurious tail dependence
coefficient R(1,1), which actually measures heterogeneity. A functional central limit theorem
for the relevant weighted tail empirical process is crucial for proving the asymptotic normality
of the Hill estimator. The limiting process turns out to be a weighted centered Gaussian
process that can be substantially “tighter” than the weighted standard Wiener process, which
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appears in the i.i.d. case. We also use these results to establish the asymptotic normality of
the extreme quantile estimator.

In Einmahl and He (2023), consistency of the Hill estimator is shown under weak assump-
tions, allowing both heterogeneity and dependence of the data. The present paper can be
seen as an “asymptotic normality” extension of that paper, thus quantifying the uncertainty
in estimation of the Hill estimator and making statistical inference on γ possible.

We highlight as an interesting special case a heterogeneous scales model where p latent
i.i.d. random variables are multiplied with different, deterministic scales. This relevant and
insightful model includes both the case where the above R(1,1) is positive, leading to the
novel asymptotic behavior of the Hill estimator, and the case R(1,1) = 0 leading to the usual
γ 2 for the asymptotic variance. In case R(1,1) > 0, the asymptotic variance is smaller and
can be expressed in γ and the distribution of the latent variables.

The remainder of this paper is organized as follows. In Section 2, we present our general
results for the Hill estimator. Section 3 contains the specialization to the heterogeneous scales
model. The brief Section 4 considers extreme quantile estimation. In Section 5, we present
a simulation study and in Section 6 we apply the theory to earthquake energies and cross-
sectional stock market losses. Most proofs of the results in Sections 2 and 3 are deferred to
Section 7. More simulation results and the remaining proofs are deferred to the Supplemen-
tary Material (Einmahl and He (2023)).

2. Asymptotic theory for heterogeneous extremes. Consider independent random
variables X

(p)
1 , . . . ,X

(p)
p , for p ∈ N, that are not necessarily identically distributed. Define

their empirical distribution function by

Femp(x) = 1

p

p∑
i=1

1
[
X

(p)
i ≤ x

]
,

and their average distribution function by

Fp(x) = EFemp(x) = 1

p

p∑
i=1

Fpi(x), Fpi(x) = P
(
X

(p)
i ≤ x

)
.

For simplicity, throughout we assume that there exists a bounded average density function
fp = F ′

p . (It is possible, although tedious, to weaken this assumption to a suitable smoothness
condition on Fp directly). If not indicated differently, for our asymptotic theory it is assumed
that the dimension (or sample size) p → ∞.

We consider the situation where the above data arrays obey empirical power laws, which
may or may not be generated by heterogeneity of the data.

ASSUMPTION 2.1 (Heavy tail). The average survival function Tp := 1 − Fp approaches
some nonincreasing function T in the intermediate tail such that Tp(t)/T (t) → 1 for all
intermediate threshold sequences t = t (p) → ∞ with pT (t) → ∞. The limit function T is
regularly varying with negative index, that is,

T (tx)

T (t)
→ x−1/γ , x > 0,

as t → ∞, where γ > 0 is called the extreme value index.

Observe that the thus defined extreme value index γ is a natural and statistically relevant
generalization of that in the i.i.d. case with fixed distribution function F . It is the extreme
value index that describes the power-law behavior of the data (often visualized by log-log
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plots) and that is targeted by the Hill estimator. The assumption implies that, for every inter-
mediate threshold sequence t = t (p),

Tp(tx)

Tp(t)
→ x−1/γ , x > 0.

If the empirical survival function Temp := 1 − Femp ≈ 1 − Fp = Tp for large values and large
p, then the data exhibit power-law behavior in the sense that, for large t and p,

Temp(tx) ≈ x−1/γ Temp(t).

As shown in Einmahl and He (2023), the heavy tail may be due to heterogeneity rather than
the tail behavior of the individual random variables. That is, when a high degree of hetero-
geneity is present, Assumption 2.1 can still hold, even if X

(p)
i is light-tailed (e.g., Gaussian)

for all i = 1, . . . , p; see, for example, (9) and below in Section 5 for specific examples. The
heterogeneity thus can go far beyond heteroscedastic extremes as in Einmahl, de Haan and
Zhou (2016). Our framework is general and unifies heterogeneous and homogeneous (iden-
tically distributed) data.

Recall the average probability density function fp = F ′
p . We need a stability condition to

control the behavior of extreme observations beyond the intermediate levels.

ASSUMPTION 2.2 (Stability). There exists a positive constant M < ∞ such that for all
large x and p,

max
{
xfp(x), Tp(x)

} ≤ MT (x).

If in the homogeneous case with Tp ≡ T the von Mises condition holds, Assumption 2.2
is satisfied for M > max{1,1/γ }.

Let k = k(p) ∈ {1, . . . , p − 1} be a sequence satisfying the following.

ASSUMPTION 2.3 (Intermediate sequence). k → ∞ and k/p → 0 as p → ∞.

Our first key result is a functional central limit theorem for a weighted version of the tail
empirical process defined by

Vp(x) = p√
k

(
Temp

(
up

xγ

)
− Tp

(
up

xγ

))
, x ≥ 0,

where up = Qp(1 − k/p) with Qp denoting the generalized quantile function corresponding
to Fp . It is straightforward to compute the covariance structure of Vp:

cov
(
Vp(x),Vp(y)

) = 1

k

p∑
i=1

cov
(
1

[
X

(p)
i > x−γ up

]
,1

[
X

(p)
i > y−γ up

])
= p

k
Tp

(
up

(
min{x, y})−γ ) − p

k
Hp

(
upx−γ , upy−γ )

,

where

Hp(x, y) = 1

p

p∑
i=1

P
(
X

(p)
i > x

)
P

(
X

(p)
i > y

)
.

We assume that the limit of this covariance function exists via the following condition.



EXTREME VALUE INFERENCE FOR HETEROGENEOUS POWER LAW DATA 1335

ASSUMPTION 2.4 (R-function). For all intermediate threshold sequences t = t (p) →
∞ with pT (t) → ∞,

Hp(tx−γ , ty−γ )

T (t)
→ R(x, y), x, y > 0.

The limit function R may or may not be identically zero.

The following lemma gives a rank-based definition of the R-function, from which we can
deduce that R is invariant with respect to an increasing transformation of the data X

(p)
i .

LEMMA 2.1. Under Assumption 2.1, Assumption 2.4 holds if and only if

(1)
1

pα

p∑
i=1

P
(
Tp

(
X

(p)
i

)
< αx

)
P

(
Tp

(
X

(p)
i

)
< αy

) → R(x, y),

for all intermediate (probability) sequences α = α(p) ↓ 0 with pα → ∞.

Heterogeneity can lead to spurious correlation. Here, the function R quantifies tail hetero-
geneity through a measure of spurious tail dependence between two independent copies of
heterogeneous data arrays in the sense that

R(x, y) = lim
p→∞

1

pα

p∑
i=1

P
(
Tp

(
X

(p)
i

)
< αx,Tp

(
X̃

(p)
i

)
< αy

)
,(2)

where X̃
(p)
i are independent copies of X

(p)
i and α is any intermediate sequence as in

Lemma 2.1. Indeed, when the variables X
(p)
i are independent and identically distributed,

Assumption 2.1 implies that

R(x, y) = lim
p→∞

1

α
P

(
Tp

(
X

(p)
i

)
< αx

) · lim
p→∞P

(
Tp

(
X

(p)
i

)
< αy

)
= lim

p→∞
1

α
P(U < αx) · lim

p→∞P(U < αy)

= x · 0 = 0, U ∼ Un(0,1)

and, therefore, the limit R ≡ 0 is called trivial.
The most interesting results in this paper are for nontrivial functions R, which then play

a vital role in the asymptotic theory. However, the trivial R leads to new results for relevant
heterogeneous data arrays, too.

By Lemma 2.1, the function R shares the properties of a symmetric tail copula function,
including:

R(x, y) > 0 for all x, y > 0 if R is nontrivial,
0 ≤ R(x, y) ≤ min{x, y},
R(ax, ay) = aR(x, y) for all a, x, y > 0 (homogeneity).

Let �∞([a, b]) denote the set of all uniformly bounded, real functions on an interval [a, b]
and let “�” denote weak convergence. The functional central limit theorem for the weighted
version of our tail empirical process Vp is as follows.

THEOREM 2.1. Under Assumptions 2.1–2.4, for any 0 ≤ η < 1
2 ,

Vp

Iη
� V

Iη
, in �∞([0,2]),
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where I denotes the identity function, 0/0 := 0 and V is a centered Gaussian process with
continuous sample paths and with covariance function given by

(3) cov
(
V (x),V (y)

) = min{x, y} − R(x, y).

The novel finding is that the R-function measuring heterogeneity plays an essential role in
the general limiting process V , which is a standard Wiener process in case of a trivial R.

Next, we show how to apply this theorem to obtain a new and unified limit result for the
Hill (1975) estimator of the extreme value index for both heterogeneous and homogeneous
data. Denote the k + 1 upper-order statistics by Xp−k:p ≤ · · · ≤ Xp:p . Then we estimate the
extreme value index γ > 0 by the Hill estimator:

γ̂ = 1

k

k−1∑
i=0

logXp−i:p − logXp−k:p.

To apply the tail empirical process theory, we introduce a slightly modified tail empirical
process by replacing Tp(

up

xγ ) with its approximate value k
p
x under regular variation:

Wp(x) = p√
k

(
Temp

(
up

xγ

)
− k

p
x

)
, x > 0.

Using the Skorohod representation theorem, we obtain the following.

COROLLARY 2.1. Under the conditions of Theorem 2.1 and if for some 0 ≤ η < 1
2 and

δ > 0,

(4) sup
0<x<1+δ

|√k(
p
k
Tp(

up

xγ ) − x)|
xη

→ 0,

then there exists a probability space carrying probabilistically equivalent versions of Wp and
V (still denoted with Wp and V ), such that

sup
0<x<1+δ

|Wp(x) − V (x)|
xη

a.s.−→ 0.

Now applying the Vervaat (1972) lemma yields the asymptotic normality of the
intermediate-order statistics.

COROLLARY 2.2. Under the conditions and on the probability space of Corollary 2.1,

√
k

((
Xp−k:p

up

)−1/γ

− 1
)

a.s.−→ −V (1) ∼ N
(
0,1 − R(1,1)

)
.

Our second key result, the asymptotic normality of the Hill estimator, then follows by
rewriting it as a functional of the tail empirical process Wp like in Example 5.1.5 in de Haan
and Ferreira (2006). Note that the asymptotic variance of the Hill estimator, through the
process Wp , depends on the R-function from Assumption 2.4.

THEOREM 2.2. Under the conditions and on the probability space of Corollary 2.1, if
η > 0,

√
k(γ̂ − γ )

a.s.−→ γ

(
−V (1) +

∫ 1

0
V (x)

dx

x

)
d= γV (1) ∼ N

(
0, γ 2(

1 − R(1,1)
))

.
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The most striking of this result is the smaller (compared with the homogeneous case) lim-
iting variance when R is nontrivial, for both the Hill estimator and the intermediate empirical
quantile. The proportion of reduction R(1,1) is the same for both. In general, a stronger het-
erogeneity yields a larger R(1,1), and hence a smaller limiting variance for the Hill estimator
and the empirical quantile. Ignoring this would yield oversized asymptotic confidence inter-
vals. In the next section, we calculate the value of R(1,1) explicitly for some heterogeneous
scales models. We show that it can take a wide range of values in [0,1] depending on the
probability distributions of the individual data.

Actually it is well known in empirical process theory that the i.i.d. case leads to the largest
variance and that heterogeneity reduces the variance. For this, observe that pFemp(x) has a
Binomial-(p,Fp(x)) distribution in the i.i.d. case with variance pFp(x)(1−Fp(x)), whereas
in the heterogeneous case it is a sum of independent Bernoulli random variables with smaller
variance

∑p
i=1 Fpi(x)(1 − Fpi(x)). This is also the case when computing the (co)variance of

the tail empirical process Vp . It is Hp there, which leads through its limit R to the reduced
variance of the Hill estimator.

Note that condition (4) only depends on the average distribution function Fp = 1 − Tp ,
and hence does not take the heterogeneity into account. In other words, the condition is the
same for i.i.d. data from Fp . Now assume for simplicity that in the present setup Fp does
not depend on p. Then it can be shown that condition (4), for each 0 ≤ η < 1

2 , is implied by√
kA(p/k) → 0, where A is the usual auxiliary function in the second-order condition; see,

for example, Theorem 3.2.5 in de Haan and Ferreira (2006).

EXAMPLE 1. Let us also consider here a simple example of the X
(p)
i to show the scope

of the results. Set X
(p)
i = (Zi logZi)

1/(1+i/p), where the Zi, i = 1, . . . , p, are i.i.d. standard

Pareto distributed. Then X
(p)
i has extreme value index 1/(1+ i/p) ∈ [1/2,1). Hence, all X

(p)
i

have different extreme value indices. The “joint” γ defined in Assumption 2.1 is equal to
limp→∞ maxi=1,...,p 1/(1 + i/p) = 1 and T (x) can be chosen to be 1/x. The function R and

in particular R(1,1) are equal to 0. Hence, although all the X
(p)
i have different tail behavior,

the Hill estimator has the same asymptotic behavior as in the i.i.d. case, with asymptotic
variance γ 2 = 1.

EXAMPLE 2. Observe that Theorem 2.2 immediately extends to certain dependent data.
Suppose that we do not observe the X

(p)
i directly, but that we observe

Y
(p)
i = ZX

(p)
i , i = 1, . . . , p,

where Z > 0 is an unobservable random variable. Then the Hill estimator based on the Y
(p)
i

is equal to that of the latent X
(p)
i , and hence Theorem 2.2 applies.

For accurate statistical inference based on Theorem 2.2, we need to know or estimate
R(1,1). When the data are homogeneous, or much more generally, if it is known that
R(1,1) = 0, we simply omit the factor 1 − R(1,1) and we can, for example, construct
the usual asymptotic confidence intervals for γ . In case R(1,1) is not known, it is not
clear how to estimate it from the X

(p)
i only, but a solution exists if a duplicate sample

X̃
(p)
i ∼ X

(p)
i , i = 1, . . . , p, is available, where all variables are mutually independent. Let

Ri = ∑p
j=1 1[X(p)

j ≤ X
(p)
i ] and R̃i = ∑p

j=1 1[X̃(p)
j ≤ X̃

(p)
i ] denote the ranks of X

(p)
i and

X̃
(p)
i in their own array. Then we may estimate R(x, y) consistently through

(5) R̂(x, y) = 1

k

p∑
i=1

1[Ri > p − kx, R̃i > p − ky].
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Note that this rank-based estimator is invariant under, possibly unknown, increasing transfor-
mations of the data arrays.

THEOREM 2.3. Under Assumptions 2.1–2.4, we have for T > 0,

sup
0≤x,y≤T

∣∣R̂(x, y) − R(x, y)
∣∣ P−→ 0.

3. Leading example: Heterogeneous scales model. In this section, we study a particu-
lar type of heterogeneous model related to those in Einmahl, de Haan and Zhou (2016) and
Einmahl and He (2023). We illustrate how the regular variation specified in Assumption 2.1
can emerge naturally as the dimension p grows and why the asymptotic behavior of the Hill
estimator may change with the distribution of individual data in general. Let Z1, . . . ,Zp be
i.i.d. latent continuous random variables. Consider the following independent, but nonidenti-
cally distributed data

(6) X
(p)
i = μ + Qσ

(
1 − π(i)/p

)
Zi, i = 1, . . . , p,

where μ ∈ R, Qσ is the generalized quantile function of a continuous distribution function
Fσ , with positive left endpoint, and where π is an unknown permutation of 1, . . . , p. Clearly,
the Qσ(1 − π(i)/p) are scale parameters. (Observe that the permutation π does not affect
the distribution of the order statistics of the X

(p)
i , and hence also not that of Vp and γ̂ , but

on the other hand, it allows nonsmooth changes of the distribution of X
(p)
i in i.) Define the

tail quantile function Uσ (t) = Qσ(1 − 1/t) and assume throughout that the function t →
logUσ (et ) is Lipschitz-continuous on [0,∞). Denote Z+ = max{Z,0}, with Z := Z1, and
write S and g for the survival function and the probability density function of Z, respectively,
hence EZ

1/γ
+ = ∫ ∞

0 S(vγ ) dv.

THEOREM 3.1 (Nontrivial limit). Suppose that Uσ obeys a power law such that
limt→∞ Uσ (t)/tγ ∈ (0,∞) exists for some positive extreme value index γ . If there exists a
non-increasing, right-continuous function h on [0,∞) such that xg(x) ≤ h(x) for all x ≥ 0,
such that 0 < EZ

1/γ
+ ≤ ∫ ∞

0 h(xγ ) dx < ∞, then:

(i) Assumptions 2.1 and 2.2 hold with extreme value index γ and

T (x) =
∫ ∞

0
S

(
x − μ

u

)
dFσ (u);

(ii) Assumption 2.4 holds with a nontrivial R-function given by

R(x, y) =
∫ ∞

0 S((v/x)γ )S((v/y)γ ) dv∫ ∞
0 S(vγ ) dv

=: Rγ (x, y), x, y > 0.

THEOREM 3.2 (Trivial limit). Suppose that S obeys a power law such that
limt→∞ t1/γ S(t) ∈ (0,∞) exists for some positive extreme value index γ , and xg(x) ≤
MS(x), x ≥ 0, for some constant M < ∞. If

∫ ∞
0 x1/γ dFσ (x) < ∞, then the results in The-

orem 3.1 remain true except the R-function becomes trivial (R ≡ 0).

It should be emphasized that under the conditions of Theorems 3.1 or 3.2, we (obviously)
obtain the asymptotic normality of the Hill estimator γ̂ through Theorem 2.2, if condition (4)
is satisfied for some η, δ > 0. In case of Theorem 3.2, although the setup allows substantial
heterogeneity, the limiting variance γ 2 is the same as in the i.i.d. case, whereas in case of
Theorem 3.1 the limiting variance is smaller than γ 2. Observe that in the latter case, although
the individual Zi can be light-tailed, the large heterogeneity generates a positive γ , a heavy
tail.
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FIG. 2. R(1,1) for various distributions of the Zi .

EXAMPLE 3. If it is known that the Zi are, for instance, standard normally distributed,
then X

(p)
i ∼ N(μ,Q2

σ (1 − π(i)/p), i = 1, . . . , p. Write 	 for the standard normal survival

function, then Rγ (1,1) = ∫ ∞
0 	

2
(vγ ) dv/

∫ ∞
0 	(vγ ) dv. Now under the (remaining) assump-

tions of Theorem 3.1, Assumption 2.3, and (4), we have Rγ̂ (1,1)
P−→ Rγ (1,1), and hence the

asymptotic variance of the Hill estimator can be estimated consistently: γ̂ 2(1 − Rγ̂ (1,1))
P−→

γ 2(1 − Rγ (1,1)).

The setup of Theorem 3.2 can be compared to that in Einmahl, de Haan and Zhou (2016). If
the scedasis function c therein is nonincreasing it is equal to Q

1/γ
σ (1 − ·) here. The condition∫ ∞

0 x1/γ dFσ (x) < ∞ then translates to
∫ 1

0 c(u) du < ∞ as in Einmahl, de Haan and Zhou
(2016), but note that the condition therein that c, and hence Qσ , is bounded is not required
here. Indeed, it is natural to allow that the quantile function Qσ(s) → ∞ as s ↑ 1.

EXAMPLE 4. From Theorem 3.1, we can calculate R(1,1) for various distributions of
the Zi as follows:

– For the Weibull distribution S(x) = exp(−xτ ), τ > 0, we find R(1,1) = 2−1/(τγ ). Hence,
for the standard exponential distribution we obtain R(1,1) = 2−1/γ ;

– For the Pareto distribution S(x) = x−(1+ε)/γ , ε > 0, R(1,1) does not depend on γ and is
equal to 2ε/(1 + 2ε);

– For the uniform-(0,1) distribution, R(1,1) = 2γ /(2γ + 1).

In general, we can compute R(1,1) (or the entire function R) numerically for a given
survival function S and extreme value index γ . Figure 2 above depicts the values of R(1,1)

for various distributions of the Zi , as a function of the extreme value index γ .

4. Extreme quantile estimation. An important application of extreme value theory is
the estimation of very high quantiles. In case of heterogeneous data, the notion of quan-
tile may need some clarification. The empirical distribution function Femp is a direct, non-
parametric summary of the data and it estimates consistently the average distribution function
Fp . Hence, the sample quantiles, the order statistics, estimate the inverse Qp , which is hence
“producing” the relevant quantiles. Similarly, if we are interested in the (1 − τ)-th quantile
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corresponding to our data, then we would like to find a number xτ such that an “arbitrary”
observation exceeds xτ with probability τ . This probability is equal to 1

p

∑p
i=1 1−Fpi(xτ ) =

1 − Fp(xτ ) and again xτ = Qp(1 − τ).
Now, we would like to estimate the extreme quantile xτ = Qp(1 − τ), where τ > 0 is very

small, that is, τ = τ(p) → 0, as p → ∞. We estimate such an extreme quantile as usual with

(7) x̂τ = Xp−k:p
(

k

pτ

)γ̂

.

We require the following condition, which is formulated such that it bears some similarity
with condition (4):

(8)
√

k

(
p

k
Tp

(
up

xγ

)
− x

)
/x → 0, for x = (up/xτ )

1/γ .

THEOREM 4.1. Assume pτ/k → ν ∈ [0,1), (logpτ)/
√

k → 0, condition (8) and as-
sume that the conditions of Corollary 2.1 hold for some 0 < η < 1

2 , then
√

k

log(k/(pτ))
log

x̂τ

xτ

d−→ N
(

0, γ 2
(
(1 − w)2(

1 − R(1,1)
) + 2w

∫ 1

0

(
1 − R(1/x,1)

)
dx

))
,

where w = 1/ log(1/ν) should be read as 0 for ν = 0.

Again, when R is nontrivial, the limiting variance is smaller than in the homogeneous
case, leading to shorter confidence intervals for extreme quantiles. When ν = 0, as usually
assumed, the limiting variance is equal to that of the Hill estimator: γ 2(1 − R(1,1)). Taking
ν = pτ/k instead of 0 in the limiting normal distribution may improve statistical performance
in finite samples. The proof of Theorem 4.1 is deferred to the Supplementary Material.

5. Simulations. We consider three sets of Monte Carlo simulations to illustrate how the
asymptotic behavior of the Hill estimator and that of the extreme quantile estimator change
for heterogeneous data. First, we fix the extreme value index γ but vary the distribution of
Z in the heterogeneous scales model. Second, we specify the distribution of Z but change
the extreme value index γ . Third, we study three miscellaneous examples. In all cases, we
generate 5000 replications of heterogeneous data arrays of a large dimension p = 1000 and
take k = 50.

5.1. Heterogeneous scales model with fixed γ . We generate independent random vari-
ables from the heterogeneous scales model

(9) X
(p)
i = Qσ(1 − i/p)Zi =

(
p

i

)γ

Zi

with the quantile function Qσ(u) = (1 − u)−γ of the Pareto distribution with extreme value
index γ .

We fix γ = 1 and generate i.i.d. latent variables Zi from three classes of light(er) tailed
distributions:

(I) Un(1,1 + 1/θ), for θ > 0, with R(1,1) = 6θ+2
6θ+3 ;

(II) Pareto(1 + ε), for ε > 0, with R(1,1) = 2ε
2ε+1 ;

(III) Weibull(κ), for κ > 0, with R(1,1) = 2−1/κ .
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FIG. 3. Parameter as a function of R(1,1).

To render comparable results across these classes, we control for R(1,1) and solve the cor-
responding parameter in every case. Note that the ranges of R(1,1) are different: (2/3,1)

for case I and (0,1) for cases II and III. Figure 3 shows the parameters as a function of
R(1,1).

Figure 4 compares the variance of
√

k(γ̂ −γ ) = √
k(γ̂ −1) over the replications in Monte

Carlo simulations with the asymptotic variance in Theorem 3.1. Recall that for i.i.d. data,
the asymptotic variance of

√
k(γ̂ − γ ) is equal to the (much) larger value γ 2 = 1. The vari-

ance curves match very well for all three distributions, showing that our asymptotic the-
ory yields a good approximation for finite samples. The variance of the Hill estimator de-
creases with the corresponding parameter θ , ε or τ , respectively. In fact, the asymptotic
variance 1 − R(1,1) → 0 is vanishing for all cases as θ, ε, τ → ∞. When these param-
eter values approach ∞, the Zi , and hence the Hill estimator are becoming determinis-
tic.

Figure 5 compares the boxplots of the Hill estimator for the heterogeneous data (blue)
with those for i.i.d. data (red) generated from the average distribution Fp . Indeed, the Hill
estimator shows a much smaller spread for heterogeneous data, while the median relative
errors are close to 0 in both setups. Boxplots for the extreme quantile estimator x̂τ for τ =
1/200 show similar patterns and are available in the Supplementary Material.

5.2. Heterogeneous scales model with different γ . We again simulate heterogeneous data
X

(p)
i according to the heterogeneous scales model (9). We change the value of the extreme

value index γ , and generate i.i.d. Zi from:

FIG. 4. Variance of
√

k(γ̂ − γ ) over simulation replications and its theoretical limit as a function of R(1,1).
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FIG. 5. Boxplots of estimation error γ̂ − 1.

(I) the standard uniform distribution with R(1,1) = 2γ
2γ+1 ;

(II) the standard normal distribution with R(1,1) = ∫ ∞
0 	̄2(vγ ) dv/

∫ ∞
0 	̄(vγ ) dv;

(III) the standard exponential distribution with R(1,1) = 2−1/γ .

Figure 6 shows the variance of
√

k(γ̂ − γ ) over simulation replications and the asymp-
totic variance. We also plot the asymptotic variance γ 2 for i.i.d. data as a benchmark. The
finite-sample variances of the Hill estimator are again close to their limits in Theorem 3.1.

FIG. 6. Variance of
√

k(γ̂ − γ ) over simulation replications and its theoretical limit.
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FIG. 7. Boxplots of relative estimation error γ̂ /γ − 1.

According to our theory, the heterogeneous data lead to a smaller variance than γ 2, and the
difference γ 2 − γ 2(1 − R(1,1)) = γ 2R(1,1) grows with γ (as well as with R(1,1)). The
variance of the relative estimation error γ̂ /γ − 1, however, is decreasing in R(1,1). Figure 7
shows the corresponding boxplots for all three cases. The spread for heterogeneous data is
consistently smaller than that for i.i.d. data and indeed decreases with R(1,1). Again, box-
plots for the extreme quantile estimator x̂τ , for τ = 1/200, show similar patterns and are
available in the Supplementary Material.

5.3. Miscellaneous examples. Let Zi be i.i.d. latent variables from the standard Pareto
distribution. We consider three examples:

(I) X
(p)
i = (1 + log(p/i))Zi ;

(II) X
(p)
i = (p/i)Z

γ (i/p)
i with extreme value index function γ (u) = 1/(2(1 + u)) ∈

(1/4,1/2];
(III) X

(p)
i = (Zi logZi)

γ (i/p) with extreme value index function γ (u) = 1/(1 + u) ∈
(1/2,1].
Case I is another heterogeneous scales model, but one with a trivial limit as in Theorem 3.2.
Note that Qσ(1 − i/p) = 1 + log(p/i) can be seen as a scedasis c(i/p), that violates the
boundedness condition on c in Einmahl, de Haan and Zhou (2016). Cases II and III assign
different extreme value indices γ (i/p) to individual observations, but in Case III there is no
scale factor dominating the individual γ (i/p); see Example 1 for more details about Case III.
For all cases, the extreme value indices of the average distribution function Fp are equal to
γ = 1.
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FIG. 8. Probability-Probability (P-P) Plots for
√

k(γ̂ − 1) in the top row and for
√

k
log(k/(pτ))

log x̂τ
xτ

with
τ = 1/200 in the bottom row.

In the first row of Figure 8, Probability-Probability (PP) plots are shown of 5000 simulation
replications of

√
k(γ̂ − 1) against the limiting normal distribution. For Cases I and III, the

R-function is trivial, and hence the limiting distribution is standard normal, whereas for Case
II we find R(1,1) = 2/3, and hence the limiting variance is equal to 1/3. The second row

shows the plots for the quantile estimation error
√

k
log(k/(pτ))

log x̂τ

xτ
, for τ = 1/200. For Cases I

and III, R ≡ 0 is trivial and taking ν = pτ/k = 0.1 gives an asymptotic variance of 1.1886.
For Case II, we find R(1/x,1) = 1 − x

3 , 0 < x ≤ 1, which gives an asymptotic variance of
0.2514. The PP-plots are very close to the diagonal, showing again that our asymptotic theory
works well for finite samples.

6. Real-life examples. This section presents two real-life examples. Our first example is
a global data set of the 1858 most significant earthquakes from 1981 to 2021 provided by the
National Oceanic and Atmospheric Administration depicted in Figure 1 already. To avoid the
ties in the magnitudes (caused by rounding at 1 decimal), for each group of repeated values we
add equally-spaced corrections on the interval (−0.05,0.05) to the data. Then for each earth-
quake with (corrected) magnitude of M , we compute its seismic energy, in petajoules, using
the Gutenberg–Richter energy–magnitude relationship given by E = 101.5(M−6.8). On the left
in Figure 9 is the log-log plot showing the data ranks for the k = 100 largest seismic energies
in descending order as a function of the data values, on logarithmic axes. The observations
concentrate around a straight line according to the Gutenberg–Richter law in seismology with
a slope of −1/γ̂ , where the Hill estimate γ̂ = 0.9763 indicates a very heavy tail. Our sample
spans 40 years with an average number of 46.45 earthquakes per year. The estimate (7) of
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FIG. 9. Global significant earthquakes from 1981 to 2021.

the extreme quantile xτ for the energy of a 100-year earthquake with τ = 1/4645 is equal to
x̂τ = 4528.83, corresponding to a magnitude of 9.24.

We split the sample into halves according to Figure 1 and estimate the R-function by R̂ in
(5) of the two folds. On the bottom right of Figure 9 is the geographic map and we indicate
the locations of the earthquakes in different folds by circles and dots, respectively. The P-P
plot above the map shows a good alignment of the data distributions between the two folds,
which agrees with our assumption of duplicate samples in Theorem 2.3. The rather large
estimate of R̂(1,1) = 0.41 suggests a substantial spatial heterogeneity of energies and a non-
trivial limit of the Hill estimator. Using Theorem 2.2, we then obtain a relatively narrow 95%
asymptotic confidence interval (0.8293,1.1233) for γ , indicated by dashed lines in the log-
log plot in Figure 9 (keeping the y-intercept unchanged). We also obtain the 95% asymptotic
confidence interval for xτ corresponding to the magnitude interval (8.9940,9.4807), which
is 24% narrower than the interval (8.9189,9.5557) based on the i.i.d. model.

In the second example, we estimate the extreme value index for the cross-sectional distri-
butions of daily losses on NYSE/AMEX/NASDAQ stocks with share codes 10 and 11 (i.e.,
ordinary common shares) in the last quarter of 2019. We use only the p = 1000 firms with
largest lagged market values on each day. We choose k ≤ 50 as large as possible but not more
than 10% of the number of positive observations.

Figure 10 shows the estimates and confidence intervals of the extreme value index and
extreme quantile for τ = 0.01 (known as 99% value-at-risk in finance) for 64 days of cross-
sectional stock loss data in our data set. Interestingly, the estimated extreme value indices
are usually (much) higher than the benchmark value 1/3 from the cubic power law (see,
e.g., Gabaix et al. (2003)) for individual stocks, suggesting that heterogeneity rather than
individuals drive the cross-sectional tails most of the time. The daily confidence intervals
match well for two different estimators of the R-function: one uses the daily losses for the
same firms 25 working days before the estimation date as auxiliary sample and then formula
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FIG. 10. Daily estimates for cross-sectional stock loss data.

(5), and the other one uses the heterogeneous scales model with Z a Student-t3 variable
(satisfying the cubic power law).

7. Proofs.

7.1. Proofs from Section 2. PROOF OF LEMMA 2.1. We only prove that Assump-
tion 2.4 implies (1); the proofs of the converse is analogous and omitted. Let α = α(p) ↓ 0
be any intermediate sequence in (1) such that pα → ∞. Take the intermediate threshold se-
quence t = Q(1 − α) → ∞ where Q denotes the quantile function of T , then T (t)/α → 1
by regular variation. Substituting t into Assumption 2.4 gives that

R(x, y) = lim
p→∞

1

pα

p∑
i=1

P
(
X

(p)
i > tx−γ )

P
(
X

(p)
i > ty−γ )

.

Let ε > 0 be small. For large p, by monotonicity of Tp ,

1

pα

p∑
i=1

P
(
X

(p)
i > tx−γ )

P
(
X

(p)
i > ty−γ )

≤ 1

pα

p∑
i=1

P
(
Tp

(
X

(p)
i

) ≤ Tp

(
tx−γ ))

P
(
Tp

(
X

(p)
i

) ≤ Tp

(
ty−γ ))

≤ 1

pα

p∑
i=1

P
(
Tp

(
X

(p)
i

) ≤ (1 + ε)αx
)
P

(
Tp

(
X

(p)
i

) ≤ (1 + ε)αy
)
,

where the last line follows from Assumption 2.1. Changing the variables gives that

lim inf
p→∞

1

pα

p∑
i=1

P
(
Tp

(
X

(p)
i

) ≤ αx
)
P

(
Tp

(
X

(p)
i

) ≤ αy
) ≥ 1

1 + 2ε
R(x, y).
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Similarly, we obtain that

lim sup
p→∞

1

pα

p∑
i=1

P
(
Tp

(
X

(p)
i

) ≤ αx
)
P

(
Tp

(
X

(p)
i

) ≤ αy
) ≤ 1

1 − 2ε
R(x, y).

Since ε > 0 can be arbitrarily small, (1) follows. �

Next, we prove the functional central limit theorem for the weighted version of Vp . We
first present some useful lemmas.

LEMMA 7.1. Let T be regularly varying with index −1/γ for some γ > 0. For arbitrary
δ > 0, there exists t0 = t0(δ) and C = C(δ) such that for t ≥ t0,

T (tx)

T (t)
≤ Cx−1/γ · max

{
xδ, x−δ}, x > 0.

PROOF. The case x ≥ 1 (or more generally x ≥ c for any given c > 0) is due to Potter
(1942); see also part 5 of Proposition B.1.9 in de Haan and Ferreira (2006)). The case 0 <

x < 1 follows from part 7 of Proposition B.1.9 in de Haan and Ferreira (2006). �

The next two lemmas give some important consequences of the stability condition.

LEMMA 7.2. Under Assumptions 2.1 and 2.2, there exists p0 > 0 such that limz→∞ zr ×
Tp(z) = 0 for any 0 ≤ r < 1/γ and all p ≥ p0.

PROOF. By Assumption 2.2, it suffices to prove that limz→∞ zrT (z) = 0. Let 0 ≤ r <

1/γ , and take a δ ∈ (0,1/γ − r). By Lemma 7.1, there exists some t0 = t0(δ), such that for
all z ≥ t0,

zrT (z) ≤ CzrT (t0)

(
z

t0

)−1/γ+δ

= CT (t0)t
1/γ−δ
0 zr−1/γ+δ → 0, z → ∞,

as the exponent r − 1/γ + δ < 0. �

LEMMA 7.3. Let S be any survival function with probability density function g = −S′,
such that tg(t) ≤ h(t), t > t0 > 0, for some nonincreasing function h on [t0,∞). Then

S(t) − S(tx) ≤ h(t) logx, t > t0, x > 1.

In particular, when logS(et ) is Lipschitz-continuous with a Lipschitz constant K , the result
holds for h(t) = KS(t).

PROOF. Consider the function φ(z) = −S(ez) with derivative φ′(z) = ezg(ez) ≤ h(ez)

for z > log t0. By the mean-value theorem and the monotonicity of h, for t > t0 and x > 1,

S(t) − S(tx) = φ(log t + logx) − φ(log t)

≤ sup
0≤δ≤logx

φ′(log t + δ) logx

≤ sup
0≤δ≤logx

h
(
exp(log t + δ)

)
logx = h(t) logx.

Observe that for the second part we have tg(t) ≤ h(t) with h(t) = KS(t). �

For convenience of presentation, we assume the conditions of Theorem 2.1 hold through-
out the remainder of this subsection. All asymptotic results hold as p → ∞ unless specified
otherwise. The following lemma establishes the finite-dimensional (fidis) convergence for
Vp .
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LEMMA 7.4 (Fidis convergence). For any 0 ≤ η < 1
2 ,

Vp

Iη
� V

Iη
, in �∞([0,2]),

provided the asymptotic tightness of Vp/Iη.

PROOF. It suffices to prove the finite-dimensional (fidis) convergence: for any given m

and all fixed 0 < x1 < · · · < xm ≤ 2 and η ∈ [0,1/2),(
Vp(x1)/x

η
1 , . . . , Vp(xm)/xη

m

) d−→ (
V (x1)/x

η
1 , . . . , V (xm)/xη

m

)
.

We use the Cramér–Wold device in conjunction with the Lindeberg central limit theorem;
we can ignore the weights x

η
j here. The Lindeberg condition is satisfied since the indica-

tors constituting Temp are bounded by definition. We omit the standard details but note that
cov(Vp(x),Vp(y)) → cov(V (x),V (y)) by Assumptions 2.1, 2.3 and 2.4. �

It remains to verify the asymptotic tightness of Vp/Iη. We shall prove this for 0 < η < 1
2 ,

as then the case η = 0 follows. For the proof of the asymptotic tightness, we use Theorem 3
in Einmahl and Segers (2021), which is a corollary to Theorem 2.11.9 in van der Vaart and
Wellner (1996). For the clearness of notation, we relabel the Zn,i there by Yp,i , i = 1, . . . , p,
and define

Yp,i = 1√
k
1

[
X

(p)
i > upx−γ ]

/xη, x ∈ F = [0,2],

which is bounded by

(10) ‖Yp,i‖F := sup
0≤x≤2

1√
k
1

[
X

(p)
i > upx−γ ]

/xη ≤ 1√
k

(
X

(p)
i

up

)η/γ

.

LEMMA 7.5. For any η ∈ (0,1/2) and λ > 0,

p∑
i=1

E
[‖Yp,i‖F1[‖Yp,i‖F > λ

]] → 0.

PROOF. It follows from (10) that

p∑
i=1

E
(‖Yp,i‖F1[‖Yp,i‖F > λ

])

≤
p∑

i=1

∫ ∞
up(λ

√
k)γ/η

1√
k

(
x

up

)η/γ

dFpi(x)

= p

∫ ∞
up(λ

√
k)γ/η

1√
k

(
x

up

)η/γ

dFp(x)

= λp

∫ ∞
1

zη/γ dFp

(
up(λ

√
k)γ/ηz

)
= p

k
Tp(up) · λk

[
−

∫ ∞
1

zη/γ d
Tp(up(λ

√
k)γ/ηz)

Tp(up)

]
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Integration by parts using Lemma 7.2 and then applying Assumptions 2.1 and 2.2, there exists
M > 0 such that for all large p,

−
∫ ∞

1
zη/γ d

Tp(up(λ
√

k)γ/ηz)

Tp(up)

= Tp(up(λ
√

k)γ/η)

Tp(up)
+

∫ ∞
1

Tp(up(λ
√

k)γ/ηz)

Tp(up)
dzη/γ

≤ 2M

(
T (up(λ

√
k)γ/η)

T (up)
+

∫ ∞
1

T (up(λ
√

k)γ/ηz)

T (up)
dzη/γ

)
.

Now applying Lemma 7.1, for any sufficiently small δ > 0, and for all p ≥ p0 (because
up → ∞) with p0 depending on δ,

T (up(λ
√

k)γ/η)

T (up)
≤ C

{
(λ

√
k)γ/η}−1/γ+δ

, and

∫ ∞
1

T (up(λ
√

k)γ/ηz)

T (up)
dzη/γ ≤ C

∫ ∞
1

{
(λ

√
k)γ/ηz

}−1/γ+δ
dzη/γ .

Combining these bounds, we obtain

T (up(λ
√

k)γ/η)

T (up)
+

∫ ∞
1

T (up(λ
√

k)γ/ηz)

T (up)
dzη/γ

≤ C
{
(λ

√
k)γ/η}−1/γ+δ

{
1 +

∫ ∞
1

z−1/γ+δ dzη/γ

}
= C

{
(λ

√
k)γ/η}−1/γ+δ 1 − δγ

1 − η − δγ
.

Hence, for sufficiently small δ > 0,

p∑
i=1

E
(‖Yp,i‖F1[‖Yp,i‖F > λ

])
≤ 2MC · λk · {

(λ
√

k)γ/η}−1/γ+δ 1 − δγ

1 − η − δγ

= 2MCλ1−1/η+δγ /ηk1−1/(2η)+δγ /(2η) 1 − δγ

1 − η − δγ
→ 0,

where the last step uses that k → ∞ and its exponent 1 − 1
2η

+ δγ
2η

< 0 for small δ > 0. �

LEMMA 7.6. Let ε > 0 be small and define a = ε3/(1/2−η) and Fa = [0,2a]. Then there
exists a constant p0 not depending on ε such that for every p ≥ p0,

p∑
i=1

E sup
x,y∈Fa

(
Yp,i(x) − Yp,i(y)

)2 ≤ ε2.

PROOF. We have
p∑

i=1

E sup
x,y∈Fa

(
Yp,i(x) − Yp,i(y)

)2 ≤ 4
p∑

i=1

E sup
x∈Fa

Y 2
p,i(x)
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= 4

k

p∑
i=1

E sup
x∈Fa

1
[
X

p
i > upx−γ ]

/x2η

= 4

k

p∑
i=1

E

(
X

(p)
i

up

)2η/γ

1
[
X

(p)
i > up(2a)−γ ]

= 4p

k

∫ ∞
up(2a)−γ

(
x

up

)2η/γ

dFp(x)

= −4
∫ ∞
(2a)−γ

z2η/γ d
Tp(upz)

Tp(up)
.

Like in the proof of Lemma 7.5, using integration by parts and Lemma 7.1 we obtain that for
some M not depending on ε and small δ > 0 and p ≥ p0 with p0 only depending on δ but
not ε,

p∑
i=1

E sup
x,y∈Fa

(
Yp,i(x) − Yp,i(y)

)2

≤ 8MC
1 − δγ

1 − 2η − δγ
· (2a)1−2η−δγ

= 8MC
1 − δγ

1 − 2η − δγ
· 21−2η−δγ ε

6− 3
1/2−η

δγ ≤ ε2,

where the last step holds for all small ε > 0, because 6 − 3
1/2−η

δγ > 2 for small δ > 0. �

LEMMA 7.7. Let ε > 0 be small. Define θ = 1 − ε3 and F(�) = [2θ�+1,2θ�], � =
0.1,2, . . . . Then there exists a constant p0 not depending on ε such that for every p ≥ p0

and every �,

p∑
i=1

E sup
x,y∈F(�)

(
Yp,i(x) − Yp,i(y)

)2 ≤ ε2.

PROOF. For all i ∈ {1, . . . , p},
E sup

x,y∈F(�)

(
Yp,i(x) − Yp,i(y)

)2

≤ E

(
sup

x∈F(�)

Yp,i(x) − inf
x∈F(�)

Yp,i(x)
)2

≤ E

(
1√
k
1

[
X

(p)
i >

up

(2θ�)γ

]
/
(
2θ�+1)η − 1√

k
1

[
X

(p)
i >

up

(2θ�+1)γ

]
/
(
2θ�)η)2

= 1

k4η
E

(
1

[
X

(p)
i >

up

(2θ�)γ

](
1

θ(�+1)η
− 1

θ�η

)

+ 1

[
up

(2θ�)γ
< X

(p)
i ≤ up

(2θ�+1)γ

]
/θ�η

)2

≤ 2

k4η

{
Tpi

(
up

(2θ�)γ

)
1

θ2�η

(
1

θη
− 1

)2
+

(
Tpi

(
up

(2θ�)γ

)
− Tpi

(
up

(2θ�+1)γ

))
1

θ2�η

}
.
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Hence,
p∑

i=1

E sup
x,y∈F(�)

(
Yp,i(x) − Yp,i(y)

)2

≤ 2

4η

p

k
Tp

(
up

(2θ�)γ

)
1

θ2�η

(
1

θη
− 1

)2
+ 2

4η

p

k

(
Tp

(
up

(2θ�)γ

)
− Tp

(
up

(2θ�+1)γ

))
1

θ2�η

=: J1 + J2.

Using Assumption 2.2 and Lemma 7.1, there exists constants M,C > 0 not depending on ε

such that for small δ > 0 and large p,

J1 ≤ 41−ηM
T (

up

(2θ�)γ
)

T (up)

1

θ2�η

(
1

θη
− 1

)2

≤ 8MCθ�(1−2η−γ δ)

(
1

θη
− 1

)2

≤ 8MC

(
1

θ1/2 − 1
)2

.

On the other hand, applying Lemma 7.3 and using Assumption 2.2, for large t and x > 1,

Tp(t) − Tp(tx) ≤ MT (t) logx, for some constantM.

Hence, setting t = up

(2θ�)γ
and x = θ−γ ,

J2 ≤ 2Mγ

4η

p

k
T

(
up

(2θ�)γ

)
log(1/θ)

1

θ2�η
≤ 4Mγ

4η

T (
up

(2θ�)γ
)

T (up)

1

θ2�η
log(1/θ),

where for second inequality Assumption 2.1 is used. Lemma 7.1 yields, for some constants
C > 0 not depending ε, for δ > 0 small

J2 ≤ 4MγC

4η
21−δγ θ�(1−2η−γ δ) log(1/θ) ≤ 8MγC log(1/θ).

To conclude,
p∑

i=1

E sup
x,y∈F(�)

(
Yp,i(x) − Yp,i(y)

)2

≤ 8MC max{1, γ }
{(

1

θ1/2 − 1
)2

+ log(1/θ)

}
≤ 8MC max{1, γ }(ε6 + 2ε3) ≤ ε2,

for small ε > 0. �

PROOF OF THEOREM 2.1. We have

F = [0,2] = [0,2a] ∪
(�loga/ log θ�⋃

�=0

[
2θ�+1,2θ�]).

The number of elements of this covering is bounded by ε−4. The theorem follows now from
Theorem 3 in Einmahl and Segers (2021), the conditions of which are verified in Lemmas
7.4–7.7 and by using this bound ε−4. �
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PROOF OF THEOREM 2.2. We have (see Example 5.1.5 in de Haan and Ferreira (2006))

(11)
√

k(γ̂ − γ ) = √
k

∫ 1

Xp−k:p/up

p

k
Temp(sup)

ds

s
+ √

k

∫ ∞
1

(
p

k
Temp(sup) − s−1/γ

)
ds

s
.

On the probability space of Corollary 2.1 (with η > 0), the second term on the right-hand
side in (11) is equal to

γ
√

k

∫ 1

0

(
p

k
Temp

(
up

xγ

)
− x

)
dx

x

= γ

∫ 1

0
V (x)

dx

x
+ γ

∫ 1

0

Wp(x) − V (x)

xη

dx

x1−η

a.s.−→ γ

∫ 1

0
V (x)

dx

x
.

By Corollary 2.2, Xp−k:p/up
P−→ 1, and the first term on the right-hand side in (11) is equal

to ∫ 1

Xp−k:p/up

Wp

(
s−1/γ )ds

s
+ √

k

∫ 1

Xp−k:p/up

s−1/γ ds

s

a.s.= o(1) + γ
√

k

((
Xp−k:p

up

)−1/γ

− 1
)

a.s.−→ −γV (1),

where the first term vanishes due to Corollary 2.1 and the second term converges because of
Corollary 2.2. Hence, we obtain that

√
k(γ̂ − γ )

a.s.−→ γ

(
−V (1) +

∫ 1

0
V (x)

dx

x

)
,

which is a centered normal random variable.
To complete the proof, we will show that

var
(
−V (1) +

∫ 1

0
V (x)

dx

x

)
= var

(
V (1)

)
.

We have

cov
(
−V (1) +

∫ 1

0
V (x)

dx

x
,−V (1) +

∫ 1

0
V (y)

dy

y

)

= var
(
V (1)

) − 2
∫ 1

0
cov

(
V (x),V (1)

)dx

x
+

∫ 1

0

∫ 1

0
cov

(
V (x),V (y)

)dx

x

dy

y

= var
(
V (1)

) − 2
∫ 1

0
cov

(
V (x),V (1)

)dx

x
+ 2

∫ 1

0

∫ y

0
cov

(
V (x),V (y)

)dx

x

dy

y
.

Now ∫ 1

0
cov

(
V (x),V (1)

)dx

x
=

∫ 1

0

(
1 − R

(
1, x−1))

dx,

and also, by the change of variables x/y = u,∫ 1

0

∫ y

0
cov

(
V (x),V (y)

)dx

x

dy

y
=

∫ 1

0

∫ y

0

(
1 − R(1, y/x)

)
dx

dy

y
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=
∫ 1

0

∫ 1

0

(
1 − R

(
1, u−1))

dy du

=
∫ 1

0

(
1 − R

(
1, u−1))

du. �

The proof of Theorem 2.3 is deferred to the Supplementary Material.

7.2. Proofs from Section 3. Since the permutation π does not change Tp and Hp , we can
and will omit it in the proofs. We will only prove the results for the case μ = 0. Extending
the proofs to μ �= 0 is straightforward (but tedious), as the influence of a location shift is
asymptotically negligible for a heavy tail. Accordingly, define the limit functions T (x) =∫ ∞

0 S(x/u)dFσ (u) and H(x, y) = ∫ ∞
0 S(x

u
)S(

y
u
) dFσ (u).

We need an elementary lemma for the tail of the product of two independent random
variables; see, for example, Lemma 4.2 in Jessen and Mikosch (2006).

LEMMA 7.8. Let X1 and X2 be nonnegative, independent random variables. If
limx→∞ x1/γ

P(X1 > x) = c ∈ (0,∞) for some γ > 0 and EX
1/γ
2 < ∞, then

lim
x→∞x1/γ

P(X1X2 > x) = c ·EX
1/γ
2 .

From this lemma, we can deduce that, under the conditions of Theorem 3.1 or 3.2,

(12) lim
t→∞ t1/γ T (t) = c̃, for some c̃ ∈ (0,∞).

LEMMA 7.9. If T satisfies (12), then Uσ (t) ≤ Ctγ , t ≥ 1, for some constant C, and
hence 1 − Fσ (t) =: Tσ (t) ≤ C1/γ t−1/γ , t > 0. We also have S(t) ≤ C1/γ t−1/γ for t > 0.

LEMMA 7.10. Suppose that logUσ (et ) is Lipschitz-continuous on [0,∞) and T satisfies
(12). Assumption 2.1 holds with extreme value index γ and T as above if

xg(x) ≤ MT (x), x ≥ 0,

for some constant M < ∞.

LEMMA 7.11. Assumption 2.2 holds with the limit function T if there exist a non-
increasing function h on [0,∞) and a constant M such that for all x ≥ 0,

xg(x) ≤ h(x), and
∫ ∞

0
h(x/u)dFσ (u) ≤ MT (x).

The proofs of Lemmas 7.9–7.11 are deferred to the Supplementary Material.

PROOF OF THEOREM 3.1. By Lemma 7.8, we know that (12) holds and we claim that,
for some constants C, M and x ≥ 0,∫ ∞

0
h(x/u)dFσ (u) ≤ Ch(0)Tσ (x) ≤ MT (x),(13)

xg(x) ≤ MT (x).(14)

Part (i) then follows from Lemmas 7.10 and 7.11. To prove (13), we introduce a survival
function h̃(x) = h(x)

h(0)
on the positive half-line. Then we have∫ ∞

0
h(x/u)dFσ (u) = h(0) ·

∫ ∞
0

h̃(x/u)dFσ (u) =: h(0) · T̃ (x).
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Observe that T̃ is the survival function of the product of two independent random vari-
ables with distribution functions Fσ and 1 − h̃, respectively. Applying Lemma 7.8 yields
that limx→∞ x−1/γ T̃ (x) < ∞. Therefore, for some large constants C1 and C,

T̃ (x) ≤ min
{
C1x

−1/γ ,1
} ≤ C1 min

{
x−1/γ ,1

} ≤ CTσ (x),

and hence the first inequality in (13) follows. Similar arguments yield the second inequality.
For (14), note that xg(x) ≤ h(x) ≤ C min{x−1/γ ,1} ≤ MT (x).

It is only left to show the existence of R and to verify its expression. First, consider
any intermediate threshold sequence of the form t = Uσ (z) with z = z(p) → ∞ such that
T (Uσ (z)) → 0 and pT (Uσ (z)) → ∞. By part (i) of this theorem and Lemma 7.8 with (12),

zT
(
Uσ (z)

) = T (Uσ (z))

Tσ (Uσ (z))
→ EZ

1/γ
+ =

∫ ∞
0

S
(
vγ )

dv ∈ (0,∞).

Following the definition of R in Assumption 2.4, we need to show that

zHp

(
Uσ (z)x−γ ,Uσ (z)y−γ ) →

∫ ∞
0

S
(
vγ x−γ )

S
(
vγ y−γ )

dv, x, y > 0.

In fact, we only need to show that, as t → ∞,

zH
(
Uσ (z)x−γ ,Uσ (z)y−γ ) →

∫ ∞
0

S
(
vγ x−γ )

S
(
vγ y−γ )

dv

because then, very similar to the proof of Lemma 7.10, we can show that

zHp

(
Uσ (z)x−γ ,Uσ (z)y−γ ) = zH

(
Uσ (z)x−γ ,Uσ (z)y−γ ) + o(1).

Take another intermediate threshold sequence λ = λ(z) such that λ → ∞ but z/λ → ∞ as
z → ∞. We have

zH
(
Uσ (z)x−γ ,Uσ (z)y−γ )

=
∫ z

0
S

(
Uσ (z)x−γ

Uσ (z/v)

)
S

(
Uσ (z)y−γ

Uσ (z/v)

)
dv

=
∫ λ

0
S

(
Uσ (z)x−γ

Uσ (z/v)

)
S

(
Uσ (z)y−γ

Uσ (z/v)

)
dv

+
∫ z

λ
S

(
Uσ (z)x−γ

Uσ (z/v)

)
S

(
Uσ (z)y−γ

Uσ (z/v)

)
dv

=: J1(x, y) + J2(x, y).

We shall show that J1(x, y) converges to the required limit and J2(x, y) → 0. Let ε > 0 be
small. For all large z and z/λ,

sup
0<v≤λ

∣∣∣∣ Uσ (z)

Uσ (z/v)vγ
− 1

∣∣∣∣ = sup
0<v≤λ

∣∣∣∣ Uσ (z)z−γ

Uσ (z/v)(z/v)−γ
− 1

∣∣∣∣ < ε.

By monotonicity of S,

J1(x, y) ≤
∫ ∞

0
S
(
(1 − ε)vγ x−γ )

S
(
(1 − ε)vγ y−γ )

dv

= (1 − ε)−1/γ
∫ ∞

0
S
(
vγ x−γ )

S
(
vγ y−γ )

dv,
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and, on the other hand,

J1(x, y) ≥
∫ λ

0
S
(
(1 + ε)vγ x−γ )

S
(
(1 + ε)vγ y−γ )

dv

→
∫ ∞

0
S
(
(1 + ε)vγ x−γ )

S
(
(1 + ε)vγ y−γ )

dv

= (1 + ε)−1/γ
∫ ∞

0
S
(
vγ x−γ )

S
(
vγ y−γ )

dv.

It follows that J1(x, y) → ∫ ∞
0 S(vγ x−γ )S(vγ y−γ ) dv as ε can be arbitrarily small.

Next, we show that J2(x, y) → 0. Recall that Uσ (z)/zγ is bounded away from 0 and ∞
for z ≥ 1. Hence, for some large constant C,

J2(x, y) ≤
∫ ∞
λ

S
(
Cvγ x−γ )

S
(
Cvγ y−γ )

dv

= C−1/γ
∫ ∞
C1/γ λ

S
(
vγ x−γ )

S
(
vγ y−γ )

dv → 0,

since
∫ ∞

0 S(vγ x−γ )S(vγ y−γ ) dv ≤ ∫ ∞
0 S(vγ x−γ ) dv = x

∫ ∞
0 S(vγ ) dv < ∞.

Now, for any intermediate threshold sequence t = t (p), using the power-law approxima-
tion of Uσ , we can find two intermediate threshold sequences Uσ (z±) with z± = z±(p) → ∞
such that Uσ (z−) ≤ t ≤ Uσ (z+) and Uσ (z+)/Uσ (z−) → 1. Then by monotonicity of Hp and
T and the squeeze theorem it readily follows that Hp(tx−γ , ty−γ )/T (t) → R(x, y). �

PROOF OF THEOREM 3.2. Part (i) follows from Lemmas 7.10 and 7.11, since (12) holds
due to Lemma 7.8 again and the condition in Lemma 7.11 is trivial with h(x) = MS(x)

therein. The proof is very similar to that for Theorem 3.1 and we omit the details.
It remains to verify that R is trivial. Take any x, y > 0. Let t = t (p) → ∞ be an arbitrary

intermediate threshold sequence such that pT (t) → ∞. By monotonicity of S and Qσ ,

Hp

(
tx−γ , ty−γ ) = 1

p

p∑
i=1

S

(
tx−γ

Qσ (1 − i/p)

)
S

(
ty−γ

Qσ (1 − i/p)

)

≤
∫ 1

0
S

(
tx−γ

Qσ (1 − u)

)
S

(
ty−γ

Qσ (1 − u)

)
du

= H
(
tx−γ , ty−γ )

.

It suffices to show that H(tx−γ , ty−γ )/T (t) → 0 as t → ∞.
Take another threshold sequence λ = λp → ∞ but t/λ → ∞. Using monotonicity of S

and Lemma 7.9, for some constant C,

H(tx−γ , ty−γ )

T (t)
=

∫ λ
0 S( tx−γ

u
)S(

ty−γ

u
) dFσ (u)

T (t)
+

∫ ∞
λ S( tx−γ

u
)S(

ty−γ

u
) dFσ (u)

T (t)

≤ S( tx−γ

λ
)
∫ λ

0 S(
ty−γ

u
) dFσ (u)

T (t)
+

∫ ∞
λ (Ct−1/γ xu1/γ · 1) dFσ (u)

T (t)

≤ S

(
tx−γ

λ

)
T (ty−γ )

T (t)
+ x · Ct−1/γ

T (t)
·
∫ ∞
λ

u1/γ dFσ (u)

→ 0 · y + x · C

c̃
· 0 = 0,

where we also recall (12) for the last line. �
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SUPPLEMENTARY MATERIAL

Supplementary material for “Extreme value inference for heterogeneous power law
data” (DOI: 10.1214/23-AOS2294SUPP; .pdf). The supplementary material consist of two
sections. Section 1 provides more simulation results for the extreme quantile estimator. Sec-
tion 2 provides proofs of Theorems 2.3 and 4.1 and Lemmas 7.9–7.11.
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