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Structure learning via MCMC sampling is known to be very challenging
because of the enormous search space and the existence of Markov equivalent
DAGs. Theoretical results on the mixing behavior are lacking. In this work,
we prove the rapid mixing of a random walk Metropolis–Hastings algorithm,
which reveals that the complexity of Bayesian learning of sparse equivalence
classes grows only polynomially in n and p, under some high-dimensional
assumptions. A series of high-dimensional consistency results is obtained,
including the strong selection consistency of an empirical Bayes model for
structure learning. Our proof is based on two new results. First, we derive
a general mixing time bound on finite-state spaces, which can be applied to
local MCMC schemes for other model selection problems. Second, we con-
struct high-probability search paths on the space of equivalence classes with
node degree constraints by proving a combinatorial property of DAG com-
parisons. Simulation studies on the proposed MCMC sampler are conducted
to illustrate the main theoretical findings.

1. Introduction.

1.1. Gaussian DAG models and equivalence classes. A directed acyclic graph (DAG)
encodes a set of conditional independence (CI) relations among node variables, which can
be read off using the “d-separation” criterion [46]. Structure learning of DAG models from
observational data plays a fundamental role in causal inference and has found many applica-
tions in machine learning and statistical data analysis [29]. In genomics, for example, DAG is
a convenient device for conducting pathway analysis and inferring interactions among genes
or proteins [17, 35].

Two DAGs with different edge sets can encode the same set of CI relations, in which
case we say both belong to the same (Markov) equivalence class. For example, the DAGs
i → j → k and i ← j → k are Markov equivalent: both encode only one CI relation i ⊥⊥ k|j
(i.e., i, k are independent given j ). But they are not Markov equivalent to i → j ← k, since
the latter encodes only one CI relation i ⊥⊥ k. A Gaussian DAG model represents a set of
multivariate normal distributions that satisfy the CI constraints encoded by the DAG. Due
to normality, Markov equivalence further implies distributional equivalence [19], and thus
observational data alone cannot distinguish between Markov equivalent DAGs; this is a main
challenge in devising efficient structure learning algorithms [10].

This paper is chiefly concerned with the following problem: given n i.i.d. observations
from a p-variate DAG-perfect normal distribution, estimate the equivalence class of the un-
derlying DAG model. This is a model selection problem where the model space is a collection
of p-vertex equivalence classes. We are most interested in high-dimensional settings where
p grows much faster than n and the true DAG model is sparse.

Received January 2021; revised January 2023.
MSC2020 subject classifications. 62F15, 62J05.
Key words and phrases. Finite Markov chains, greedy equivalence search (GES), locally informed proposals,

Poincaré-type inequality, random walk Metropolis–Hastings, rapid mixing, strong selection consistency.

1058

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/23-AOS2280
http://www.imstat.org
mailto:quan@stat.tamu.edu
mailto:hwchang@stat.tamu.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


COMPLEXITY ANALYSIS OF BAYESIAN STRUCTURE LEARNING 1059

The structure learning problem can be greatly simplified if the topological ordering of
the variables is known. By ordering, we mean a permutation σ ∈ Sp , where Sp denotes the
symmetric group on {1, . . . , p}, such that for any i < j , an edge connecting σ(i) and σ(j) is
always directed as σ(i) → σ(j). Such a total ordering always exists, but may not be unique,
for a DAG due to acyclicity. For example, for 1 → 3 ← 2, the ordering can be either (1,2,3)

or (2,1,3). Any two different DAGs that share a same ordering cannot be Markov equivalent.
This can be proved by contradiction: if the two DAGs are Markov equivalent, they must
have the same skeleton [61], but the ordering uniquely determines the directions of all edges
implying that the two DAGs must be the same. Henceforth, we refer to the problem as DAG
selection when the ordering is known and reserve the term “structure learning” for learning
equivalence classes when the ordering is unknown; the latter is the focus of this paper.

1.2. Algorithms for Bayesian structure learning. Most Bayesian structure learning meth-
ods aim to produce a posterior distribution of the DAG model or its equivalence class, which
can be further used for making inference on quantities of interest via model averaging. To nu-
merically approximate the posterior distribution, Markov chain Monte Carlo (MCMC) sam-
pling is often invoked, and existing MCMC methods differ from each other mainly in three
respects: the state space, the set of local operators and the proposal scheme. The local oper-
ators decide which states the sampler may move to in the next iteration (i.e., they define the
“neighborhood” of each state). The proposal scheme refers to how the proposal probabilities
of these neighboring states are assigned. Most existing algorithms use either random walk
Metropolis–Hastings (MH) or Gibbs schemes, but we note that informed proposal schemes
recently proposed in Zanella [66] and Zhou et al. [68] can be applied as well.

There are three popular choices of the state space: states can be DAGs, equivalence classes
or orderings. The famous “structure MCMC” sampler is a random walk MH algorithm that
searches the DAG space using addition, deletion and reversal of single edges [20, 36]. It
is straightforward to implement (one only needs to check acyclicity when proposing local
moves) but may not be efficient since the sampler can spend a lot of time traversing large
equivalence classes. Various methods have been proposed to improve the performance by
using more complicated local operators [22, 56] or blocked Gibbs schemes [21]. Directly
searching the space of equivalence classes seems more efficient, but a major challenge is to
construct a proper set of local operators [2, 10, 41, 48, 49]; see Madigan et al. [37] and Castel-
lettiet al. [8] for MCMC samplers defined on the space of equivalence classes. Order MCMC
methods [1, 15, 16] target a posterior distribution on the order space Sp . They are motivated
by the observation that given ordering, the conditional posterior distribution of DAGs can be
evaluated relatively easily. More sophisticated MCMC schemes can be built by using partial
orderings [30, 44]. It should be noted that the choice of the prior distribution typically de-
pends on the state space, which results in essentially different posterior distributions on the
three state spaces (see Section 7.1). We will focus on the space of equivalence classes.

In principle, by treating the logarithm of the posterior probability as a scoring criterion,
deterministic score-based search algorithms can also be used to find the structure that max-
imizes the score (i.e., the maximum a posteriori estimate). This approach appears less pop-
ular in the Bayesian structure learning literature, probably because it cannot quantify the
uncertainty in estimation. One of the most important score-based algorithms is the greedy
equivalence search (GES) proposed by Meek [39] and Chickering [11], a two-stage greedy
search algorithm defined on the space of equivalence classes. Nandy, Hauser and Maathuis
[42] were the first to prove the high-dimensional consistency of GES (i.e., the search returns
the true equivalence class with high probability for sufficiently large n) using an assumption
called strong faithfulness. Though it is known that strong faithfulness is very restrictive [59],
such conditions appear to be necessary for proving high-dimensional consistency results for
many algorithms [28]. We refer readers to Drton and Maathuis [13] and Scutari, Graafland
and Gutiérrez [51] for other scored-based structure learning methods.
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1.3. Overview of the paper. While many MCMC methods for structure learning have
been proposed, to our knowledge, no theoretical result on the mixing time is available. This
is probably because the structure of the state space is highly complicated. The primary goal
of this paper is to fill the gap by deriving nonasymptotic mixing time bounds. We find that
structure MCMC and order MCMC methods are, unfortunately, hard to analyze due to the
technical difficulty in bounding sizes of equivalence classes. The equivalence class sampler
of Castellettiet al. [8] uses six graph operators to move between equivalence classes [23],
but we can explicitly construct slow mixing examples for this sampler with fixed p. This
motivates us to propose our own equivalence class sampler, RW-GES, which uses a random
walk proposal scheme that mimics and generalizes the local moves employed by GES. We
prove a high-dimensional rapid mixing result for the RW-GES sampler, which essentially
says that, under some conditions, the number of iterations needed to find the true equivalence
class grows only polynomially in n and p with high probability. The proof consists of three
steps, which we now explain separately.

In Section 2, we first develop a general theory on the complexity of local MCMC algo-
rithms for model selection. This section is self-contained and of considerable independent
interest. We build a weighted path argument and use a Poincaré-type inequality [27] to obtain
a novel, generally applicable mixing time bound under a unimodal assumption; see Condi-
tion 1 and Theorem 2. This result can be applied to other model selection problems such as
variable selection and stochastic block models. It sharpens the existing mixing time bounds
for random walk MH algorithms in the literature [65, 69] and can be utilized to derive the-
oretical guarantees for locally informed MH algorithms [66]. Our theory also reveals a link
between optimization and sampling: if for some model selection problem, there is a greedy
local search with consistency guarantee, it is hopeful that, with some modifications, we may
convert the greedy algorithm to a local MH sampler that has provable rapid mixing property.
In general, rapid mixing is more difficult to prove and more informative than the consistency
of a greedy search, since the former characterizes the overall complexity of the algorithm and
requires an analysis of the local posterior landscape in the whole state space.

The RW-GES sampler for structure learning is formally introduced in Section 3. To impose
sparsity, we define the state space to be the set of all equivalence classes that satisfy some
node degree constraints. We do not explicitly define the target posterior distribution in this
section (which will be done in Section 4); instead, we assume the posterior has some consis-
tency property that typically holds for sufficiently large sample sizes. To use Theorem 2, we
need to verify its assumption for the structure learning problem, which requires us to bound
the neighborhood size (see Lemma 1) and construct “canonical paths” for the RW-GES sam-
pler. We show by examples (see Examples 2 and 3) that a major and unique challenge in
the path construction is to verify that the equivalence classes located on the “boundary” of
the restricted search space cannot be local modes. To overcome this, we introduce a “swap”
proposal move to RW-GES and prove a key combinatorial property of DAGs in Lemma 2.
Combining it with the well-known Chickering algorithm [11], we obtain the canonical paths
of RW-GES.

In Section 4, we propose an empirical Bayes model for structure learning and prove that
it has the desired high-dimensional consistency property assumed in Section 3. Our model
generalizes the DAG selection model of Lee, Lee and Lin [33], and we show that it yields
the same marginal fractional likelihood for Markov equivalent DAGs. The main result in this
section is Theorem 5, which gives the strong selection consistency of our structure learning
model. For Bayesian methods, such consistency results have only been established lately for
the DAG selection problem with known ordering [7, 33]. Roughly speaking, in our consis-
tency result, the maximum degree of searched DAGs is allowed to grow at rate

√
logp; see

Remark 10. The analogous high-dimensional consistency results for both variable selection
and DAG selection are obtained as intermediate steps of our proof of Theorem 5.
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The rapid mixing of RW-GES now follows from the mixing time bound given in Theo-
rem 2 and the results of Sections 3 and 4. It is formally stated in Section 5. For comparison,
we provide two slow mixing examples in the same section. The first one (see Example 4)
shows why it is difficult to relax a key assumption used in our analysis, which is called the
“strong beta-min condition” and is similar to the strong faithfulness assumption. The second
(see Example 5) illustrates that the equivalence class sampler of Castellettiet al. [8] may mix
slowly when p is small and n is large. We conduct simulation studies in Section 6 to show
that our theoretical results hold “approximately” for moderately large sample sizes and pro-
vide useful guidance on the use of RW-GES in practice. Section 7 concludes the paper with
discussions on why the structure MCMC is difficult to analyze and potential extensions of
RW-GES. All proofs are relegated to the Supplementary Material [67]. For readers’ conve-
nience, a notation table is given in Supplementary Material Section A.

2. Mixing time bounds for model selection problems.

2.1. A general setup. In this section, we use � = �p to denote a finite model space for
a general model selection problem with p variables; for example, for the structure learning
problem, each θ ∈ � can be a unique equivalence class. Let N : � → 2� be given such that
θ /∈ N (θ) for each θ ∈ �; N is called a neighborhood function. We say θ ′ is a neighbor of θ

if and only if θ ′ ∈ N (θ). We say N is “symmetric” if θ ∈ N (θ ′) always implies θ ′ ∈ N (θ).
When we need to emphasize � is equipped with N , we denote the space by (�,N ). Let π

denote a posterior distribution on � for a Bayesian procedure; assume it is known up to a
normalizing constant and π(θ) > 0 for each θ . Given a function h : (0,∞) → (0,∞), define
a Markov chain Kh on � by

(1) Kh(
θ, θ ′) = h(π(θ ′)/π(θ))∑

θ̃∈N (θ) h(π(θ̃)/π(θ))
1N (θ)

(
θ ′),

where 1 is the indicator function. That is, given current state θ , Kh moves to some θ ′ ∈N (θ)

with probability ∝ h(π(θ ′)/π(θ)). Given Kh, define another Markov chain Ph by

(2) Ph(
θ, θ ′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Kh(
θ, θ ′) min

{
1,

π(θ ′)Kh(θ ′, θ)

π(θ)Kh(θ, θ ′)

}
, if θ ′ 
= θ,

1 − ∑
θ̃ 
=θ

Ph(θ, θ̃), if θ ′ = θ.

If Ph is irreducible, then π is the unique stationary distribution of Ph. To avoid periodicity,
we will often work with the lazy version Ph

lazy = (Ph + I)/2, where I is the identity matrix.

DEFINITION 1 (Local Metropolis–Hastings algorithms). We say Ph defined by (2) is a
local MH algorithm with local proposal Kh. If h ≡ 1, we say Ph is the random walk MH
algorithm. If h is nonconstant and nondecreasing, we say Kh is a (locally) informed proposal
and Ph is a (locally) informed MH algorithm.

The locally informed MH algorithm was proposed by Zanella [66]. The main idea is to
assign larger proposal probabilities to those neighboring states with larger posterior so that
the chain can quickly move to high-posterior regions. Let h in (1) be h(u) = ua for some
a ≥ 0. Observe that when a = 0, Kh is reduced to the random walk proposal, and when
a → ∞ we obtain the greedy search (see the definition below). So, informed proposals are
generally more aggressive than random walk but less aggressive than greedy search.
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DEFINITION 2 (Greedy local search). A greedy (local) search on (�,N ) with
initial state θ(0) generates θ(1), θ (2), . . ., sequentially by letting θ(i) =
arg maxθ ′∈N (θ(i−1))∪{θ(i−1)} π(θ ′) for each i ≥ 1. The search stops and returns θ(j) if θ(j) =
θ(j−1).

The efficiency of both greedy search and MH algorithms largely depends on the choice
of N . For model selection problems, N (·) is usually much smaller than � so that the algo-
rithm is computationally affordable. But N should also provide enough connectivity so that
the algorithm cannot get trapped at suboptimal local modes (θ is a local mode if π(θ) > π(θ ′)
for any θ ′ ∈ N (θ)). We measure the convergence rate of MH algorithms using mixing time.

DEFINITION 3 (Mixing time). Let P be an irreducible and aperiodic transition matrix
defined on a finite state space �, with stationary distribution π . Define its mixing time by

Tmix(P) = max
θ∈�

min
{
t ≥ 0 : ∥∥Pt (θ, ·) − π(·)∥∥TV ≤ 1/4

}
,

where ‖·‖TV denotes the total variation distance which takes value in [0,1].

REMARK 1. We say an MCMC algorithm is rapidly mixing if its mixing time grows at
most polynomially in the complexity parameters n (sample size) and p (number of variables).
For most high-dimensional model selection problems, the size of � grows at least super-
polynomially with p. For variable selection, which is probably the best-studied problem,
Yang, Wainwright and Jordan [65] proved the rapid mixing of a random walk MH algorithm,
and Zhou et al. [68] showed that an informed MH algorithm can converge much faster and
obtain a mixing time independent of p.

2.2. A multipurpose path method. We propose a general method for bounding the mixing
time of Ph defined in (2) and proving consistency properties of the posterior distribution π .
The bounds to be derived in this section are nonasymptotic, and p is treated as a fixed con-
stant. We begin by assuming that the triple (�,N , π) satisfies the following condition, where
| · | denotes the cardinality of a set.

CONDITION 1. |�| < ∞, N is symmetric, and π > 0. There exists a function g : � →
�, a state θ∗ ∈ � and constants t1, t2 > 0, p > 1 such that (i) |N (θ)| ≤ pt1 for each θ ∈ �,
and (ii) g(θ) ∈ N (θ) and π(g(θ))/π(θ) ≥ pt2 for each θ 
= θ∗.

REMARK 2. Part (ii) is equivalent to either of the following statements:

(a) For any θ 
= θ∗, maxθ ′∈N (θ) π(θ ′) ≥ pt2π(θ).
(b) For any θ 
= θ∗, there exists k < ∞ and a sequence (θ0 = θ, θ1, θ2, . . . , θk = θ∗) such that

θi ∈ N (θi−1) and π(θi)/π(θi−1) ≥ pt2 for each i = 1, . . . , k.

We introduce the function g because, for model selection problems, one often verifies Con-
dition 1 by explicitly identifying some g(θ) for each θ . There may exist many choices of
g so that Condition 1 holds. Without loss of generality, we always define g(θ∗) = θ∗. Then
part (ii) implies that for any θ there exists k ≤ |�| such that gk(θ) = θ∗, and θ∗ is the only
attracting fixed point of g. We will call g a canonical transition function and a sequence of
the form (θ, g(θ), . . . , gk(θ) = θ∗) a canonical path. We can think of a canonical path as a
candidate “greedy search path” since the posterior keeps increasing along the path, but note
that a greedy search does not necessarily follow a canonical path since g(θ) may not be the
maximizer of π in N (θ).
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Roughly speaking, in the model selection context, θ∗ can be thought of as the “true” data-
generating model, and Condition 1 can be interpreted as an algorithmic consistency property
since it implies that θ∗ is the unique mode of π and the greedy search always returns θ∗; see
part (i) of Theorem 1. For variable selection, Yang, Wainwright and Jordan [65] proved that
Condition 1 holds with high probability under some mild high-dimensional assumptions and
then used the canonical path method of Sinclair [52] to bound the mixing time of the random
walk MH algorithm. We generalize their result to our setup.

THEOREM 1. Let �, N , π , g, θ∗, t1, t2, p be as given in Condition 1. Let Ph be given
by (2) and Ph

lazy = (Ph + I)/2 be its lazy version. The following statements hold:

(i) The greedy search always returns θ∗ regardless of the initial state.
(ii) If t2 > t1, then π(θ∗) ≥ 1 − p−(t2−t1).

(iii) If t2 > t1, then

Tmix
(
Ph

lazy
) ≤ 4�max

{1 − p−(t2−t1)}minθ 
=θ∗ Ph(θ, g(θ))
log

(
4

πmin

)
,

where �max = maxθ 
=θ∗ min{k ≥ 1 : gk(θ) = θ∗} and πmin = minθ∈� π(θ).
(iv) If t2 > t1 and h ≡ 1, then Ph(θ, g(θ)) ≥ p−t1 .

PROOF. See Supplementary Material Section B.4. �

REMARK 3. Part (ii) of Theorem 1 shows that π concentrates on θ∗, which can be further
used to show the strong selection consistency of a Bayesian model selection procedure (see
Section 4.3). This is very useful since we only require polynomial (in p) bounds for the ratio
π(g(θ))/π(θ) in Condition 1, while |�| may be (super)exponential in p. For a random walk
MH algorithm, by parts (iii) and (iv), the order of mixing time is given by pt1�max logπ−1

min.
For the greedy search, note that �max is an upper bound for the steps needed to find θ∗, and
in each step the search needs to evaluate π for at most pt1 states. Hence, the greedy search
and random walk MH algorithm have very similar complexity.

We now show that the mixing time bound in Theorem 1 can be improved. The new bound
given in Theorem 2 has two major advantages. First, it does not involve �max, which can
be large. Second, it replaces minθ 
=θ∗ Ph(θ, g(θ)) in Theorem 1 with minθ 
=θ∗ Ph(θ,N ∗(θ)),
where N ∗(θ) is the set of all “desirable moves” for Ph at θ including g(θ). This is key
to bounding the mixing times of informed MH algorithms. To prove Theorem 2, we use a
novel path argument that may be of independent interest. For each θ 
= θ∗, we construct a
set of paths from θ to θ∗ using all desirable moves. By properly weighting these paths, we
are able to bound the mixing time using a Poincaré-type inequality [27], which significantly
generalizes the canonical path method. See Supplementary Material Section B for details.

THEOREM 2. Let �, N , π , g, θ∗, t1, t2, p be as given in Condition 1, and Ph be
given by (2). For each θ 
= θ∗, define N ∗(θ) = {θ ′ ∈ N (θ) : π(θ ′) ≥ pt2π(θ)}. Let πmin =
minθ∈� π(θ). If t2 > t1, then

Tmix
(
Ph

lazy
) ≤ 2C(p, t1, t2) log( 4

πmin
)

minθ 
=θ∗ Ph(θ,N ∗(θ))
where C(p, t1, t2) = 1 + (1 − pt1−t2)−1

[1 − p(t1−t2)/2]2 .

PROOF. See Supplementary Material Section B.6. �
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REMARK 4. Theorem 2 can be used to immediately improve some existing mixing
time bounds in the literature. Both Yang, Wainwright and Jordan [65] and Zhuo and Gao
[69] proved the rapid mixing of a random-walk MH algorithm for some high-dimensional
discrete-state-space problem by showing Condition 1 holds for some g and using the canon-
ical path method underlying Theorem 1. Theorem 2 shows that �max can be dropped (in an
asymptotic setting where p → ∞ and t1 < t2 are fixed, C(p, t1, t2) → 2).

REMARK 5. Another important application of Theorem 2 is the mixing time analysis
of informed MH algorithms. Define N t (θ) = {θ ′ ∈ N (θ) : π(θ ′) ≥ ptπ(θ)}. If t2 is suffi-
ciently large and the function h in (1) is chosen properly, it is often possible to show that
minθ 
=θ∗ Ph(θ,N t (θ)) ≥ c for some t > t1 and fixed constant c > 0. Indeed, for the LIT-MH
algorithm for variable selection considered in Zhou et al. [68], one can follow their calcula-
tions to verify that this holds for c = 1/4, and then by Theorem 2, the order of the mixing
time is only logπ−1

min. This cannot be achieved by using Theorem 1, since Ph(θ, g(θ)) can be
as small as O(p−t1) (e.g., when all neighboring states have the same posterior probabilities).

The theory developed in this section relies on Condition 1, which is a property of the triple
(�,N , π). If Condition 1 holds, one can use Theorem 2 to study the mixing times of any
local MH algorithm. For simplicity, for the structure learning problem to be studied in the
rest of this paper, we will only consider the random walk proposal, and our main task is to
construct a triple (�,N , π) that satisfies Condition 1. We will often define N on � and
then use N to refer to a neighborhood relation on a restricted space �0 ⊂ �; this means that
the neighborhood of θ ∈ �0 is given by N (θ) ∩ �0. Note that even if (�,N , π) satisfies
Condition 1, (�0,N , π) may not, which is one challenge in the sparse structure learning
problem to be considered.

3. The RW-GES sampler and its canonical paths.

3.1. Notation and terminology. We set up the notation to be used for the structure learn-
ing problem. Let [p] = {1, . . . , p} and | · | denote the cardinality of a set. A subset of [p]
is typically denoted by S. The Hamming distance between two sets S, S′ is denoted by
dH(S, S′) = |S \ S′| + |S′ \ S|.

A DAG G is a pair (V ,E) where V is the vertex set and E ⊂ V × V is the set of directed
edges. Throughout the paper, we assume V = [p] for DAG models, representing random
variables X1, . . . ,Xp . Note that (i, i) /∈ E for any i ∈ [p]. Let |G| denote the number of edges
in the DAG G; thus, |G| = |E|. We use the notation i → j ∈ G to mean that (i, j) ∈ E

and (j, i) /∈ E. The notation i → j /∈ G means that (i, j) /∈ E. For two DAGs G = (V ,E)

and G′ = (V ,E′), we write G′ = G ∪ {i → j} if E′ = E ∪ (i, j), and G′ = G \ {i → j} if
E′ = E \ (i, j). We write G = G′ if and only if G and G′ have the same vertex set and edge
set. Given a DAG G, we say node i is a parent of node j (and node j is a child of node i)
if i → j ∈ G. Let Paj (G) = {i ∈ [p] : i → j ∈ G} denote the set of parents of node j ; the
in-degree of node j is |Paj (G)|. The maximum in-degree of G is maxj |Paj (G)|. Similarly,
let Chj (G) = {i ∈ [p] : j → i ∈ G}, and |Chj (G)| is called the out-degree of node j . The
degree of a node is the sum of its in-degree and out-degree, and the maximum degree of G is
maxj |Paj (G)∪ Chj (G)|. We may simply write Paj if we are not referring to a specific DAG
or the underlying DAG is clear from context. The Hamming distance between two DAGs G,
G′ is defined by dH(G,G′) = ∑

j∈[p] dH(Paj (G),Paj (G
′)).

An equivalence class of DAGs is typically denoted by E . We always interpret E as a set of
DAGs, and use |E | to denote the number of member DAGs in E . The equivalence class of a
DAG G is also denoted by [G]; thus, E = [G] if and only if G ∈ E . The set of CI relations
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encoded by a DAG G or an equivalence class E is denoted by CI(G) or CI(E), respectively.
Note that we always have CI(G) = CI([G]).

We say a p-variate distribution μ is Markovian w.r.t. a p-vertex DAG G and G is an
independence map (I-map) of μ if all CI relations encoded by G hold for μ. If the converse
is also true, we say μ is faithful or perfectly Markovian w.r.t. G, and G is a perfect map of
μ [54, 55]. We say μ is DAG-perfect if there exists some DAG that is a perfect map of μ.
A DAG G is an I-map of a DAG G′ and its equivalence class [G′] if CI(G) ⊆ CI(G′), and
G is a minimal I-map (of G′) if any sub-DAG of G (different from G) is not an I-map of
G′. Given the set CI(G), a minimal I-map of G with ordering σ , which we denote by Gσ ,
can be uniquely defined as follows: for any i < j , σ(i) → σ(j) ∈ Gσ if and only if nodes
σ(i), σ(j) are not conditionally independent given nodes {σ(1), . . . , σ (j − 1)} \ {σ(i)} [53].
An example for p = 3 is given below. If μ is a p-variate positive measure, a unique minimal
I-map of CI(μ) with ordering σ can be constructed in an analogous manner [29].

EXAMPLE 1. Let p = 3 and G be the DAG 1 → 3 ← 2. Let Gσ denote the minimal
I-map of G with ordering σ . If σ = (1,2,3) or (2,1,3), then Gσ = G since σ is an ordering
of G. If σ is any other ordering, then Gσ is the complete DAG (i.e., a DAG without miss-
ing edge). For example, if σ = (1,3,2), Gσ has three edges 1 → 3, 1 → 2 and 3 → 2; in
particular, the edge 1 → 2 is included since 1 
⊥⊥ 2|3 in G.

3.2. Search spaces and posterior distributions. To apply the general theory developed
in Section 2, it suffices to construct a triple (�,N , π) that satisfies Condition 1. We will do
this for both high-dimensional DAG selection and structure learning. Recall that for DAG
selection, our goal is to estimate an underlying DAG model from the data when we know
it has some ordering σ , and for structure learning, our goal is to estimate the equivalence
class of the DAG model. We first define the search spaces (i.e., model spaces) for the two
problems. Let Gp denote the space of all p-vertex DAGs, which grows superexponentially
in p. We consider two sparsity constraints for DAGs: one for the maximum in-degree and the
other for the maximum out-degree. For din, dout ∈ [p], define

Gp(din, dout) =
{
G ∈ Gp : max

j

∣∣Paj (G)
∣∣ ≤ din, and max

j

∣∣Chj (G)
∣∣ ≤ dout

}
.

Since all Markov equivalent DAGs have the same skeleton, the two constraints ensure that
the degree of any DAG G′ ∈ [G] for some G ∈ Gp(din, dout) is at most din + dout. One may
also use a single constraint for the maximum degree, but for the theoretical analysis to be
carried out in this paper, it is more convenient to specify din, dout separately. This setup is
appealing to practitioners, since a DAG model with bounded degree is easier to visualize and
interpret. Let Cp(din, dout) denote the space of “sparse equivalence classes” defined by

Cp(din, dout) = {[G] : G ∈ Gp(din, dout)
}
.

Hence, Cp(din, dout) is the set of all equivalence classes that contain at least one member in
Gp(din, dout). We will use Cp(din, dout) as the model space for the sparse structure learning
problem. The unrestricted space is denoted by Cp = Cp(p,p).

Recall that Sp is the space of all permutations of [p]. For each σ ∈ Sp , let

Gσ
p = {G ∈ Gp : σ is a topological ordering of G}

= {
G ∈ Gp : σ(j) → σ(i) /∈ G for any i < j

}
.

Note a DAG may have multiple orderings; in particular, the empty DAG belongs to Gσ
p for

any σ ∈ Sp . Let Gσ
p (din, dout) = Gσ

p ∩ Gp(din, dout) denote the space of sparse DAG models
with ordering σ , which is the space we consider for the sparse DAG selection problem.
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For our target posterior probability distributions, we assume they can be expressed by using
a Bayesian scoring criterion ψ : Gp →R such that ψ(G) = ψ(G′) for any Markov equivalent
G and G′, a property known as “score equivalence” [11]. For an equivalence class E , define
ψ(E) = ψ(G) using any G ∈ E . Let the unnormalized posterior probability of a DAG G be
given by eψ(G), and that of an equivalence class E be given by eψ(E) (see Section 4.1 for more
details). We further assume that ψ is decomposable; for each G,

ψ(G) = ∑
j∈[p]

ψj

(
Paj (G)

)
,

where for each j , ψj : 2[p] →R gives the local score at node j .

3.3. Neighborhood functions and the RW-GES sampler. We define our neighborhood
function on Cp(din, dout) by considering operations on all member DAGs of each equiva-
lence class. To this end, we first define three neighborhoods on the unrestricted space Gp for
each DAG G, which correspond to three types of edge modification: addition, deletion and
swap:

Nadd(G) = {
G′ ∈ Gp : G′ = G ∪ {i → j} for some i → j /∈ G

}
,

Ndel(G) = {
G′ ∈ Gp : G′ = G \ {i → j} for some i → j ∈ G

}
,

Nswap(G) = {
G′ ∈ Gp : G′ = (

G ∪ {k → j}) \ {� → j} for some k → j /∈ G,� → j ∈ G
}
.

Note that a swap move consists of adding an incoming edge and deleting one at the same
node, which is a straightforward extension of the swap proposal used in variable selection
problems. Define the “add-delete-swap neighborhood” of G by

(3) Nads(G) = Nadd(G) ∪Ndel(G) ∪Nswap(G).

For each equivalence class E ∈ Cp , define

(4) Nads(E) = {[
G′] : G′ ∈ Nads(G) for some G ∈ E

}
,

and define the sets Nadd(E), Ndel(E) and Nswap(E) analogously; for example, E ′ ∈ Nadd(E)

if and only if there exist G ∈ E and G′ ∈ E ′ such that G′ ∈ Nadd(G). (The neighborhood
notation is overloaded here, but the meaning should be clear from the argument.) Clearly,
Nads(E) = Nadd(E) ∪ Ndel(E) ∪ Nswap(E), and Nads is symmetric on both Gp and Cp . The
following lemma gives a bound on the size of Nads(E), which is needed later when we verify
part (i) of Condition 1.

LEMMA 1. For any E ∈ Cp(din, dout),∣∣Nads(E) ∩ Cp(din, dout)
∣∣ ≤ 3p(p − 1)(din + dout)2

din+dout .

PROOF. See Supplementary Material Section D.1. �

As explained in Section 2.1, we can construct a random walk MH algorithm on the re-
stricted space Cp(din, dout) using Nads. The proposal distribution is given by K(E,E ′) =
1/|Nads(E)| for each E ′ ∈ Nads(E), where Nads(E) denotes the neighborhood on the restricted
space. It should be noted that, in practice, there is no need to calculate the size of Nads(E) or
enumerate member DAGs in E . States in Nads(E) can be proposed very efficiently by using
some local graph operators, which is explained in detail in Supplementary Material Section
H.1. We call this sampler random walk GES (RW-GES), since it uses a neighborhood func-
tion similar to that of the GES algorithm [11], which is a two-stage greedy search on the
space Cp that uses Nadd in the first stage and Ndel in the second. Swap moves are not used in
GES, and we will use Nges(·) = Nadd(·) ∪ Ndel(·) to denote the neighborhood relation used
by GES.
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3.4. Motivating examples. Assume the data-generating distribution is perfectly Marko-
vian w.r.t. some DAG G∗ (which henceforth is called the “true DAG”) and let E∗ = [G∗] be
the true equivalence class. In the classical asymptotic regime where p is fixed and sample size
n tends to infinity, Chickering [11] proved that for a large class of Bayesian scoring criteria,
GES and the greedy search on (Cp,Nges) are consistent. According to our discussion follow-
ing Condition 1, if we fix p and let n → ∞, we can mimic the consistency proof of GES and
use Theorem 1 to bound the mixing time of the random walk MH algorithm on (Cp,Nges).
The purpose of this subsection is to use examples to illustrate the technical challenges we
encounter as we try to extend this argument to the space Cp(din, dout).

To simplify the discussion, we assume the score ψ (i.e., log-posterior) satisfies the fol-
lowing condition, known as local consistency [11] (which is only used for making heuristic
arguments in this section). It essentially says that all CI relations encoded by G∗ can be
correctly identified, which we expect to happen when n = ∞.

CONDITION 2. If distinct DAGs G, G′ satisfy G′ = G∪{i → j}, then (i) ψ(G) > ψ(G′)
if i⊥⊥ j |Paj (G) in G∗, and (ii) ψ(G′) > ψ(G) if i 
⊥⊥ j |Paj (G) in G∗.

Under Condition 2, GES is consistent [11] and no equivalence class other than [G∗] can be
a local mode on (Cp,Nges) (the reason will become clear in the next subsection). However,
once we introduce the degree constraint (which is necessary for proving high-dimensional
consistency results), local modes can arise on the boundary of the restricted space. To illus-
trate this, we construct two examples below. Example 2 explains why swap moves are useful
and why in the consistency proof of GES we only consider edge removals when the current
equivalence class is an I-map of E∗. Example 3 shows that for the sparse DAG selection
problem with degree constraints, local modes can also arise unexpectedly.

EXAMPLE 2. Let p = 3 and DAGs G∗, G be given by

G∗ : 1 → 2 → 3, G : 2 ← 1 → 3.

Consider how to increase the score of G by single-edge addition or deletion under Con-
dition 2. Since 1 
⊥⊥ 2 and 1 
⊥⊥ 3 in G∗, both edges cannot be removed. However, since
2 
⊥⊥ 3|1 in G∗, we can add the edge 2 → 3 to G to increase the score. The complete DAG
G ∪ {2 → 3} is an I-map of G∗, from which we should be able to remove the edge 1 → 3
since 1⊥⊥ 3|2. One can apply the same argument to any other DAG in E = [G] and conclude
that ψ(E) > ψ(E ′) for any E ′ ∈ Ndel(E). In particular, we cannot remove the edge between
nodes 1, 3 from any G ∈ E , though the two nodes are not connected in G∗.

Next, we impose the constraint din = 1. Since G has two edges, we have Nadd(E) = {Ẽ},
where Ẽ is the equivalence class of all complete DAGs. But any complete DAG has maximum
in-degree 2, which means that moving from E to Ẽ is forbidden and E is a local mode on
(Cp(din = 1, dout = p),Nges). However, a swap move allows us to directly move from G to
G∗ by removing 1 → 3 and adding 2 → 3 simultaneously; that is, E is not a local mode on
(Cp(1,p),Nads) where Nads is given by (4).

EXAMPLE 3. Consider the DAG selection problem with p = 5 and σ = (1,2,3,4,5).
Let G∗, G be DAGs in Gσ

p with edge sets

G∗ : {
(1,2), (1,3), (2,4), (2,5)

}
, G : {

(1,2), (1,4), (2,3), (2,5)
}
.

Under Condition 2, we can increase the score of G by adding 1 → 3 or 2 → 4, but deleting
1 → 4 or 2 → 3 will lower the score since 1 
⊥⊥ 4 and 2 
⊥⊥ 3 in G∗. Now let din = dout = 2.
Though G∗,G ∈ Gσ

p (2,2), G is a local mode on (Gσ
p (2,2),Nads) because adding either 1 →

3 or 2 → 4 violates the out-degree constraint (note swap moves may not be helpful either).
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3.5. Overview of the canonical path construction. Let the true DAG model G∗ ∈
Gp(din, dout) and let E∗ = [G∗]. To verify Condition 1 for the triple (Cp(din, dout),Nads, e

ψ),
we need to show that for any E 
= E∗, we can identify some g(E) ∈ Nads(E) such that
ψ(g(E)) > ψ(E). By Remark 2, this is equivalent to constructing a canonical path from
any E to E∗. We briefly discuss the main idea behind our construction in this subsection. It
will be helpful to think of the space Cp(din, dout) as the union of {Gσ

p (din, dout) : σ ∈ Sp} and
think of structure learning as simultaneous DAG selection for all p! orderings.

Suppose RW-GES starts at some E , which contains a member DAG G ∈ Gσ
p (din, dout) for

an arbitrary σ ∈ Sp . We will first construct a canonical path on Gσ
p (din, dout), denoted by

(G0 = G,G1,G2, . . . ,Gk), where the terminal state Gk (if possible) is given by

(5) Ĝ(σ ) = arg max
G∈Gσ

p (din,dout)

ψ(G).

If Condition 2 holds and G∗
σ ∈ Gσ

p (din, dout), we claim Ĝ(σ ) = G∗
σ , where we recall G∗

σ is
the minimal I-map of G∗ with ordering σ . To show this, without loss of generality, assume
σ = (1,2, . . . , p), and note that the following CI relations hold in G∗ for each j ∈ [p] by the
definition of minimal I-maps (see Section 3.1):

(6) j ⊥⊥ [j − 1] \ Paj

(
G∗

σ

)|Paj

(
G∗

σ

)
, and j 
⊥⊥ i|[j − 1] \ {i} for each i ∈ Paj

(
G∗

σ

)
.

Under Condition 2, the first property in (6) implies that if G is a DAG such that Paj (G
∗
σ ) �

Paj (G), we can increase the score of G by removing some edge � → j , and the second
implies that if Paj (G

∗
σ ) � Paj (G), we can add some edge k → j or perform a swap. This

shows Ĝ(σ ) = G∗
σ and suggests how we can construct the path from G to G∗

σ . However, as
discussed in the previous subsection, the main challenge is to deal with the degree constraints.

Now suppose that RW-GES can move from E to [G∗
σ ] following the path (E,E1,E2, . . . ,Ek)

where Ei = [Gi]. If [G∗
σ ] = E∗ (i.e., G∗

σ = G∗ or G∗
σ is Markov equivalent to G∗), we have

obtained the path from E from E∗. If [G∗
σ ] 
= E∗, then one can use the famous Chickering

algorithm [11, 39] to construct a path from [G∗
σ ] to E∗ (see Lemma D3 in Supplementary

Material Section D.4). Intuitively, since G∗
σ is an I-map of G∗, the skeleton of G∗ must be

a subset of the skeleton of G∗
σ (see Lemma C3), and we can remove edges from some other

member DAG of [G∗
σ ].

Unfortunately, to rigorously prove that Ĝ(σ ) = G∗
σ for all σ ∈ Sp in high-dimensional

settings, one often needs to impose restrictive assumptions on the true data-generating mech-
anism, such as strong faithfulness [42]. To our knowledge, there is no fully satisfactory so-
lution to this issue, and we will make a similar assumption in our theoretical analysis in
Section 4 and assume Ĝ(σ ) = G∗

σ in this section. Nevertheless, we will construct canonical
paths of RW-GES using a flexible and finer argument, which in some cases, can be used to
show the rapid mixing of RW-GES under weaker assumptions; see Supplementary Material
Section I.

3.6. Canonical add-delete-swap paths of RW-GES. The discussion above suggests that
we can construct the canonical paths of RW-GES by first constructing the canonical paths
for all DAG selection problems. To this end, fix an arbitrary σ ∈ Sp first, and consider the
sparse DAG selection problem with state space Gσ

p (din, dout), neighborhood function Nads

and posterior eψ . We treat G∗
σ as the true model, and we need to construct a candidate canon-

ical transition function for this problem, gσ : Gσ
p (din, dout) → Gσ

p (din, dout), such that for any
G ∈ Gσ

p (din, dout),

gσ (G) ∈ Nads(G), and
(
gσ )k

(G) = G∗
σ for some k < ∞.
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For Condition 1 to hold, we also need ψ(gσ (G)) > ψ(G). To overcome the out-degree con-
straint issue illustrated by Example 3, we will construct gσ (G) by first analyzing each node
separately. Observe that if there is no out-degree constraint, the DAG selection problem is
equivalent to p variable selection problems: for each j , we need to estimate the set Paj ,
which takes value in the space Mσ

p(j, din) defined by

(7) Mσ
p(j, din) = {

S ⊆ Aσ
p(j) : |S| ≤ din

}
, Aσ

p(j) = {
k ∈ [p] : σ−1(k) < σ−1(j)

}
,

where Aσ
p(j) is the set of variables that precede Xj in the ordering σ . Motivated by the

discussion following (6), we construct a transition function on the space Mσ
p(j, din) in Def-

inition 4, which gives the “optimal” add-delete-swap move for Paj . Recall that we assume
ψ(G) = ∑

j ψj (Paj (G)) for each G.

DEFINITION 4. Assume G∗
σ ∈ Gσ

p (din, dout) and let S∗
σ,j = Paj (G

∗
σ ). For each j , we

construct gσ
j : Mσ

p(j, din) → Mσ
p(j, din) as follows. Fix an arbitrary S ∈Mσ

p(j, din), and let
T = S∗

σ,j \ S and R = S \ S∗
σ,j .

(i) If S = S∗
σ,j , let gσ

j (S) = S∗
σ,j .

(ii) If S∗
σ,j ⊂ S, let gσ

j (S) = S \ {�̃} where �̃ = arg max�∈R ψj (S \ {�}).
(iii) If S∗

σ,j � S and |S| < din, let gσ
j (S) = S ∪ {k̃} where k̃ = arg maxk∈T ψj (S ∪ {k}).

(iv) If S∗
σ,j � S and |S| = din, let gσ

j (S) = (S ∪ {k̃}) \ {�̃} where (k̃, �̃) = arg max(k,�)∈T ×R

ψj ((S ∪ {k}) \ {�}).
In case (ii), we say node j is (strictly) overfitted; in cases (iii) and (iv), we say it is underfit-
ted. We use gσ

j (G) to denote the DAG obtained by replacing the parent set of j in G with
gσ

j (Paj (G)); that is, Paj (g
σ
j (G)) = gσ

j (Paj (G)), and for any i 
= j , Pai (g
σ
j (G)) = Pai (G).

REMARK 6. It is clear from definition that dH(gσ
j (S), S∗

σ,j ) < dH(S, S∗
σ,j ) if S 
= S∗

σ,j .
Further, gσ

j (G) ∈ Nads(G) and dH(gσ
j (G),G∗

σ ) < dH(G,G∗
σ ) if Paj (G) 
= Paj (G

∗
σ ). In

words, if node j is overfitted in G, gσ
j (G) is obtained by removing an incoming edge of

node j . If node j is underfitted, gσ
j (G) is obtained by adding an incoming edge of node j (if

the in-degree constraint is violated, remove another incoming edge of node j ). An example is
provided in Figure 1. Note that this rationale is similar to that for GES and forward–backward
stepwise regression. We always first transform an underfitted model to overfitted and then re-
move redundant variables or edges (recall Example 2).

FIG. 1. An example for the operator gσ
j . We consider four nodes with ordering σ = (1,2,3,4); assume din = 3.

G∗
σ has three edges, 1 → 2, 2 → 3 and 3 → 4. Consider another DAG G with edges 1 → 3, 1 → 4 and 3 → 4. The

DAGs gσ
1 (G), gσ

2 (G), gσ
3 (G), gσ

4 (G) are shown above. For example, since Pa4(G∗
σ ) = {3} ⊂ Pa4(G) = {1,3},

node 4 is overfitted in G, and by part (ii) of Definition 4, gσ
4 (G) is obtained by removing the edge 1 → 4 from G.
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REMARK 7. Consider the variable selection problem with model space Mσ
p(j, din) and

true model S∗
σ,j . Yang, Wainwright and Jordan [65] proved that, under very mild high-

dimensional assumptions, gσ
j satisfies Condition 1 with high probability; that is,

(8) ψj

(
gσ

j (S)
) − ψj(S) ≥ t logp ∀S ∈ Mσ

p(j, din) \ {
Paj

(
G∗

σ

)}
,

for some t > 0 (in their conclusion t is a universal constant).

Suppose that (8) holds for each j . Then, to show that the triple (Gσ
p (din, dout),Nads, e

ψ)

satisfies part (ii) of Condition 1, we only need to use the operators {gσ
j : j ∈ [p]} to construct

a path from any G ∈ Gσ
p (din, dout) to G∗

σ . At first glance, this seems trivial since we can
use gσ

j repeatedly to convert any Paj (G) to Paj (G
∗
σ ). However, the definition of gσ

j only
guarantees that gσ

j (G) ∈ Gσ
p (din,p), but the maximum out-degree of gσ

j (G) can be larger
than that of G. Indeed, Example 3 in Section 3.4 shows that, in extreme cases, none of the
operators gσ

1 , . . . , gσ
p yields a DAG that is different from G and belongs to Gσ

p (din, dout).
Fortunately, we are able to prove that, as long as dout is chosen sufficiently large, there always
exists some j such that gσ

j yields a different DAG in Gσ
p (din, dout). We define

(9) d∗
σ = max

j∈[p]
∣∣Paj

(
G∗

σ

) ∪ Chj

(
G∗

σ

)∣∣, d∗ = max
σ∈Sp

d∗
σ ,

where d∗ will be used later in Theorem 3.

LEMMA 2. Assume d∗
σ ≤ din and min{d∗

σ din + 1,p} ≤ dout. For any G ∈ Gσ
p (din, dout)

such that G 
= G∗
σ , there exists some j ∈ [p] such that gσ

j (G) ∈ Gσ
p (din, dout) and gσ

j (G) 
= G.

PROOF. The key idea of the proof is to use the pigeonhole principle multiple times to
derive the contradiction. See Supplementary Material Section D.2. �

COROLLARY 1. Let σ ∈ Sp . Assume that d∗
σ ≤ din and min{d∗

σ din + 1,p} ≤ dout.

(i) There exists a function gσ : Gσ
p (din, dout) → Gσ

p (din, dout) such that for any G 
= G∗
σ ,

gσ (G) = gσ
j (G) 
= G for some j ∈ [p] and (gσ )k(G) = G∗

σ for some k ≤ (d∗
σ + din)p.

(ii) If (8) holds for each j ∈ [p], Condition 1 holds for the triple (Gσ
p (din, dout),Nads, e

ψ)

with t1 = 3 and t2 = t .

PROOF. See Supplementary Material Section D.3. �

We are now ready to construct a canonical transition function g : Cp(din, dout) →
Cp(din, dout) for the structure learning problem using operators {gσ

j : j ∈ [p], σ ∈ Sp}. If
E contains a minimal I-map of G∗, we define g(E) using Chickering algorithm [11]; see
Lemma D3 in the Supplementary Material. If not, by the definition of Cp(din, dout), there
exists G ∈ E ∩ Gσ

p (din, dout) for some σ ∈ Sp , and we can define g(E) using the function gσ

constructed for the DAG selection problem. But note that we need to fix the DAG represen-
tation of each E so that g(E) can be defined uniquely. We give an explicit construction of g

in the proof of Theorem 3, the main result for this section.

THEOREM 3. Assume that d∗ ≤ din and min{d∗din + 1,p} ≤ dout. Then G∗
σ ∈ Gσ

p (din,

dout) for each σ ∈ Sp . Further, there exists a function g : Cp(din, dout) → Cp(din, dout) such
that g(E∗) = E∗ and the following hold for any E ∈ Cp(din, dout) \ {E∗}:
(i) g(E) = [gσ

j (G)] for some j ∈ [p], σ ∈ Sp and G ∈ E ∩ Gσ
p (din, dout) such that

gσ
j (G) 
= G.

(ii) There exist k ≤ (d∗ + din)p and k ≤ � ≤ (2d∗ + din)p such that gk(E) = G∗
σ for some

σ ∈ Sp and g�(E) = E∗.
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PROOF. See Supplementary Material Section D.4. �

We conclude this section with the following corollary, which shows that to establish part
(ii) of Condition 1 for the sparse structure learning problem, it only remains to prove that (8)
holds for all j and σ simultaneously. This will be done rigorously in the next section.

COROLLARY 2. Assume d∗ ≤ din, min{d∗din + 1,p} ≤ dout and ψ is score equivalent
so that we can define ψ(E) = ψ(G) using any G ∈ E . If (8) holds for each σ ∈ Sp and each
j ∈ [p], part (ii) of Condition 1 holds for the triple (Cp(din, dout),Nads, e

ψ) with t2 = t .

PROOF. See Supplementary Material Section D.5. �

4. High-dimensional consistency of an empirical Bayes model for structure learning.

4.1. Model, prior and posterior distributions. Let X be an n×p data matrix where each
row is an i.i.d. copy of a normal random vector X = (X1, . . . ,Xp). (The font for the random
vector X and that for the data matrix X are different.) Assume that, given a DAG G, the
distribution of X can be described by the structural equation model (SEM),

(10) X = B�X + e, e ∼ Np(0,�),

for some (B,�) ∈Dp(G), where

(11)
Dp(G) = {

(B,�) : B ∈ Rp×p,Bij = 0 if i → j /∈ G, for any i, j ∈ [p];
� = diag(ω1, . . . ,ωp),ωi > 0 for any i ∈ [p]}.

That is, each Xj follows a linear regression model where explanatory variables with nonzero
regression coefficients must be parents of node j in G. The matrix B is often called the
weighted adjacency matrix. We can equivalently express (10) as

(12) X ∼ Np

(
0,
(B,�)

)
where 
(B,�) = (

I − B�)−1
�(I − B)−1

is called the modified Cholesky decomposition (I denotes the identity matrix). The SEM
representation of the Gaussian DAG model is used frequently in the literature [3, 12, 60].

Let π0(B,�|G) denote the conditional prior distribution with support Dp(G). It suffices
to specify it for {(βj (G),ωj ) : j = 1, . . . , p}, where βj (G) is the subvector of the j th column
of B with entries indexed by Paj (G), and ωj is the j th diagonal element of �. We use the
empirical prior proposed by Lee, Lee and Lin [33], which is an extension of the empirical
variable selection model of Martin, Mess and Walker [38]. Our prior assumes that, given G,
(β1(G),ω1), . . . , (βp(G),ωp) are independently distributed according to

π0(ωj |G) ∝ ω
−κ/2−1
j ,

βj (G)|Paj (G) = Sj ,ωj ∼ N|Sj |
((

X�
Sj

XSj

)−1
X�

Sj
Xj ,

ωj

γ

(
X�

Sj
XSj

)−1
)
,

where γ > 0, κ ≥ 0 are hyperparameters, Xj denotes the j th column of the data matrix X

and XS is the submatrix containing columns indexed by S. Next, we compute the marginal
likelihood of G by integrating out (B,�) and using a fractional exponent α ∈ (0,1) to offset
the overuse of data caused by the empirical prior. The resulting fractional marginal likelihood
is given by fα(G) = ∏p

j=1 fα,j (Paj (G)), where

fα,j (S) = (
1 + αγ −1)−|S|/2{

X�
j

(
I − XS

(
X�

S XS

)−1
X�

S

)
Xj

}−(αn+κ)/2
.

More details about this empirical prior are given in Supplementary Material Section F.1.
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For sparse DAG selection with ordering σ , the state space is Gσ
p (din, dout). For each G on

this space, we specify its prior probability by

(13) πσ
0 (G) ∝ (

c1p
c2

)−|G|
,

where c1 > 0, c2 ≥ 0 are hyperparameters. We can then calculate the posterior distribution
by πσ

n (G) ∝ πσ
0 (G)fα(G). Using the fractional marginal likelihood fα , we get

πσ
n (G) ∝ eψ(G)1Gσ

p (din,dout)(G) where(14)

ψ(G) =
p∑

j=1

ψj

(
Paj (G)

)
, and eψj (S) = (

c1p
c2

)−|S|
fα,j (S).(15)

For the sparse structure learning problem, we use the prior

(16) π0(E,G) ∝ (
c1p

c2
)−|G|

π0(G|E)1E(G),

where π0(G|E) satisfies
∑

G∈E π0(G|E) = 1. Denote the corresponding posterior distribution
by πn. Marginalizing out G from πn(E,G), we get

πn(E) ∝ ∑
G∈E

π0(G|E)eψ(G).

In Lemma 3 below, we prove that ψ yields the same value for any Markov equivalent DAGs.
Hence, we can define ψ(E) = ψ(G) using any G ∈ E , and πn(E) can be expressed by

(17) πn(E) ∝ eψ(E)1Cp(din,dout)(E).

The indicator function in (17) serves to remind us of the restricted search space. We do not
consider estimating the DAG or ordering from πn. Indeed, for G ∈ E , πn(G) depends on the
conditional prior probability π0(G|E), which we leave unspecified.

LEMMA 3. The function ψ defined by (15) satisfies that ψ(G) = ψ(G′) whenever G and
G′ are Markov equivalent DAGs.

PROOF. See Supplementary Material Section F.2. �

We will refer to ψj(Paj ), ψ(G), ψ(E) as the scores of Paj , G and E , respectively. Note that
a scoring criterion derived from a nodewise normal-inverse-gamma prior for (B,�)|G does
not necessarily have the property given in Lemma 3. For nonempirical prior distributions, see
Geiger and Heckerman [19] and Peluso and Consonni [47] for related results.

4.2. High-dimensional setup. Let G∗ denote the true DAG model and E∗ = [G∗] be the
true equivalence class that we want to recover from the data. Assume that each row of X

is drawn independently from Np(0,
∗), a normal distribution perfectly Markovian w.r.t.
G∗. We will show πn defined in (17) concentrates on [G∗] by first proving that for each σ ,
πσ

n defined in (14) concentrates on the minimal I-map G∗
σ . Due to normality, G∗

σ can be
equivalently defined by using the modified Cholesky decomposition.

DEFINITION 5. Let 
∗ be positive definite and Np(0,
∗) be perfectly Markovian w.r.t.
some DAG G∗. For each σ ∈ Sp , let Dp(σ ) = ⋃

G∈Gσ
p
Dp(G). By Lemma C6, we can define

(B∗
σ ,�∗

σ ) to be the unique pair in Dp(σ ) such that
(
I − (

B∗
σ

)�)−1
�∗

σ

(
I − B∗

σ

)−1 = 
∗.
Define G∗

σ to be the DAG such that i → j ∈ G∗
σ if and only if (B∗

σ )ij 
= 0, which by Lemma
C5, is the minimal I-map of G∗ with ordering σ .
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Consider a high-dimensional setting with p = p(n) tending to infinity. The true DAG
model G∗, true covariance matrix 
∗ and prior parameters c1, c2, α, γ , din, dout are all
implicitly indexed by n. We say a constant is universal if it does not depend on n. To derive
our consistency results, we need to make a few assumptions on the parameters and 
∗.

(A1) There exist ν = ν(n), ν = ν(n) > 0 and a universal constant δ0 > 0 such that

0 <
ν

(1 − δ0)2 ≤ λmin
(

∗) ≤ λmax

(

∗) ≤ ν

(1 + δ0)2 ,

where λmin, λmax denote the smallest and largest eigenvalues, respectively.
(A2) The sparsity parameter din and n, p satisfy that din logp = o(n).
(A3) Prior parameters satisfy that κ ≤ n, 1 ≤ c1

√
1 + α/γ ≤ p and

c2 ≥ (α + 1)(4din + 6) + t

for some universal constant t > 0.
(A4) Assumption on the maximum in-degree of G∗

σ .

(A4.1) Let ν0 = 4ν2ν−4(ν −ν)2. For some σ ∈ Sp , (ν0 +1)maxj∈[p] |Paj (G
∗
σ )| ≤ din.

(A4.2) Assumption (A4.1) holds for every σ ∈ Sp .

(A5) Assumption on B∗
σ , B∗.

(A5.1) There exists a universal constant Cβ > 0 such that for some σ ∈ Sp ,

(18) min
{∣∣(B∗

σ

)
ij

∣∣2 : (
B∗

σ

)
ij 
= 0

} ≥ 5(Cβ + 4c2)
ν2 logp

αν2n
,

where B∗
σ is given by Definition 5.

(A5.2) There exists a universal constant Cβ > 0 such that (18) holds for every σ ∈ Sp .

The first three assumptions are standard and commonly used in high-dimensional statis-
tical theory. Assumption (A1) is the standard restricted eigenvalue condition [6]. Assump-
tion (A2) controls the growth rates of p and din (which determines the maximum model size
for nodewise variable selection), and together with Assumption (A3), ensures that we cannot
overfit the data; recall from (16) that the hyperparameter c2 controls the penalty on the model
size, so it plays the same role as the tuning parameter in the penalized likelihood methods.
Such assumptions (especially a condition similar to din logp = o(n)) are required for most
high-dimensional problems including variable selection [25, 63–65], stochastic block model
[18], covariance matrix estimation [31, 45, 57], undirected Gaussian graphical models [5, 34,
50] and DAG selection [7, 33]; see Banerjee, Castillo and Ghosal [4] for a recent review. Note
that the numerical constants in our assumptions are very conservative. For example, Assump-
tion (A3) suggests that c2 should grow linearly with din, but in practice, one can use some c2
much smaller than 4din, which we will illustrate using a simulation study in Section 6.3.

Assumption (A4.1) requires that the maximum in-degree of the “true model” for DAG se-
lection with ordering σ is sufficiently small compared with din. It is similar to Assumption
D of Yang, Wainwright and Jordan [65] and is technically needed to show that an MH sam-
pler using add-delete-swap moves cannot get stuck at DAG models with maximum in-degree
equal to din. But unlike their setup, we assume both lower and upper restricted eigenvalues
are available, which enables us to avoid imposing an irrepresentability condition as in Yang,
Wainwright and Jordan [65] (see their Assumption D). Assumption (A4.2) restricts the max-
imum in-degree of all minimal I-maps of G∗, which is allowed to have the same order as din,
if ν, ν defined in Assumption (A1) can be bounded by universal constants.

Assumption (A5.1) is the well-known beta-min condition for DAG selection with order-
ing σ [7, 33]. According to Definition 5, the SEM representation (10) holds for (B,�) =
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(B∗
σ ,�∗

σ ). Hence, Assumption (A5.1) just means that all nonzero regression coefficients (i.e.,
signal sizes) of the true SEM with ordering σ are sufficiently large. Assumption (A5.2) is for
structure learning and assumes the beta-min condition holds uniformly over all σ ∈ Sp; this
is often known as the strong beta-min or permutation beta-min condition [59] and was used
in Van de Geer and Bühlmann [60] and Aragam, Amini and Zhou [3]. If p and 
∗ are fixed,
which implies B∗

σ is fixed for all σ ∈ Sp , then Assumption (A5.2) can always be satisfied by
choosing some large n. We need the strong beta-min condition (or some similar assumption)
since we want to first establish that with high probability, for every σ ∈ Sp , the minimal I-map
G∗

σ has the highest score among all DAGs in Gσ
p (din, dout), which is needed for proving con-

sistency results for structure learning. For methods based on CI tests, a similar assumption,
known as “strong faithfulness,” is commonly used [42] (strong beta-min condition essentially
replaces partial correlations in strong faithfulness with partial regression coefficients). Uhler
et al. [59] showed that the volume of normal distributions that are strongly faithful is very
small. Though strong faithfulness and strong beta-min condition are not directly comparable,
both seem to be fairly restrictive [60]. Unfortunately, without them, we cannot preclude the
possibility that GES or local MH algorithms get trapped at local modes; see Example 4 in
Section 5.1. A discussion on how to overcome such limitations is given in Supplementary
Material Section I. We end this subsection with one more remark on Assumption (A1).

REMARK 8. The restricted eigenvalue condition can be used to obtain some useful
bounds related to B∗

σ and �∗
σ . Write �∗

σ = diag(ω∗
σ,1, . . . ,ω

∗
σ,p). The decomposition (12)

implies that ω∗
σ,k ∈ (ν, ν) for any σ ∈ Sp and k ∈ [p] since the diagonal elements of 
∗ and

(
∗)−1 can be bounded by the extreme eigenvalues of 
∗. Further, we can bound the �2-
norm of the true regression coefficients for node j by

∑
i∈[p](B∗

σ )2
ij ≤ ω∗

σ,j /ν − 1, using the

fact that the operator norm is no less than the �2-norm of any column.

4.3. Strong selection consistency results. For a general model selection problem, we say
a Bayesian procedure has strong selection consistency if the posterior probability of the true
model converges to 1 in probability with respect to the true data-generating probability mea-
sure [7, 26, 43]. By part (ii) of Theorem 1, to prove the strong selection consistency, we only
need to show that Condition 1 is satisfied for some universal t2 > t1.

We begin with the strong selection consistency for nodewise variable selection and DAG
selection problems. It turns out that we only need (8) holds for any j ∈ [p] and σ ∈ Sp . By
Corollary 2, this consistency property of {gσ

j : j ∈ [p], σ ∈ Sp} is also key to the verification
of Condition 1 for structure learning. The complete proof for Theorem 4 is highly technical,
and the most involved step is to establish an analogous consistency result for a single vari-
able selection problem using our empirical prior, which is treated in detail in Supplementary
Material Section E and may be of independent interest.

THEOREM 4. Let X ∈ Rn×p have i.i.d. rows drawn from Np(0,
∗), which is perfectly
Markovian w.r.t. G∗. Suppose Assumptions (A1), (A2), (A3), (A4.2) and (A5.2) hold. Let t > 0
be the universal constant given in Assumption (A3) and assume Cβ ≥ 8t/3. For sufficiently
large n, with probability at least 1 − 3p−1, the following statements hold:

(i) Consistency of the operators {gσ
j : j ∈ [p], σ ∈ Sp} given in Definition 4:

min
{
ψj

(
gσ

j (S)
) − ψj(S) : σ ∈ Sp, j ∈ [p], S ∈ Mσ

p(j, din) \ {
S∗

σ,j

}} ≥ t logp,

where ψj is given in (15) and S∗
σ,j = Paj (G

∗
σ ).
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(ii) If t > 2, we have the strong selection consistency of nodewise variable selection,

min
σ∈Sp

min
j∈[p]

exp(ψj (S
∗
σ,j ))∑

S∈Mσ
p(j,din)

exp(ψj (S))
≥ 1 − p−(t−2),

where Mσ
p(j, din) is defined in (7).

(iii) If t > 3, we have the strong selection consistency of sparse DAG selection,

min
σ∈Sp

exp(ψ(G∗
σ ))∑

G∈Gσ
p (din,dout)

exp(ψ(G))
≥ 1 − p−(t−3),

where ψ(G) is defined in (15).

PROOF. See Supplementary Material Section F.3. �

REMARK 9. The universal constant t can be chosen arbitrarily large. Given any t > 0,
in order that Theorem 4 holds, we can always choose some c2 that has same order as din and
assume that the universal constant Cβ in Assumption (A5.2) is sufficiently large.

As a corollary, the strong selection consistency for a single DAG selection problem with
ordering σ can be obtained by replacing Assumptions (A4.2) and (A5.2) with Assump-
tions (A4.1) and (A5.1). This result was also proved in Lee, Lee and Lin [33] under similar
assumptions, but the method we use is different (the primary goal of Lee, Lee and Lin [33]
was to derive minimax posterior convergence rates for the weighted adjacency matrix). Note
that if σ is an ordering of G∗, then G∗

σ = G∗.

COROLLARY 3. Let X ∈ Rn×p have i.i.d. rows drawn from the distribution Np(0,
∗),
which is perfectly Markovian w.r.t. G∗. Suppose Assumptions (A1), (A2), (A3), (A4.1) and
(A5.1) hold for some t > 3 and Cβ ≥ 8t/3. Let σ be as given in Assumptions (A4.1) and
(A5.1). For sufficiently large n, with probability at least 1 − 3p−1,

exp(ψ(G∗
σ ))∑

G∈Gσ
p (din,dout)

exp(ψ(G))
≥ 1 − p−(t−3).

PROOF. The proof is wholly analogous to that for Theorem 4. �

In order to show Condition 1 holds and use Theorem 1 to prove the strong selection con-
sistency of sparse structure learning, it only remains to invoke Lemma 1 to bound the size of
Nads(·) and then apply Corollary 2. Recall the definition of d∗

σ and d∗ given in (9).

THEOREM 5. Let X ∈ Rn×p have i.i.d. rows drawn from Np(0,
∗), which is perfectly
Markovian w.r.t. G∗. Suppose d∗ ≤ din, d∗din + 1 ≤ dout and din + dout ≤ t0 log2 p for some
universal constant t0 > 0, and Assumptions (A1), (A2), (A3), (A4.2) and (A5.2) hold with
Cβ ≥ 8t/3 and t > t0 + 3. For sufficiently large n, with probability at least 1 − 3p−1,

exp(ψ(E∗))∑
E∈Cp(din,dout)

exp(ψ(E))
≥ 1 − p−(t−t0−3),

where ψ(E) = ψ(G) for any G ∈ E and ψ(G) is defined in (15). Further, the greedy search
on (Cp(din, dout),Nads, e

ψ) returns E∗ regardless of the initial state.

PROOF. See Supplementary Material Section F.4. �

REMARK 10. The assumption din + dout = O(logp) is mild, since the total number of
edges in the DAG may have order p even if din +dout = O(1). In light of Assumption (A4.2),
we may assume d∗, din have approximately the same order. Thus, roughly speaking, the
assumptions of Theorem 5 imply that d∗, din cannot grow faster than

√
logp.
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4.4. Consistency results for sub-Gaussian random matrices. The normality assumption
on the true distribution of X can be relaxed. We can extend the consistency result obtained
in Theorem 4 to the case where X is a sub-Gaussian random matrix (we still consider the
posterior distributions defined in Section 4.1). Let each row of X be an i.i.d. copy of a random
vector X, which has mean zero, covariance matrix 
∗ and distribution μ. Assume that μ is
sub-Gaussian with sub-Gaussian parameter bounded by a universal constant, and Np(0,
∗)
is perfectly Markovian w.r.t. a DAG G∗ (i.e., μ is not necessarily perfectly Markovian w.r.t.
G∗). This includes the case where some node variables are Gaussian and some are discrete
and bounded [32]. Then, under a set of similar assumptions, we can prove a consistency
result analogous to Theorem 4(i); see Theorem F1 in Supplementary Material Section F.5.
By Corollary 2, this proves part (ii) of Condition 1, and other strong selection consistency
results in Theorem 4 follow.

The main idea of the proof of Theorem F1 is similar to the Gaussian case. We first gener-
alize the variable selection results of Yang, Wainwright and Jordan [65] to random matrices,
which is performed in Supplementary Material Section E.3. However, the proof techniques
are very different from the Gaussian case in that we need to use random matrix theory [62]
and error propagation results to show that all minimal I-maps of G∗ can be recovered from
the empirical covariance matrix. The key distinction between the two scenarios is that in the
sub-Gaussian case uncorrelatedness does not imply independence. Consequently, some cal-
culations are more involved, and we need to require a slightly stronger assumption on c2:
in the sub-Gaussian case, we require dinν

4/ν6 = O(c2), while in the Gaussian case we only
need din = O(c2).

5. Mixing time results for Bayesian structure learning.

5.1. Rapid mixing of the RW-GES sampler. Recall that RW-GES is simply the random
walk MH algorithm defined by (2) with h ≡ 1 and the triple (Cp(din, dout),Nads, πn) where
πn is given by (17). In the proof of Theorem 5, we have verified that Condition 1 holds, and
thus we can apply the mixing time bounds in Section 2.2 to obtain the main result of this
work, rapid mixing of RW-GES.

THEOREM 6. Consider the setting of Theorem 5, and let πmin = minE∈Cp(din,dout) πn(E).
Let P denote the transition matrix of the RW-GES sampler and Plazy denote its lazy version.
For sufficiently large n, with probability at least 1 − 3p−1, we have

Tmix(Plazy) ≤ Ct0p
t0+2(logp) log

(
4

πmin

)
,

for some universal constant C, where t0 is as given in Theorem 5.

PROOF. See Supplementary Material Section G.1. �

COROLLARY 4. Suppose Assumptions (A1) and (A2) hold. We have

min
E∈Cp(din,dout)

πn(E)

πn(E∗)
≥ (

c1p
c2

√
1 + α/γ

)−p(din+d∗)
(

2ν

ν

)−p(αn+κ)/2
.

Hence, under the setting of Theorem 6, the mixing time of the RW-GES sampler can be
bounded by a polynomial of n and p.

PROOF. See Supplementary Material Section G.2. �
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REMARK 11. Corollary 4 implies that RW-GES is rapidly mixing with high probability.
The term logπmin in the mixing time bound is only used to handle the worst scenario where
the chain starts from the state with minimum posterior probability. If the chain starts from
some “good” estimate, the actual mixing rate of the chain can be much faster; see Proposi-
tion 1 of Sinclair [52].

If in the beta-min condition, we only assume that the minimum edge weight of B∗ (the
weighted adjacency matrix of the true DAG G∗) is sufficiently large, the rapid mixing of
RW-GES does not hold. It is not difficult to construct an explicit example where RW-GES is
slowly mixing. In the following example, we let p = 3 be fixed and show that the mixing time
grows exponentially in n. One can extend our example to the case p = n by adding variables
X4, . . . ,Xn such that, for any j = 4, . . . , n, the observed vector Xj is exactly orthogonal to
all the other column vectors of the data matrix.

EXAMPLE 4. Assume p = 3 and the true SEM is given by

X1 = z1, X2 = b1X1 + z2, X3 = b2X2 + z3,

where z1, z2, z3 are vectors orthogonal to each other and ‖zj‖2
2 = n for each j . Thus, we can

let the true DAG G∗ be 1 → 2 → 3. Suppose the prior parameters satisfy that din = dout = 2,
c2 = √

n, κ = 0 and c1, α, γ are fixed constants such that c1
√

1 + α/γ = 1. Assume the true
regression coefficients b1, b2 > 0 are given by

b2
1 = b2

2 = Kc2 logp

αn
= o(1),

where K is some large universal constant. So, b1, b2 satisfy the bound in (18). Consider the
DAG G̃ given by 1 → 2 ← 3, which has [G̃] = {G̃}. The topological ordering of G̃ can be
chosen to be σ = (1,3,2), and the minimal I-map G∗

σ is a complete DAG. One can show that
the edge weight of 1 → 3 in G∗

σ is b1b2. It is easy to verify that b2
1b

2
2 = o(c2n

−1 logp), so the
true model fails to satisfy the strong beta-min condition. Indeed, we can prove that RW-GES
is slowly mixing. See Supplementary Material Section G.4.

5.2. Rapid mixing results for sparse DAG selection. Suppose the ordering is given and
the search is restricted to Gσ

p (din, dout). We can construct a random walk MH sampler using
neighborhood function Nads defined in (3) and posterior distribution πσ

n defined in (14),
which is just the standard add-delete-swap MH sampler. Denote its transition matrix by Pσ .
If there is no out-degree constraint, by posterior modularity, one can perform sampling for
the parent set of each node separately; thus, there is no need to directly draw DAG samples.
However, when dout < p, the posterior distributions of Pa1, . . . ,Pap are not independent,
and this add-delete-swap sampler provides a convenient solution. Since by Theorem 4(i) and
Corollary 1, the triple (Gσ

p (din, dout),Nads, π
σ
n ) satisfies Condition 1; the mixing time bound

for Pσ immediately follows from Theorem 2.

THEOREM 7. Suppose Assumptions (A1), (A2), (A3), (A4.1) and (A5.1) hold for some
σ ∈ Sp , t > 3 and Cβ ≥ 8t/3. Further, assume that min{d∗

σ din + 1,p} ≤ dout. For sufficiently
large n, with probability at least 1 − 3p−1, we have

Tmix
(
Pσ

lazy
) ≤ Cdinp

2 log
(

4

πσ
min

)
,

for some universal constant C, where πσ
min = minG∈Gσ

p (din,dout) π
σ
n (G).

PROOF. See Supplementary Material Section G.3. �
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REMARK 12. The assumptions are much weaker than those used in Theorem 6. In par-
ticular, we can allow a much larger model size for each nodewise variable selection problem.
This is mainly because for any G ∈ Gσ

p (din, dout), we have |Nads(G)| = O(dinp
2). But for an

equivalence class E ∈ Cp(din, dout), the size of Nads(E) may grow exponentially in din + dout.

5.3. Slow mixing examples for a CPDAG sampler. The neighborhood Nads(E) used in
RW-GES can be very large for some E , which seems to be undesirable. However, other
choices of the neighborhood relation on Cp (which may seem very reasonable) can cause
the search algorithm to be trapped in suboptimal local modes.

A popular approach to constructing sampling algorithms on Cp is to use the CPDAG (com-
pleted partially directed acyclic graph) representations of equivalence classes. Any equiva-
lence class E can be uniquely represented by a CPDAG, a partially directed acyclic graph
that satisfies two conditions: (i) it has the same skeleton as any G ∈ E ; (ii) an edge is di-
rected if and only if the edge is directed in the same orientation in every G ∈ E . A CPDAG is
also called an essential graph [2]. One can define local proposal moves on Cp by modifying
CPDAGs. However, one can easily end up with a CPDAG sampler that is slowly mixing even
when p is fixed and n goes to infinity.

EXAMPLE 5. Let p = 3 and the true data-generating DAG G∗ be 1 → 3 ← 2. Since
G∗ is the only member in E∗ = [G∗], the CPDAG of E∗ is the same as G∗. Let Ẽ be the
equivalence class that contains all complete DAGs. It is easy to verify that the CPDAG of
Ẽ is a complete undirected graph. If we define the neighborhood of Ẽ as all the CPDAGs
that can be obtained by adding or removing a directed or undirected edge from Ẽ , then the
only CPDAGs we can move to from Ẽ are 1 − 2 − 3, 1 − 3 − 2 and 2 − 1 − 3. However,
given sufficiently large sample size, all these three CPDAGs should have much smaller score
than Ẽ . For example, the CPDAG 1 − 3 − 2 encodes the CI relation 1⊥⊥ 2|3, which does not
exist in G∗, and thus connecting nodes 1 and 2 should increase the score. See Supplementary
Material Section G.5 for an explicit construction of this example and another 5-node example,
where we further prove that the CPDAG sampler proposed by Castellettiet al. [8] is slowly
mixing.

6. Simulation studies on the RW-GES sampler.

6.1. A rapid mixing example. In this section, we present three simulation studies, which
illustrate the theoretical results we have proved. We first construct a rapid mixing example
for p = 100 and n = 800. In order to approximately satisfy the strong beta-min condition,
we randomly generate the true DAG G∗ such that its maximum node degree is 2 and its
largest connected sub-DAG only has 10 nodes, and then for each edge (i, j) in G∗, we sam-
ple B∗

ij from the uniform distribution on (0.5,1.5) ∪ (−1.5,−0.5). The DAG G∗ we obtain
has 66 edges, among which 24 are directed in the CPDAG representation of [G∗]; see Supple-
mentary Material Section H.2 for the visualization. Each row of the data matrix X is drawn
independently from Np(0,
∗) where 
∗ = (I − (B∗)�)−1(I − B∗)−1. We use α = 0.99,
γ = 0.01, κ = 0, c1 = 1, c2 = 2 and run 20 RW-GES chains, all initialized at the null model,
for 5 × 104 iterations. All 20 runs are able to find the true equivalence class in about 105

iterations, which indicates a fast mixing rate; see the left panel of Figure 2. This example
illustrates that though the strong beta-min condition is restrictive, if the true DAG is suffi-
ciently sparse and has a “simple” structure, RW-GES can be rapidly mixing for a moderately
large sample size (in Supplementary Material Section H.2, we use this idea to explicitly con-
struct toy examples with p � n that satisfy all assumptions of Theorem 6). For comparison,
we repeat the analysis by only using the first 200 observations, and we find that 11 chains
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FIG. 2. Trajectories of 20 independent RW-GES runs for a simulated data set with p = 100. Left: n = 800;
right: n = 200. The posterior probabilities are unnormalized and the log-posterior of [G∗] is set to zero. Red
crosses mark the times that RW-GES first collects [G∗]. Runs that never sample [G∗] are shown in blue.

fail to sample [G∗]. The right panel of Figure 2 suggests that these 11 chains get stuck at
different local modes. Notice that [G∗] still seems to have the largest posterior probability in
this case, which implies that the beta-min condition at least holds for the true ordering (i.e.,
if the true ordering is known, we can recover the true DAG). However, since n is small, the
strong beta-min condition is significantly violated, which makes the posterior distribution on
the space of equivalence classes highly multimodal.

6.2. Performance in a high-dimensional scenario. The complexity of the structure learn-
ing problem largely depends on p and the sparsity level of the true DAG G∗. We can roughly
measure the sparsity using the maximum degree of G∗, denoted by deg(G∗). Assump-
tion (A2) and Remark 10 suggest that we consider deg(G∗) logp = O(n) and deg(G∗) =
O(

√
logp). In the second simulation study, we examine these asymptotic orders by using 7

simulation settings where n grows linearly and p grows exponentially. Given p, we gener-
ate G∗ by first sampling a random ordering and then including each edge with probability
D/(p − 1), where the parameter D gives the expected number of neighbors of each node.
We let D grow at rate

√
n (so we actually let deg(G∗) logp grow slightly faster than n). We

generate X using the normal SEM associated with G∗ and choose the hyperpamareters in the
same way as in Section 6.1. The number of RW-GES iterations is set to grow polynomially
with p but slightly slower than p2. We always initiate the sampler at the null model and dis-
card the first 80% iterations as burn-in. For each setting, we generate 20 replicates (G∗ and X

are resampled each time), and the results are shown in Table 1 (see Supplementary Material
Section H.2 for the definition of true/false positive rates). Observe that the true positive rate

TABLE 1
Performance of RW-GES in 7 settings. For the kth setting, p = 7 · 2k−1, n = 30(k + 1), D = 0.2

√
n and the

number of RW-GES iterations Nmcmc ≈ 300 · (4p/7)1.66. TPR (skeleton): true positive rate with edge directions
ignored; TPR: true positive rate (edge directions determined by the CPDAG); FPR: false positive rate. Results

are averaged over 20 replicates, and the number in parentheses is the standard error

p n D Nmcmc/1000 TPR (skeleton) TPR FPR

7 60 1.549 3 0.854 (0.03) 0.721 (0.06) 0.047 (0.02)

14 90 1.897 10 0.89 (0.02) 0.668 (0.06) 0.03 (0.006)

28 120 2.191 30 0.91 (0.01) 0.73 (0.03) 0.017 (0.003)

56 150 2.449 100 0.871 (0.01) 0.629 (0.03) 0.015 (0.002)

112 180 2.683 300 0.866 (0.01) 0.634 (0.02) 0.0091 (0.0005)

224 210 2.898 1000 0.86 (0.008) 0.634 (0.01) 0.0049 (0.0002)

448 240 3.098 3000 0.869 (0.004) 0.648 (0.008) 0.0027 (0.00007)



1080 Q. ZHOU AND H. CHANG

TABLE 2
Simulation study with p = 20, n = 100 and expected node degree D = 4. Results are averaged over 50 data sets

c2 = 1.3 c2 = 1.1 + 0.1d

d TPR (skeleton) TPR FPR TPR (skeleton) TPR FPR

4 0.542 (0.02) 0.307 (0.02) 0.0824 (0.004) 0.539 (0.01) 0.316 (0.02) 0.0788 (0.004)

5 0.61 (0.01) 0.339 (0.02) 0.101 (0.004) 0.601 (0.01) 0.325 (0.02) 0.0977 (0.004)

6 0.665 (0.01) 0.383 (0.02) 0.115 (0.005) 0.657 (0.01) 0.393 (0.02) 0.101 (0.005)

7 0.706 (0.01) 0.412 (0.02) 0.123 (0.006) 0.699 (0.01) 0.419 (0.02) 0.096 (0.005)

8 0.72 (0.01) 0.413 (0.02) 0.132 (0.006) 0.694 (0.01) 0.421 (0.02) 0.0993 (0.006)

9 0.718 (0.01) 0.401 (0.02) 0.138 (0.007) 0.695 (0.01) 0.437 (0.02) 0.0932 (0.005)

(for both skeleton and CPDAG estimation) becomes stable as p grows, while the false posi-
tive rate even decreases. Though for most real-world problems, the strong beta-min condition
is unlikely to be satisfied and [G∗] may not be correctly identified, this study shows that
the theoretical insights on the MCMC complexity is useful. In particular, the performance of
RW-GES seems stable under the asymptotic regime deg(G∗) logp = O(n).

6.3. On the choice of c2. The third simulation study aims to investigate the optimal
choice of c2, which is the most important prior hyperparameter of our model since it de-
termines the order of the penalty on the graph size. We fix p = 20 and n = 100 and generate
50 true DAGs and data sets using the method described in Section 6.2 with D = 4 (recall
this gives the expected degree of a single node). When implementing RW-GES, we impose
the maximum degree constraint, denoted by d (i.e., the sampler only searches equivalence
classes with maximum degree bounded by d); see Supplementary Material Section H.1 for
details. RW-GES is run for 40,000 iterations for each simulated data set. We first fix c2 = 1.3
and try d = 4,5, . . . ,9. The results are shown in the left column of Table 2. True positive
rates increase with d , since some nodes in the true DAG may have large degrees and their
incoming edges cannot all be detected if d is small. However, the false positive rate also
increases because the search space quickly grows with d . Next, we repeat the experiment
by setting c2 = 1.1 + 0.1d , which according to our tests, appears to yield close-to-optimal
performance in this simulation setting. As can be seen from the right column of Table 2, the
false positive rate remains roughly a constant and the true positive rates are comparable or
even better than those for c2 = 1.3. Recall that to prove posterior consistency, we assume c2
is greater than 4(α + 1)din plus some constant in Assumption (A3). This simulation study
shows that, though the coefficient in Assumption (A3) is quite pessimistic, the linear growth
rate (w.r.t. the maximum degree constraint) is a useful rule of thumb for tuning c2 in practice.

7. Discussion.

7.1. Mixing of structure MCMC and order MCMC methods. In this work, we have only
analyzed the mixing times of MCMC algorithms defined on the space of equivalence classes,
but the same strategy can be pursued to study samplers defined on the DAG space and or-
der space. Observe that the canonical paths we constructed in Section 3.6 for the RW-GES
sampler can also be thought of as paths on the DAG space. Given an equivalence class E ,
we first pick arbitrarily some G ∈ E . If G has ordering σ , we move from G to the minimal
I-map G∗

σ by only add-delete-swap modifications of the DAG. To move from G∗
σ to G∗, we

have to change the ordering. For RW-GES, the neighborhood function defined in (4) allows
us to “switch” from G∗

σ to a Markov equivalent DAG G̃, which is still an I-map of G∗ but no
longer minimal, and then we can remove edges from G̃ (the existence of such G̃ is guaranteed
by Chickering algorithm). Repeating this procedure, we obtain a path from G∗

σ to G∗.
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Consider the classical structure MCMC sampler, a random walk MH algorithm defined
on Gp that uses single-edge addition, deletion and reversal to propose local moves [9, 36].
Since any two Markov equivalent DAGs G, G′ are connected by a sequence of covered
edge reversals (see Supplementary Material Section C.1), structure MCMC is able to traverse
equivalence classes and move from G∗

σ to any other Markov equivalent DAG. Therefore, the
canonical paths of RW-GES are also paths of structure MCMC (introduce swap moves if a
restricted space is considered). The same argument can be applied to order MCMC samplers,
since a covered edge reversal can be seen as an adjacent transposition on Sp [53]. Unfor-
tunately, the size of an equivalence class can easily be very large, and it is unclear whether
structure MCMC can always quickly leave any equivalence class even if the maximum de-
gree is bounded. In Supplementary Material Section G.6, we construct an interesting example
where G0 is Markov equivalent to G∗ ∪ {2 → 1} but it is quite difficult for structure MCMC
to remove the edge between nodes 1 and 2 from G0. Indeed, we show that on average it
takes structure MCMC O(p4) iterations to move from G0 to G∗, while it only takes RW-
GES O(p2) iterations to move from [G0] to [G∗]. Nevertheless, we conjecture that structure
MCMC is still rapidly mixing under the assumptions we used in Section 4 (recall “rapid mix-
ing” only requires the mixing time to be polynomial in n and p), though the proof would
probably require a skillful analysis of how the size of an equivalence class changes with
single-edge modifications of its member DAGs.

One caveat is that the target posterior distributions on DAG and order spaces are typically
different from our target πn defined in (17). For example, for DAG MCMC methods, it is
convenient to use the prior π

dag
0 (G) ∝ (c1p

c2)−|G| for G ∈ Gp(din, dout), which yields the

posterior π
dag
n (G) ∝ eψ(G)1Gp(din,dout)(G). Comparing them with (16) and (17), we see that

π
dag
0 (E) = ∑

G∈E π
dag
0 (G) ∝ |E |π0(E) and π

dag
n (E) ∝ |E |πn(E). Note that we do not use π

dag
0

for equivalence class samplers [8] since calculating the size of E can be extremely time-
consuming. On the order space, the situation is more subtle since one DAG can be compatible
with multiple orderings [14, 15]. If rapid mixing of structure MCMC can be established, we
expect that the same argument can be used to show the strong selection consistency of π

dag
n .

7.2. Advantages and extensions of RW-GES. One advantage of RW-GES over GES is
that RW-GES considers a restricted search space and is equipped with the swap proposal.
This is particularly important to theoretical analysis. Nonsparse models can easily overfit the
data (e.g., if node j has more than n parents, then Xj can be perfectly explained leading to an
infinite score), which is why the sparsity constraint is necessary for proving high-dimensional
consistency results. For GES, even if the maximum degree of G∗ is bounded, there is still a
possibility that GES visits nonsparse equivalence classes along its search path and then its
behavior becomes completely unpredictable. In the proof of Nandy, Hauser and Maathuis
[42] on the high-dimensional consistency of GES, the authors directly assumed that the output
of the first stage is not too large; see Assumption (A5) therein.

The main methodological difference between the two algorithms is that GES is essentially
an optimization algorithm, while RW-GES is used for sampling. The general theory on the
relation between optimization and sampling suggests that each has its own unique advantages
[58]. In particular, when the sample size is not large, the posterior tends to be multimodal and
MCMC sampling (if it converges) can yield better estimates via model averaging [24]. One
can also use the output of GES as the initial state for RW-GES, which to some extent, may
achieve the benefits of both methods. In our theoretical analysis, we choose to focus on RW-
GES just for its simplicity. One can generalize it in many ways to improve its performance
in practice, for example, by using an informed proposal scheme or combining it with tem-
pering techniques (i.e., running multiple RW-GES samplers at different temperatures). One



1082 Q. ZHOU AND H. CHANG

simple modification that may significantly improve the sampler’s performance is to first es-
timate a large conditional independence graph [40, 50] and then use it to tune the proposal
probabilities. This can be seen as a randomized extension of the method of Nandy, Hauser
and Maathuis [42]. The canonical paths we construct in Section 3 can always be applied as
long as the sampler proposes states from Nads(·) (or a superset of it). But one important take-
away from our theory is that using a neighborhood smaller than Nads(·) may lead to slow
mixing even when the sample size is sufficiently large. A detailed investigation into more
sophisticated local MCMC schemes using Nads(·) is left to future research.
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SUPPLEMENTARY MATERIAL

Supplementary material for “Complexity analysis of Bayesian learning of high-
dimensional DAG models and equivalence classes.” (DOI: 10.1214/23-AOS2280SUPP;
.pdf). Part A: a notation table. Part B: more results for mixing times of finite Markov chains
and proofs for Section 2. Part C: preliminaries for graphical models. Part D: proofs for Sec-
tion 3. Part E: auxiliary results for high-dimensional empirical variable selection. Part F:
proofs for Section 4. Part G: proofs and examples for Sections 5 and 7. Part H: further details
about RW-GES implementation and simulation studies. Part I: discussion on the case where
the strong beta-min or faithfulness condition fails.
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